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Introduction 

Consider the semi-infinite solid x,O, with surface temperature a harmonie 

function of time. If that surface temperature is given by t.J--r Ae-
~ ~e 

and the initial temperature is zero, the temperature within the solid at time 

t is (Carslaw and Jaeger, 1959, p.65): 

( 1) 

where k =Jw12s, (,J being the angular frequency of the temperature wave and s 

the thermal diffusivity of the medium through which it propagates. _Equation 1 

provides the basis for Ângstrom's method (Angstrom, 1863) for the measurement 

of diffusivity. In this method a harmonie temperature variation is impressed 

on one end of a long, thin rod. If there are no heat lasses from the surface 

of the rod the diffusivity of the material is calculated by measuring either 

the amplitudes or the relative phase of the temperature variations on two 

planes through the rod, and applying equation (1). If surface heat losses do 

occur equation (1) is modified to: 

"\}'"' (-:X. .. t) = 

where 

't ~,, ... \., ... I 
- ~ .+ ( 'i ~ w ) 2.S 
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in which ~ is a term that describes the surface heat loss (Carslaw and Jaeger, 

1959, p.134). The effects of surface heat loss can be eliminated by measuring 

both the temperature wave amplitudes and the phase lag and putting 

in equation (1). 

The rod is sufficiently long that mathematically it can be considered to 

be infinite, such that at its free end the temperature is the same as ambient 

temperature at all times. In this case, there is no energy reflected into the 

rod from the free end. Kanamori et al. (1968, 1969) used a modified version 

of Angstrom's method to measure diffusivity of samples of mathematic~lly . 

fini te length, l. By assuming that there is no heat flux across the free end 

at x = l, an approximate solution for the temperature in the rod can be derived. 

derived. The diffusivity can therefore be obtained as in Ângstrom's original 

method. 
• M 

In the version of Angstrom's method used by the geothermics group of the 

F.arth Physics Branch it is desired to measure diffusivity and thermal 

conductivity of the same sample. Requirements of the divided bar method for 

conductivity measurements mean that a thin dise must be used. In order to 

obtain good thermal contact between the thermistors and the upper and lower 

faces of the sample it is necessary to hold the sample in a hydraulic press. 

This means that there is no free face of the sample across which no heat is 

transferred, so that the analysis technique of Kanamori et al. (1968) cannot 

be used. Nor is a dise that is typically 10-20mm thick sufficiently long that 

0 .. 

Angstrom's method in its original form (equation 1) can be used. A long 
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(~28cm) matching rod of material that has thermal properties that are similar 

to those of the sample is therefore inserted between the upper face of the 

sample dise and the stainless steel hydraulic press. The far end of the 

0 ~ 

matching rod remains at ambient temperature so that Angstrom's assumptions are 

partly met. However, the effect of thermal impedance mismatch between sample 

and rod means that a correction is necessary to the apparent diffusivity 

obtained by measuring amplitude and phase of the temperature wave. 

Transmission line analogy 

The temperature, v, and rate of flow of heat, Q, in a rod of 

cross-sectional area ~ with no loss of heat from its surface satisfy: 

Q" 
(2) 

(Carslaw and Jaeger, 1959, p.69) where fC is the volumetric heat capacity of 

the material, K is its thermal conductivity, and x is the distance from the 

heat source in the direction of propagation. These are the equations for the 

potential and current in a transmission line of series resistance l/K~ and 

shunt capacitance ~fC per unit length, and with zero inductance and leak 

conductance. Hence the theory of electromagnetic wave propagation in a 

transmission line can be applied directly to the problem of the propagation of 

a temperature wave in a solid rod. 

The potential along a transmission line of characteristic impedance Z c , 

that is terminated with a load impedance z~ is: 
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( 3) 

where x=O at the source, V
0 

is the signal amplitude at the source, and~ is 

the propagation constant. 

Z is given by: 
c. 

. ( 4) 

where R, L, G and 0 are the resistance, inductance, leak conductance and shunt 

capacitance (all per unit length) and ais the angular frequency of the 

voltage or current variation. 

The propagation constant,~, is given by: 

• 
(5) 
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Substituting for the thermal properties of a rod, with L=O and G=O, we obtain, 

for a temperature wave in the rod: 

= 
(6) 

= :: ( 7) 

Substituting into equation (3) and re-arranging terms: 

(8) 

The first term in equation (8) represents the incident wave, and the second 

term describes the reflected wave. When there is no thermal mismatch, i.e. 

when the characteristic impedance and terminating impedance are equal, the 

equation reduces to equation (1), with A = v. 
0 

Equation (8) can be used in Angstrom's method to allow for the effect of 

thermal mismatch between a sample dise of thermal impedance Z and a matching 
c. 

rod of impedance Z • When there is mismatch the amplitude ratio and the 
1.. 

relative phase lag of a temperature wave at two points are affected, so that 

rneasurement of both parameters is required. 
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Sorne observations 

Figures 1 - 3 show in various ways some examples of the effects of thermal 

mismatch between a sample of length lOmm and a long rod. Parameters have been 

assigned values that are similar to actual values for the materials that are 

of interest in the current work. 

Fig. 1 shows the variation of amplitude of the temperature wave with 

distance from the heat source (x = 0) in two samples, one of diffusivity 

1.40 rnm2s-l and conductivity 3.40 wm-lK-1 (a granite), and one of diffusivity 

0.85 mm2s-l and conductivity 1.37 wm-lK-1 (fused silica). In both cases the 

rod is a granite of diffusivity 1.40 mm2s-l and conductivity 3.40 wm-lK-1. If 

the sample and rod are identical the amplitude decreases exponentially, with 

no sharp break at the sample-rod interface (assuming that there is a perfect 

thermal contact). However, when the sample and rod are of different material 

there is a sharp change at the interface in the way the amplitude decreases. 

Further, the amplitude within the sample is much higher than it is in the case 

of no thermal mismatch. Similarly the phase difference of the temperature 

wave ·between points in the interior of the sarople and the interface is 

increased when there is mismatch for the given particular parameters. The 

apparent diffusivity of fused silica when a granite matching rod is used is 

thus less than the true diffusivity. 

The variation of apparent diffusivity with actual diffusivity of samples 

matched to a granite rod of diffusivity 1.40 mm2s-l and conductivity 

3.40 Wm-1K-1 is shown in Fig. 2. For each curve the volumetric heat capacity 

has been kept constant so that diffusivity is directly proportional to 

••• /7 
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conductivity; in curve 2 the volumetric heat capacity of the sample is the 

same as that of the rod. It is sometimes assumed that the volumetric heat 

capacity of rocks at a particular temperature and pressure is constant; Jessop 

et al. (1981), however, show that a wide variation between approximately 

1.8 and 3.0 MJ K-lm-3 can be expected even within simi lar rock types. The 

curves in Fig. 2 are designed to show the extent of scatter that might be 

expected in diffusivity measurements of several samples of a particular rock 

type. The shaded area of Fig. 2 represent a range of +/- 2.5% about a line of 

slope unity, and is therefore the range within which the effect of thermal 

mismatch is secondary to the acceptable experimental errer. It is clear that 

only for a narrow range of sample diffusivity (1.3 - 1.5 mm2s-l), when sample 

and rod have the same volumetric heat capacity , is no correction required for 

thermal mismatch. 

Fig. 3 shows the variation of the ratio apparent/actual diffusivity as a 

function of period of the temperature wave. Curve 1 simulates a fused silica 

sample with a granite rod, curve 2 is for no mismatch, and curve 3 is for a 

sampie of diffusivity 1.60 mm2s-l and rod of diffusivity 1.40 mrn2s-l, sample 

and rod having the same volumetric heat capacity. The effect on the apparent 

diffusivity of varying the period is clearly greater when mismatch is greater. 

The effects shown in Figs. 1-3 are for specific examples. Thérmal 

mismatch between sample and rod occurs because of differences in diffusivity, 

conductivity, volumetric heat capacity and diameter of sample and rod. With 

so many variables it is not possible to construct standard tables or curves 

for correction of a measured apparent diffusivity. Each apparent diffusivity 

that is measured can be corrected by an iterative procedure. The conductivity 

•.. /8 
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of the sample is known independently, and the diameter of both sample and rod 

are known. The conductivity assigned to the rod is assumed from several 

measurements on dises eut from similar material and the diffusivity assigned 

to the rod is the mean of several measurements on sueh samples under the 

assumption that there is, in those measurements, no thermal mismateh. With 

these known or assumed parameters, an initial estimate of the true diffusivity 

of the sample under eonsideration is made. The apparent diffusivity that this 

"true" value would produce is calculated and eompared with the measured 

apparent diffusivity. The inital estimate is refined and the proeess is 

repeated until the ealeulated and measured apparent diffusivities agree with 

each other within preseribed limits. The current "true" diffusivity is then 

taken to be the actual diffusivity of the sample, with due regard to the 

experimental uneertainty. 
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Figure captions 

Figure 1 Variation of amplitude and phase of sinusoidal temperature wave along 

rock sample and into matching rod. .Amplitude normalized to 1 and 

phase to 0° at sample-rod interface. Solid curve: sarople and rod 

same material and diameter. Dashed curve: Sarople has diffusivity 

o.85 rnm2s-l and conductivity 1.37 wm-lK-1. Rod has diffusivity 

1.40 mm2s-1 and conductivity 3.40 wm-1K-1 in both cases. Period of 

temperature wave is 240s. 

Figure 2 Variation of apparent diffusivity with actual diffusivity for samples 

of varying thermal properties and rod of diffusivity 1.40 mm2s-1 and 

conductivity 3.40 wm-lK-1. Shaded area is range of experimental 

observations (+/- 2.5%) for no mismatch. Period is 240s. 

Volumetric heat capacity of sample is: 

1. 1.80 MJ K-lm-3 
2. 2.43 MJ K-1m-3 (same as rod) 
3, 3.0~ MJ K-lm-3 

Figure 3 Variation of ratio apparent/actual diffusivity with period. 

1. Sample o.85 mm2s-l, 1.37 wm-lK-1 

2. Sample 1.40 mm2s-l, 3.40 wm-lK-1 

3. Sample 1.60 rnm2s-l, 3.90 wm-lK-1 

Rod has diffusivity 1.40 mm2s-l and conductivity 3.40 wm-1K-l in each 

case. 
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