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SOUNGER observed in outcrop overlying bedrock exposures (unit 2). From 220 m to 270 m elevation, ERT depth slices show that conductive earth materials (<80 Qm) are bounded by resistive

zones (>140 Qm) beneath the river and east valley slope (Fig. 5). Based on resistivity values, field observations, and borehole information, this area likely comprises glaciolacustrine clay
and silt (units 3 and 5), and clay diamicton (till, unit 4). This depositional pattern is interpreted to represent a north-south oriented bedrock palaeochannel fragment infilled with
remobilized glacial deposits.
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This 3D inversion resistivity block model was divided into depth slices at 10 m intervals between 200 m and 280 m elevation for the discussion following (Fig. 5).

fngCSAI\ﬁl fTFéOR / 'l Ty 3 Terrestrial and waterborne ERT datasets were also combined and visualized as a pseudo-3D model of resistivity values using ParaView® software. This

RECEIVER [ 1 representation was interpretation-oriented, with the selection of resistivity thresholds at 80 Qm and 110 Qm determined by earth materials observed at surface and moist_“Esnow-melt
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: . : : : locally-derived bedrock blocks that were remobilized during glaciation. Surface and borehole monitoring indicate the landslide moves very slowly (cumulatively <65 mm/yr) on gentle (>2 : PR TN SR/
bedrock. Saturated bedrock, clay, till and gravel containing soil water are all conductive bodies (<80 Qm) and coloured blue. : _ _ _ _ _ _ _ _ _ _ _ [

to <3°) channel-sloping failure planes developed in weak, highly plastic layers of glaciolacustrine silt and clay (Fig. 3). The 250 m and 260 m elevation ERT depth slices show that these el
CONTINUOUS ERT DATA ACQUISITION (201 7 to Present) failing sediments are conductive, saturated with groundwater, and extend under the river (Fig. 3). February 17, 2018 _ March 03, 2018 _ SIDE SCARP
-1°C; precipitation falling snow on slope; soil frozen River level 16°C; snow melt infiltrating in unfrozen soil: precipitation ~ River level |
Merged 2D datasets captured a clear, static proxy image of soil moisture and groundwater conditions in surficial deposits and bedrock during November 2013 (land) low stable - | 24/02/2018  falling as rain on slope low stable | 14/03/2018
. . . . . . . . . . . . . . . . MarCh 23, 2018

and 2014 (river). With lithology and porosity as fixed baselines, variations in electrical resistivity over time reflect ground moisture and temperature changes in the ABOVE THE RAILWAY TRACKS Ground temperature >0°C Rain <2 mm Ground temperature >0°C Rain <2 mm e o1ie1 o it rhion Elone

9y w ¥ ” ‘ e~ landslide (Bobrowsky et al. 2017; Holmes et al. 2018; Sattler et al. 2018).
v_..-~_>E_3{J’NGAEow, B , § o _ NS
7 G Between August and November 2017, continuous (real-time) ERT monitoring was deployed to characterize the long-term hydrological behaviour of geological units

in the landslide (cf. Uhlemann et al. 2017). Two intersecting Wenner arrays were permanently installed in 20 cm-deep trenches dug across the slide body and

crown: a north-south array was 91 m-long with 45 evenly spaced ground electrodes; and an east-west array was 54 m-long with 27 electrodes (Fig. 4 e). Cables
and electrodes were wrapped in foam to insulate against the elements and encased within plastic pipe in high-traffic areas, then buried with soil and capped with and 3) and bedrock (unit 1).
small boulders to protect against damage by animals (Fig. 6).

Upslope of the river floodplain and railway ballast, at elevations from 270 m to 280 m, ERT depth slices intersect resistivity values in excess of 140 Qm (Fig. 5). This range in values is
consistent with unsaturated silt, sand and cobble colluvium overlying bedrock mapped in the field and in boreholes (Fig. 3). Relatively lower resistivity values (>50 Qm and <100 Qm)
suggest the presence of groundwater in fine-grained glaciolacustrine material (units 2, 3 and 5), till diamicton (unit 4), glaciofluvial gravel (unit 6), and alluvial fan deposits (unit 7). The
distribution of groundwater in consistent with surface water infiltrating through vertical and horizontal tension fractures into the underlying glaciolacustrine beds and colluvium (units 2

SLIDE

SURFACE SLIDE

Scree observed at the steepest point on the easternmost part of the slide body (unit 8) accounts for the higher resistivity values close to the surface (Fig. 5). The distribution of these

Fig. 4 Geophysics at Ripley Landslide: a) location of terrestrial and waterborne ERT surveys (2013 to 2017) and surface Composited cables were connected to a PRoactive Infrastructure Monitoring and Evaluation (PRIME) system with continuous 12 V power supply and internet units suggests a 290 m elevation limit to eastward headscarp retrogression and potential maximum volume of approximately 0.8 x 10° m’ for the landslide. Resistive surficial material, HEAD SCARP SURFACE '"HEAD SCARP
menitering instaliations (GNSS and ISAR), Map Projection NADSSZone 10, neritio lop oF map; bj ierestial ERT Setup; access via a modem (Fig. 4 f). Apparent resistivity pseudo-sections were processed using RES2DINV (Geotomo Software 2012) to create a 2D resistivity model starting on the western side of the CN rail tracks and ending in the Thompson River bed, consists of the alluvial boulder field exposed between the coarse rail ballast (unit 10) and low -
c) and d) waterborne ERT set-up; e) unmanned aerial vehicle (UAV) oblique air photograph looking northeast, showing the . _ _ _ = . o _ _ _ N . . . : : : : : : : ep
north-south (N-8) and east-west (E-W) oriented electrode arrays and CPR bungalow housing the PRIME system of the sub-surface for December 2017 (Fig. 6). This shows a coarse-grained colluvial unit with high apparent resistivity (>500 Qm) overlying fine-grained water mark at the river's edge (unit 9). Tension cracks in these unconsolidated materials are surface expressions of active translational or rotational movement along slide planes within SIDE SCARP SLIDE SURFACE
developed by the British Geological Survey (captured by R. MacLeod, GSCY); f) inside the CPR bungalow showing the glaciolacustrine and morainal units with low to moderate apparent resistivities (<50-200 Qm). The percentage change in resistivity ground values from this baseline the high conductivity layer below. Borehole logs and ERT profiles suggest these failure surfaces are developed in underlying till (unit 4) and glaciolacustrine clay (units 2 and 3). River level s - TR River level SIDE SCARP

. . . . . . . . . . 1 Ao C 5 c 5 c c c c s N\ . s ' < P % i 11 FOA g i L
PRIME unit with composited cables to be installed according to the position of ground electrodes on the arrays :;ec i::ep:’:srzzit:t?v:?ylzillge.. 6(:J rv(x)nl’j: C:ebdezzfn?:]nggr;n:rl:a;;nn% jztil\?;:)rclaoaej\(lav ;r; ;e;:(’il;/:;ybg.rez.,ot:];e agr:zul\r;lcalybzgc;rgmg less conductive), and blue shading indicating a e e hEasasEs, Zemes il eaneety easur e sl weier i isrEiie e iie weier e Tieueh ol s2nd, rd cobbles sesse by h-sops cresfon. . B rising 10/04/2018 P M5 N rising | 02/05/2018

’ ' April 15, 2018 Precipitation falling as rain on slope April 27, 2018 Precipitation falling as rain on slope May 13, 2018 Precipitation falling as rain on slope
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