

$$
\begin{gathered}
\mathrm{R} E \subseteq \mathrm{R} \mathrm{I} \\
\text { of the }
\end{gathered}
$$

ORE DRESSING AND MEPALSURGIGAL IABORATORIES.

```
Investrgation No. 1.342.
```

Examination of Track Link and Track Pin
from a Gorman $P_{0} Z_{0} K_{0} W_{0}$, Wh II Tank.

MINES AND RESOURCES MINES AND GEOLOGY bRANCH

## K $\underset{\sim}{\mathrm{E}} \mathrm{P}$ OR P of the

 QRE DRESSTMG AMD MGTASUSGTCAT, LAEORAPORTESTrvestseation No. 1348.

Braminothon of Track mank and Treck Pan





 Kingrom and Camedag Obbawa Ontando.

Rogutaston No. Sbas AEDB Lot No. 199 to oovor this woxks has been mecotrod from Dyo Gow. Drury, Dinoctor or Wetaljurgy, Army Enginoextag Dest gn Branch. Dopaxbment of Mundtions and suppiy otceme Thts requests a amplate ersmengtsom of these two parta.

Macro－Examination：
The dimensions of the link and pin ere given in $I_{0} B_{0} U_{0} K$ ．\＆$C$ 。 Drawing No．A。D．Tech．（M）20．Figure 1 illustrates the link－and－pink assembly．Figure 2 shows the contact face of the shoe．


LINK AND PTN ASSEMBLY．
（Approximately／bsize）。
Figure 2．


```
- Imee 3 =
```


## Waichte



TRACR LTMK

## Chompost Anslygis:

|  |  | As <br> Found Pex | Rocommended Specipiontion TE |  |
| :---: | :---: | :---: | :---: | :---: |
| Caxbors | $=$ | 2.10 | 1.00 | $=1.40$ |
| Wanganose | $\stackrel{\square}{-}$ | 32.63 | 10,00 | $=14.00$ |
| Slitcon | $=$ | 0.68 | 0.30 | $=1.00$ |
| Fhosphorws | $=$ | 0.062 | 0.10 | mox: |
| Sulphur | $\cdots$ | 0.010 | 0.05 | max. |
| Chromivm | $\cdots$ | 0.71 |  | ¢. |

## Hazdness:

The Brinela hardness of the tink wes poo.
This is withan the usual rance (2BOwepo) obtained for
heat-6reated highmangenese stool.

## $X=R a y$ Examfracion:

 ottama campod out an xam oramination of the link Plexue 3 is a positive taken trom the malognah. The whe te shodows indicate the zesence or a muber of
 the 2 lnk was out open to rovent the onvibles (figure dis shown in thas sectuon by the xameyn


XeRAY POSTTIVE OF LINK。
White shadows indicate presence of cavities.

```
(X-Ray Examination, cont'd) -
```


## Figure 4.



## SHRINKAGE CAVITIES IN CENTRE EYE HOLE SECTION。

Micro-Examination:
Specimens were cut irom the Ink and exanined
under the microscope. The unetched specimens showed that the steel was quite cloan. The nitalmotched specimen showed the stmoture illustrated in Figure 5 (taken at X100 magnification).

Wigure 5.


$$
\begin{aligned}
& \text { Xloo, nital otch. } \\
& \text { STRUCTURE OF IINK. }
\end{aligned}
$$



## Chembas Anslysis:

Drillings were taken from the core of the pin ofort ohomicgt ontazais.


## Method of Hesding:

X -ray diffraction tests, using the backmy rec
refzegtion methoc, Indicate that the pin has been

 Physical Tests:

A 0.252 -inch miameter specimen vas obtaines from beember core of the pin and a 2 -inch gauge longth was used. The results were:

| Ultimate strength | - | 94,700 p.s.i。 |
| :--- | :--- | :--- |
| 2\% proof stress | - | 63,200 p.s.1. |
| Elongation | -16 per cent. |  |
| Reduction of sres | -53 |  |

## Bend Test:

A bend test was carried out on an Amsier
Universal tosting machine using a 12 winch radius and
Goinch centres. The incroment vs. lood was plottod. Elastic limit, permanent bend, end case broak point were then determined from the cinart and the angles were calculated geometricaliy, The method used was illustrated in the report of a previous investigetion, No. 1197 (April 2nd, 1942), carried out in these laboratories. The results


## DepthoHapdness Relationshyp: 1fosm711b yor-X

roed A traniaverse section of the pin was but dina
hardness readings were taken across the face
using the Vickers hardness machine and a $10-k$ kiogram load.
135802 18818Kの9
Pigure 6 is a depth-hardness chart plotted from the hardness

results obtained. It can be seen that the surface hardness

is $815 V_{0} P_{0} N_{0}$ and the core harduess $195 \mathrm{~V} . P_{0} \mathbb{N}_{0}$
orow ê2neeq art

-L.e.G OOS, da - anstub toorcl रेL.
Atrer 700 है 5 nototencorm
(Figure 6 follows on nexto page)
$: j e g \cos ^{5} 5$
2olemA cis no Juc berfeiso ebw teet gned A



- This was taken on a second Mk II pira submitted by $A D\left(T_{0} \& M_{p} T_{0}\right)$, Detroit, of the Inspectjon Board of United Kingdom and Canade.



(DepthoHardnoss Relationship, cont'd) -

```

\section*{Figure 6.}


Microscopic Examination:
A transverse section was cut from the pin and then polished. The unetched specimen indicated that the bar stock used was quite clean. Figures 7 and 8 are taken from the nital-stched specimen, at \(X 500\) and \(X 1000\) of the core and case respectively.


CORE OF PIN.
Note the presence of ferrite - white constituent.

Figure 8 .


X1000, nital etch.
CASE OF PIN.

Note the coarsely acicular mertensitic structure。

\section*{DISCUSSION:}

\section*{Track Link ~}

The chemical analysis of the link shows that a
high-manganese steel was used.
The composition of the steel, with the exception of chromium, is within the imits specified by the \(A_{0} S_{0} T_{0} M_{0}\) for eustenitic steels. Chromium is not usually added to austenitic mancanese stoels. It is claimed that the addition of about 1 to 3 per cent of chromium reduces the amount of cold work required to properly harden this type of steel. If the eye-holes of the track links can be work-hardened more rapidly by addition of chromium, it would appear that the life mileage of the highmanganese steel links would be increased. A test would have to be carried out to determine whether the difference, if gny, is sufficiently great to
(0) Monasiong ontia) -


 Tho Jint woute nemondy be straxgex, it these had beor .
 pronteo a bopbos link.

The mionostructure shows a nomet sumtentico
 wes artispectory mhe 1 ing anso recosvod tho propoz boat
 rapiay actor homang ab \(1800 \mathrm{ma4} 0^{\circ}\).

\section*{Trock Pas \(=\)}

Tho chondon malysis inducatos that the stoel
 The bend best caused the gase of the pla to

 ahow by the photomionograph comoborator thas fact.
 atac and/4terat 60 ) indacabos that tho pha was pachoomburiged
 conted th the bow to e potat bellow the upper oxdthen of the oose and then guerchod.


 carabo out on the valonthene tank at the stoty or production In Canda.

The thatwess of tho oase sucgests that paobs carburdmine ves the method usod to produce thas case.```

