

```
OT. A WA July 24th, 1942.
```

```
REPQRE
of the
```

ORE DRESSING AND MERALEURGICAL LABORATORIES.

Investigation No. 1266.

Examination of Two Steel Rings.

as. then

 QRE DRESSTIG ANO MMEALLURATCAC CABORATORXES muestigation Mo. 1266. Erammagion of two steen Rings.

on fune jst, leas, two steel rings, marked

 Nathonal Defonce (hmy), otbawa, ontawlo, Fop azembation.

Deserdption of Rengs:

 The outate shape of the ring is contom, whe the bmill das:


```
Rtag PB" (maxk on surstce, "Test, B08 Fum/e %Hag B")
```

(Descniption of Eings, cont'd) -
was 0.830 in. thick with a 4.7835 in. inside diameter, and 6.8750 in and $7.06251 n$. (contcel shape) outside diameters.

Pigures 1 and 2 are views of the rings as recelved.
The dinensions of the rings were tiken wfter silght
machintug of the cylindricyl and confcal surfaces, the machinfigg being done so as to facilitate the taking of accurate measurements.

Elsure.

P1gure 2.

RTNG "B "

A viow of "B" showing concentric clroted temper colours.
(approximately 荧 actual size)。
（00scripthos of RAggs，Bont？-

Whe Nab sumpeos of ooth sides of the ramg ehow the bemper boloure the t wexd produesd as exesu？of the high frequenoy fuducton troctmant．

The disposethon of colours on the figt surdaces of RLnge＂A＂and＂B＂is shown in Tobla I。

Teble To

Whe mstriputhog of pomper golouxe

Successive		T	\％			R I	\％	S	
$\begin{aligned} & \text { number ar } \\ & \text { cogour } \\ & \text { steqip } \end{aligned}$	3 UTDS	STDP	－MAPR	\％	\％IVDE	DE：			511
	suldth，	Oct	TVATh	（0）	TQU	3 COl	芴dSt		Colt
		Soner：	\％${ }^{\text {a }}$	B $\quad 0.10$	$\bigcirc 12$.		Atang		O20 ${ }^{2}$
	；			8^{8}		\％		\％	
1		$: 0$ ：	； 189	0	$\bigcirc 2 / 538$	： 9	： $8 / 32$	：	3
2	$=3 / 32$	－1， 6 ；	： $5 / 32$	： 7 － 2	：7／38	： 9	： $7 / 32$		6
3	； $2 / 32$	$33_{0} 6:$	$: 8 / 30$	：6	：19／38	$: 10:$	： $2 / 32$		$3-5$
4	； $2 / 38$	$\because 6$	$\therefore 1 / 80$	${ }^{8} 48$	：${ }^{\text {¢ }}$	\therefore ：	： $6 / 38$		6 m 8
5	： $2 / 32$	： $4_{8} 5$	： $0 / 32$	87.8	：	只 ：	： $0 / 32$		8
6	$; 5 / 32$	$: 7,88$	： $0 / \mathrm{B}$	\％ 9			： $25 / 64$		10
7	$\cdots 4 / 32$	： 9 ：	： 4	$\therefore 20$	：	\％：	，	$\stackrel{?}{ }$	
8	； $9 / 32$	41.0		\because ：		：\quad		：	

As a guldance the mex．ous temper osiones and the tempexataras at which they see produced are given in mable Ty Mhis table ts for the owdiway bype of beat oneament ond ahould

Tab2o 22.
Senle of Thaner colourg．

(Description of Rlmgs, cont ${ }^{3}$ d) -
In Table Is "O" was used to mark the surface without temper coloux, and 9 and 10 to mark tho dark-grey and dark surfaces for the temperatures above the scale of temper colours. Vlevis (to size) of the segments of Rings "A" and "B"s with temper colouxs, are shown in Flgiures 3 and 4°

Segment of Ring A, showing distribution of temper colours.
(Approximately sctual sizo)。

Figure 4.

Segment of Ring B. showling distribution of temper colours.
(Approximately sctual size).

Herdnese Tests:
vickexs hestness values hove been taken in a xedid
 thon or these haxdmesees is nhown in table ITI below

Teble Tha

w. 2 mon thlole

Whompen Analysis:

Wha wag tebea onty pron Rung B .

Cambon	\cdots	0.58 pes cent
Nicke?	∞	Mone detoeted.
Chxomius	-	Trees.
Molybosava		Mone detected.

Tenstio Testa:

Small precos ox tho type thet cen bo broken in the Hounerfeld bensonetar were out from the xinge Tho locationa from what these pheces were taken were as xollowe:

Rtang A
Tost Peoor Wos. 1 and 2 were taken in a tangentiaj

 edge。
 to the flat suxtace of the ringe $5 / 16$ Ino from the Inside edge.

Ring B
Test pieces Moe. 5 and 6 were taken In tamgential
 was taken from the wewthon directiong $5 / 16$ in from the Insdae edge.

Mhe peantos of the tenstio testa are shown in
Teble TV.
（Tensile Tests conto 0 ）

TgbTe TV
Tensid Test pesutts．

No．	：Dinmeter，Reductuonatunge			TRela ： 1 thramo		
	：i	：In ereas a trong		Strongth．		－Darections
	\％${ }^{8}$	ex ${ }^{\text {a }}$	gre eent	pos． 1 。	P．Sod	\％
Reng As 2	0.154	37.5	11．6	94.000	3．02，375	Tengembiel
2	0.360	30.0	11．9	97.500	103，000	
3	0.160	32.5	11.9	92，000	105，000	6
含	2.160	30.5	11.73	96，000	105，000	${ }^{11}$
Rimg Bo 5	1.160	37.0	12．3	95， 0^{000}	108，000	8
\cdots	1.160	37.0	13.0	98，000	104，000	1
Average	\％	34.8	12．38	95，500	103．730	
	：					
A1ng An ${ }^{\text {V }}$	：0．1600	25.0	12．33	98，000	105．000	Longittuds
BTag $\mathrm{B}_{5} \mathrm{~B}$	0.1605	25.0	12．2	98.000	1．07，000	nes ${ }^{\text {a }}$
Average	：	25，0	12026	98，000	106，000	

Macro－Ereminatson：
 a reagent composed of 6 go cupre chlaride． 6 go rervic ebloriden 10 ml 。 hyonochlonto gozd and 100 mj 。 ethyt alcohot，has hhomb
 See Frguxe 5．

The dark layer on the oubsurs paxt of the surfaco Is $9 / 32$ in．wide，which 1 a about the ame bincungss as the vary hach layer shown la Table ITu．
(Macro-Examinations cont'd) -

Ftgure 5.

Sogment of Ring a
after the nacro-etchsing
(Approximately actual size).

Microscopic Examination:

Cross-sections of each ring were examined under the microscope. P1guxes 6 to 9 show photomicrographs taken from Ring B at points where characteristio changes in hardness occurred. Stmuctures shown are slmilar to those observed In Ring B, al though the various structures were not in the same locations for both ringa.

Whe structuxe show in FIgure 6 is martemsite, having hardness range from $788-779$. Flgure 7 shows tho aus tenitic grain size in this range to be quito large.

Figure 8 shows a mixed structures mainly mantensite troosite, zones with herdness range from 452.88.。

The pearlite-femite structure (see plgure 9) was found in zones with handness range from 190-217.
(continued on next page)
(M1croscopic Examinathong antid)

The non-metailic inclusions in Rings A and B, examined on longitudinal samples at $x 100$ magnification, were found to be unifiomiy distributed, small, and numerous.

Figure 6.

Martersitic structure, coase grains.

$$
\begin{aligned}
& \text { x100, eleotro polishod and } \\
& \text { 1ightly otchad in 4\% pleral. } \\
& \text { Coarse graing of martensito. } \\
& \text { Groin size No. 2. } \\
& \text { A.S.T.Nos EWI } 9-39 \mathrm{~T}^{\circ} \text {. }
\end{aligned}
$$

(Microscopic Examination, cont'd) o

$$
\begin{aligned}
& \text { X500, etched in } 4 \% \text { picral. } \\
& \text { Mariensite snd troosite. }
\end{aligned}
$$

Figure 9.

XI00, etched by electro-po11shing.
Coarse grains - pearlite and ferrite.

Layer ghe chegses:

Whe thicknesses of the vardoun hardnosa zones ox the rings, as determined by hardness tests, mioxoscoplo exemo Ination, macro-etohing ond temper coloux obseswathons, were as follow :
geble v.

Discussion of Resulta:

The rings were procuced inom a plain 0.58 per pont carbon gteel. The ulthmoto stross in the sory xing meteritat
 tu the longitudinet derectima. These velues are whet would be axpected in SAE 1060 stee\%.

Analysing the benatice begt results we may nots thet the recuction of axea in fargemidet mamplow (Mos. 3 bo 6) in sn average of 34 per cent wra in the longhtudnax divertions As 25 per cent. Mais durevence potnta to the posstbintolos
(OAscusston of Results, contad) -
thet the rungs were forged an manare?.
The result of tho microscopio emmanation and the appescance of the cylndrical surfeces of the tenalle asmples and thetr appearance of fracture indicated a corasempened materdal. That material was in the noxmatizod condition bosere the opplication of the fadnction beat autorettage the mage

The distrabution of the Viekers herdness is in accordance with the gradathon of the atructuxt from martomsto to anealed pearitteromxte. Result of mearootching and Gemper colour obervathon also hoch these hardness tosts.
maverage emnoited characteristres of suduction hearjing.

Ring B apporently was more intensively heated than Ring A. The depth of the layer heatod above the crithcal temporature before quenohing in wator is 7 mmo for 7 ang A and 13 mon for Ring B, the depth Mnciuding both funly hardened and semmuntoned somes (see mable ItT)

Hexdnoss arstribubions and atructure variahtoas mere Sound to be symatrical with the ares of the rings.

Genorel Remargs about the Fossibiltty of moloring the Now Methods of Jinucluon Eeatlig Antofrettege:

From the neture of the tomperstruge detrefbutson by the induction headigg it is possible to oapect the autow sebtage ofect, toltag into considecation the theorothoal celculathons of the detribution of themal stresses la bollow oylknders, (see papens is 2,3)。

```
Genered Remspiss ebout the possiblifty or fraploysug the New
```



```
    Heated, by Charles \(\dot{E}\). Lees, Broceedtngs of
```



```
2. The Calculabion of Temperature Stresses la Tubes,
```



```
3. Streagth of Matomicis a part IJs
    S. Thmonhenko, 2ad Edictong po: \(259=264\) 。
```

The heathag of Rages A and 3 above the aritical tempereture, bexpme quonehing: resulta tro the vaxy herd material mbioh la not matanabla a an objoctronable feature.

It woulc bo destrable to apply buch a heat treabment as would stress a ping or emoborrel. whthout produong any extorion hard layer.

Using the lonown mothod of therman absess calculations we shoula notice that by ratio: Dof $A=1.5$ (DO outside diamop $D_{j}=$ inside diano) and by coerniofent

m Pansemas revio.
E $=$ Modulus ot ebagtiohty.
G $=$ Coesturent on ampenss on.
the maximum hongential tomporature stress in a oytncom duo to the redral temporabure dinfegence wes pound wo be sh5 pounds per square tach per 1 degree Cortignede of redual tempereture differenge。

Mus figure glves an indicetion as to the xoquised temperabure differeace that would be required if the induction aubormetrage effect wore to be obtamod. (Thas doez not baus
(DAscussion of Results, conita) -
into socount the influence of a controction by rapid cooling.)
The kind of stress distribution produced by radiaj temperatuxe difference is shown in the followng tebles

Ktad of Strossos		Dhrection	P081610n
		of stresses	O2 8 tregges
Tangentiel.	:	Pension	Inside
Tengentis3	:	Compression	Ontside
	¢		
LongatudineI.	:	Tension	Inssde
Lomgstudinaz	:	Compresstion	Outside
Rediad	:		
	:	Tension	Tnsjde
			Outside

Tt mould appear then that the kind of strass diso txibuthon groducen by duscemonthal induction hoother will produce an outonvettage afocot.

The quantity ma size of samples aubortiod did not pemmit a standard residued gtress test. A subathtate ambio
 to this roport. (Sou Pages 17 to 29)。

The distribution and magritude of restdual stresses may be determanea by employnag methot whah lnvolves a machinine of layer afoen layex from ontsiog or from nnside of the mug and takame suftable measuroments atter removal of each layem.

It io frperathve bhat semphes shonda all be mschined before heatmbreatment to exactly the mano inalde and outside dametor dinemstons.

Because of the omplacotod noture and ospense of this test, ft might be userul to discuss the dinennsons ond. qualdty ot noceasemp smples whth the mader.

```
- Pege \(15=\)
```

(Discussion of Results, contrd) o

It maght be usefut to debomane the influence of the heat treatments outhined below on the distrdbuthon and Intensity of the restdual stresses:
A) To inductsuay neet a mage or section of a gum baxma to a suitoble toxporetwre and then cool ond an a quist ais or in an ain strean. It ha felt thet temperature diferentiel alonemfght be auffletont bo stross the ring and that sbsemses put into the tnex barvel materigh might not be relteved by conduetion heat. No outer hapdenod rone would be produred in thes method.
b) Most to a bemperature in the nelghooumhood ors ox above the castical and then cool alowly torough the oritical range, then quench. 7his should oksmingte nordened mataxisi pa . outside Iayers of the ring yet matntern a good gtrese conditiono
a) Completely heat-treet the rang berore lnduction hestinge then apply the frocuction hombing up to the netghbourhood of the eritheal temperature. This would avold the complete transo fommaton of outsicie layers of the ximg and oonsequenthy
 satistectory stress condithons.
d) To raise the tompersture difecence betwen outaide and Inside walls of the baxrel by employing the alxs eto.g ooofing of the inesdo well as the berred duning induction hoasing. By so domngs magnt bude of strese drioweadx h should be increesed.
e) Do detormine the maruence of drawing on readuay stresses dastrobuthon.
(Discussion of Results, contid)

It might bo dentroble to tako the axact dimanstome of inside and outstde diameter and longeh of a ging or gun
 heating (inside)s and aftom cooljag.

The selathons bebween these figurea may give to us some idea as to the kind and intensity ge strasses and the way to control them.

This method would appear to be worthy of furthern experimental test, which should ixvolve a thorough strady of residual stresses and metalhurgioal conshderethons.

000000000000

900000
00

TgV:CB.

558 Booth Stroot. otteva. ontario. Juy lith, 1940.

To: Brogedler Generai G. P. Mormenon, Director or Techmical Researchy Department of National Defence (Amyy).

Ro: Prellminary Report on Ringe from Gux Berrels produced by a New Method to Produce the nefect of Autorgetrege.

In compegtion with tas two yolngs which wo have feo celved from you fow testing, we wata like to knfom you that before starting the metellurghcel testa we performad, for experimental purposes, sone approximato tosting by simplified methods to determine a fev flgures of readual stresses in both rings (manked respectively \& and B).
fn order to obtain approximato figures of posiduad stressos whthout dostroying the metexolal thelf, that mage were divided and split. The ring A wes rirst divided lato two concentric rings, A-I faside riag, ond A-E outside ring. by a cut parallel to the axles of the rifug. The two zemgs A-1 and A-2 obtained in this way were atterwards split. Ring e was split only onee. The diametere of all ringe were measured before and after divadng by the Nationml Besearich Council Gage Laboratomg.

For approrimate calculathon of stressos fread by dividing xing a into $A-1$ and $A-2$, we may use the equation:

$$
t_{a}=\omega \mathrm{mb}
$$

where E is the modulus of elesticiby and of the change of dismeter.
We betas the folloming values fot t_{9} :

Afterwerds the rings A-1 and A-S were split and the values of the remainine residual streases in wo mey call them so, may be calculatea approrimately from the equation

$$
t_{0}=E x d \frac{D_{1}-D_{0}}{D_{1}} \cdot D_{0}
$$

where ofs the thickness of the ring, D_{0} mean diamater berome aplitting and D_{1} mema dameter arber splitting.

Wo obtelnod to velues of $+502010 / 80_{0} 1 n_{0}$ Tow the
 AG。

As previowaly mentuoned. Rhage 8 was solst onjy once through the whole thiolaness 10 order to consemve the metorial fox furtax metalluxghed tasta prom the difserence of axametrs of ring s before and aftex spitco ting. we heve
$-38,940$ 7b/sa.in. in the outgide Jayes of
the ing.

From the above approxhate sagured vinseh are rethex of guidaree yatue and ase glven for gour advence furometion, wo mey arppose thet the distribution on the resicual stresaes is, in this oase, rether complicated.

Whthout going into bay fuxthex ansiysis of the pesults obtained from thas eporoximate determination of stress values, we may in the present gtage ox this tost work gay that the inalds pert of the rang is under com= proselion from the ontside parto.

For accurete deformineton of xesiduel stresses segerate zings on the matoriai will be required fox ench stress tss

Wre shal gra you the remernimg detajla of stross testr and results of tegts on the materish of the two shmgg as aoon as bhey are completod.

We bave bhecked our equament fon pextormaneo of these testa and bope to be abte to meke ar arrangee ment with the National Researoh Gangy faboretorios for the necessery messuxoment.

Because of tho compltonted neture and expense of these bosta, 10 might be usptus to detarthine bhe dimenstons and quality of neeessary samples whta the naleex.

TW: SB
O. G. Pexsons, Chiex of DEvisyon.

COPY

552 Bocth Stremets Ottewe ontario. muly 13.3942.

 Director of rechatcol Regearoh. Dopto of Nathonal Defonce: Room 507, New post ortscy Buixadrgy ottawa, ontario.

Dars sin:
Further to our lotter of Jumy 11th, 1982, and using the observathons from our oxporimental steess tests. when pertoming the metalurgieal tests of the material fisels, we are giving bolow tha detafla of gring semples for a stross test:

For the deteminethon of the resphual stressos 13 the tangentsal arra radiad dajections, we would ling to heve for osoh kind of expersmentri beat treatment there ringes two dor the etrean tost and one tox the metalurgical teat. Theme rimge should be baken from the same forg ing piece and bo heatoreated together at the same the The machintng sad grinding of the mings ahow be within on moureoy or as neas as posso 1ble to one tencthouserdth of an trono The outside and daside gurdeces whould bo concontwie and oyt indren cal. Lately the roings delfvered have beon conloat on
 difficuld. The widht of each ring ahould be two laches.

Fos the detorminction of the strasces 4 m all theem dixections, thet is, longituchngl, tamgentict and zado Lal, it is necesaexy to keep, in tho preporedion of the samplo. the soms condjtions as staked betore. Fhe leagth of hase sumples ghould be thres thats the outside dianetero

We would lise to have with eagh ring, preferably attached theretos its fult chemical anatyans.

Yours vaxy ixuly

TWW:WF:

> Go So Pargoras
> Gnfet ot Duvision.

