La Malbaie 1977 Experiments

by G.G.R. Buchbinder

and

A.J. Wickens

Seismological Service of Canada

Internal Report # 78-4

Division of Seismology and

Geothermal Studies.

Earth Physics Branch

Department of Energy, Mines and Resources

Ottawa - March 1978

Revised 15/5/78

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale. Page No.

Summary	2
Experiments	2
Stations	2
Improvements and changes	3
Travel times	4
Cross-correlation	4
BP digitizing correction	4
Array digitizing correction	6

Errors	9
Discussion of the data	10
Interpretation	12
LMQ Regional Station	13
Conclusion	16
Recommendations	16

Index

3, ž

ξ.

Summary:

On Aug. 30, 1977, a calibration explosion was set off at the Experimental Farm in La Pocatière and on Aug. 31, 1977 another one was set off in the mine at St-Jerôme. The six element portable seismic array had been installed on a rather permanent basis just prior to the shots and in addition six temporary backpack systems were in operation.

Absolute P wave travel times were determined. The data were also analyzed by cross-correlation with data from previous shots. Both methods indicate that changes of at most a few tens of milliseconds occurred. About one half of the stations for which cross-correlation data were obtained show changes in travel time.

Experiments:

All calibration shots are listed in detail in Table 1. For the La Pocatière hole this is the fourth shot in a series that started in October 1975, it is shot No. 104. For the St-Jerôme Mine this is the sixth shot (No. 6) in a series that started in June 1974. For shot No. 104 three existing drill holes were used and were destroyed by the explosion. Shot No. 6 was set off in the mine in the same place as before, however, this time the water level was 0.5m lower.

Stations:

The stations that were occupied are shown in Figure 1. Stations 54, 60 and 64 on the northshore and 10, 16 and 20 on the southshore are now the "permanent" array stations (A). Station 52 was occupied by a Smoker system. The six Backpack systems (BP) were deployed at the remaining 7 sites. For shot 104 station 30 was not occupied, for shot 6 station 62 was not occupied.

- 2 -

The instrumentation has been described in detail in Internal Report No. 77-7 (IR 77-7) and will not be repeated here.

Improvements and changes:

A number of improvements or changes were undertaken with respect to the previous experiments:

- a. The station sites were improved by pouring concrete pads and the instruments were all encased in metal containers or buried.
- b. In the recommendations of IR 77-7 it was stated that shooting should be done around sunrise to reduce local noise. For logistical reasons this was not possible but instead we shot after sundown. This in fact greatly reduced the local wind-generated noise.
- c. All BP clocks, the array clock and the shooter clock were compared to WWV radio signals on an oscilloscope and time corrections so determined are good to within 1.5 ms, a considerable improvement over earlier methods of determining time corrections.
- d. The BP digitizing program had not been changed before the experiments to remove the uncertainties of ±8 milliseconds nor to increase sampling rate to 120 hz.
- e. Stations 10 and 20 had to be moved because the land was no longer available. Station 10 was changed by 450 m and is now called 10/11. Station 20 was moved by 220 m and is called 20/21. For station 20/21 no earlier data exist to allow cross-correlation, however, for station 10/11 such data do exist and show that the P wave signal has changed so much that cross-correlation is no longer appropriate.

Traveltimes:

The traveltimes for shot 104 are given in Table 2. The first column shows the station number and instrument type. The second column gives the arrival times. For the array two readings weremade. "a" is the reading from the analogue record and "d" is the reading from the print of the digitized record. The error in milliseconds is given. The combined errors are the RMS errors. Table 3 gives the travel times for shot No. 6.

In Tables 4 and 5 are given the summarks of the travel times for all 10 calibration shots. A starred travel time in the newer data indicates that the signal-tonoise ratio was less than 3. In these cases the arrival may not have been correctly identified. The error here refers to the "pick". The BP travel times for 1976 have been adjusted from those of IR 77-7 to allow for the BP digitization correction, which was not included in the tables of that report.

Cross-correlation:

Cross-correlations were performed wherever suitable data exist. Both the BP and the array digital data require corrections that will be explained in detail here since they have changed partly from the explanation given in IR 77-7.

BP digitizing correction:

The BP digitizing is controlled by the 480 Hz signal put out by the clock, thus 480 program interupts, (PI), are available to the microprocessor. program. The program uses eight PIs to make up a sample, of 1/60 of a second, in which to multiplex and save the 3 seismic channels. This is shown in Figure 2: Then 80 samples are formed into a block. The

- 4 -

first block is formed somewhat differently from the following ones. Since it is, however, never used this is of no interest here. During the last sample in a block, time is determined by the program at the 6th PI. This time is placed at the start of the new block. The time is given in hours, minutes, seconds and 1/60 second, but not to 1/480 second. Time is only given once in each block, but time in the block may be determined by counting samples from the beginning of the block.

From Figure 2 it is evident that the time at the start of a block needs a correction of 3 PIs. Since the 3 seismic channels are sampled sequentially, two channels need a further correction. In sum channel 3 needs to be corrected by 3PIs or 3/480 second, channel 2 by 5/480 and channel 1 by 7/480. These values are indicated in Figure 2.

It is a peculiarity of the digitizing program that digitizing can commence at any PI in the 1/60 of the second that is given as the time of the sample at the beginning of the block. To allow for this we assume it started in the middle of the sample and is no more than $\frac{1}{2}$ sample early or late with respect to the middle. This requires that we apply a correction of 4 ± 4 PIs or 8 ± 8 ms. Here we are only concerned with the vertical seismic component so that its correction and uncertainty is 22 ± 8 ms, call this t_{IC} . This correction is different from what it was thought to be when IR 77-7 was written. The new corrections are also listed in Table 6.

For cross-correlation purposes one needs to know the time of the start of the time series. This is obtained from the BP data from the time in the header of a block plus the number of samples N minus one, into the block where the time

- 5 -

series starts, that is (N-1)/60 seconds. This raw start time t_R must be corrected for the digitizing correction t_{IC} , the shooter clock correction t_{SH} and the BP clock correction t_T so that the start time is:

 $t_i = t_R + t_{IC} + t_{SH} + t_I$.

Array digitizing correction:

To use the analogue magnetic tape records of the array for crosscorrelation, the high or low gain channel is digitized at 120 hz, along with the time track. Since the rise time of the time marks stretches over 2-3 samples, we plot a few samples around the beginning of the time mark and by interpolating can estimate its start. This is shown in Figure 3. It has been found that the digitizing frequency is not usually 120 Hz but varies between 116 and 123 Hz. Assuming that it is constant between the two time marks surrounding the signal of interest we can determine a correction factor for the time of any sample by also plotting the second time mark. As shown in Figure 3 this factor is of the form (I + a)/Int. I is the number of the sample from a time mark, "a" a correction for the start of the time marks are generally second marks, so that if our time series for cross-correlating starts between the Nth and N + 1th second the starting time is:

$$t_{s} = N + (M + a) / Int,$$

where M is the number of the sample in the time series after the start of the second N.

From the starting sample onward the samples that were used in the crosscorrelation were adjusted so that the sampling intervals become 120Hz.

- 6 -

The start time has to be corrected for shooter correction ${\tt t}_{\rm SH}$ and instrument clock correction ${\tt t}_{\rm T}$ so that

$$t_{i} = t_{s} + t_{SH} + t_{I}.$$

Computing the cross-correlation lag between two time series i = 1 and 2 gives the number of lags as $\pm K$ samples. When cross-correlating between BP and BP systems or BP and A systems a sample is 1/60 second, between A and A systems it is 1/120 second. Then converting K samples to time gives t_K . The time difference between the two time series is $t_1 - t_2 = \Delta t$, so that we obtain for the total corrected time lag $t_c = t_K - \Delta t$. Our convention is such as to give a positive lag if series 1 is moved to the right and a negative lag if series 1 is moved to the left, in other words, t_2 is the origin.

The maximum of the cross-correlation function was determined and then improved upon by quadraticline fitting using also the two points on either side of the maximum. As a result the computed lags are given to 1/10 the cross-correlation interval or lag.

To simplify matters the computed lags are given for the 1977 time series with respect to an earlier one. That is, 1977 is either late or early. A few wave forms used in cross-correlating are shown in Figures 4a to 4d.

- 7 -

In addition to the 1977 data, all possible cross-correlations were determined using all data available. In each case the lag is given of a recent time series with respect to an older time series. In all, with 44 wave forms, 47 cross-correlations were performed.

In order to test the stability of the cross-correlations another set was calculated in which the windows were shifted by 20 samples, thus instead of having 10 noise samples before the start of the signal, there were 30 noise samples. The resulting maximum cross-correlation lag change was 5 ms.

There was one case where the change was 10 ms and this can be explained by the fact that adding noise started the time series in an earlier second where the digitizing interval was very different than in the second used initially.

The results for all the possible cross-correlations for the La Pocatière shots are given in Table 7 and for the St-Jerôme Mine shots in Table 8. Under the heading ST are given the numerical station code and instrumental type. YR contains the years, DAY are the Julian days, SHOT contains the shot numbers START TIME contains the starting times of the time series, this is followed by the clock and BP corrections, and the corrected start time. A-B is the difference in corrected start times followed by the cross-correlatio coefficient. A large coefficient near one, indicates high similarity between the wave forms being correlated. The third line contains the sample lags necessary to maximize the cross-correlation function. This is followed

- 8 -

by the lag converted into seconds minus the A-B time, which is equated to the final lag. Finally the shot number and LATE or EARLY refer to the chronologically later shot that is either late or early with respect to the earlier shot.

The cross-correlation lags are presented graphically in Figures 5 and 6. Lines sloping up to the right indicate increasing time lags and lines sloping down to the right indicate decreasing time lags. The amount of change is indicated by the + or - number of milliseconds.

Errors:

For the last shots there has been an improvement in the clock errors. Use of an oscilloscope permitted reducing the clock errors to about ± 1.5 ms if linear clock drift can be assumed.

The individual contributing errors are indicated in Tables 2 and 3. The error on the arrival time is rather variable and contributes only to travel time but not to cross-correlation. The shooter and instrument clock errors are given as \pm 2 ms. The instrument delay error is assumed to be \pm 5 ms. For the BP the digitizing error is \pm 8 ms, and a \pm 5 ms relay delay error is assumed for the shooter box. Thus each time series from a BP has an RMS error of \pm 11, allowing for \pm 2 ms in cross-correlating gives a combined RMS error of \pm 16 ms for two BP time series.

The error on an array time series should be smaller than for a BP time series because of the higher sampling rate. However this advantage is partially removed by the uncertainty in the start of the second marks and estimate of the sampling

- 9 -

frequency.

Thus all cross-correlation errors will be taken as ± 16 ms. The errors in the travel times are determined from the RMS error of the contributing errors as given in Tables 2 and 3. The final error given refers to the point of the time series that was picked to be the arrival of the P phase. However the sampling interval of the digital equipment may produce variations in the apparent arrival time. Then differences in travel time may be in some extreme cases ±2 sampling intervals.

Discussion of the Data:

The general quality of travel time and cross-correlation data will be discussed with the aid of Figures 7-9. Similar Figures for the two shot points for all stations are given at the end of this report. Figure 7 shows the data for station 58 for the St-Jerôme shots. The horizontal axis is time in months and years. The 6 shot times are indicated by short slashes at the bottom of the Figure. The lower vertical scale is travel time in seconds. The observations are shown by an X and the error bars are indicated. The letters refer to the recording system. Over the 38 months period between shots an increase in travel time of 32 ms has occurred, only a few milliseconds larger than the stated errors.

The upper scale in Figure 7 is cross-correlation time change in ms. Over the 38 months period a change of 30 ms is indicated, about twice the error. The cross-correlation via two different paths close to within one ms. The agreement between arrival time changes and cross correlation changes is good.

Figure 8 shows similar data for station 60. The cross-correlation and travel-times show changes of 49 and 33 ms respectively. The cross-correlation and travel time changes

are larger than the estimated errors.

Figure 9 shows the data for station 58 for the La Pocatière shots. The traveltime of the shot 102 is marked by an asterisk. This indicates that the signal to noise ratio is less than 3 or in general that a phase is uncertain. In the cross-correlation part of the Figure cross-correlations with shot 102 are indicated by dashed lines. It has been found that the clock of the BP for this station either drifted non-linearly or jumped and a reliable correction could not be determined. However, the wavetrain for this shot is still useful because it results in closure with the wavetrains of the other 3 shots. The resultant change in cross-correlation is 10 ms, which is less than the level of significance. The travel times show no significant changes either.

The observed changes in cross-correlation have been summarized in Figure 10 in a plot of change in cross-correlation vs. distance. It is evident that 9 out of 15 observations are outside the error bounds. The maximum changes are -30 and +49 ms. Under the assumption that paths in the paleozoic sediments under the south shore, produce no changes in travel time, the source-to-station distance can be shortened. The path length in the sediments can be estimated from the known slope of the contact and assuming that the maximum depth of penetration is $\Delta/3$. This has been done for three stations for the St. Jerôme shots, and the 3 data points have been moved to the arrow heads. The only statement that can be made regarding the St. Jerôme shots is that cross-correlation changes increase with distance.

For the La Pocatière shot point only 3 points are outside the error bounds. The

two positive points do not violate the remarks regarding the data for the St.-Jerôme shot point. The negative data point for station 56 is lightly anomalous, since it is the only significant negative point. The geographic distribution of changes in cross-correlation are shown in Figure 11.

To test the correlation of changes in travel time by cross-correlation or travel time observations, Figures 5 and 6 are again shown as Figures 12 and 13 but the changes in travel time have been added in brackets. For station 60 from both shot points the correlation is good. The difference between the two methods is at most 16 ms. For the rest of the data the difference is of the same order. Thus in the instances where changes in travel times could be compared to changes in cross-correlation, agreement is found.

The arrival times from smoker systems had been shown to be affected by large errors in IR 77-7. Thus no statement will be made here of any apparent changes in travel time that are based on smoker records. The only significant change in travel time based on phase arrival is shown in Figure 14, station 74 for the St. Jerôme shot point. The change is nearly 50 ms, based on two Tape system records in 1974 on the one side and a BP observation in 1977 on the other.

Interpretation:

When attempting to interpret the above results it must be kept in mind that if a change in velocity of 10% occurred over .5 km of ray path a change in 10 ms would occur. Thus any changes observed here involve only 2.5 km of path length. Alternatively a much smaller velocity anomaly may extend over an appropriately larger volume.

- 12 -

Because of the size of the observed changes in travel times and the attendant errors it is not yet possible to model the changes in velocity. For the St. Jerôme Mine shots the anomaly may increase with distance. The positive anomalies from the stations for the La Pocatière shot are in agreement with this.

The negative anomaly at station 56 at a distance of 33 km from La Pocatière is unique. Stations 74 and 58 are on very nearly the same azimuth as station 56 but at distances of 46 and 25 km respectively. The maximum depth of penetration for the three stations is about 8, 11 and 15 km, this separates the ray paths sufficiently so that the path to station 56 samples a unique part of the crust. In addition the ray path passes underneath the central peak of the Charlevoix impact structure, Mont Les Eboulements.

LMQ Regional Station

The regional seismic station LMQ is located at the Charlevoix Observatory, which is identical to station 56 in Figure 1. The station began operating in Oct. 1976. In the following a period of 480 days is analyzed during which

Figure 15 shows a 10 day histogram of number of earthquakes recorded. During the period from day 300 to day 530 (day 1 is Jan 1 1976), 61 microearthquakes... were recorded for an average of 2.5 events per 10 days. In the period from days 540 to 770, 146 microearthquakes were recorded with an average of 6.3 events per 10 days. The two averages are significantly different but fall on either side of the average for the 1974 microearthquake survey.

- 13 -

It can be shown that the increase in the number of events is also associated with an increase in energy, so that the increased activity is not only an increase in small magnitude events.

It is commonly recognized that the slope of the cumulative frequency magnitude distribution, referred to as b, is diagnostic of different stress conditions. Values of b less than 1 are commonly obtained in shield areas and values larger than 1 are obtained in tectonicly active regions. High b values are also prevalent in foreshock sequences and small b values in aftershock sequences. The question thus arises if the change in seismicity at LMQ is also associated with a change in b.

The cumulative frequency magnitude relation in the form $\text{EN}(M) = aM^{-b}$ is known as the Ishimoto-Hida relation, where M are the magnitudes of the earthquakes. In the case of the LMQ station where only microearthquakes are recorded, the events are not recorded by the Canadian station net and magnitudes cannot be determined. An approximation to magnitude can, however, be made. From explosions and earthquakes at very small distances in the Charlevoix region an attenuation 1aw of the form $10^{\Delta/K}$ was postulated where K = 30, so that for each 30 km distance the amplitude decreases by 10. Distance of the events from LMQ was obtained from $\Delta = (S-P) * 8.2$. With these assumptions the magnitudes of the event were determined.

Suzuki has shown that under conditions where the Ishimoto-Iida relation holds the magnitude in the relation may be replaced by the amplitude of the events recorded at one station so that $\Sigma N(A) = a' A^{-b}$, and the b values will be equal. If this can be shown to hold near station LMQ it is of interest, since an attenuation law

- 14 -

needs no longer be assumed and the distance of an event is of no importance.

We therefore, computed b balues for the following cases. The data were used in three different sets: all the data, N = 207; the first 240 days with N = 61, and the second 240 days with N = 148. The b values were computed by least squares (LSQ) and maximum likelihood estimate (MLE). In addition to the attenuation law with k = 30, k = 25 and k = 35 were also used. These b values are listed in Table 9. Inspection of the table shows the following: b values computed from magnitudes based on k = 35 are closest to the b values based on amplitudes. A better correspondence would have been obtained with a somewhat larger value of k, that is less severe attenuation. Thus Suzuki's hypothesis holds in the region of LMQ.

The b values obtained by LSQ for the 3 sets of data based on amplitudes vary from -.9 to -1. so that there is no significant difference between them. The b values obtained by MLE vary from -.72 to -.78 and again there is no significant difference between them. The cumulative frequency magnitudes are plotted in Figure 16 for 61 microearthquakes. The LSQ lines are shown, the starred data points were deleted because of incompleteness. On the left are the "magnitude" lines, on the right is the amplitude line.

Thus in the region of LMQ, changes in b values based on amplitudes can be used to monitor the stress field, provided the number of earthquakes is sufficiently large. On a weekly or monthly basis the method will not be useful. On the other hand the method may prove to be of value for the determination of b in other cases where one station is near a source of moderate seismicity.

Conclusion:

The observed small changes in travel time of at most 49 ± 16 ms are only somewhat beyond the experimental error and demand that conclusions be made with great caution.

Except for a ray path underneath the central peak of the Charlevoix impact structure, Mont Les Eboulements, the region appears to show decreases in velocity.

The decreasing experimental errors of the next few calibration shots and the total length of observations then available should confirm the reality of the changes in velocity.

Recommendations:

- To further define the observed changes in travel times it is recommended that further calibration blasts be set off in May and October 1978. This is in agreement with our philosophy of being dominantly interested in damaging earthquakes.
- The uncertainty of ±8 ms in the BP's must be removed and the sampling frequency should be increased to 120 Hz. (Done April 1978)
- The shooter box with its delay should be replaced by a solid state box with insignificant delay. (on order since February 1978)

Figure captions

- Station distribution for the August 1977 shots. A's are array sites, stars are shot points.
- BACKPACK program timing. There are eight program interupts in a sample of 1/60 second. MUX is the interupt when a seismic channel is digitized.
- 3. Array time track digitizing correction term. The start of one second is near I = 1, the start of the following second is near I = 118. "a" corrects for the first second not starting at I = 1, and L corrects for the digitizing interval not being 120.
- 4a. Wave forms used in cross-correlating. Solidline is described first in legend: BP74, shot 5, date and start time. Dashed line is described second in legend as shot 6.

In third line the computed lag is given in samples followed by the crosscorrelation factor CC, DT is the corrected change in cross-correlation. 6 LATE means shot 6 was late with respect to shot 5. Note that shot 5 was 500 lbs and shot 6 was 2000 lbs. Traces are nomalized to 1 inch.

4b. Waveforms similar to Figure 4a. Shot 4 was 5000 lbs and shot 5 was 500 lbs.
4c. Waveforms similar to Figure 4a. Shot 103 was 2000 lbs and shot 104 was 1500lbs.
4d. Wave forms similar to Figure 4a. Shot 104 was 1500 lbs and shot 101 was 1000 lbs. Note the difference in initial rise of phases.

5. Cross-correlations for La Pocatière shots. Downsloping to right indicates the more recent shot arrived earlier, upsloping right indicates more recent shot arrived later. Lines connect shots that were cross-correlated. Number indicate change in milliseconds. Right hand column gives sum of change by different combinations of cross-correlations. 6. Cross-correlations for St-Jerôme Mine, similar to Figure 5.

- 7. Data for station 58 from St-Jerôme Mine shots. The arrival times with error bars are shown by an X at the bottom of the Figure. Cross-correlation changes in ms, error bar is ±16 ms, are shown at the top.
- 8. Data for station 60 from St-Jerôme Mine shots similar to Figure 7.
- 9. Data for station 58 from La Pocatière shots. Dashed lines in the crosscorrelation indicate an uncertainty clock correction for shot 102.
- 10. Summary of cross-correlation results vs. distance. Station numbers are indicated along the bottom. In the Figure the numbers 1, 2 and 3 refer to cross-correlation between respectively the first and second, the second and third and the third and fourth shots.
- 11. Geographic distribution of cross-correlation results. The X's are shotpoints. Dots are stations. Top number refers to change in ms for St.-Jerôme Mine shots, bottom number refers to La Pocatière shots.
- 12. Cross-correlation results for La Pocatière shots to which in brackets changes from travel time observations have been added.
- 13. Similar to Figure 12 for St. Jerôme Mine shots.
- Significant change of travel time observed at station 76 for St.-Jerôme Mine shots. No cross-correlation was performed.
- 15. Ten day histogram of microearthquakes recorded at LMQ.
- 16. Cumulative frequency magnitude relation for 61 microearthquakes. On the left for "magnitude" using the attenuation indicated, on the right are the amplitudes. The starred data were not used in the solution for the regression lines.

- 18 -

LIST OF TABLES

- 1. List of explosions
- 2. Traveltime data, Shot No. 104, La Pocatière
- 3. Traveltime data, Shot No. 6, St. Jerôme Mine
- 4. Traveltime summary, La Pocatière
- 5. Traveltime summary, St.-Jerôme Mine
- 6. Backpack sample time corrections
- 7. Cross-correlations, La Pocatière shots
- 8. Cross-correlations, St. Jerôme Mine shots

9. Slopes of the cumulative frequency magnitude and amplitude,

b, at station LMQ

TABLE 1

List of Explosions

La Pocatière Shot hole

47.3500° N 70.0112[°] W No. Date Hour Charge Size (1b) 7 Oct. 75 (280) 15:16:00.000 UT 1000 101 102 28 Oct. 76 (302) 16:26:00.000 UT 1000 16 Dec. 76 (351) 17:26:00.000 UT 103 2000 104 30 Aug 77 (243) 23:30:00.000 UT 1500 St-Jerome Mine

	47.534° N	70.556° W	
1	19 Jun. 74 (170)	12:08:09.305 EST	1000
2	13 Jul. 74 (194)	12:11:06.752 EST	1000
3	23 Jul. 74 (204)	12:26:08.925 EST	5000
4	24 Sep. 75 (267)	17:53:00.036 UT	·5000
5	15 Dec. 76 (350)	20:25:59.989 UT	500
6	31 Aug 17 (242)	22:30:00.000 UT	2000

Table 2

¹

.

*

							-	-						
	SHO	T DAY	Y DA	ΓE	ORI	GIN	TIME	ERR	ORS	C	ORRECTION	S ALL	IN MS	5
	104	+ 242	30. 8.1	977	23 3	30 0	.000	2	5	5	5 0	0		-
	ST	INST	AKR.TI	1E	ERKORS	5	CORRE	ECTIONS		TRAVEL	TIME +/-	ERROR	S	
_	62	BP	7.742	8	2	4	22	6	0	7.763	.012			_
	56	BP	5.842	8	2	4	22	-1	0	5,868	.012			
-	76	BP	6.567	8	2	4	22	-6	0	6.588	.012			-
	74	BP	8.008	8	2	4	22	-6	0	8.029	.012			
	58	BP	4.617	8	5	4	22	-7	0	4.637	.012			_
	18	BP	4.027	6	2	4	22	-4	0	4.050	.010			
-	52	S	6.997	3	20	0	-42	0	0	6.960	.022			-
	60	A	6.871	8	4	0	3	0 .	0	6.879	.012			
	64	A	9.206	-4	4	0	3	0	0	9.214	.009			
	20	A	8,375	12	4	0	3	0	0	8.383	.015			
	10	A	3.562	26	4	0	3	0	0	3.570	.027			
	54	A	5.879	10	4	0	3	0	0	5.887	.013			
-					and the second se		and the second se	and the second se		and the second se	and the second se	the second se	and the second se	

La Pocatière

Table 3

St. Jerôme Mine

_													
		TRA	VEL TIMES	FOR	LA MALB	AIE	AREA	SHOTS					
_	SHO	TDA	Y DATE		ORIGI	N T.	IME	ERRO	RS	C	DRRECTIO	NS ALL	IN MS
	6	243	31. 8.19	77	20 30	0.0	000	2	5	5	4 0	0	
	ST	INST	ARR.TIME	E	RKORS	(CORRE	CTIONS		TRAVEL	TIME +/	- ERROF	15
	18 1	BP	8.925	10	2	4	22	-7	0	8.944	.013		
-	58	RP	4.413	4	2	4	22	-6	0	4.433	.009		
	74	BP	2.177	6	2	4	22	-3	0	5.500	.010		
-	76	RP	4.508	8	2	4	22	-6	0	4.528	.012		
	56	BP	2.980	4	2	4	22	-2	0	3.004	.009		
-	30	RP	9.032	15	2	4	22	-4	0	9.054	.017		
	52	S	2.188	3	10	0	-58	0	0	2.134	.013		
	60	-	6.535		4	0	10	0	0	6.549	.010		
	54	~	2.429	4	4	0.	10	0	0	2.443	.009		
	24		9.609		4	0	10	0	0	9.713	.009		
	21	A .	11 364	8	4	õ	10	õ	õ	11.378	.012		
	21	A	7 304	0	4	0	10		0	7.308	.012		
	11	A	1	0									

* .

TABLE 4 Travel Time Summary

.

4

*

. .

La Pocatière Hole Shots

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Shot No.	10	01		102	-		103			. 104		
280 302 351 242 Stn. Δ km System Travel ms ± System	Date	75 Oct	ct. 07		76 Oct	. 28		76 Dec	. 16	74	77 Aug.	30	
Stn. Δ kmSystemTravel Error Time sSystemTravel Fror Time sSystemTravel Error Time sSystemTravel Error ErrorSystemTravel Error Time sSystemTravel Error ErrorSystemTravel Error ErrorSystemTravel Error ErrorSystemTravel Error ErrorSystemTravel Error ErrorSystemTravel Error ErrorSystemTravel Error ErrorSystemTravel Error ErrorSystemTravel Error Error		. 280	80		302			351		•	. 242		
52 39.39 S 6.995 24 8 6.960 22 54 32.60 S 5.845 45 BP $5.953*$ 23 BP 5.887 14 A $5.387*$ 13 56 32.61 8 5.845 45 BP $5.953*$ 23 BP 5.892 14 BP 5.868 15 58 24.72 Aa 4.620 15 BP $4.661*$ 23 8 4.660 77 BP 4.637 15 60 38.55 Ad 6.853 18 BP $7.061*$ 32 8 6.867 89 $6.885*$ 12 74 46.28 BP $8.030*$ 22 BP 8.029 15 76 36.92 S 6.522 198 8 6.576 37 10 17.98 A $3.492*$ 14 8 3.660 33 8 3.455 51	Stn. Δ	km System	m Travel Time s	Error ms ±	System	Travel Time s	Error ms ±	System	Travel Time s	Error ms ±	System	Travel Time s	Error ms ±
54 32.60 BP 5.887 14 A 5.387* 13 56 32.61 S 5.845 45 BP 5.953* 23 BP 5.892 14 BP 5.868 15 58 24.72 Aa 4.620 15 BP 4.661* 23 S 4.660 77 BP 4.631 15 BP 5.868 12 BP 5.857 14 A 6.885* 12 BP 8.030* 22 BP 8.029 15 5 5 6.617 17 BP 6.588 15 5 8	52 39.	19						S	6.995	24	S	6.960	22
56 32.61 S 5.845 45 BP $5.953*$ 23 BP 5.892 14 BP 5.868 15 58 24.72 Aa 4.620 15 BP $4.661*$ 23 S 4.660 77 d 4.638 15 BP $4.661*$ 23 S 4.660 77 60 38.55 Ad 6.853 18 BP $7.061*$ 32 S 6.867 89 6.857 14 A $6.885*$ 12 BP $8.030*$ 22 BP 8.629 15 74 46.28 S 6.522 198 S 6.617 17 BP 8.029 15 76 36.92 S 6.522 198 S 6.576 37 37 $3.492*$ 14 S 3.660 33 S 3.455 51 A $3.570*$ 26 11 13.42 14 S 2.703	54 32.	0						BP	5.887	14.	A	5.887*	13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	56 32.	J S	: 5.845	45	BP	5.953*	23	BP	5.892	14	BP	5.868	15
60 38.55 Ad 6.853 18 BP 7.061* 32 S 6.867 89 A 6.885* 12 74 46.28 BP 8.030* 22 BP 8.629 15 76 36.92 S 6.522 198 S 6.617 17 BP 8.029 15 8 36.86 S 6.522 198 S 6.576 37 37 10 17.98 A 3.492* 14 S 3.660 33 S 3.455 51 A 3.570* 26 30 5.53 A 1.254 14 S 2.703 28 BP 2.701 15 18 21.84 A 4.158* 14 I I BP 2.701 15	58 24.	2 Aa d	4.620	15 15	BP	4.651*	23	S BP	4.660	77	סק	4 637	15
74 46.28 BP 8.0 30* 22 BP 8.029 15 76 36.92 S 6.617 17 BP 6.588 15 8 36.86 S 6.522 198 S 6.576 37 37 10 17.98 A 3.492* 14 S 3.660 33 S 3.455 51 A 3.570* 26 30 5.53 A 1.254 14 S 2.703 28 BP 2.701 15 18 21.84 A 4.158* 14 Image: state	60 38.	5 Ad	6.853	18	BP	7.061*	32	S BP	6.867	89 14	Δ	6 8 8 5 *	12
76 36.92 76 36.92 5 6.617 17 BP 6.588 15 8 36.86 5 6.522 198 5 6.576 37 5 6.576 37 5 6.588 15 10 17.98 A 3.492* 14 S 3.660 33 S 3.455 51 A 3.570* 26 11 18.42 1.254 14 5 3.660 33 S 3.455 51 A 3.570* 26 30 5.53 A 1.254 14 2.703 28 BP 2.701 15 16 13.13 S 2.737 20 S 2.703 28 BP 2.701 15 18 21.84 A 4.158* 14 4 4 8 <td< td=""><td>74 46.</td><td>8</td><td></td><td></td><td>BP</td><td>8.030*</td><td>22</td><td></td><td></td><td></td><td>BP</td><td>8.029</td><td>15</td></td<>	74 46.	8			BP	8.030*	22				BP	8.029	15
8 36.86 S 6.522 198 S 6.576 37 10 17.98 A 3.492* 14 S 3.660 33 S 3.455 51 A 3.570* 26 11 13.42 .	76 36.9	2						S	6.617	. 17	BP	6.588	1,5
10 17.98 A 3.492* 14 S 3.660 33 S 3.455 51 A 3.570* 26 11 13.42 1.254 14 S 3.660 33 S 3.455 51 A 3.570* 26 30 5.53 A 1.254 14 Image: Constraint of the second se	8 36.1	6			S .	6.522	198	S	6.576	37			
30 5.53 A 1.254 14	10 17.9	8 A	3.492*	14	S	3.660	33	S	3.455	51	A	3.570*	26
16 13.13 S 2.737 20 S 2.703 28 BP 2.701 15 18 21.84 A 4.158* 14 Image: Constraint of the second s	30 5.1	3 A	1.254	14									
18 21.84 A 4.158* 14 BP 4.050 13	16 13.1	3 S	2.737	20 ·	. S	2.703	28	BP	2.701	15			
	18 21.8	4 A	4.158*	14							BP	4.050	13
20 46.42 S 8.610 17 A 8.383* 12	20 46.4	2 S	8.610	17	T						A	8.383*	12
21 46.23 64 53.84 A 9.210* 12	<u>64</u> 53.8	4									A	9.210*	12
44.73	44.7	3						8					40 ₁₀ 10
62 BP 7.763 15	62			-		07	MBOLC				BP	7.763	15

A array T tape S smoker * poor arrivals BP backpack a analog d digital

		- se u altraceata	Sussembler seduk	orstättelenden di	Klichter of statistic species		nasicutin di	inacihilitere estatu	ini ana amin'ny soratra amin'ny soratra amin'ny soratra amin'ny soratra amin'ny soratra amin'ny soratra amin'ny	เล้าเป็นหลังและเห	a - a scarce gado rig	Name of Station and Station	njër mer të "mër e	alle a lithe instance stands	ata bahar ana ing a	ne nor no antonio coltan. Apita		richtel einer Lener belächtigte	ndd allan ar said i san
								TABLE	5								я., ,	4	
							Trave	el Time 9	Summary										1.
					;		St-Jer	côme Mine	Shots										* 2
Shot	No		1			2	00 001	come mane	3			4			5			6	
Dat	. NO.	74	June 19)	74	- 4 July 13		74	July 23		75	5 Sept. 2	4	76	5 Dec. 15	5	77	Aug. 31	٠,
		•	170			194			204			267			350			243	
Sitn.	∆ km	System	Travel Time s	Error ms ±	System	Travel Tíme s	Error ms ±	System	Travel Time s	Error ms ±	System	Travel Time s	Error ms ±	System	Travel Time s	Error ms ±	System	Travel Time s	Error ms ±
52	12.21	Т	2.181	12	T	2.164	12	T	2.176	12	S	2.308	140	S	2.167	111	S	2.134	13
54	13.77	Aa ' d	2.423	12 15	Aa d	2.414 2.414	12 15	Aa d	2.426	12 13	Aa d	2.444	13 13	BP	2.440	15	A	2.443	12
ריכ	17.34	S	2.983	25							S	2.959	32	BP	2.998	15	BP	3.004	13
58	25.87	Aa d	4.406	12 15	Aa d	4.404	12 15	Aa d	4.421 4.401	12 15	Aa d	4.420	13 13	S	4.438	73	BP	4.433	12.
60	39.02 38.95	Aa d	6.509 6.521	12 15	Aa d	6.511 6.504	12 15	Aa d	6.519 6.504	12 15	Aa d	6.528 6.528	13 13	S BP	6.571 6.525	37 15	A	6.537	12
52	47.75	S	7.807	26 -	S	7.824	.49	-			S	7.848	44						
64	59.66	T	9.933*	12						1.		/	1		/		A	9.713*	12
76	13.13	S	2.258	33	S	2.154	.20	S	2.120	34				BP	2.189	15	BP	2.200	12
76	26.63	Т	4.488	12				T	4.471	12				S	4.502	57	BP	4.528	14
8	13.31			1			1.			1			1.	S	2.288	15	· ·		
10/11	42.81 42.24			1				A	7.296	12	A	7.308	13	S.	7.291	98	A	7.306*	12
30	51.39							A	9.010	12	Α	9.024	13				BP	9.054*	18
16	41.82	S	7.211	128			1	S	7.212	. 30	S	7.225	43						
18	52.18						1	A	8.933*	12	A	8.930	13				BP	8.944*	15
20/21	67.90 67.84	Т	11.385	50				Т	11.427	31	S	11.403	47				A	11.378	. 12

+

. -

1

 $\Psi^{-1,1}$

4

г 9 1

1

Ta	Ь	1	е	6
	-			-

Ł

BACKPACK - SAMPLE TIME CORRECTIONS

Channel	3	2	1
Seismic component	Е	N	Z
PI (program Interupts)	+7	+9	+11
milli seconds	15	19	22

error: ±4 PI or ±8ms

					TABLE	7		,		
an a					CORR	ECTIONS	CORRECT	-	CROSS-CORR.	
ST	YR	DAY	SHOT	START TIME	CLOC	KS BP	TIME	A=8	COEFF.	
748P	76	302	102	7.816	0	22	7.838	.001	CC = .444	
[40r	•4	LAGS	DT=	+006 -+001=	.005	104 LA	TE			
60RP	76	302	102	6,616	3	22	6,641	=.033	CC = 475	ALC: NO.
60BP	76	351 LAGS	103 DT=	6.650	2	22 103 FA	6.674 RI Y			Ę
		6100				A V tof built	9 1		anny ann à rig da a gun fhaith a gu ann an tha ann an tha ann ann an tha ann an tha ann an tha ann an tha ann a	
60BP	76	302	102	6.616	3	22	6.641	.012	CC = .378	hain ai daile a
OVA	=.3	LAGS	DT=	*.005012=	017	102 LA	TE		s	
60BP	76	302	102	6.616	3	22	6.641	012	CC = 364	
60A	77	242 1 AGS	104 DT=	6.645	.013	0	6.653 TE			allowed and a splitter of
444444 (Alexandro)										manggertapilating
608P	76	351	103	6.650	2	22	6.674	.045	CC = .781	1
	1.9	LAGS	DT=	.032045=	=.013	.103 LA	TE			112.2
60BP	76	351	103	6.650	2	22	6.674	.021	CC = .623	
60A	77	242 LAGS	104 DT=	6,645	.016	. 0 104 LA	6.653 TE			
							in a matte same i de aret districted districted de la constante de la constante de la constante de la constante		nykajaka ingenerati kati kati manan nye nyenye di manya kati manan	
60A	75	280	101	6.623	6	0	6.629	024	CC = .524	ľ
	•3	LAGS	DT=	.002 .024=	.026	104 LA	TE			19-1 <u>9-</u> 149-1
588P	76	302	102	4.350	-28	22	4.344	003	CC = .742	-de
58BP	76	351 LAGS	103 DT=	4.316 ••.016 .003=	013	22 103 EA	4.347 RLY			
588P 588P	76 77	302 242	102 104	4.350 4.316	-28	22 22	4.344	.008	CC = ,546	
	2	LAGS	DT=	003008m	011	104 EA	RLY			5
588P	76	302	102	4.350	-28	22	4,344	-,013	CC = .707	
58A	75 -2.1	280 LAGS	101 DT=	4.357 034 .013=	0021	0 102 LA	4.357 TE			
										1
58BP 588P	76 77	351 242	103 104	4.316 4.316	۶ 2=	- 55 - 55	4.347 4.336	.011	CC = .672	
	•8	LAGS	DT=	.013011=	*005	104 LA	TE			
588P	76	351	103	4.316	9	22	4.347	010	CC = ,786	
58A	75 -1.1	280 LAGS	101 DT=	4.357 018 .010=	0 +.008	0 103 LA	4.357 TE			
				•						

•

47 M

.

588P 58 A	77 75 -1.9	242 280 LAGS	104 101 DT=	4.316 4.357 *.031 .021=	-2 0 ~,010	22 0 104 LA	4.336 <u>4.357</u> TE	021	CC =	.581
56BP 56BP	76 76 .0	302 351 LAGS	102 103 DT=	5.616 5.616 .000 ∞.003=	-19 -22 -003	22 22 103 EA	5.619 5.616 RLY	e003	<u> </u>	•583
568P 568P	76 77 1	302 242 LAGS	102 104 DT=	5.616 5.566 *.027=	-19 4 029	22 22 104 EA	5.619 5.592 RLY	.027	CC =	.622
56BP 56BP	76 77 2	351 242 LAGS	103 104 DT=	5.616 5.566 •.004024=	-22 4 028	22 22 104 EA	5.616 5.592 RLY	• 024	CC =	.808
548P 54A	76 75 •4	351 280 LAGS	103 101 DT=	5.616 5.612 .006016=	-10 0 010	22 0 103 LA	5.628 5.612 TE	.016	CC .≖	.619
54BP 54A	76 77 •6	351 242 LAGS	103 104 DT=	5.616 5.614 .009006=	∞10 8 ₀003	22 0 104 LA	5.628 5.622 TE	.006	CC =	,811
54A 54A	75 77 • 3	280 242 LAGS	101 104 DT=	5.612 5.614 .002 .010=	8 015 0	0 0 104 LA	5.612 5.622 TE	010	CC =	•586
188P 18A	77 75 -1.4	242 280 LAGS	104 101 DT=	3.816 3.860 ~.023 .021=	1 0 002	22 0 104 LA	3.839 3.860 TE	021	<u> </u>	.826
10A 10A	75 77 20.0	280 242 LAGS	101 104 DT=	3.326 3.245 .166 =,076=	0 5 •090	0 0 104 LA	3.326 3.250 TE	• 076	CC =	.420
8							TABLE	7 (continue	ed)	
						•				
			3							

.

٩

æ

, -

TA	BI	LE	8
T 7 3		J 2.3	~ ~ ~

					CORRE	CTIONS	CORRECT		CROSS-CORR.
ST	YR	DAY	SHOT	START TIME	CLOCK	S BP	TIME	A=8	COEFF.
748P	76	350	5	2.000	7	22	2.029	.006	CC = ,946
74BP		243	6	2.000	1	22	2.023		
	1.0	LAUS	DIE	e017e006m	•011	O LAI			
608P	76	350	5	6.300	-14	22	6.308	002	CC = .831
60A	74	204	3	15,221	-8911	0.	6,310		
	-1.5	LAGS	01=	*•025 •002=	023	5 LAI			4
608P	76	350	5	6,300	-14	22	6,308	++ 008	CC = .841
60A	75	267	4	6.338	-22	0	6.316		·····
	~ +6	LAGS	DT=	010 .008=	002	5 LA1	ſE		
608P	76	350	5	6,300	-14	22	6.308		CC = .836
60A	77	243	6	6.338	14	0	6.352		
	-1.1	LAGS	DIE	<u>***018 *044</u> =	.026	6 LA1	E		· · · · · · · · · · · · · · · · · · ·
60A	74	204	3	15,221	-8911	0	6.310	006	CC = ,919
60A	75	267	4	6.338	-22	0	6,316		
	1.8	LAUS		.015 .006=	•021	4 LAI	L		
50A	74	204	3	15.221	-8911	0	6.310	+.042	CC = .655
60A	77	243	6	6.338	14	.0.	6,352		
	÷0	LACS	VIa	eVU1 eV42=	.049	O LAI			
60A	75	267	4	6.338	-22	0	6.316	-,036	CC = .704
60A	77	243	6	6.338	14	0	6.352		s
	* 6 2	LAGS	U1=		• 0 2 0	O LAI			
568P	76	350	5	52.716	10014	22	2.752	.012	CC = .767
568P	77	243	6	. 2,716	2	22	2.,740		
	1.5	LAGO	Dim.	024 40VIZ#	0 V I C	DLA	<u> </u>		
548P	76	350	5	2.116	-4	22	2.134	.027	CC # ,851
54A	74	204		11.006	-8899	5 1 41	2.107 F		
	••	F100	0,-	fore wearing			* 800		
54BP	76	350	5	2.116		22	2.134	.001	CC = .823
54A	75	267	4	2.143	-10	0	2.133		
	* • C	LAUJ	01=		- e V U 4	<u> </u>	1 Ene		
548P	76	350	5	2.116		22	2.134	011	CC = .923
54A	77	243	6	2.131	14	6 1 4 1	2.145		
	<i>د</i> ،	L, A O J	U 1 =	9003 \$011 <u>2</u>	ento	· o ["Al	: E.		
54A	74	204	3	11.006	-8899	0	2.107	026	CC =
54A	75	267	4 DT=	2.143	-10	6 1 4 1	2.133		
	GOV	LAUN	01-	BATI FAEDE	0007	- H LAI	- Gas		

. fail...

54A	74	204	3	11.006	-8899	0	2.107	038	CC = .878	641.
	-1.5	LAGS	DT=	013 .038=	.025	6 LA	TE		1	ig
54A	75	267	4	2.143	-10	0	2.133	012	CC = .885	
54A	77	243 LAGS	6 DT=	2.131 .005 .012=	.017	0 6 LA	2.145 TE			
588P	77	243	6	4.116	-2	22	4.136	.021	CC = .747	
58A	74	204 LAGS	3 DT=	13.014 **.010021=	-8899	0 6 LA	4.115 TE			
SARP	77	243	6	4.116	=2	22	4.136	.=.020	CC = .749	r-irialiyiyiliii
58A	75 -1.6	267 LAGS	4 DT=	4,166	-10	0 6 LA	4.156 TE			
EQA	74	204	3	12 014	-8800	0	4 115	- 641	<u> </u>	
58A	75	267 LAGS	4 DT=	4.166	+10	0 4 LA	4.156 TE			
										ر ار 1
308P 30A	77	243 267	6 4 DT=	8.766 8.801 *.010 .003=	-10 = 0.07	22 0 6 A	8,788 8,791 TF	-,003	CC = ,942	
30BP 30A	77	243	6 3	8.766 17.755	-8899	22	8.788		CC = .920	1
	72.44	2800					· · · ·		nature and mugan much and managerization may mental to a state of the	
30A 30A	75	267	4	8.801	-10 -8899	0	8.791	065	CC = ,929	
	#9+5	LAGS	01=	 080 .005≠	= <u>+015</u>	<u>4 L</u> A	TE	e	n a ser en aux - un allere de latter aller et an an an al set get aller al de 1 mars	t
188P 18A	77 75	243 267	6 4	8.716 8.742		22 0	8,735 8,732	•003	CC = .844	,
	-**5	LAGS	DT=		006	6 LA	TE			C 1
188P 18A	77	243	6	8.716	<u>*3</u>	22	8,735	.009	CC = .856	
	-1.1	LAGS	DT=	*•018 -•009=	027	6 LA	TE		di ya da nya dishi ya mwa nya ka ya dista mwa di nya disha ya disha ya disha da da sa sa sa sa sa sa sa sa sa s	
18A 18A	75 74	267	4	8.742	+10	0	8,732	.006	CC = ,892	
	-1.8	LAGS	DT=	015006=	021	4 LA	TE		- m eyene - e	
10A	75	267	4	7.104	-10	0	7.094	.163	CC = _410	
	4.8	LAGS	DT=	.040163=	me123	<u>6 EA</u>	RLY		1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
104	75	267	4	7.104	#10	0	7.094	•080	CC = .948	nderer en
LUA	7.1	LAGS	DT=	.059080=	051	4 LA	TE	8 (continue	ed)	aanta' saata
10A	77	243	. 6	6.917	14	0	6,931	083	CC = .421	

1

-

t ٠

10A 74 204 3 15.913 -8899 0 7.014 -11.2 LAGS DT= -.093 .083= -.010 6 LATE 1.1 TABLE 8 (continued) . . .

Та	b	1	e	9

```
b values for station LMQ
```

	Ampli	tudes	1/10 i	n 25km	1/10 i	n 30km	1/10 in	35km
N. Eqs	LSQ	MLE	LSQ	MLE	LSQ	MLE	LSQ	MLE
213	-1.0	72	76	44	82	49	90	53
61	99	78	62	44	69	50	78	55
152	90	77	97	54	-1.0	60	-1.0	64

A

Fig

GET TIME FOR

÷

IST BLOCK 4%/ROBABILITY.

		TIME CO	PRECTION	
CHANNEL	15T BLOCK (96%)	IST BLOCK 406	SUBSEQUENT BLOCKS	TOLERANCE
3	\$/480	1/480	3 /480	- \$,+1/60
2	2/480	3/480	5/480	- 0 +1/60
ł	4/480	5/480	7/480	-+ +1/60

Those figures apply to ALL field experiments.

Fig.2

BAKPAK TIME CORRECTIONS REVISED 26JAN78

DRA

Shot No 6

MMM

 BP74
 5
 15
 DEC
 76
 20
 26
 0
 2

 BP74
 6
 31
 AUG
 77
 22
 30
 0
 2

 LAG =
 1.0
 CC = .946
 DT = .011
 6
 LATE

Fig. 4a

 BP60
 5
 15
 DEC
 76
 20
 26
 0
 6

 A 60
 4
 24
 SEP
 75
 17
 53
 0
 6

 LAG =
 -.6
 CC = .841
 DT = -.002

Fig. 4b

LATE

5

4 30 0 23 AUG 77 30 104 BP58 4 15 16 0 7 OCT 75 101 A 58 LATE 104 -.010 = -1.9 CC = .581 DT aunate aunate LAG

Fig. 4d

Cross - correlations La Pocatière

· · · ·

									2		
STK	101	280	102	o.t	302	103 16 Dec	351	104 30. Au	242		
54	A					BP	0	A	+12 + 3	+12 +13	
56				BP		35	-3	Bb	-28 -29	-31 -29	
58	A 			3P + 21		3P +8	-13	BP	+10 + 2 -11	+10 +10 +10 +10	
60				-+1	7	BP +1	3		- 13 - 16	+ 29 + 26 + 30 + 30	-
74				BP				Bi	+5		
olu		1						R	+90	STATH CORR × +73	
18	A							BP	+2.		

.

. «

4

Cross-Correlations

st. - Jeröme Mine

i.,

, ¹.

	, 6													
TH	3 2	2041	+	267	5	Dec	350	6	Que	243				
54	A		A	+9		BP	-14		A +	16 +25 +17	+29 +30 +25 +26			-
56					1	37			BP	+12	×			
58	A		Â	-+23				:	BP	+31 +7	+ 31 + 30			
60	· A		A	+21		B? +	23		ρ	+ 49 + 28 + 26	+ 49 + 49 + 49 + 49		-	
74					9 14 9 1				76	+ 11				
>/11	A 		A	+21					A	123 HO	-102 +10	5	TN. c -95	ORR
18	A 		A	+21					3P 	27	+27 +27			
30	A		A	+ 15					3P 	23	+23 +22			

.

.

4

Fig.6

50	* 5 (19)		STATIO	NNO.	58	Lat	Pocatièr	e shots	, ¹
40	· · · · · · · · · · · · · · · · · · ·								
30	· · · · · · · · · · · · · · · · · · ·								
30									
20									
, 10			1.						
10									
-10									
-20									
-30	····;;;;								
*									
,									
1	······································								
-1700									
- 5'2 -									
5 44- 5			*	*	×				
241									
1800		·····	A.	BP BP	BP				
-	5 9	5	9	5 9	5 9	5 9	5 9	5 9	5 9 -
	19] []	75	76	77	78	79	80 1	781 Fig.

Cross - Correlation changes in ms 27 2 ST. Jerome Mine La Pocatière 27 49 28 1150 23 12 -30 30 X 25 21 X

Cross - correlations La Pocatière

r 3

STL	101	280	102	302	103 16 Dec	351	104 30. A.	242		
54	Α		23.02		BP	0		+12 + 3 (0)	+ 12 + 13	
56			BP		35	-3	BP	(-24) 28 29	-31 -29	•
58	A 		37	21	B7 	-13	37	(-1) + 10 + 2 (+6) - 11	+10 +10 +10 +10	
60			35	+17	BP +1.	3(+4)	A	(+32) +26 +13 +16 (+28)	+ 29 + 26 + 30 + 30	
74			BP				Bi	(-1) +5		
10/11	Д						EI .	(+78) - +90	STATN CORR # 173	
18	A						B.b	+2		

• •

•

.

Cross - Correlations

4 g B

st. - Jerôme Mine

			0.1									
STE	3	204	4	267	5		350	6	0	243		
54	23.Jul. A	74	24.	Sept.75 A (+5) +9		BP	+14 +14 +10 +6) +4	31.	A	(+3) + 16. + 25 + 17 + 17 + 9	+29 +30 +25 +26	
56		-								(+6) +12		
58	A			A (+11) +23					BP	(+32) +31 (+20 +7	+ 31 + 30	
60	A			A (+ 24) + 21		BP (+	21) 23 2(-3)		ρ	(+33) + 49 + 29 + 20 + 20 + 20 + 20 + 20 + 20 + 20 + 20	+ 49 + 49 + 49 + 49 + 49	
74				0					58	(+ 11) + 11		
:0/11	A 			A (+12) +21					A .	- 123 +1Ò	-102 +10	STN. COR - 95
18	A			A + 21					B7	+27 +6	+27 +27	
30	G			A (+14) 					BP	+23 +7	+23 +22	
				NAME AND TAXABLE PARTY AND ADDRESS OF TAXABLE PARTY.	And in case of the local division of the loc							

Fig.15

