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Abstract 

A practical and accurate {within 10-
4

nm) free fall formula is derivedfor 

the purpose of determining absolute gravity from free fall measurements using 

least squares fit. Small correcting terms for air resistance and Coriolis 

force (Eotvos effect) are taken into account. A procedure using spectral 

analysis, least squares fit and variance-ratio significance F test eliminates 

non-random noise and computes gravity. The present study shows from real data 

that perturbing frequencies may create systematic errors up to 50 ~Gal. A 

method of computing an average set of data is suggested and the problem of 

computer expenses is considered . 
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Introduction 

For several decades absolute gravity measurements have been envisaged and 

realized using freely falling abjects (Volet, 1947), (Faller~~}965), 

(Sakuma, 1971), (Hammond, 1978). Our purpose is to analyze a procedure for 

computing the absolute gravity from free fall measurements (t., z. ), i = 
1 1 

1, ... , m where t. are the measured times corresponding to the vertical 
1 

coordinate values z. of the falling abject and m is the number of points 
1 

measured along the free fall path. In practice, in the case of single free 

fall, these measurements are realized by dropping with zero initial velocity a 

corner cube reflector in the light beam of a laser interferometer; the case of 

synunetric free fall used by A. Sakuma where the freely falling abject is first 

thrown upwards will not be taken up in the present report. A fringe counter 

with a resolution of one thousandth of a fringe triggers every ~ fringes (for 

example Q=4000), a time measurement individually accurate to within ± 0.5 ns 

-10 
<±5 x 10 s). In the numerical computations made later, we will have m=439 

over a 55.5 cm drop lasting about 0.23 s , these figures correspond to 

Hammond's free fall gravimeter as used at the Bureau International des Poids 

et Mesures (BIPM) in Sèvres, France, at the international campaign of absolute 

gravimeters comparison in Oct. Nov. 1981. 

In the first part, applying the principles of Classical Mechanics 

(Goldstein, 1980), we derive the equations for a point mass falling freely in a 

rotating reference frame and a linearly space dependent gravity field 

(constant gravity gradients). After discussion of the magnitude of each term, 

a precise and practical formula for the vertical component z(t) is found to 

be a Taylor series of degree four. 
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In the second part, a practical procedure is proposed for analyzing the 

data in terms of perturbing frequencies of various origin by least squares 

spectral analysis (Vanitek, 1971). Least squares fit of a second degree 

polynomial and of the perturbing frequencies determines gravity. The gravity 

value is derived from the second order coefficient of the second degree 

polynomial. Only the perturbing frequencies proving to be significant via an 

F test as explained later are included in our least squares fit. In practice 

we choose a very high confidence level i.e. 99.9563. 

In the third part, results of real and synthetized data analysis by our 

method are presented and discussed. 

PART 1 

THEORY 

Let us apply the principles of Classical Mechanics (Goldstein, 1980) to a 

freely moving point mass (m) in a reference frame Axyz (see Fig. 1), fixed 

with respect to the Earth's crust, under the influence of some gravitational 
..,,, 

field. Denoting by Q the Earth's instantaneous angular velocity vector and 

-+ 
T its center of mass, the absolute acceleration OM of a point M having mass 

m is given by (Goldstein, 1980; p. 177): 

-+ 

OM 
... \..# -
)(T + dQ x TM + 
u dt, 

-+ 
where x is the vector cross - product, ~T the acceleration of the Earth's -center of mass T, OH,.. -the relative acceleration of M and V 

Mr-
the 

(1) 

relative velocity of M,both in the reference frame Axyz. Assuming for my 

1 __, 

' ! 
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vr VI -+ ..+ 

theoretical derivation dQ/dt = 0 and denoting by ~M and ~M the 

gravitational fields of the Earth and of other celestial bodies respectively, 

-+ -+ ... 
we apply Newton's Second Law of Motion and using (1) where OM=~M+~M 

for a body in free fall, we have: 

ÎM + ÎM - YT -Qx (Qx TM) - Y 0 - 0Mf" 

-One recognizes the tidal acceleration ~M-0T, the centrifugal 
'-" ...., _...,. '--' -+ 

acceleration -Qx(QxTM) and the Coriolis acceleration -2Qxv 
Mr 

The 

(2) 

left-hand side of (2) is the complete theoretical expression of the physical 

gravity vector g(x,y,z) equal in magnitude to the force per unit mass on a 

body at rest with respect to an Earth fixed reference frame. In practice the 

air resistance may not always be neglibible (Faller & Hammond, 1970; p. 124). 

Figure 1: Axyz reference frame fixed with respect to the Earth's crust. 

D.sinL 

I 

z (vertical at A) 

X 

(North) 

Legend: L: latitude at point A, I: zero velocity position, J first point 

measured on the drop, K last point measured on the drop. A has been chosen at 

the middle of the free fall path (JA=AK). gis the gravity vector at point A. 
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Accounling for lhal effect, equation (2) becomes: 

-+ -+ -+ VI __. 

g (X, y, z) -À.V = Y + 2Q X V 
Mr 0Mr Kr 

(3) 

where À. is the positive air qrag coefficient. 

Since we want to discuss the effect of horizontal gravity gradients on the 

free fall equation of motion, we expand the gravity field in Taylor series up 

to the first degree in the neighbourhood of point A. Using the second partial 

derivatives of the gravity potential denoted by e
11

,e
12

,e
13

,e
22

,e
23 

and n=e
33 

where indices 1, 2, 3 denote partial derivatives with respect to 

x, y and z respectively, n being dg/dz where g(x,y,z) is the component of .. 
g(x,y,z) along the z axis (positive downwards, cf fig. 1), we have: 

g(x,y,z) = (~) +(=~~ =~~ :~;)(~) 
g e13 e23 n Z 

(4) 

where g = g (0,0,0) (the origin (0,0,0) being the mid-point between the first 

and last measured point along the free fall path, i.e. z
1

+zm=0). From 

(4), one notices that Az is parallel to g at the origin A (Fig. 1). Denoting 
\JI 

the latitude by L (angle between Ax and Q), equation (3) expressed in terms 

of (4) becomes: 

X + 2yQsin L = ellx + e12Y + el3z - À.x, ( 5) 

.. 
2iQsin 2iQ cos - À.y y - L - L = el2x + e22Y + e23z (6) 

z + 2yQcos L = g + el3x + e23y + nz - À.z ( 7) 

0 

«., 

', 

._ .. 

~ 
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Single free fall law of motion with measurement points P
1

, 

P
2

, P
3

, •.. and point A as tirne and vertical height origin . 

S --------------------- I zerovelodl,Y pœ.nt 
1 

-meuu.remen.l ,tuts --. . .....,__,, _____ J+-r."""-------. 
1 

1 

1 

1 

1 

1 

1 

1 

0 
t.. 
Q ~ t~ ··· A 1 R 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

..... --- - --- - - -~ ... 
1 

lime 

t 

end of tnca5Ul'ement. 

heigh. z 

Legend: Points A, J and K have the same location as in fig. 1, z
1

+zm=0, 

At point T, Z = Z and t=O . OQ~QA~0.1'2..s .JA.:AK!Y2SCtrrt. . 
0 

where dots and double dots denote first and second derivatives with respect to 

time and Q= \Q'\. 
Equations (5), (6) and (7) forma system of three linear differential 

equations of the second order with constant coefficients and could be solved 

by classical rnethods. Equation (7) is the most relevant to us since we are 

:) 

~ "'., 
·_:; 
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interested in the solution z(t) for the vertical motion of the freely falling 

body. e
13

x and e
23

y are always negligible. A reasonable order of 

magnitude for e
13 

and e
23 

derived from actual Eotvos torsion balance 

-8 -2 measurements can be 2 x 10 s (Miller, 1934; p. 19). From experimental 

evidence (Sakuma, 1971; p. 455) (Zumberge, 1981; p. 90) and from the fact that 

x and y vary approximately linearly with time, x and y are always less than 

nm. Thus, in all cases, and are less than 

2 0.01 nm/s (0.001 µGal) and will be neglected in equation (7). 

The Coriolis term 2yQcosL can be averaged by 2y QcosL where y is 
0 0 

the East-West deflection velocity at time t=O (chosen at the middle of the 

drop cf fig. 2). A rigorous derivation of z (t) using the actual y in (7) 

shows no significant change. 

Finally our fundamental equation of motion for a freely falling body 

accounting for Coriolis forces, gravity gradient (n) and air drag (~) is the 

following: 

z + 2y QcosL = g + nz - ~z. 
0 

(8) 

A rigorous solution of equation (8) can be written in terms of exponential 

functions in time (Appendix A) but it would not be practical and accurate for 

numerical computation since it involves differences of large numbers. In fact 

a precision of 1 nm for z (t) would require computing the exponential 

functions with sixteen significant digits. To avoid that loss of precision, 

one can expand the rigorous solution in a Taylor series up to degree four. A 

lengthy but straightforward derivation yields from equation (8): 

z (t) = z + z t + 1/2 
0 0 

+ 1/6 <nz 
0 

3 
- lg) t 

(g + nz - ~z -
0 0 

+ (ng/24)t 
4 

. 2 
2y QcosL)t 

0 

(9) 

·, 

... , 

.·, 

-: ' 
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where second and third order terms in n and l have been neglected in the 

t 3 and t 4 coefficients introducing an error less than one part per million 

for these coefficients. 
-5 An upper boundary of 10 nm for the truncation 

error, thus negligible against the length precision measurement <~0.6 nm) 

can be estimated from the classical expression of the Taylor series remainder 

(Appendix A). Term g+nz in the second degree coefficient can be 
0 

reinterpreted ao the value of gravity at point T (cf figure 2) corresponding 

to the time origin. Neglecting air drag and the Coriolis term one finds that 

gravity at T equals twice the coefficient of t
2 

in formula (9). Point T is 

determined by height z above mid free fall track. Thus it can be precisely 
0 

related to the floor of the laboratory room. 

Before elaborating the practical procedure in Part II, let us analyze the 

structure of the coefficients in formula (9) and compute their numerical order 

of magnitude. In the coefficient of t 2 we recognize a horizontal velocity 

effect also called Eotvos effect (Sakuma, 1971; p. 454) which is the part of 

the Coriolis effect due to a non zero East-West initial velocity (y~O) and 

2 which amounts to 10 nm/s for Y.,= 0.07 mm/s (Zumberge, 1981; p. 90). 

Approximate magnitudes of the third and fourth degree coefficients can be 

-6 -2 estimated using n = 2.541 x 10 s (254.1 µGal/m, actual value at 

Hammond's station in BIPM laboratory), L=45°,Sl= 21'1'/86400 radis, 

g = 9.8 x 10
9 

nrn/s 2
. If the tirne origin is chosen at the middle of the 

drop, we have in the case of our exarnple i 
0 

2.367 rn/s (velocity after a 

~ 0.24 s free fall, OQ~QA approxirnately in fig. 2). l can be estimated to 

-8 -1 -4 
1.7 x 10 s for a current operating pressure of 1.33 x 10 Pa 

(10-
6 

Torr) (Faller and Hammond, 1970; p. 122). The third and fourth order 

coefficients amount to 3 4 
975 nrn/s and 1038 nrn/s respectively. Their 

maximum contributions (for t = 0.12 s) are about±1.7 nm and 0.2 nm 

respectively and they are not negligible because the standard error of a 

·-· 

' .... ._z' 

( •• • 2· 

, . 
J 
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length measurement is 0.3 nm. 

Having discussed the free fall equation of motion in detail and derived 

with all the required precision the solution given in formula (9), we consider 

that a polynomial of degree four in time is a suitable mathematical model for 

the actual times and heights measurements (t. ,z.) i = 1, .. . , m where mis 
l l 

the number of measured points along the free fall path. Let us now examine a 

practical procedure to take full advantage of formula (9). 

PART II 

PRACTICAL PROCEDURE 

Actual free fallme.a.surements are greatly perturbed by vibrations from 

various origin (microseismic, environmental, instrumental ... ). Higher degree 

than two coefficients in formula (9) are badly affected and one has to forget 

about the possibility of determining both vertical gravity gradient and 

gravity at the same time. The procedure universally adopted is to measure 

J vertical gravity gradient by relative measurements and use it to correct the 

·. 

.. 

·r~ 
· ~ 

data. A procedure suggested by N. Courtier and approved by J.E. Faller will 

be adopted here. It consists of correcting the height measurements z. for 
l 

gravity gradient (and a small contribution due to air resistance in some 

cases) right from the beginning. Third and fourth order terms in formula (9) 

are subtracted from the observed time series ~., i=l,~m yielding the 
l 

corrected height measurement time series z. according to the formula: 
l 

zi=zi- (<116) (nz
0

-">..g>tl + (ng/24) t() i=l, ... , m. (10) 

We also apply the correction for finite light velocity to the observed times 

"' t. before processing the data any further. That correction is needed 
l 

because recorded times t. correspond to positions of the corner cube at 
l 

times t. shifted by variable amounts àt. depending on z.. The 
l l l 

_. j 

_,, 

. . 

... 
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corrected times t. are computed according to the formula (Zumberge, 1981; p. 
1 

219): 

t. = t. + z./c, 
1 1 1 

( 11) 

where c is the velocity of light. The effect of light velocity is to make the 

free fall path steeper as can be seen in fig. 3. It produces an observed 

gravity value too large. The correction is only defined up to an arbitrary 

constant that simply moves the time origin. Using centered z. in formula 
1 

(11), there is in fact no change in the time origin. That problem of time 

origin does not affect the second order coefficient determining gravity but 

one has to solve it in order to know at what point corresponds the gravity 

value. 

Having accounted for both effects (finite light velocity and vertical 

gravity gradient), z. equals simply a polynomial of degree two intime t. 
1 1 

as given by the first three terms of the right hand side of formula (9). It is 

the ideal case. In practice, perturbations are present in the records. Our 

fundamental assumption is to model the perturbations using sine and cosine 

functions intime in addition to a Gaussian random noise r(t), we have: 

(12) 

where P(t) is a polynomial of degree two in time The q frequencies fk of 

amplitudes ak and bk represent non-random noise. The idea of the 

procedure is to get approximate values of the fk by spectral analysis and to 

remove those waves by least squares fit of the mathematical model (12) to the 

original data where not only the amplitudes ak and bk are estimated but 

also the frequencies f k. Since the time series (z., t.), i = 1, ... ,mis 
1 1 

unequally spaced in time, least squares spectral analysis (Vani~ek, 1971) is 

~·1 

.......... 
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Figure 3: Effect of finite light velocity on absolute gravity determined 

by free fall measurements using an optical interferometer . 

J " 

1, -
i' 1, 1: 
1: 1: 
11 1: 
1: 1: 1 

1: 1i1 
11 1' 1 t 1- · ~ lime ·.!,.~ t, l t, l'i! <-~ 

Q t:i. t~ A t 

,. --· ..... 
i 

-· 

·::1 

heigfi z 

.J 

Legend: The free fall path not corrected for light velocity looks 

steeper than the corrected one . It would yield a gravity value 
' J 

too large (see explanation in the text). 

•:Y 
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the method to be used in that case. 

The principle of the method is similar to a periodogram computation 

(Bloomfield, 1976; p.19) and can be recalled in a few lines. Various types of 

spectral functions can be defined. '111e simplest one is computed as a 

normalized function of the sum of squares of the weighted residuals obtained 

in a sine and cosine functions least squares fit to the data. More 

pre cisely, given a time series (lk, tk), k=l, ... , m, the least squares 

s pectral function S (w) is defined by: 

2 2 S(w) = 1-(a (w)/a ), 

where a
2 

= Î'w 1
2
k; w.k' k=l, ... ,m being a set of weighting 

1\:1 k 

(13) 

factors (taken equals unity all throughout the present study) and: 

A ,.. A 2 
µ,a and b are determined by the least squares condition a (w) 

minimum. Computing S(w) at a given w requires calculating,f-, â and b, 
2 

then a (w) by formula (14) and S(w) by formula (13). In practice, a 

more concise expression for S(w) can be worked out avoiding the explicit 

" A A computation of µ,a and b. Since o~ é(w) ~ rl for all w, we see that O~S(w)~l. 

The method of spectral analysis by least squares does not differ 

fundamentally from the ordinary Fourier analysis. In fact when the number of 

data points is large and when they are equally spaced, our spectral function 

(13) tends to the ordinary Fourier spectral function as clearly shown by 

Bloomfield in his book referenced earlier. 

It is interesting to note that weights can be introduced in a meaningfull 

least squares sense (inverse of variances). A confidence interval on S(w), 
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independent of w, can also be computed, in the case of unit weight, using 

the Fisher distribution (Jeudy, 1982). Any peak lying outside that interval 

is evidence for non blank noise spectrum. This means that the time series 

contains deterministic information and t~e problem is to identify and fit the 

data to the signif~~nt frequencies. Our procedure is to make a fit for each cltk 

frequenciesabove the upper limit of the confidence interval (picking up 

frequencies in the order of decreasing peak heights i.e. equivalent to the 

order of decreasing amplitude), and check for significance using a 

variance - ratio F test as explained in the appendix B. Once all the 

significant frequencies have been found in the spectrum, and fitted 

simultaneously to the data using formula (12), the residuals are again 

analyzed by spectral analysis for a blank noise test. The procedure is 

iterated until no more significant frequency is found. A final significance 

check is performed computing an F test for each of the frequency individually 

against the whole set of frequencies. At that stage the analyzed time series 

is represented by a systematic part i.e. formula (12) and a random part that 

is a Gaussian random variable having as variance the mean sum of squares of 

residuals of mode! (12) . As mentioned earlier the frequencies themselves are 

readjusted (parametersfk,k=l, .. ,q> using as approximate starting values, the 

values of the frequencies already adjusted and for the new frequency those 

~ 

provided by the spectral function computation (â and b in formula (14) are 

computed explicitly for the peaked frequencies). The procedure of readjusting 

the frequencies themselves makes the computation unbiased. Otherwise errors 

would accumulate as more and more frequencies are taken into account. In the 

free fall time series analysis, at the beginning S(w) is not computed 

directly from the zi' i = 1, ... , m, but from the residuals of a second 

degree polynomial least squares fit. 
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PART III 

RESULTS 

A series of free fall measurements recorded from an absolute gravity 

determination at the International Gravimeters Calibration Campaign (Boulanger 

J. et al., 1982) was analyzed using the method described in Part II. Results 

are summarized in table 1. 

Table 1: Significant freguencies in a set of real free fall data (99.956~ 

confidence level). The data was provided by Dr. J.A . Harnmond. 

Frequency a ±a 
k \±a p value 

in Hz±a in nm in nm (F test) 

fk 

6.04±0.42 0.92±0.45 3.66±0.32 60.64 

29.30±0.32 1. 88±0. 25 -0.69±0.27 20. 71 

6115. 80±0. 40 1. 58±0. 25 -0.10±0.27 13.40 

68.84±0.55 0.90±0.26 0.68±0.26 6.59 

Legend: In accordance with formula (12) we have the following 

spectral decomposition for the real set of free fall data analyzed 

here: Zi = (-67 283 356.52±0.37) 

-(4 904 631 953.9±88.8)t~ + ~(ak 
1 k~1 

+ (2 367 125 912.9±7.1) t . 
1 
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where the degree two polynomial coefficients respectively have units: nm, 

2 
nm/s and nm/s . ak' bk and fk as in table 1 above and r(t) a Gaussiên !. ~ .. . .._., 

random noise of standard error 3.7 nm. The 99.9563 confidence level is passed 

when p~6.0 where p is computed as explained in the appendix B. 

J 

We remark that the two first frequencies and possibly the last one can be 

attributed to residual effects due to the so called industrial microseisms 

(- 5-50Hz) (Sakuma, 1971; p. 455). 

The third frequency can be of instrumental origin as mentioned by R.L. . ~ 
Iliff, a collaborator of J. A. Hammond, in a private communication. The cause 

could be the servoed wavelength control whose multi-vibrator bas a nominal 

frequency of 5 k.Hz. 

Since the main point of the present work is to show how those perturbing 

frequencies create systematic errors up to several tens of µGal in a single 

set of measurements (i.e. one "drop" of the corner cube), it is interesting to 

see how the gravity value (up to an arbitrary constant) is modified as more 

and more frequencies are removed from the data set. Results are summarized in 

table 2. 

--· 
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Table 2: Systematic error due to vibrations. 

Number Gravity value in µGal ±o' 

of f requency up to an arbitrary constant 

eliminated 

0 980 926 339.4±5.9 

1 980 926 411.0±13.0 

2 980 926 403.2±10.9 

3 980 926 394.8±9.6 

4 980 926 390.8±8.9 

Legend: Frequencies are eliminated in the same order as 

they are shown in table 1. 

Figure 4 represents values given in table 2. The shape of the curve 

suggests that some limiting value would be reached as more and more 

frequencies would be eliminated. But this would require to lower the 

confidence level we chose to the 99.9563 value. It may not be justified 

when working with a large number of data set since one may hope 

(· . 
' 

-' 

.. ~· ... ... ... 

~ ... :/ 
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cancellation of these systematic errors. 

Figue 4: Effect of perturbing frequencies on the gravity value from 

one set of real data (i.e. one "drop") . 

4î0.0 

410 .0 

~00.0 

'!P.JQO 

'.)SO.o 

960 0'2.6 '.>10 .0 

:>Go.o 

3SO.o 

340 0 

330 .0 

32.0.0 

i 
1 

REAL DATA (one drop of J A Kam"'""d grd-vimeler) 

1 
2. 

,-
3 

r 
~ 

l> nu m ber o f frequoncies 

eh"''"aled 

+ degree two p0lyno mial coeffioent 
multipli,,d b.:1 lwo 

trror bar~ : !O-

Figure 5 shows the results obtained using synthetized data computed 

with parameters similar to those found for the real data except that we 

have set random noise r(t) identically to zero (cf legend of table 1). 

As expected the method is unbiased and recovers the "true" gravity 

' ---

-· 
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.. ., ... 

value within 0.003 µGal. (round off error). 

Figure 5: Synthetized data analysis 
'1 

G,r~vit)' 
5YN1HETIZ.E D DATA 

in fol 

oz.o .o 

1 010 .0 
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\190.0 
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-' 
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'300.o .... 
1 
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/ 

Finally an example of gravity computation is given in table 3 below . 
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Table 3: Example of absolute gravity computation from one set of real free 

fall data*. 

*(kindly provided by Dr. J.A. Hanunond, October 28, 1981 at BIPM) 

Second degree coefficient multiplied by two, as 

obtained after rernoval of four perturbing 

frequencies (6.0, 29.3, 6115. 8 and 68.5 Hz) 

and correction for the light velocity effect 

and the gravity gradient effect: 

2 X 490 463 19 S.'i 980 926 390. i µ;a.1 

Laser wavelength correction: 

-(1-632 991.435 5/632 991.470 0) X g 53.5µGal 

Reduction to the floor using the measured 

gravity gradient (2.54lµGal/crn): 

111.4 X 2.541 +283.lµGal 

Earth tide correction: - 24.0µGal 

Absolute gravity final value = 980 926 5~6.li p.Gal 

t:.•. 
'.._;:-
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Conclusion: 

-4 
A practical and accurate (within 10 nm) free fall formula (cf equation 

(9) was derived for the purpose of determining absolute gravity from free fall 

measurements using least squares fit. Small correcting terms for air 

resistance and Coriolis force (Eotvos effect) are taken into account. In part 

II, a procedure was derived using spectral analysis, least squares fit and 

significanceFtest (cf Appendix 8) to identify perturbing frequencies in the 

data. They may be caused by microseisms and also instrumental components. 

The main point of the present study is to show that these frequencies create 

systematic errors up to 50 µGal in one set of real data (i.e . one "drop"),~ft.a.b1e~). 

One may hope that these errors will cancel out over many data sets but this 

could not be checked due to lack of real data. Our procedure is considerably 

more sophisticated than a straightforward degree two polynomial least squares 

fit . Nevertheless after optimization of our software, it costs only about t en 

dollars to process one drop of 200 points. It would be much less (maybe no t 

even a dollar) to process a 50 point drop as currently availabl e on J.E. 

Faller absolute gravimeter. Anyhow it cannot be done in real time. Each drop 

will have to be recorded on a magnetic tape and processed on the Cyber. 

One can think of an even faster procedure to be evaluated when more real 

data will be available. It would consist of computing an average drop 

(t.~.), i=l, ... ,mout of several tens of individual drops, summing and 
1 1 

averaging the times corresponding to the same heights zi . Then only one set of 

data would have to be processed per station. 
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APPENDIX A 

RIGOROUS SOLUTION AND TAYLOR SERIES TRUNCATION ERROR 

The rigorous solution of equation (8) equals 

2 112 
where r

1 
= -{1+6)/2, r

2 
=(-1+6)/2, 6=(1 + 4~) and C 

and D are two constants defined by 

C - D =(- l(C+D) / 6)-(2 îJ6) . 
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Solving numerically for C and D using the numerical values adopted in the main 

-8 -1 
text, y0 = 0 and )..=1.7 x 10 s we have in nanometers: 

Z (t) = (-3.86 X 1015 ) 15 
+ (l.93xl0 ) exp (r

1
t> 

+ (1.93 X 10
15

) 

-1 -1 
where r

1 
= - 0.001 594 s , r

2 
= 0.001 594 s . 

Mathematically, the truncation error R (t) of Taylor series expansion (9) 

equals 

R ( t) t
5 

x d
5

z <0>tdt
5 

S! 

where O~O~t. An upper boundary for R(t) for all t can be found by 

where ~ is the maximum value of t and 1.0002 an upper boundary for both 

exponent i al func t ions (l.e . "L := 0.12. s). 

In conclusion of the present appendix, the Taylor series truncation error 

for the free fall law of motion is less than 10-5 nm. 

Appendix B 

Variance-ratio Significance F Test 

When in a least squares fit new parameters are added to the mathematical 

model, one may wonder if these parameters are significant. In any case 

(provided the normal matrix is not ill conditioned ) the sum of squares of the 

weighted residuals will diminish. The purpose of the test described now is to 

set a numerical limit to that decrease below which the parameters will not be 

considered to be significant. 
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Let us now enter into the mathematical details. Having a set of m 

observables being fitted to mathem~tical model one with u
1 

parameters and 

yielding sum of weighted residuals r
1

, u
2
-u

1 
parameters are 

added tranforming mathematical model one into mathematical model two. 

Denoting by r
2 

the sum of weighted residuals (as mentioned above, in any 

case r 2~r1 >, the variance-ratio F test is based on the assumption that: 

81 

i~ particular value of a p' random variable having an Fu?.-u
1 
~m - u2 

Fisher distribution (Hamilton, 1964; p. 139) in the case where mathematical 

model one <u
1 

parameters) is true. This means that the following 

probability statement holds: 

p J a 82 

where a is a significancelevel, (in the present work,CX.= 0.00044). When the 

two least squares fit have been computed, p is calculated by formula 81. If 

P), F: ll the p' random variable of which p is _... 1-C(; U..'2.-Ui 'rn.- '2. 

a particular value cannot be considered to have a Fisher distribution and the 

hypothesis that mathematical mode! one is true, is rejected. The u
2 

- u
1 

additional parameters are then considered to be significant. 

Intuitively the test is based on the idea that if an additional parameter 

produces a sufficiently large relative decrease in the r values (i.e . the sum 

of squares of the weighted residuals when Lis diagonal), it is 

significant. Formula Bl accounts for both: the number m of obs e rvations (as 

i t enters into p and into F.1 ,.,. u u 1n u. ) 
....,.,_) 2.- i ' - 2. 
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and the Gaussian fluctuations of the random errors. p is not affected by 

the overall scale of random errors, it is a relative value. At a fixed 

variance-ratio (i.e. (r
1 

- r
2
)!r

2
> and a fixed number (i.e. u

2
- u

1
> 

of additional pararneters, the significance test is easier to pass wi th a large 

number of observations than with a small one, because p is proportional to 

(m - u
2

) and because F 1 ,.,, . 
- V\ J U2 - U.1 } "rn - U2. 

decreases and tends to 

a finite positive limit as m tends to infinity . In other words, for small 

sample of data, the relative devease in value has to be greater than f or 

large samples in order to make a parameter significant. 


