This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

Ottawa, Sept. 21, 1926

REPORT No 255

od the

hi hay

ORE DRESSING AND METALLURGICAL LABORATORIES

Experimental tests on the ore of the Argonaut Mine, Argonaut, Ontario

J. S. Godard

samples was as follows:

No. 1 Copper 0.80 % No. 2 Copper 1.35 %

Purpose of <u>experimental tests</u>: The flow sheet of the Argonaut mill is as follows: Grinding in a ball mill followed by a classifier in closed circuit with a tube mill and one set of amalgamation plates. The overflow from the classifier is passed to another set of amalgamation plates, the tailing from which is floated. Ore from two levels in the mine is at present milled. Recently the flotation results on the ore represented by sample No. 1 were unsatisfactory. The recoveries were poor, and the froth in the cell was watery and of a greyish colour. Ore as represented by sample No. 2 behaved normally.

The purpose of these tests is to ascertain if possible the reasons for the difference in behaviour of the two samples, and to apply corrective measures to sample No. 1 - 2 -

Experimental tests - Lot No. 1

Test No.	Product	Weight	Analysis Cu %	Percent values	Remarks	
1	Concentrate Tailing	6.0 94.0	12.24	94.0	Ore ground -100 mesh Froth fair	
2	Concentrate Tailing	4.4 95.6	16.52	92.7 7.3	Ore ground 18% +200 me Bluish-grey froth	esh
3	Concentrate Tailing +200 -200		10.56 0.07 0.06	93.0 1.5 5.5	Bluish-grey froth	
4	Concentrate Tailing +200 -200	4.5 15.9 79.6	16.84 0.03 0.03	96.3 0.6 3.1	Froth bright colour	
5	Concentrate Table conc. " midd. " tail. Slimes	4.3 6.5 2.7 61.5 25.0	16.52 0.23 0.09 0.08 0.12	88.2 1.8 0.2 6.1 3.7	Ore ground 15% +200 mesh. Bluish-grey froth. Table concentrate high in magnetite	
7	Concentrate Tailing +200 -200	6.6 8.4 85.0	10.46 0.12 0.07	90.8 1.3 7.9	Froth bluish-grey	
8	Concentrate Tailing +200 -200		14.66 0.03 0.03	96.3 0.3 3.4	Froth superior to test 7 Colour bright	
9	Concentrate Tailing +200 -200		19.08 0.07 0.07	93.1 0.7 6.2	Head sample high, 0.96% Gr Froth good, colour bright	
10	Concentrate Tailing +200 -200	4.8 7.0 88.2	14.08 0.04 0.04	94.7 0.4 4.9	Froth good, colour bright Pulp alkaline	
11	Concentrate Tailing +200 -200	6.1 7.5 86.4	12.32 0.04 0.04	95.2 0.4 4.4	Froth good, colour bright Fulp alkaline	
12	Concentrate Tailing +200 -200		10.50 0.04 0.04	95.8 0.2 4.0	Conditions good	
13	Concentrate Tailing #200 #200	9.5 6.3 84.2	7.46 0.15 0.08	90.4 0.9 6.7	Froth bluish grey	
6	Test for soluble salts: Iron ferrous GaO Solution alkaline			0.0025	grams/litre	
	Mg0 S03		ratide	0.0086	11 17	
	ents used:					
Test 1	t No. <u>Reagent</u> 1 Soda ash		Amount 1b/ton Added to 3.0 Ball mil			
	Coal tar 40 Coal tar creosote 60			.35 ¹⁰ 11		
-	Pine		t. brand		.04 Cell	
2	Xanth	Lime Xanthate Pine oil No. 5		0.	.0 Ball mill .2 Cell .04 "	
3	Lime Xanthate Pine cil No. 5 Copper sulphate-			0.	.0 Ball mill .2 Cell .04 "	
4	Soda (Xanth) Pine (the second second	5	0.	.00 Ball mill .2 Cell .04 "	

rest No	Reagent	Amount 1b/ton	Added to
5	Lime Coal tar creosote Cresylic acid Pine cil No. 5	3.00 0.30 0.08 0.04	Ball mill " Cell
7	Lime Barretts No. 4 Pine oil No. 5	3.0 0.34 0.04	Ball mill Cell
8	Soda ash Barretts No. 4 Pine oil No. 5	3.00 0.34 0.04	Ball mill Cell
9	Lime Coal tar creosote Cresylic acid Pine oil No. 5	2.00 0.25 0.08 0.04	Ball mill " Cell
10	Soda ash Coal tar creosote Gresylic acid Pine oil No. 5	2.00 0.25 0.08 0.04	Ball mill " Cell
11	Lime Coal tar creosote Cresylic acid Pine cil No. 5	1.00 0.20 0.08 0.04	Ball mill " Cell
12	Soda ash Coal tar creosote Cresylic acid Pine oil No. 5	1.00 0.20 0.08 0.04	Ball mill " Cell
13	Lime Coal tar creosote Cresylic acid Pine oil No. 5	6.00 0.20 0.08 0.04	Ball mill " Cell

3

-

-

Lot No. 2:

.....

Test No	Product	Weight	Analysis Cu %	Percent values	Remarks	
1	Concentrate Tailing	8.2 91.8	16.32 0.07	95.4 4.6	Ore ground -100 mesh Froth good	
8	Concentrate Tailing	6.0 94.0	21.30 0.06	95.8 4.2	Ore ground +150 mesh Froth good	
3	Concentrate Table conc. Table midd. Table tail. Table slime	7.6 6.9 3.3 48.9 33.3	17.50 0.25 0.10 0.06 0.05	95.3 1.2 0.2 2.1 1.2	Ore ground 18% +200 m Froth good. Table concentrate high in magnetite	nesh
5	Concentrate Tailing +200 -200	7.6 7.6 84.8	17.38 0.06 0.05	96.5 0.4 3.1	Conditions good	
4	Soluble salts Iron fer CaO Solution MgO SO3		0.0	149	/litre s	
Reage	onts used:					
Test 1 2	No <u>Reagent</u> Soda ash Water ga Pine oil Lime Xanthate Pine oil	s tar No. 5	A	mount 1b/ 3.0 0.37 0.04 4.00 0.20 0.04	ton Added to Ball mill Cell Ball mill Cell	

Pine oil No. 50.043Lime3.00Ball millCoal tar creosote0.28"Cresylic acid0.08"Pine oil No. 50.04"

No	Reagent	Amount 1b/ton	Added to	
	Lime	1.0	Ball mill	
	Coal tar creosote	0.20	Ħ	
	Cresylic acid	0.08	Ħ	
	Pine oil No. 5	0.04	Cell	

SUMMARY :

Test 5

Reagents:- (1) Lime - The bluish grey froth mentioned by Mr. Thomas, the company's engineer, was more pronounced in the tests where three or more lbs per ten was used. Using one and two lbs./ton the froth was golden in colour and fairly consistent. In test no. 13 where six lbs/ton lime was used the bluish-grey colour was very pronounced. I would suggest that the company control this reagent, if ir is in use, so that not more than 1.5 lbs/ton be used.

(2) Soda ash - No mention has been made of the use of this reagent in the mill. It might be used in quantities up to 1.5 lbs/ton with good results, providing it does not upset the operation of the classifier. We have often experienced that soda ash used in the flotation of chalcopyrite will produce a brighter and better froth than lime. In the presence of pyrite its action is not as selective as that of lime, but this point need not be considered in this case. If the ore should be slightly oxidized, not perceptible under the microscope, soda ash will give better results than lime.

(5) Oils - Various oils were tried along with Xanthate. Coal tar creosote 0.2 lb/ton added to the ball mill with 0.08 lb/ton cresylic was satisfactory. This should approach that used at Argonaut where the coal tar creosote contains a high percentage of cresylic acid. Fine oil No. 5 was used as a frother, added in the flotation cells. Mr. Thomas' report did not state where the oils were added. I would suggest that the coal tar creosote be added to the tube mill which will allow of time contact. If it should interfere with the amalgamation, Xanthate in solution might be added at the end of the second set of plates, the pine oil could also be added here.

Microscopic examination: Both lots were examined under the microscope and no difference could be detected.

Soluble salts: A Test for soluble salts was made on each sample. The solutions from each test were alkaline using phenol pthaline as indicator. Lot No. 1, in spite of the fact that analysis showed it to contain less lime and magnesia that lot no. 2, gave indications of being the more alkaline of the two. The sodium was not determined. This latter element may account for the paradox.

5

<u>CONCLUSIONS</u>: From this distance, and the information at hand, it is difficult to say just what the trouble is. I would suggest that a ten day run be undertaken using - lime 1.0 lb/ton added to tube mill, coal tar creosote 0.2 lb/ton added to tube mill, pine oil added at end of last amalgamation plates. Should no improvement be noted, try the same quantity of soda ash added to the tube mill.