This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

#233

REPORT of the

ORE DRESSING AND METALLURGICAL LABORATORIES

Experimental tests on gold ore from the K.V.Mines, Ltd., Paulson, B. C. J. S. Godard

Shipment: A shipment of ore, 117 pounds, was received at the Ore Dressing and Metallurgical Laboratories, June 29, 1925 from the property of the K.V. Mines Ltd., at Paulson, B.C. The shipment was made by Mr. P. H. Fraser of Vancouver, B.C.

Characteristics The ore consists of marcasite, white iron pyrites, of the ore:

with which is associated small quantities of the sulphides of lead, zinc, and copper, as well as gold and silver. The gangue material is siliceous. Platimum was reported to have been found in this ore, but analysis failed to disclose the presence of any of the metals of this group.

Sampling & Analysis: The entire sample was crushed to 2" and cut twice then reduced to 14 mesh and cut once, then ground to -150 mesh before cutting the head sample. Analysis showed it to contain:

Copper	0.05 %	Arsenic Silica	trace
Lead Zinc	0.12 \$	Silver	0.80 oz/ton
Iron	10.95 %	Gold	0.48 "

Purpose of Experimental tests were desired to determine experimental tests:

methods for the recovery of the values. The proximity to a smelter makes a method of treatment that would concentrate the values into a shipping product for the smelter desirable.

Test No. I - Flotation and tabling: Two 1000 gram lots of ore were cut at -14 mesh, and ground to 100 mesh, then floated

separately in a Ruth machine. The rougher concentrates from each lot were combined and cleaned. The tailings were combined and tabled on a small Wilfley table.

Product	Weight %	Assay Au oz/ton	Percent of values
Flotation cone.	15.1	2.32	
" middling	7.1	0.40	72.9 5.8 4.2
Table concentrate		1.86	10.8
" tailing	47.1	0.11	6.3

Analysis of the flotation concentrate gave - silver 3.88 oz/ton; lead 0.46%; Zinc 0.46%; copper 0.23%; arsenic trace; cobalt nil; nickel nil; iron 43.46%

Flotation	reagents: Lot No. 1	Soda carb Xanthate TT mixture Pine oil #5 Sulphuric acid	5 lbs/ton 0.6 " 0.10 " 0.10 " 10.0 "	ball mill Ruth "" "" "" "" "" "" "" "" "" "" "" "" ""
	Lot No. 2	Water gas tar; C.T. crecsote; Sulphuric acid TT mixture Fumol #6	1.0 " 10.0 " 0.1 " 0.05 "	ball mill Ruth

No additional reagents used for cleaning concentrate

Tests Nos. 2, 3, & 4 - Cyanidation: Three cyanidation tests were made on 600 gram lots of this ore. The table below gives the details.

No. Mesh Di		Dilution	KCN	Ass	ау	Extraction	Consum	tion	Time
			9.	Heads	Tails	1/2	KON 1b/	tn CaO	hrs.
2	-100	1:2	.10	0.48	0.02	95.8	2.0	4.0	62
3	-100	1:2	.20	0.48	0.03	93.8	1.5	5.1	62
4	-200	1:3	.15	0.48	0.02	95.8	2.2	4.3	62

All grinding done in pebble jar, discharge screened and oversize returned for further grinding.

Tests Nos. 5, 6, 7, 8, & 9 - Flotation: Five flotation tests were on lots of 1000 grams of ore at -14 mesh. Grinding done in pebble jar.

Test	erragi me diput kirik indapi helinda derranyan ipana (dan desember) metaha dari saki	TO THE RESERVE THE PROPERTY OF THE PARTY OF	As	зау	Percen	t of values
No.	Product	Weight %	Au oz/to	on Fe %	Au	Fe
5	Concentrate	20.4	1.04	37.33	49.3	79.4
	Middling	9.8	0.16	4.10	3.7	4.2
	Tailing	69.8	0.29	2.25	47.0	16.4
6	Concentrate	16.5	1.16	44.02	38.0	68.7
	Middling	7.2	2.20	20.14	31.5	13.7
	Tailing	76.3	0.20	2.44	30.5	17.6
7	Concentrate	18.2	1.56	44.17	59.9	76.2
	Middling	8.7	0.84	10.13	15.4	8.3
	Tailing	73.1	0.16	2.24	24.7	15.5
8	Concentrate	17.2	1.40	44.42	50.1	72.0
	Middling	9.4	1.15	14.24	22.4	12.6
	Tailing	73.4	0.18	2.22	27.5	15.4
9	Concentrate	13.2	1.24	43.76	34.1	57.8
	Middling	9.5	1.66	22.03	34.9	21.0
	Tailing	77.3	0.18	2.74	31.0	21.2

leage:				Added	Marie Andrews Committee Co
No	Mesh	Reagents	1b/tor	1 to	Remarks
5	100	Sodium sulphide Hardwood acid crecsote #27 FFL Hercules tar oil Pine oil No. 5	5.0 0.3 0.1 0.1	Ball mill " Ruth	Concentrate eleaned in Janney without further reagents
6	150	Barretts #634 Pine oil No. 5 Sulphuric acid	0.4 0.1 15.0	Ball mill Ruth	
7	65	Barretts #634 Sulphuric acid Pine oil #350	0.4 15.0 0.45		He results from #634 in neutral pulp. Pine oil and sulphur acid 3.5 lbs/ton add for cleaning concent
8	65	P.T.& T. #400 Pine oil #350 Sulphuric aoid	0.28 0.27 18.0	Ball mill Ruth	Pine oil and sulphur acid 3.5 lbs/ton acid for cleaning rougher concentrate
9	150	P.T.& T. #400 Pine oil #350 Sulphuric acid	0.28 0.27 18.0	Ball mill Ruth	Fine oil and sulphur acid 3.5 lbs/ton add for cleaning rougher concentrate

Test No. 10 - Amalgamation and tabling: 1000 grams ore -14 mesh was ground wet to 48 mesh and amalgamated. The amalgamation tailing was tabled.

Product	Weight	Au oz/tor	A CONTRACTOR OF SERVICE OF	Percent	of values
Concentrate Middling Tailing Slimes	8.2 4.0 63.2 24.6	0.60 0.48 0.18 0.12	44.57 41.82 6.73 5.69	23.2 9.0 54.0 13.8	33.3 15.2 38.8 12.7
	Head sample After amalg	amation	0.48 0.21 56.0	A CONTRACTOR OF THE PARTY OF TH	
Roo	overy: By amalgams In table co Total recov	ncentrate	56.0 10.3 66.3		

Test No. 11 - Amalgamation at 48 mesh: Results of screen test on amalgamation tailing -

Mesh	Weight	t Assay		Percent of values		
	1/2	Au oz/ton	ro %	Au	Po	
+65	1.2	0.24	86.2	1.4	1.0	
-65+100	7.4	0.32	13.08	11.7	9.1	
-100+150	13.3	0.28	13.62	18.3	17.1	
-150+200	13.2	0.22	12.09	14.3	15.1	
-200	64.9	0.17	9.44	54.3	57.7	

Head sample - gold 0.48 os/ton After amalgamation 0.203 " Gold amalgamated 57.7 % Product

Test No. 12 - Amalgamation and flotation: 1000 grams ore at -14 mesh, ground wet to 48 mesh and amalgamated. The amalgamation tailing was floated and the flotation tailing given a screen analysis.

Assay

Percent of values

Weight

	1	Au oz/ton	Fe %	Au	Fo
Concentrat Middling	6 14.1 8.4	0.60	43.30	38.3 16.2	64.1 16.9
Tailing	77.5	0.13	2.34	45.5	19.0
Screen tes	1:		off and the Late Management of the Management of the Con-		
+65	4.9	0.14	3.74	5.2 8.1	7.8
-65+100	7.2	0.15	3.00		9.2
-100+150	12.7	0.16	2.55	15.2	13.8
-150+200	8.5	0.18	2.21	11.5	8.0
-200	66.7	0.12	2.15	60.0	61.2
Reagents:	P.T.& T. #400 Pine oil #350 Sulphuric acid	0.45	lb/ton	for roug	ther concentrate
	TT mixture	0.05	**	11	11 11
	Sulphuric acid		12	for olas	ning concentrat
	Pine 011 #350	0.27	11	"	" "
	Pine oil #5	0.05	11	13	11 11
Recovery:	By amalgamatio In flotation o	n oncentrate	53.7 % 17.8 % 71.5 %		

<u>Fost No. 13</u> - Amalgametion and flotation: The amalgamation tailings were re-ground for flotation - Flotation heads Au 0.21 oz/ton

Product	Weight	Asse	ıy	Percent	of values
*************	A	Au oz/ton	Fe %	Au	70
Concentrate Middling Tailing	13.5 10.5 76.0	0.64 0.42 0.11	43.10 15.05 3.72	40.2 20.5 39.2	57.0 15.4 27.6
Reagents:	P.T.& T. #400 Pine oil #350 Sulphuric acid Pine oil #350 Sulphuric acid	0.28 0.45 20.00 0.16 6.0	lb/ton		ball mill Ruth machine ing concentrate
Recovery:	By amalgamation In flotation con Total	o. 18.1 74.3			

Test No. 14 - Amalgamation and flotation: The amalgamation tailing was re-ground for flotation - Flotation heads Au 0.17 oz/ton Ag 0.77

Product		Weight Assa		ау		Percent	of values
		4	Au oz/ton Ag		oz/ton	Au	Ag
Concentrat Tailing	0	28.0 72.0	0.46 0.06		2.24	75.0 25.0	81.3 18.7
Recovery:	By In To		on g concentrate	old "	64.2% 26.8% 91.0%	silve "	69.9% 84.2%

Reagents: Heavy hardwood oil 3.T.& C.Co. 0.56 lbs/ton to ball mill Pine oil #350 0.27 " " "

Fine oil #350 0.27 " to Ruth Pine oil #350 0.27 " "

Tests Nos. 15, 16, & 17 - Flotation at 150 mesh:

Test		Weight	As	say	Percent o	T values
No.	Product	7	Au oz/ton	Ag os/ton	Au	Ag
15	Concentrate Tailing	30.0 69.6	1.18	2.50	80.0	81.4 18.6
16	Concentrate Tailing	30.1 69.9	1.60	2.70	93.2	89.2 10.8
16	Concentrate Tailing	24.3	1.50	2.92	85.9 14.1	82.5 17.5

Regents:

Test No.	Reagents	Quantity 1bs/ton	Added to
15	Sodium sulphide Duponts fletation oil Pine oil No. 350 Sulphuric acid Pine oil No. 5 Fumol No. 6	5.0 0.40 0.16 18.0 0.02 0.02	Ball mill n n n n n n n n n n n n n n
16	Soda carbonate Xanthate Pine oil No. 5	10.0 0.80 0.06	Ball mill Ruth machine
17	Barretts No. 4 Pine oil No. 350 Pine oil No. 350 Pine oil No. 5 Sulphuric acid	0.40 0.16 0.16 0.08 16.00	Ball mill Ruth machine

Summery:

Amalgamation: Recoveries of the gold by amalgamation at 48 mesh varied from 53 to 64%, with an average of 56%. 14.3% of the silver was amalgamated in test no. 14. The mercury was in good condition after each test.

Cyanidation:

Three small scale cyanidation tests were made. All three showed good extraction of the gold with moderate cyanide consumption. Using a dilution of 1:2 and KCN of 0.10% on ore ground to -100 mesh was equally as effective as more dilute pulp and stronger KCN on -200 mesh material.

Tabling: Tabling the amalgamation tailings did not prove very satisfactory, as considerable gold values remained in the tailings and alimes. Large scale operations on a classified feed would greatly improve the recovery over that obtained in small scale work.

Plotation: A great variety of results were obtained by flotation.

The results in the first tests made were disappointing, but this was largely due to partial oxidation of the pyrites. Fresh samples of ore were crushed for tests nos. 14, 15, 16, and 17, with greatly improved recoveries. Test No. 16, using a soda pulp and xanthate was the most satisfactory. Should an acid pulp be used, a considerable reduction in the amount of the sulphuric acid used could be made on mill scale operations and freshly broken ore. In the latter tests the froth was good, though the sulphides are slightly sluggish, not rising quickly, but continuing slowly and steadily to the end.

Conclusions: Amalgamation alone is not sufficient to yield good recoveries, but it could be supplemented by tabling classified amalgamation tailing, or by flotation. Results show that amalgamation should be considered in the treatment of this ore.

Flotation - Good recoveries can be obtained by flotation. The best results were obtained at 150 mesh. It is a question whether the additional recoveries made at 150 mesh over those at 65 mesh would warrant the extra grinding charges. Flotation could be adopted either alone or after amalgamation.

cyanidation - Good recoveries of the values were obtained by cyanidation on the sample submitted. Before adopting this method of treatment, due consideration should be given to the possibility of the ore becoming more refractory, in which case the results by this method would not be so satisfactory.