

$$
0 \text { I } \mathrm{I} \text { A } W \text { A June } 5 \text { th. } 2940 .
$$

$$
\underline{E P} \underset{\text { of the }}{\underline{E} \underline{R}}
$$

ORE DRESSING AND METALLURGICAL IABORATORI ES.

Investigation No. 852.

Concentration of Fluorite from the Cook Claims, Beauchastel Lake, Nontboillard Township,

Rouyn-Noranda Area, quebec.

A samplo of fluorspar rock, weight 300 pounds, was received on February 29th, 1940, from the Cook claims, Beauchastel Lake, Ifontbeillard township, Quebec.

The shipment was sumitted by Mr. Al. Cook, 166 MoNabb Street North, Hamilton, Ontario.

Characteristics of the Rock:

Wamination undor the binocular microscope revealed that the matorial consists essentially of purple fluorspar (iluorite) intimately intersrown with quartz and some brecoiatod, siliceous wall rock. There is a small content of metallic sulphides, comprising sphaierite, prite, and calena.

Specifications of Pluorspar:

The commercial grades of fluorspar depend on the usos for which it is roquired. The followinc are the chemical and physical specifications for the principal Erades:

Suiphur and base metals are objectionabie
In all grades and must be very low.

Sampline and Assaying:
The rock was crushed and sampled and assayed
as follows:
$\begin{array}{ll}\text { Fluorite }\left(\mathrm{CaF}_{2}\right) & -53.4 \text { per cent } \\ \text { Silica }\left(\mathrm{SiO}_{2}\right) & \propto 35.5 \\ \text { Sulphur }(\mathrm{S}) & -1.68\end{array}$

Experimental ResuIts:

Concentration of the fluorite by flotation
will yield a procluct of acid spar frade. The rocovory is low, however, and a product suitable for the glass or Gnamel tratie can be macio which wili yiold a higher recovory of iluorite.

The sulphides interiore in making a metaliurgical spar and tabling tests conductod ror this purpose were not successful. It is evicient from the analyses of table poducts that the silica and fluorite are closely associatod and that fire grirding is necossary to separate these minerals.

The sulphides can be successfully renoved
by Plotation.

[^0]The method adopted for inotation was to grind the fluorspar rock with soda ash and sodium silicate in water to a fineness of around 70 per cent minus 200 mesh.

The pulp was conditioned with potassium amyl xanthate and the sulphides floated off using pine oil as frothor. After romoval of the sulphides quebracho was added as a silica depressant and American Cyanamid. reagent 708 was added as a collector for the fluorite. This rea, ent is also an efficient frother. A rougher concentrate was removed and this was cleaned three to five times. During cleaning, small adaitions of quobracho, ro8 or oleic acid were made.

Tests Nos. 1 and 2.

These tests were of a proliminary nature to detemmine the flotation conditions. The sulphides float readily and are practically all removod in a few minutes. It was observed that the fluorite collector, 708, should not be added in one lot. This produces a violent froth, which is non-persistent. A more uniform froth is obtained by adding the reagents in small pmounts.

Test NO. 3.
A sample of minus 14 mosh filuorspar, 1,000
Exammes in weight, was soreened on a 65 mesh screen and the plus 65 mosh ground in a grinding jar with 1 pound soda ash por ton. The sereenirig was carried out to prevent making excessive fines. It is not thought that
selective grinding has any advantaces.
The minus 65 resh product was added to the ground pulp and the whole conditioned in a Fagergren laboratory cell with l. 2 pounds sodium silicate per ton, 0.1 pound potessium amyl xanthate per ton, and Ploated with 0.124 pound pine oil per ton

After the sulphides had been removed the pulp was again conditioned with 0.4 pound of quebracho per ton and 0.96 pound oleichand 0.2 pound of Reagent 708 per ton were added to float the fluorite as a rougher concentrate. This concentrate was cleaned three tines.

Results:
Product

Feed
Pluorite cone: 24.6 97.92 $0.93 \quad 45.1$
midaling : $5.4 \quad \infty \quad \infty$
Tailing : 62.2 - -

No assays were made on Test No. 4.

Test No. 5 was a table test. The results were not satisfactory.

Test No. 6.
The minus 14 mesh fluorspar was ground without screoning with 1 pound soda ash and 2.2 pounds sodium
silicate per ton. The sulphides were floated as in the previous tests. For the rougher fluonite concentrate, 0.8 pound quebracho per ton and 1.0 pound of Reacent 708 per ton were added. A further addition of 0.3 pound of Reagent 708 was made during the three cleaning floats.

Results:

Product	$\begin{aligned} & \text { :Weight, } \\ & \vdots \text { per } \\ & \text { cent } \\ & \hline \end{aligned}$	Assays, $\frac{\text { per cent }}{\text { CaF2 }: S 102}$	Distribution of CaFz, per cent
Feed	: 100.0	53.4	100.0
Sulphide conc.	: 10.4	19.28	3.8
Eluorite conc.	: 38.3	94.084 .44	67.5
Miduling	- 26.2	51.8642 .97	25.4
Tailing	: 25.1	7.07	3.3

Analysis of Sulphide Concentrate.

> Iead -10.58 per cent
> Zinc $-18.56{ }^{\prime}{ }^{2}$
> Iron -8.80

Screen Test on Potation Tailing.

$$
\begin{aligned}
& \text { Mosh Weight, } \\
& \text { per cent } \\
& \begin{array}{r}
+65-1.0 \\
-65+100-6.5 \\
-100+150-15.0 \\
-150+200-\frac{18.5}{-200}
\end{array}
\end{aligned}
$$

Screening, Tablings and Flotation.

Test No. ?.
This method was carried out to determine the possibility of making a metallurgical spar from the coarser sizes and an acid or glass spar from tho fines.
satisfactory due to factors already mentioned, namely, the presence of sulphides and association of fluorite and silica.

Details of the test are fiven as a matter of record.

The minus 14 mesh rock was screened to give three products, $-14+28$ mesh, $-28+48$ mesh, and -48 mesh. The first two were tabled soparatoly. The fluorite concentrates contained considerable sulphide minerals. These were floated off the $-28+48$ mesh procuct, but the +28 product was too coarse to be cleaned by flotation. The minus 48 mosh product was ground and treated by motation in the manner already dascribed.

The following table shows the assays of the products and the distribution of the fluorite:

Product	$\begin{aligned} & \text { :Weight, } \\ & \text { : per } \\ & \text { i cent } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Assays, } \\ & \text { per cent } \\ & \hline \text { Cale : S102 } \end{aligned}$:Dlstribution of CaFz。 : per cent
Table concos ${ }_{\text {"1 }} \mathrm{TH}^{-14+28} 8$	$\begin{array}{r} 3.1 \\ : 10.5 \end{array}$	$\begin{aligned} & 51.44 \\ & 67.52 \end{aligned}$	3.0 13.3
Sulphide conc.s $-28+48$	$\begin{aligned} & : \quad 0.6 \\ & : \quad 8.0 \end{aligned}$	20.0°	3.0
Table tailing ${ }^{11}$ ($\begin{aligned} & -14+28 \\ & -28+48\end{aligned}$	$: \quad 5.1$	$\begin{aligned} & 25.27 \\ & 37.44 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 7.9 \end{aligned}$
Plotation conc. Plotation midditne Plotetion tailing	$\begin{aligned} & : 22.2 \\ & : 18.8 \\ & : 20.4 \end{aligned}$	$\begin{array}{ll} 97.54 & 1.00 \\ 57.20 & \\ 25.43 & \end{array}$	$\begin{array}{r} 40.6 \\ 20.1 \\ 9.7 \end{array}$
Feed	$: 100.0$	53.4	100.0

- Approximate.

A screen test on the fluorite flotation con-
centrate showed that 84.6 por cont was minus 200 mesh.

It would appear from the above results that apart from the difficulty of separating the sulphides in the coarge sizes, it requires comparatively fine grinding to separate the fluorite from the quartz. The table concentrates aro too low in grade to be of any economic value.

Iest NO. 8.
A sample of fluorspar was ground to have approximately 70 per cent minus 200 mesh. Socia ash, 1.0 pound per ton, and sodiun silicate, 2.4 pounds per ton, were added to the grind.

The sulphides wero iloated off in the usual mannor, condtioning for 3 minutes with potassium amyl xanthate and floating for 6 minutes.

The rougher fluorite concentrato was taken off after conditioning 2 minutes with 0.1 pound quebracho per ton and floatine 10 minutes. 0.6 pound of Reagent 708 per ton was used.

In the ifirst clowning 0.4 pound queoracho por ton was used and 0.2 pound Reagent ro8. In the second cloeníng 0.192 pound oloic acic was added and an equal amount in tho third cleaning. In the fourth cleantig 0.1 pound Reagent 708 was used. Results:

Product	$\begin{aligned} & \text { : Weight, } \\ & \vdots \text { per } \\ & \text { i cont } \end{aligned}$	Assays, por cent CaFR: S102	$\begin{aligned} & \text { :Distribution of } \\ & : \text { fluosite, } \\ & \text { : eer cent } \\ & \hline \end{aligned}$
Foed	: 100.0	53.4	100.0
Sulphide conc.	12.1	7.05	1.6
Pluorite cono.	36.4	$96.82 \quad 1.59$	66.0
Midaling	: 29.9	54.7440 .53	30.6
Ta土ling	21.6	4.34	1.8

The middaing products contain approximately the same amount of Muorite as the food. For the purpose of determining if this product could je further concentrateds a numbor of middline products were combineds reground, and re-loated. The results aro shown under Test No. 9.

Test Mo. 9.
The matertal was ground with soda ash and sodium silicate and a roukher concentrate taken off using 0.8 pound quebracho per ton and 0.6 pound Reacent 708 per ton. The rougher concontrate was oloanod 5 times. In the lirist, 0.8 pound quebracho was added and in the second, 0.472 pound olelc acid per ton No rea ents were added in the last three cleanings.

Results:

Conclusions:
The results of tho investigation have
disclosed that the presence of sulphide minerals and the close association of the fluorite and the silica make it impossible to produce a satisfactory grade of metallurgical spar by travity concentration methods.

Mlotation gave more encouraging results and by fine grinding, at loast 70 per cent minus 200 mesh, fluorite concentrates of a crade suitable for acid spar, Glass spar or enamel spar were iroduced. Plotation of fluorite is not difficult and Reagent 708 or olelc acid are satisfactory collectors and frothers. The sulphides are readily removed by prelirinary flotation using xanthates as collectors. The silica is depressed by odium silicate and quebracho. The recovery is around 65 per cent. Rewtreatment of the middling would increase this figure to 70 per cent or better.

The economic treatment of the ore will be dependent on the extent of the deposit and the demand for the frade of spar producod by flotation methods.

[^0]: - Per cent of midalings.

