```
R&EOBE
    of tho
```

ORL DRESSING AND : LTALI URGIDAL EBORATORLES.

$$
\text { Investigation No. } 2014 \text {. }
$$

> (Subsequent to Investieation Reports
> (as 2092 and 3002 Jan. Feb 2 2046.

Research on Optimum Thread Form for Proposed Anglo-American-Canadian Serew Threaci.

Part Ill. - Investigation of Axiality of loading of a Short Throaced Specinien Loaded in Typo I Adaptors of a 80 Ton Averymehonck Pulsator.


```
This research is performed in
collaboration with the National
Bureau of Standards, washincton,
U. S. A., the National Ihysical.
Laboratory, Leddington, ingland,
and the National Research Council,)
uttawa, Canada.
```


Abstract

In order to determine whether the load imposed on a screw-thread specimen by Type I Adaptors (shown in Figure 2) in the Avery-Schenck fatigue testing machine is axial, four resistance wire $\mathrm{SR}-4$ strain gauges, type $A=7$, were placed on the middle of a $\frac{3}{2}-$ inch stud which was then placed in the adaptors and loaded.

During loading and unloading, readings were taken on each gauge with a Baldwin SR-4 strain indicator.

Minerals
Physical Retalluxgy
Research Lavoret：ries

```
0 T T | | A Narch 16, 1946.
```

REPQRT
of the

ORE：DRESSING AND MLTALLURGICAL LABORATORIES．

Investigation No．2014．

> (Subsequent to Investigation Reports （Nos． 2991 and 2002，Jano－Fob。2 1946。）

Research on Optimum Thread Form for Iroposed Anglo－American－Canadian Screw Thread．

PART III．－Investigation of Axiality of Loading of a Short Threaded Specimen Loaded in Type I Adaptors of a 20－Ton Avery－Schenck Pulsator．

Origin and Purpose of Investigation：
Axiality of loading has always been a problem with direct－loading fetigue machines and is important in the screw thread specimens used for the Research on Optimum Thread Form．The appearance of previously broken stud ${ }^{*}$ （see Figure 3）indicates，by the portion of areas discoloured by frettage corrosion，that the specimens were subject to other than purely axial loading．

It was therefore decided to investigate，on
the F. M．R．L．pulsator，how far the loading departs from axiality。

The threaded stud was made in accordance with N．P．I．Drwg．Cl03／202（see Figure 1）．

Procedure:

A stud for use as a sorew thread specimen, made from high tensile steel and of thread form No. 3 (see Figure 1), was employed in this investigation together with cylindrical nuts of the same tiread form. Both stud and nuts were supplied by the National Physical I, aboratory.

The specimen used had a ground thread.
Four SR-4 strain gauges, type $A-7$, were attached to the stud. The manner of attachine terminal strips and rings to protect the gauges while placing the specimen in the machine is slown in Figure 4.

After placing the specimen in the machine, load was applied in steps of about 3,000 pounds until a load of about 15,000 pounds was reached, the loads being measured by simultaneously taken readings on two previously cali= brated A-3 gauges placed on both sides of the loop dynamometer. This contributed little to accuracy but reduced time incurred In moving around to read the nicroscope at each observation. A SR-4 20-point switching unit was usod to transfer the S?-4 strain indicator from cauge to auge. The results obtained in this way, using Type I adaptors, are shown in Figure 5 in the form oi a graph, and in Table I below:

TABL心' I.

$\begin{gathered} \text { Reading } \\ \mathrm{No} . \end{gathered}$	Load, in pounds	Strain, in micro in./in.			
		$\begin{aligned} & \text { Gauge } \\ & \text { No. } 1 \end{aligned}$	Gauge No. 2	Gauge NO. 3	Gauge $\text { No. } 4$
1	310.5	27	5	21	-47
2	966.0	43	78	108	11
3	1,484,	62	248	178	12
4	2,210	97	316	248	56
5	2,900	142	353	303	118
6	3,590	192	381	360	187
7	4,280	240	410	408	250
8	4,970	293	444	462	318
9	7,420	397	509	562	443
20	7,870	490	577	668	570
11	9,150	572	637	755	677
12	10,310	674	706	850	798
13	12,150	783	781	954	922
14	13,260	871	835	1035	1025
15	14,720	970	897	1115	1140

(Procedure, cont'd) -

During the discussion of preliminary results of such tests, at the time of the Conference on Unification of Engineering Standards in ottava in September of 1945, it was suggested that the specimen be rotated in the grips and readings be taken with the specimen in various positions. This was to take account of the fact that a screw is not a perfectly symmetrical part and that inequalities of strain distribution might arise as a result of the relative positions of the ends of the screw threads and the positions of the gauges. Briefly, the purpose was to determine if the previously obtained results are dependent on the machine, adaptors, or on the specimen.

For this purpose, zero load readings were taken on the qauges and readinss at 10 tons load were taken in four dirferent positions of the apecimen rotated in Type I adaptors*。Pinally, the machine was run at a load pange about 25 per cent less than the safe range of a stud, to see whether the inequalities of the readings would disappear. No such effect was observed.

Discussion of Results:

Inequality of the strains measured on the gauges placed opposite each other on the stud is equivalent to the presence of a bending moment about an axis perpendicular to a horizontal plane passing tirough the centroids of the two auges. This bending moment is directly proportional to the difference in strains measured on two opposite gauces. Thus

```
            |M
where os is the inequality of strains on the surface
```

Type I adaptors were made in accordance with National
Physical Laboratory Drwg. BlO3 (see Migure 2, in which these adaptors are shown with cylindrical spacer applied at P.M.R.L. to keep the stud in centre position).
(Discussion of Results, cont'd) --
at two opposite points on stud diameter and K is a constant which need not be determined.

$$
\left|M_{1-3}\right|=\left|{ }^{\theta_{1-3}}\right| K \quad\left|M_{2-4}\right|=\left|\theta_{2-4}\right| K
$$

Here $\theta_{1 \sim 3}$ and $\theta_{2 \rightarrow 4}$ is the difference between the strain indicator deflections for Gauges 1 and 3 and Gauges 2 and 4 respectively.

Define bending moment as M.
$|M|=\sqrt{M_{1-3}^{2}+M_{2-4}^{2}}$ also
when θ is the angle measured from the horizontal
plane of Gauges 1 and 3.

Let e be the maximum difference in strain on opposite sides of the specimen. In Ficure 6 the values of θ_{1-3} and θ_{2-4} may be read directly. The curve for Gauges 1 and 3 gives θ_{1-3} (derlection of Gauge 1 - deflection of Gauge 2) and the curve for Gauges 2 and 4 gives Θ_{2-4} (deflection of Gauge 2 - deflection of Gauge 4). See also Table II, on Page 10.

Considering Figure 7, it can be seen that for a
load of about about $15,000(e . g \circ, 14,720)$ pounds on a $\frac{3}{4}$ threaded stud specimen, the maximum difference of unit strain between two points on opposite ends of a diameter was 282 micro inches por inch. Assuming an elastic modulus of 30×10^{6} pounds per square inch, this corresponds to a variation of unit load of 8,500 p.s.i. The area of the specimen is 0.442 square inch. At 15,000 pounds load, the average unit tension was 34,000 pos.i. The magnitude of stress over the specimen varied $\pm \frac{.8500}{34000} \times 100$,
(Discussion of Results, and Conclusions, cont'd) -
or
or 25.0 per cent, from the average.
Loading the specimen in various positions shows no systematic variation that can be attributed solely to assymmetry of the screw thread specimen.

The question as to the cause of the asymmetrical loading when using the Type I adaptors must be considered. Such asymmetry could arise from either of the following: misalignment of the beam and dynamometer of the machine, or non-parallelism of the bearing surfaces of the nuts. The Type I adaptors were inspected by the metrology section of the National Research Council, Ottawa, for parallelism of the three plane faces marked A, B and C in Figure 2. The results of this inspection are as follows:

| Faces Chocked | Error in Paraliolism | Aceptor |
| :---: | :---: | :---: | :---: |
| $A-C$ | 3.51 | M |
| $B-C$. | $0.3:$ | M |
| $A-C$ | 2.31 | B |
| $B-C$ | $0.4:$ | B |

The adaptors were inspected by rlacing face. C on a surface plate and rumning a dial indicator mounted on a suitable block around the other faces. With both adaptors it was found that minimum readings on face A corresponded with minima for face B, so that the error between those two faces is the difference between the other errors. Thus, If the machine is adjusted by placing shims where needed till the faces C when the adaptors are placed in the machine are parallel, the faces B will be out of parallel by not more than 5.1 minutes.

The specimen used in these tests was similarly inspected. This was not done before attaching the strain gauges, and the latter made it impossible to use an inside
(Discussion of Results, and Conclusions, cont'd) -
micrometer. Therefore the nuts were placed a suitable distance apart, and the distance between their bearing suriaces was measured as near as possible to the four gauges by use of an internal caliper and an outsioe micrometer. These readings indicate that these faces were out of para= llel by not more than 1 minute, although it must be recognized that the precision possible by this method is not all one could vish.

The parallelism of the machine was checked as previously described by placing the adaptors in the grips, tightening them in with the nuts provided, and measuring the distance between the faces at four equal-spaced points on the edges of the faces C with an intornal micrometer. Such readings taken between the tests with Type I adaptors were out of parallel by not more than 20 seconds of arc. Similarly, the workine plane surfaces of the nuts on the strain eauge spedimen unstressed wore not out of parallel by more than 20 seconds. It may, therefore, be assumed that when the apecimen was tonsed, the bearing surfaces of the nuts would not be rotated "ore than 40 seconds of arc from their direction when the machine was unstressed. The maximum fibre stress on a $\frac{3}{4}$ inch cylinder bent uniformly 40 seconds of arc over a length of $2 \frac{1}{8}$ inches will be about 1,740 pounds. The observed values are much higher than this. Such values might bo explained by asymmetrical yielding of parts of the machine when it is loaded. However, this has not been checked, because the adaptors are too close together to admit an inside micrometer when the specimen is in place.

Conclusion:

The tests described herein show that it was not possible to secure purely axial loading, or an acceptable approximation of it, in the 20-ton AverySchenck push-pull fatigue testing machine of the Physical Metallurgy Research Laboratories, Ottawa, when using Type I adaptors.

The resultant bendin eifect as obtained on the fatigue machine used for this investigation is shown in Figure 7. It varied in magnituade and position through the whole range of loading, reaching the maximum at 2,210 pounds of load in a plane placed about 29 degrees as measured from the horizontal position in the direction marked in Figure 7.

00000000 0000 00

TWW: JV:PES.

| NUMBER OF THREAD FORM | | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | ---: | :---: | :---: | :---: | :---: | :---: |
| INCLUDED ANGLE | DEG | 45 | 50 | 55 | 60 | 65 |
| PITCH | IN | 0.1000 | 0.1000 | 0.1000 | 0.1000 | 0.1000 |
| ROOT RADIUS | IN | 0.0163 | 0.0152 | 0.0141 | 0.0129 | 0.0115 |
| STUD MAJOR DIAMETER | IN | 0.7411 | 0.7386 | 0.7362 | 0.7339 | 0.7317 |
| STUD EFFECTIVE DIAMETER | IN | 0.6931 | 0.6906 | 0.6882 | 0.6859 | 0.6837 |
| STUD MINOR DIAMETER | IN | 0.6250 | 0.6250 | 0.6250 | 0.6250 | 0.6250 |
| NUT MAJOR DIAMETER | IN | 0.7612 | 0.7562 | 0.7514 | 0.7468 | 0.7424 |
| NUT EFFECTIVE DIAMETER | IN | 0.6931 | 0.6906 | 0.6882 | 0.6859 | 0.6837 |
| NUT MINOR DIAMETER | IN | 0.6451 | 0.6426 | 0.6402 | 0.6379 | 0.6357 |

THESE PARTICULARS ARE IN ACCORDANCE WITH DWG. \#CIO3/202. NATIONAL
PHYSICAL LABORATORIES ENG. DIVISION. (GREAT BRITAIN).

FIGI

DEPARTMENT OF MINES \& RESOURCES		
STUD \& NUT FORFATIGUE TEST		
OfSIGNED N.P.L	DRAWN W.A.E.	TRACED W
SEALE: NONE	apprived	CHECKED

ADAPTOR . TYPE I. (N.P.L.DWG NOBIO3/1) MADE FROM STEEL S.A.E 4340.
QUENCHED $1500^{\circ} \mathrm{F}$ IN OIL DRAWN $700^{\circ} \mathrm{F}$ ROCKWELL C50. 2 REQUIRED, IMARKED B(BEAM SIDE) \& I MARKED M (MICROSCOPE SIDE) CYLINDRICAL SPACER IS MADE FROM STEEL S.A.E. 1060 OR EQUIVALENT.

* to suit dimensions of nut

BROKEN STUD WITH AREAS DISCOLOURED BY FREPTAGE CORROSION.

Elgure 4.

STUD WIMH SR-4 GAUGES AND TERMINAIS
AS USED TO MEASURE TIL AXIALITY OF IOADING。

