$$
\begin{gathered}
\text { RE E } E \mathrm{PIT} \\
\text { of the }
\end{gathered}
$$

ORE DPESSING AND METALLURGIGAL LABORATORIGS.

Investigation No。1470.

Examination of Canadian Dry Pin Track whith had been in sorvice for 2,486 miles.

Copy 70.3


```
\(O F\)
NIMES AND REJFOURCES
```

Saibines and Geacho jy Burinteh

$0 *$ the

Abstract

 \& Ganadian Dry Pin Track which nad had 2,188 gines on servioe It includes measunoments made on tre Inthz mod pins and metahlogmephic exantintion mace or the
 rolvo3.

Cos suly 28 ch 2943, uncer Roquatithon NC. 539.

 Ottawa, Ontswio, submittod twanty-dne shz 925 bomogenscus Canadish Dry Fin Trach Pins, menufactured by Cowkshot Blsin Company. Ifmttod, Brentford, Ontario, she twantsotwo awstonitio
(Oricin of Materlal and objoct of Investigation) mangariese steel canadian Dry Pin Track Links, manufactured by Hull Iron and Steef Fouridites, Limited, Hull, Quebec.
2. It was reported that the links and plins hod had approximately 2,486 miles of service at the ottawa Proving Grounds. Up to 2300 miles no cracked shoes had been observed, but at 2,420
 tinges of thie four hinge side. No pin fallures cocumed auring the eirlire fest. An examination of the links and pins was ro= quested to determine the wear and deterioration.

TRACK LINKS

Macro-Examination:

3. 1 The twenty-two shoes were received in three lots, ten shoes with no obvious orecks, eight shoes with cracks in the two centre hinces of the four-hinge side, and four shoes with a crack In one of the centre hinges of the four-hinge side. of the ten shoes with no obvious cracks, the first shoe had cracks startfric on both the centre hinges; the second shoe had cracks 3 tarting on all four of the hinges. Four were found to have small cxacks on the inside edge of one of the centre hinges. Seven of these shoes had the left guiding lug bent over slightly (the shoe is placed whth the two luge up and the four ninge side away from the bbserver, on examination), and one had tree right guidelg Iug bent over.
evaiovg of the elght shoes with cracks in the two centre hincee of the ebur hinge side, five had both the centre hinges cracke completely through while the remaining three had one of the contre hinges cracked completely through and the other cracked almost throught Three of these shoes are 11lustrated in Figure 1. Soven of the shioes showed cracks on the inside odge of the two outer all Enc:
(Figure 1 appears on Page 4).
（Macro－Examination，contid）$=$
hinges on the foux－hinge side and fous showed cracks on the outgide edge of the outer hinges on the three ohinge side。 One of these cracks is 11］ustratod in F1guxe 2．？wo of the shoes had the Ieft guiding lug bent over and one the xight。 This lattex shoe is illustrated in Figure 3．in none of the cases where one of the gulding lugs was beat over was there any indication of toxn matal．

Of the four shoes with a crack in one of the centre hinges on the four－hinge side，all four had one of the centre hinges crecked completely through，while on the other centre hinges cxacks had started．One of the shoos is ahows in Figure lo Two of the shoes exhlbited cracks on one of the outer hinges on the four minge side．

Measurements of the Shoes：

Abstract

The eyeholes of the ghoes were measured with inside callipers to determine if there had been any stretch or wear． Measurements were taken at right angles sad periliel to the axia of the guiding lug．The manner of taking the measurements is shown in Figure \＆and the method of numbering the hinges for reference purposes in Figure 5 。 table I records the results of the measurements．

- Page $4=$

Figure 1.

LINKS AS RECEIVED.
Note cracks on two contre hinges.

CRAOK IN OUTER HIHGE OF THREE-HINGE STDE

- Page $6=$

Figure 3.

Figure 4.

MEASUREDENES ON LINK。
Figure 3

NUMBERING OF HINGES.

TABLE ${ }^{-2}$

(2) Original diameter of ayoholo from Drawing No. Fl 489 (EN) was 0.831 inch.
(2) A Perpendicuiss to axis of the grinding lug.
(3) 3 = Parallel to axis of the grinding lug.
(4)

Indicates a hirge which is cracked so badiy that eccurste measurement is impossibla.

Mefght of Shoes:

TABLEE II.			
$\begin{aligned} & \text { Shoe } \\ & \text { No. } \\ & \hline \end{aligned}$	Woight, pounds	$\begin{gathered} \text { Shoe } \\ \text { No. } \end{gathered}$	Woight, pounds
1	$18{ }_{4}^{3}$	14	20
2	- 18	15	$19 \frac{3}{4}$
4 5	- 1818	16	- 18
5	-18 $-\quad 18$	17	$-18 \frac{3}{3}$ -19
9	- 18^{3}	19	- 18 年
10	- $18 \frac{18}{4}$	20	- 181
12 13	- 18	21	- $18 \frac{3}{7}$
13	- 197	28	- 1910

Hardness of the Woaring Surfaces:
Sections were cut from thrse eyeholes and hardness readings were taken on the wearing surface, using the Vickers machine and the 5-kilogram load. Eight readings weretaken on each eyehole and the mean velues of these readings ere recorded below:

Number	Y. $\mathrm{P}^{\text {N }}$ \%
1	466
2	510
3	489

On the ilat surfaces of three links, which are in contact with the bogie wheels, hardness readings were taken using a Brineli machine with a 3000-kilogram load. The rasults appear below:

Shoo NO	B. HoNo 6
13	315
17	340
17	350

Micro＝Examination：
Micro specimens were cut from one of the hinges and from e thick section，polished，etched in 2 per cent nital and examined under the microscope．Figure 6 shows the structure near the break in the hinge．

Figure 6．

X100，nital etch．
STRUCTURE OF LINK。
Note absence of free carbides and large grain size。

Pull Tests：

One shoe（No．12）wag taken and subjected to a pull test，togethex with a good shoe，in the Amsler Universal testing machine．This shoo had both centre hinges on the four－hinge side cracked completely throughs oracks on the inside edges of the two outer hinges of the four hinge side，and cracks on the outer edges of the three－hinge side。 Figure 7 shows this shoe attached to the good shoe after it had been pulled．Note bend on pin．

At a load of 78,000 pounds the two centre hinges opened up and the load fall off．（Satisfactory uncracked shoes withstood a pull of 195,000 pound without cracking．
(Pull Tests, cont'd) -

Fd gure 7.

> PULTED LTNKS.
> Note bend on pin.

> TRACK PTMS

Macro-Examination:

Two of the twenty-one ping exhibited silght crankshaft effect while the remaining ninotean ofns were worn eveniy all around. Figure 8 shows four representative pins.

Figure 8.

PINS AS RECEIVED.

The pins were all magnathuxed and oxamined for any
cracks but none were found.

Measurement Wear:
Figure 9 shows the manner in which the moasurements were taken on the pins.
(Measurement Wear, cont'd) $=$

F1.Eure 9.

MEASUREMENTS ON PIN。

An example of the measurements on one pin and the method of calculating the war follows:

> Mean minimum diamater $=0.797$ inch.
> Mean maximum dianetar $=0,806$ inch .
> Maximum wear $=0.810=0.797=0.013$ inch.
> Mean wear $=0.806=0.797=0.009$ inch.

Maximum wear was found by bubtracting the mean
minimum dianeter from the largest maximum diametero The mean wear was found by aubtracting the two mean values of maximum and minjmum diameters. Although wear would be expected to be fairly licht on portions of the pins that did not bear the load, calculated values for wear are probably slightiy less than actual. values.
(Measurement Wears cont'd) =

TABIE III.

On pins which exhibited the crankshaft effect, since the wear is unoveng it was calouleted as twice the difference of the maximum and minimum dismeters.

(Measurement Wsars cont'd) -

It was noted that, on thirteen out of twenty-one pins that minimum dianteters occurred at a point about one-and-a-half inches from the haaded end. This is illustrated by the following example:

Surface Hardness:
Hardness readings were taken around the middle of the pins using the Rockwell tester "C" scale.

TABLE IV.

Pin No.	Surface hardness.	Core hardness:	Pin NO.	Surface hardness.	Core hardness.
1	48-52.5	47-49	1.2	49-51	46-477
2	48-50	48-50	13	$45.5-50.5$	
3	455-48		14	47×50.5	43-46
4	49-51. 5	47	15	44.5-49	
5	46-52		16	45-51	4.-47
6	$51-53$	$48=49$	27	48-49.5	40-45
7	49-51		18	47-4\%.5	44-46
8	45-49.5		19	44-47.5	
9	45-48	44-44.5	20	41-48, 5	
10	48-50	48-48.5	21	46-48.5	
11	$49-51$	$45-46.5$			

Bend Tests:

Bend tests were carried out on an Amsler Universal machine, using a twelve incheradius and supporting the pins on

- Page 16 .
(Bend Tests, cont'd) =
twelve-inch centres. Table V records the results.
ABLE V.

Drop Impact Tests:
Drop impact tests were carried out by allowing a 50 pound weight to fall a distance of elght feet striking the pin. Thus the pin was subjected to a 400 foot pound blow. Table VI records the results.

TABLE VI.

Discussion:

The macro examination of the links showed that the failures were located in the two centre hinges of the fourhinge sides. on examination of the links which had not failed completely, it was seen that the cracks tend to start on the inside edge of the two central hinges of the four-hinge side. It is therefore believed that, in service, these two hinges are subjected to a greater tension then the two outside ones.

This is further substantiated by the measurements on the eyeholes. Assuming the original diameter of the hole to be 0.831 inches, as given on Drewing No. F $\infty 1489$ (AED) , the measurements show that the holes have been elongated on the average of 0.13 inch and that the two centre hinges on the four-hinge side have been elongated more than those on the outside (about 0.05 more). Further, the two outside hinges show a tapering effect increasing in diametor from the outside to the inside, when measured in the direction perpendicular to the axis of the guiding lugo This tapering effect was also observed to a lesser extent on measuring parallel to the axis of the guiding lug. (Visual examination of good unused links subjected to pull tests showed that the two centre hinges on the four-hinge side stretched more than the two putside hinges.) The hinges on the three-hinge aide stretched fairly evenly over their whole length. In some cases there was a slight tendency for a taper, the diameter increasing from the inside to the outside of the two outer hinges. This effect showed up more on measuring parallel to the axis of the guiding lug then perpendicular to it. Further, where any cracks occurred on the three-hinge side they occurred on the outer edge of the outer hinges. These factors point to a condition in which the outer parts of the three-hinge side are subjected to higher stresses than the central portions.
(Discussion, cont'd) .

Some foilures are due to cold shuta in the hinges. The 111 effects of these casting defecte are magnified by the stress distribution in the shoe and hence the shoe is weak where it should be strong. This might possibily be overcome by changing the method of gating, The metal, howaver, is of good quality as can be seen by the fact that, although the guiding lug illustrated in Figure 3 is badly bent over, there are no cracks or torn metal visible.

It is possible thet the Inks have reached thoir fatigue Ifmit. This is indiceted by the large number of shoes which reportedly began showing cracks between 2,300 and 2,420 miles.

The hardness raadings on the wearing surfaces show that the manganese steel hes work-hardened satisfactorlly and approsches the hardness of the pins. The readings taken on the flat surface show considerable work-hardentng also.

Since the original weights of the shoes are not known. it is impossible to say positively if any weight has been lost during service but it seems probable that about threo-quarters of a pound was lost.

The results of the pull test show that a shoe still has some strength, even though both centre hinges on the four hinge side may be cracked through. However, since no ovidence is obtainable as to what stresses the shoo is subject to in service, It is impossible to state how much longer the shoe would be serviceable。 The track definitely withstood a test over difficult terrain just before it was removed from service.

With the exception of two pine all the pins are worn evenly 2.1 around and no permenont deformation, due to bendings was observed. It was observed, however, that there was a tencincy for the pins to wear faster at a point about one-and-a-half inchas
(Discussion, cont'd) -
from the headed end. In one case the diameter at this point was 0.035 inch less than the next smallest diameter and was 0.053 inch less than the largest diameter measured. This might indicate the presence of soft spots, caused by a rem tarding of the cooling rate at this point on quenching the pins.

The surface hardness of the pins is within the specified limits and in most cases was in the upper range of this limit. Thus the pins have not been heated up in service to a temperature exceeding the draw temperature (800° F.). The core hardnesses of the pins were slightly lower than the surface hardnesses. A slight increase in the difference between the two values may have been caused by work-hardening of the pin surface metal.

That the pins are still serviceable, is shown by the bend and drop impact testi. In the drop impact tests, all pins withsteod a 400-foot-pound blow while the specification for new pins only requires them to withstand a $350-$ foot-pound blow. In the bend tests, all pins (except one) took a deflection of more than one inch and the one exception passed the 0.7-inch deflection required by specification. The failure of that pin to take a deflection of one inch may be attributed to its high surface hardness (51-53 Rockwell "c").

The average elongation of the eyoholes on the ten shoes which had no obvious cracks (shoes 13 to 22 inclusive) is 0.13 inch. That is a combined elongation and wear of 0.054 Inch per thousand miles. The mean wear on the pins was found to be 0.0064 inch per thousand miles. This gives a ratio of wear for shoes to pins of 8.4 to 1 . Probably the value is somewhat smaller due to the fact that p in wear is c alculated and actual wear will be higher.

Conclusions:

1. Failure of the Iinks occurs first in the two contre hinges of the four-hinge side, since these are the highest stressed portions of the casting.
2. Some of the failures were caused by cold shuts.
3. The metal is of good quality and no free carbides were observed.
4. The metal worishardened considergbly on the wearing surfeces, hardnesses varying from 466 to $510 \mathrm{~V}, P_{0} \mathrm{~N}_{0}$
5. The pins wore evenly all around and were not perm manently deformed by bending.
6. Soft spots on the pins caused greater wear in some portions than others.
7. The pins have not boen heated excessivoly in service, as no noticeable softening effect occurred on the surface.
8. There were no fatigue cracks on the pins.
9. The ratio of wear on shoes to wear on pins is
8.4 to 1 .

0008888888000

JPO: GHB:FM.

