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Introduction 

First I present a brief account of the results of the first International 

Calibration of Absolute Gravimeters held in Sèvres (France) at BIPM (October, 
1 

November 1981). In the second part of the presen t report I gi ve a short 

explanation of my data analysis method. The mathematical details can be tound 

in a paper by myself and co-workers (in preparation). 

I. Results of the first International Calibration of Absolute 

Gravimeters, Sèvres (BIPM), October/November 1981. 

Organized by the Special Study Group 3-40, the first International 

Calibration of Absolute Gravimeters took place in October, November 1981 at 

the Bureau International des Poids et Mesures (BIPM), Sèvres, France 

(boulanger et al., 1982). Four absolute gravimeters based on the principle of 

free fall were present: J.A. Hammond's, J.E. Faller's, Yu.D. Boulanger's and 

A. Sakuma's gravimeters occupying respectively stations A4, A5, A6 and the 

fundamental station A. In addition Yu.D. Boulanger's gravimeter also occupied 

station A3 some time later. Stations A4, A5 and A6 are located in a corridor 

of the basement of the laboratory. Station A3 and the fundamental station A 

are located approximately at ground level. The Institut für Physikalische 

Geodasie (IPG), Darmstadt, West Germany, the Institut fÜr Angewandte Geodasie 

(IfAG), Frankfurt, West Germany and the Defence Mapping Agency (DMA), 

Cheyenne, U.S.A. provided each two Lacoste-Romberg gravimeters (model D or G) 

for the measurements of the gravity differences between the fundamental 

station A and every other station and also between stations A4-A5, A5-A6 and 

A3-A6 (Becker and Groten, 1982). îhese instruments were also used to 
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determine at stations A3, A4, A5 and A6 the vertical gravity gradients 

(necessary for the absolute determination of gravity from free fall 

measurements). On Fig. l are represented the values of gravity in stations 

A4, A5 and A6 deduced from the least squares adjusted relative gravimetric 

ties A-A4, A-A5 and A-A6 (each relative gravimeter taken separately) and from 

Sakuma's absolute value of gravity at the fundamental station A. The 

adjustment takes into account all the measured relative gravity differences 

for each instrument in turn, including the gravity differences between A4-A5, 

A5-A6 and A3-A6. Summarizing, the gravit y value at station 

(k;3,4,5,6) for the relative gravimeter r is given by: 

(1) 

where gA is Sakuma's determination at the fundamental station A and 

~g~-A the relative gravity difference measured by instrument r between 
k 

station A and Ak. Figure 1 also shows the absolute value (denoted by abs. ) 

obtained by each of the participants. As an indication, I also show the 

absolute value of gravity (station A4) determined from one set of free fall 

measurements (one "drop") using spectral analysis by least squares and least 

squares fit (dashed line denoted by 11 Jeudy 11
). The solution for that data set 

by ordinary least squares is at the dashed line "*"· Within + 3 fi-Gal, it is 

the value which Hammond would have obtained for that particular data set. 

lt is also interesting to have a diagram showing the results in terms of 

averaged gravity values and standard errors for each station as shown on 

Figure 2. Figure 3 represents Boulanger's result for the station A3 occupied 

a few days after station A6. That last diagram calls for some comments. 

Since the gravity difference between the fundamental station A and station A3 
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has changed by 10 )!-Gal between 1977/78 and 1981 (cf Poitevin and Marson 

measurements on Fig. 3), it was suggested by Marson that it may be caused by 

the change in position of a suspended table near station A3. A s pecial study 

of that problem, proposed at the IAG assembly in Tokyo (May 1982), is going on 

(Groten 1982). 
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Figure l: Absolute Determination of Gravity at Stations A4, 

A5 and A6, Sèvres (BIPM), October/November 1981. 
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Legend: Each relative gravimetric tie to the fundamental station A computed 

by formula (1) is represented by a continuous horizontal line. At one end 

a number indicates the measured value in}lGal minus 980 926 000.p.Gal. At 

the other end, the organization initials and instrument type and number 
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are indicated. In the case of absolute measurements (denoted by abs.), 

these indications are replaced by the name of the scientist. The dashed 

lines indicate ' at station 4 the results of absolute determination computed 

from only one set of da ta (one drop). Indicated by ( •) is the value 

obtained by least squares fitting of a polynomial of degree two; it is 

the usual method for the case of quasi-continuous recording of free fall 

measurements. Indicated by "Jeudy" is the value obtained by my method 

using least squares fit and spectral analysis. 

(end of legend of figure 1) 
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Figure 2: ~patibility of the Absolute Determinations, the Determination at 

the Fundamental Station being the Reference. 
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Legend: The underlined values are the averages of the relative gravimetric 

ties plus the absolute value of gravity at the fundamental station. 

The vertical lines indicate the precision of each result. Also, as a 

reference, the dashed lines of Figure l are reproduced here (cf 

explanation in legend of Fig. l). 



Figure 3: Results at Station A3. 
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Legend: The same explana tions as in Figure 1 are valid for the left part of 

the present diagram. For the right part, the explanations are the 

same as in Figure 2. 
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Table 1: Example of absolute gravity computation from real free fall data~ - --
*(kindly provided by Dr. J.A. Hammond, October 28, 1981 at BIPM) 

Second degree coefficient multiplied by two, 

as obtained after removal of four perturbing 

frequencies (6.2, 29.3, 6114.4 and 68.4 Hz) 

and correction for the light velocity effect 

and the gravity gradient effect: 

2 X 490 463 187.6 

Laser wavelength correction: 

-(1-632 991.435 5/632 991.470 0) X g 

Reduction to the floor using the measured 

gravity gradient (2.541JAGal/cm): 

111.4 X 2.541 

Earth tide correction: 

Absolute gravity final va lue: 

= 980 926 375.2pGal 

= -53. 5 ~Gal 

= + 283.1 y.Gal 

- 24. 0 pGal 

= 980 926 580.8 pGal 
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II. Computation of absolute gravity from free fal l measurements using 

spectral analysis: 

My method is not basically different from a regular least s quares fit 

without spectral analysis. 

by definition means that 

First of all, it is a least squares method which 

the effect of random errors is systematical ly 

minimized. Nevertheless such an assumption holds only if the mathematical 

model used to represent the data is adequate, that is only if the departur es 

of real data from the ones predicted by the mathematical model are random .. 

Unfortunately, in practice, this is almost never the case and the origina l 

mathematical model must be modified. 

The modifications must be relatistic and at the same time include the 

widest possible class of perturbing effects. Since we know that the most 

serious perturbations are coming from microseisms and since their effec ts on 

the measurernents can be repr esented by sine and cosine functions in first 

approximation, I decided to modify the original mathematical model (i.e. a 

polynomial of degree two) by adding to it a number of these functions with 

amplitudes and frequencies to be fitted by least squares to the data. Since 

an initial value has to be specified for each frequency before the least 

squares fit can be computed, the question was: "How to find these initial 

val ues?". The answer is: "Determine these initial values by spectral 

ana l ysis if no other information is available". 

Among the various existing techniques, I had to choose the most general 

one which is the method of spectral analysis by least squares. îhat choice is 
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motivatea by the fact that the data is unegually spaced with respect to the 

independent variable. We have two variables, one is the length variab l e (z) 

the other the time variable (t). It is necessary to choose the time variable 

as the independent variable, because the sine and cosine functions i ncluded i n 

the modified mathematical model are functions in time. The practical f act 

that in a .few existing free fall gravimeters the l ength variable (z) is 

digitalized in egual intervals, produces ~u_n_e~g_ua_l;;._--"i_n_t~e~r_v~a_l~s in t he 

digitalization of the time variable. 

I now would like ta explain how the method actually works and how, through 

an iterative process, the original mathematical model is improved step by step 

until no more significant improvement can be made. I consider the genera l 

case where no information about possible existing perturbing waves in the data 

is available. The first step (1) consists of fitting the original data to a 

polynomial of degree two (at that stage there is no difference with the us ual 

method). In the second step (2) the residuals are analyzed by s pectral 

analysis in a given frequency band (it can be a low frequency band i.e. 0 to 

500 Hz and/or a set of non-overlapping bands around suspected perturbing 

frequencies). The third step (3) consi sts of picking up the probably most 

significant frequency in the spectrum computed at step two (in practice we may 

adopt the rule 

significance is 

of taking the 

actually tested 

frequency having 

at a later step). 

the highest 

The fourth 

peak, 

step 

the 

(4) 

consists of modifying the mathematical model by adding to it a sine and a 

cosine function having as approximate frequency the frequency round at step 

three. The fifth step (5) consists of fitting the original data to the 

modified mathematical model. In that least squares fit three additional 
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parameters are adjusted i.e. the two amplitudes for the sine and cosine 

functions and the frequency. The sixth step (6) consists .of testing by an 

F-test on the variance ratio the significance of the frequency found at step 

three. If the test is positive, the frequency is significant and the whole 

process can be run again to search for a further significant frequency (in 

the same bands but possibly also in other bands); starting at step two the 

residuals obtained at step five are utilized. The data analysis ends when no 

additional significant frequency can be found. We see that each time a new 

freguency is being looked for, a new set of residuals is analyzed i.e . a set 

of residuals where the disturbing frequencies already found have been 

removed. In this way significant frequencies which would not appear in the 

old spectrum may show up in the next or some subsequent one. 

Before explaining how gravity is actually computed, let us consider 

various situations where the procedure can be speeded up. First of all, more 

than one frequency can be picked up at step three above, provided they are 

clearly distinct from the noise level. In this case the statistical test at 

step six will test the significance of the entire set of new parameters, not 

taking each frequency separately. Another case is the situation where the 

disturbing frequencies are already known for a given instrument (it may be the 

current situation in production work where each instrument would have its 

op t imum mathematical model; · t could be part of the calibration information). 

In this case the analysis starts im ediately at step four without spectral 

analysis. The original mathematical model is modified by adding as many sine 

and cosine functions as there are known perturbing frequencies. In only one 

run the entire set of parameters is determined. 
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For the actual gravity value computation, I now want to explain the final 

stage of the method. Applying the procedure described above, we determine 

precisely the parameters associated with the perturbing frequencies and the 

polynomial of degree two. For gravity determination, the most useful 

parameter is the second degree coefficient of the polynomial. Its value is 

not correct at that stage because it may still be affected by very' low 

frequency perturbations (i.e. those which do not show up in the spectral 

analysis because their periods are long compared to the sample length ). To 

overcome this difficulty a method which proves adequate for the moment 

consists of subtracting from the original data the disturbing waves precisely 

estimated by the procedure described so far, the result being called corrected 

data. By fitting this set of corrected data to a polynomial of degree four a 

good value is provided for the second degree coefficient. This coefficient 

multiplied by two equals the gravity value provided the appropriate 

corrections are added. Part of these corrections can be applied right at the 

beginning to the original data as is done for the light velocity correction 

and gravity gradient correction. The rest of the corrections, such as the 

laser wavelength correction, the reduction to the floor and the earthtide 

correction, can be added easily afterwards. An example of the computations is 

shown in Table l p. 8. 

llI Conclusion 

So far my method was applied to the only set of real data available to me 

i.e. a set of measurements from one drop made by J.A. Hammond in Paris 

(October, 1981) at the First International Calibration of Absolute Gravimeters 
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(Boulanger et al. 1982). Figure l clearly shows the improvement brought by my 

method to the gravity value computed from that set. Using least squares fit 

of a polynomial of degree two (the usual method) yields the value indicated by 

the dashed line (*), and using my method yields the value indicated by 

"Jeudy". I have to process many other sets of data before any reliable 

conclusion can be drawn. What is clear from the analysis of synthetized data 

is that a perturbing frequency can induce a systematic error in the result and 

that my method removes that error. One may argue that over many drops these 

systematic effects will cancel out, but it can also happen that the average of 

many drops is still significantly affected as for example, if the perturbing 

frequency has some systematic behaviour Oike having approximately the same 

phase for each drop). 

Finally I intend to develop improved software by introducing damping 

coefficients for each frequency. This improvement is necessary since the 

published data clearly shows a very significant damping effect (Hammond & 

Iliff' 1978 ). It would then be possible to account not only for steady 

amplitude perturbing waves but also for transients. 
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