OTTAWA November 20th, 1940.

$\frac{R E P O R T}{of the}$

ORE DRESSING AND METALLURGICAL LABORATORIES.

Investigation No. 920.

Sink-and-Float Tests on a Sample of Gold-Silver-Copper Ore from Telkwa, British Columbia.

> eleventerson verve (2000 moves toda) ellera valast valib stoch intellerene statte (2000 moves toda)

S. R. M. P. P. Sold P. Stille

BUREAU OF MINES DIVISION OF METALLIC MINERALS ORE DRESSING AND METAILURGICAL LABORATORIES

DEPARTMENT OF MINES AND RESOURCES MINES AND GEOLOGY BRANCH

OTTAWA November 20th, 1940.

REPORT

of the

ORE DRESSING AND METALLURGICAL LABORATORIES.

Investigation No. 920.

Sink-and-Float Tests on a Sample of Gold-Silver-Copper Ore from Telkwa, British Columbia.

Shipment:

Two sacks of ore, net weight 123 pounds, were received on September 24th, 1940. The shipment was submitted by G. F. MacDonnell, Conwest Exploration Company Limited, Royal Bank Building, Vancouver, British Columbia. - Page 2 -

Location of Property:

This ore was taken from the Hunter Basin property of Conwest Exploration Company Limited, near Telkwa, British Columbia.

Character of the Ore:

Six polished sections were prepared and examined under the reflecting microscope for the purpose of determining the character of the ore.

Cangue -

In the polished sections gangue forms the minor portion of the mineral content, and consists of milky-white quartz and soft, dark-grey rock material. The latter appears to be dolomitic in character.

Metallic Minerals -

In order of decreasing abundance the metallic minerals present in the sections are: chalcopyrite, bornite, magnetite, hematite, and mineral "Y". All are very intimately admixed with the copper minerals preponderating.

<u>Chalcopyrite</u>. Massive chalcopyrite is abundant; a minor amount is present also as coarse to fine disseminated grains with the coarser sizes predominating. It is intimately contaminated with stringers and inclusions of gangue as well as inclusions of the other metallics.

Bornite has the same modes of occurrence and contains the same inclusions as chalcopyrite. In places rods and blebs of chalcopyrite are oriented along crystallographic

- Page 3 -

directions in bornite. These inclusions are also distributed at random in the host.

<u>Magnetite</u> is prevalent as disseminated grains and small masses which, in places, are extensively impregnated with gangue. It also contains numerous inclusions of hematite and of the copper minerals.

Hematite is present in small amount, largely as tiny irregular grains in magnetite.

<u>Mineral "Y"</u>. Rare tiny inclusions of an anisotropic, galena white, unknown mineral are visible in chalcopyrite and bornite. Due to their small size all standard tests were unsatisfactory and the mineral could not be identified.

An isolated specimen of massive galena and sphalerite was also found in the ore sample.

Sampling and Assaying:

Owing to the coarse size at which the tests are run and the small weight of the sample, a head sample could not be obtained. The heads as calculated from the products were as follows:

> Gold - 0.725 oz./ton Silver - 9.58 " Copper - 12.78 per cent.

Experimental Tests:

The ore was to be tested as to its suitability for treatment by the Huntington-Heberlein sink-and-float process. The object of such treatment would be to raise the grade of ore shipped to smelter by elimination from run-of-mine ore of a low-grade fraction which would not be

- Page 4 -

(Experimental Tests, cont'd) -

economic to ship. Having regard to the returning charges in force, such low-grade fraction would be of high enough grade for flotation feed, but this aspect was not considered in the present examination.

Examination was carried out by "bucket tests". These are small-scale density separations carried out under static conditions using as separating medium the substantially stable fine galena-water suspension employed in the Huntington-Heberlein sink-and-float plant. The effective density of separation is altered by control of the water/solid ratio of the suspension.

The "bucket tests" demonstate the suitability, or otherwise, of this process for treating the ore. If affirmative they determine

- (a) the optimum conditions as to size range of ore and density of medium for plant operation; and
- (b) the metallurgical results which may be anticipated for plant operation.

Preliminary Tests:

A. Preliminary work established that the percentage elimination falls off rapidly for sizes coarser than $\frac{3}{4}$ inch and that a modium density of at least 2.85 can be used.

<u>B.</u> A portion of the ore was accordingly crushed to $-\frac{3}{4}$ ", the fines (-8 mesh) screened out, and the $-\frac{5}{4}$ "+8 mesh fraction subjected to a size-density analysis. In this analysis the sample is divided into a number of density

- Page 5 -

(Preliminary Tests, cont'd) -

fractions (by separating at successively higher densities) and each density fraction is further subdivided by sizing. All fractions are then weighed and assayed.

A study of the results so obtained discloses the limits as to size range and medium density which would result in the production of a 'float' which could be economically rejected.

The results are tabulated in the Size-Density Analysis table shown on Page 7. From these it is concluded that

(a) the ore size range to be treated should be $-\frac{3}{4}$ "+ $\frac{1}{4}$ ", and

(b) optimum density for the separating medium should be 2.90.

Final Test:

On separating a portion of the sample under the determined conditions, the results obtained were those shown in the following tabulations designated as Tables I, II, and III.

The procedure was

- (1) crush to $-\frac{3}{4}$,
- (2) screen on $\frac{1}{4}$ ", and
- (3) separate the $-\frac{5}{4}$ " + $\frac{1}{4}$ " fraction in
 - galena medium of density 2.90.

Table I.

Distrib	ution of	Produc	ets from	1 Crush	ning.			
:Weight,:		Assays			: Distribution,			
Product : per :		Oz./ton : Cu,			: per cent			
000007330036380374022294933444833384860404449030	: cent	Au	Ag :	%	Au	: Ag	Cu	
S. F. feed	70.03	0.62	8.50	11.51	59.69	62.14	63.05	
Fines	29.97	0.97	12.11	15.76	40.31	37.86	36.95	
Feed sample	100.00	0.725	9.58	12.78	100.00	100.00	100.00	

(Final Test, cont'd) -

Table II.

	Distributi	on of	Product	ts from	Sink-an	d-Float Se	paration.
Draduat	:Weight,	: A:	ssays	- Cha	: Dist	ribution,	
Product	: cent	: 02 : Au	: Ag	· %	: Au	: Ag	: Cu
S. F. conc. S. F. tailin S. F. feed	69.30 30.70 100.00	0.84 0.12 0.62	11.45 1.85 8.50	15.57 2.34 11.51	94.22 5.78 100.00	93.31 6.69 100.00	93.77 6.23 100.00

Table III.

No sector from \$200.001 Noted Strates as Appendix 1 1998	Summary of	Produc	ets fro	om Whole	Treatme	nt.	CTTTTT ADDRESS OF CONTRACTOR OF CONTRACTOR
S.F. conc. Fines	: 48.53 : 29.97	0.84	11.45 12.11	15.57 15.76	56.24 40.31	57.98 37.86	59 .12 36.95
Prod. for shipping S.F.tailing Feed sample (cal.)	78.50 21.50 100.00	0.89 0.12 0.725	11.70 1.85 9.58	15.64 2.34 12.78	96.55 3.45 100.00	95.84 4.16 100.00	96.07 3.93 100.00

Summary of Results:

Metal recovery from S.F. feed =

Proportion of ore to be crushed = 36.70 " " available for S.F. feed = 70.03 " " for shipment = 78.50

Per cont

Cu

Ag

	Au, oz./tor	Ag, oz./ton	Cu,
Assay of ore received	- 0.725	9.58	12.78
" " S.F. feed :		8.50	11.51
" " " tailings produced	d('float') = 0.12	1.85	2.34
" " concentrates "	(!sink!) = 0.84	11.45	15.57
" " product for shipment :	0.89	11.70	15.64
Elimination (by weight) of S.F.	feed =	30.70 per	cent.
" (" ") of whole	ore =	21.50	80

					92026%	93.01%	90.11%
Metal recove	ry from	whole	ore.	-	96.55%	95.84%	96.07%
	0				Environment was been after the terrary of ter	Reserves at SHIP Internet Music Party of the	
			ner fra en el la stata analdere autoris. Nel la stata de la della servata el serv			a de la companya de La companya de la comp	

Au

(Size-Density Analysis Table is on next page)

SIZG-DENSICY ANALYSIS TADULATION.									
Size Fractions	; ⇔6∻8ा	; -6+8 mesh : -4+6 mesh			: -3+4	mesh :	-2"+3 mesh		
	Weight 1	Propins.	: Weight	Propins.	: Weight	Propins. :	Jeight	: Propins.	
DENSITY	5 10	2 %	: %	÷ /0	s 0/ 10	° /2	01	\$ [] \$]0	
FRACTIONS	: Size	S.F.	: SÍZO	: S.F.	; size	: S.F.	size	: S.F.	
	: frac-	: feed	: frac-	: feed	: frac-	: feed :	frac-	: feed	
	: tion	2	: tion	ç	: tion	к с	tion	0	
			<pre>{</pre>						
Floatat 2.85	: 50.9	2.45	30.8	1.35	34.8	2.60	21.6	18.00	
	c e								
Floatat 2.90	0 9								
Sink at 2.85	: 22.0	1.06	21.7	0.95	13.2	0.99	9.1	7,58	
	<i>0</i>								
Sinket 2.90	: 27.1	1.31	47.5	2.08	52.0	3.88	69.3	57.75	
	C analysis and a second					an da an			
Total	:100.0	4.82	100.0	4.38	100.0	7.47	100.0	83,33	
	5								
⋎⋻⋣⋰⋜⋹⋎⋳⋎⋳⋳⋳⋳⋳⋳∊⋺∊⋺⋺⋺⋹⋺⋼⋳⋹⋳⋳⋳⋎⋺⋾⋺⋹⋹⋳⋴⋎⋺⋎⋗⋎⋳∊∊⋳⋎⋳⋎⋽⋳∊∊∊⋳⋎⋳⋺⋳⋹⋹∊∊	, ac.		Agen		E C	390779	Δ <u>ς</u> ς	avra	
	ADD	aya 	ADDC	<u>y a</u>	1	513CL y 53	F. C C	, y w 	
and a second	: Cu, :	Oz./ton	Cu, : 0	z./ton	; Cu, :_	Oz./ton	Cup	: 0z./ton	
	: % :	Au: Ag	% : A	u: Ag	1 % : 1	u: Ag	5	: Au : Ag	
Float at 2.85	: 9.01 0	.36 6.93	6.23 0.	22 4.74	4.24 0.	57 3.33	1.89	0.06 1.35	
Float at 2,90	c a								
Sink at 2.85	:13.91 1	.77 10.90	10.57 0.	49 6.83	8.45 0.	.38 5.34	3.55	0,25 3.05	
Sink at 2.90	:24.14 0	.835 21.15	22.51 0.	35 20,07	22.20 2	.21 17.37	15.57	0.84 11.45	
	0								

1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1

.

«·· ·

Size-Density Analysis Tabulation

ĝ

❤, '

- Page 8 -

Conclusions:

It is concluded that, for the purpose required, sink-and-float treatment by the Huntington-Heberlein process is suitable.

On a basis of the sample submitted it is possible to eliminate 21.5 per cent by weight of the whole ore as a low-grade product, assaying 0.12 ounce gold and 1.85 ounces silver per ton and 2.34 per cent copper, which would be uneconomic to ship to the smelter.

This can be effected by treating 70 per cent of the ore after crushing to $-\frac{3}{4}$ ", namely the $-\frac{5}{4}$ "+ $\frac{1}{4}$ " fraction, at a density of 2.90.

Under these conditions the product for shipment assays 0.89 ounce gold and 11.70 ounces silver per ton and 15.64 per cent copper, and the recoveries are: gold, 96.55 per cent; silver, 95.84 per cent; and copper, 96.07 per cent.

It is recommended that a representative sample of six to eight tons be submitted for confirmatory plant tests.

> 00000000000 000000 00

JDJ (HWH) : PES.