Report No. 252

Experimental tests on Long Lake tailings by J. S. Godard

<u>Shipments:</u> One shipment consisting of 23 samples, gross weight 200 pounds, was received July 17, 1926. Mr. Leo H. Timmins of Alderson and MacKay was the shipper.

<u>Characteristics of the tailings:</u> The tailings were those from an old cyanide plant operated from 1912 to 1915 by the Canadian Exploration Co. It is reported that the head sample at the time of operation was about 0.36 oz/ton gold, and a tailing of 0.07 - 0.08 oz/ton was discharged. The ore was crushed in stamps and tube mills to about 150 mesh. The tailings as represented by the composite sample approximated 65 mesh. The sulphide minerals are pyrite and arsenopyrite, with which the gold is associated. The sulphides are partly oxidized and evidently the tailings have become concentrated, as the composite sample assayed 0. 0.20 oz/ton

<u>Sampling & Analysis:</u> A composite sample of the twenty three samples was made by cutting a proportionate cut from each one at -65 mesh. It was sampled in duplicate. Analysis -

Sample No. 1 Gold 0.21 oz/ton Silver 0.05 oz/ton Arsenic 1.88% " 2 0.20 0.05 2.09 <u>Purpose of Tests:</u> The purpose of these tests was to ascertain if the gold could be profitably extracted from these tailings by regrinding and cyanidation, or by concentration of the sulphides and retreatment of the concentrates.

Cyanide tasts

Tests	Nos. 1 & 2	2 detail	S AND STATES			N PARA		
Test	est Dilution KCN %		Time of agitation		Crushing			Sale a
1 2	1:3	0.075	48 hrs 48		-65 Orus	mesh shed wet	-200	mesh
Result Test	ts: Head	Tails	Extraction %	Reage	onts	consumed CaO		
1 2	0.20	•098 •09	51 55	3.76		37.40 25.90		
Tails	from Test	No. 1 were	screened and a	ssayed	L -	ALAST CAL		
Mesh	Weight %	Assay	% of values	a dente		HE ALL AND		
+100 +150 +200	15.7 27.8 17.0	0.10 0.09 0.06	15.9 25:5 10:4	ave	rage	tailin	g (0.0989
-000	70 5	0.12	18 9	And the state of t	al for a long		Torright of	Later States and

Tests	Nos.	3, 4, 5	5, d 6 -	detai	18			
Test	Dilu	tion	KON 1	Tim	e of agit	ation	Crushing	
3	1:	2	0.05	· · · · · ·	48 hrs.		-65 mesh	dry
5	1	2	0.05		40		-65 mesh	water washed
6	1.1	2	0.10		48	<	and	filtered
Resul	ts: -()	2nd. co	mposite	head	sample)			
Test	Head	Tails	Extra	otn 🐔	KCN	nus cons Cao	iumea.	
-3	0.25	0.093	62	.8	1.5	33.0		
4	0.25	0.055	78	•0	2.7	33.0	Ū.	
5	0.25	0.000	60	.0	1.25	18.2		
907007		~~~/~	میں سیاہ : مقد قرمہ	1 1 1				
Most	Lies. Nach	Weight		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 04 407	1100		
<u>1050</u> Z	-100	20		na	JE 0	ues		
	+150	15	5 0	.08	13.4			
	+200	22.	5 0	.07	17.1			
	-200	41	.8 U	•15	54.3	Average	tailing	0:093 oz/ton
4	+100	21, 74,	4 0	+04	15.4			
	+200	20	3 0	.05	1814			
, * , *	-200	44.	.3 0	.07	56.1	Average	tailing	0.055 oz/ton
· 5· . ·	+100	15	9 0	.08	12.6			
	1 200	36	6 0	.08	29.2			
	-200	34	0 0	.14	47+5	Average	tailing	0.10 oz/ton
6	+100	21.	2 0	•09	23.9			
	+150	17	.7 0	.05	14.1			
	-200	43	3 0	.08	45.6	Average	tailing	0.076 oz/ton
Pests	Nos	7.8.0	A 10	· · · · ·				
No. 7		linga (150 oms	at _65	magh oro	und thea	ວ ກາງກວ່າ	n e nebhla
	mil	Lusing	; 1:1 pu	lp, 0.	025% KON	solution	and lime	25 Ibs/ton.
	Cyai	nided 4	8 hours	1:2 p	ulp using	0.05% K	CN	
No. 8	- Tai	lings (00 gram	s at -	65 mesh,	ground t	hree hour	s in a pebble
• •	0yaı	nided 4	8 hours	using	1:3 pulp	0.05%	KON	.me 23 108/001
No. 9	- Tail	Lings (00 gram	s at -	65 mesh g	round 3	hours in	pebble mill
	usi	ng 1:1,	15 pulp	with	lime 10 1	bs/ton.	Öyanided	48 hours
NT 7	±1)	purp,	0.072/0	КОМ	ler und mei			
\$10°T0	- rai. the	n dewal	ou gram	s at - d filt	oy mesn, ered. Cv	ground 3 anided 4	8 hours in	l:1:1.5 pulp
	0.0	75% KOI			••••••••••••••••••••••••••••••••••••••			
Result	ts: -	Head	sample	0.25 0	z/ASEgent	s consum	ed	
Test	Tail	ing I	xtracti	on 1	KON	CaO		
37	0.0	4	84.0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2.5	41.5		
9	0.0	2	92.0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3.4	32.1		
10	0.0	3	88.0		2.1	26.5		
Condla	isions	n Teat	s 1-6 1	ncl.usi	ve showed	poor ex	traction	s by evanidati
The ta	iling	swore	high in	all t	he sizes.	The cy	anide con	sumption
Was mo	oderati	ely hig	sh. The	lime	consumpti	on very	high. We	tion by 45%
In tea	sts 7-2	L0 inc]	usive w	hero t	he tailin	ga were	very fine	ly ground,
good e	sztrac	tions v	vere obt	ained.	The con	sumption	of cyani	de and lime
was ni	rgu •	ator V	vasning	teance	u poth of	vnese.		

Concentration Tests

(3)

Test No. 11 - Tabling at -69 mesh

Product	Weight	Ass	1у	% of values		
	1	Au oz	<u>As 7</u> ,	Au	AS	
Table conc.	21.0	0.54	4.20	60.8	53.2	
" tailir	IR 64.2	0.10	0.80	34.4	31.0	
Slimes	14.8	0.06	1.77	4.8	15.8	
Head from pr	oducts	0.19	1.66	-		
Test No. 12	- Flotat	ion, tal	bling fl	otation t	ailing	
Flot. conc.	22.5	0.57	6.02	67.7	66.2	
Table !!	7.0	0.48	3.31	17.8	11.3	
" tailg	49.1	0.03	0.39	7.8	9.3	
Slimes	21.4	0.06	1.26	6.7	13.2	
Head from pr	oducts	0.19	2.05			
Test No. 13	- Flotat	ion, tal	bling fl	otation t	ailing	
Flot. conc.	20.0	0.75	6.56	75.5	68.8	
Table "	3.6	0.54	3.97	9.8	7.5	
" tailg	45.1	0.03	0.31	6.8	7.3	
Slimes	31.3	0.05	1.00	7.9	16.4	
Head from vi	oducts	0.20	1.91			

Flotation Reagents:

- Test No. 12 Coal Tar 40% Coal Tar Creosote 60%, 0.3 lb/ton, Soda ash 7.0 lb/ton, Cresylic acid 0.08 lb/ton, added to ball mill and ground 30 minutes. Added to cell Sulphuric acid 5.0 lb/ton, Copper sulphate 1.0 lb/ton, Xanthate 0.5 lb/ton, Pine oil 0.1 lb/ton
- Test No. 13 #1580 0.4 lb/ton, Sulphuric acid 5 lb/ton, Copper sulphate 1.0 lb/ton, Xanthate 0.3 lb/ton, ground 40 minutes in ball mill. Added to cell. Sulphuric acid 10 lb/ton Xanthate 0.10 lb/ton, Pine 6il 0.1 lb/ton

Conclusions:

1. Tabling - Tabling produced very poor results

2. Flotation and tabling - Flotation followed by tabling the flotation tailing was much superior to straight tabling. The combination method showed a ratio of concentration of li4.4. The slimes were higher than the sand tailing in both gold and arsenic. The very fine material is too oxidized to float. Relatively large amounts of reagents are required for the flotation.

Summary: The tests on the composite sample indicate that fine grinding and cyanidation is the better method of recovering the gold from these tailings. Water washing previous to cyanidation seems advisable. The present price of $3\frac{3}{4}4$ is too low to warrant saving the arsenic.