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Changes in Absolute Gravity

of Environmental Origin

ABSTRACT
Changes in the absolute determination of gravity at the Bureau
Internationale des Poids ct Mesures (BIPM) in Sévres (unear Paris), France over

a period of four years (August 1967 - July 19/1) ::::_12211322—’EL’Lerm5 of

correlation with changes of other environmental varisbles such as local
atmospheric pressure, water table level, variation of 1latitude and Earth
rotation rate. The present study proves a significant correlation with
atmospheric pressure (-0.7 + 0.5 uGal/mb) and with UTO 1length of day
variation (-10. % 5. uGal/ms ,where the error béunds are 20 units). 1In
both cases the correlation significance is cstimated by a variance-ratio F
test where the actually published standard errors and deduced covariances have
been taken into account. The same test is used to prove the non-correlation
with latitude variation (due to polar motion) and watcr table level changes

(River Seine water level). The results arc discussed and elastic homogencous

incompressible earth hypotheses are envisaged.
S—
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Introduction

A total of seventeen absolute determinations of gravity made by A. Sakuma
(1971a,b) in the years 1967-1971 with his permanent instrument at BIPM are
used here in conjunction with the corresponding values of four environmental
variables i.e. the variation of latitude, tLhe River Seine water level, the
local atmospheric pressure and the UTO length of day. The environmental
variables are average values over the time taken for each gravity
determination which often amounts to several wecks (cf table 1 first column).
These variables have been chosen because of their experimentally known or
theoretically suspected influence on gravity. 1t was not possible to include
all the variables one could think of, first becausc the data are difficult to
obtain and secondly because our sample of gravity values is small, thus

limiting the number of possible factors one can analyze at the same time.

The principle of the method consists of working with the differences of
the measurements and of the corrvesponding variables, fitting them by 1least
squares in a linear model. The advantage of such a procedure is to minimize
the effect of a sudden permanent change in gravity (for example due to ground
subsidence). The gravity dependence on a variable can be tested by comparing
the variances obtained from two least squares fits; one including the
variable, the other one excluding it. The actual comparison is made via a

variance-ratio F test, as explained later.

Before entering into the mathematical details of the method, T first would

like to explain how the various data are prepared.



i) An__ Averaged instantaneous latitude ¢ is computed wusing the pole

coordinates published by the Bureau Internationale de 1'Heure (BIH) according

to the following formula (Mueller, 1969; p. 87):

¢ = ¢CIO + xp cos A - yp sin A, (1)
where ¢CIO is a fixed 1latitude for the <ctation, as referred to the
Conventional International Origin (ClO), (Mucller, 1969; p. 351). A is the
longitude of the station, positive Eastwards (A = 2°13'). ;p and '§p are

the averaged raw values of the pole coordinates over cach period of gravity

measurements (BIH, 1967-1971; table 6).

ii) An_ averaged River Seine water level S is computed for each gravity

measurement period from daily mcasurements in two locations, one upstream
(Pont de Garigliano) and onc downstrcam (Pont de Suresnes). The averaged
water level at Pont de Sévres, the closest to BIPM, is linearly interpolated

from these two gauge stations.

iii) An_saveraged local atmospheric pressure P is computed from three hour

interval pressure measurements made at two meteorological stations,
Villacoublay 7 km South of BIPM and Montuouris 9 km Fast of BIPM. The
pressure at these two stations, approximately 11 km apart, arc well ;orrelated
and show an average systematic difference of 12.7 mb (1 mb = 100 Pa) mainly
due to the height difference (approximately 100 m) between the two stations.
I also computed a set of daily averages using only the 6, 9, 12, 15 and 18

hours measurements every day. They prove to be- systematically smaller by

0.1 mb on the average and introduce no significant changes in my results.



iv) Finally, the averaged UTO lenpth of day 3 for each.gravity measurement

period is computed by the following formula:

1 = 86400.002592 + [(UTO-UTC),  (UTO UTC) J/n, (2)

where 86400.002592 is the measure in atomic time seconds of 24 hours UTC
(Universal Time Coordinated), n the number of days between the initial value
(i) and the final value (f) of (UTO-UTC), corresponding to a gravity
measurement period. (UTO-UTC) at the initial and final date is evaluated by

(Mueller, 1969; p. 164):
(UTO—UTC)i B (x;sinA + y;cosA) tgd + (UTl—UTC)i. (3)

where i has to be replaced by f for the final date. xp, yp, (UT1-UTC) are

the raw values in the annual reports of the BIN (1967 1971), table 6 and also
table 4 for 1967. ¢ is the BIPM 1latitude ($ = 48° 50' North) and A as

in (1) above.
The data utilized in the present work are summarized in Table 1.

Basic Theory and Results

i) Method 1:

Before applying the least squares fit procedure, the data in Table 1 are
modified so that only the measurcment differcnces are fitted to a linear

mathematical model of the following type:

R A O S Y U T
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with

symbols ¢, S, P and 1 as previously defiuned in the Introduction, and &, G. c,

index 1 (i

A

16)

referencing values

Table 1: Absolute gravity value for the years 1967-1971 at BIPM and the
corresponding  averaged latitude, River  Seine water level,
atmospheric pressure and UTO length of day (l.o.d).

Date Gravity Latitude | Water Pressure| 1l.o.d

2 (- level (4) ()
( + 20) ¢ QCIO) evel
(1) (2) (3)
|

Aug. Sept. 1967 62 ‘ + 13 - 3 .351 1000.5 1.97

Apr. 1968 55 + 25 - 9 ..272 999.7 2.179

Aug. Sept. 1968 51 + 19 + 53 .362 999.1 2.45

June July 1969 50.5 + 8.2 + 112 .290 1003.4 2.40

Aug. Sept. 1969 49.0 + 5.4 + 109 .367 1001.8 2.54

Oct. Nov. 1969 54.1 + 10.6 + 8 .379 1001.0 2.91

Dec. 1969 58.7 + 5.8 117 L6434 999.5 2.75

Jan. 1970 60.3 + 9.0 - 165 La44 993.0 2.172

Feb. 1970 50.0 + 9.1 - 172 1.626 996.1 2.77

Aug. 1970 57.4 + 2.0 + 194 .374 1000.4 2.22

Oct. 1970 45.3 + 2.2 + 154 .384 1005.6 3.06

Dec. (end) 1970 86.3 + 9.4 46 .369 1001.8 2.57

Jan. 1971 79.6 + 6.0 111 .395 994.8 2.64

Feb. 1971 74.7 + 9.7 - 195 .366 1005.6 2.31

May 1971 71.0 + 8.7 - 187 .405 996.1 | 2.92

June 1971 80.1 + 6.2 - 79 .431 998.7 2.59

July 1971 76.7 + 5.5 v 57 402 1003.8 2.54

S
Legend: (1) 980 925 600 + tabulated value - gravily in uGal at Sévres AZ2.

(2) in 0.001.

(3) 26 + tabulated value

sea level).
(4) in millibars.

(5) 86 400 000 + tabulated value

in the ith

line of table 1;

~

= River Seinc water level in m (above mean

- UTO l.o.d.

in ms.




. Figure 1: Observed (o) vs least squares compensated (1) absolute gravity

differences.
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Legend: o represents Agi. i=1, ..., 15

O represents Agi as computed by formula (4).



Figure 2: Eleven first observed (o) vs lcast squares compensated (0)

absolute gravity values.
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Legend: Plot of gi as computed from formula (11) vs Ei from Table 1

above.



A AT A
d four parameters to be determined by the least squares condition VTWV

A
minimum. W is a (16,16) weight matrix and V the (16,1) column vector of the
idual G 8g.-0F ith g, -¢ t her 2 i tak
=0g. - RET R ) where .
residuals ;=08,-08,. wi 8i°6;,1 5y e &y is en
from Table 1. The weight matrix W is computed as tlie inverse of I where ¥
is the a priori variance-covariance matrix of the observables AEi (for the

geodesy minded reader, the a priori variance factor is chosen equal to

unity). The diagonal elements of ¥ are the variances:

o?- a?. o_?.
~ (ad ~s
Bg; = By, * By )

where Ug is the published error (Sukuma, 1971a,b) divided by two; i.e. I
i

consider the overall published accuracy to be of order 2v which corresponds
to a confidence interval of 95%. Furthermore the Agi are not independent

since AEi and AEi* both contain ™

ad
Assuming, he .
1 I the gl

il

independent, one finds after an easy derivation the following covariances:

Oij41 = 0%y (6l

gi+1

all the other elements of the variance covariance matrix of the observables

being zero.

Denoting by A the (16,4) design matrix contuining the four environmental

A
variable values as in (4), one obtaips the (4,1) paramcter vector X, where
AT " A N . .

X" = (&, b, &, d), by the following formula (Mikhail, 1976; p. 114):

A —-
X = (aTwa) taTung. N



The validity of mathematical model (4) can be tested by a confidence

~

interval on the expression VJ‘Z—lv-r (sum of squares of the weighted

residuals when I is diagonal), using the fact that it has a xZ(v)

distribution, thus yielding the following probability statement:

2 2
p[)(_u/zs c s X1-u/2]"' 1o, (8)

2
X

where xz is defined by: p=L,p f{x)dx,f(x) being the probability

density function of the x2 distribution, and a being a significance
threshold (say, a= 5%); v=n-u is the number of deprees of freedom, n the

number of observations and u the number of parameters.

Thé first conclusion in the case where all the data are used (n=16) is

that mathematical model (4) 1is 1inadequate. The confidence interval 1is

4.40 £ r £ 23.34 whereas r - 117.9, thus outside the allowed interval.
The 1least squares fit can be improved by rcemoving data number 11 which
corresponds to & difference of 41 uyGal between determination 11 and 12 in
Table 1. The 1interpretation is that such a high difference cannot be

explained only in terms of the four environmental variables I consider here.

Now computing the adjustment after rejection of this observation mentioned

above (n=15, wu=4) shows that mathematical model (4) is adequate; the

confidence interval is:* 3.8  r ( 21.9 whercas r = 14.57 , thus inside

the allowed interval.
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The next step is to test the significance of cach of the parameters 4, ﬁ,

2 and 4 of mathematical model (4) as summarized in Table 2. First testing the
~

significance of b, using the variance ratio F test described below, I remove

the water level variable §i+1—§i in (4) and compute the least squares Fit

for n=15 and u= 3 yielding r = 16.189 and compare it with the fit for n = 15,

4. The variance-ratio F test is based on the assumption that:

=
i

©
1

(£ -r,) (n-u)) / (r2 (u —ul)) , (9)

2

is a particular value of a p' random variable having

an F Fisher distribution (Hamilton, 1964; p. 139) in the case
uz—ul, n - u,

where mathematical model one (u1 parameters, where u2>' ul) is true.

This means that the following probability statement holds:

P[sz . ):u (9) bis
1 a; u2 S Uy, 0oy,

where a is a significance level, (in practice, say a = 5%). When the two
least squares fit have been computed, p is calculated by formula (9). If

2 ’ . . .
pz F 1 - s “2 B “1' n—uz , the p random variable of which p is a

particular value cannot be considered to have a Fisher distribution and the
hypothesis that mathematical model one is true, is rejected. The uz-u1

additional parameters are then considered to be significant.

Intuitively the test is based on the idea that if an additional parameter
produces a sufficiently large relative decrease in the r values (i.e. the sum
of squares of the weighted residuals when ! is diagonal), it is
significant. Formula (9) bis accounts for both: the number n of observations

(as it enters into p and into F ) and the gaussian
l - o u2 - ul, n - u2
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fluctuations of the random errors. p is not affected by the overall scale
of random errors, it is a relative value. At a fixed variance-ratio (i.e.
(rl—rz)/rz) and a fixed number (i.e. uz—ul) of additional
parameters, the significance test is easier to pass with a large number of

observations than with a small one, since p is proportional to (n—uz) and

F . decreases and tends to a finite positive limit as

n tends to infinity. 1In other words, for small sample of data, the relative
decrease in variance (r values) has to be greater than for large sample in

order to make a parameter significant.

At last comment about the F test used in the present study has to do with
the basic assumption that all observations are gaussian random variables. It
is normal practice to make this assumption. When the observation sample is
large (n2100), it can be checked by s x2 test for example. In the
present case, the sample is small (n=17) and it is not possible to check the
gaussian distribution with a reasonable degree of confidence. It is simply
assumed to be so and the possibility remains open (although with a small
probability) of a failure of the F test due to a non-gaussian distribution of

the observations.

Returning to the numerical calculation in the present case

N
=4, n=15) p = 1.22 = 4.84, thus parameter b in

(u1=3.u

<
2 2 Fues: 1,11

{4) corresponding to the River Seine water level dependence is not significant.

The latitude dependence can be tested after removing variables S and ¢
from (4) and computing a new least squares fit for n=15 and u=2; I find

r = 16. 789. With n=15, u, =2,

1 =3, r = 16. 769 and r = 16. 189:

1 2
p=0.43 £ F =4.75 showing that parsmeter & corresponding to the

Ua

0.95; 1, 12
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latitude variation due to polar motion in (4) is not significant.

Testing the pressure dependence needs one more calculation with n=15 and
u=l, where the only variable is the 1length of day 1 in (4). I find

r = 25.828. Thus with n=15, u,=2, u,.=1; p=7.02 2 =4 .67

2 1 o.95; 1, 13

and the parameter e corresponding to the local atmospheric pressure variation,

in (4), is significant.

Length of day dependence is tested using an u=1l least squares fit with
atmospheric pressure only. I obtain r = 39.974. For n=15, u1=1, u2=2.

r. = 39.974 and r = 16.769: p=18.0 2 =4,67 and the

1 2

A
parameter d corresponding to the 1length of day variations in (4) is

0.95; 1, 13

significant. Since the corresponding p (p=18.0) is much greater than for
the atmospheric pressure (p=7.02), one can say that a greater part of
absolute gravity variations Ag is accounted for by length of day variation
than by pressure variation.

The present study leads to the following formula where absolute gravity
variations Ag (in uGal) are expressed as a linear combination of 1local
atmospheric pressure variations AP (in millibars) and UTO 1length of day

variations 81 (in milliseconds) (error bounds are + 20 values):

¢

g = (-0.7 + 0.5) AP + (-10. + S.)A 1. (10)

Figure 1 shows the least squares compensated Agi vs the observed AE;.



Table 2: Summary of significance tests
T T
v ¢ S P L r p Comment
R
11 " + + + 14.573 Y 1[’//// VA /]
1.22 S not significant
12 + - + + 16.189 - —_— — —
— 0.43 ¢ not significant
13 - - + + 16.769
— — 7.02 P significant
14 | - - - + 25.828 LAY arg
14 - - + - 39.974 Lo L ///, ZQ‘K)C/QQZZ;.//<ZZJ
. S 18.0 Q significant
13 - - + + 16.769 ////; ,/'// / —
///1‘1 /;/L/Z////////

Legend : r and P as defined in (8) and (9) above

+: parameter included in the least squares fit

-: parameter not included in the least squares fit.
ii) Method 2:
One more

step in the present analysis cuan be done by using two new

mathematical models acting on the mcasurements themselves (cf Table 1) instead

of only their differences as in (4). Since a gravity difference had to be
eliminated, it creates two independent subsets of observations. Subset 1
comprises the 11 first observations and subset 2 includes the 6 remaining
ones. For each of the subsets, the mathematical models are respectively:
B.=m + 6 (P.-P) + £, (1,-1) (i=1 11) (11)

Byt &y TRt h Uy Ol e AL,

AA A 40T .

gy=Mmy+ e, (Pi—Po) + f2 (li—lo) (i=12, .., 17), (12)
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where P = 1000 mb and 1o =86 400 000 s, li' ‘Fi and Qi being
o

A
expressed in ms, mb and uGal respectively. Qj’ @j. fj (j=1,2) are the

~ ~

parameters to be determined by the least squares conditions ijjvj

minimum (j=1,2) where 63 (j=1,2) are the (11,1) and (6,1) residuals vector
for mathematical models (11) and (12) respectively. In these two cases, the
weight matrices wj(j=1,2) are diagonal (uncorrelated observations in
contradistinction to the differences which are correlated). The results are
in agreement with formula (10) for the first subset. The least squares
compensated gravity values Qi (i=1, ..., 11) are plotted in comparison to
the observed values Qi (i=1, .., 11) 1in Figure 2. Subset 2, on the
contrary, shows no significant pressure and length of day dependence. This is

due to the small number of observations (only 6) and various causes which

would be negligible in a larger sample.
Discussion:

The value (-0.7 + 0.5) pGal/mb 1is in pgood agreement with previously
estimated factors of -0.35 uGal/mb by Warburton and Goodkind (1977) and
-0.45 ¥Gal/mb by Sakuma (1971c). Regarding the other factor
(-10.+ 0.5)uGal/ms, various Earth deformation models were invgstigated
(Pariisky 1978, Molodenskiy et al. 1975) to account for both, the length of
day and the absolute gravity changes. Since there exists a very strong
correlation between 1length of day variations and angular momentum transfer
between the atmosphere and the solid Earth (Barnes et al., 1982), there is
probably some interference between Earth deformation effects and gravitational
attraction changes of the atmosphere on a world-wide scale which could account

for the unexpected strong correlation that I find.
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Another point is that according to the formulae pgiven below for an
elastic incompressible Earth, there should be a distinguishable 1latitude
variation dependence of about 19 uGal/arcsec at $=45°. The present study,
as explained above, does not show any significant dependence on 1latitude
variations, although the total 1latitude range is 0139 corresponding to

7 uGal. For an elastic incompressible earth, the following formula was

derived by Lambeck (1973) using Love's theory:

Ag= er(1+h2—3/2k2) (sin2¢ d¢ - 2(d/Q) (c052¢-2/3)), (13)

where h2 and k2 are Love's numbers, § the Earth rotation rate, r its
radius, ¢ the 1latitude of the station where gravity change 0g takes

place. For most practical purposes 1 + h2 - 3/2k2 = 1.16.

The term in dQ/Q corresponding to 1length of day variations has a
maximum contribution of 1.55QrdQ? and is therefore negligible (0.06 uGal

for 1 ms change in length of day). Formula (13) cannot account at all for the

factor -10. + 5.puGal/ms found in the present study (cf formula (10)).

Conclusion

A sample of seventeen absolute determinations of pgravity at Sévres A2
(BIPM) has been analyzed in comparison to four environmental factors viz. the
River Seine water level changes, the latitude variation due to polar motion,
the local atmospheric pressure variation and the UTO length of day changes.
Only two of these factors prove to be significant i.e. the atmospheric
pressure variation with -0.7 + 0.5 wupGal/mb and the UTO 1ength‘ of day

variations with -10. + 5. uGal/ms. The gravity values are corrected for
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Earth tides using 378 waves and their local phasc shifts. Theoretical results
for elastic homogeneous incompressible earth are not in pgood agreement with
the experimental results. Both latitude variation dependence (which should be
of order 1 yuGal/arcsec, thus significant), and 1length of day dependence
(0.06pGal/ms) which should be negligible are contrary to the experimental
evidence presented here. Although a variety of earth deformation models can
be compared to the data, recent meteorological studies done elsewhere (cf
dicussion above) show a strong correlation between 1length of day and
atmospheric angular momentum variations. Computation of the gravitational
attraction of the atmo;pheric masses on a world-wide scale as a function in
time should throw more light on the actual dependence of gravity with length

of day changes.
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