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Introduc�on
Heavy indicator minerals recovered from stream sediment and �ll samples are commonly used for mineral explora�on in glaciated terrain. The geochemical and isotopic composi�on 
of recovered heavy minerals can be used to determine provenance, deposit type, and guide explora�on programs to prospec�ve areas. As part of the Geological Survey of Canada’s 
Geo-mapping for Energy and Minerals (GEM) Program, �ll samples and stream sediments were collected across a 100,000 km2 region in the southern Northwest Territories, including 
three regions where previous surficial sampling programs under the Protected Area Strategy (Watson 2011a, b; 2013) program recovered high counts of base metal indicator minerals, 
including sphalerite, galena, chalcopyrite, and arsenopyrite. The Pine Point Mississippi Valley-type (MVT) district is present in the eastern part of the study area and is the only known 
poten�al up-ice source of sphalerite and galena mineraliza�on exposed at surface. Despite the poten�al of the region to host addi�onal mineral resources, very li�le explora�on has 
been undertaken outside of Pine Point. Sulphur (δ34S= -14 to 40‰) and lead (207Pb/204Pb= 15.57 to 15.70; 206Pb/204Pb= 18.00 to 18.20) isotope determina�ons by secondary ion mass 
spectrometry, and trace element geochemistry by laser abla�on-induc�vely coupled plasma-mass spectrometry (low Ag, Sb, and Bi; LA-ICP-MS) indicate galena grains were sourced 
from MVT occurrences dis�nct from Pine Point, likely being sourced from within 1 km of peak galena abundance sample sites. LA-ICP-MS and electron probe micro analysis (EPMA) of 
sphalerite grains (high Ge and Zn, low Fe and In) suggest they originated from MVT mineraliza�on that is dis�nct from Pine Point. Sulphur isotopes (δ34S = -44 to +30‰) from 
chalcopyrite grains show poten�al for manto/Kipushi and/or sediment-hosted Cu sources. Arsenopyrite grains are less abundant than other recovered indicator minerals and have δ34S 
signatures (±6‰) similar to orogenic Au systems 380 km northeast of the study area in the Canadian Shield. 

Sample Loca�ons

Middle Devonian

Slave Point Forma�on: dolomi�c and anhydri�c limestone
Wa� Mountain Forma�on dolomi�c shale and limestone
Sulphur Point Forma�on: limestone w/ local dolostone

Middle Devonian undifferen�ated carbonates and shale

Upper Devonian

Lower Cretaceous: undifferen�ated shale, siltstone, and sandstone

Upper Devonian: shale and limestone
Fort Simpson Forma�on: shales, claystones, and limestones
w/ minor interbedded sandstone

Mesozoic

Paleozoic

Figure 1. Loca�on of stream sediment and �ll samples 
collected during the 2017 and 2018 field seasons (Day et al., 
2018; Paulen et al., 2018). Till samples were collected at 
approximately 10-15 km spacings. The large black rectangle 
indicates the Pine Point mining district containing ca. 100 
Pb-Zn ore bodies distributed over 1600 km2 (Hannigan, 
2006). Bedrock geology modified from Douglas (1974) and 
Okulitch (2006).  Ice-flow vectors from Prest et al. (1968); 
Kerr (2006); Bednarski (2008); Huntley et al. (2008), and 
ice-flow history at Pine Point from Ovia� et al. (2015). Arrow 
size indicates rela�ve erosional vigour and numbers indicate 
rela�ve ice-flow chronology. Modified from Paulen et al. 
(2018) 
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Figure 2. Propor�onal dot plots of arsenopyrite, 
sphalerite, chalcopyrite, and galena abundances in 
the 0.25-2.0 mm heavy mineral frac�on (normalised 
to 25 kg of <2mm table feed weight) recovered from 
�ll samples during PAS surveys (Watson, 2011a, b; 
2013). General ice flow direc�on was from northeast 
to southwest (Fig. 1). Classifica�on intervals were 
arbitrarily assigned to control varia�on in the number 
of grains per sample. Bedrock geology modified from 
Douglas (1974) and Okulitch (2006). Note same 
legend as Figure 1. Samples collected in this region 
were analyzed as part of this study.
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Figure 3. Lead isotope bivariate plot of 206Pb/204Pb versus 207Pb/204Pb for galena grains from PAS samples in the Trout Lake and 
Kakisa regions and 2017 �ll and stream samples. Values are compared to data from previous studies at Pine Point and in other 
Presqu'ile-hosted occurrences (yellow field; Cumming et al., 1990; Paradis et al., 2006; Ovia� et al., 2015). Data are plo�ed in 
reference to the shale curve of Godwin and Sinclair (1982). Also shown are data from other SEDEX Pb-Zn deposits (blue field) in 
Yukon Territory and carbonate-hosted Pb-Zn deposits in northern Bri�sh Columbia, as well as values from the Western Canada 
Sedimentary Basin in northern Bri�sh Columbia (green field; Godwin et al., 1988; Paradis et al., 2006). PAS survey and 2017 
stream samples plot proximal to the shale curve with 206Pb/204Pb and 207Pb/204Pb indica�ve of Pb derived from evolved upper 
crustal sources (e.g., Zartman and Doe, 1979; Zartman and Haines, 1988; Krammers and Tols�khin, 1997). 2017 �ll samples 
appear to define a mixing line with a lower crustal source(s), similar to reported sources at Pine Point, indica�ng that lead in these 
samples was likely derived from basement rocks (Paradis et al., 2006; Paulen et al., 2011; Ovia� et al., 2015).
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Figure 4. Histograms of δ34S values from secondary ion 
mass spectrometry (SIMS) analysis from galena grains re-
covered from 2017 �ll and stream sediment samples as 
well as PAS survey galena grains. Values are compared to 
values from deposits hosted in Presqu'ile dolomite, and 
manto systems in Peru (MacFarlane and Shimizu, 1991; 
Paulen et al., 2011; Ovia� et al., 2015). 
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Figure 5. δ34S composi�on of chalcopyrite grains 
recovered from 2017 �ll, stream sediments, and PAS 
survey samples. Values are compared to data from 
sediment-hosted Cu deposits in Africa, manto deposits in 
Peru and the Ruby Creek Kipushi-type deposit (Runnels, 
1969; Ripley and Ohmoto, 1977; El Desouky et al., 2010). 
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Figure 6. Histograms of δ34S values from arsenopyrite grains recovered from 2017 �ll  and PAS survey samples. Values are compared to data from two orogenic Au systems 
near Yellowknife, NWT (Wanless et al., 1960) and arsenopyrite found in Meguma-type Au systems (Kontak and Smith, 1988).

Sphalerite Geochemistry

Figure 7. Geochemistry of sphalerite from PAS survey samples (A and C) and 2017 �ll and stream sediment samples (B). In Figures 7A and 7B, samples are compared to 
Fe/Zn ra�os from sphalerite found in various seafloor hydrothermal systems around the world (Keith et al., 2014) as well as sphalerite collected from bedrock and �ll 
samples in the Pine Point mine area (Ovia�, 2013). In Figure 7C, the parts per million (ppm) of Ge and In in PAS survey samples are plo�ed against values from various 
deposits, covering a temperature range 300-410oC, studied by Cook et al. (2009) and Ye et al. (2011). The incorpora�on of Fe and In in sphalerite is most efficient at higher 
temperatures (T>250oC; Cook et al., 2009; Ye et al., 2011; Keith et al., 2014). Note logarithmic scale in Figure 7C.
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Galena Geochemistry
Figure 9. Sca�erplot of Ag versus Sb+Bi in galena grains from PAS survey samples 
compared to data from various deposits around the globe (George et al., 2015). The 
incorpora�on of Ag, Sb, and Bi is most efficient at temperatures between 350oC and 
400oC; at these temperatures galena can incorporate several wt.% Ag (George et al., 
2015).  Note, the high values from Baita Bihor are the result of Bi enrichment in the host 
rocks (George et al., 2015).   
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Implica�ons
- Sphalerite and galena grains were not likely sourced from Pine Point;
- Low Fe and In, high Zn and Ge in sphalerite and low Ag, Sb and Bi in galena indicate that grains likely formed in low temperature environment, possibly MVT-style se�ng
- δ34S of chalcopyrite grains indicates poten�al for manto/Kipushi-type and/or sediment-hosted Cu in the region;
- δ34S signatures of arsenopyrite are similar to those of orogenic Au deposits near Yellowknife and were likely sourced from similar orogenic Au-systems up-ice of study area in
   the Canadian Shield
- Previous provenance studies in Pine Point region (Ovia�, 2013) showed that within 700 m down-ice transport, �ll samples generally contain at most tens of galena grains 
   therefore, it is suggested that galena grains have travelled < 1 km from their source;
- Recommended future explora�on should be focused in carbonate units proximal to the faults in the region including the Cameron Hill Structure, Trout Lake, Rabbit Lake, and
   Tathlina Lake fault zones (Fig. 1)
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