$$
\begin{gathered}
R E P Q R \underline{Q} \\
\text { of the }
\end{gathered}
$$

ORE DRLCSTHG AND LETALLURGIGAL LABORATORIES.

```
Investication No. I618.
```

Quality Control Procedures for Ammunition Vanumacturo.

RERORT
of tine
ORE DRESSING AND MEXA IIURGICAI LABORATORTES．

Investigation No． 16.18.

Quality Control Procedures for Ammaition Manuiacture．

Origin of Requsst：
The following is a copy of the original request to conduct this inveatigation：
＂DEPARTMENT OF MUNITIOMS AND SUPPIY oITAWA，Canada

March 7．1944．
Dept．of Mines and Respurces， Division of Metallic Minerals． 552 Booth Street。 ottawa，ontario．

Attention：Mr．HoH．Fesxifeld．

Dear Sirs：
The Management of York Arsenale IImited， 832 Old Weston Road，Toronto，have requestod us to obtain Your assistance and sdvice in their setting up of Process Quality Control on Automatic Screw Machine operations which consist principaliy of thoir production of 20 mm ． Shell and other components for us．

We are entirely in accord with their bequest and would appreciate such essistance as you may be able to give thom，including suoh periodic visits as it may be necessary for you or your representative to make to their plant．

Toward this ond，the writar will be at their plant on Friday，March 10，and it is suggested that you might wish to have a ropresentative there at that time。

$$
\begin{aligned}
& \text { Tours very truly, } \\
& \text { (Sgdo) E。C. Ruby, } \\
& \text { Eor Director Gensrel. } \\
& \text { Arsenals \& SoÅA. Branch." }
\end{aligned}
$$

LMR：s：

Introduction to Problem:
The problem at York Arsenals Limited is to control. the emount of defective pieces produced.

Quality Control methods have beon devised and are quite widely used to handle this situation. Although the actual procedure may differ from plant to plant, the main principles are the same wherever quality control is applied. The present report sets forth a quality control program which is designed to aid the management of York Assenals Limited in redueing the per cent defective in their product.

When per cent defective approaches zero, another plan is omployod; it is known as "dimensional" control.

The main idea involved in quality control is "The more that is known about a situation the better chance there is that something can be done to improve it". Quality control methods provide infomation oniy; it is then up to Management to make use of the information.

Suggested Inspection Plan:

The plan for York Arsenals Limited is divided into four operations. The purpose and method of each operation are indice.ted in the following sections of this report:

> 1. - MACHINE CHECK.

It is considerod desireble to check a sample (from every sorew machine spindie) at irequent intervals. The time Interval will depend upon how long it takes a machine to get "off". It may be every 10 minutes in some cases, or only every 60 minutes when things are running smoothly.

By frequent machine checks trouble can be discovered at an early stage. When trouble is discovered, action should be atarted immediately. Plant management will arrange for this. A toatative suggestion is that a red light be mounted
(Suggested Inspection Plan, contid) -
above the machine in a conspicuous position. When machine chock inspection shows something wrong the red inght should. be turned on Some othor spectacular method ney be dovised. The main idea is that the proper people are made aware that corrective action is necessaxy.

It is also recommended that a mocord be kept of the corrective stops made。

Figure 1 (on page 4) shows the information that should be recorded for oach shift. Whe machine check record provides basic date on machining operations which can be studied by the production engineers. Performance of machines, operatoras and setwup men can be compared. The trequency of various sdjusto ments can be recorcied.

2. - SHIET RECORD.

At the end of a shift the quality of the work can be rated from the number inspected and the number found to be defective. The maximum outgoing per cent defective can be calculated as follows:

EXAMPLE:

Number inspected, $195=n_{0}$
Number defective, $18=x_{0}$
Per cent defective $=\frac{18}{196} \times 100=9.18$ per cant. Maximum outgoing per cent defeative

$$
\begin{aligned}
& \left(\frac{x}{n}+1.5 \sqrt{\frac{x}{n} \cdot \frac{(n \infty x)}{n} \cdot \frac{1}{n}}\right) 100 \\
= & \left(\frac{18}{196}+1.5 \sqrt{\frac{18}{196} \cdot \frac{168}{196} \cdot \frac{1}{196}}\right) 100 \\
= & \left(0.9184+\frac{1.5}{196} \sqrt{\left.15 . \frac{4}{2}\right)} 100\right. \\
= & \left(0.918+\frac{5.88}{296}\right) 100 \\
= & (0.918+.03) 100 \\
= & 12.28 \text { per oent }
\end{aligned}
$$

(Text continues on Page 5)

Fig. I

(Susgested Inspection Plan, contid) ∞

Therefore, having obtained 18 defects in 196 pioces the product is rated as under 12.18 per cent defective. There are several ways to calculate the quality "golilng"。 The simpie method given above is easy to carry out. A chart from the "Engineers" Manual of Statistical Mothods" is inoluded (Figure 7, on Page 24), from vinich the maximum per cent defective can be derived. Other methods are equally good.

The shift record gives a picture of day=tooday sonde tions. Also, the shift record can be used to pasm sentense upon the work of a shift. Ifs for example, under 2 per cant defective was considered as a satisfactory product, then jach shift could be classea as either "O.Ko" or "Reject". The rejected shift work would be sent for 300 per cent inspeotion.

Necessary evitience to be sure that a lot of parte are below 2 per cent defective* is:

> (Figuxe 2 Shift Record, comprises page 6 .
S. $\quad 200$ EER CENT INSPECTION.

The operation of 100 per cont manual inspection has been studied by many investigators. The general conclusion is that an expesienced inspector will pick out about 90 per cent of the defoctive articles presented for inspection. The per cent of defects detected will vary with individuale Alson an individual inspector will vary in officioncy from time to

(Suggested Inspection Plan, cont ${ }^{\text {d }}$) ©
time. The "haman empor" in this type of work cennot be entirely eliminated。

It is recommended that the work of each inspector or inspection bench be tages. so that if defects are found in a subsequent examination the responsibility can be traced.

4. - DOUBIE SAMPLING.

Since 100 per cent inspection is subjoct to human errors it is necessary to inspect again in order to see how well this inspection has been carried out. The ifinal inspec= tion is also used to rate the product.

United States ordnance have worked out all of the detsils of this method. the following are examples of theis procedure:

Sample size dopends upon lot size. Figure 3 (on Page 8) shows the sizes of samples required and the number of defects permitted for various quality levels.

Figure 4 (Eage 9) shows a record of double sampling inspection. The instructions to inspeators are given in detail in Figure 5 (on Page 20).

A flow chart of efnal inspection procedure is shown on Figure 6 (rage 21) . Note that O.K. shifts byepass 100 per cont ingpection. Trays from each inspector are tageod. The tagged tray moves to the double-sampling station, where it is sampled. If defects are found the tray is shunted baok to a master inspector who re-inspacte 100 per cent. In this way the producer has a check on the work of each inspector.

Trays clear of defects are piled up until a lot has been accuaulated. This lot is then sentenced by the double sampling station. O. Kodd lots move on to the next operation or ase presented to the cuatomer. Rejected lots are inspected again.

OFFICE OF THE CHIEF OF ORDNANCE
INDUSTRIAL DIVISION
February 15, 1943.

STANDARD SAMPLING INSPECTION TABLES

TABLE I.-NORMAL LOT-BY-LOT ACCEPTANCE INSPECTION

Sub-		500-7		800-1		1.300-3		.3200-7		8,000-2		22,000	105.99	110,000 a	${ }^{\text {d }}$ Oer	
First Sample Size		50		75		100		15		200		30		50		
Second	ple Size	100		15		200		30		100		60		1,00		
Acceptable Quality Level(Percent Defective)		AcceptanceNumbers		AcseptanceNumbers		AcceptancoNumbers										
Major	Minor		c_{2}	c_{1}	c_{2}	c_{1}	c_{4}	c_{1}	c_{1}	c_{1}	c_{2}	c_{1}	c_{2}	c_{1}	c_{3}	
$.010-.020$ $.021-.030$.010-. 020									*		0		0 0		. 15
.031-. 060	. $021-.030$		*		*		*			0	1					. 20
$.061-.10$ $.11-.15$	$.031-.060$ $.061-.10$			*	*		1	0 0	1 2 2	0	$\stackrel{2}{3}$	1		$\stackrel{1}{2}$. 30
.16-. 25	.11-. 15		*	0				1		1		2				. 60
. $26-.50$. $16-.25$		$\stackrel{2}{3}$				3	${ }_{3}^{2}$		2	11	3	${ }_{13}^{8}$	4		1.0
1.1-2.0	. $51-1.0$						8				16					2.7
${ }_{3.1}^{2.1-4.0}$	1.1-2.0						11			11						3.7 4.2
4.1-5.0	2.1 $3.1-4.0$						19		28	14	37					5.3
	4.1-5.0						23			18	44	\dagger		\dagger	\dagger	6.5
-Table not applicable in this regton.				tuse sample sive in drst columns to left in which acceptance numbers are shown for Acceptable Quality Level Involved.												

PROCEDURE

1. For Major Deffers:
a. Select first sample of size indicated in Table 1 for sub-lot size involved.
termine in first
(1) If d_{1} does not exceed the c_{1} indicated for the Acceptable Quality Level, Major, involved: Pass sub-lot for Majors.
(3) If d_{1} exceeds the corresponding c_{c} : Reject sub-lot
(a) Select second sample of size indicated in Table I.
(a) Delect second sample of size indicated in Table 1 , which contain mand in second ample the number of article

$$
\begin{aligned}
& \text { ermine in second sample the number of article } \\
& \text { 1. If } d_{1}+d_{2} \text { does not exceed } c_{2} \text { : Pass sub-lot. }
\end{aligned}
$$

2. Hor Minor Deffets

Carry out above procedure with "Minor" substituted everywhere for "Major," using samutmaple:whrever feasible.
3. Dispobition of Sub-Lot:
a. If passed for both major and minor defects by above procedure: Accept as conforming.
b. If rejected for either major or minor defects by above procedure: Return to contractor.

NOTES:
eject all defective articles observed in any of the above inspections.
AOQL values in right-hand column are poorest average quaility accepted if all rejected lots are inspected 100 percent and accepted after removal of all defective articles.
Above procedure is satisfaccory when process average is equal to or better than Acceptable Quality Level. If process average is poorer than
this, acceptance numbers that correspond with the AOQL value which is equal to or next better than the Acceptable Quality Level should be used.

FIG 4.
LOT QUALITY DETERMINATION
Date.MAR1: partNo. 9 SOOOR Station No. J. . .

SUB-LOT NO. 29.9.
SIGNATURE OF InSPECTOR . B. Wolmeo.
SUB-LOT SIZE. 1900 P'C'S
oisposition.... Aceepted
did you have a helper? $2 \boldsymbol{2} \theta$.
IF so, who?

Fig. 6
FLOW OF MATERIAL
DURING INSPECTION
Material Not inspected

DISCUSSION：

Four inspection operstions required for scientific quality control are：

1．Machine cheoks．
巟。 Shift record．
3． 200 per ceat inspection． I．Double sampling．

Operatione Nos． 1 and 2 show Nanagement what is going on and provide basic date that can be studied by pro＝ duction men．

Operation No， 4 acts as a check on 100 per oent inspection and gives hanagement a picture of the quality of the product．

The method proposed would entail more inspection work than is done at present by York Arsenals Limited． However，if this method would help to achieve increased pro＝ duction，reduced costs，or a reduction in scrap，it might prove to be a very proiftabla investment．

It is recommended thet York Arsenals Ilmited try out the quality control method on one or two machines．After the exporimontal set－up has boen running for a while，it can be compared with average production and the value of quality control to York Arsenals Limited can thus be measuned．

The quality control unit can then be gradually expanded to cover as many of the factory operations as required．

When York Arsenals Ifinited are ready to uncertake this project，the Prysical Metallurgy Research Laboratorios will give any assiatance that is needed．

The function of quality control as outlined in this report is to present a picture of what is going on in the process of manufactune。 Management will be able to see what is happening and should then be able to toke action which will bring the process under closer control．

APPENDIX.

The chart on the next page shows how to determine the quality of a lot of material taken from a sample. Some examples from this chart are as follows:

Number of pieces naspected	Number of deiects found	Maximum probable
10	0	19.0
50	2	10.0
100	5	9.0
400	1	1.0
500	50	11.6

The chart will be vexy useiful in rating a shift or small lots of material. For complete desoription of the use of this and other chartso aes "An Engineers' Manual of Statistical Mothods" by $工$. E. Simono published in 1941 by John Wiley \& Sons, Ince, Now York.

CHART FOR DETERNINING MAXIMUM
PROBABLE PER CENT DEPECTIVE。

EXAMPLE:

$$
\begin{aligned}
& 10 \text { pieces examined, } \\
& 0 \text { defecta found. }
\end{aligned}
$$

At intersection of $0+1$ and $10+1$ the por cent
defoctive indicated is 19 per cent. The material ammiod ia
under 19 per cent dejective.

