```
REPORT
of the
```

ORE DRESSING AND METALLURGICAL LABORATORIES.

```
Investigation No. 2564.
```

Preliminary Investigation of Influence of Longitudinal Stresses on the Ballistic Performance of Ammour-Ptercing Shot.

Abstract

Mhis report describes results of a preliminary investigation into the offect of longitudinal stresses on the bolifstic pere formance of A / P shot. A method is described for stressing shot in a dinection parallel to the axis. Results of proof tests made on shot so stressed are given。 The small number of tests performed and the fact that the shot steel did not receive its optimum heat treate ment make it difficult to draw any definite conclustons. A suggested further plan of research is outlined.
, Burcua of hathas
DIviSton of metandis
M1nsrads
Ore Dressing
and wetallurgical
Labosetoriaa
-

O T TAWA Decomber 30th, 2.943.

REPORI
of the

ORE DRESSING AND METALLURGICAI LABORATORTES.

Invest1gation NO. 1564.

```
Preliminery Investigation of Inf`luenco of
    Longitudina. Stresses on the Ballist10
        poriormance of Ammourmplercing Shot.
```


Origin and Purpose of Investigation:

During a discussion instiated early in 1943 by Capto Do Westong of the SoA。 and SoAoA. Inspection Directorates Inspection Board of United Kingdom and Canadas ottawa, Ontario, consideration was given to the possibility of improving the perfoxmance of amoureplercing shot by application of a pre= stressing operation similar to the autofrettage commonly used In tho construction of gun barrels.

The subject of this report is a preliminary effort to investigate the influence of the longltudinal streasen (iooo, those occurring paraliel to the axis of the shot) on the perfomance of armourmpieroing shot.

Description of Test Shot:

To obtain, so far as possible, equally distributed tensional streases in the longitudinal dirscition, a specialiy constructed shot wes used. This is shown in Drawings Nos. 2 and 2, on Page 3.

The projectile is composed of an outer pert "A" snd an inner part " B " (see Drawings Nos. I and 2). Part \bar{B} is screwed into part A and force-pressed against the inside front surface \underline{P} of the nose N. The side surface botween A and B is hold loosely; this ireo space should allow for contraction of the outer part and expansion of the inner part.

Chemical Composition:

The chemical composition of typical steel used to manufacture $6-p d r$, amour-piercing shot is as follows:

Per cent

carbon	=	0.69
Mangenese	-	0.79
silicon	-	0.30
Phosphorus	\cdots	0.014
Suiphur	-	0.018
Ohromium	-	0.177
Nickel	\cdots	0.90
Molybdenum	-	0.25

Figure i, contalning Draw1ngs
(Nos. 1 and 2, constitutes Page 3.)
Text concimues on Page 4.

[^0]Figure 1

Heat Treatment：

The heat treatment proceases upon part A were performed in such a way as to give practically the lowest value of residual stresses caused by quenching and the maximum hardness of the nose consistent with sufficient ductjility of the treated bese．
part A was given the following heat－treatment：
a．Hoat slowly for 2 hours，to a temperature of $1450^{\circ} \mathrm{Fos}$ and hold at temperature for 30 minutes．

D．Quench into molten salt（potassium nitrates 53 per cent：sodium nitrito， 47 per cent） at 305° F．at the beginning of quenoh and $340^{\circ} \mathrm{F}$ ．at the end．Hold the shot one houx In the salt bath（in order to equalize the stromses and to trensform the austanito to martensite）。

0．Draw at 250° Fe for 2 hours to relleve the stresses，and then cool slowly in furnace。
a．The drawing of the bese wes dome in a fixture in which the shotis nose was immersed to a depth of $2 \frac{2}{\mathrm{z}}$ inches in circulating water． The remaining part of the shot was covered With sand and the base vas exposed to direot furnace heat．The thermocouple was fixed to the base of the shot．The shot was kept two houng at 1000° and cooled slowly in the f1xture。
－A second etress relief was performed at 275° F． for 6 hours．

The hardness pattern of an axial section of the experimental shot is shown in Figure 2 on Page 5.

The heat treatment of paxt B（plug）wias periformed under conditions giving the meximum hardness of front part and sufficient duotility of the troated part to enable its being s．creved on under heavy load．The operations given in （a）and（b）for Part A ware also applled to Part B．This was followed by stress rellof at $275^{\circ} 0$ for 6 hours．The moan haxdness of part B was 62.5 Rockwell ${ }^{9} 0$＇．

FIGURE 2

Residuel Stresses:

The tangential residual stresses of "ST" locked in the experimental lot were chocked on three cross-sectional rings,音 inch wide, cut from one shot aiter hest treatment and before stressing. The measurement results and the celculations aro given in table Io

The approximate magnitude of "ST" in the outside Pibre is minus 2,405 pounds per inch (tension), which may be regarcied as very low, and we can assume that the applied hoat treatment has caused practically no stress. For purposes of record the locetions are designatsd $A=B$ and C.

YABLE I.
Bofore Splitting:

$$
\begin{aligned}
& \text { Kay: } \\
& E=30,000,000 \text { pos.1. : } \bar{d}=\text { Thickness of the ring. }
\end{aligned}
$$

The changes of dimensions taking place during heat treatnent are shown in rable II。

TABLE II。
THE CHANGE OP DIMENSIONS DURTNG HEAT TREATWUAM.

DESCRIPTION OF THE STRESSING FTXMURE:

Experimental shot described sbove were atrosaed in a special fixture, shown in Figures 3 and 40 This fixiuro consists of four legs supporting an $38 \mathrm{mmoh-schare}$, $\frac{2}{2}$-inch-thick steel plate on which are ilxod two permanently dividod boarimgs. BI and B2, each inned, with two axle box bearings made of coppor: C. In order to raise the friction coefficiont between the copper fnlay and the shots the former is notched on the inside surface and is sprinkled with sand batore use.

Four screws (manked S in Figure 3) otwo on gach boaringe press the stressed shot and the copper boaring very strongly togethorg not allowing thom to move ageinst each othor.

The roctangular hood of part A (markod If in Flgure 1 s Drawing No. 3) is usod as a sorgw hoad and is scrowod on by a Gofoot-long spenmer (Sp in Figure 4) o This length makes it posstble, by using the force of throe mon, to stress the parit A to about 100,000 pounds por square 1 nch and part B correspone dinghy hig gexs.

The dial marked D on Figuxo $\&$ is 17 inchos in diameter and is attached to part A by a small scrow. The pointer I 16 fixed to part B on the rootangulam head Ho Flxod in this wayg dial. and pointer permit reading of the angle of a tum between parts A and B with $\frac{1}{6}{ }^{\circ}$ gocuracy. the fixture used had 12 throads to the incho A 2° turm of the twisting roochantsmg thens is equivalont to a movement along the longituolnal axis ois a length. x o oqual to:

$$
\frac{2}{22 \times 360}=\frac{1}{5320}=\frac{2.315 \times 20^{-4}}{\frac{120 h e s}{}}
$$

EXPERTMENTAZ STRESSINO PROOSDUXE:
The shot. conetruotad as shom in Figure l_{9} ware streased in the fixture describsd above.

The stresaing operation took place after completion

View of Bearings and Shot.

View of D1al and Spannero

STRRSSING FIXTURE.
(Experimental Stressing Fxocecures contid) a
of the machining heat treatment, grinding, and banding. After stressing, the rectangular heads 其 were removed with 9. rubberbonded abrasive cutcoff whoel. The angle of turn was measured as being from the point at which the front part of plug B was felt to touch the nose, 1.0 .0 stants to press the inside surface P)。

Tho neasurement of stresses produced was accomplished
by8
(a) Dixeot measurement of strain on a measuring length (seo mark If on Drawing No. 2) 1.0% two oircies two inches apart, marked before atressingg around the outside of the shot.
(b) Inclirect measurement by measuring the twist shown on the stressing fixture by pointer and dial arrangement.

Tensionminduced strein in part A and compressione induced strain in part B are togethor equal to the movement of the rectangular head Ho This movement is determinod by twist angles usting the ratio of 1° angle $=2.315 \times 20^{-4}$ inch, the angle boing messured from the point where the plug B has touched the nose of the shot. Table III (Page 11) shows stressed. conditions schieved.

The ratio of crossosection in A and B, of courses dotermines the ratio of tensile stress in A and compressive stress in Bo For a $1-1 / 8$ anch diamotar plug the surface ratio 182.926 ; for a $1 \frac{1}{4}$ minchmatimeter plage 2. 1800_{0}

The stress measurements of the first experimental Iot were made by both of methods (a) and (b) described above These shot were sot aside to be used in investigating the influence

[^1]Text resumes on Page 12.
A / P SHOT WITH $3-1 / 8$ IN. PLUA.

Remanks: 1° tum corrosponded to $2=450.4$ pos.2.

（Experimental Stressing Procedures oonteq）o
of the grinding operption and desp etching on stressed shot． The reaults of this work will be discussed in a separate report． The stress measurgments of the second experimental． Iot were performed by method（b）ioo．by moasuring the twist angle of the rectangular head Ho

The stresses wore calculated，for A / P shot with $1 m 1 / 8$ Inch plugs on an approximato length oqual to the cotal lemgth of the plug $B(4 m 23 / 26$ inches $)$ minus hali the length of the thread（ $5 / 8$ anch）and hali the height of the front hemispherio pent of the plug $(9 / 32$ inoh）giving a total measuring Iongth of $3 \approx 29 / 32$ inches（3．928 inches）o．mifs length is marked as In in Figure 2，Drawing ？。 Sixalariy，for a 6madro ghot with a I毒－inch plugs the lengih uaed was $3 \frac{2}{1}$ inches．

The results of longitudinal stress caloulations made on the second $20 t$ of shot stressed are given belowin Table IV：

TABLE IV．
THE VALUE OF LONGITUDINAL STRESSES IN A／P SHOT STRESSED MECHANICAIIY．

NO．	$\begin{aligned} & \text { :Diame } \\ & \text { : of } \\ & \text { :shot, } \\ & \text { :Inchos: } \end{aligned}$	$\begin{aligned} & \text { !Measuring: } \\ & \text { : lengthg } \\ & \text { in } \\ & \text { incher } \end{aligned}$	$\begin{gathered} \text { Tuman } \\ \text { in } \\ \text { degrees } \end{gathered}$			：TIrIng ：Trial Rownd NO．
	：	： 5		\％	－	－
1	12 ${ }^{\frac{1}{4}}$	－ 3.5	75.3	46,950	102，359	4
3	$\therefore 1 \frac{1}{4}$ ：	－3．5	64.2	40，025	878270	5
5	$: 1 \frac{1}{4}$ ：	：3．5	67.0	41.8705	90,933	6
2	： $1-1 / 8$ ：	： 3.906	92.1	41.480	121．870	7
4	： 1 － $1 / 8$ ：	：3．906	72.5	32.650	95.530	8
6	：2－1／8：	： 3.908	58.5	26.350	777.100	9
7	；1m1／8：	：3．906	41.9	18,870	55,213	－．Broke
	：：	：		：	：	：（800 Pigure 5）
	：	：		s^{-}－		

NOTE： 10° twigt on stress fluture oquals，for $1 \frac{1}{3}$ in。 diamo shots $62 \% .44$ posoios for $2 \mathrm{cl} / 8$ in．diamo shots 450.40 posoi

Longitudinal stretching of the outside part A produces contraction of the transverise section of this parts and simultan＝ eously the contraction of compressed part B（plug）results ins extension of the transverse geation of thet part．The approximate value of these contractions and extensions sre given in Table Vo

TABLE V. THE TRANSVIGRE CONTRACTION "C" OF PART A ON INSTDE DIABETER AND TKANSVERSE EXTANSTON "E ON DIAMETER OF DAFT S.

A/P SHOT WITH 1-1/8 TN. PLUC.

（Experimental Stressing Procedure，contid）－

No great difficulty was encounterod in stressing the shot。 However，a smooth shot suriace was found to be ossontial， as suxface maxkings caused stress concentration which produced cracking。

Figure 5 is a photograph of broken shot No． 7 which broke at a $1 / 10-1 n$ 。 machining mark after stressing to $\sigma 1=18,870$ ， $\sigma_{2}^{\prime}=55,213$ poso1．（See N on Figure 5）。

BROKEN SHOT NO．7．

Flring Trials：

The following experimental ahot were proof tested： Shot Nos．2\％4． 6 with $1=1 / 8$ in。 plugo Shot Nos． $1,3,5$ with $1 \frac{2}{2}-3 n_{0}$ plug．

The longitudinal stresses in these shot have been given in Table IVs on Page is．

These firing trials were performed at the Proof anc
(Firing Trials, cont!d) -

Kingdor and Canada, at Valcartier, Queboc, under the suparvision of Lieut. H. A. Allen. A copy of his report is appended to this report (see Page 17).

CONCLUSTONS:

The small number of shot tested makes it impossible to check on the effect of numerous metallurgical and mechanical variables. As a consequence, this investigation must be considered as being only preliminary.

Proof test results obtained were not conclusive, although there is some indlcation that the stressed shot make a blgger hole than standand shot, the difference being from $1 / 8$ to $\frac{1}{4}$ inch. This may be because the stressed shot remain whole at the first instant of contact, only shattering in penetration. Proof teats made on standard shot heat-treatod similarly to the experimentally gtressed shot showed that this heat treatment used did not confer good ballistic properties. This is unfortunate as the offect of the heat treatment may have masked stressing offects. The salt quenching procedure was used, however, beaause it was thought it would hold internal stresses to a minimum wile still maintaining a high hardness.

To truly equate the effect of stressing shot, the performance of longitudinally stressed shot should to compared not with the standard shot performance but rather with results obtained from shot of the same construction with the plug twisted to give practically no stress and also various stress increments.

As the degree of stressing is limited by the compressional stress on the plug, it might be of interest to run tests
(Conclusions, cont ${ }^{\text {d }}$)

on shot plugged with tungeten carbide, which has high compression, strength. The increased density of the tungsten carbide prus may also improve performance。((NL ogs\% sos) iroqui afclt of Supplomentary investigations are being conducted by these Laboratories into further methods of stressing shot during heat treatment, by use of differont quenching madia (water, oil, a salt) at various tomperature and other conditions affecting the Isol magnitude and distribution of stressos. -ienoo of tamm nolthgijeavat ainid seomeupesmoo a en beldsizsy - Vrentarlforsq Vfro goled es sexob

- anenlozed

A．PPGNDIX．

Fil．NO．$V=409$

Valcartiex，PoQ。 October 6th．1943．

（COPY）

INSREGTION BOARD of
UNITED KI NGDOM AND CANADA Proof and Devalopment Establishraent

```
T.W. Whodek,
Bureau of Mines and Resources,
552 Booth Street,
Ottawa, Ont.
Dear Sirs
    Attached please find copy of report of recent
trial of 6 pr. stressed shots with photogrephs of plate.
May I say that we would be plaasod to carry on any further trials of this naturs at any time．
```

> Youre trulys
（Slgned）Ho Mo Allang Liout． Assistant Proof Officer． for／Proof Officers Valcartier．
HMA／EA
Bncls．

Vo409
REPORT OF TRIAI OF QOF。6 PM．＂STRESSED＂A／P SHOT．

Object of Trial
To find the manner in which shatter occurred with the strossed shot on oblique impact at a high veloofty。

Report of Trial of QoF. 6 Pcr. "Stressed" A.P. Shot, cont'd)

Summary of Results
All shots shattered in very small pleces at striking velocities of 2800 fose and above. Full details regarding shatter will be publishod in a soparato report by Mr. C. S. Parsons of the Bureau of Mines and Resources.

Round by Round Results

$\frac{\text { Trial Rd. NO. }}{1 .} \frac{\text { Shot Noo }}{\text { Sub-standard } 20} \frac{\text { Woight }}{6-4-8} \frac{\text { SoVo }}{2176 \text { foso HoNoP。O. }}$

Clean hole $2^{\frac{2}{R}}$ " diameter. shot recovared complate in rear of plate.

2 Sub-standard $6=4=10$ 21.02 fos. S.B.

$$
3 \quad \text { Sub-standard } \quad 6=4=112167 f_{0} s_{0} \quad \text { SoB。 }
$$

Bulge $\frac{1}{8 \prime}$. Shot recovered broken.

$$
4 \quad 1 \quad 6-5015 \quad 2340 \text { f.s. C.B. }
$$

Bulge $21 / 8^{11}$. Several pleces of core and shot recovered.

Near Rd. 2. Shattered pieces of core and shot recovered in front and rear of plate.

6 KC Y 4

$$
\begin{aligned}
& 6-607 \frac{7}{2} \quad 2833 \text { f.s. HoS. } 3 \frac{3}{4}{ }^{\prime \prime} \\
& \text { P.O. }
\end{aligned}
$$

Large plece of core, shattered longitudinally. recovered rear of plate.
$7 \quad 2 \quad 6-50132857$ fos $\underset{\mathrm{H}_{0} \mathrm{H}_{0} \mathrm{H}_{0} 3}{ } 3 / 8^{11}$
Small pieces of core and shot recovered in front and rear of plate.

8
4

$$
6-5 \infty 12 \frac{2}{8} \quad 2847 \text { foso NoF.H. }
$$

Through Trial Ra. 1.
9
6

Pleces of base recovered front and soar of plate. Approximately 50% of core, (nose and shoulder) broken horizontallys recovered in rear of plate.

$$
10 \text { Submstandard } 6-4-12 \quad 2805 \text { Poso }{ }_{\text {HoSo }} \quad 31 / 8^{\prime \prime}
$$

Shot broken below shoulder. Base and part of body, weight 3-1-11 recovered in front of plate.
Valcartier, PoQ. $\quad 30-9-43$.
(Pago Iq contalns the two photographs)

TRIAL V 409 BACK

[^0]: - NOTE: Material taken from Heat No. 12720, from the Stesl Company of Canada, used for manufacturiag A / P inshdx. shot at Thompson Produczs Ifrmitet, St. Cathariness ontario. (Chera. Lab。Test No. 1039)

[^1]: Page 11 contalns 2able IIIO)

