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Introduction 

Perceptible subsurface movements of mass are known to occur from time to 

time over different parts of the earth. They manifest themselves in various 

forms such as earthquakes, volcanic magma migration, postglacial uplift, etc. 

In general, a ra-distribution of mass causes displacements of individual 

mass- elements which constitute the whole Earth. These displacements change 

the distances of these mass-elements from any particular ground station 

resulting in a change in gravity at the station from before to after the 

event. In many practical cases, such changes of gravity as well as 

displacements of the free-surface can be observed. The purpose of this study 

is to investigate mathematically the possible relationships between these two 

kinds of observable data. 

Earlier work in this field includes papers by Walsh and Rice (1979) and 

Savage (1984) in which the changes in gravity are expressed in terms of 

dislocations at depth and Walsh (1982) where changes in gravity due to 

arbitrary tractions on an elastic half-space have been evaluated. 

In our investigation we first develop the expression for the change in 

gravity at an observation point taking into account not only the deformation 

of the gravitating body but also any possible movement of the point of 

observation. Then, applying Betti's reciprocal theorem (in the absence of 

body forces) to Love's solution for the displacement field throughout a 

semi-infinite elastic medium in which there is a center of dilatation, we 

arrive at an expression for the change in gravity at a particular point on the 

surface of the half-space. The expression only requires a knowledge of the 

horizontal displacements observable at the surface. Although not completely 

general, these displacements can be due to any cause not requiring body forces 



- 2 -

for their maintenance. The important result derived here is that the 

expression does not require a knowledge of the displacement field throughout 

the medium and allows two different sets of observations (gravity and 

position) made at the surface to be related through a simple surface 

integration. 

Volume Integral for the Change in Gravity 

With reference to a cartesian system fixed in space, let <~.n.,> be 

the initial position of a mass-element with density pC~,n,,> and 

(X,Y,Z) be the initial position of a station of observation. After the 

occurence of mass movement, let their respective positions be 

(~+u,n+v,C+w) with the density p'(~+u,n+v,C+w) and (X+U,Y+V,Z+W), 

where displacements (u,v,w) are functions of <~.n,,) and (U,V,W) are 

functions of (X,Y,Z). Throughout our analysis these displacements and the 

density differential (p'-p) are considered as small quantities whose 

second and higher orders are negligible. 

From the consideration of the conservation of mass on an initial unit 

volume and taking account of its dilatation after the event, we have 

p<~.n.C>. 1 = p'C~+u, n+v, C+w>. Cl+ au1a~ + av1an + aw/3C> 

or p'<~.n.C> = p<~.n.C> - {acp•u)/3~ + acp'v>1an + acp•w)!3C} 

= p<~.n.C> - {3Cpu>t3~ + acpv>1an + 3Cpw>1ac1 

Denoting R and R' as the distances of a point <~.n.C> from the 

(1) 

station of observation before and after the avent respectively, we can write 

l/R' = l/R - ua(l/R)/3~ - va(l/R)/3n - W3(1/R)/3C (2) 

where 2 2 2 2 R = (X-~) +(Y-n) +(Z-{) , 

and X'=X+U, Y'=Y+V, Z'=Z+W 
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From equations Cl) and (2) we obtain 

p•/R' = p/R - pU3(1/R)/3~ - pV3(1/R)/3n - pWa(l/R)/3( - (l/R)3(pu)/3~ 

- c11a>acpv>1an - c11a>acpw>1ac 

The change in gravitational potential at a station can be expressed as 

âPCX,Y,Z) = P'(X',Y 1 ,z•) - P(X,Y,Z) 

(3) 

=y I (p'/R') dt - y I (p/R)dt (4) 

T• T 

where y is the universal constant of gravitation and T and T• are the 

volumes of contribution before and after the event . Obviously, the difference 

between these two volumes is of the same order of magnitude as the 

displacement involved so that second and higher orders of the difference can 

be ignored. Then substituting (3) in (4) we get 

âP =y I CptR> dt - y I p {uac11R>1a~ + vac11R>an + wac11R>ac} dt 
T'-T T 

- y I c11R>{acpu>1a~ + acpv>tan + acpw>1ac} dt <5> 
T 

Now the volume (T'-T) can be approximated as a thin shell so that dt = 
where u is the component of the displacement along the outward normal 

n 

direction at a point on S, the bounding surface of the volume T. Then 

u dS 
n 

l I (p/R) dt = y I (p/R) undS = 
T'-T S 

y J{acputR>ta~ + acpvtR>tan + acpwtR>3C} dt 
T 

the second step following from the application of Gauss' well known tbeorem. 

Hence, combining (5) and (6) we have: 

(6) 

-vr=''' ""' 
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6P = y l p{(u-U)3(1/R)/3~ + (v-V)3(1/R)/3n + (w- W)3(1/R)/3C} dT (7) 
T 

We can work out the change in the vertical component of the gravitational 

attraction, 6g, in a similar manner starting from the relation 

6g = g' ex· ,Y' ,Z') -g(X,Y,Z) 

= -3{P'(X',Y',Z')}/3Z'+3{P(X,Y,Z)}/3Z 

to obtain 

6g =y I p[Cu-u>3{CZ-C)/R3}1a~ + Cv-V>3{CZ- {)/R3}t3n + (w- w>3{CZ-{)/R3}/3CJ dT (8) 

T 

It is interesting to note that, in general, the change in gravlty is not 

derivable from the change in potential simply by a single differentiation with 

respect to Z, tbat is: 

where -3C6P)/3Z is given by 

y I p ((u-u>3(CZ-C)/R3}1a~ + Cv- V>3{CZ- C)/R3}1an + Cw-W)3{CZ-,)/R3}/3CJ dT 
T 

+y J (p/R3)((X-~)3U/3Z + (Y-n)3V/3Z + (Z-{)3W/3Z}dT 
T 

This is because what is measured is, by definition 

àg =-a J p' ac11R'>1az• dî +a I P ac11R>1az dî 
T' T 

while 

-3(6P)/3Z =-al p' 3Cl/R')/3Z dî +al p 3(1/R)/3Z dT 
T' T 

and ac1/R')/az and 3Cl/R')/3Z' are not equal but are related as follows: 

= 3(1/R')/3Z' + (C~-X)3U/3Z + Cn-Y>av1az + ({-Z)3W/3Z}/R'3 
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Later on, however, we will need to use equation (8) to evaluate the change in 

gravity at any point when the displacements are given at every point within 

the volume of the attracting mass. The practical use of the formula will 

greatly increase if the volume integral can be converted to one or more 

surface integrals since observations for displacements are normally available 

only on the bounding surface. The following theorem enables us to do this. 

Betti's Reciprocal Theorem and Its Application 

This theorem states that when an elastic body is subjected to two 

different sets of deformations under the application of two different systems 

of forces, then the work done by the first system of forces acting througb the 

second set of displacements equals the work done by the second system of 

forces acting through the first set of displacements. 

Thus, if (X,Y,Z,X ,Y ,Z ) form a system of body forces and surface 
V V \1 

tractions acting on a body in a volume T bounded by the surface S to produce 

displacement components (u,v,w) and (X' Y' z• X' Y• Z ') and •' 'v'v'v 

(u',v',w') fonn a similar second system involving the same body, then we have 

I p (Xu'+Yv'+Zw') dT + I <Xvu'+Yvv'+Zvw') dS 
T s 

= I p (X'u+Y'v+Z'w) dT + I <Xv'u+Yv'v+Zv'w) dS (9) 
T s 

In our analysis, we assume the first system to be the real one acting on 

the body while the second system is a suitably chosen hypothetical model such 

that (u' ,v' ,w') are the displacement components appropriate to a unit centre 

of dilatation at <~.~.() in an infinite medium. Then we can write 

where (11) 
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In applying Betti's theorem, body forces are ignored and the point C~,n.C> is 

excluded by a sphere I of radius c (c-+o). Equation (9) then reduces to 

I {CX u'-X' u)+(Y v'-Y 'v)+(Z w'-Z' w>} dI 
I u V u u u u 

= -I {(X u'-X 'u)+(Y v'-Y 'v)+(Z w'-Z 'w)} dS 
V U V U U U 

(12) 

s 

The left band side of (12) bas been worked out in detail by Love (1927, 

p. 234) as 

= - J {(X u'-X 'u)+(Y v'-Y 'v)+(Z w'-Z 'w)} dS 
S U U V U \1 \1 

(13) 

Now we consider another similar model system (u", .... Zv") with the 

restriction that u'=u", v'=v" and w'=w" on S. Hence 

I (X u'+Y v'Z w') dS = I (X u"+Y v"+Z w") dS 
s \1 V V s \1 \1 \1 

= J (X "u+Y "v+Z "w) dS 
s V \1 \1 

(14) 

Eliminating <Xv,Yu,Zv> between (13) and (14), we then find 

= J {(X '-X ")u+(Y '-Y ")V+(Z ·-z ")w} dS 
S V V V V \1 \1 

(15) 
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In this equation, (X '-X") etc. can be looked upon as surface 
V V 

tractions corresponding to displacements (u'-u") etc. such that these 

displacement components vanish on the bounding surface S. 

Half-Space Solutions for Displacements 

In this case, S is the plane boundary z=O and T is the volume z~O and we 

have, following Love (p. 237-240) 

+ 2z (C~+µ)/(~+3µ)} ca21axaz, a21ayaz, a21az2) Cl/r1> (16) 

2 2 2 2 where ri = (x-~) +(y-n) +(z+C> (17) 

which implies inclusion of an image centre of dilatation at <~. n, -{). 

(X '-X ") etc are then worked out on s using (10) and (16) and then substituted 
V V 

in (15). Th en in terms of: 

m m 

L(~,n,C> = J J {u(x,y,0)/r0} dxdy 
-al -m 

m m 

KC~,n.C> = J J {v<x,y,O)lr0} dxdy 
-AD -m (18) 

m m 

N(~,n.C> = J I (w<x,y,O)/r0} dxdy 
-m -m 

and 

'<~.n.C> = 3L/3~+3M/3n+3N/3( 

(19) 
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we can write 

uC~.n.(> = - (l/2~)at1a( + (CX+µ)/2~C~+3µ)}(a~1a~ 

(20) 

Further substitution of (18) and (19) in (20) and subsequent simplification 

reduce the formulae for displacements to: 

un,n.O 

3 I {u(x,y,O)/ro } dxdy 

+ (3Ck+µ)(/2~CX+3µ)} I 5 I (C~-x)u(x,y,O)+Cn-y)v(x,y,O)+(w(x,y,O>}{<~-x)/ro } dxdy 

v<~.n.O 

m m 

= (µC/~CX+3µ)} I I {vCx,y,O)/r0
3} dxdy 

-m -m (21) 

5 I {C~-x)u(x,y,0)+(1"1-Y>v<x,y,O)+(w(x,y,O>}{Cn-y)lro } dxdy 

wn,n,() 

= (µ(t~<k+3µ>} I 3 1 (wCx,y,O)lr0 } dxdy 

5 
1 (C~-x>u<x,y,O)+Cn-y>vCx,y,O)+(w(x,y,O)}(l/ro > dxdy 

These equations express the displacement components at any point inside 

the half space in terms of the displacement on the plane boundary. 
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Surface Integral for the Change in Gravity 

For the change in gravity on the bounding plane of a homogeneous 

half-space, equation (8) can be modified to 

Ag(X,Y,0) 

m m m 

= 3lP I I I (<~-x>u<~.n.C>+<n-Y>v<t.n,C>+Cw<t.n.C>}CC/Ro5 > dtdndC 
o~-

m m m 

- lP I I I {w<(,n,C>IRo3} dtdndC - 3ypU(X,Y,O) 
m m m 

I I I <~-x><CtRo5 > d~dndC 
o~~ 0 -m -• 

5 
- Jrpv<x.Y,o> I I I <n-Y>CC/Ro > d~dndC - JypWCX,Y,O> 

m m m 

+ lPW(X,Y,O> I I I Cl/Ro3> dtdnd( (22) 
0 _m -m 

where 
2 2 2 2 

Ro = (~-X) +<n-Y) +( (23) 

Substitution of (21) in (22) results in 

m m m m m 

= I I u<x,y,O) dxdy I I I [6µC2 <~-X)/CR0 5 r03 > + 9(À+µ>C
2

<(-x> 
-m -• 0 -• -m 

2 s 5 2 3 5 
{C~-x><~-X>+<n-y><n-Y>+C }/CR0 r 0 > - 3(À+µ)( <~-x>ICR0 r 0 >J d~dndC 

m m m m m 
2 5 3 2 

+ I I v<x,y,O) dxdy I I I [6µ( <n-Y>t<R0 r 0 > + 9(À+µ)( <n- y> 

-· -· 0 -· -· 

2 5 s 2 3 s 
{<(-x><(-X>+<n-y><n-Y>+C }/CR0 r 0 > - 3(À+µ)( <n-y>ICR0 r 0 >J d~dndC 

m m m m m 
3 s 3 3 + I I w(x,y,0) dxdy I I I [6µC /CR0 r 0 > + 9(À+µ>C {<~-x><~-X) 

-m -m 0 - m -• 
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Cii QI CD 

- 61rU(X,Y,O> I I I CC<~-x>1R05 } d~dndC 
0 -Cl -Cl 

Cii Cii Cii 

- 6~(X,Y,O> I I I (C<n-Y>IR0
5

} d~dnd( 
0 -Cl -°' 

+ 21tW(X,Y,O) I I (24) 
0 -<» -°' 

In this equation, the triple integrals with respect to ~. n and C 

over the half-space can be evaluated to obtain functions of x, y, X and Y. 

The effects of these functions are to introduce kernels in the surface 

integrals of the displacement components over the bounding plane of tbe 

half-space in (24) to represent the change in gravity at any point on the same 

bounding plane. 

Evaluations of Triple Integrals in ~. n and C 

(X, Y,o) 
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io facilitate the evaluation of the integrals in question, let us first 

introduce a few variables as indicated in the diagram above and explained by 

the relations below: 

R' cos a = x-X, R' sin a = y-Y, p cos C«P+a) = ~-X, p sin (t+a) = rt-Y 

2 2 2 
q = p +R' -2pR'cos ' d~dri = pdpdt ' 

CD 

l/RO = < P 2+C
1 

2 > - li 2 = I exp(-k(
1

> J
0

Ckp> dk, 
0 

CD 

l/r
0 = (q2+,22>-l/2 = I exp<-9.C2> J

0
<9.q> dl. 

0 

Th en 

CD CO CO m 

I I 3 
d~dn = I I exp(-k(

1
-9.C2> kdkd9. ((l/RO rO) 

0 0 -CD -CO 

Now 

t · J (9.p) J (9.R') cos mt, m m m 

(Watson, 1922, p. 358). 

and hence, 

211' 
I J 0<tq> d' = 2• J 0 Ctp> J 0 C9.R'> 
0 

Substitution of (27) in (25) gives 

CD m 

CO 2'f 
I J 0 <t.p> pdp I Jo<lq> d~ 
0 0 

= 2, m = O 

(27) 

= 211' I I exp<-tc1-9.C2 > J0 C9.R') kdkdl I J 0 <kp> J 0 C9.p> pdp 
0 0 0 

(28) 

(25) 

(26) 
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Now let us assume that the Dirac delta function can be represented as 

CD 

6(k-l) = J D Ck,p) J 0Clp) pdp. 
CD 

Therefore, by inversion 

CD 

ock,p> = I &Ck-p) J 0 Ctp> ldt = k J 0 Ckp> 
CD 

CD 

or 6Ck-l> = k 1 J 0 Ckp> J 0 Clp> pdp 
CD 

(29) 

Using (29), (28) is reduced to 

Cii Cii 

(30) 

where (31) 

Differentiating both sides of (30) with respect to {2 , we get 

Similar differentiation of both sides of (30) and subsequent 

equations with respect to c1 , c
2

, x and X and further algebraic manipulation 

of terms enables us to evaluate all our integrals witb C
1

=C
2

=C as 

listed below: 

CD Oii CD m 

(i) I 
3 I CCIR0 r 0> dtdn = 211'/H, ( ii) I 

3 3 3 1 <CIR0 r 0 > d~dn ~ 4~/H , 
-CD -CD m m 

CD CD 

(iii) I 3 s 
d~dn 

s I {C<~-x>IR0 r 0 } = 411'(X-x)/H , 
-CD -CD 

m CD 

(iv) J 
3 s 5 

d~dn (211'/3)(X-x)(l/H5+20C21H7>, J {C <~-x)IR0 r 0 } = 
-Cii -CD 

Cii Cl) 

<v> J J C{3 tR~ r 0
3 > d~dn = C211'/3)(1/H3+12c21H

5>, 
-Cii -m 

(32) 



- 13 -

CD CD 

<vi> J J cc3 1R~ r 0
5 > dtdn ='<4ir/3)(1/tt5+2oc

2
1tt

7
>, 

(vii) 

(vii i) 

-CD -CD 

CD CD 

J J {C<(-x>tR
0

5r
0

3} d(dn ; 
-CD -CD . 

CD CD 

5 - 411'(X- x)/H , 

... 5 5 
I I {CC(-x)((-X)/Ro ro } d(dn = 

-CD -al ... 

CD CD 

Cix> I J {C<(-x>Cn-y><(-X)/R
0

5r
0

5 } d(dn = (211'/3)CY-y){l/tt5-scx-x> 21a7}, 
-CD -CD 

CD CD 

(X) J J {CC'(-x> 2 Ct-X)/Ro5ro5
} d(dn = (211'/3)(X-x){l/tt5-scx-x> 2ttt7

}, 
-CD -CD 

CD CD 

<xi> J J cc31R~ r
0

5
> dtdn = (2ir/3)(1/H

3
+12c

2
1tt

5
>, 

-CD -CD 

CD CD 

Cxii> J J {C<t-X>tR
0

5
} d(dn = o, 

-CD -CD 

Cxiii) 

3 
(xiv> J I c11R0 > dtdn = 2ir1c, 

-CD -CD 

In order to introduce the total contribution of the half-space these 

integrals are then integrated with respect to C from 0 to CD. The results 

are: 

CD CD CD CD 

3 
I {l/(R'2+4(2)1/2} d(, (i) I I J C(/Ro ro> d(dndC = 21' 

0 -al -al 0 

CD CD CD 

3 3 
211'/R'2, (il) J J J ((/R r dtdndC = 

0 -ot -Cii 
0 0 

CD CD CD 

2 3 5 
(11'/3){CX-x)/R'l}, ( iii) I I I {C n-x)/Ro ro } d(dndC = 

Q -ot -CD 
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CIO CIO CIO 

4 5 5 
(iv) I I I {C C(-x)/RQ ro } d(dnd( = <•16){(X- x)/R'3}, 

Q -CIO -CIO 

CIO CIO CIO 

3 5 3 
(V) I I I (C /Ro ro } d(dndC = (2~/3)/R' 2 , 

Q -CD -CD 

CD CD CD 

5 5 5 
Cvi) I I I (C /Ro r 0 } dÇdndC = C2~/9)/R'2, 

Q -CD -CD 

CIO CD CD 

2 5 3 
(vii) I I I {C C(-X>IRo ro } dÇdnd( = - C•l3){(X- x)/R' 3}, 

Q -CD -CD 

CD C:O CD 

3 5 5 
(viii) I I I {C C(-x)(Ç-X)/Ro ro } d(dnd( = {~/18){(Y-y)2- cx-x>2}/R'4, 

Q -CD -CD 

CD CD CIO 

2 5 5 
Cix> I I I {C C(-x><n-y><Ç-X>IRo r 0 } d(dndC <•118)(Y- y>{CY-y)2-2cx-x>2}/R'5, 

Q -«» -CD 

CIO C» CIO 

(X) I I 
2 2 5 5 

I {C C(-x> C(-X)/Ro r 0 } d(dndC = - C•ll8)(X-x>{2CX-x)2-cy-y)2}1R's, 

CIO CIO CIO 

3 3 5 
<xi) I I I {C /Ro ro } d(dndC = C2•13}/R'2, 

Q -CIO -Cii 

CD CIO CD 

Cxii> I I I {C<Ç-x>ta
0

5} dÇdndC = o, 

.0 -CD -CD 

CD CD CO CD 

Cxiii) I I I {C
2 

IR 
5} 

0 
dÇdnd( = (2•13) I c110 dC, 

0 -4D -CD 0 

CD CD CD CO 

Cxiv) I I I (1/RO 3) dÇdnd( = 2• I (1/() dC, 

0 -CD -CD 0 

When we make use of these results in (24), we obtain 
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{2~(À+3µ)/yp}âg(X,Y,O) 

CD CD 

= I I {(X-x)/R'3}u(x,y,O) dxdy [6µ( -~/3) - 9(À+µ)(~/18)(2(X-x)2-(Y-y)2}1a•2 

- 9(À+µ)(Y/18)(2(Y-y)2-(X-x)2}/R'2 + 9(À+µ)(~/6) - 3(À+µ)(-~/3)] 

CD CD 

-· -CD 

- 9(À+µ)(Y/18){2CY-y)2-cx-x>2}/R'2 + 9(\+µ)(Y/6) - 3(À+µ)(-Y/3)) 
CD CD 

-CD -CD 

- 6'1J(X,Y,O).O - 61rV(X,Y,0).0 + 21'\l(X,Y,0){2• I (1/() d( - (2Y/3).3 J (1/() d() (33) 

0 0 

which, after collecting terms and noting that all terms involving the 

displacements w and W cancel out, reduces to: 

âg(X,Y,O) 

CD CD 

= (yp/2){(-2µ)/(À+3µ)} I I (<X-x)u(x,y,O)+(Y-y)v(x,y,0)}/(CX-x>2+(Y-y)2}3/2 dxdy (34) 

Thus, under the assumptions of the homogeneity of density and the absence 

of body forces in the elastic half-space, we are able to express the change in 

gravity at any point on the bounding plane in terms of the displacement 

components on the surface alone. The reason that we only need to deal with a 

surface integral is that, in the absence of body forces, the displacement 

field inside the medium can be computed from a knowledge of the displacements 

at the surface. The advantage of only dealing with a surface integral is that 

in applying the method to the Earth, underground observations are not needed. 

We find it somewbat surprising that a knowledge of vertical displacements is 

not necessary for the problem as posed. This result calls into question the 

usual procedure of combining gravity and levelling results to study dynamic 

processes in the Earth's crust and ignoring horizontal strains. 
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