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Introductory remarks 

These lectures were given at Queen's University, Kingston, Ontario over a 
period of three weeks in the winter of 1984 to fourth year students in the 
Department of Geology. The lectures are intended to provide a foundation for 
further study to people interested in the geological interpretation of gravity 
anomalies. 

The emphasis is on the mathematical formulation of potential field 
theory to provide a basic understanding of how the gravity effect of a 
particular geophysical model is calculated and to see under what conditions we 
can perform operations on the gravity field, such as in the process of upward 
continuation. It is also the aim to describe some of the methods available for 
the "inversion" of gravity data to determine geological structure. There are 
ma.ny papers and books dealing with one aspect or another of gravity 
interpretation theory. However, only a few selected references are given; the 
ones named are excellent sources of information and cover the points given in 
these lectures. 

The choice of topics is largely a persona! one guided by several years 
of experience in the interpretation of regional gravity surveys. The material 
in section 5.2 and the associated overheads should be of interest in other 
areas of geophysical interpretation. The lectures are guided, in part, by 
potential theory lectures given in 1971 by Prof. M.H.P. Bott at the University 
of Durham, Durham City, England. Lectures 1 to 4 set the stage for the 
material in lectures 5 and 6.The computer programs mentioned in the text are 
available, on request, from the Division of Gravity, Geothermics and 
Geodynamics. Reference should be made to this report. 

Finally, l should like to especially thank my colleagues Mrinal Paul and 
Herb Valliant for making helpful comments regarding these notes. 
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Potential theory lecture 1 

l. Review of basic ideas and vector operations 

1.1 Newton's law of gravitation 

The attractive force, F, between two masses is given by: 

~ ~ 2 Y-
wh e r e R = <<x'-x> + (y'-y> + <z'-z) > ~ 

G is the universal constant of gravitation 
and x', y' , z' refer to the position of ml 

x, y, z refer to the position of ml <in a 
right-handed coordinate system> 

The gravitational force per unit mass is F/ml where ml is a small, compact 
test mass. 

At any point in space the force of gravity has a magnitude and a direction. 

At any point in space the distance from an element of mass in a body to the 
observer's location has a magnitude, R, and a direction. The direction cosines 
of this vector are: 

<x'-x)/R 
Cy'-y)/R 
<z'-z)/R 

<x-direction> 
<y-direction> 
<z-direction> 

The force of gravity is directed from the observer to the mass element. 

At a given point x', y' z' the z-component of the force of gravity is: 

9z <x',y',z'> = - G m<x,y,z>*<z'-z>l<R*R*R> 

the x-component is: 

gx <x',y',z') = - G m<x,y,z>*<x'-x)/(R*R*R> 

and the y-component is: 

g
1 

<x',y',z') = - G m<x,y,z)*(y' -y)/(R*R*R > 

Note that the quantity <z'-z)/R is the cosine of the angle that the R vector 
makes with the z-axis, etc. 
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In vector notation the force of gravity is, for a small, distant 
mass m<x,y,z): 

7 ~ 
g<x' ,y',z'> = - G <m<x,y,z)/R*R>*<RIR> 

? ~ 
where g and R are vector quantities . 

... 
The x-component of R is <x'-x); the y-component is (y'-y); the z-component is 
(z'-z). 

1.2 The DEL operator 

We can perform basic mathematical operations <involving differentiation> 
on a vector using the DEL operator,\i". The DEL operator is a vector 
operator and has three components: 

the x-component i s èJ 
dXï 

the y-component i 5 è) • 

~·· 
the z-component 

. )1 
15 ~· 

~· 
Note that if the DEL operator operates on the field-point coordinate x',y',z' 
we writeV'· If, as we wil l need later, it operates on a source-point <also 
termed body-point> coordinate it is written as V'. For the time being we will 
be us i ng '\/ ' . 

There are four uses of the DEL operator which will arise in potential field 
theory: Divergence of a vector field <the result is a scalar quantity> 

Curl of a vector field <the result is a vector quantity> 
Gradient of a scalar variable <a vector> 
Directional derivative of a scalar or of a vector <a scalar or a 

vector respectively> 

l. 2. 1 Di vergence 

The divergence of a gravitational field is explicitly 

dg~<x',y',z') + è)q_Cx',y',z'> +.ÈJlz.Cx',y',z'>. 
d">(t oy6l" Oz! 

As will be discussed later. tRis quantity is zero in free space and equal 
to -411G times the mass density within a gravitating body. 

As an example, suppose the following velocity field exists within a fluid; 

V,,X Cx',y',z'> = (v
0

/a) x' 

Vj <x',y',z') = <vo /a} y' 

vz. Cx' ,y' .z' > = <v0 /a) z' 

where v
0 

and a are some suitable values of velocity and distance respectively. 

The divergence of this field is not zero but equal to }v
0

/a. 
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... 

In vector notation we write the divergence of v as follows: 

'~ \J. v = } v
0 

/a where means dot product. 

l. Z. Z Cur l 
~ 

The curl of a vector field, v. is defined as: 

< iJ Vi. ~~) is the x-component of the curl 
~ 
'dvx. Ôl/-z. ) is the y-component of the curl ( °'d:z...' d)ë• 

(~ ~) 'ë \ is the z-component of the curl 

The curl of the velocity field defined above is zero. 

However the curl of the following velocity field is not zero: 

v.<x',y',z'> = -(v0 /a) y' 

v <x' y' z') = <v_/a) x' a . . ~ 

v <x',y',z') = 0 
z. 

<where v
0 

and a are suitable constant values of velocity and distance> 

and, in fact, the z-component of the curl is equal to Z<v
0 

/a). Note that 
v0 /a is the angular velocity of the motion. 

Note also that the divergence of this latter velocity fi eld is zero. 

In vector notation the curl of a vector is written as: 

r/ X-. v v = Z<v
0

/a). 

A vector field which possesses neither divergence nor curl is termed 
"harmonie". There are many theorems which have been developed concerning 
harmonie functions <see, for exarnple, "The theory of the potential" by 
0.0. Kellog>. 

1.2.3 Gradient 

The x-component of the gradient of a scalar function U<x',y',z') is given by: 

the y-component is: 

and the z-cornponent is: 

"du<x' ,y' .z' > 
dx' 
êlU<x' y' z' > '"d7 • • 
~ 

'dU<x',y',z'). 
oz 
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Temperature is in example of a scalar potential function. The flow of heat at 
a given point in a solid body with uniform thermal properties is proportional 
to the temperature gradient at that point. 

-+ 
In vector notation the gradient, g, of the scalar U is written as: 

' 9 =Vu 
There is a theorem, termed Helmholz's theorem, which states that any 
physically reasonable vector field can be derived from the gradient of a .. 
scal~r function UCx' ,y' ,z') and the curl of a vector function A<x' ,y',z'). U 
and A are termed scalar and vector potentials, respectively. In some cases, 
such as gravity, we only need a scalar potential to completely describe the 
gravity field. ln magnetics we generally require the use of a vector potential 
although the magnetic scalar potential is of use in certain cases. 

1.2.}.l Example from gravitational theory 

Another example of a scalar potential is that of a small mass element, m: 

U<x',y' ,z') = G m(x,y,z>IR 

where R is as previously def ined 

The x-component of the gradient of UCx',y',z'> is: 

wh1ch is equal to the x-component of gravity as previously obtained. The other 
components of gravity are also correctly obtained in the same way. 

The use of a scalar potential is for mathematical convenience. The scalar 
gravity potential can't be measured directly whereas the acceleration of an 
object due ta gravity can. 

How do we calculate the gravitational potential of a body? 

We must know the distribution of density throughout the body. This is 
a scalar function denoted by _p<x.y,z>. 

We must know the size and shape of the body . 
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We then calculate the potential U<x',y',z'> at the field point x',y',z' 
as fol lows: 

U< x' , y' , z' > = G fJJ .,e< x, ~, z > dxdydz 

X 'f :Z. 

2 .k:: where R = «x'-x> t (y'-y>2 + <z'-z>4 > z 

l. l 

This is a volume integral with respect to x, y and z and can be carried 
out analytically for only a limited number of cases. For example, when 
the density contrast is constant and the body has a simple shape such as 
a prism or a sphere. 

In the case of a sphere of radius a and constant density the gravitational 
potential is only a function of the distance, r, of the observer from the 
center of the sphere. lt is given by: 

U<r> = G 4îrf <a•a/Z - r*r/6) r<a 

= G 4 îTf < <a *a •a I} > / r > r>a 

The radial component of gravity is given by dU<r>ldr and is equal to: 

g<r> = - G 41lfrn r<a 
J\ 

g<r> 
A 

= - G 4~a*a*a/(}*r•r> r>a 

An interesting consequence of Newton's law of gravitation is that the 
gravitational potential and attraction at an exterior point behave as 
though all of the mass were concentrated at the center of the sphere. 

The divergence of g<r> is obtained from the expression 

<ll<r*r>> d<r*r(g(r))/dr 
Il 
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and is equal to: 

r<a 

r>a 

l.l.4 Oirectional derivative 

The directional derivative of a scalar, t<x',y',z'>. is given by 

a d t<x' ,y' ,z' > 
dx' 

+bd t<x',y',z') 
dy' 

+ c d t<x' ,y' ,z' > 
dz' 

~ 

where a. band c are the direction cosines of a unit vector, n, which 
specif ies the direction in which the derivative is taken. 

-+ The directional derivative of a vector, v<x',y',z'), is 

f~ = a d v., <x' ,y' ,z' > + b d V,, (X ' , Y ' , Z ' ) + c d V,.- (X' , Y' , Z' ) 

dx' dy' dz' 

f = a d vl<x' ,y' ,z' > + b d V"t. (X' , Y' , Z') + c d Vy(X' ,y' ,z') 
't dx' dy' dz •' 

f = a d v._Cx',y',z'> + bd v~<x',y',z'> + c d v .... <x' ,y' ,z' > z. 
dx' dy' dz' 

where ~. f't and fz are the x-, y- and z-components of the resulting 
vector r. 
Instead of a unit vector, iZ. any vector, Û, can be used but then the result 
is rnultiplied by the magnitude ofù. 

In vector notation the directional derivative of a scalar. t, is: 

~ r:/ n. V t<x' ,y' .z' > 

or 

or 

_.. I <scalar quantities> 
u.vt<x',y',z') 

and the directional derivative of a vector, v, is: 

ti. V '-v< x • • v • . z • > 

-. r7'.. t • • u.v v<x ,y .z >. 
<vector quantities> 
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Potential theory lecture l 

2. Topics related to the gravitation~! potential 

2.1 Oerivatives of the potential 

The scalar gravitational potential, U<x',y' ,z'> is a function of the 
coordinates x', y', and z' only. Hence spatial derivatives must be taken 
with respect to x', y', and z'. 

To obtain the vertical component of gravity, for example, we differentiate 
the integral for UCx' ,y' .z> with respect to z'. 

= ~;.~~~J'(x,y,z)(l/R) dxdydz 

X y z.. 

dU ( X ' • y ' • z ' ) 
2 .1 

dz' 

We can take the differentiation in under the integral sign and operate on 
the quantity l/R as it is the only part of the integrand which is a function 
of z'. 

We obtain in this way the integral expression for gz as 

gz = -~<x.y,z> <z'-z>l<R>R•R> dxdydz 

X 'f Z:.. 

We can differentiate gz with respect to z' again to obtain 

2 
dg = d u 
-N z. 
dz' dz'z.. 

')( y 1-

2.2 

dxdydz 
2.} 

We can differentiate U<x',y',z') any number of times with respect to x' 
or y' or z' or any combinat ion such as d2U(x',y' ,z') 

dx'dy' 
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' If we calculateV.9 we will find that(\7;<11R> is equal to zero inside 

the integrand whenever R is not equal to zero, i.e. whenever at least x 
or y or z is not equal to x' or y' o~ z' respj~tively. When x=x' and 
y=y' and z=z' simultaneously, the function(\7 CllR>. when integrated, acts 
as a delta function and picks up the value of the density at the point 
in question <times a factor of - 41l'G>. This proof is given in the book 
"The Theory of the Potential" by 0.0. Kellogg or "Electromagnetic 
Theory" by J.A. Stratton. 

Z.l The change of gravitational potential with time 

Consider a fixed mass element m<x.y,z) and a movable observer. At time tl the 
observer is at x' ,y' ,z' and at time tZ she is at x'+..1x' ,y'+ô.y' ,z'+.6z'. The 
only change in the expression for the gravity potential 

U<x' ,y' ,z'>= G m(x,y,z)Cl/R) 

is in the value of the reciprocal distance l/R. This difference is given by: 

«x - x'-

2. 
«x - x'> 

1 

z. 
x'> +<y - y'-

l 

"2. + (y - y') 

y'> ... + <z - z'- ' z ')"l.. >~ 

z 1 + <z - z'> )...:Z 

Àf we denote the displacement at the observer's point by the vector 
u' which has x- y- and z-components of dx',dy' and dz', respectively, 
the difference ma.y be written as: 

.... ~ 

u' .R 

R+R*R 

or 
~ I 

+ u' VntR> 

where Rx = x'-x: Ry = y'-y; Rz = z'-z. 

This is the derivative of l/R with respect to the primed variables in the 
direction of u and multiplied by the magnitude of u. 

The change in potential is given by: 
~ I 

U<x' ,y' ,z' > = G m<x ,y,z) u' .\7<11R> l. 4 .1 
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Now suppose that we keep the observer's location fixed and move the mass 
element a sma.11 distance "J. As above, the the change in potential is: 

U<x' ,y',z') = G. m<x,y,z> Ü.\7<11R> Z.4.Z 

but note that the DEL operator acts on the unprimed coordinates, that is on 
x,y , z. 

Now suppose that we keep the observer's location fixed and the position of 
the mass element fixed but we change the amount of mass. 

This contribution to the change in potential is 

LlU<x' ,y' ,z' > = G~m<x.y,z> <l/R) l.4.3 

If we express the mass element as the product of density contrastp<x,y,z> 
times some small volume element dV <=dxdydz) the total change in mass is: 

... t7 -t 
dm<x,y,z> = <df<x,y,z> + u.ry<x,y,z> + <v.u>_p<x,y,z>> dxdydz 

and the change in potential is 

.6U<x',y',z') = G <dy<x,y,z> t ÎJ .\Jf<x,y,z) t <V.~j<x,y,z))<l/R) 

*dxdydz l.4.4 

Noting that < l /R) = - <llR> we can substitute 
..., -"'P 1 

-u'.V7<11R> for u'.\7<1/R) in expression <l>. 

The change in potential U for a gravitating body can be written as: 

Liu<x',y'.z'> = G Jff.f<x,y,z> <~-;j· > .V < JIR> dxdydz 

/( y J.-

+ G ~':f~~:~:~~-~-~~~~~~~:~~-~-~~~~?J:~~:~:~~ dxdydz Z.5 

X y z_ 

If there is no net change in the total mass of the body the second integra l 
is zero. 
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If, in addition. the observer's position remains fixed in space the net 
change in gravitational potential is: 

.6u<x',y',x'> = G Jff 1< •,y·, z > i:; .\7< l /R > d•dydz 2.6 

>< y :z: 

A knowledge of how the gravity potential changes with time is useful in 
studies of deformation at mine sites. 

l.} The scalar magnetic potential 

Imagine a magne~ic dipol! of pole strength p(x,y,z) with poles separated by a 
small distance l <where l is directed trom the negative pole to the positive 
pole>. The magnetic moment is p<x,y,z>l. 

The magnetic potential. <V+><x',y',z'), at the observer's position x' ,y',z' 
due to the positive pole is 

<V+><x' ,y' ,z' > = -p<x.y,z)/R 

<the minus sign is used since like poles repel each other>. 

The ma.gnetic potential. <V-><x',y',z'), at the observer's position due to the 
negative pole is 

<V-><x',y',z') = p(x,y,z)/R' 

Chere the primes are used to distinguish between the slightly different 
distances Rand R'). 

Adding the two potentials to get the scalar potential for a dipole gives 

V ( x' , y' , Z' ) = p ( x, y, Z) ( l /R' l/R > 
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By the same sort of argument as before this can be rewritten as 

~ 

V<x',y',z'> = - p{x,y,z) 1Cx,y,z>.\7<11R> 

where the DEL operator operates on the unprimed coordinates. 
I 

Since - \Ï'Cl/R) = \7Cl/R) we can also write 
-1> I 

V<x',y',z') = p<x,y,z> l<x.y,z>.\l<IIR> 

For an extended ma.gnetic body the scalar potential is 

VCx',y',z'> = f f[ ;:;Cx,y.z> • \l;llR> dxdydz 2.7 

.... X y Z. 

wh~re m<x,y,z) stands for ~gnetic moment per unit volume 
< m<x,y,z)dxdydz = p(x,y,z> l(x,y,z> > 

If the direction of magnetization is uniform. that is it does not vary with 

... -'> 
position, <x.y,z>. in the body, then m<x.y,z) = qCx,y,z) n <where q(><,y,z) is 
a scalar quantity) and the operation h.Ç''can be taken outside of the 
integral sign to give. 

vcx•, y'z' > = ri.\! / ~ex, y .z> <llR> dxdydz 2 .e 

X y z. 
In this special case the ma.gnetic scalar potential is formally the same 
as the directional derivative of a gravitational potential. This result is 
attributed to Poisson and is known as Poisson's relation. This relation has 
been used to determine the direction of ma.gnetization in seamounts. 

2.4 Practical shapes of bodies to use in gravity modelling 

2.4.l The gravity field of a right rectangular prism 

Right rectangular prisms can be used as building blocks for }-0 gravity 
models and for modelling topography to do terrain corrections. 
They have the disadvantage that they can not easily accorrrnodate sloping 
contacts. The formula for the vertical component has been published 
by O. Nagy in GEOPHYSICS in vol }l, 1966 pages }62-}71. It should be noted 
that the formulation in terms of arctan is less troublsome to program 
than the one which uses arcsine. 
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2.4.2 The gravity field of a 2-0 horizontal slab with a sloping face 

This is a useful model because it can be employed to construct a Z-0 
model with a polygonal cross-section. The integration is complicated by the 
fact that the x-limit of integration is a function of z cot<A> where A is 
an angle related to the dip of the face. The integrated result is given 
in several geophysical textbooks <e.g. "Geophysical Exploration" by 
C.A. Heiland>. We will discuss this model in a subsequent section in more 
detail. ln using a 2-0 program to calculate the grav1ty effect of a body 
you must remember to close the body i.e. make the last body-point x and z 
coordinates the same as the first unless the program does this automatically. 
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Potential theory lecture 3 

3 . Two-dimensional interpretation; Green's theorem and the equivalent layer 

3.1 The l-D potential 

If the gravitating source is essentially two-dimensional in character, 
it is convenient to use a 2-0 formulation for the potential and its 
derivatives. 

To do this we integrate the 3-0 potential with respect to <w.r.t.> y from 
y = - L to y = +Land obtain (for y' = O>: 

U<x' ,z'> • G Jfz rx,z> Cln<L + «L•L> + <x'-x>
2 

+ (z'-z>' ~ 
.... z. - ln<-L t «L*L> t (x'-x)z t (z'-zf >z.>Jdxdz 

3 .1.1 
For large L this ma.y be approximated by: 

(( . ~ ~ 
)) 2 .J<x.z> [ln<<L*L>l<<x'-x> + <z'-z> >> Jdxdz 3.1.2 

)(. z. 
Since ln<L*L> is nota function of x' or z', it may be ignored. This is 
OK from a geophysical point of view but needs ma.thematical justification! 
See the book by 0.0. Kellogg for a ma.thematical justification. Therefore, 
the Z-0 potential is given by: 

2 '2. 1: Y 
1 

UCx',z'> = - G lj<x,z> lnCCx'-x) t (z'-z) > dxdz. 3.1.3 

)( 4 
Note that the exponent in the argument of the logarithm can be taken outstde 
and cancels out the factor of l. 

We can use the Z-0 DEL operator Cwhere the term d is ommitted> to obtain 
dy' 

-> 
gCx',z'> from U<x',z'>. 

The expression for g Cx' z') is z. • 

- ZG ((.e<x.z> ~ 
)j"" (X' -x) t 

X. 1. 

<z'-z) 
l. 

<z'-z> 

dl( ch .. 3.2 

As in the 3-0 case, the potential U<x',z'> can be differentiated any number 
of times w.r.t. x' or z' to obtain the x- and z-components of gravity and any 
of their spatial derivatives. 
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· 3.l The l-0 slab with a sloping face 

In the case of a horizontal, two-dimensional slab with a sloping face, the 
body can be split up into two parts to take into account the situation that 
the limit of integration for one coordinate depends upon the other coordinate 
in the region bounded by the face Csee diagram below and Appendix). 

For the triangular part we can integrate first w. r. t . z and then w.r.t. x. 
The upper limit of the z integral is a function of x and given by: 

upper limit = x+Czl - zl> + 

CxZ - xl> 

The l owe r l i mi t i s z 1 . 

Integrating w.r.t. z gives </'= constant> 

9 ( X ' , Z ' ) = G f f X~ n ( ( X ' - X ) 2. + ( Z ' - Z )
2 

x, 

<xl - xl> 

z=upper limit Cas above> 

dx 3 . 3 

zl 

To integrate the logarithm w.r.t. x, a change of variable can be made to 
make the argument of the logarithm of the form Cu+u + c+c) where u is the 
variable of integration and c is a constant. 

The rectangular portion can be readily integrated with the aid of integral 
tables w.r.t. x and then z. 

Both portions have terms involving arctangents and logarithms. 

A FORTRAN subroutine called GMSTEP has been written to calculate the gravi t y 
<and ma.gnetic> effect of a Z-0 slab with a sloping face. 

2. 

x, J?., 

X 



}.} Green's Theorem 

This is a very useful theorem; it is proven in many textbooks Ce.g. 
"An lntroduction to the Theory of Newtonian Attraction" by A.S. Ramsey or 
"Foundations of Potential Theory" by 0.0. Kellogg>. To give some 
idea of how it is derived we take the }-0 expression for the gravity 
potential and substitute <-l/41f>V'

2
UCx,y,z) for p<x,y,z,) in the integrand 

and write the result in the form of three integrals. 

-.§_~~ 2 
U< x, y, z >dxdydz 

4'1T dza --------
R 

-_§_~rd'1U<x, y, z>dxdydz 
411 =dx __ • ___ _ 

R 
)\ y z )( y l 

}.4 

We take the first and integrate by parts w.r.t. x; the second by parts w.r.t. 
y; the third by parts w.r.t. z. We then integrate the first again by parts 
w.r.t. x .• etc. This process <if we think of a rectangular prism> converts the 
original volume integral into the sum of two surface integrals and another 
volume integral. ln vector notation these are: 

dV = 

+ 

fiï IU<x,y,z> \7ê11R> dV 

~Ju<x.v.z> V'<ltR> .n dS }.5 

In the surface integrals <x,y,z> refers to a point on the surface, S, which .. . encloses the volume, V. The unit vector n is normal to the surface, S, and 
points outwards, away from the volume . V. 

In this case <IIR> is a particular function which has been specified; any 
function, W<x,y,z), instead of <l!R> could be inserted into the above 
integrals and this is the form that Green's Theorem is usually given. 

<Note: there are other important integral theorems such as Gauss's Theorem 
and Stokes's Theorem which are described in the books by Ramsey and by 
Kellogg mentioned above.> 



<16) 
3.4 Green's equivalent layer 

il. 

When the observer is at an external point Cx',y',z') the value of ~Cl/R) 
is zero so the first integral on the right-hand side of the equal sign in 
expression <4> above vanishes. If the surface of the body is an equipotential 
surface, U<x,y,z> at the surface S is a constant, say Uo, and can be taken 
outside the integral sign in the second surface integral. For a point outside 
the volume V this second surface integral 

GUo (( \7 , 
Lj":;r- )J V(l/R).n dS 

vanishes. This can be seen to vanish if we set U<x,y,z> = l in 
expression <4>. The left-hand side vanishes because U is constant. The first 
integral on the right-hand side vanishes because \7t11R> is zero and the 
first surface integral vanishes because U is constant. Therefore, when the 
surface of the body is an equipotential surface, the surface integral 
involving \7<11R>.n is zero. 

For the case considerad here where S is an equipotential surface and 
(•1/tm)Vûcx,y,z> = - ycx,y,z) we have at a point exterior to V: 

= -_§_ (~llR>\lu<x,y,z>.n dS = U<x',y' ,z'> }.6.1 
~îf )j. 

This means that if we know the normal component of the gradient of the 
potential <in our case g~<x.y,z>> at every point on an equipotential surface 
<in our case the land surface but this may not be strictly true in most 
practical situations> we can calculate the potential at some point <x' ,y' ,z'> 
above the surface. This means that we can analytically continue a potential 
function in empty space outside a body without knowing the distribution of 
ma.ss inside the body. However, we need to know the potential <or its 
derivative in the direction normal to the surface> at every point of the 
surface and we have to know the shape and position of the surface. 

There are also certain geometrical cases such as the sphere where the surface 
of the sphere may not be an equipotential surface but it is still possible to 
calculate the gravitational field at an exterior point knowing only the 
gravitational field over the surface <e.g. Kellogg, 195}>. 
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We can also reproduce the gravity potential at an exterior point by means 
of a spread of surface dens i t y 6 < x, y, z > over the surface, S, by maki ng 
~<x,y,z> = - <114~> gz<x,y,z>. This surface density layer is termed an 
nequivalent" layer. Surface density has the dimensions of grams/cm~. 

U<x' ,y' ,z' > 3.6.2 

We can also calculate any derivative of the potential <taken w.r.t. x',y' ,z') 
at the point <x',y',z'>. For example we can calculate 

dz' 

For a flat surface we have 
: +-DO 

g (x' y' z') z • • = <l/2'i1) <z'-z) dxdy 

1 ~ ~ <<x'-x> + (y'-y) + <z'-z) 
y= -oo 

'. 7 

So we see that it is possible to continue the gravity field known over a 
surface upward to any point above the surface. 

In practice. the surface gravity values would be given over the x-y plane 
and z = O. 

In two dimensions the formula is: 

g <x',z'> = <l/'lf) 
:z. r.::::zl (z' -z) dx } . 8 

<x'-x>'l. + <z•-zf 

due to the use of the logarithmic potential <Eqn. }.l.})rather than the 
function (l/R). 

The above integral is termed a convolution of gz<x,z> with another function 
which, in this case. is 

<z'-z> 
z 2. 

<x'-x) + <z '-z) 
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The factor <li~> normalizes the convolution function so that the integral 

Cl/1T) l·=:_~-~~~:~~-----
( X ' - X f + ( Z' -z ).2 

x= - OO 

dx 

= <l/'ty) arctan <x'-x> = l 

<z'-z) 

This gives the correct scale factor to gz<x' ,z'>. 

We can calculate dgz<x',z'> by convolving the gravity values at ground 

dz' 
level with the appropriate function which, in th i s case , i s obta ined by 
differentiating 

<z'-z) 

2. 1.. <x'-x> + (z'-z) 

w.r.t. z' to obtain: 

z '2. <x'-x) - <z'-z) 

'2.. ~ ~ <<x'-x> + <z'-z> > 

as the desired convolution function. 
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Potential theory lecture 4 

4. Mathematical manipulations of the · gravity field 

4.1 Fourier methods 

Upward continuation is a convolution involving the vertical component of 
gravity at the surface and a kernel which is a geometrical factor relating the 
observation point to a surface element. ln this case th.§. <two-dimensional) 
kernel is <IIR>cos<A> where A is the angle between the R vector and the 
vertical. 

g <x' z'-z) z. . =l/('1() <z'-z> dx 4 .1 

'2 z 
<x'-x> + <z'-z> 

Because the convolution takes place from x=-Oô to x= + o0 , we can readi ly 
apply Fourier transforms to the problem. 

There are different definitions of the Fourier transform but these differ only 
in the way the normalizing factor is applied. We'll use the following one: 

The Fourier transform of g<x> is 

= H<k> 

where i 1s the square root of -1. 

We can take the inverse Fourier transform 
back the original function, g<x>. 

of the Fourier transform and get 

k= +oo 

ll<lT/)i H_<: exp <-ik<x» dk = g<x> 

The inverse Fourier transform uses -i instead of +i. 

The Fourier transform of ( 1110 <z'-z> 

<x'-x>" + <z'-z>4 

is <Il<lff~>*<exp<-lkf <z'-z>>>•exp(ikx'> 
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Note that <z'-z) must be positive otherwise the integral doesn't converge. 

The Fourier transform of a convolution involving the product of two functions 
is equal to the product of the Fourier transform of one function times the 
Fourier transform of the other function. This and other useful information 
concerning Fourier transforms and series is contained in "Fourier Analysis" 
by H.P. Hsu. 

Therefore. the Four
1
ier transform of the upward-continued gravity gz.Cx'.z'-z> 

is equal to Cl/ClTI>~>* exp~j~ <z'-z>>>*expC ikx') times the Fourier transform 
of the ground-level gravity. g

1
<x.z) <where z= ground-level elevation>. 

We then apply the inverse Fourier transform to obtain the upward-continued 
gravity field <note that we are upward continuing the vertical component>. 

If we have regularly spaced data and the number of data points is equal to 
zN , where N is an integer, use may be made of the Fast Fourier Transform. 
Very often an interpreter will take an observed profile of ir~egularly 
spaced data points and join them up by hand and then select 2 equi-spaced 
data points for the FFT. However, it is possible to fit a set of sine and 
cosine functions to a set of irregularly spaced data by evaluating the 
coefficients using either numerical integration or least-square methods. 

To do upward continuation we can use either the convolution method or the 
Fourier transform method. We can upward-continue any component of the 
gravity field desired but we need to use the appropriate kernel or its 
Fourier transform. We can also calculate any derivative of the grav1ty field 
at an upper level using the appropriate kernel or its transform. If we ma.ke 
the distance Cz'-z) sma.11, we can, in effect. calculate the various 
components and derivatives at ground level. 

These operations on the gravity field can be considered as filtering 
operations. 

4.l Laplace's equation 

In free space where there is no mass. the gravity potential obeys the 
equat ion: 

I ').. 

Vucx• ,y' .z' > = o 

This is termed Laplace's equation. 

4.2 

In a rectangular coordinate system the x-, y- and z-components of gravity 
also obey Laplace's equation but it is not true, in general, for other 
coordinate systems that any particular component of gravity obeys Laplace's 
equation. 

Solutions of Laplace's equation are given for various coordinate systems 
in "Solutions of Laplace's Equation" by O.R. Bland. 
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The following discussion is restricted to a rectangular Cartesian coordinate 
system. 

We assume that 

U<x',y',z'> = F<x'>*G<y'>*H<z'> 

insert this into Laplace's equation and obtain three separate equations, 
one in F, one in Gand one in H. 

~ 2 a 
d F<x'> - a F<x'> = 0: d G(y'> - b G<y'> = O; d H<z') + <a+b) H<z') _ N _____ 

------- NHN ____ 

dx' 
~ 

dy' 
2 dz'~ 

4.} 

= 0 

It can be seen that depending upon whether a and b are real or complex, and 
positive or negative, a given solution involves sine, cosine and exponential 
terms. Any linear combination of solutions also will satisfy Laplace's 
equation. 

For the two dimensional case we want to eliminate the y-dependence so we 
set b=O. We then set a= -m 4 and ontain the following solution for U<x,z): 

U<x' ,z') = + Am*cosh<mz'>*cos<mx'> + Bm*cosh<mz'>*sin<mx'> 

+ Cm*sinh(mz')*cos<mx'> + Om*sinh<mz')*sin<mx') 

sinh<mz'>=<lll>*<exp<mz') - expC-mz'>>: cosh<mz'>=Cl/l)<exp<mz)' + expC-mz')) 

etc. 

For the gravity potential at x' ,z' <we are returning to the primed 
coordinates> we can expand the potential in a Fourier series 

QO 

U<x' ,z') = .l=: <Am sin<mx'> + Bm cos<mx'>>. exp(-mz') 
~=ô 

We normally set z' = 0 corresponding to being at the surface of the Earth 
in which case exp<-mz') = 1. 

To obtain the potential at a distance h above the surface we can take the 
Fourier series at z'= 0 and multiply it term by term by exp(-mh) to obtain 
a new series that gives the potential U<x',h). 

We again see the role of 
<a> exp<-mh> in the case of a Fourier series 

representation of the gravity potential 

or (b) exp<-W<z'-z)) in the case of the 
Fourier transform of the potential 

in the process of upward continuation. 
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' If we differentiate the series for the potential term by term w.r.t. z'. 

we obtain a new series for the z-component of gravity, namely gz<x',z'>. 
In practice, we would fit this new series to the observed gravity and 
then upward-continue the z-component. 

4.} Upward continuation of the gravity field over a semi-infinite, horizontal 

slab with a sloping face 

The face is def ined by a plane which extends upwards into space. 
If we confine our attention to the value of gravity on this plane and 
actually substitute for z' the value 

x'<zl-zl> + <xl*zl - xl•zZ> 

<xl-xl> <xZ-xl> 

in the integral for 
only a function of z 

g <x' z'> z • • M.K. Paul has shown that if the density is 

the value of gravity anywhere on this plane above the body is a constant 
equal to: 

{

z = surface level 

2. A G f < z > dz 

Z : - OO 

where f <z> is the density 
A is the angle of the fault plane <in radians> 

and tan <A> = <zZ - zl> 
<xl - xl> 

This is a very interesting result. If we believe that we have a geological 
situation which can be approximated by such a modal <such as faulted, 
flat-lying sedimentary formations> we can upward-continue the gravity 
over the presumed fault and contour the results in the upper half-plane. 
If we find a straight-line contour, this could indicate the position 
and dip of the fault plane <see Figure in Appendix>. The method has been 
described by M.K. Paul and A.K. Goodacre in GEOPHYSICS Vol. 49, pp.1097-
1104,1984. 
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4.4 Oownward continuation of the gravity field 

We can expand the vertical component of the gravity field in a Fourier 
series and multiply the the individual terms by exp(md> where d is the 
distance we wish to continue the field downward and then sum the new series to 
get the gravity field at a lower level. The theoretical problem is that m 
goes, in general. to infinity and expCmd> becomes infinitely large. If the 
coefficients Am and Bm go to zero as rapidly as the function exp<-md> does as 
m goes to infinity, the new series will converge. However, it is doubtful that 
any realistic potential field will behave this way. ln geophysical practice 
we just truncate the series and hope for the best. 

One can also develop a convolution function for downward continuation that 
behaves as exp< lkl d) for values of k not too large and apply this to a profile 
at the Earth's surface. ln either case it is assumed that there is no mass 
between the surface of observation and the deeper surface. If there is mass 
the potential field is no longer harmonie Cobeying Laplace's equation> and 
the procedure is not valid. 

Downward continuation can still be used as a interpretational technique if 
we are prepared to represent a volume distribution of mass by a series of 
point sources in three dimensions or a series of line sources in two 
dimensions. We can attempt to f ind the depths of sources by continuing 
the gravity field downward until we obtain a very large peak. This large 
peak will represent the first point or line source to be encountered. This 
is because the gravity anoma.ly due to a point or line source becomes more 
and more narrow the closer the plane of observation is to the source <the 
area under the curve stays the same, however>. 

We then remove this large peak from the anomaly and continue the field further 
downward <how this removal is actually done is never explained but a suitable 
way might be by hand>. 

4.} Regional-residual separation 

The idea of regional-residual separation is to isolate an anomaly 
of interest. One way to attempt this is to filter out the long wavelength 
components. The theoretical uncertainty in this approach lies in the fact 
that, although short wavelength anomalies must be due to shallow sources, long 
wavelength anomalies can be due to either deep or shallow sources. This latter 
uncertainty arises as a result of the fact that (if the surface in question is 
an equipotential surface> we can represent any volume distribution of density 
by an equivalent layer of surface density so we can always represent deep 
sources by sources that are more shallow . 
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'îo continue an anomaly upward we select a particular rectangular <square> 
grid <if we are working in a Cartesian coordinate system> and then, selecting 
a particular point <x',y',z'> at whiçh we want to calculate the result, we 
have to multiply the gravity anomaly value at that point and the other points 
in the vicinity by an appropriate weighting function based on the expression 

'l 
<l /R > cosA 0-0 kernel> 

where R 
2. 2. 2 ..k' = <<x-x'> +<y-y'> + <z-z'> >~and cos<A> = <z-z'> 

R 

Here <x.y,z> refers to the grid location of the surface gravity value. 

We can calculate our own weights and then norma.lize them by dividing each 
one by the sum of all the weights used <or better yet by integrating the 
kernel w.r.t. x and y to obtain the factor). 

We then do a two-dimensional convolution by "sliding" our "filter" around 
from one grid point to another. At each point we multiply the gridded gravity 
values by the corresponding weights and then add up the numbers to obtain the 
upward continued gravity value for that point. This can be done by computer 
but it is more instructive to do it at least once for a few points by hand 
using a ma.p with a grid drawn on it and a "filter" constructed on a piece of 
transparent plastic. 

There is a method of regional-residual separation descr ibed by G. Sinmons <in 
the Geological Society of America Bulletin, vol 7,, 1964 pages 81-98> whi ch 
involves drawing several intersecting profiles by hand and manually drawing in 
and adjusting the regional profiles to agree at intersections. Although 
subjective, it gives results that are difficul t to criticize and, in fact, 
which seem to be very good . 
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Potential theory lecture 5 

5. "inversion" of gravity data to obtain the causative density distribution 

5.1 General remarks 

Note that. due to the equivalent layer theorem, a unique solution is not 
possible. This non-uniqueness is also seen in the expression for the grav1ty 
field due to a homogeneous sphere <page 5>. ln this latter case the rad ial 
component of gravity is proportional to the total mass and inversely 
proportional to the square of the distance from the canter of the sphere. 
Hence there is a trade-off between density and the radius of the sphere that 
is impossible to determine from a knowledge of the gravity field alone at some 
distance away from the sphere. 

However, if we specify that the source has a uniform density contrast, some 
progress can often be made. For example, in the case of a sphere the radius 
ma.y be calculated. 

Suppose we know through geological or other geophysical information the 
sizes and shapes of the bodies that are producing a particular gravity 
anomaly. ln this case we are able to selve the linear problem of gravity 
inversion to find the densities of the compartments and then make some 
judgement as to the compositions of the rocks in the various compartments. 

5.Z General remarks about least-square fitting 

Before discussing the general problem of least-square fitting let's consider 
the linear problem of fitting a polynomial to a set of points in the x,y 
plane. For simplicity we will consider a straight-line fit. 

We want to represent the set of points by the equation 

Y. = a + bx. 
J J 

where x is the independent variabl e 
y is the dependent variable 
j refers to the jth point 

and a and b are constants to be determined 

The standard procedure 
by differentiating the 
s1multaneous equations 

is to minimize the quantity L<Y · - a - bx. > 
~ J J quantity w.r.t. a and w.r.t. b t o obtain two 

which are then solved for a and b <see Appendix) . 
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Another way to view the procedure is to write out the equation in terms of 
vectors and matrices. 

~ '""~ X u = y 

.... 
where y is the column vector of y-values 

Ü is the column vector of unknown constants 
<in this case a and b> 

and X is the ma.trix of x-values. 

T 
Multiply both sides from the left by the transpose of X (i.e. X> 

T T 
X X Ô = X y 

T 
Now, assuming that the inverse of X X exists, multiply both sides 

T -1 
from the left by <X X> to obtain: 

T ., T 
Ù = <X X> X Y 

This is the least-squares solution for Ü. 

In general we ma.y have matrices of known values and unknown parameters. 

Using capital letters for matrices the least-square solution to: 

X U = Y 

is 
•I 

U = <X X> X 
T T 

y 

In the cases considered subsequently, we will deal with a matr1x, M. of 
theoretically derived quantities. a vector of unknown parameters, û. and 
a vector. g, of observations which are to be modelled in the least-squares 
sense. 

T _, T 
~ .... 
u = <M M> M g 
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As another example of least-squares f itting, suppose we want to describe a set 
of points plotted on an x,y graph by means of a constant, a sine wave of 
wavelength L and a cosine wave of wayelength ZL. Each point has a value 
<xl,yL >and there are ten values. 

We construct the M ma.trix as follows: 

1 si ne < l'lT' x 1 /U cosine <Z~ x 1 /ZL> 

1 cosine <Z~ x,IZL> 

1 

etc. 

1 

The M matrix is a } by 10 array of numbers. 

There are three unknowns:<i> the constant value c.<ii> the coefficient of the 
sine <ZTix~/L) terms which we'll denote by a and <iii) the coefficient of the 
cosine <Zn x~/l) terms which we'll denote by b. 

Oenoting an element of M by m .. we 
"à 

can write 

m11 m,'J,. mi-a (:) 9, 
m21 m.n. m:1-> gl. 
m31 m):l m~) 91 
mci, m4z. m'13 git 

This is the set of equations that we wish to solve in a least-squares sense. 
T 

Norma.lly we do not actually find the inverse of MM but use other methods 
to solve the system of equations. The IBM scientific subroutine LLSG is a 
good one to use. 



<ZS> 
lt is worthwhile to note that when we expand a function in terms of sines 
and cosines and their wavelengths fit an integer number of times into the 
interval over which the data are specif ied and the data points are 
equi-spaced, the off-diagonal elements of the matrix 

T 
CM M) 

are zero and the inverse is easy to compute. ln addition, we can add or 
delete sets of sine and cosine waves of a particular wavelength and the 
values of the remaining coefficients do not change. In general, when 
we change the number of coefficients to be determined in a least-squares 
problem, their derived values also change. lt is only when the functions 
are orthogonal over the data interval that the off-diagonal elements 
of 

are zero. 

T 
CM M> 

The book "A handbooK of numerical matrix inversion and solution of linear 
equations" by J. R. Westlake is instructive to read. Also highly recommended 
is "Applied regression analysis" by N. R. Draper and H. Smith. 

5.} Application to gravity problems 

Let us now consider the problem of calculating the density contrast of each of 
three bodies. These are two-dimensional in character and the size and shape of 
each body is already determined by a seismic survey. The <vertical component 
of) gravity has been measured at 10 points (g

1 
to g.J. 

Using the above notation for the time being, we can calculate at each of the 
ten observation points the gravity effect for body number one assum ing a 
density contrast of unity. These will be the matrix elements m

11 
to m

10 
The matrix elements for body number two <with unit density contJrast> aré

1 

m,,::t to m10 ,.:t and similarly for body number three. 

The unknown densities, represented by a, band c, are then solved for by the 
least-squares method (here we are using a,b,c instead of~, u~, etc.>. 
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The least-squares solution also gives the standard deviation of each 
coefficient a,b and c. If the geometry of the bodies and the observation 
points is such that the problem is i11-conditioned, this will <or should> be 
reflected in large values of the standard deviation w.r.t. the corresponding 
coefficient. The quotient of the coefficient divided by its standard deviation 
is termed the t-value. The higher this is the more statistically reliable 
the coefficient is. A t-value of less than about l suggests that the value of 
the coefficient is not signif icantly different from zero. 

5.}.l Equivalent layer representation 

Suppose we don't know the sizes and shapes of the bodies. We can still invert 
the gravity data to obtain the equivalent layer of surface density which 
would also reproduce the gravity data. lt is understood, however, that the 
procedure assumes that there is no mass lying between the observer and the 
equivalent layer. ln a practical case we ignore this proviso if we think 
we are dealing with a homogeneous layer of material lying between the 
observer and the equivalent layer. 

The equivalent layer can be made up of }-0 rectangular prisms in the case of 
areally distributed gravity data (}-0 source> or l-0 rectangular bodies 
in the case of linearly distributed data <Z-0 source>. These prisms or 
rectangles generally have a small vertical extent. 

Changing our notation somewhat, we can set up the problem as 

~ T _, Mg d = <M M> 
~ 

where d is the vector of unknown density values 

M is the matrix of values of attraction of 
each prism at at each observation point 

and ~ is the vector of observed gravity values g 

lt is normally useful to add an additional column of l's to the matrix 
M to take into account any constant regional <non-zero> value present in 
the gravity data. This is particularly important to do to avo1d "end-affects" 
or other instabilities which arise in trying to model a long wavelength 
anomaly with only a limited number of prisms. To model a long wavelength 
anomaly requires an extended body of similar lateral dimension. 

Once the densities have been calculated and the interpreter ensures that a 
good representation of the vertical component of the gravity field has been 
achieved, the gravity potential or any other component or any derivative of 
the field can be calculated because we know the appropr1ate analytical 
expressions for these based on a prism. lt should be pointed out, however, 
that just because we have obtained a good fit to the gravity anomaly using 
the least squares method is no guarantee that we have obtained a good fit 
in a least squares sense to a particular derivative. 
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Just how well the procedure outlined above works depends upon the geometrical 
relationship between the observation points and the equivalent-layer prisms. 
Generally speaking, the depths of the prisms below the observation points 
should be about equal to the spacing of the observation points to avo1d ill­
conditioning of the mathematical process. 

It may be computationally more convenient and quicker to replace the prisms 
by point sources <in the }-0 case> or by line sources <in the Z-O> case. 

5.}.Z Other applications of the method 

It can be seen that we can manipulate magnetic anomalies in the same way. 

These can be total field anomalies as long as the direction of the field 
doesn't change appreciably as we cross the anomaly. If the anomaly amplitude 
is some small fraction of the Earth's main field, the direction will remain 
sensibly constant. 

Various electrical measurements might be treated using the equivalent-layer 
method. 

If we assume that the ratio of magnetization contrast to density contrast 
is constant throughout a source and that the direction of magnetization is 
uniform. it is a straight forward procedure to convert a gravity anomaly 
1nto a magnetic anomaly and vice-versa <see Poisson's relation in section 
2. }) . 

We can. in effect, do a downward continuation by placing an equivalent layer 
at progressively deeper and deeper depths and seeing at what level the 
density of one element becomes extremely large. 

Note that we could equally well use combinations of functions, such as sines, 
cos1nes and exponentials, which are solutions of Laplace's equation to do the 
same things. However, in my opinion, the equivalent-layer method gives a 
better physical significance to what is being done. 

We can also arrange to have two or more layers of blacks lying vertically 
one above the other and, using the whole set of blacks, find what combination 
of densities will reproduce the observed anomaly. This procedure tends to 
be unstable when a large, finely subdivided network of blocks is employed 
but when applied cautiously can be useful. 
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Potential theory lecture 6 

6. "Inversion" of gravity data to obtain the causative density distribution 

<continued) 

6.1 The non-linear problem 

When we inspect the formulae for the gravitational attraction of 
a homogeneous prism and a semi-infinite slab, for example, we notice 
that gravity anomaly is not a linear combination of the body point 
coordinates but instead these quantities are raised to various powers 
<as can be seen by expanding log and arctan in their respective power 
series). This means we can not directly use the method of least-squares 
to salve for them. To amplify the point, we canuse least-squares to 
salve for the coefficients a,b and c in the expression: 

because they appear raised only to the f irst power and do not appear in 
combinat1on. However, 1f when we set up the problem of finding a,b and c 
in the least-square sense for 

y = <a-b>+Ca-b> X· + Cc+c+c + b> x.+x. + c+a x.+>c;Jx. 
J J JJ J.)J 

by formi ng 

L < y. - Ca-b)+Ca-b) x. - <c+c+c + b) x+x -
j J J .i j 

2 

and differentiating w.r.t. a, b and c to obtain three equations, these 
equations are not linear in a, band c. 

In such a case, we have a non-linear system of equations to salve. 

In the same way, even when we specify that a Cl-D> body has a polygonal 
shape and fix its density contrast at a specified value,'the problem 
of determining the positions of the corner points involves the solution 
of a set of non-linear equations. To do this we generally need to use some 
sort of of iterative method to salve the problem. 

6.2 Non-linear optimization 

6.2.l Background ideas 

The first published utilization of non-linear optimization for potential field 
modelling that I am aware of was by M. Al-Chalabi in 1970 <Interpretation of 
two-dimensional magnetic profiles by non-linear optimization, Bull. Geof. 
Teor. Appl. 12, pp. }-ZO> 
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The general problem of non-linear optimization involves finding the minimum 
<or maximum> of a function of several variables i.e., 

As an example, let us consider topographical height, h, which is a function 
of two variables, x and y i.e. h=h<x,y>. Suppose we are in fairly 
mountainous terrain and wish to go to the highest peak within a given area 
<say 100 square m1les)but it is foggy and we only have a compass and a 
barometric altimeter to guide us. We have no map and no prior knowledge of the 
area. We could walk ten paces in one direction, say north, and see whether the 
altimeter recorded an increase or a decrease in elevation and note the result 
in our fieldbook. We could then walk ten paces to the east and see if there 
were an 1ncrease or a decrease 1n this direction and note the result in our 
book. Our next sequence of steps wuold be guided by the initial results. For 
example. if our elevation decreased in a northerly direction we would go south 
by twenty paces the next time. If our elevation had increased in an easterly 
direction, we would go another ten paces in this direction the next time. 
Continuing on in this manner we would eventually arrive at a topographical 
peak. BUT would it be the highest peak or just one of the lower ones? This is 
the main difficulty in non-linear optimization. We are never sure if we have 
achieved a global maximum <or minimum> or merely a local one. 

6.l.l Application to gravity interpretation 

In our case the function we wish to minimize is the r.m.s. difference between 
the observed and calculated gravity anomalies. Restricting ourselves without 
loss of generality to a Z-0 case, this is a function of the density 
contrast of the body and the positions of its corner points. We can have as 
many or as few body points variable as we please as long as we have 
sufficient data points. We must not have more unknowns than observations! 

The non-linear optimization program that we use <PQRS> calculates the 
derivatives of the function <the r.m.s. dif f erence> w.r.t. the variable 
parameters numerically. It works well and is very useful to use in those cases 
where these derivatives are tedious to obtain analytically . It should be noted 
however that in our case we can derive the analytical expressions and there 
are other non-linear optimization routines which might be faster <s i nce it is 
not necessary to evaluate the function at two different points to obtain a 
derivative>. Nevertheless, the subroutine PQRS generally works well. 
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Two FORTRAN programs have been written for the interpretation of <i> gravity 
anomalies that are essentially two-dimensional in character and <ii) anomalies -
that exhibit circular syrrrnetry. These are named POLY and CYLIN respectively. 
In either program the non-linear optimization subroutine is linked to the 
gravity subroutines AUX and ~MSTEP through the subroutine CHANGE. The variable 
parameters in the subroutine AUX have to be fed back to AUX by FORTRAN 
statements of the form U<2.l>=V<l>. etc. In this case whatever number is in 
location one of the variable parameter array V is transferred into location 
2.1 of the horizontal body coordinate array. Each time PQRS cycles around, a 
new value from V<l> is entered into U<2.l>. If density is a variable we might 
have a statement RHO<}>=V<7>. This means that the density contrast of the 
third body is variable and that AUX receives the latest updated value from the 
seventh location of the variable parameter array in PORS. 

In addition to the vertical and horizontal body point coordinates, the 
density contrast can be allowed to vary at the same time. It is better to 
fix the density and run the program and then specify a new value of density 
and run the program again. Letting the density and shape vary at the same 
time may lead to unreasonable values. It has been shown that a body in which 
the density is variable can be replaced by an "ideal" body in which the 
density is uniform. Assuming that the density is uniform, it can be 
demonstrated numerically that there is a minimum value below which it is not 
possible to obtain a good fit to the observed anoma.ly. This happens because, 
as the density contrast is lowered, the body becomes larger and larger and 
finally generates an anomaly which is too broad too fit the observed data. 
This ma.y be a useful technique to distinguish between low-density granites 
and sedimentary basins as the source of a gravity low. 

It 1s also possible to specify that the regional gravity has the form of a 
low-degree polynomial and use the non-linear optim1zation routine to 
simultaneously solve for the coefficients of the polynomial and, say, the body 
point coordinates. In POLY a straight-line may be fitted; in CYLIN only a 
constant regional level <REG in the program> is allowed for. 

The non-linear optimization routine is very powerful and can be used in many 
geophysical applications other than that of gravity modelling. 
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Appendix 

Copies of illustrations used on overhead projector 

Illustrations 1 to ll are for lecture #1 
13 to 25 l 
26 to 35 3 
36 to 46 4 
47 to 59 5 
60 to 65 6 


