$$
\begin{gathered}
\mathrm{R} \mathrm{E} \underline{\mathrm{P}} \mathrm{R} \mathrm{I} \\
0 \text { the }
\end{gathered}
$$

ORE DRESSING AND MEMAJIURUICAI IABORATORIES. Investrgation No. 1208。 V^{\prime}

Slnk-End-Fioat Tosts on Samples of
Nagresfte ore from Ganadian Refractoriee
Linuted, at Kilman. Quobec.
(Copy No. 19.)

bureau of mines division of metallic minerals

ORE DRESSING AND METATIURGICAI, LABORATORIES DEPARTMENT

OF
MINES AND RESOURCES
MINES AND GEOLOGY BRANCH

$$
\text { OTTAWA Apxil 146以 } 2042
$$

REPQRE
of the

ORE DRESSTNG AMD NEPALIURGIGAI LABORATORTES.

Truestrgetron No. 2202 .

Stmk mand-Fyoet Tests on semples of
Megnestite ore tron Canadian Fetreotorios Jimitod, et Kltmazs Quebec.

Shipment:

Two percels of ore each wolghing apparomately 8 tone, waxe pecetred on Fobruaxy 28 th, 2942 . The shapment was submitted by Jow。Onag, Manager of Developnent and Researoh, Ganadan Refractonies Timited, Canoca Cement Burdings Philispe Square, Montrealg Quebec.

Location or Properte:
The shipment come from toe companys property at MJmax about 40 ox 50 mines west of Montread quabeco

Ghargeber of the Semples:

The shament contanned bro samplos, one betag lowngrade cull rock froma surface dump, while the other
 mine Botr samples comteined megnesite, dolomite and sero peatine。 In the mine sample mageaite predoninates with dolomite and sexpentrine next in order of abundance, while in the sample of ount rock dolnot te is the most abundant mineral. Sollowed La ordex by magnesite and sespentins.

Sanpling anc asseging:
The samples xecolved wexe broken down to mixus

Siliceous 0xe	\square	28.18	6.42	1.58
$0 n 11$ rock	\cdots	18.02	7.34	1.48

Expesimented Tests:
Smand-acale sink-and-moat bests were conducted on a sample of cult rook from the Kilmar property of canadian Refractorieg himited in 1907 . The results of these tests ase contained in Report of Investhgation No. 1081. preperped in Septembex: 194t.

Theso pheliminary bests having show some proapeot of surcoss 1.6 mas decided to try largemgerse bests on a sample of culd rock as well as on a sample of siliceous ore from the mine.

These tests have comonstrated that the IMme and

```
- Page 3-
```

(Experinental Testa, contid) *
insoluble can be reduced to requared anounts in samples of
 tox use a past of the rock thet wond otherwine be westod.

The object ot the process as to xejoct a bigh Limes hagh sfinea frectaon of tha oze at a coasiac size, by makimg a density seperetion za a beth of subgtantielly stable galenemwarr suspensfon whomela the heayser magneslbe mfrerals sink to the bottom while the dolomite and serpentine Sloat.

Motorian finer than 8 mesh can never be treated by this process under ary enremstance and for any given ore the Iower atze Inmitmay be even coersex. Preliminamy tests Indicated 3 mesin as the lowax shae limit for this ore while the appex eire lifnt was set at 1.5 inches wathout any ind o cation thet the moximum size hed yet been reached.

The medtum used 10 , the amallascele tosts was the same as that usod in the plant feats and its density ona be controlled bo an acousacy of O.OL.

The teats will be descnibed fn devait as fodlows.
 of this peport while the plent tests will consibute pert II

PABM ${ }^{2}$

The samples reeelved wene crushed to minus 2.5 inch and sampled in a sempling plent. The semples were screened on
 then quarteped and a head sample made up fox assay. Density separations weme made on another set of quartors excluding
$\left(\operatorname{pant} I_{2} \operatorname{cont} d\right)-$
the minus $\frac{7}{4}$ moh maberial, this lower size limit having already been determined in the original testing. This procedure was followed on both samples.

A soxtes on density separations was made on each samples, starting at 2.775 . The meterial hoavier than 2.775 was rotreated at 2.80, yielding an intemmediate fraction and a sink what was again xetreated until a raxtmum seperating density of 2.85 had been reached.

The results of the sizeodensity anelyses are Iaid dom in the rollowing tables:
(Sizewdensity Ans]ysis fox Magnesfite ore tollows on next page)

SIZE-DENSITY AHALESIS YOR MACNESTME ORE.

64 9 0 1	DETSE EME Priong	$-\frac{3.2 x+\frac{1}{4}}{4}$									$-\frac{1}{2} \frac{1}{2}^{2}+22_{4}$			Total		
		\% Size Prac Sion	$\begin{gathered} \% \\ S . F \\ \text { Seed } \end{gathered}$		\% SE\% fracm tion	$\%$ $S . F$ feed		\% size frac- cion	$\begin{gathered} \% \\ \text { SoF。 } \\ \text { Seed } \\ \hline \end{gathered}$		$\begin{aligned} & \text { Size } \\ & \text { Srac- } \\ & \text { tion } \\ & \hline \end{aligned}$		$\begin{gathered} \% \\ S . W \\ \text { feed } \\ \hline \end{gathered}$	$\begin{aligned} & \text { size } \\ & \text { Sizec- } \\ & \text { cion } \\ & \hline \end{aligned}$	$\%$ S. . reed	
	F502t 0.775	31.36	14.93		18.59	4.93		14.68	3 2.79		17.43		1.21	23.86	-23.85	
	P2oate $2.80 ;$ sink 2.775	8.86	4.22		10.57	72.80		9.08	81.72		6.09		0.42	9.16	$6 \quad 9.16$	
	Fiost e 2.825; sink ec 2.80	7.64	3.64		8.10	2.15		6.29	91.19		7.58		0.52	7.50	7 7,50	
	Fioctezase sink 2.825	12.01	5.72		15.40	4.08		14.49	92.75		13.52		0.93	13.48	813.48	
	Stine 2.85	480.13	19.11		47.34	12.54		55.46	6 10.52		55.38		3.83	46.00	-86.01	
	Tomat	G00,00	47.62		100.00	26.50		100.00	38.97		100.00		6.91	1100.00	100.00	
		Asseys,pes cent			\qquad per cent			hssays. pex cent			$\begin{aligned} & \text { Assays } \\ & \text { per cent } \end{aligned}$			$\begin{aligned} & \text { Mssays } \\ & \text { per cent } \end{aligned}$		
		CaO insokitaO3			630 \%	TaschoiR2O3		Ceo insout		R203	CaO HInsol. $\mathrm{R}_{2} 031$			680	T2801. 2203	
O	F10at @ 2.775	110.42	21.00	-	12.48	21.26	$=$	13.64	17.60	-	14.35	14.66	6	13.78	16. 80	-
Ell	Float e 2.60: sink @ 2.775	129.02	6.60	0.80	18.52	12.44	12.60	18.82	6.70	12.14	14.83	5.64	41.10	16.97	7.29	1.28
$9 \text { an }$	Fiost $2.825 ;$ sink 2.80	13.7018	18.10	2.46	18.65	9.00	1.88	17.64	6.56	1.82	14.45	5.64	41.22	25.98	7.24	1. 46
$\text { - } 3$	Flogt @ 2.85; sink @ 2.825	15.68	4.72	1.00	26.19	3.56	0.96	16.27	3.76	12.24	12.48	2.82	20.88	14.61	3.39	0.38
Bl	Sink © 2.825	9.45	I. 69	0.82	10.88	2.92	0.78	9.90	1.92	0.74	9.86	1.78	810.80	10.07	1. 84	0.78

(Part I, $\left.\operatorname{cont}{ }^{\mathrm{D}} \mathrm{d}\right)-$

It will be roted that the table ahows no indication that the upper shge-limit has been reached. In fect, the courser sifes nhow a higher recovery in the sink them do the finer siges with a product of gqualy hegh grede.

The following table hes been prepered by reducing the size density anelysig to ammples fomm and including the minus 3 mesh fines in the proper proporthon. The vaxions density ixeotions listed in this thole ere the averege of all the afzerpractons listod in the sizenchent ty bable cox the corresponding seperating densithes. The table shows the net result of pach suceegstre separetion at a higher density,

Ascuring that the minus 3 mesh fines are to bo

 pejectod as meste along with we whost recomeries in the sink paoduete that mond be obtained by agparating at ach of the above denstties, anc the comeapondme assays. axe as follows:(Part I cont: d)

When mimus 3 mesin fines axe comblned with bhe arnk
as Panal product, recoveries are as follows:

Separating	:	. $40 . \mathrm{gbt}$	Assays ox $3 \mathrm{lak}(\mathrm{cal})_{2}$		(calolo
	:	pex cont	: jex eent		
	:			\%	
2.775	:	80.96	$\therefore 22.07$	4.34	: 2.18
2.80	:	75.64	- 12.02	4.05	$: 1.13$
8.825	:	67.69	$: 11.67$: 3.76	$\because 1.10$
2.85	:	56.83	- 11. 12	3.83	: 1.012
\% ${ }_{\text {B }}$					

(SIZEODRNSTMY ANASYSLS FOR MAGNESTME

OULT ROGK FOLLOUS ON NEXT PAGR).

SIZE-DENSITY AMALYSIS FOR MAGNESTEE CULT ROCK.

(Part Is cont ${ }^{9}$ d) -

Here, againg there is no indication that the upper aize limit has been meached and the cogrsex gizeg give a higher recovery fin the sink than the finer siges wade the grede of product is oqualjy good.

Density Analysis on Guzl Rock.

Recoveries in sink produced at vexious demsties, with corresponding asgays, axe as rollows:

PART IX。

The mall =soale tests having inddeated the
possibility of beneficietme the oro by the simknonderioat proosse, f t was decided to try lergemane tests on a tonege basis uning a semb-commeroial-sios unft.
plant teste were conducted on both one and and rock. In asch case the ore was ped to the separator at the rete of 9200 pounds per hour whlle sseay acmples wede cut Xrom the read and products at regular fatervals during the pertod of opexation. The gize renge of the reed was ninus 1竞 Lnches plus inesh and the fact that the samples out out were amell regethons of the product belng nampled, whexead considesing the stre of product a large fracthon abould have been taken, may account fox diacrepancles between the actual sink eanderiont reed sample assays and the assays odoulsted from the products.

The fixst plent test on the ore was caxried out at a separating density of 2.826 with the idea in mind or producing a sink product at or near 3.00 per cent insoluble. In thas ceste the Ime In the sink product wes expected to be somewhat high but this was to be adjusted by mixing with
 the circult are as follows:

Faed	-	2.821
Weix	$=$	2.855
Boon	$=$	2.777

(Conthuned on next pege)
(Part ITs contra) -

Sumagies of Regutbs:

Wolr and sink combined as Final Product.

	:	-	:	:	:	
Weis	:	13.86:13.85:	3.50:0.90	: $15.25:$	7.37%	8.11
stuk @ 2.825	:	47.06:34.32:	9.56:0,94	42.31 :	18.51:	28.78
	:	\bigcirc	-	$\stackrel{5}{\square}$:	
	:	:	3 ${ }^{3}$	$8{ }^{5}$	®	
Recovery	:	60.92:11.90:	2.77:0.93	57.56:	25.68:	36.89
	:	\therefore -	-	:	:	

Melr, SInk and Ftres Conbined es Final Product.

Sink and Fines Gombined as Final Product.

The ronegotng smmantes show that the sink and wesp products may be combined and still heep below the Ifmat on 3.00 por cent insoluble but alt of the fines cannot be tneluded mithout excoediag it by a constdegable masern.

It would, however, be possible to add a part of the
fines to the athk and weix products and after hreatment on a table to remove some insoluble tt maght be posefble to use a
(Paxt IT, cont:d) $=$
considerable fraction of the ennes.
The matter of reduotrg the insoluble combent of
the fines by treabment on thbles will be gamined in due course.

The next tegt on the ore wes conduoted at a separating dencity of 2.85 , with the lea fin mind of reducing the λ ine content in the sink fo $16 s$ then 10 pex cont.

Avexage denstess ta the olrcudt were as follows:

```
meod - 2.85e
Wetx = 2.870
B00m = 2.825
```

The medtum was ongeuleted at the rate of 9.25
gallons pex minute.
Sumagy of results:

Welx and sink products Combened as Elad procuct.

	:		\because	\%	\%	$\stackrel{*}{*}$	
Weis	:	1]. 4	$: 10.95 \%$	2.90:2. $20:$	70.36: 3.93	*	8.13
Gfnk $¢ 2.06$:	3, ${ }_{3}$, 8	$: 9.68:$	2.84:2.048	27.00:13.04	:	22.79
	\%		$\stackrel{\circ}{8}$	\%	吕	$\stackrel{ }{8}$	
	:		:	\%	-	\%	
Recovery		45.5	$: 9.06:$	$2.11: 3.06:$	37.36.79.97	:	30.92
-				: ${ }^{\text {? }}$	¿	$\stackrel{\square}{8}$	cmataneran

While the sink product la well below 10 per cent in lime the welr and sink produots comblned ape stily jugt below this limit, with 45 per cont on the ore in the form of a
(paxt IT, conts $)=$
asable product.
These two teats, along with the sdzemensity analysts, matcete the possiblitthes of produclug a wide renge of producte simply by albering the separating denstby. They definitely show thet the ore can be benetionated by this process.

A test was condueted on the sample of culd rook with the idea in mind of producing a sink produce that would assay about 3.00 pes ceat insoluble. Tho sopaxathon was made at 2.80 , the small weale tests having indicatod thes to be the propor density.

Average densitige in the olroutt wese as follows
Feed $=2.814$
We.s
Boora $=2.844$
2.779

The medium wes alroulebed at the rate of 9.5 gallons pex minute during pert of this test but was reduced to 7,25 gellons ger minute by reduchng the head fu the gtabo flymer tank from 12 mones to 9 snches.

Summary of Results:
Segaraging Cult Roct at 2.80 .

Product						
м						
ginkmandoflost foed	79.92	3405]: 9.08	:1. 28	: 3		
Flogt@2.80	35.10	14.9.96:13.70	$: 2.46$	- 37.80:	59. 15 \%	56.09
Welt product.	8.85	15.92:3.66	:0.92	$\therefore 1.0 .23:$	3.90	5.29
Finmes -3 mesh	: 20.09	114.30:9.66	2.42	: 20.86:	23.87	18.53
Sink @ ¢ 80	35.96	.11.88: 2.04	$\because 0.86$: 31.03:	13.00	20.09
	:	$\square \quad$ b	-	\bigcirc		
Ore somple (cat.)	$: 100.00$	$\therefore 13.77: 8.13$	$: 1.54$	$: 100.00$	100.0	00.00
Wels and sink Products Combined as pinat Product.						
Wein	$: 8.85: 15.92: 3.66: 0.90: 10.23: 3.98: 5.29$					
Sink@ 2.80	$: 35.96$	22.888 .2 .94	:0.96	$\bigcirc 10.23:$	$\begin{array}{r} 3.98: \\ 2.00: \end{array}$	$\begin{array}{r} 5.29 \\ 20.09 \end{array}$
Recoresy	$\therefore 44.81: 12.68: 3.08: 0.87: 41.26: 16: 93: 25.38$					

(Paxt IIs contid) -
by this process. from 36 to 45 per cent of the rock being obtained as a vabie product.

GONCLUSTONS:

The reaults of the foxegoing tests show that this ore an be benericiated by the sinkuadmfloet process. That the insoluble is more efficientiy eliminated than the Line is due to the fact that the serpentine occurs in rore massive form than the dolomite and also has a lowex specific gravity.

The sample of mine ore can be treated at a density of' 2.825 or thereabouts. yielaiag more than 60 per cent of the rock as a product assaying about 12.0 pex cent 3 man and less than 3.0 per aent insoluble. Such a product can be adapted to use in thes form or mixed with lowmime rock for a product calting rox more axabting specifications.

By separating at a still higher density, the lime cen be brought dow below 10 per cont and the insoluble below 2 pex oent. Under these conditions. from 35 to 45 per cent of the ors wonld be recovered as a usefol product.

In the case of the cull rools, recoveries would be sonewhat lower owing to the bigher serpentine and, tolonite contents. Nevertheless a product of such grade as can be adapted to use can be obtainod.
mats process, if used, would make possible the mining of ore bodias herotofore conaidered to be of no walue owing to theix high dolomte and serpentine contents.

