R $\mathrm{E}_{\mathrm{P}}^{\mathrm{P}} \mathrm{O}$ R T
 of the

ORE DRESSING AND METAILURGICAL IABORATORIES.

Investigation No. 2630.

The Determination of Residual Strosse: in 17-Pdr. Armour-piereing shot.

$$
0 \text { TTAWA Apr11 21st, } 1944 \text { 。 }
$$

TE P OR R
of the
ORE DRESSING AND METALLURGICAL LABORATORIES．

Investigation No． 1630.

The Determination of Residual Stresses in 17－Pdr．Armour－Piercing Shot．
\qquad

Abstract

This report describes an effort made to determine the approximate residual stress dis－ tribution in a $17-p d x$ ．armour－piercing shot．

Five $\frac{2}{3}$－inch－thick discs were cut from the shot．In one of them the distribution of tangential and radial residual stresses was determined by using the Sachs method．

The longitudinal stresses in the main were relieved by the cutting operation．These stresses were assumed to be equal to and distri＝ buted in the same way as longitudinal stresses．

Two ways of calculating the residual stresses on an outside surface were applied． In both cases results obtained are comparable． It was found that stresses are in tension at the outside surface．

Description of Material Used：

The armour－piercing shot used in this survey of distribution of the residual stresses remaining after heat treatment，was a standard 17 －par．A。P。Go shot taken from a production lot．

According to the producer，the shot had been
(Description of Material Used, cont ${ }^{2} d$) -
quenched in oil from 1500° Fo The temperature of the 011 was $130^{\circ} \mathrm{F}$ 。during quenching; the shot was held in 011 for 23 minutes and afterwards was stress-relleved at $250^{\circ} \mathrm{F}$ 。 for three hours. The base was drawn by induction heating (the maxlmum, temperature reached by the shot at the base end was $1200^{\circ} F_{0}$) and then quenched in water.

The chemical analysis of this shot, as determined at these Laboratories, is as follows:

Per cent

Carbon	$=$	0.71
Manganese	$=$	0.84
Phosphorus	-	0.005
Sulphur	$=$	0.021
Silicon	∞	0.31
Chromium	$=$	0.72
Molybdenum	$=$	0.22
Nickel	$=$	0.75
Vanadium	∞	0.05

In Figure 1 are shown results of hardness tests performed on an average shot on an axial section (longitudinal) from which $2 / 16$ th of an inch was removed by wet grinding. (This hardness survey is taken from our PoM. Lab. Report No. 6418, dated July 22, 1943.)

STRESS SURVEY PROCEDURE：
In order to determine the residual stress distribution，the shot was divided as shown in Figure 1. The five discs，$\frac{7}{2}$ inch thick，marked Nos． 1 to 5，were cut from the cylindrical past of the shot for the follow ing purposes：

Disc No．4，for complete survoy of residual stress alstribution。（Figure 3）。

Discs Nos．1， 2 and 3 ，for splitting from outside surface to centre in order to obtaing in a very approximate way，some comparable figures of the magnitude of the distribution of tangential strosses in these discs．（Figure 2）。

D1sc No．5，for hardness test．Mhis disc was taken 1／8 inch away from the driving groovs．（Figure 4）．

Al1 machining operations，that is，grinding， drilling or cutting，wore done very carefully，using coolant proifusely and keeping local heating as low as possible．

DISCS Nos 1,2,3
FIG.2

HARDNESS INC SCALE 150 KG. ROCKWELL TAKEN ON DISC NO 5 ON SURFACE BETWEEN DISCS NOS 4 AND 5. THE FIGURES IN BRACKETS ARE VICKERS HARDNESS $50 K G$. ALL READINGS WERE TAKEN AT $1 / 4$ "INTERVALS

FIG. 4

Performing Measurements：

Disc No。 4 （Figure 3），about 3 inches in diameter and $\frac{2}{a^{2}}$ inch thick，was cut on a cutting machine with a whool about $3 / 32$ inch thick．The following further operations were performed：

1．Grinding of both faces of the disc parallel to each other and perpendicular to the axis of the disc．

2．Grinding and polishing the periphery of the disc．
3．Measuring outside diameters in three directions 60° apart，in places marked $A_{0} B_{3}$ and C_{0} ．The se measurements were taken，is an avergge from several readings in the c ontre of the disc thicleness，with a Sheffield comparator（Dayton， Ohio）capable of reading to 25 millionthe of an inch．

4．Drilling the $\frac{1}{5}$ in。 diameter hole in centre of the disc．
5．Taking the outside diameters as civan in（3）Kifure） exactly in the same locations A, B and C in the centre of the disc；and the inside diameter．This last measurement is performed with an internal micrometer compared with geuge blocks．
6．Grinding of $7 / 16 \mathrm{in}$ ．thick layers of metal from the inside of the disc， 1.0_{0} enlarging the $\frac{1}{2}-1 n_{0}$ hols made in（4）to $5 / 8$ in．
7．Taking the outside and inside diameter measurements．
8．Grinding as in（6）and measuring as in（5）until the thickness of the fing was ebout $\frac{1}{4}$ inch．

Throughout all these operations coolant was used generously，to oliminate any local excessive heating which would be a ceuse of cracks．

All diameter measurements were made at the same temperature（ $68^{\circ} F_{0}$ ）and arter a sufficiently long time had elepsed efter grinding．Messurement pesults of both outside and inside diameters are given in Table I（Page 21）。

During successive grindings of the intamal hole， the outside diameter has increased after grinding $5 / 8$－inch hole（position 2）and arter grinding lizeinch hole（position 9）． By all other grindings（positions 1 to 17）the outside diametor
(Performing Measurements, cont'd) -
was decreasing gradually This is shown in Table II, (paragraphs 6 and 7), on Page 22.
कokig maxi li se ह sugata

(Note: Tables I to VI will be found)

for cotton 20 13 xis

Calculation of Residual Stresses in Disc No. A:
The calculation of the magnitude of the residual stresses was performed by the Sachs method. This method. involves drilling out the inside part of a disc and measuring the variations in diameter after each drilling, as previously described.

The residual stresses in each drilled-out layer may be calculated from the following formulae: (ty Doric Tangential Stress

$$
\begin{aligned}
& t= E\left[\left(F_{0}-F\right) \times \frac{\Delta \beta}{\Delta F}-\frac{F_{b}+F}{2 F}(\beta)\right] \\
& \text { Residual Stress }
\end{aligned}
$$

$r=E\left[\frac{\left(F_{b}-F\right)}{2 F} \quad(\beta)\right]$

where

Bon $E=$ modulus of elasticity taken, $30,000,000$ pos.1。
$\mathrm{F}_{\mathrm{b}}=$ complete crossesection area of disc, 6.9594 sq . in.
$F=$ grourd-out cross-section area (Table II, column 3) in sq. in 。
$\Delta \mathrm{F}=$ cross-section of one ground-out layer (Table II,

The calculation and values of stresses t and x are
G. Sachs and G. Espey: "The Measurement of Residual Stresses In Metal." IRON AGE, September 18, 1941.
（Calculation of Residual Stresses in Disc No．4，cont＇d）． given in Table III。

Unfortunately，it was not possible to take first measurements of position in Table I ，of the outside diameter of the disc，because by error the hole was drilled before the first measurements were taken．All other measurements from positions Nos， 2 to 17 were taken properly，io θ_{0} before and after grinding the inside part of the disc in steps of $1 / 8$ inch in diameter．For that reason the stresses were calculated，not as we would for a disc，but only as for a ring with a $\frac{2}{2}$－inch hole 。

The values of stresses t and E ，given in Table III，are calculated directly by using $\frac{\Delta \beta}{\Delta} \bar{F}$（see Table II， column 9）as they were measured separately for each point from positions 1 to 17．The scattering of values $\frac{\Delta}{\Delta} \frac{\beta}{F}$ is quite high，and the stress diagram would be badly distorted by using the finite differences $\frac{\Delta \beta}{\Delta F}$ between two successive borings． Therefore，the quantity $\frac{\Delta}{\Delta} \frac{\beta}{\mathrm{F}}$ should be determined as the slope of a smooth curve of β vs．F ．This curve is shown in Figure 7 on Page 19．Diagrammatically calculated，corrected values of $\frac{\Delta \beta}{\Delta F}$ are given directly on Figure 7．The part of this curve covering the points 2,3 and 4 is drawn in two alternatives，
（a）

$=\quad-20$ ，and
（b） $\frac{\Delta \sqrt{3}}{\Delta \sqrt{F}}=+206$
since the measuring point No，2 is distinctly out of approximate line linking the points 3 and 4。 Obtained from Figure 7，cor－ rected values of β and $\frac{\Delta \beta}{\Delta \bar{F}}$ with whole calculation of stresses $t^{(1)}\left(\right.$ column 7）and $r^{(1)}(c o l u r n$ 8）are given in Table IV。

Measuring point 18 on diameter $2 \frac{3}{4}$ inches，marked in diagrams，Figure 7 （on Page 19）and Figure 8 （on Page 20），repress＝ sents a point chosen freely for checking the calculation shown
(Galculation of residual Stresses in Disc No. 4, cont'd) -
in Table IV. The stress values obtained for that point are in accordance with the remaining part of that diagram.

A more complete and sufiliciently accurate method of rosidual stress measurement is the triaxial determination of stress distributions in circular rods, cylinders, and tubes. A saction of tube, cylinder or rod, of a length of at least two or three diameters, is bored out in steps, and the outside diameter and length are measured after each boring.

The determination of stresses by mechanical methods depends on the principle that the cutting of a layer of a stressed part causes the defomation of the remaining part. By measurement of those dimension changes and using the known relations between strain and stresses, we are in a position to detemine the approx mate velues of residual stress locked in material and relieved by the above-mentioned maching operations.

In the present investigation it was not possible to investigate the distribution of otresses in 211 three directions since the distribution of stresses was not unfiorm in the longitudinal direction because the shot was drawn from the base with diminishing temperature in the direction of the nose (hardness gradient from about 400 to 800 Vickers). See Figure 1 .

For this reason it was advisable to cut a narrow disc ($\frac{1}{2}$ inch thick) and assume that the difforence in magnitude of stresses in such disc in the direction of shot axis is small.

In order to save both time and expense the complete detemination of tangential and radial stresses was performed only on Disc No. $\&$ (Figure 1)。

Since the approximate dotermination of stresses in a disc permits only the calculation of tangential and radial stresses remaining in the disc after cutting it from the shot, without taking into account by this calculation the longitudinal
(Calculation of Residual Stresses in Disc NO. 4, cont ${ }^{\circ}$ d) =
stresses, it would be very interesting to strive to make up this calculation assuming an approximation of the relation between tangential and longitudinal stresses. The simplest assumption, but one which is also a 11 tie too far from the reality, would be that the tangential sand longitudinal strains are equal.

From two equations given below determinations of triaxial stresses distribution may be attempted: \qquad
Tangential Stress -
$t(2)=\frac{E}{1-V^{2}}\left[\left(F_{b}-F\right) x \frac{\left.\Delta \beta+v \Delta \alpha-\frac{F b+F}{\Delta F}(\beta+v \alpha)\right]}{2 F}\right]$
Radial Stress

$$
r_{r}(2)=\frac{E}{1-v^{2}} \frac{\left(F_{0}-F\right)}{2 F} \quad(\beta+v \alpha)
$$

र BI
wheres
$E=$ modulus of elasticity taken, $30,000,000$ posoio
$F=$ cross-section of disc in sq. in
$V=$ Poisson's ratio, 0.3 .
$F=$ Ground -out crossesection of disco
$\Delta F=$ Crosseaection of one ground=out layer.
$\alpha=$ unit length change.
$\beta=$ unit diameter change.
$\Delta \alpha=$ unit length change after grinding one layer.
$A \beta=$ unit diameter change after grinding one layer.

By taking into account the above assumption, we Ind that the previously calculated values $t^{(1)}$ and $r^{(1)}$ given in Table IV, column 10 and 11, should be multiplied by

$$
\frac{1}{1-V^{2}} \times(1+V)=\frac{1+0.3}{1-0.3^{2}}=1.43
$$

The changed values of the $t(1)$ and $r(1)$ are given in Table IV, columns 9 and 10 (stresses $t(2)$ and $r(8)$ \% The residual
(Calculation of Residual Stresses in Disc No. 4s cont'd) = stresses calculated in Table IV are shown in the diagram, Figure 8.

Checking of Calculations:

The ring remaining after the 17th grinding operation from the inside has been performed has a thickess of about $\frac{7}{4}$ inch. In this thickness we may expect that some residual stresses mey be locked in the ring. To check this, the ring was split in two as show in Figure 3 .

We may assume that a major part of the stresses were relieved by bending the ring in the direction of the surface which was under tension. The maximum stresses in a split ring may be calculated from the equation,

$$
t^{(3)_{\max }}=E \quad x \quad \frac{d}{2} \times \frac{R_{1}-R_{0}}{R_{0} \times R_{j}}
$$

$$
\begin{aligned}
d & =\text { thickness of ring. } \\
R_{0} & =\text { radius before splitting. } \\
R_{1} & =\quad \text { " after }
\end{aligned}
$$

Calculated in this way, $t^{(3)_{\max }}$ is of a magnitude of $t(3)_{2}+4338,9 p_{0} s_{0} i_{0}$ wizich is in tension on the outside surface of the ring and in compression on the inside surface of the ring.

Assuming that the values of $\because(1)$ stress calculated previously by grinding-out method (see Table IV, colum 7, position 27) on the insids surface fibre of the ring is 43941 poso1. without correction in regard to the longitudinal stresses, the above calculated stress should diffor from stress on the outside surface of the remajning ring by double the numerical value of $t(3)$ max. ; it is

$$
2 x 4338.9=8677.8 \text { pounds per sq. in. }
$$

It is also a way to compare the magnitude of residue.l.
stress in the outside fibre by taking into account the whole
(Checking of Calculations, contr) =
change of the outside diameter before the grinding from the inside was started, and after grinding the last layer, No, 17.

Do, diameter before grinding from inside (see Table Is colum 7. position 1) $=2.976750$ in

D17. diameter after last grinding from the inside (see Table I_{8} column 7, position 17) $=2,976025 \mathrm{in}_{0}$

The approximate magnitude of that stress may be calculated from the equation:

$$
t(4)=-E_{0} \delta=+7,320 p_{0} s_{0} 1_{0}
$$

where,

$$
\delta=\frac{D_{27}-D_{0}}{D_{0}}
$$

The above figure of $t(4)$ does not include the stresses relieved by splitting the ring (see Table V) $1 . \theta_{0}, t(3)_{\text {mex. }}$ $= \pm 4,338,9 \mathrm{posa}_{\mathrm{o}} 1_{\text {。 }}$

The resultant of these stresses, $1_{0} \theta_{0}, t^{(1)}$ and $t(4)$, will give the stress $T(1)$ in the outside fibre

$$
\mathrm{T}^{1} \approx+7,320+4,338,3=+11,658 \mathrm{p}_{0} \mathrm{~s}_{0} 1 .
$$

This value is comparable with sires ti) pos. 17 received In Table IV, column 7, position $27,100, t^{(1)}(17)=3,941$ pos.1。 plus $2 \times t^{(3)} \max _{0}=8,677.8= \pm 12,619$ p. 3.1. 0. On diagram, Figure 8, are marked the values $T^{(1)}$ and $T^{(2)}$ cortesponding to cross-section bore (19).

$$
\begin{aligned}
& T(1)=\$ 11,658 \text { pos os. and }_{0} \\
& T(2)=+11,658 \times 1.43 p_{0} 3_{0} 1_{0}=+16,670 p_{0} s_{0} 1_{0}
\end{aligned}
$$

that is, taking into account the influence of longitudinal stresses.

Points $T^{(1)}$ and $T^{(2)}$ obtained by the above described calculation are sufficiently covered by the prolongated dotted curves.

Since the hardness of the investigated shot is
(Chocking of Calculations, cont'd) -
gradually changing along the axis as shown in Figure 1 , of the given hardness pattern, we may expect that the magnitude of stresses will increase in the direction of the nose。 For that reason three additional discs were cut from the shot (see Figure 1, Discs Nos. I, 2 and 3), These fings were split from the outside surface to the centre, as shown in Figure 2, and the diameter measurements were taken, as shown in Table V.

The Changes of Magnitude of Stresses Along the Axes of the Shot:
The increase in diameter changes D_{1} - D_{0} give a picture of approximate relation of maximum stresses in top part of the shot. In T able VI, colum $D_{1}=D_{0}$, the increases in diameter for Discs Nos, 1,2 and 3 are:

$$
\begin{aligned}
& \text { No. } 1=5 / 10,000 \text { of an inch. } \\
& \text { No. } 2=4 / 10,000 \text { " } \\
& \text { No. } 3=2 / 10,000
\end{aligned}
$$

This relation gives a littie more information about the ratio of stresses in places where Discs Nos. 1, 2 and 3 were taken. With an approximation we can assume for an orientation that the ratio of residual stresses in Discs Nos. I, 2, 3 and 4 is like $5: 4: 2: 2$. This means that to obtain an approximate picture of stress magnitude in places where Discs Nos. $l_{\text {, }}$ 2 and 3 were taken it is necessary to multiply the obtained vslues for Disc No, 4 by 1, 2 or $2 \frac{1}{2}$, but for obtaining a much more accurate picture of residual stress distribution it is also desirable to perform a full examination of stress on every disc, as was done on Disc No, 4 .

To throw a little more light on the relations between tangential and longitudinal stresses distribution in A / P shot, it would be very interesting to perform, also, a triaxial measurement of residual stresses on a shot which was equally
(The Changes of Magnitude of Stresses Along the Axes of the Shot, cont'd) =
heat-treated, $i_{0} e_{0}$, the whole shot was quenched and drawn in the same way. From a ghot heat treated in this way, it will be possible to take a 4-inch cylinder (see Figure 5) and determine the stress distribution by grinding out in a similar way as was done on the disc, but also with measurements of length changes after each grinding.

Comparing the diagrams of complete stress distributions. we will have more to say about the relation between longitudinal and tangential stresses in this case, and we may strive to fix the approximate relation betweon these stresses, and use it in a simplified survey performed on the disc. In Figure 6 (as for an example) the longitudinal and tangential stresses distribution in a rod shows that the differences are quite large, but the similarity may be seen。

In other casas, where it may be sufficient to know only the magnitude of the surface stresses, both in longitu. dinal and tangential direction, we may apply SR=4 electrical strain gauge. A simple way of using this gauge is shown on Figure 5 which describes the "cut-off segment" mothod employed in these Laboratories for simplified residuel stress examinations upon the surface of elements.

FIG. 5

Summary:
Determined in the above doscribed way, $\|_{\text {posidual }}^{\text {fe }}$ stresses ally ellow the following preliminery conclusions to be drama.

The applied heat treatments $\sqrt{\text { tave produced approxis }}$ mate maximum residual tensional stresses as given below:

	(a) On outside surface without correction for longitudinal stresses	(b) On outside surface with correction for longitudinal stresses
$\begin{aligned} & \text { Disc } \\ & \text { No. } 4 \end{aligned}$	$T(1)+12,620$ pos.1.	T (2) $+168670 \mathrm{p}_{0} s_{0} 1$.
Disc No, 3 (approx.)	T(1) $\times 1=+12,620$ posoio	$T(2) \times 1=+168670 p_{0}$
Disc No. 2 (approx.)	T(1) $\times 2=+25,240 p_{0} s_{0} 1_{0}$	$\mathrm{p}(2) \times 2=433,340 p$
$\begin{aligned} & \text { Disc } \\ & \text { No. I } \\ & \text { (approzo) } \end{aligned}$	T(1) $\times 2.5=+31,550$ p,s.1.	$T(2) \times 2.5=+41.675$

The magnitude of stresses in the curve of A / P shot itself was not determined, as explained before.

The maximum tensile atresses which might be expecte In the front part of the shot (D1sc No. 1) would be of a magm of about 40,000 pounds per square inch.

In order to obtein a complete proving of residual. stresses distribution It would be advisable to perform comple examinations in the way adopted by these Leboratories and sho In Figure 5.

The complete knowledge of residual stresses distri= bution in each type of A / P shot should be of great importance in determining optimum condition for shot heat treatment ands through this, optimum shot performance.

TWW:HLL:GHB.

TABIE II.

Posi= tion NO 。 1)	$\begin{aligned} & : E b^{-F} \\ & : \ln \\ & : s q \cdot \ln 0 \\ & : 2) \end{aligned}$	$: \frac{\mathrm{Fb}+F}{2 F}$	$\begin{aligned} & : F 2-F \\ & \vdots \\ & \vdots \\ & : 4) \\ & \end{aligned}$	$\begin{aligned} & : \frac{\Delta / \beta}{\Delta F} \\ & \text { in inch }=1 \\ & \times 10^{-6} \\ & : 5) \end{aligned}$	$\begin{aligned} & 8 \times 10^{-6} \\ & \vdots 6) \\ & \hline \end{aligned}$	$\begin{aligned} & \left(F^{2} \infty F\right) \frac{\Delta \beta}{\Delta \beta} \\ & \vdots=10^{-6} 6 \\ & \vdots 7) \\ & \hline \end{aligned}$ $:$	$\begin{aligned} & \frac{5}{5}+F \\ & 2 F \\ & : 10 \end{aligned}$: :8)	$\begin{aligned} & \mathrm{F}^{2-F} \\ & 2 F \\ & \vdots \pi 10^{-6} \\ & \vdots 9) \end{aligned}$	t Tangential streases. posoio	$\begin{aligned} & \text { radial } \\ & \text { strossos, } \\ & \text { pos.1. } \end{aligned}$
	:	:	:	:	:	:	:	:	:	
2	: 6.7631	:	$\stackrel{*}{*}$:	:	:	¢	:	: - -	: $-\infty$
2	-6.6518	:31.8124	:20.8124	$:+277.63$: $+30: 9$: +1846.74	$:+365.00$: +334. 10	$:+44.452 .20$	$:+10,023.00$
3	-6.5132	:8.2985	:7.2985	: $=283.5$	- $\quad 8.4$: -1846.49	: 269.70	- 0.61 .30	$:=53,303.70$: $-3,839.00$
4	: 6.3566	: 6.2726	: 5.2726	: -8.5	- $\quad-9.74$: -54.03	: -61.09	- -51.35	\% 212.80	: $\rightarrow 2,540.50$
5	: 6.2725	: $\$.3220$: 3.9220	: 0	: $\quad-9.74$: 0	: $\quad \therefore 47.94$	- -38.20	:	$:=1.246 .00$
6	: 5.9652	: 4.0080	:3,0000	$:-6.56$: - 21. 1	: 539.23	: -44.49	: - -33.3	$\because+160.80$	$:=999.00$
	:	:	:	:	:					
7	: 5.7320	: 3.3350	:2.3350	$:-149.72$: -46.0	: $\quad 858.19$	- -153.41	: -107.41	$:-21,143.40$:-3.222.30
8	: 5.4745	:2.8434	: 1.8434	$:-60.19$: $\quad 61.5$: -329.51	: 0.174 .89	$:-1.13 .37$: $-4,638.60$	$:-3.401 .10$
9	: 5.1923	: 2.4692	: 1.4692	: +29.75	- +53.1	: +154.47	: +131.15	: +778.01	$\div 699.60$	$0+2,340.30$
20	: 4.8855	:2.17779	$: 1.1779$	- 0.37 .16	: $\quad 64.5$: -181.54	$:-1.40 .47$	- -75.97	$:-1,232.10$	$: \infty 2,279.10$
11	- 4.5266	: 1.9303	: 0.9303	: 215.05	- $\quad \mathbf{6 9 . 9}$: -68.25	- $\quad 134.93$	- 265.03	$:+2,004.30$	- $-1,950.90$
12	$\because 4.1835$: 1.7535	:0.7535	: -97.93	: -103.5	:-409.69	: - 181. 49	- 0.777 .99	$:$ \% 68846.00	$5=2,339.70$
	:	:	:	:	:				:	
13	:3.8021	: 1.6021	:0.6021	: \quad-95.96	- - 240.1	: - 364.85	: -224.45	- -84.-35	:-4,212.00	$\bigcirc 2,530,50$
14	:3.4062	: 1.4 .4793	$: 0.4793$: -49.25	: -159.6	: -167 -775	- 2336.09	- -76.49	: + 2,050.20	: $=2,294.70$
1.5	: 2.9833	: 1,3752	: 0.3752	: - 26.01	- $\quad 170.6$: ~ 77.60	- 2234.60	: -64.01	:\% 4.7710 .00 :	$:=1,280.30$
16	: 2.5218	- 1.284 .1	:0.284.1	: -91.00	- 2212.6	:-229.48	: c272.99	\% -60.39	$:+1,305.30$	$8=1,811.70$
17	:2.1562	: 1.22245	: 0.2245	: $-8 i .79$	- -243.6	: - 191.45	- -298.28	: -54.69	: $+3,204.80:$	$:=1,640,70$
(28)	:1.0198	: 1.0858	:0.0858	:	:	:	。	?	! 000	: $\quad \infty$
	:	:	:	:	:	:	:	:	:	:
	:	:	:	:	:	:	:	:		: \quad -

Remaro:

$$
F_{b}=\text { constant }=6.9594 \text { sq. in. }
$$

Remark: $F b+F=$ constant $=6.7631 \mathrm{sq}$ 。 in.

TABLE V - THE DETERMINATION OF STRESSES IN THE RETAANING RING BY SPLTTMTNG.

$$
t^{3} \max 0 \pm \mathbb{E} \cdot \frac{a}{z} \cdot \frac{R_{1}-R_{0}}{R 0 \cdot R_{1}}
$$

Key: $\quad \begin{aligned} d & =\text { the thickness of the ring; } \\ R_{0} & =\text { mean radius before splitting; and } \\ R_{1} & =1 \text { " after splitting: }\end{aligned}$

BEFORE SPLITRTING

Reading taken at	outside diameter, inches	Inside diameter inches
A	2.9759	2.4745
B	2.97595	2.4748
c	2.97595	2.4755
Aver	2.97593	2.47493

AFTER SPLITTTING

Results:

$$
\begin{aligned}
& t^{3} \max 0=\frac{30,000,000}{2} \cdot \frac{0.2505}{2} \cdot \frac{0.0021475}{1.8598} \\
& R_{0}=1.3627 \text { inch. } R_{1}=1.3648 \text { inch } \\
& R_{1}-R_{0}=0.0021475 \text { inch } \\
& \quad d=0.2505 \text { inch } \\
& t^{3} \text { max. }=4,338.9 \mathrm{Ib} / \mathrm{sq} . \text { Inch. }
\end{aligned}
$$

TABLE VI. - THE COMPARISON OF STRESSSRS IN FULL DISCS NOS. 3 , 2. AND 3 AFTER SPLITTITG TO THE CENTRE.

DIAMETER OF DISCS BEFORE SPITTTING

(Do measured in inches)

NO.		A	B	C	Average
1	I	2.9828	2.9828	2.9830)	2.9830
	II	2.9830	2.9830	2.9832)	
	III	2.9830	2.9829	2.9833)	
2	I	2.9830	2.9831	2.9828)	2.983.
	II	2.9832	2.9834	2.9830)	
	III	2.9832	2.9834	2.9831)	
3	I	2.9840	2.9842	2.9843)	2.9841
	II	2.9840	2.9842	2.9843)	
	III	2.9840	2.9841	2,9843)	

DIAMETVER OF DISOS AFTER SPLITTING

(DI measured in inchea)

$\begin{aligned} & \text { Disc } \\ & \text { No. } \end{aligned}$		A	B	C	Average	$\mathrm{D}_{1}-\mathrm{D}_{0}$
1	II	$\begin{aligned} & 2.9835 \\ & 2.9836 \end{aligned}$	$\begin{aligned} & 2.9833 \\ & 2.9833 \end{aligned}$	$\begin{aligned} & \text { 2.9836) } \\ & 2.9836) \end{aligned}$	2.9835	0.0005
2	II	$\begin{aligned} & 2.9832 \\ & 2.9834 \end{aligned}$	$\begin{aligned} & 2.9834 \\ & 2.9836 \end{aligned}$	$\begin{aligned} & 2.9836) \\ & 2.9837) \end{aligned}$	2.9835	0,0004
3	II	$\begin{aligned} & 2.9843 \\ & 2.9844 \end{aligned}$	$\begin{aligned} & 2.9843 \\ & 2.9843 \end{aligned}$	$\begin{aligned} & \text { 2. } 9844 \text {) } \\ & 2.9843 \text {) } \end{aligned}$	2.9843	O.0002

[^0]
[^0]: April, 1944
 Ottawa, Canada.
 TWW:HLL:GHB。

