S L I DE
POSTER(SP)D. Nagy
A Program Writeup
INTERNAL REPORT 84-10
May, 1983
Update
July, 1984
Gravity, Geothermics \&
Geodynamics Division numérisation par balayage de la publication originale.

SP allows the user to produce high quality text drawings from DISSPLA without getting involved with tedious programming details. The basic unit produced by the program is a page (for slides) which is composed of several lines of text (including greek alphabets and some mathematical symbols). If required (for poster presentation) several of these pages may be produced at coordinates specified by the user. In the following a brief description of the concept of usage and parameters are given.

For one particular run the dimension of the plot area is specified (XSIZE, YSIZE, FACT). If required a border may be drawn around the plot area (IBRDR). The user also must indicate whether the output is hard copy or disk plot file (ITEK). These parameters are on the P1 parameter card.

Next the specifications for one individual page are required. The user may specify the origin of the page (XO, YO), the dimension of the page (XPAGE, YPAGE, FCT) and whether it should be framed (IFR) or not. It is also possible to define the origin of the first line of text (XLO, YLO) together with the height of characters (HTO) and the line spacing (SPACE). If the first text line is a title card it will be drawn larger if the ITITLE option is used. By selecting ITYPE and ICHAR the user is free to decide which style to use for plotting the text. At the beginning when debugging the input, ITYPE $=0$ and ICHAR $=0$ may be used. For the final version TABLE 1 .. TABLE 4 may be consulted to obtain the desired style. Rotation of lines or pages for special effect also can be done. These are the parameters on P2 parameter card and required for each new page.
N.B. Obviously if more than one page is produced, XO and Yo must be given, otherwise the first page may be overwritten.

After all the required parameters are specified the user must prepare the text to be plotted. In order to be able to switch alphabets and/or lower case to upper case, some shift characters are selected which are given in a table. The shirt characters are not plotted, but when the length of a character string is calculated, they are included. After the last character on a line, it is not necessary to shift back to lower case, which ig. the default for each new line. If the maximum of 60 characters (which includes the shift characters as well) is not enough, or for special effects, continuation is possible. For this purpose the $\$$ sign is reserved (see comments \#3). It is also possible to center any particular line with respect to the X dimension of the page (XPAGE, see ICHAR on DATA card). Although limited success can be achieved by blanks, without ICHAR the centering is very difficult due to variable spacing of characters.

For total flexibility, the current line spacing can be changed to provide more room for the next line which for example contains mathematical symbols or needs highlighting (see YT on DATA card). The effect of this control is only for a single line.

A page terminates with END in columns 1-3. If only a frame is required in a certain position DATA cards are not needed but the END card is required. The arrangement of input is shown schematically on Figure 4.
N.B. All variables must be defined and separated by at least one blank space. Where applicable 0 is redefined in the program to the default value specified for the variable!

Variable

XSIZE

YSIZE

FACT

IBRDR

ITEK

IREDEF

Defines the horizontal dimension (along the X axis) of the plot area. The actual size is XSIZE times EACT (defined below). DEFAULT is 12. As above, but for the vertical dimension (along the Y axis). DEFAULT is 30. A multiplier which can be used to change the scale of the entire plot area.

The DEFAULT is 1. In this case the numbers given are in inches. If cm unit is desired, then $\mathrm{FACT}=0.3937(\sim 1 / 2.54)$ should be specified.
$=1$ draws a border around the requested plot area.
For $I B R D R=0$ border is not drawn.
There is no default for this parameter.
$=0$ Hard copy plot is generated directly either on CAL960 or on CALIO51.
$=1$ A disk plot file (PLFILE) is generated (which must be catalogued). This file then can be previewed and/or transferred to hard copy by DISSPOP.

There is no default for this parameter.
$=0$ must be used.

P2 PARAMETER CARD
 (Free Format)

N.B. All variables must be defined and separated by at least one blank. Where applicable 0 is redefined in the program to the default value specified for the variable!

Variable

XO $\quad X$ coordinate of the origin of a plot on the plot area \{ specified by XSIZE and YSIZE on P1 card (see Figure 1)\}. DEFAULT is 2.

Negative value terminates the job: (See DATA STRUCTURE)
As above, but for Y.

DEFAULT is 1.

Dimension of plot.

DEFAULT is 8.

As above, but for Y.

DEFAULT is 5.
$=0$, the control is not used.
$=1$, frame, composed of 3 lines, is drawn around the plot, using pen *3.

Scale applies to this plot.

DBFAULT is 1.
N.B. The final scale is FACT times FCT:
X coordinate of the first character drawn as referred to $X 0$. DEFAULT is 0.5.

As above, but for Y.
DEFAULT is YPAGE -5 times HTO.
Height of text to be drawn.

DEFAULT is 0.14.

SPACR This parameter can be used to specify line-spacing in terms of the heighl of tex (HT). The default is 2.1 which gives $0.3^{\prime \prime}$ spacing if the default $\mathrm{HT}(=0.14)$ is used with $\mathrm{FACT}=1$ and $F C T=1$.

ITITLE $=1$. The first data card is treated as a title card. It is drawn with height of 1.5 times HTO size.
$=0$. First card is not a title card.
There is no default for this parameter.
ITYPE
This control is used to select the style of letters used for plotting. It can have integer values from 0 to 7 (See TABLE 1
... TABLE 4).
$=0$ DEFAULT, plain, should be used for debugging typing errors, ... etc. This is the least expensive to rua.
$=1$ CARTOGRAPHIC. Upper case only, maximum plotting speed.
$=2$ SIMPLEX. Useful for large characters with heavy pen.
$=3$ SMALL COMPLEX. Useful for small charactes (less than $0.2^{\prime \prime}$ high). Good for mathematical symbols and greek letters.
$=4$ COMPLEX. Textbook quality. Most complete collection of character sets. Good for mathematical symbols and greek letters.
$=5$ DUPLEX. Drafting quality for heavy characters.
$=6$ TRIPLEX. Very high resolution. Poor greek letters and no mathematical symbols.
$=7$ GOTHIC. Ornate old manuscript characters. Very slow.

Variable

ICHAR Permissible values are 0,1 and 2 , or 10,11 and 12 , see ICHAR on DATA. For any given type (specified by ITYPE) the user can select ROMAN, ITALIC or SCRIPT corresponding to 0,1 and 2 .
(See TABLE 1 ... TABLE 4).

There is no default for this parameter.
IREDEF 0 must be used.
ANG Angle of rotation in decimal degrees for the plot. The rotation is anti-clockwise. This variable has a dual function: Eor ANG positive, the rotation is carried out separately for each line of data. If frame is requested, it is not rotated. For ANG negative, the whole plot is rotated together with the Erame.

In both cases the first column of text is parallel with a side of the frame.
Col. Variable

1-60 IA 61-65

66-70

XT

YT

Data to be plotted. Up to 60 characters are available including the shift characters.

END in columns 1-3 terminates the plotting within a sub-plot area. (See DATA STRUCTURE)

If the last character is a $\$$ sign, then this card is interpreted as a continuation line and the character string is plotted as continuation of the previous line. All the rest of the variables can be used as desired.

X coordinate where the character plotting will start. DEFAULT is 0.5.

As above, but for Y.
DEFAULT is YPAGE -5 times HTO.
As YT should have no legitimate negative values, this parameter has a dual function. For positive value (including zero) it behaves as stated. For negative value it is used to move the plotted line back or forth lo provide change in positioning the present line.

The rollowing diagram is used to explain how YT can control the line position for a particular line. The lines A, B and C show the psotions of the previous line, the present line and the next line before modification.

YT

A -4.0
B -2.0
C -0.001
If $Y T=-4.0$, then B moves back to position A, i.e. in this case one can draw characters on the previous line. $Y T=-2.0$ does introduce no change. $Y T=-1.5$ would draw the characters exactly half-way between B and C, and $Y T=-.001$ would practically put it on line C. Any fractional value may be used for YT. Thus if YT is between -2 and -4 then the line is moved back toward the previously drawn line, if YT is between - 2

Col. Variable

IREDEF

and -.001 the line is moved forward from its normal spacing. Although this type of movement can be provided by specifying YT as positive number (thus actually giving the desired Y coordinate for the line), due to the possibility of changing scale for the total plot area (FACT), and for the sub-plot (FCT) and also being able to shift the origin of the plot area (YO) and that of the sub-plot area (YLO), the direct specification of $Y T$ requires more care than the use of negative IT.
For a continuation line (i.e. \$ sign after text), YT behaves differently: in this case the present line is represented by B on the previous diagram: YT $=-2$ will plot on the same line, $Y T=-2.8$ would raise the characters (into a superscript position), $Y T=-1.7$ would lower the characters (into a subscript position). As the rest of the variables in the DATA card can be used as required, with the combination of continuation line ($\$$ sign as last character in IA), YT (the relative movement of the plotting line with respect to the position of the original line), HT (text height for the continued line). IPEN (pen number), etc. a great variety of combinations are available to produce highly complex mathematical or textural expressions.
Height of text.
DEFAULT is 0.14 .
0 must be used (may be left blank).
Pen number to be used. Permissible values are 1 to 4.

Col.

```
Variable
```

 ITYPE As described above (P2 card).
 If ITYPE \(=0\), the value in force (i.e. specified
 either on the \(P 2\) card or earlier in a data card) is
 used. ITYPE \(=9\) must be used to set ITYPE to zero..
 As described above (P2 card).
 If \(\operatorname{ICHAR}=0\), the value in force (i.e. specified
 either on the P2 card or earlier on a data card) is
 used. \(\operatorname{ICHAR}=99\) must be used to set ICHAR to zero..
 In this position (i.e. on the DATA cards) ICHAR may be
 used to center the text.
The centering is valid only for the given line. It
should be used with care because all leading blanks
and shift characters are included in the calculation
for centering (DISSPLA is doing it that way!). The
text line is centered with respect to XPAGE! This
feature can be activated by adding 10 to ICHAR. In
Lhis case 10,11 and 12 may be used for ICHAR.

Preparation of lext to be plotted (IA):
In order to select a desired alphabet, shift characters are used. The following table shows the alphabets presently available and the shift characters to activate them (U/C = upper case, $L / C=$ lower case).

Alphabet	Shift Character	Card code
Roman L/C	$\prime \uparrow$	$12-8-4$
Roman U/C	$($	$0-8-4$
Greek L/C	$"$	$8-4$
Greek U/C	\star	$11-8-4$
Mathematic	$\%$	$8-6$
Other symbols	\vdots	$11-0$
	\vdots	$8-2$
	$;$	$12-8-7$

+ As the Roman L/C is the base alphabet, when a line is started and lower case is required the shift character is not needed.

Table 1. ... Table 4 show what alphabets or special symbols are available. The construction of $I A$ is done as follows:

1. Decide which style to be used (see ITYPE and ICHAR on P2 card),
2. Using Table 1-4 find the character or symbol and its shift character,
3. Look up and punch the Roman U/C character which corresponds to the required character.

For example Δ_{g} should be punched as follows:
*D) B
[* shifts to upper greek,) shifts to lower case Roman \}
Figure 2 gives the Lext which is required to produce Figure 3.
Careful examination of these Cigures will help greatly to answer
many of the questions which may not be explained in this brief write-up.

Comments on the preparation of data cards.

1. If $X T, Y T$ and $H T$ are not specified, the defaults are used as initial values. For plotting the next line the $Y T$ is obtained by decreasing the previous value by SPACE times HT. By specifying any of the parameters $X T, Y T, H T$, the new values will be in force until they are changed. For example if HT is decreased to a size of 0.1 , then all following lines will be drawn in that size until HT is changed.
2. Indentation can be achieved:
i) by introducing blank spaces when preparing IA (i.e. leaving the first few columns blank, which must be included in the column count);
ii) by specifying $X T$. In this case however one must reset XI when indentation is not needed.
3. Continuation. Putling a $\$$ sign in any position in IA indicates that the present line is a continuation of the previous line. In this case the first character of the present line is ploted (including blanks) next to the last non-blank character of the previous line. This continuation can be repeated any number of times. Of course the user must make sure that there is sufficient room available (i.e. XPAGE is large enough).
4. Horizonlal spacing in units of a quarter of text size (HT) can be introduced in the text by inserting $!Z$. Thus a unit size shift between n and α in $\sin \alpha$ can be produced as follows:
$\sin !2^{\prime \prime} A$.

The following is a list of how some subscript and/or superscripts can be ubtained from SP:

	Typing this	produces	
1	$!21$	2	as $\%$ superscript
2	$!22$	$1 / 2$	as superscript
3	$!23$	1	as subscript
4	$!24$	i, j	as subscript
5	$!25$	m, n	as superscript and

EXAMPLES
Typing this produces
$1 X!Z 1+Y!Z 1 \quad x^{2}+y^{2}$
$2(() X!Z 1+Y!Z 1+Z!Z 1): Z 2 \quad\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$

3 X:Z3,Y:Z3 $\mathrm{X}_{1}, \mathrm{y}_{1}$
$4 \quad C!Z 4=A!Z 4+B!Z 4$
$c_{u!}=a_{u}+b_{i J}$
$5 \quad\left(A: Z 5=\left(S!Z 5+\left(C!Z 5 \quad A_{m}^{m}=S_{m}^{m}+C_{m}^{m}\right.\right.\right.$
The drawn equations will match the typed text if $F C T=0.566$ and the default parameters for HT and SPACE (i.e. 0.14 and 2.14) are used on the P2 card. Use pew size 3 for drawing.

```
JCL to produce hard copy plot.
XXXXX,CM157000,T77,I0777,P2.
NAME
PHONE No.
ACCOUNT(-----)
COMMENT.( ) JOB ID
MOUNT(VSN=EMR130,SN=GMSM)
ATTACH(LGO,SLIDE, ID=NAGY,MR=1,SN=GMSM)
ATTACH(EMRLIB)
LIBRARY(EMRLIB)
BEGIN,DISSPLA, CAL960,NAME=$NAME/STOP NO$.
7/8/9
    DATA
7/8/9
6/7/8/9
```

NOTES: \quad. If more than 2 pens or best possible quality plots are required then use CALIO51. Include $\mathrm{Pl}=\mathrm{NIB}, \ldots$ etc. as required.
2. Monitor the times ($T, I O$) used by the job and make the necessary adjustments on the job card.
3. If you are familiar with PLFILE, DISSPOP, then you can create a disk file, view it on the TEKTRONIX terminal and produce hard copy only at the final stages.

Appendix A

IRR is positive >1 : Complex frame is drawn.
N.B. Do not use larger IFR than 5!

A frame inside (and bordered by) KPAGE, YPAGE is drawn whose form depends on the value of IFR.
$=2$ A rectangular grid rotated by 45° is drawn from the bounding lines of XPAGE, YPAGE towards the inside by XBR, YBR distance where $X B R$ is the larger of $\frac{0.25}{F C T} \quad 0.06 *$ XPAGE Similar relation holds for YBR.
$=3$ Similar to $I F R=2$ case, except that a more complicated frame pattern is generated.
>4 In this case the user must specify the following parameters (see diagram):

XBR, YBR, AO, DLINE, DA, IP
Provide above information in free format mode, inmediately after the P2 parameter card.

XBR.....thickness of frame along X direction

YBR.....as above for Y
AO......initial azimuth of shading lines positive counterclockwise from the horizontal direction

DLINE... line spacing (i.e. distance between shading lines)
For negative DLINE no shading is done.
DA......differential angle used only when IFR=5 to produce complex
pattern for frame (Use values between 1 to 5)
IP......pen number to be used to draw the frame.

For negative IP the cross-shading is not done (only parallel lines
are drawn).
IFR=4 Produces a [rame based upon user specified parameters.
$=5$ As for $I F R=4$ but frame patlern is more complex.

IFR specifies the number of grid lines in the X direction (IXG) and the number of grid lines in the Y direction (IYG) as follows: $I F R=-(I X G+100 * I Y G)$

For example to draw a 5 by 2 grid over each unit length (IXG=5, IYG=2):
$I F R=-205$ (zero must be used as filler!)

If the number of grid lines is the same in both X and Y direction,
then il is sufficient to specify IXG: For example:
$I F R=-10$
would draw a 10×10 grid over each unit area.
Of course

IFR $=-1010$ would do the same!

Appendix B

Additional Features of SP:

So Car the user is provided with facilities which may be sufficient for most applications. However if some mathematical text require super - or subscript, then additional programming is required becauce DISSPLA does not provide a simple procedure for above purpose. To solve this problem the so called Z lether command is used, which enables the user to insert a set of characters into any text. The Z command was implemented in $S P$ in such a way that various levels of atlention are required lo use them. In general this command takes the form:

Shirl characler letter $Z \quad$ integer number. In this implementation the shift character is the $: ~ s i g n$, the integer can take values between 1 and 5 . Also the integer can be ommitted.

For examples: :Z :Z3 :Z5

In the following we describe what is implemented in SP.
N.B. After any Z command the user is returned to standard lower case alphabet.

Level 0:

In $S P$ six instructions may be used with the shift character : :
 horizontal shift (wherever it is used) of size $=0.25$ times the text size. For example $A B$ and $A!Z B$ will be plotted different: the second $A B$ will have a quarter of letter size spacing between them in addition to the spacing provided for the characters by DISSPLA. (Naturally $!2$ is not plotted, its function is to provide spacing). If il is required, $: Z$ can be used repeatedly such as A!Z!Z!ZB.

In addition to $: 2$, the other comands can also be used anywhere in the lext. Their function is shown in the table A below:

TABLE A

Typing Lhis

1	$: 21$
2	$!22$
3	$!23$
4	$!24$
5	$!25$

EXAMPLES
produces

2 as superscript
$1 / 2$ as superscript 1
1 as subscript 2
i,j as subscript 2
m n as superscript
and subscripl

Typing this
produces
$1 \quad X: Z 1+Y: Z$
$2(() X!Z 1+Y!Z 1+Z!Z 1): Z 2$
$3 X: Z 3, Y: Z 3$
$4 \quad C!Z 4=A!Z 4+B!Z 4$
$5 \quad(A!Z 5=(S!Z 5+(C!Z 5$
$x^{2}+y^{2}$
$\left(x^{2}+y^{2}+z^{2}\right)^{1 / 2}$
\mathbf{x}_{1}, y_{1}
$c_{\text {b, }}=a_{i, 1}+b_{4,1}$
$A_{n}^{m}=S_{s}^{m}+C_{m}^{m}$

NOTE: Level 0 does not require input data.

Level 1:

In the previous level the numerical values or characters were predefined in the programs. If the user wants to use different characters, then the parameters IREDEF must be used.

The simplest way is to set IREDEF to -1 . In this case the user can (and must) redefine all the characters given in TABLE A (in the third column under the heading "produces"). Since format free readings is used, all input must be enclosed in quote mark ("). (If "is required inside the ", then use two " for that, see example below). ALL CHARACTERS MUST BE INPUT even if only one is changed. The number of characters for each function type must remain the same as given in TABLE A, but numeric can be changed to alphabetic and vice versa. For example to produce $3 / 2$ when $: Z 2$ is used the following input must be provided:
"2" "3/2" "I" "I,J" "K" "N"

Another example:
"Q" "3/2" "P" " "r"M)" "2" "K"

The fourth input data will produce μ : the quote mark in front of M is a shift characker (must be put in as a double quote); this will produce a lower case greek letter. The bracket after M will shift back to the standard lower case alphabet. If the bracket is not used, all the remaining text will be writlen in lower case greek until a shift character is used to activate another alphabet. Note here that the function types (1 for superscript,... see TABLE A) cannot be changed.

NOTE: Input data required for Level 1 must follow the card on which IREDEF was activated.

Level 2:

Although Level 1 provides some additional flexibility compared to Level 0 , in some applications this may not be sufficient. Therefore in this level more flexibility is provided with requires the user to give more information to the program. In this level IREDEF must be between 1 and 5: it will indicate how many of the available five Z instructions will be changed (the ones which are not changed will have the functions which they had before). Note here that any one can be changed here. Once the numerical value of IREDEF is decided, for each step of the redefinltion the following numerical values must be Siven:

I FT NC CHAR

where $I \quad$ the index value for Z. For example $I=2$ will define $Z 2$. The order is not important but I must be between 1 and 5 . FT function type as given in Table A. This can take values between 1 and 3 (see allowable combination with I later). NC number of characters in character string. This allows the user to specify up to 9 characters (this must include shift characters when changes in alphabets are made). This means that reasonably complicated expressions can be put in as superscript and/or subscripts.

CHAR character string of up to nine elements including all shift characters.

To provide the greatest possible flexibility for $1 \leq I \leq 4$, $F T$ can be any desired value of 1 or 2. This means that the user can define character strings (up to 9 characters) to put into either superscript or subscript position for any of the four values of I specified above.

The following example may make clear some of the points discussed above: Redefine $I=1,2,3,5$ as superscript, superscript, subscript and super and subscript (i.e. $\mathrm{FT}=1,1,2,3$ respectively).

Put 8 characters into superscript position,
4 characters into superscripl position,

6 characters into subscript position,
9 characlers into super and subscript posilion.
The coresponding characters will be:
$-u-v+2$
$-5 / 2$
$2 n-1+k$
$2 \int \varphi d \varphi \quad-2 \mu+4 v-$
To activate the redefinition set IREDEF to 4 (four changes will be made)!
The input consists of the following:

1	1	8	$"-\cdots " M-N)+2 "$
2	1	4	$"-5 / 2^{\prime \prime}$
3	2	6	$" 2 N-1+K^{\prime \prime}$
5	3	9	$\left."-8 I^{\prime \prime \prime} F\right) D^{\prime \prime \prime} F^{\prime \prime}$

NOTE: Input data required for Level 2 must follow the card on which IREDEF was activated.

Level m:

A11 the letter instructions provided by DISSPLA may be used from within SP. In this case the character : must be used as the shift operator.

Examples: To underline text
(THIS IS THE TITLE !U
Double underline may be produced as:
!P(CAPITAL LETTERS!D
N.B. Remember that parameters set by letter comands stay in effect until they are reset. For example if part of the text on a line is elevated, then the rest of the text will be elevated until the parameter is reset:

Sumary of instructions to use SP:

To LOGIN: LOGIN, account number,id.
To activateFile: ATTACH,EWFILE,SAP,ID=NAGY,SN=GMSMTXTEDIT
To submit job
for execution: SAVE,A,NSBATCH, A, INPUT, DF
To LOGOUT: BYELOGOUT

TXTEDIT instructions:

```
To list: L, l1 - l l2, l}3,
    where & l},\mp@subsup{l}{2}{\prime},\mp@subsup{l}{3}{}\mathrm{ are line numbers
example: L,120-140,270,350-*L
            (*L stands for last line)
To delete: D, l
    (deleted lines listed using L in last position)
example: D,170,220-*L,L
To change
cheracters: fold text/ = /new text/, l1-1 2, L
example: /TEXTI/=//,130,L
                    TEXTl is deleted from line 130
        /T/=/TEXT1/,140,L
                            T is replaced by TEXT1 on line 140
To add texl
into columns: (C1, C2)=/text/, l1,L
            C1,C2 are the column number ranges
            example: (67,70)=/2.5/, 140,L
                            -2.5 will be put into columns 67 to 70.
To add lines: ll
l}\mp@subsup{\mathbf{L}}{2}{=}=\mp@subsup{\mathrm{ text 2 N.B. No blank between l}\mp@subsup{l}{1}{}\mathrm{ and = sign!}}{2}{
To terminate process put in = in first column.
example: 231=FIN1
        232=OUT
        =
If several lines are required, one may use the following procedure:
AUTO FROM \(l_{1}\) BY inc
    where \mp@subsup{|}{1}{}}\mathrm{ is the starting line number
    inc is the line number increment.
In this case the line numbers with \(=\) sign are produced by TXTEDIT.
To terminate the process use \(=\operatorname{sign}\) in column 1 .
To duplicate 1 ines: \(\quad\) DUP, \(l_{1} l_{2}\) AT \(l_{3}\)
example: DUP, 230-350 AT 510
To produce listing on a "new page" on the terminal
Type in \(L, l_{1}-l_{2}\) (do not retrun carciage) Hold down SHIFT and press CLEAR HOME Press RETURN CARRIAGE
```


Figure 1

```
10120.7110
108101000000103000
                        \&THEO Fi Y
```

(T)HE FUNCTIONS FEQUIFEII IN ((1)) - ((7)), FFOM WHICH.
THE NUMEFICAL UALUES (() AT THE ORIGIN) CAN EE
CALCULATEI EY SUESTITUTING THE LIMITS, AFE AS FOLLOWS:
$(U)=K " F!Z \% 2) X!Z Y!Z!Z L N(() Z+F)+Y!Z Z!Z L N(() X+F i)$
- 0. S! ZX!ZX!ZATAN() Y! ZZ!X!ZF)
-1.0
$-0.5!Z Y!Z Y!Z A T A N(\{) Z!Z X / Y!Z F) \quad-1.0$
$-0.5!Z Z!Z Z!Z A T A N(() X!Z Y / Z!Z F) \% Z), \quad-1.0$
((8)) -4.0
LIHERE K IS THE GRAUITATIONAL CONSTANT,
ANI "Fi) IS THE IENSTTY OF THE FFTSM.

$+Y$ YLN($) X+K$) Z!ZATAN($) X!Z Y / Z 1 Z F) \% 3$). -1.0
((9)) -4.0
 OETAINEIH
EY CYCLIC FEFMMUTATIONS:

```
%(|II)G/%(\)X = -- k!Z"F!ZLN({)Y+F),
%(**I)G/%(2)Y = -- K!Z"F!ZLN(()X+F) .
```

$((10))$	-4.0
	$-\cdots 1.0$
$((11))$	$-\cdots .0$

(T)HESE EXFFESSTONS CAN RE OETATNEL ETTHEF ITEECTLY FROM FIFST FFINCIFLES, OF: CUMFILEII FFOM FUELICATIONS. ENI
-100000000000000

THEOR Y

The functions required in (1)-(7), from which the numerical values (at the origin) can be calculated by substituting the limits, are as follows:

$$
\begin{align*}
& U=k \rho[x y \ln (z+r)+y z \ln (x+r) \\
&-0.5 x x \operatorname{atan}(y z / x r) \\
&-0.5 y y \operatorname{atan}(z x / y r) \\
&-0.5 z z \operatorname{atan}(x y / z r)] \tag{8}
\end{align*}
$$

where \mathbf{k} is the gravitational constant, and ρ is the density of the prism.

$$
\begin{align*}
\partial U / \partial z=-\Delta g & =k \rho[x \ln (y+r) \\
& +y \ln (x+r)-z \operatorname{tatan}(x y / z r)] \tag{9}
\end{align*}
$$

From Eq. (9) $\partial U / \partial x$ and $\partial U / \partial y$ can be obtained by cyclic permutations :

$$
\begin{align*}
& \partial \Delta \mathrm{g} / \partial \mathrm{x}=-\mathrm{k} \rho \ln (\mathrm{y}+\mathrm{r}), \tag{10}\\
& \partial \Delta \mathrm{g} / \partial \mathrm{y}=-\mathrm{k} \rho \ln (\mathrm{x}+\mathrm{r}) . \tag{11}
\end{align*}
$$

These expressions can be obtained either directly from first principles, or compiled from publications.

DATA STRUCTURE

XO YO XPAGE YPAGE IFR FCT XLO YLO HTO SPACE ITITLE ITYPE ICHAR IREDEF ANG

XSIZE YSIZE FACT IBRDR ITEK IREDEF

Figure 4

ITYPE $=0$
CHARACTERS IN STYLE. . . DEFAULT

CHARACTERS IN STYLE. . . CARTOG

$\begin{array}{llllllllll}! & & & & & & \vdots & & \\ \# & & & & & & \vdots & & \\ \# & \$ & \$ & & & \# & & \\ \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \$ & \\end{array} \& $\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & (& 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ * & \cdots & * & \cdots & \cdots & * & x & E & e \\ + & + & + & + & + & + & + & b & 8 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 9 & 9 \\ - & - & - & - & - & - & b & 6\end{array}$ i
0
1
2
3
4
5
6
7
8
9 <
$?$
$?$ wr1A $<$
$-\quad=$
$>$
$?$

CHIARACTERS IN STYLE... SIMPLX

CHARACTERS IN STYLE
SCMPLX

	Characters			In Sthe．				TRIPLX				$\underset{-11}{\text { ascl }}$			HARAC	CTER	IN		SYL			cotr				
Ascil				scrip	PT		HEEX	${ }^{\text {Pus }}$	ussin	N																
1												1														
2	！	$!$	$!$ ！									2	！			！	$!$		！							
3	＂											3														
4	\＃	\＃	\＃\＃									4														
5	\＄	\＄	\＄\＄	\＄	\＄	\＄	\＄\＄	\＄\＄	\＄\＄	\＄	\＄	5	\＄	\＄	\＄	\＄	\＄	\＄	\＄	\＄	\＄	\＄	\＄	\＄		
8	\％	\％	\％\％									6														
7	\＆	\＆	\＆\＆									7	8	\＆	\＆	c	\＆	\＆	\＆							
8												8														
9	（	（	（	1	！	1	11	1	1	6	1	9						（	（	1	1	i	，	！		
10	）	）	）	）	1	1	1	11	）	1	1	10	）	＊	）	）	）	＊	）	）	）	）	1	）		
11	＊			＊	＊	＊	＊＊	\times	E	e	＊	11	＊		＊	＊	＊	＊	3	＊	＊	E	e	＊		
12	＋	＋	＋	＋	＋	＋	＋＋	7	1	\checkmark	＋	12	＋	＋	＋	＋	＋	＋	5	＋	＋	b	b			
13			，	，	，	，	，	9	9	＊	，	13	－	，	－	－	，	．	，	，	，	9	я	，		
14	－	－	－－	－	－	－	－－	－ 6	6	b	－	14			－－	－	－					b	b			
15									4	4	－	15										11	4			
16	／	1	$1 /$	1	1	1	11	1 b	b	${ }^{*}$	1	16	1	／		／	／	／	b	1	1	1	${ }^{\circ}$			
17	0	0	00	0	0	0	0	0	0	0	0	17	0	0	0	0	0	0	0	0	0	0	0	0		
18	1	1	11	1	1	1	1	11	11	1	1	18	1	1	1	1	1	1	1	1	1	1	1			
19	2	2	22	2	2	2	22	2	22	2	2	19	2	2		2	2	2	2	2	2	2	2			
20	3	3	33	3	3	3	3	33	33	3	3	20	3	3	3	3	3	3	3	3	3	3	3	3		
21	4	4	44	4	4	4	4	4	4	4	4	21	4	4	4	4	4	4	4	4	4	4	4	4		
22	5	5	55	5	5	5	5	5	5	5	5	22	5	5	5	5	5	5	5	5	5	5	5	5		
23	6	6	66	6	6	6	66	66	66	6	6	23	$\mathfrak{6}$	6	G	¢	$\underline{6}$	G	6	6	6	6	6	6		
24	7	7	77	7	7	7	7	77	77	7	7	24	7	7	7	7	7	7	7	7	7	7	7	7		
25	8	8	88	8	8	8	88	88	88	8	8	25	8	8	8	8	8	8	8	8	8	8	8	8		
26	9	9	99	9	9	9	9	99	9	9	9	28	9	9		9	9	${ }^{9}$	9	9	9	9	9	9		
27	．	：	－									27	：	：	：	：	：	：	：							
28	；	；	；；									28	；	；	；	；	；	；	；							
29	$<$	＜	\ll		$<$	$<$	＜	\ll	\ll	$<$	＜	28								＜	＜	＜	＜	＜		
30	＝	$=$	$=$	－	－	－	－	－	－－	－	－	30	$=$	$=$	$=$	$=$	$=$	＝	$=$	－	－	－	－	－		
31	＞	$>$	\gg	＞	\geqslant	＞	＞	＞	\rangle	2	＞	31								＞	＞	＞	＞			
32	？	？	？？	？	？	？	？	？？	？？	？	？	32	？	？	？	？	？	？	？	？	？	？	？	？		
33	＠	（1）	（1）${ }^{\text {a }}$									33														
34	A	a	A a	A	－	ค	ค a	A	ค	－	N	34	A	a	a	日	0	2	a	A	α	A	－	N		
35	B	b	$B \quad 6$	B	b	B	β	$\beta 6$	5	\bigcirc	$コ$	35	3	b	b	B	b	18	b	B	β	6	σ	3		
36	C	c	C c	C	c	H	17	$\bigcirc 3$	3	э	3	36	\mathbb{C}	r	\checkmark	a	r	©	c	H	η	3	${ }^{3}$	コ		
37	D	d	D d	D	d	\triangle	\％	III	II	II	7	37	1	d	－	D	d	D	0	Δ	δ	II	I	7		
38	E	e	E e	E	e	E	E	ع	\square	ロ	\bigcirc	38	星	r	，	θ	，	C	－	E	ε	\square	a	\square		
39	F	f	$F f$	F	f	\＄	－	－$\$$	\＄	¢	ๆ	39	3	f	1	E	f	\％	f	Φ	¢	Φ	¢	ๆ		
40	G	g	G g	G	9	Γ	\％	－	「	「	入	40	${ }^{6}$	9	9	6	9	（3）	9	「	\％	Γ	r	λ		
41	H	h	$H^{\text {h }}$	H	h	x	x	\times＊	＊	x	7	41	T6	h	h	$\boxed{5}$	h	5	b	X	\times	＊	x	\rightarrow		
42	1	i	I i	1	\checkmark	1	1	\checkmark h	4	－	7	42	3	i	i	1	i	3	i	1	\checkmark	4	－	7		
43	J	j	J j	J	J			4	44	4	r	43	3	j	j	\checkmark	1	3	i			4	4	r		
44	K	k	$K^{\prime} k$	K	k	K	k	k	K	к	p	44	预	h	h	［	k	ふ	\％	K	к	H	κ	P		
45	L	1	$L \quad l$	L	し	\wedge	1 入	λ J	π	ת	s	45	I			\square	1	E	1	\wedge	λ	π	ת	，		
46	M	m	$M \mathrm{~m}$	M	m	M	4μ	－M	4 M	M	\square	46	9	m	m	Q	m	路	m	M	μ	M	M	כ		
47	N	n	N n	N	n	N	V ע	ν	H	${ }^{+}$	J	47	A	－	n	0	n	ת	π	N	ν	H	H	3		
48	0	－	0 o	0	－	0	0	－ 0	0	－	\checkmark	48	${ }^{(11)}$	0	0	0	0	0	－	0	－	0	－	\checkmark		
49	P	P	P p	P	p	π	π	π	π	π	¢	49			P	\bigcirc	P	1	p	π	п	π	π	פ		
50	Q	q	Q q	0	9	8	－	［1］	$1{ }^{1}$	\＃	\bigcirc	50			q	O	9	0	9	8	－	W	\＃	\bigcirc		
51	R	r	$R \quad r$	R	r	P		P	P		7	51	T	r	r	12	r	\mathfrak{R}	r	P	－	P	p	7		
52	S	s	S s	5	5	Σ	。	C	C 0	c	\bigcirc	52	昌	8	¢	9	s	\bigcirc	1	Σ	－	C	c	\bigcirc		
53	T	t	$T t$	T		T	τ	T	T T	†	ก	53	『	1	1	O	1	T	t	T	τ	T	T	π		
54	U	u	U u	U	u	T	\checkmark	\bigcirc	010	1	n	54	T	u	u	0	u	\mathfrak{u}	u	T	\cup	1	1	n		
55	V	v	V v	V	\checkmark			B	B		1	55		＂	${ }^{\circ}$	∇	\checkmark	${ }_{1}$				B	8	1		
56	W	w	W w	W	w	ก	ω		H		${ }^{*}$	56			\cdots	（1）	ω	辽	10	Ω	ω		щ	w		
57	X	x	$X x$	x	\times	ב	！	X	$x \times$	\times	\checkmark	57	x	x	x	x	x	x	\＆	g	E	x	\times	צ		
58	Y	y	$Y y$	Y	y	\＄	\％	4	y y		，	58	1	y	y	9	y	Y）	\mathfrak{y}	\＄	＊	y	y	，		
59	Z	z	$Z z$	2	z	2	5	3	33		＇	59		z	z	3	3	3	J	2	5	3				

DIAGRAM FOR APPEIDDX A

DIAGRAM FOR APPEIIDIXA

