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Data compression and Computation Speed

Introduction

It has been proposed that Yellowknife Array data should be compressed
so as to take up less digital storage space. This might be useful for satellite
transmission and/or for storage of continuous data on optical disk. A proposed
method involves taking the differences between consecutive data points, (since
the differences are usually small numbers), and storing most of them as 8-
bit numbers. Where the differences are too large, 2-byte or 4-byte numbers
would be used. For this method to work efficiently, most of the differences
must be small enough to fit into 8-bit numbers. This report investigates what
percentage of differences of the YKA data are that small. For comparison,
ECTN, GAC, RSTN, SRO and DWWSSN data are also examined. A set of
computation-speed experiments is carried out on the puVAX to test how much
time would be required to translate into and out of compressed format and to
beamform.

Data Samples

For this study it was desirable to obtain a random sample of YKA data.
This is difficult, because data are saved only when triggers occur. If the trigger
is on noise, that noise is likely to be higher than average; if the trigger is on
a signal, the noise preceding the signal may tend to be lower than average.
This problem was solved in the following way: files with large amplitudes were
chosen from the trigger list. These were taken two from each month of the
13-month period Jan. 1985 to Jan. 1986, to obtain a good sampling of various
seasons. All but one of these were seismic events with high amplitude impulsive
onsets. The one with emergent onset was discarded, and the noise preceding
the onset was taken in each of the others. This set of 25 noise samples, about
16 seconds long each, should be a good random sample of noise.

A random sample of triggered files (whether the trigger was on noise or
events) was also desired, to get a sample of the larger amplitudes which occur.
For this purpose, The first triggered file was taken from one tape in each month
the 13-month period.

For ECTN and GAGC, five triggered files were chosen. Several of the sta-
tions were very spikey; transmission problems had garbled the data and pro-
ducced very large numbers. The data were scparated into spikey and non-spikey
stations for each file (the spikey stations were not always the same between
files). For GAC, both vertical and horizontal short period data are used.
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The RSTN, SRO and DWWSSN data are the stations which triggered
on the Dec. 23, 1985 Nahanni event. For three stations, it was not obvious
whether the first arrival was before the beginning of tlye file. These stafjons
were not used. Four stations which triggered on the event remained in each
network. The short period vertical noise between the beginning of each file and
the first arrival was used. The noise samples thus obtained were 11-90 seconds
long.

Distribution of Differences

The distribution of sizes of differences for various stations and networks
are shown in Figures 1 to 7. In these histograms, the z-axis represents a
function f of the differences A; between consecutive data points (z; — z;—;) in
the seismograms, where

f(A:) =0 if A; =0
logs [Ad] < f(A:) < loga |Ai]+1 i A; > 0,
and f(A;) is always an integer.

Thus, for example, f = 3 represents A; = +4,5,6, or 7. f can be thought
of approximately as the number of bits required to represent the number A;.
There are 256 possible combinations of 1’s and 0’s which fit into 1 byte (8
bits). Of these, 255 can be used to represent the numbers from -127 to +127;
the remaining combination can be a flag to signal that the next few bytes will
contain a number in expanded format. All the numbers with f from 0 to 7
inclusive (A; from -127 to +127) can be represented in one byte, with one code
left over to signal that a larger number is to be represented in the following
bytes. On each plot is marked the percentage of data points for which f > 8,
i.e. the percentage which must be represented by more than 1 byte. The y-axis
is the number of occurrences of differences with the given f(A;); the absolute
size of these numbers is dependent on the number of data samples processed,
and can be ignored, but the relative heights of the bars on each plot gives the
distribution of the differences.

Table I gives the percent of samples with f > 8 (i.e. the percent of samples
requiring more than 1 byte of storage) for the various stations and networks

examined.

Evaluation of Storage Efficiency

For the YKA noise, a very low percentage (.005%) of samples require more
than 1 byte. For the triggered files, the percentage is much higher (3.25%) but
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still small. Let us do a rough calculation to see how efficient it would be to
store YKA data in compressed form.

Suppose there are 20 triggers per day, with the.triggered files 2 sninutes
long, and suppose that outside these files the data has the characeristics of the
random noise sample in this study (only .005% of data requiring more than 1
byte), and inside those triggered files it is like the triggered files studied here
(3.25% requiring more than 1 byte).

(40 minutes/day) (3.25%) + (23h. 20min) (.005%) = .095%

So, for .005% of the data, an extra 4 bytes are required. The average
number of bytes per sample is therefore 14+4x.095% = 1.004 bytes. This is very
nearly as good {from the point of view of storage space) as if all the samples took
only 1 byte each. Even if 8 bytes were used for the larger numbers, the storage
would still average only 1.008 bytes per sample. Hardly any savings would be
achieved by using only 2 extra bytes for the large numbers: the average would
be 1.002 bytes per sample. In conclusion, under these conditions, YKA data
could be compressed to very nearly half of its former storage requirements.

For ECTN, the non-spikey stations are about as good as YKA, looking just
at the number of samples requiring extra storage space, though the sampling
rates, instrument response, and distribution of the small numbers are different.
However, with the spikey stations, about 5% of the differences are numbers too
large for 1 byte. This suggests that storage efficiency would not be as good if
data with spikes and transmission problems are compressed. The spikey sta-
tions have a very different distribution from the non-spikey: a preponderance
of zeroes and of very large differences. Assuming that the real, uncorrupted
data are similar to the good stations, this suggests that most or all of the data
from those stations was corrupted, since merely the occasional spike would not
change the distribution much. Excellent savings could still be made, however.
Even if the spikey condition held continuously -at all stations, the data would
only average 1.2 bytes per sample (assuming 4 extra bytes for large numbers)
or 1.1 bytes per sample (assuming 2 extra bytes for large numbers).

GAC has different instrument response from ECTN and 30 sps sampling
rate compared to ECTN’s 60 sps. It is therefore not surprising that its distri-
bution of differences differs from that of the ECTN stations.

It appears that data compression might be feasible for ECTN and GAC,
but no definite conclusions can be made from the small data sample used here.

For RSTN and DWWSSN data, compression would be feasible.

For SRO, the proposed data compression scheme would be a dismal failure.
There are very few small differences which could fit into 1 byte. This is because
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of the digitization scheme used by that network, which represents a very tiny
amount of ground motion in one digital count.

The percentage requiring more than 1 byte per sample depends not only
on the ground motion, but also on the digitization level, that is, the amount of
ground motion represented by one digital count. With the present instrument
response, digitization level and 20 sps sampling rate, YKA short period data
could be compressed to take only very slightly more than half its present storage
requirement: that is, it could take slightly more than 1 byte per sample on
average.

Computation Speed on the MicroVAX: Data Compression

In order to test how much computation time would be required for a
compressed data format, two subroutines were written to translate into and
out of a compressed format. A description of the compressed format, and a
copy of the program are in the Appendix. A YKA short period data file of 2432
samples in each of 18 channels (about 122 seconds of real-time data) was read
into the uVAX and translated back and forth 100 times. It took 10 seconds to
read in the data, 78 seconds to translate forwards 100 times, and 93 seconds to
translatc back 100 times. From this we can conclude that it took .93 scconds
to translate all the data back once. (That is 0.76% of real time.) Since reading
the data off disk took about 10 times as long as translating, it is reasonable
to guess that it might take less time to read in compressed data and translate
than to read in full format data. However, since the compressed data varies
in length, it may take more time searching for the right block of data. The
computation time for forward translation was 0.64% of real time. Therefore
compression in real time of all the data would take only a small part of the
CPU time of a uVAX. ’

Computation Speed on the MicroVAX: Beamforming

In order to test the time it would take to beamform on the uVAX, a
program was written which forms all 121 beams from 18 substations. It was
tested on the same file (2432 samples per channel) used in the previous section,
and took 108 seconds to form all beams 3 times. That is 29.5% of real time.
That is a large part of the CPU time of a uVAX to dedicate full-time. It
may be possible to write a more efficient beam-forming program. The program
used here has several addition operations to manipulate array indices for every
addition operation which is used directly in the beam-forming process.



Comments on Data Compression

If a data compression scheme is considered, we mu-t look at the following
questions.

(1) How much data would become indecypherable if a few bytes were
somehow lost?

(2) Would the rules for translating back ever become lost or forgotten?

(3) Would there be only a few people who would know how to access the
data?

(4) Would newer computers or compilers be unable to support the required
byte manipulation at a reasonable speed?

(5) How much time would be spent writing programs to translate one way
or the other? Would the translation program need to be rewritten for various
different computers and compilers? It took me about 3/4 of a day to write,
but not fully test, a FORTRAN program for the uVAX to translate into and
out of compressed format. One for actual use would be much more complex,
involving, for example, times inserted at regular intervals.

(6) Would translation be reasonably fast on all computers — even future
ones which might not be designed to handle manipulation of single bytes effi-
ciently?

(7) Since the compressed data varies in length, times must be written in
more often than with full format data.

(8) In the worst case, during a large event, if all the numbers were very
large, over 150% of the previous storage space would be required.

(9) In the worst case, if we didn’t debug our programs properly, we would
end up with an optical disk filled with a gigabyte of meaningless 1’s and 0's.

I recommend that if some such compression scheme is used, then an ASCII
file should be written in the beginning of every optical disk (or other storage
medium) containing compressed data. This file should explain the compres-
sion scheme in English {and French?) and contain a copy of a program in
FORTRAN for translating back. Other information, such as date, instrument
response, etc., might also be written there.
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Table 1

Percent of data
samples with f > 8

.005% 25 files
3.25% 13 files
5.25% 25 files
0.01% 5 files
4.9% 5 files
0.22% 5 files
90% 4 stos.
99.4% 4 stns.
26% 4 stns.

Station or network

YKA, random sample of noise

YKA, triggered files

YKA, large events

ECTN, non-spikey stations, triggered files
ECTN, spikey stations, same files

GAC, same files as ECTN

RSTN, Dec. 23 /85 noise

SRO, Dec. 23 /85 noise

DWWSSN, Dec. 23 /85 noise
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Appendix

Programs Trab and Beam, used in computation speed experiments on the
p#VAX, and a description of the data compression scheme used in the program
TRAB.
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Data Compression Scheme

The data compression scheme used in the program TRAB is as follows.
The 1-byte number 128 (binary 10000000) is used as a flag to signal that the
next four bytes contain a 4-byte integer which is an actual value of the data, not
a difference between two values. If this flag does not occur, it is assumed that
the data are stored as 1-byte integers which are differences between consecutive
values. The first byte in the sequence of compressed data is always the flag
128, followed by the first value of the data, in 4-byte format. 1-byte differences
A; are recorded whenever —127 < A; < +127; otherwise the flag 128 and the
4-byte value are recorded.

122 x, A A, A3 All e Xy )

Ly

122 x3 Az Al Aq Alo AulAiz)128

A =24y —x;
—127< A; < 127
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FRUGKAM I RAY
translates into compressed format and back.

include ‘tsf2.h’
include ‘otsf2. h’ 'These two include files are used
by getind and getwvf, which read in S5AM format files.

character#80 filnam

integer idata(3000,20) !'full format data, 20 channels
integer icdata(3000;20) !compressed data

character#8 ctim Vtime

integer nic(20) 'number of bytes in compressed data

call time(ctim)
type ‘{1x, ‘‘The time is now '/, aB)’,ctim

type ('’ input YKA filename: %)
accept “(aB0)’, filnam

call time(ctim)
type ‘“(1lx, ’'’The time is nowl T, aB) ctim

open(l, file=Ffilnam, status=’0ld’, form=‘unformatted’,
access='direct’, recl=512, readonly)

call getind(1)

dec = 1
iunit = 1
tlen = 500

do icomp=1,18
get 1B substations

call getwvf{idata{l, icompl, ns{icomp), icomp.,start{icomp},

tlen, idec, iunit, ierr)
now idatains) is time series {(integer)
end do
nsamp = ns{l) -

call time(ctim)
type ‘¢1x, "‘The time is now ‘7,aB)‘ ctim
type (‘' (about to start trans)’'’}’

do ii=1, 100
do icomp=1,18
###u##E* TRANSLATE INTO COMPRESSED FORMAT #taitdsat
call transi{nsamp.idata(l, icomp), icdata(l, icomp),
nic{icomp))
end do
end do

call time{ctim)
type ‘(1ix, '’'The time is now “’,a8)’,ctim

do ii=1, 100
do icomp=1,18
##Raiit TRANSLATE BACK 3tstded#
call transb{nsamp, idata(l,icomp), icdata(l, icomp?,
nic(icomp))
end do
end do



call time(ctim)
type “(1lx, ’'The time is now ‘7/,a8) % ctim

i=1i+1

stop

end
c
CHEHRHFARER AR R F AR A RERFRFHH R R F RSB FEFF R FHEFERH R H R H R SR T8
[

subroutine trans{nsamp, iseis, icomp,ncomp)

c compacts data iseis into icomp

c nsamp is number os samples {(input)

c ncomp is number of bytes compressed data (output)
integer#4 iseis(l) !input
byte icomp{(1l) Voutput

integer#4 idif

byte ibdif(4)

equivalence (ibdif (1), idif)
commoen/tracm/icptr

c
c
icptr = 1
€
C first sample is recorded as 4 bytes
call big{iseis, icomp, 1)
C
do i=&, nsamp
idif = iseis(i) — iseis(i = 1)
if (iabs(idif) .1t. 128) then
C one—byte difference
icomp(icptr) = ibdif (1)
icptr = icptr + 1
else
c 4~byte value
call bigl{iseis, icomp, i)
end if
end do
ncomp = icptr - 1
return
end
c

subroutine bigfl{iseis, icomp,nn)
c transfer one sample from iseis to icomp in
4-byte format, with ‘128’ flag preceding it.

[}

integer#4 iseis(l)

byte icomp(l)

integer#4 1128

byte ib128(4)

equivalence (i128,ib128(1))
integer#4 ibig

byte ibbig(4)

equivalence (ibig, ibbig{(1))
data il28 / 128/
common/tracm/icptr

c put in flag ‘128’
icomplicptr) = ib128B(1)



CidgtistTer 4-Dyte number

ibig = iseis(nn)
do i=1,4
icomp{(icptr + 1) = ibbig(i)
end do
icptr = icptr + 5
return
end

C
CHEREHRFERFHFHHRHERREF RSB F B EFHEH R IR H R E AR H T HH AW
c

suybroutine transb{(nsamp,iseis, icomp.ncomp)
c translates compressed data icomp back into
full format iseis

n

integer®4 iseis(1l)

byte icomp(l)

integer#4 idif

byte ibdif(4)

equivalence (ibdif (1), idif)
common/tracm/icptr, isptr
integer#4 i128

byte ib128(4)

equivalence (il128,i1ib128(1))
data ii28 / 128/

c
icptr = 1
isptr = 1
c
c decaode first sample (7128’ + 4 bytes)
call decbig(iseis, icomp)
c
do while{icptr .le. ncomp)
if{icomp(icptr) .ne. ibl28(1)) then
£ single byte difference
idif = icomp(icptr)
iseis(isptr) = iseis(isptr-1) + idif
isptr = isptr + 1
icptr = icptr + 1
else
C 4-byte value
call dechig(iseis, icomp)
end if
end do
end
c

subroutine decbig{(iseis, icomp)
C transfer 4-byte number from icomp to iseis
integer#4 iseis(1l)
byte icomp(1l)
integer#4 isss
byte ibsss(4)
equivalence (isss,ibsss)
common/tracm/icptr, isptr

do i=1,4
ibsss (i) = icompf(icptr + i)
end do
iseis(isptr) = isss
isptr = isptr + 1
icptr = icptr + 5
return

end
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PrUYaill oeam

reads in a yka file

forms 121 beams

does nothing with them

purpose: check computation speed of MicroVAX

include ‘tsf2. h’

include ‘otsf2. h’

character#80 filnam

integer ioff(20,-5:5)

integer ixbeam{(6100,-5:5), iybeam(&£100, -5:53), ibeam(46100, -5:5,-5:5)
integer idata(6100,20)

character#8 ctim

caommen/bem/nsamp

call time(ctim)
type ‘{(1x.,aB)’.ctim

initialize constant ioff, the delays for beam summing.
do ich = 1,10
do ixb = ~-5,5

iofflich, ixb) — {(ich — 5) # ixb

end do
end do
do ich = 11,17
do iyb = -5,5
ioff(ich, iyb) = — (ich - 18) # iyb
end do
end do
note: these delays may not be correct

type (7’ input YKA filename: fr, %)
accept “(aB0) ', filnam

call time{ctim)
type “(1x,aB8)’,ctim

open(l, file=filnam, status=‘0ld’, form=‘unformatted’,
access=‘direct’, recl=512, readonly)

call getind(1)

idec = 1
iunit = 1
tlen = 500

do icomp=1,18
read in 18 substations
call getwvf(idata(l, icompl,ns(icomp),icomp,start(icomp),
tlen, idec, iunit, ierr)
now idata(ns) is time series (integer)

end do
nsamp = ns{l) '!assume all substations have same number
of samples
type ‘(’‘ number of samples: ‘7,110) ‘., nsamp

call time(ctim)
type ‘(’’ about to start beamforming’’)’
type ‘{ix,aB) ‘', ctim

useless extra loop to make it take longer



call form{ioff, ixbeam, iybeam, ibeam, idata)

c end useless extra loen
end do

call timel(ctim)
type ‘(1lx,aB)’,ctim

stop
end
c
L T R T TR RV RO R R S R TR T T L R T T R e LY L
c
subroutine form{(ioff, ixbeam, iybeam, ibeam, idata)
integer ioff(20,-5:5)
integer ixbeam(&6100,-5:5), iybeam(&6100, ~5:5), ibeam(&100,-5:5,~5: 5)
integer idata(6100,20)
common/bem/nsamp

c form N-5 beam
nbsamp = nsamp - 70 ‘number of data points in beams
do ixh = -5,5
do0 isamp = 1l,nbsamp
c form beam leaving out 35 samples at each end
c for mere programming convenience
ixbeam(isamp, ixb) = O
do ich = 1,10 ''10 Blue stations
ixbeam{isamp, ixb) =
+ ixbeam(isamp, izxb) +
+ idata(isamp + 35 + ioff(ich.1ixb), 1ich)
end do
end do
end do
c
c form E-W beam
do iyb = -5,5 :
do isamp = 1, nbsamp
c form beam leaving out 35 samples at each end
C for mere programming convenience
iybeam(isamp, iyb) = O
do ich = 11,18 !B Red stations
iybeam(isamp, iyb) =
+ iybeam(isamp, iyb) +
+ idata(isamp + 35 + ioff(ich,iyb),ich)
end do
end do
end do
C
c form 121 beams from N-S5 and E-W beams
do ixb = -5, 9
do iyb = -5:95
do isamp = 1,nbsamp
ibeam(isamp, ixb, iyb) = ixbeam(isamp, ixb) +
+ iybeam{isamp, iyb)
end do
end do
end do
c beams have been formed
c
return

end



