

0 IT A A M octobor 30tas $192 a^{\circ}$

BEPQRT of the

ORE DRSESTMG MO BHTATEURGTCAD TABORATORTES

 Tnvestigetion 10.233 .9.```
1arademabisty of GOwmo Amoun Plate bominion Foundrios and steel), end fts Relegtonshag to Balifstio Linito
``` ( Minos 3049 Amour Plate 3 tatistios Serteso
\(=2 \mathrm{amax}\)
(oopy ro. 9. )

\section*{DEPARTMENT}

\section*{OF}

MINES AND RESOURCES MINES AND GEOLOGY BRANCH
```

 October 30th, 1942.
    ```

\author{
REPORT of \(\operatorname{th} \theta\)
}

ORE DRUSSING AID WETALLURGICAL LABORATORTES.

Investigation mo. 1319.
```

Hardenability of $60-m m$. Amour Plate (Dominion
Foundries and Steel), and 1 ts
Relationship to Ballistic limit.

```
```

(This is Repont io. % of the canadian Bureau of)
Hinos 1942 Armour Plate Statistics Series.

```


\section*{Poreword.}

Tinis report is based on data subnitted by the Dominion Poundries and Steel Inmited, llamilton, Omtario. previous reports in this series \({ }^{*}\) have discussed methods of analysing industriad data and examplos of amour plate data have been fiven. Rosults and conclusions contained horeln
* See list at foot of pace 2 .
(Fromomed: contio) ".
ane applabale only to bhe soumee tur whioh rhey are drewn mat thenond not be matered bhet they are of genomal applisetion.

Tho xopowt donjs With the methoo wed mat the remults obtatmed. The appendix gien gome addtionet data when bre of interest only bo those witheng forontow tho statintioen tecturge.
 are bonrectly abortab and thet pmound shot are atendawd projectiles row be wes.

Ganadien Bureau of Mires 3 ge Amoux plete Statighos Serjeg:
 Qtetistion Anelysts of Hantechurne Date. (Tomury gha, lode)
 Gembon and physioal pastas. (Pbrvary aptr, 3942)
 to the Generat ste日l Geadmes omporation. (Hobruary 346n, 3 (92).
 Gxom the Domimon pounties wa Gbog Limited. (102y Jst, 2945).

 pasemted in ouatity Gontron onemt powa (septomber 1.8th, 4948).
(6) Ho Le99: Variation in Resutus ot physual and onompan Testes on Stecl. (Beptamer 2ttm 1048).

Fixclomatinty Grossmencs Fighod:
Recent worls by baroun \(A\) o Grosaman has freetiy aimplisiod the compor subject of alloys and tholy afocet on tron. tb is now poesthte to axpress in one figure the gumation or the oftecte of all the alarents on the aned berdening propenty of the metat.

Th Gossman's systems oach of the followfng is assicned a factox:
\begin{tabular}{|c|c|c|}
\hline Guain aize? & Sulpbux & Vanadium \\
\hline Garbon & N2elcel & Boron \\
\hline Manganeso & Ghromium & Aluninium \\
\hline stilicon & molyboonum & \\
\hline Phosphonexs & Copper & \\
\hline
\end{tabular}

The product of ald the factors 3 the herdenabintity number of the stoed. This number is the diamoter of the bar which will hordon to a haldomatonsitio structure at the centre.

Application to D.E. 8. So 60mmo Ammoux:
In applying orosments mothod to the dato suppliod by nominion foundras and steel rimitede tho following syatem wes adopted:

Since gratn size, aluminatu, borong oopper, vanadium and titandun wero not roporteds their offects wore assumed to be constant. As a result. tho hardenability figmes give only an appoximation of the true rosult. Whe foctors adopted for combon, chromtam and ailionn wore as foldoms:
(contimaed on next page)

\footnotetext{

}
- Page 4 -
(Application to D. F. \& S. 60-mim-Amour, cont'd) -


\begin{tabular}{c} 
Above \\
used: chromium, the following equation was
\end{tabular}
Factor \(=1.000+.0117 \mathrm{Cr}\).


\footnotetext{
For the other elements, a straight-ine relationship
}
(Application to D.E. \& S. 60-mm. Amour, cont(d) -
was assumed:
\begin{tabular}{rl} 
Sulphur factor & \(=1.000-.0014 \mathrm{~S}\) \\
Phosphorus factor & \(=1.000+.0025 \mathrm{P}\) \\
N1ckel factor & \(=1.000+.00364 \mathrm{lil}\) \\
Molybdenum factor & \(=1.000+.032 \mathrm{lio}\) \\
Manganese factor & \(=1.000+.039 \mathrm{ln}\)
\end{tabular}

Frequency Distribution:
Production plates are those subinfted for acceptance tests representing normal production. Experimental plates do not represent the regular product.

Figure 3.


Distribution of Hardenability
of Production Plates.

Figure 2.

(NOTE: The number above each bar in the above figures indicates the actual number of results recorded.)
```

Correlation betweon Hardenability and
Ball1stic INmit:
Page 7 (photostat) shows the relationship
between ballistic limit and hardenability.
It is of decided interest to note that à wide
range of alloy content affects the bellistic limit only
slightIy.
The hardenability - baliistic limit
relationsh1p is shown more clearly on Page 8 (photostat),
using the charting method described in previous reports.

```
```

(Pages 7 and 8, followings
are photostats, foolscap size)

```


(Correlation between Hardenability and Ballistic Limit, cont'd) w

Another way of showing the effect of
hardenabilfty is shown in Figure 3. This chart is drawn from an analysis of the distribution of results in each hardenability group.

Figure 3.


BALLISTIC LIMITS OF DIFFERENT HARDENABILITY GROUPS.
A. - Probable curve of distribution of means of samples of 43 results having hardenability between 2 and 5.9.
B. - Probable curve of distribution of means of samples of 57 results having hardonability between 6 and 9.9 .
C. - Probable curve of distribution of means of samples of 35 results having hardenability between 10 and \(2 \%\).

Generg Dispusejog:
The adverse eftect of heg alloy contert hes beon pointed out proviousin in this somieg of reports. It is assumed that the hagh allog motal tonde to have a dendritio structure whion nomme heat treatmont cannot break up. As hardenobility is reduced, the metel. beomes more and more homogeneous, moth the best structure is obtanned with a herdenability of 6 to 9.9 (assumine Erain
 ond copper).

It seams only reasoneble to eonclude that each of the anberent feotore in the production on amona has fos opthmm range. If these fectors are measured and reeorded. statistical methoos will poznt out the best range mans ropoxt hes shown that hardenability has on optamu range.

It is hoped that by adjuctimg each of tinc matay oblag fectom fnvolved, the nighest posmible quelity or amour plate mey be procuced.

\section*{Gonclusions:}

UNDER MFS PREGENT SYSMES QF MABYFACRURE *

AW BALTSSTTO LTMTT HAS BOS GTOMN TO EXTST:
 USEFUR PUREOSE TMSTHAD. TT RESUTMS TH POORER ARHOUR.
(3) THE CONTROA OE HAROLMBILTTY VIMHEN 5 TO 9.0 Is Theremonis ADVISABJH。

WHIP:PHS

\section*{Apegiox}
charactordsthes of pagtributions and pediabityy of Diference3.

Thre日 groups of badistic Inmte values were prepared for anelyais.

Group A contaned those platom with hardenability factors betwoan \(2^{17}\) gno \(5.9^{n}\) dianetan.

Group \(B\) contained those plates with hamdonablifty factors betwes \(6^{\prime \prime}\) and \(9.0^{n}\) dametors.

Group o contanad those plates wion hardenebility fectons between \(10^{13}\) end \(22^{19}\) dimeten.

The charactoristres or the theo dretributions
\begin{tabular}{|c|c|c|c|c|}
\hline or date were: & Smabol. & Grow & \[
\begin{gathered}
\text { Group } \\
B
\end{gathered}
\] & axoup
\(\qquad\) \\
\hline Average or meants & \({ }^{\prime}\) & 3,902 8ta/gee. &  & 7, \(09050 / 560\) \\
\hline Stendend devatalong & 0 & 54 & 53.6 & 58 \\
\hline Estimated standard deviation of populations & \% & 54.5 & 54 & 59 \\
\hline standexd emron of mean. & \[
x^{\prime}
\] & 8.85 & . 7.25 & 9.97 \\
\hline Standand exror or standard doviation. & \[
\varepsilon_{6}^{m}
\] & 5.94 & 5.06 & 7.06 \\
\hline
\end{tabular}
\(\because 0\)

Qo Could the difference themeang of Groups a and \(B\) occur due to chance olone?
A.
\(t=\frac{x_{1}=7_{2}}{6 x_{1}=\frac{1929}{W_{8}}=\frac{1901}{7.256+9.32}=2.56}\)
If this daforence is due to chence alones it would be expected to ocour anly 304 times in 30,000 . It is highly probeble, thexeforo, thet the oberwed
（Appondix．cont：d）．．．
dithomence is due to hacdeneblinto
Qo Gould tho dbeacanoe in moans betweon group band Gronp G ocont due to ohance atono？

A。

Tf the obgervod defexemee in neans as due to ohamea alone，then atrexences as great on greater than the obsexted difterenco mouta be expected to occur 442 thes in 20,000 that 13 ，the odds axe i．bo 7o that this woud hoppon。 It is guite pobables therefores that the observed duserence ts due to hardenability．

Q．Gound the owgemyen atrenence in means bebweon Group A． and Group o ooux due to chenco silone？

A。

In the othenenee in means 3 s due to chance alooe then bhe obgexved difforenoe．on a gheabers wound bo oxpeoted to ogous 0.882 thmes in 20．000．Theraforos theme 13 no aigntionat affforence betwen these two groups．

A great many sumballed poxperimentar conductod on wax matoriden tatl to take into acounat the phenomenon of variation．imen the oharton page \(\gamma\) is aramined，it oan arsily be sean that acthon basea on arterprotation of a tew resuldu may frequentiry be in exror．Tn the oase of finding the ofrect or hatdenability on bullistio limit，\＆t is neoossary to be ano


\begin{abstract}
that ajl possibindtos on veriatuon ocouriod in each hardgnobituty group. phis method of vaing the hav of large nombers was ftrat pointed ont by Deeves. (a)
\end{abstract}
(1) me voliaation of Stathstioss a how and valuable Afo in Thdustriat Reseawon and in the wvaluation
 sn ghentwo. Maroh Iocs.```

