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ABSTRACT

The calculation of damped response spectra can be greatly simplified
if only approximate spectra are required. The procedure proposed here is
based on the observations that the shape of damped response spectra are
similar to that of the undamped spectrum of the same record, and that a
highly damped spectrum is smoother, and of smaller average value than a
spectrum corresponding to a lower percentage damping. Guided by these general
properties of damped spectra, a fast, approximate algorithm has been
empirically devised for the production of damped spectra from an undamped
spectrum. The technique is basically one of constrained interpolation. It
is general in that it is independent of the physical significance of fhe
data to which it is applied. As the number of cons£raint points increases,
the approximations converge to a desired solution, so that any required
degree of precision can be obtained. Computational casts, which are
tyﬁically of the order of 10% of the cost of direct integration, are low

enough that the approach described here should be comﬁetative with all

other techniques for most applications.



Introduction

A commonly calculated function in earthquake engineering is the
damped pseudo-relative velocity response spectrum (PSRV). Standard
presentations usually include PSRVs corresponding to 0, 2, 5, 10, and 20
percent of critical damping. Typical examples and listings of computer programs
for evaluating the PSRV integral are presented by Trifunac and Lee (1973).
The calculations are long and the physical significance of the precise shape
and position of the individual PSRV peaks are uncertain, and not generally used
in subsequent calculations. The question then presents itself as to whether
one cannot find some method of adequately approximating PSRV values in a less
expensive manner.

A similar problem has been presented by Johnson (1973). He found an
empirical algorithm that produces approximations to 5 percent critical PSRVs
as a function of magnitude and epicentral distance. Wiggins (1964) averaged
the observed response spectra of a number of records to construct an
empirical description of the dependence of response spectra on magnitude and
epicentral distance., The production of PSRV estimates by digital filtering has
also been shown to be a viable alternative to direct integration of accelerograms
(Beaudet and Wolfson (1970), Udwadia and Trifunac (1973)).

The general properties of PSRVs are illustrated in Figure 1. All ‘the
PSRV curves for a single record are similar in shape. The main differences
between the PSRV curves for various damping values are a) the average
absolute values decrease as damping increases, and b) the PSRVs become-smoother
as damping increases. The purpose of this paper is to show that these trends
can be simply and explicitly defined and the resulting algorithm used in

the production of PSRVs.
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While a number of other empirical relations have been -used by others

for the production of approximate PSRVs, the present approach has a number

of distinect advantages:

1)
2)
3
4)
5)
6)
7

8)

9)

it is independent of event magnitude,

it is independent of the source spectrum,

it is independent of the structure between the ;ource and receiver,
it is independent of epicentral distance,

it is valid for any frequency range required,

it imcorporates real observations of spectral character,

unusual events'require no special treatment,

the approximations can be made as close as desired to the

exact solution, and,

the accuracy / cost rgtio.is higher than that of other approximate

]

methods and the exact computations.



Precision of PSHVs '

PSRVn curves can be calculated for any desired periods(T) for any
desired percentage (n) of critical damping. There are 91 points on each
spectrum in Figure 1. The reliability of these points is uncertain. If
the number of points on any of the curves in Figure 1 was to be increased,
one would find that the spectra contain a significant amount of fine
structure, and some of the points that appear to be at spectral peaks are
actually on the side of a larger peak (w.G. Milne, personal communication,
1974). Hudson (1972) has shown that the ground motions generated by an
earthquake can vary éignificantly in a small area and that it is difficult
to attribute the observed variations to any single site parameter. Hence,
the value of a single, precisely calculated set of PSRV curves is, as yet,
undefined in terms of the evaluation of seismic risk.

Figure 2 contains ;nother example. The two solid curves were
determined by joining every second point in the undamped spectrum (PSRV,)
in Figure 1, first for one set of points, then for the intermediate set.
These two curves, therefore, should be equally valid spectral estimates
aﬁd give a gualitative indication of the overall spectral reliability.

In the limit, as the number of calculated PSRV values becomes very large,
only a broad envelope, similar to the two dotted curves in Figure 2, is
left. This concept is not new. Small, sharp, local peaks.in any spectrum

are of questionable validity (Blackman and Tukey (1958), Fryer (1973),

" Currie (1974.) so that the calculation of reliable spectra commonly

includes somz= form of prewhitening or smoothing. The results of ILynch

(1969), Blume (1969), Newmark, Blume and Kapur (1973), and Udwadia and Trifunac

(1974) suggest that an envelope drawn roughly as in Figure 2 corresponds

approximately to + o,

Since it is apparently unrealistic to attempt to determine PSRVs to



a precision of greater than =~ 0.2 on a loé scale (as a rough observation
from the typical example in Figure 2), one is left with a relatively simple
problem. A fast, simple empirical algorithm for constructing PSRV values

that lie within that, or any other desired, uncertainty is described in

the following section.



Constrained Interpolation

The task of finding a simple algorithm which describes a non-linear
phenomenon is generally difficult. However, if the desired solution is
known or closely approximated at some control points, a linearized
interpolation between these points may be adequate to describe the entire
solution provided that the control points are sufficiently'close together.
Since each point in a PSRV can be calculated explicitly and separately,
control values can be obtained for any number of points.

The production of an approximate PSRVn begins with the calculation of
the PSRV,. For the purpose of the present paper, it is not necessary to
calculate values for the lafge number of periods (91 in Trifunac and lLee
(1973)) usually used since the PSRVns are smoother than the PSRV,. Every
second or third point is often sufficient, and there is, of course, a
corresponding saving in computation costs. .

The next step is to choose a number of control points such that the
average spectral behqyior is approximately linear between the points.
Obvious choices are the two end points and the spectral maximum. For some
well behaved spectra, 2 or 3 control points are sufficient, and the use of
5 points ensures satisfactory results for almost all cases. PSRvaalues are
calculated for the control points by the usual integration method. These
integrations are expensive so it is desireable to keep the number of control
points as small as is consistent with the precision desired. From the
arguments in the previous section, it is expected that the use of more than
7 points is rarely justified. The saving in computational costs in this step
is one of the main advantages to the use of an approximate method. If only
5 rather than 91 integrals are required, the computational costs are reduced

by approximately 947%. The lost precision which accompanies this is, as



previously described, of doubtful signifiéance.

Once control values have been determined for a particular damped
spectrum, the major part of the required computational effort is complete
as all intermediate values are obtained by interpolation. This interpolation
is constrained so that the resulting curve passes through the control
points and its shape is similar to that of the PSRV, over ihe same period
range, but smoother.

Figure 3aillustrates the interpolation algorithm used. Points 3 and
4, are two adjacent contrel points for a PSRVn and the curve 1-2 is the PSHV,.
In order to interpolate between points 3 and 4, the curve 1-2 is weighted
by the dimensionless linear weighting functions Wy and w, as follows:
PSRV (T;) = PSRVL(T;) = (As = € )wy(Ty) = (Be-D Dwy(Ty)

where: PSRVn(Ti) = the estimate of an n% critical damped PSRV value at

' period ’I‘i

PSRV,(Ti) = the calculated value of PSRV, at period T,

A,,.B, = the calculated PSRV, values at the control points
Cn, Dn = the calculated PSRVn values at the control points
~Ti = any period between those of the control points

Wy W, = the linear weighting functions, which have values °

between O and 1

W) =(L-uTy)) /L

W, = l(Ti) /L

L = distance between the two control points

l(Ti) = distance from the first control point to the point Ti.

L and l(Ti) are in units of log, T, w; and w, are dimensionless, and

all other quantities are in units of loglo PSRV,



The final step is to smooth the PSRv; curve. The amount of smoothing
increases as the damping increases. The required filter eperators were
censtructed frem a simple triangular filter (0.23, 0.54, 0.23). .The ameunts
ef smeothing for 2, 5, 10, and 20 percent critical damping were empirically
found te be appreximately equivalent te applying thisg filter 3, 7, 11, and
15 times respectively., A filter approximating the smosthiﬁg for any per-
centage critical damping between O and 20 can be determined by interpelatien

in Figure 3b,

This approach is general in that it can be applied to any set of
curves which comprise a group with similar characteristics. As any number of
control points can be used, the approximate solution can be made to approach

a desired solution with any accuracy required.



Examples
In order to test the applicability of constrained interpolation, seven

data sets were taken from Volume III of the California Institute~of
Technology Earthquake Engineering Research.Laboratory Report EERL 72-80.
These data, which are described in Table 1, were chosen because they represent
a rather wide variety of PSRV shapes. Both vertical and hérizontal
components are included, although a consistent effect of orientation was
neither expected nor observed;

Figures 4 to 10 contain results for seven examples. In each figure
there are f?ve solid curves, which, from top to bottom, are.for O, 2, 5, 10,
and 20 percent critical damping. These curves were obtained from thé EERL
report described above and were determined by evaludting the PSRV integral
‘for each of 91 period values on each curve. Superimpééed on the bottom four
curves are the results of spectral estimation by constrained interpolation
between 5 equally spaced control pOinis- Any other reasenable criterien
ceuld be used te define centrel peints witheut significantly affecting thre
results, Tre use of equally spaced veoints simply ensures that all parts eof
the PSRV curves are similarily censtrained, and allews identical treatment
of all cases, ' In these examples, no problem was
experienced in obta;ning estimates that lie within the physically reasonablé
limits described earlier. The approximate estimates are closest to the precise
estimates for those ?SRV curves which appear typical, such as those in
Figures 4, 6, 7 and 10. The results in Figures 5,‘9, and to a lesser degree, in
Figure 8, are not as close to the precise values, but the general behaviors
of the PSRV,s in these figures are peculiar, and rare. This problem can
be simply overcome by using more control points for any case in which a

high degree of non-linearity is suspected.



Conclusions

A fast method for obtaining approximate damped PSRV cur&es from an
undamped PSRV curve is described. The method involves the calculation of
precise PSRV values at a few control points with constrained interpolation
to estimate intermediate values. Computational savings, which are typically
of the order of 90% of the cost of direct integration, are sufficient that
an empirical approach such as that described here should be compeﬁ%tive with

more precise methods for many applications.
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Table Caption

Table 1 : List of the accelerograms used in the examples in Figures

L to 10.



Figure

10

Date

May 18,

May 18,

Oct 07,

Jul 21,

Dec 21,

Feb 09,

Mar 22,

1940

1940

1951

1952

1954

1956

1957

TABLE I

Time

2037 PST
2037 PST
2011 PST
0453 PDT
1156 PsST
0725 PST

1144 PST

CIT Identification

- IITAOO1

IITAOO1

IITAOO02

IITAOOS

IITAOO8

IIIAO12

IIIA0L7

Component

SOOE

vert

vert

S48E

N79E

vert

N26E



Figure 1 :

Figure 2 :

Figure 3a:

Figure 3b:

Figure 4 :

Figure 5 :

Figure 6 :

Figure 7 :

Figure Capﬂions
A typical set of PSRV curves.

Uncertainty in the undamped PSRV curve in Figure 1.

Constrained interpolation. This figure illustrates the geometry

of the quantities in the interpolation formula.

The apparent smoothness of a damped response spectrum increases

as the 7 critical damping increases. The smoothing factor (S)

~of a particular filter operator is defined as the smoothing produced

by repeated application (S times) of the 3-point operator

described in the text.

Figures 4 to 10 are similar. The solid curves .are the results of
precise calculations and the symbols are the results of constrained
interpolation. For clarity, only the undamped PSRV curve is
plotted at its actual position. The 2% damped curve is displaced
downward by 0.1 loglo PSRV units, the 5% curve by 0.2, the 10%
curve by 0.3, and the 207 curve by Q.A: The control points

are indicated by the arrows.

Precise and approximate PSRV estimates. See Table 1 and the

caption beneath Figure 4.

Precise and approximate PSRV estimates. See Table 1 and the

caption .beneath Figure 4.

Precise and approximate PSRV estimates. See Table 1 and the

caption beneath Figure 4.



Figure 8 :

Figure 9 :

Figure 10:

Precise

caption

Precise

caption

Precise

caption

and approximate PSRV estimates.

beneath Figure 4.

and approximate PSRV estimates.

beneath Figure 4.

and approximate PSRV estimates.

beneath Figure 4.

See Table 1 and the

See Table 1 gnd the

See Table 1 and the
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