

0 TTA WA october 25th 1841.

## HEPORT of the

ORE DRESSTNG AND METATLURGICAL LABORATORIES.

Investigation No. 1110 .

Sinkondoploat Tests on \& Smple of Lead-Zinc Ore from the Bluobell Mino at Riondel, British Columbis.

MINES AND RESOURCES
MINES AND GEOLOCY BRANCH

```
OT TA WA October 25th. 2941.
```

REPORT of the

ORE DRESSING AND METALLURGICAL LABORATORTES

Investigation No. 1110 .

> Sink-and-ploat Tests on a Sample of Lead-Zinc Ore from the Bluebell Mine at Riondel. British Columbia.

## 

Shipment:
Two sacks of ore, net weight 214 pounds, were recelved on June 24th, 1941. The shipment was submitted by the late C.T. Oughtred, succoodod by S。Gray, Superintendent of Outside Millss The Consolidated Mining and Smelting Company of Canada, Limited, Sullivan Concentration, Chapman Camp, British Columbia.

## Locedon of property:

The propervy from which this ore 1a baken is Hocated at Riondelg on the shote of koobenay heine in the Aingwosth mining division of Britiob Columbie.

## Gharader of the ore:

gix polished sections were ypopared and omentined microscopically for the purpose of detexwining the character of the ore.

Cexages -
The gamgin conetsts of minmy whito to clear ghassy
 tagnsected by naxpow etmoun fracbuxem.

Metel29e Minezals -



 Antimatoly adnixed. A ahorit deseripthon of thelx modes or oceurgence follows

Exprhotibe
Laxgeig massive nad, In four sectione forms the matrux throughout wind rhe othons axe seattered. a gmall
 gangue, ohal copyritas and shatorite.

Sphatexite。
Whe butw of the sphalerite 1 perosent as small megses and coaxa ixpegater grafna in gangue and fn pyrgho-

 of gangue mad grasus of the othex sunphades, particuiasity
(Oharacter of the ore oomta) =
(ghbaleritoo ocatid) =
 In soms places.

Galane.
 but not so moh of this mungre is dintributed in bhe fyms aines. AIso, it is compsotivedy free or inclumhons.

Expite.
Lorgehy as mand granuan potches and voina whaten rowify through masulye pyrmotite; also wheible as raxxom rims along tho edges of sons pymyoti be and sxacnopysite grains.

Ohalcogrefte.
Oocassonel, madiun to smain, ixxogular gradins in gengua and in byxmhotite as woll as biny blens in sphanerdies alrosdy monthonod. whe greator porthon of tura minexal.
 mumorous inclusions of gyruotite, pyrite, sphalentte ano genguo

## Asemopyef be

Smald amount as an oceastonal. modfun to combos 3solated cyystel or group of crystals soattered through the othox sulphides.

 but fa alao visible as nextow ring along the odges of some sul phains.
(Character of the ore, contrd) $=$

Marcesite.
A vory manl guantity as nawrow, soatherys sompacemont vehalets in pyphothe。

The sample subutited wes highly axidsed. probaly as a posnith of surface weathering and containod 52 pounds of material fines than 8 meah. mos matomal fat too fine to bo treated by the shmbexadoploat process and the abnomaliy high amont is balieved to be due to the orgdiged condition of the ore.

The semple contained 76 pound of rock coarsex
 was emahed twough one inch and produced nn additzonal 9 pounds of material finer then 6 mosh.

## Sampline and Absaytig:

owng to the neture of the test to be conducted. which requires a coorse probucts no ossay sample was cut from the ahspmont.

Fiead smple assays azanked srox the producta of a tomb ara as follows:


## EXPERIMENTAL TESTS:

The ore, crushed and screened to a sizearange of minus 1 inch plus 8 mesh, was divided into four approximately equal parts by coning and quartering. on one of these quarters a sizemensity analysis was made, as follows:

The sample of ore was fractionated on a series of screens at $1 / 8-1 n c h$ intervals starting with $7 / 8-1 n c h$ and going down to $3 / 8$-inchosized openings, the inest fraction being minus $3 / 8$ inch plus 8 mesh. This fraction was separated in bulk and the products re-screened on $3 \mathrm{co}, 4 \mathrm{a}$, and 6 -mesh screens.

Density separations were made on each of these fractions, es follows:

The first separation was made using a medium density of 2.775 , giving a "fioat"and a "sink" product. The float was assayed while the ifirst sink was retreated at a higher density, in this case 2.85 , to' give an intemediate product and a final sink product.

According to its value as determined by assay the intermediate product may be directed efther into the sink or into the flont by altering the density of the separating medium. The medium density at which the first separation is to be made in a slze-density analysis must be determined by:
(Experinental Tests, contid) -
(1) Knonledge gatned by visual exemination of the meterials to be sepenated.
(2) The method of tesel and error supplemented by viaued examination of the producta obtained.

The actued weights and ansate of a completed sizemdenalty analysis axe then used to detemine both the gise ronge anci the medium density which seem bost suited to the ore and at which fusther confimetory tests should be eamped out.

Donsity soparations afe made undan atetro condtitons in betch of substantionty qtable gatena medivan.

The medium is a cusponsion of itne galene and metor and tita dengity can be controlled to an scouracy of 0.01 by altering the proportions of gatene and water.

The meduun is the abme ss would be used in a largenscale plant test.

The zosults of the sisemdensity analysis are Lata cown in the followng bekze:

|  |
| :---: |
|  |  |
|  |  |

## (S.E. Trest Mo. 29 - Elwebell



SIZE DENSITY ANMEYSES.

(Exporimeatal Tests, contia) m

At finst sight the figures contained in this teble indicate that best rosult whil be obtained under the fol. lowing conditions:
(1) Density of sopexeting modium should be in the neighbownood of 2.80 and certainly less then 8.86 .
(2) Jpper gize limit of feed to sink-andinfloat process shonld be minus $7 / 8$ jnch, since elimination falls off sherply in the one coarser size troated.
(3) The Jowor sise Ifmit may be plus $3 / 8$ inchs ginoe all rejocts betow this size are too rioh in zino to be discarded. At this point, however, it should be recalled that evenything in the size range - $3 / 8$ moh +8 mesh was sexarated in butis the products belng sereened later.

Separeting conditions may not have been ideal
under these ofrounstances, owing to the possibility of matexial that should gink becoming mechantealy ontangled with fine float matorid spaead over the surface of the medium and thus being prevented from sinkingo

Calculations mede from the figures fin the gizemdeneity malysis ohow that if sinkwandrhoat feed is Inmted to the sige range wi/8 inch $+5 / 8$ inch nearly 60 per cent of the oxe would be fines untreatable by sink andofloats and that treatment of the romaining 40 pex cent would result in the elimmation of about 11 per eent of the total one. This would be dectodiy unattractive.

It was therefore decided to try a bulk separation on the fuld size ronge of a sample of ore crushed through 7/8 inch with the minus t mesh material screened out, with the jdea in mind that there would be less chance ot fine sink materdal becoming mechanically entangled with float materiad when coarse and fine ores were being fed to
(Experimontat Tests, contid) =
the proeoss simultemeonsly and that thoretome the sige range of feed to the proegna might be extended below 3fs inch.

The resulta of this teat show that white some Improvement vas noted sn the grade of the fine size rejecti In the bulk separation as compared with the size-density analysig, the fine rejecta still asbay too high in rinc to be as sanded.

Owing to the oxddiged condition of the ore the products of this tost were assayed for total zino and oridiged zinc to find out if any appreaiable quentity of tho aine in the reject ves oxidised and so not recoverable by subsequent flotation phe assayg showed, however. thot only an insigniftcant quantety of the zino was an this form。

The resulta of this tost are given in the Tollowing tablo:

| product | ```% Werght. pex % cent``` |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  | : | $8(60 t a)$ | \% $\quad$ oxidser | - |
|  | : |  |  |  |  |  |
| -4. mesh finnes | ? | 44087 | 13.54 | 8.72 | 0.41 | 2.68 |
|  | 4 |  |  |  |  |  |
| cos/ $0^{3}+4$ mosm | 8 | 4.72 | 0.838 | 2.30 | 0.20 | 0.30 |
| Foat 98.80 | : |  |  |  |  |  |
| $57 / 8^{31}+3 / 8^{17}$ | : | 11.64 | 0.80 | 0.65 | 0.70 | 0.72 |
|  | * |  |  |  |  |  |
| - $3 / 8^{81}+4$ mesh | : | 9.96 | 8.90 | 9.34 | 0.85 | 2.36 |
| $\begin{array}{r} 3 \operatorname{mk}(9,80 \\ 97 / 8^{18}+3 / 8^{n 7} \end{array}$ | : | 29.43 | 8.83 | 9.34 | 0.30 | 2.05 |
|  |  |  |  |  |  |  |
| Feod (cato) |  | 100.00 | 8.75 | 7.68 | 0.32 | 2.05 |

(combinved on next pege)
(Bxperimented Tests, cont ${ }^{9}$ ) $=$

It Is ariont hat tho tiner frection of tho yojact 18 too highegredo in winc to be gejocted ond thia meams the the fiege to the shaternd-phot. process will be


on thes besta the followine tables bave bean comp13. ${ }^{\text {a }}$

TBble To Distrobution os Products ryon Orushing.

| Eroduot |  |  |  | D1a6xibublon. |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\therefore$ pex | Rex cont ${ }^{\circ}$ | Ag |  | per ${ }^{2}$ |  |
|  |  |  |  |  |  |  |
| Somofeed | $: 41.05$ | 6.66: 6.88 | 1.58 | ${ }^{3} 37.248$ | $36.78:$ | 31.25 |
|  | $: 58.95$ | 10,20: 8,23: | 2.39 | -68.76: | 63.22 | 68.75 |
|  | $\bigcirc$ | $\bigcirc$ |  |  |  |  |
| Feed gamplo (calo) | $\because 800800^{\circ} \mathrm{B}$ \% |  |  |  |  |  |
|  | :100.00:8.75:7.67: |  | 2.05 | :100,00: | 100.00: | 1.00.00 |
|  |  | $\stackrel{\text { : }}{8}$ |  |  |  | 5ams |





(xaperimemtal Tests, ont ${ }^{\prime}$ ) mo


16etsi recovery:

| Vexy: |  | - (Par come $)=$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | cesd | Zinc | St1vox |
| From S. Foseed | $\cdots$ | 90.35 | 97.38 | 97.88 |
| From whote ore | $\cdots$ | 99.73 | 98.02 | 99.32 |

## Conclusions:

Whe semple submitttod appeares to be unguitcble for comeentration by the strkmandmiont propess, for tho followfing reasons:
I. The oxidired condition of the sample is responsible for an abnommaly high omount of fines which canot be treated by the process under any cireunstances. When the ore Is erushed through $7 / 8$ snoh. about 36 per cent of it is aunex than 8 mesh.
E. Oming to the dissomintted charecter of the ore parthoulary with segpeat to the sphalexites tha hower siza dimit of ore treatable by the process 3.3 red sed from 8 mesh to $3 / 8$ snohs 1earing nearly 60 per cent of it as untreatable fineso The beheviour of the galena is moxe favourable than that of the sphadonite
3. The ose hes a bigh iron content. oherly as messeve pyrohotite and Ifmontte, which esmat be eliminatod by thas process and thts sa responsible Pos the how eliminetion on the fraction breeted and for the low-grade conosotrate produced.

Jes in these rempeots, the semple submitbed is represpabative of the ore to be treatea, thes process will not be at all suitable.

