```
OT TA WA Apr11 18, 1945.
```

$$
\begin{gathered}
R E P Q R T \\
\text { of the }
\end{gathered}
$$

ORE DRESSING AND MSTALLURGICAL LABORATORIES.

Invest1gation No. 1842.

Preliminary Report on Metallurgical Examination of $50-\mathrm{mm}$ 。British Armoux Plato.

ABSTRACT

Through-plate mechanical properties correlate very well with balisatic properties of rolled plate. Those platos with the higher through-plate mechanical properties gave the better ballistic results.

Ballistic limits of the cast plates were too uniform and the mechanical properties too variod to obtain good statistical corrolation.

Ballistically the rolled plates could be divided into four groups in order of merit as follows:

1. Firth Brown 1曹Croivo Basic Electric.
2. E.S.C. I竞 Croko Acid Open Hearth.
3. Colvilies It Grm Mo Basic Open Hearth. (E.S.C. Low Alloy Basic Electric.
4. (Firth Brown Lom Alloy Acid Open Hearth. Golvilies Low Alloy Basic Open Hearth.

There was ifttle drop in haxdness from surface to centre in any of the plates.

Variations in melting practice (time at heat, etc.) may be responsible for differences botween the various groups of rolled plates, but the aignificance of the difference is such that further investigation is in orcier.

REP日RTM
 of the

ORE DRESSING AND METALLURGICAL LABORATORIES.

Investigation No. 1842.

Preliminary Report on Motallurgicel Examination of $60-\mathrm{min}$. British Armour Plate.

Origin of Material and Object of Investigation:
On May 31, 1944, Mr.E. W. Shaw, Inspooting
Officer, Directorate of Tanirs and Motor Transport, Inspec-
tion Board of the Unitad Kingdom and Canada, Ottawa, Untario, requestod (by lettar, File No. 4/10/102/21) that a quantity of 60 mom. British armour plate which was then being proof-tested at the Proof and Development Establishment, Valcartier, Quebec, be givan a thorough metallurgical examination. The object of this examination was to correlate the mechanical and metallographio properties with the ballistic properties.
(origin of Material and object of Investigation, contid) -

The firings at Valcartier were carried out at cold $\left(-40^{\circ}\right.$ to $\left.-30^{\circ} \mathrm{F}_{0}\right)$, medium (0° to $\left.20^{\circ} \mathrm{F}.\right)$, and warm temperatures $\left(60^{\circ}\right.$ to $\left.80^{\circ} \mathrm{Fs}\right)$. Armour-piereing shot used consisted of 2 -pounder, $6-$ pounder and $75-$ mra. on the ralled plate and of 2-pounder, 6-pounder and $37-\mathrm{mm}$. on the cast plate. Further information on the balisstic testing may bo found in the report of the Artillery Proof Establishment, Valcartier, Que.e entitled "Trial of British Armour at Low Temperatures" (V412: Dec. 1944), and also in the British Ministry of Supply's Armous Branch Report M608BA/4 No. 12, "Low Temperature Ballistic

Tests on Armour" (Dec. 30, 2944).

Deta on Plates:

Pertinent data on the plates received are listed
in Table I。
TABLEI。

No mention was made of deoxidizing practice in the information recelved.

Program of Test Vork -
It va felt that the rather large expenditure made in firing the plates warrented a thorough metallurgical examination, and an extensive program was drawn up. This included the following:

1. Tensile (through thickness) Tests: Elongation, reduction in area, yleld, and maximum strength.
2. Izod notched-bar impact, on through-plate specinens, at -40° Fi. $U^{\circ} \mathrm{F}$. and room temperaturo.
3. Hardness surveys through the thickness.
4. Inclusion counts.
5. As-quenched frain size deteminations, to be used in Grossman's method of calculating hardenability from chemical composition. (There was insufficient material available for end-quench tests).
6. Chemical analyses.
7. ifetallographic examination.

With the laree amount of data avallaide the problem resolved itself into one of interpreting the rosults of the mechanical and ballistic tests and subjecting them to statistical analysis. It is with this that the present preliminary report deals. Included herein are the mechanical properties at room temperature, the hardness surveys, and the inclusion counts.

Mechanical Tests:

Tensile speofinons had beon cut from the top and bottom of the original ingots in both the transverse and longitudinal direction. To eliminate plate-to-plate variations, however, two through-plate specimens were cut from each sample. It was felt that the through-plate properties would give better correlation with the ballistic properties, since both are affected by laminations, rolled inclusions and chenge in hardness through the thickness of the plate. Two throughplate Izod specimens were also made from each plate The results are shown in Tables II and IIJ.
(Continued on next page)
(Mochanical. Tests, cont ld) \sim
MABLE II. - ROLLD PLASS.

Speci-: Type men: of noo plate	1haximun: rield iDlongations:Recuction:Izod impact at astress, stress, per cont : of areas: room tompera- 				
1	237,100	$\begin{aligned} & 112,100 \\ & 126,000 \end{aligned}$	$\begin{array}{r} 13.0 \\ 7.5 \end{array}$	$\begin{aligned} & 25.5 \\ & 12.0 \end{aligned}$	$\begin{aligned} & 19.5 \\ & 20.5 \end{aligned}$
2	138,800 138,000	$\begin{aligned} & 122,500 \\ & 1.23,400 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{array}{r} 16.9 \\ 9.0 \end{array}$	$\begin{aligned} & 15.0 \\ & 20.5 \end{aligned}$
3	238,100 236,100	124,400	11.5 8.0	$\begin{aligned} & 24.6 \\ & 14.7 \end{aligned}$	$\begin{aligned} & 21.0 \\ & 22.0 \end{aligned}$
4	$\begin{aligned} & 135,500 \\ & 133,900 \end{aligned}$	$\begin{aligned} & 125,800 \\ & 125,800 \end{aligned}$	7.0 7.0	$\begin{aligned} & 77.7 \\ & 21.0 \end{aligned}$	$\begin{aligned} & 17.0 \\ & 25.0 \end{aligned}$
5	$2.34,000$ 124,500	$137,700$	$\begin{aligned} & 10.0 \\ & 12.0 \end{aligned}$	$\begin{array}{r} 11.3 \\ 8.1 \end{array}$	$\begin{aligned} & 1.7 .5 \\ & 20.0 \end{aligned}$
6	$\begin{aligned} & 335,000 \\ & 235,200 \end{aligned}$	$\begin{aligned} & 121,700 \\ & 123,000 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 29.2 \\ & 32.1 \end{aligned}$	$\begin{aligned} & 20.0 \\ & 10.0 \end{aligned}$
7	$\begin{aligned} & 114,100 \\ & 114,100 \end{aligned}$	202,000 102,100	5.0 5.0	6.3	16.0 17.5
8	110,000 210,400	94,700 94.000	6.5 7.0	7.5 9.0	16.0 17.0
9	$11.8,300$ $11.8,500$	100,300 97,400	77.5 10.0	9.6 22.5	$\begin{aligned} & 18.0 \\ & 14.5 \end{aligned}$
10	$\begin{aligned} & 109,300 \\ & 104,300 \end{aligned}$	$\begin{aligned} & 93,000 \\ & 91,300 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 22.0 \end{aligned}$
12	$\begin{aligned} & 112,200 \\ & 112,200 \end{aligned}$	$\begin{aligned} & 94,100 \\ & 93,600 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$	$\frac{11.3}{21 . \pi}$	$\begin{aligned} & 16.0 \\ & 19.5 \end{aligned}$
12	112,350	110,600	5.0	8.0	15.0
	112,200	110,100	6.0	8.0	15.5
12	134.000	123,000	16.0	30.3	43.0
	234,000	118,000	26.0	35.0	44.0
14	133,400	119,000	17.0	35.0	36.0
	132,600	215,400	22.0	18.0	42.0
25 二	130,400	$121,700^{\circ}$	16.0	33.5	43.0
	131,100	113,700	16.0	37.5	46.0
16 込	132.400	116,100	24.0	32.8	40.0
	131,100	1148100	14.5	28.7	35.5
17	130,700	1.12,100	18.0	49.0	47.0
	120,400	110,600	19.0	46.7	53.0
28	330,000	125,000	19.0	49.1	22.5
	129,400	1178400	14.0	32.3	80.0

[^0][^1]Tablo I, Ro3led plates (continued)

© Brolce on gauge Inne。
F Eroke outside middie third.

TABIE III. \sim GAST PLATSS.

- Broise outside midale third.

Mablo IIIs Cest Plates (continued)

(Mechanical Tasts, contid) -
Hardness readinge were taken on through-plate specimens 5 mm and 15 mm . from each adge and a. 1 so in the centre. The Rockwell "C" scale was used. In some cases on the cast plates, where porosity was suspected, these readings were chocked, using a $30-k 110 g r a m$ load, on the Vickers hardness machine. The readings at the two 15 mmo points were later discarded as superfiuous, as there was ilttle change in hardnoss from the surface to the contre of the plates. The figures
in Table IV are the average of at least three readings.
TABLE IV. - ROCKWELI HARDNESS

(Mechanical Tests, cont'd) -
Phres scatten 2 lots were made for both rolled and cast plates. Ultimate strength was used as abscissa whilo per cent eloncation, per cent reduction in aree, and Izod impact, etrength wore used as ordinates. These plots were ther split horizontally and vertioslly and the averaze baljistic limit for each resulting section was calculated. The same procedupe was followed using the flakjng fector results are shown in lioure 1 .

Mgure 2.

GHART SHOWING CORRELATION OF BALLISTIC LIMITS did meGHaNICAL PROPEITIES.
w/it $\operatorname{ILm} i t a$ dre Fr $6+p o u n d e r$ at 30° angle.
Note: The velocities shom here are the ballistic limfts as corrected to 60-mw. thlckness by a stralght proportion method. The D.F.D. Standard Curve would give a velocity of approxinately 1830 fos. for a 60 mm . plato.

The iigures for the ballistic limits are those for the 6 pounder wi. shot ut 60° angle of attack ond are taken from table VII of tryial of British Armour at Low Tomprature" (Axtillary Proof Fstablishment, Valcartior, Que., Docember, 1944) The $/ 2$ Limits for the $6-p o n d e r$ attack at 30° wore ised in the correlation worls. This was done for a number of readons, of which the following are the more irportant:
(Mechanical Tosts, cont'd) -

1. More plates were tested in this shoot.
2. More shots were fired at each plate to get the W / R Iimit, thus giving more rellable values for the flaking ractor.
3. The method of correcting W/R limits to $60-\mathrm{mm}$. thickness which was used gave the least deviation Irom results obtained from specified correction methods (in this cass; OB Proc. 14981).

Pigure 1 indicatos quite plainly that higher
mechanical properties result in better ballistic properties. No correlation could be obtained from tho cast plates as the range of ballistic iimits was vemy small and consequently, with the small number of results available, no significant difference betweon the cast plates could be found. The vibrac 45 and $1 \frac{1}{2}$ Crmino plates had similar properties. The low-alloy plates had lower values of tensile and yield strength as well as core hardness, with higher Izod values, per cent elongation and per cent reduction in area. The averages for these three groups were not significsntly different. They were as follows:

Ft./sec.
Qrous

Vibrac 45	-	2644
1. Cr-100	-	1661
Low A110y	-	1670

Table V lists the averase ballistic limits and the standard deviations for each group of Rolled plates.

TABLE V．

In order to estimate whether sarpling variations alone would account for the differences in ballistic limits， the significanoe of the difference was checked by statisticai： analysis（see Appendix I for method used）．

It was found that the plates could be divided into four distinct groups according to thelr ballistic limits．

These were：

1．Firth Brown	Basic ELectric	1考 Cr－MO
2．E．S．C．	Acsid Open Hearth	2 ${ }^{2} \mathrm{Cramo}$
3．（Colvilles （E．S．C．	Basic Open Hearth Basic Eloctric	$\begin{aligned} & \text { l⿱十口冖⿱㇒⿻二乚㇒ } C x-M O \\ & \text { Low Alloy } \end{aligned}$
（Firth Browa （Colvilles	Acld Open Hearth Basic Open Hearth	Low Alloy LOW Alloy

The I咅 Cr－Mo plates as a group were definitely superior to low－alloy plates．It is interesting to note that Basic Electric was the best，followed by Acid Open Hearth and Basic Open Fiearth in that order，for plates of both alloy com－ positurons．

One fundamental difference between the various
(Mechanical Tests, contid) -
groups of rolled plates was that the properties of the Firth Brown d音 Cr-Mo were the most uniform. This would indicats a greater degree of control in the manufacturing process.

Inclusion Rating:

Inclusion ratime, using the recomended A.S.T.K. prom cedure (A.S.T.M.designetion: E 45), showed gery little differenoe butweon the plates, either mollod or cast, as all plates were very cloan. Another means of comparing inclusion contenta will possibly have to be devised. An almost complete absence of sulphide and silicate inclusions from the rolied plate was noted. Absence of sulphids inclusions and the presence of moderate amounts of alumina would seem to indicate that the steels were deoxidized with aluninium.

The grain size, which will be included with the hardenability in a subsequent report, was practically the same in all samples examined to date, boing $4 \frac{1}{2}$ to $5 \frac{1}{b^{2}}$ (according to the A.S.T.M. grain sfze chart).

Macro-hixamination:

Through-plate sections were macro-etched in 50:50 HCl-water solution. Photographs weso taken of typical pistes from each group and also of exceptional plates. The rolied plates are shown in Figures 2,3 and 4 .

Figure 2.

MACRO-ETCHED SECTIONS OF PLATES NOS. 20. 26 AND 33. (Approximately 5/6 full size).

Fisure 4.

MACRO-ETCHED SECTION OF ROLLED PLATED NOS. 31 AND 25. (Approximately 5/6 full size).

Plate No. 25 showed a number of deep pits. Plate No. 31 showed pits near the surface, which might indicate poor cropping before rolling. The pits in Plate No. 25 were due to segregation of both the inclusions and the alloy content.
(Macro-Examination, contid) -

It bas rather dexfuevit io pita samias frum the cast piaces which nigho bo caliso uykioal, as the dendritio structurs varied between svon tio two plates cut from the same loop costing. The thase plates shown in Figure 5 may be taken as represontetive, however, with the oxception of the surface defects show which occures only in these three samples.

Figure 5.

MACRO-ETCHED SECTIONS OF CAST PLATES.
Dendritic structure is representative but surface defects are not.
(Approxinately $2 / 3$ full size).

Conclusions:

1. Through-plate mechanical properties correlate very well with ballistic properties of rolled plate. 2. Those rolied plates with the highest throughplate mechanical properties were the best belilistically.
2. The variation in ballistic limits for the cast plates was too small to obtain any statisticsily significant correlations. Further investigation msy uncover a variable more elogely woleted to the ballistic properties.
3. The rolled piates could be diviciec into four
```
(Conclusions, cont'd) -
```

distinct groups according to thelr bejlistic limits:
a) Firth Erown litGo Basic Blectric
b) E.S.C. $1 \frac{1}{2}$ Gromo Acid Open Hearth
c) (Colvilles $2 \frac{3}{3} \mathrm{Ormo}$ Basic Opon Hearth
(E.S.C. Low Alloy Basic Electric
d) (Firth Exowa Low Alloy Acti Open Hearth
Golvilles LOW Aljoy Bessic Open lisuxth
3. There was littla drop in inardnoss from surface
to centre in any of the plates.
6. Variations in melting practioe (time at heat,
etc.) may be the cause of dirferences between various grouns
of rolled pistes but the significance, while not conciusive
proof of the superiority of any one group of piates, is such
that further investigation is varranted.

APPENDTX I.

```
In conmection with the statisticel analysis, the following methods were used:
```

```
\[
\begin{aligned}
& \text { Standard Deviation }=\sigma=\sqrt{\frac{\sum x^{2}}{N}-\left(\frac{\sum x}{N}\right)^{2}}=\sqrt{\frac{\sum x^{2}}{N}-\bar{x}^{2}} \\
& \text { where } X=W / R \text { limit or any individusl plate. } \\
& \bar{x}=\text { average } W / \text { R Ifmit for a group of platea. } \\
& N=\text { number of plates in group. } \\
& \text { Standard Deviation of an everage }=\sigma_{k}=\frac{\sigma}{\sqrt{N}} \\
& \text { Significance }=t=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\sigma_{\bar{x}_{1}}{ }^{2}+\sigma_{\tilde{x}_{2}}{ }^{2}}} \\
& \text { Figures for significance wse taken from standard } \\
& \text { tables givine ereas under the normal curve of error. }
\end{aligned}
\]
```


APPENDIX II．

The procedure used in obtaining the chart in
Pigure l was repoated，using the ballistic Imits from the 2－pounder and 75 －imi．trials at sumner temperature．In this case，however，the assessod values of the ballistic Ifinfs were used．The differences betwe日 thess values and tiae required ballistic limits，as specified by efther it 300 or AXS 483 rev． 2 ，were then marked on the chart as ofther positive or negative numbers．These two charts are shom below，in Figures 6 and 7 ．

P1gure 6.

BRITISH ARMOUR PLATE rolleo plates 2 por．at normal（summer temperature）								
			通					
			$\begin{aligned} & \text { cox } \\ & \substack{6 \\ \hline} \\ & \hline 0 \end{aligned}$					

THROUGH－PLATE NECHANICAL PROPLRTTES AND BALIISTIC RESULTS FROR Z～POUNDER AT NORMAL TRTLE AT SUARER TEMPERATURE。

Figure 7.

THROUGH-PIATE JECHANIGAL PROPERTIES AND BALIISTIC RESULTS FROM SUNMER TEMPERATURE TRTAL OF 75-RM. AT NORMAL TRIAL。

Apparently the $75 \times m m$. trial $1 s$ not as severe as e1ther the 2 -pounder or the 6-pounder trisi. It will be noted that the Lowest ballistic Ilmits occur in the upper Ieftohand corner of the chant in the 2-pounder trial and in the lower rightwhand corner for the $75-\mathrm{mm}$. Mhis would soom to bear out the fact that the 2 -pounder is predominantly a test of hardress (and thus tensile strength), while the $75-\mathrm{mm}$. is affected more by ductility.

[^0]: - probakly hígho

[^1]: (Contimusd on noxt pegs)

