
•

DATA COMPRESSION AND

COMPUTATION SPEED

Catherine R.W . Duff

Internal Report 86-17

Geological Survey of Canada

Energy , Mines and Resources

Ottawa, April; 1986

Geophys i cs Division

mszadurs
Transparent Narrow

Data compression and Computation Speed

Introduction

It has been proposed that Yellowknife Array data should be compressecl
so as to take up less digital storage space. This might be useful for satellite
transmission and/ or for storage of continuous data on optical disk. A proposed
method involves taking the differences between consecutive data points, (since
the diff erences are usually small numbers), and storing most of them as 8-
bit numbers. Where the differences are too large, 2-byte or 4-byte numbers
would be used. For this method to work efficiently, most of the differences
must be small enough to fit into 8-bit numbers. This report investigates what
percentage of differences of the YKA data are that small. For comparison,
ECTN, GAC, RSTN, SRO and DWWSSN data are also examined. A set of
computation-speed experiments is carried out on the /!VAX to test how much
time would be required to translate into :m<l out of compressed format ann to
beamform.

Data Samples

For this study it was desirable to obtain a random sample of YKA data .
This is difficult, because data are saved only when triggers occur. If t he trigger
is on noise, that noise is likely to be higher t han average; if the trigger is on
a signal, the noise preceding the signal may tend to be lower than average.
This problem was solved in the following way: files with large amplitudes were
chosen from the trigger list. These were taken two from each month of the
13-month period Jan. 1985 to Jan. 1986, to obtain a good sampling of various
seasons. All but one of these were seismic events with high amplitude impulsive
onsets. The one with emergent onset was discarded, and the noise preceding
the onset was taken in each of the others. This set of 25 noise samples, about
16 seconds long each, should be a good random sample of noise.

A random sample of triggered files {whether the trigger was on noise or
events) was also desired, to get a sample of the larger amplitudes which occur.
For this purpose, The first triggered file was taken from one tape in each month
the 13-mouth perio<l.

For ECTN and GAC, five triggered files were chosen. Severa! of the sta
tions were very spikey; transmission problems had garbled the data and pro
duced very large numbers. The data wcrc scparatcd into spikcy and non-spikcy
stations for each file {the spikey stations were not always the same between
files). For GAC, both vertical and horizontal short period data are used.

1

The RSTN, SRO and DWWSSN data are the stations which triggcred
on the Dec. 23, 1985 Nahanni event. For threc stations, it was not oh\"ious
whether the first arriva! was before the beginning of tl~ file. These stat.jons
were not used. Four stations which triggered on the event remained in each
network. The short period vertical noise between the beginning of each fil e and
the first arriva! was used. The noise samples thus obtained were 11-90 seconds
long.

Distribution of Differences

The distribution of sizes of differences for various stations and networks
are shown in Figures 1 to 7. In these histograms, the x-axis represents a
function f of the differences .6.i between consecutive data points (X i - Xi- 1) in
the seismograms, where

f (.6.i) = 0
log2 l .6.i 1 < f (.6.i) ~ log2 J .6.i 1 + 1
and f (~i) is always an integer.

if .Ô.i = 0
if .Ô.i > 0,

Thus, for example, f = 3 represents .Ô.i = ±4, fi, G, or 7. f can be thu.ught
of approximately as the number of bits required to represent the number D.i.
There are 256 possihle combinations of l's and O's which fit into 1 byte (8
bits). Of these, 255 can be used to represent the numbers from -127 to + 127;
the remaining combination can be a flag to signal that the next few bytes will
contain a number in expanded format. All the numbers with f from 0 to 7
inclusive (.6.i from -127 to + 127) can be represented in one byte, with one code
left over to signal that a larger number is to be repre_sented in the following
bytes. On each plot is marked the percentage of data points for which f ~ 8,
i.e. the percentage which must be represented by more than 1 byte. The y-axis
is the number of occurrences of differences with the given f(.6.i); the absolute
size of these numbers is dependent on the number of data samples processed ,
and can be ignored, but the relative heights of the bars on each plot gives the
distribution of the differences.

Table 1 gives the percent of samples with f ~ 8 (i. e. the percent of samples
requiring more than 1 byte of storage) for the various stations and networks
examined.

Evaluation of Storage Efflciency

For the YKA noise, a very low percentage (.005%) of samples require more
than 1 byte. For the triggered files, the percentage is much higher (3.25%) but

2

still small. Let us do a rough calculation to see how efficient it would be to
store YKA data in compressed form.

Suppose there are 20 triggers per day, with th~trigg·ered files 2 •"!l inutes
long, and suppose that outside these files the data has the characeristics of the
random noise sample in this study (only .005% of data requiring more than 1
byte), and inside those triggered files it is like the triggered files studied here
(3.25% requiïing more than 1 byte).

(40 minutes/day) (3.25%) + (23h. 20min) (.005%) = .095%

So, for .095% of the data, an extra 4 bytes are required. The average
number of bytes per sample is therefore 1 +4x .095% c.::: 1.004 bytes. T his is very
nearly as good (from the point of view of storage space) as if all the samples took
only 1 byte each. Even if 8 bytes were used for the larger numbers, the storage
would still average only 1.008 bytes per sample. Hardly any savin gs wou ld be
achieved by using only 2 extra bytes for the large numbers: the average would
be 1.002 bytes per sample. In conclusion, under these conditions, YKA data
could be compressed to very nearly half of its former storage requirements.

For ECTN, the non-spikey stations are about as good as YKA, lookin g j ust
at the number of samples requiring extra storage space, though the sampling
rates, instrument response, and distribution of the small numbers are different.
However, with the spikey stations, a.bout 5% of the differencP« are numbers too
large for 1 byte. This suggests that storage efficiency would not be as good if
data with spikes and transmission problems are compressed. The spikey sta
tions have a very different distribution from the non-spikey: a preponderance
of zeroes and of very large differences. Assuming thAat the real, uncorrupted
data are similar to the good stations, this suggests that most or all of t he data
from those stations was corrupted, since merely the occasional spike would not
change the distribution much. Excellent savings could still be made, however.
Even if the spikey condition held continuously at all stations, the data would
only average 1.2 bytes per sample (assuming 4 ext ra bytes for large numbers)
or 1.1 bytes per sample (assuming 2 extra bytes for large numbers).

GAC has different instrument response from ECTN and 30 sps sampling
rate compared t o ECTN's 60 sps. It is therefore not surprising that its distri
bution of differences differs from that of the ECTN stations.

It appears that data compression might be feasible for ECTN and GAC,
but no definite conclusions can be made from the small data sample used here.

For RSTN and DWWSSN data, compression would be feasible.
For SRO, the proposed data compression scheme would be a dismal failu re.

There are very few small differences which could fit into 1 byte. This is because

3

of the digitization scheme used by that network, which reprf'sents a, Yery t in)
amount of ground motion in one digital count .

The percentage requiring more than 1 byte per sample dep ends not only
on the ground motion, but also on the digitization level, that is , the amount of
ground motion represented by one digital count. With the present instrument
response, digitization level and 20 sps sampling rate, YKA short period data
could be compressed to take only very slightly more than half its present storage
requirement: that is, it could take slightly more than 1 byte per sample on
average.

Computation Speed on the MicroVAX: Data C omp r ession

In order to test how much computation time would be required fo r a
compressed data format, two subroutines were written to translate into and
out of a compressed format. A description of the compressed format , and a
copy of the program are in the Appendix. A YKA short period data file of 2432
samples in each of 18 channels (about 122 seconds of real-time data) was rea<l
into the µVAX and translated back and forth 100 times. It took 10 seconds t o
read in the data, 78 seconds to translate forwards 100 times , and 93 seconds to
translate back 100 timcs. From this wc can concludc that it took .93 sccimds
to translate all the data back once. (That is 0.76% of real tiine.) Since read ing
the data off disk took about 10 times as long as translating, it is reasona.ble
to guess that it might take less time to read in compressed data and translate
than to read in full format data. However, since the compressed data varies
in length, it may take more time searching for the right block of data. The
computation time for forward translation was 0.64% of real tiine. Therefore
compression in real time of all the data would take 01lly a small part of the
CPU time of a µVAX. .

Computation Speed on the Micro VAX: Beamforming

In order to test the time it would take to beamform on the µVAX, a
program was written which forms all 121 beams from 18 substations. It was
tested on the same file (2432 samples per channel) used in the previous section ,
and took 108 seconds to form all beams 3 tünes. That is 29.5% of real time.
That is a large part of the CPU time of a µVAX to dedicate full-t ime. It
may be possible to write a more efficient beam-forming program. The program
used here has several addition operations to manipulate array indices for every
addition operation which is used directly in the beam-forming process.

4

Comments on Da ta Compression

If a data compression schcmc is considcr r d, wc mn<it look at for follcrn in<
questions.

(1) How mu ch data would becornc indccyphen1 hl<' if a f<•w bytrs \l'C'l'1'

somehow lost?
(2) Would the rules for translating back ever become lost or forgotten?
(3) Would there be only a few people who would know ho"· to access thr

data?
(4) Would newer computers or compilers be uuahle to support the requirecl

byte manipulation at a reasonable speed?
(5) How much time would be spent writing p rograms to translate one \ray

or the other? Would the translation program need t o be re\\Titten for various
different computers and compilers? It took me about 3/ 4 of a day to write,
but not fully test , a FORTRAN program for the µVAX to translate into and
out of compressed format. One for actual use would bt much more complex,
involving, for example, times inserted at regular int en-al5.

(6) Would transla tion be reasonably fast on all computers - even future
ones which might not b e designed t o h andle manipulaf on of sino-}p bytes efti
cient ly?

(7) Since the compressed data va ries in len gth , time~ must be writteu i11
nw1·e often than with full format data.

(8) In the worst case , d uring a la rge cvent , if :.ill the numbers werc very
large, over 150% of the preYious st orage space would be reqnirPd.

(9) In the worst case, if we didn 't debug our progr?m"' pr0pcrly, we would
end up with an optical disk filled with a g·igabyte of meauingle5S l's and O's.

1 recommend that if some such compression scheme is nsed, th en au ASCII
file should be written in t he beginnin g of every optica.l <lisk (or other storage
medium) containing compressed data. This file shoul<l explaiu the compres
sion scheme in English (and French ?) and con tain a copy of a program in
FORTRAN for transla ting back. Other information, such as date, inst rument
response, etc., might also be written there.

5

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Table I

Percent of data
samples with f 2:: 8

.005%
3.25%
5.25%
0.01%
4.9%
0.22%
90%
99.4%
26%

1

25 files
13 files
25 files
5 files
5 files
5 files
4 stns.
4 stns .
4 stns.

Station or network

YKA, random sample of noise
YKA, triggered files
YKA, large events
ECTN, non-spikey stations, triggered file5
ECTN, spikey stations, same files
GAC, same files as ECTN
RSTN, Dec. 23 /85 noise
SRO, Dec. 23 / 85 noise
DWWSSN, Dec. 23 /85 noise

çoooo

lfDOOO

y,

';:) 30000
~

t
~

~
Ci(_ lOOOO

~
2::
::::>
~

/0000

0

YKA hoise

O.oo5'1o .P~SJ

- ca" be
1

sfor~d in ~I
one byte

l-7ca,.,'~ be
stor~J '" - 1
one b1t-e

1

-
1

1 -
1

1 -
1

-
1

1

~b 1 1.1 I I 1 0 n
0 2 3 l.f f) 6

f(~c:)
1- 'b 1 ID JI 1'1..

F13. 1. H1·s+ojr-a""' of cJ,·.ffere .. ceç be+wee11 co11sec.l.(~1've. d~to.. poir7tS, .Por ra,,.,Jow.
SO.Mple. oP f'!o1'çe o.+ VkA. The fu.ncl-10YJ .P 1s expla1ned ,,.., .#.e .f.exf .P:;?:: ~for
o.ooi;;c-ro 1>f tlie data.

1

1

1

1

1

1

1

V
'>

1

~

ç '0

C
)<:)

"' '-
f\\

~

o
-; c

r
-
~

_

1
-;--

~

"
(

l;)

~

N

>
--

ç
n

-
-

-
-
-
-

-

[

1

1

-
-

-
-
-
-
-
-
-
-

-
-
-
-
'!

-
-

-

1 1

1

-
-

1

c (
)

(
)

c N

(
)

0
-,.._

(Y
\ [

c=

-
-

-
-

1

0

()Q

/
1
-
~

~

c..,-
'-D

N

\.,)
.C

l}
\.L

;;)-

M

('/

0

-
-
-

-
-

-

0
ri

1

...-~
\./\

-+
-

--
'<;;::

~

~

c -
Il)

/\\
Il)

C
t--

l:J
c

0
-

0
~

1

~

\.r)
c-"

-
-
-

-
-

-
-

-
-
-
-

-
>--

LO
1

OO

N
-,......_

. ._,
<J

'--'

1
C

\-
'-0

M

1
V

,
-
~

\C

1
::t-

1
M

1
"'

1

1
0

0

1

c C
>

<>

~

V
l

>::
0

--+=
~
 1)\ >-...

11.J

~
 a
_

V

'

' ~ 0 s;::

2 \-0 w
 1 ()C

f\\
c:+-

~

-0 0

-
-0 C
>

0 0

""'

-
-

-
-

-
-

L

L
-

-
-
-

r
-

-
-

-
-

-
-1

-
-8 0

.....

-"' rJ ri

~

-
-c -

0

rz,0000

100000

~DODO

EC TN sf' ·key sfuti°tms

4.1% .p ~ ~

_r::t r=1 ri _r==-__r==. _ __1__J____r.=--_i::=-~~-~---l.

/ o Il 12 13
.f{ë,,:J

,,- /~ Ir Ill 19

C/C
f\\

L
t-

~

u
«

I
c:::t:::

ri>

(._!)
0

1

1

-0 C
>

c a

-
-1

-

8 0
Q

O
 -

-
-

-
-

-
-

1

1

-
-

1

1

-g 0
N

c
C::>

-,.-1

-
-

-
-

c=
 0

0

(7Q

;:::
!\\

<:.+-
\-C

f) ,,e
~

0

O
O

-
-
-
-
-
-
-
-
-
-
-
-
-

-
-

-[
rt--

1
'-0

J't'..

1
ln

-
~

ll:

1
~

1

1

1

1
c

s
C

>
0

0

c <>
...

[

~
~

,,
~

J
3

7
d

 w
/;/s

:JO

?
J'3

9
H

flN

(V
)

-~

::::

~

0
-

°" ,....

'<>
o.;
-~

i.,
1-i:

~

t"'l ,.-<1
..... J

r-1""<-

'11
•
•
 ,.

'

,.'f
,..'

t~
'.

.
.

~· '

-
-
-
-
-
-
-

1
:z

'\:)<)

V
)

~

V
)

':+

$
-

-
-

-
s

~

A

0

1

1

l

'

-
-

-
-

-
-

-
-

-

1

[

~

c:
&

~

g
,..>

2
.

.,.
-

-:s-

5 3-Jd """vs
::JO

-;y:;g wnrv

-.. 0
rJ -

-0

~

c 0

0

A p p en dix

Programs Trab and Bearn, used in computation speed experiments on the
µVAX, and a description of the data compression scheme used in the program
TRAB.

1

t

1

Data Compression Scheme .
The data compression scheme used in the program TRAB is as follows.

The 1-byte number 128 (binary 10000000) is used as a flag to signal that the
next four bytes contain a 4-byte integer which is an actual value of the data, not
a difference between two values. If this flag does not occur, it is assumed that
the data are stored as 1-byte infejen which are differences between consecutive
values. The first byte in the sequence of compressed data is always the flag
128, followed by the first value of the data, in 4-byte format. 1-byte differences
6-i are recorded whenever -127 5 Ô i 5 +127; otherwise the flag 128 and the
4-byte value are recorded.

-127 5 6-i 5 127

' h
j

. ..

(

(

(

(

2

c
c
c

c
c

c

c

c

c

c

t r anslates into compressed format and back.

include 'tsf2 h '
inc lude 'otsf2. h'

by getind and getwvf,

1 These two include files are used
which read in SAM format files.

chararter*BO filnam
jnteger idata<3000,20)
integer icdataC3000,20J
character*8 ctim
integer nic(20)

call t1me<ctim)

1 full format data,
compressed data
time
number of bytes

type ' (lx,' 'The time is nou.t '',a8)',ctim

type ' (
accept

" input Ytt..A filename:
'(a80) ', filnam

cal] time(ctim)

'',$)'

20 channels

in compressed data

type ' (lx,' 'The time is now('',a8)',ctim

open (L fi le=fi lnam, status= 'old ', form= 'unformatted ',
+ access='direct', recl=512, readonly)

call getind(1)
, d ec = 1
1u nit == 1
tlen = 500
do icomp=L 18

c get 18 substations
call getwvf(idata(L icomp),ns(icomp), icomp, start(icomp),

+ tlen, idec, iunit, ierr)
c now idata(ns) is time series (integer)

c

c

c

+

c

c

c

+

end do
nsamp = ns(l)

time(ctim) call
type
ti~ p e

'(lx, ''The time is now '',a8)',ctim
'('' (about to start trans)")'

do i i=L 100
do icomp=L 18

******* TRANSLATE INTO COMPRESSED FORMAT *******
call trans(nsamp, idata(L icomp), icdata(L icomp),

nic(icomp))
end do

end do

call timeictim)
type '(lx, ''The time is now

do i i=L 100
do icomp=L 18

'',a8)' ctim

******* TRANSLATE BACK ******

end do
end do

call transb(nsamp, idata(L icomp), icdata(L icomp),
nic<icomp))

2

'··
c a ll t1rne(ctirn)
tt3p e ' (lx , ''The tirne is now

i -- i + 1
stor
e nd

I I J aB) c t i rn

c

C************************** ***** * * *** ********************* * **
c

c
c
c

c
c

c:
c

c

s ubroutine trans<nsarnp, iseis, icornp, ncomp)
compacts data iseis into icornp
nsamp is number os sarnples (input)
ncomp is number of bytes comp r es s ed data (output)
in te g e r *4 i se i s (1) ~ input
byte icomp(l) ! output
integer*4 idif
byte ibdif(4)
equivalence (ibdif(l) , idif)
common/tracm/icptr

i c ptr :::: 1

first sample is recorded as 4 bytes
c a 11 b i g (i se i s, i c omp, 1)

d o i=2,n s arnp
idif = iseis(i) - iseis(i - 1)
if (iabs(idif) . lt. 128) then

c one-byte difference
icomp(icptr) = ibdif(l)
icptr = icptr + 1

c

c

c
c
c

c
c

c

el se
4-byte value
call big(iseis, icomp, i)

end if
end do

ncomp = icptr - 1
return
end

subroutine big (iseis, icomp, nn)
transfer one sample from iseis ta icomp in
4-byte format, with '128' flag preceding it.

integer*4 iseis(1)
byte icomp(l>
integer*4 i128
byte ib128(4)
equivalence (i 128, ib 128(1) >
integer*4 ibig
byte ibbig<4>
equivalence (ibig, ibbig(l>)
data i128 / 128/
common/tracm/icptr

p ut in f 1 a g ' 128 '
icomp(icptr) = ib128(1)

(

(

2

\, 1 w J 1 ~ t t' 1 •+ -- o t:i 1; e 1 1 u m n e r

ibig = iseis(nn)
do i=L4

icompCicptr + i) - ibb1g(i)
end do

icptr = icptr + r,

return
enà

c

C ~***
c

c
c
[

c

c
c

c

c

subroutine transb (nsa mp .. iseis, icomp, ncomp)
translates compressed data icomp back into
full format iseis

integer*4 iseis\1)
byte icompC1)
in te g er ·li-4 id if
byte ibdif(4)
equivalence (ibdif(l), idi-F>
common/tracm/icptr, isptr
integer*4 i128
byte ib128(4)
equ1valence (i128, ib128(1))
data i128 / 128/

icptr = 1
isptr = 1

decode fir st sample ('128' + 4 bytes)
call decbig(iseis, icomp)

do while(icptr . le. ncomp)
if(icomp(icptr) . ne. ib128(1)) then

single byte difference

el se

idif = icomp(icptr)
iseis(ispt r) = iseis<isptr-1) + idi f
isptr = isptr + 1
icptr = icptr + 1

c 4-byte value

c

c

end do
end

end if
call decbig(iseis, icomp)

subroutine decbig(iseis, icomp)
transfer 4-byte number fro m icomp ta iseis
integer*4 iseis(l)
byte icomp(l>
int eger*4 iss s
byte ibsss(4)
eq_uivalence (isss, ibsss)
common/tracm/icptr, isptr
do i=L 4

ibsss(i) = icomp(icptr + i)
end do

iseis(isptr> = isss
isptr = isptr + 1
icptr = icptr + 5

return
end

('

c
c
c

(r:

(

(

(

2

c

c
c

c
c

c

c

c

c

c

c

c
c

c
c

..
F 1 L'lj 1 dlll u t=dfll

reads in a yka file
forms 121 beams
does nothing w1th them
purpose: check computation spee d of MicroVAX

include 'tsf2. h
inLlude ' otsf2 . h'
r haracter*BO filnam
in te g Pr i off (20, -- 5: 5)
in teger ixbeam(6100, -5: 5), iybeam(6100, -5 : 5), ibeam<6100, -5: 5, --5: 5)
integer idata(6100,20)
character11·8 ctim
common/bem/nsamp

call t1me(ctim)
type '(1x,a8)',ctim

initialize constant io ff , the delays for beam summing.
do ich = L 10

do ixb :=: -5,5
ioff(ich,ixb) = - (ich - 5) * ixb

end do
end do

do ich = 1L17
d 0 i y b = -5, 5

ioff(ich, iyb) = - (ich - 18) * iyb
end do

end do
note: these delays may not be correct

type '(
accept

' ' input YKA filename:
'(a80) ', filnam

call time(ctim)
type ' (1 x, a8) ', c t i m

'',$)'

open(1, file=filnam, status='old ', form='unformatted ',
+ access='direct',recl=512,readonly)

call getind(l)
idec = 1
iunit = 1
tlen = 500
do icomp=L 18

read in 18 substations
call getwvf(idata(L icomp),ns(icomp), icomp, start(icomp),

+ tlen, idec, iunit, ierr)
now idata(ns) is time series (integer)

end do
nsamp = ns(l) assume all substations have same number

of samples
type'('' number of samples: '',i10)',nsamp

call time(ctim)
type ' (" about to start beamforming ")'
type '(lx,a8)',ctim

useless extra loop to make it take longer

2

1.

c

c
c

c

c

cal 1 form(ioff, i xbeam, iybeam, ibeam, id a ta)

end useless extra loop
end do

c a ll time(ctim)
type ' (lx, a8) ', ctim

stop
e nd

c

c**
c

c
c

c
c

c
c

c
c

c
c

c
c

+
+

+
+

+

subroutine form(ioff, i xbeam, iybeam, ibeam, id a ta)
integer ioff(20, -5: 5)
integer ix beam(6100, -5: 5), iybeam(6100, -5: 5), ibeam(6100, -5: 5, -5: 5)
integer idata(6100,20)
common/bem/nsamp

form N-S beam
nbsamp = nsamp - 70 ! number of data points in beams
do ixb = -5,5

doO isamp = 1,nbsamp

end do
end do

form E-W beam
do iyb = -5, 5

form beam leaving out 35 samples at each end
for mere programming convenience
ixbeam<isamp, ixb) = 0
do ich = li 10 ~ 10 Blue stations

end do

i x b eam (i samp , i x b) =
ixbeam(isamp, ixb) +
idata(isamp + 35 + ioff(ich, ixb), ich)

do isamp = 1,nbsamp

end do
end do

form beam leaving out 35 samples at each end
for mere programming convenience
iybeam(isamp, iyb) = 0
do ich = 11. 18 ! 8 Red stations

iybeam(isamp, iyb) =
i ybeam(isamp, iyb) +
idata(isamp + 35 + ioff(ich, iyb), ich)

end do

form 121 beams from N-S and E-W beams
do ixb = -5,5

end do

do iyb = -5,5

end do

do isarnp = 1,nbsamp
ibeam(isamp, ixb, iyb) = ixbeam(isamp, ixb) +

iybeam(isamp, iyb)
end do

beams have been formed

return
end

