SÉRIE DE LA GESTION DE L'ÉNERGIE

6

À L'INTENTION DES INDUSTRIES, COMMERCES ET INSTITUTIONS

Appareillage de chaufferie

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

PRÉFACE

L'art et la science de la gestion de l'énergie ont accompli des progrès remarquables au cours de la dernière décennie. La gestion de l'énergie est devenue une discipline sérieuse dans le cadre du processus de gestion de la plupart des entreprises qui connaissent le succès.

D'abord, au début des années 70, on a mis sur pied des programmes d'économie d'énergie afin de réduire la menace de pénurie d'énergie que pesait sur le Canada, de même que la dépendance du pays à l'endroit du pétrole étranger. Toutefois, la hausse vertigineuse des prix n'a pas tardé a donner une signification nouvelle à l'expression «économie d'énergie»: réduire le coût de l'énergie.

Nombre d'industries, de commerces et d'organismes publics ont relevé le défi et abaissé les coûts d'énergie jusque dans une proportion de 50%. On est ainsi arrivé à utiliser l'énergie de façon rationnelle, grâce à des mesures telles que des programmes d'information à l'intention du personnel, des moyens d'entretien plus à point, la simple élimination du gaspillage, et en mettant de l'avant des projets aptes à moderniser ou améliorer les installations et l'équipement.

Pour en arriver maintenant à économiser d'avantage l'énergie, il importe de mieux connaître la technologie et ses applications en plus d'avoir recours à des appareils à haut rendement énergétique.

A la demande du Programme d'économie d'énergie dans l'industrie canadienne, du Programme des groupes de travail sur la gestion de l'énergie dans les secteurs commercial et institutionnel, et d'associations professionnelles et commerciales intéressées, la Division de l'énergie industrielle du ministère de l'Energie, des Mines et des Ressources a élaboré une série de modules techniques portant sur la gestion de l'énergie.

Ces manuels aideront les gestionnaires et le personnel d'exploitation à découvrir les possibilités de gestion de l'énergie dans leur cadre de travail. On y trouve une quantité de renseignements pratiques, notamment des équations mathématiques, des renseignements généraux sur des techniques éprouvées, ainsi que des exemples concrets d'économie d'énergie.

Pour obtenir de plus amples renseignements concernant les modules figurant dans la liste qui suit ou la documentation utilisée dans le cadre des ateliers, y compris les études de cas, veuillez écrire à l'adresse suivante:

Division de l'énergie industrielle Direction des économies d'énergie Ministère de l'Energie, des Mines et des Ressources 580, rue Booth Ottawa, Ontario K1A OE4

Gestion de l'énergie et
participation des employés
Évaluation de la consommation
Analyse financière énergétique
Compatibilité de la gestion énergétique
Récupération de la chaleur perdue
Isolation thermique des équipements
Éclairage
Électricité
Moteurs électriques économiseurs d'énergie
Combustion
Appareillage de chaufferie
Fours, sécheurs et fours de cuisson
Systèmes à vapeur et à condensat

Chauffage et refroidissement énergétique
(Vapeur et eau)
Conditionnement de l'air
Refroidissement et pompes à chaleur
Réseaux de distribution d'eau et d'air
comprimé
Ventilateurs et pompes
Compresseurs et turbines
Mesures et contrôles
Régulation automatique
Manutention des matériaux et
transport sur place
Point de vue architectural

Accumulation thermique

HEADQUARTERS LIBRARY - EMR RECEIVED

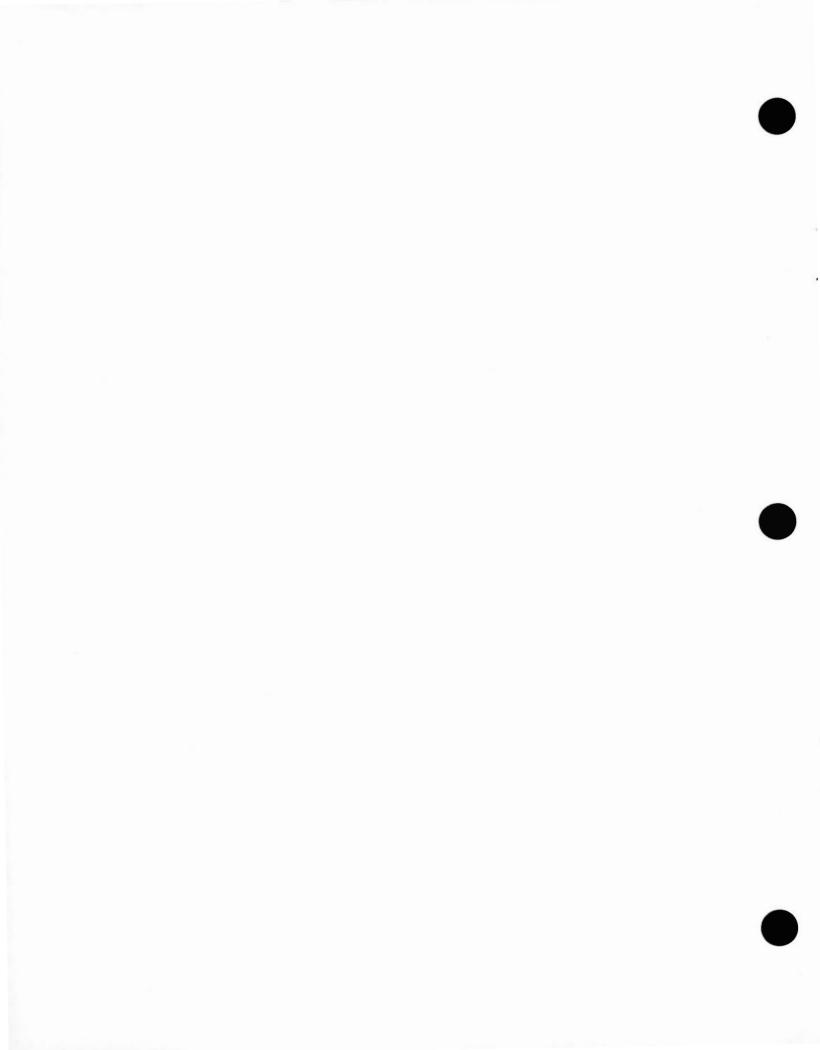
July 25 1986

REÇU BIBLIOTHÈQUE CENTRALE - EMR

75 163.4 ,C2 A614 ho.006

Ministre des Approvisionnements et Services Canada 1985 No. de cat. M91-6/6F ISBN 0-662-93328-1

TABLE DES MATIÈRES


	Page
INTRODUCTION	1
NOTIONS DE BASE	3
Fonctionnement d'une chaudière	3
Bilans massiques Bilan massique de la vapeur et de l'eau Bilan massique du procédé de combustion	3 4 4
Procédé de combustion Combustion du gaz naturel Combustion du mazout Air de combustion	4 5 5 6
Bilan calorifique Débit calorifique à l'entrée de la chaudière Énergie utile Pertes d'énergie	8 9 9 11
Vérification du rendement de la chaudière Méthode directe Méthode indirecte	15 15 16
Soufflage de suie	17
Qualité de l'eau de la chaudière	17
Température de l'eau d'alimentation	18
Témperature de l'air de combustion	18
Chaudières de récupération de chaleur	18
Analyses énergétiques Analyse au passage Analyse de diagnostic	19 19 19
Résumé des facteurs relatifs au rendement de la chaudière	19
APPAREILLAGE	23
Chaudières Chaudières à tubes de fumées Chaudières aquatubulaires Chaudières multitubulaires	23 23 24 25
Chaudiàna flatuiques	7.5

Types, caractéristiques et préparation des combustibles	25
Appareillage de combustion	26
Brûleurs au mazout	26
Brûleurs au gaz naturel	27
Brûleurs à faible excès d'air	27
Brûleurs au charbon pulvérisé	27
Grilles mécaniques	28
Systèmes d'air de combustion	28
Entraînements auxiliaires	29
Soufflage de suie	29
Appareillage de contrôle des rejets	29
Manipulation des cendres	29
Contrôle des émissions	29
Récupération de chaleur	30
Préchauffeurs d'air	30
Économiseurs	30
Condenseurs de gaz de combustion	31
Récupération de la chaleur des purges	33
Traitement de l'eau d'alimentation et du condensat	33
Agents d'adoucissage	34
Déscalcaliseurs	34
Déminéralisation	34
Désaérateurs	34
Réservoirs de condensat	34
Réservoirs de détente	34
Équipement d'injection de produits chimiques	35
Systèmes d'automatisation	35
Systèmes de sécurité	35
Systèmes de régulation de la combustion	35
Systèmes de régulation de l'eau d'alimentation	38
Systèmes de surveillance	38
Systèmes de cogénération	38
POSSIBILITÉS DE GESTION DE L'ÉNERGIE	39
Possibilités de maintenance	39
Fonctionnement	39
Entretien	39
Exemples concrets relatifs au fonctionnement	39
Evemples concrets de maintenance	40

Possibilités d'amélioration de coût modique	41
Exemples concrets d'amélioration de coût modique	42
1. Installation d'un appareillage de surveillance du rendement	42
2. Relocalisation de la prise d'air de combustion	42
3. Récupération de la chaleur des purges	42
4. Amélioration de l'isolation	43
5. Réduction du taux d'excès d'air de la chaudière	43
Possibilités de rénovation	43
Exemples concrets de rénovation	44
1. Installation d'un économiseur	44
2. Installation d'un préchauffeur d'air	45
3. Installation d'une nouvelle chaudière	45
4. Modernisation du brûleur	45
5. Installation d'une chaudière électrique	46
6. Installation d'un turbulateur dans la chaudière à tubes de fumées	46
7. Installation d'un condenseur de gaz de combustion	46
8. Conversion du mazout au gaz	47

ANNEXES

- A Glossaire
- **B** Tables
- C Conversions courantes
 D Feuille de travail

INTRODUCTION

Les chaufferies sont des installations énergivores d'usage courant dans les installations industrielles, les bâtiments commerciaux et les immeubles de caractère public.

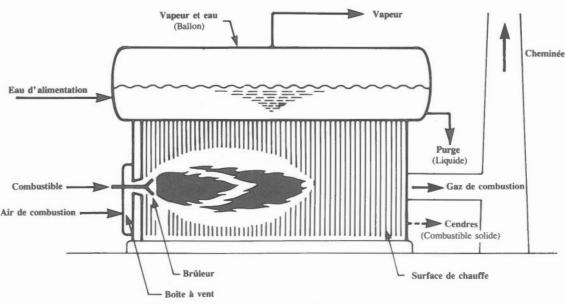
Dans le présent module, on a choisi d'identifier de façon pratique la plupart des sources de perte d'énergie dans une chaufferie, puis d'expliquer plus en détail certaines pertes types. De plus, le module démontre comment calculer les différentes possibilités de gestion de l'énergie ou identifie certains facteurs qui gaspillent de l'énergie et qui peuvent faire l'objet d'une étude dans d'autres modules de la série. Quoique le présent module traite plus particulièrement des chaudières au gaz naturel et au mazout, la plupart des données énoncées sont également applicables aux chaudières alimentées par d'autres combustibles.

Le présent module expose différentes possibilités pratiques de gestion de l'énergie et fournit au lecteur des données sur l'exploitation d'une chaufferie ainsi que des idées pour réaliser des économies d'énergie.

Le présent module décrit les principes de fonctionnement d'une chaufferie, son appareillage et les possibilités d'économie d'énergie qui s'y rattachent. Voici un résumé des chapitres.

- Le chapitre *Notions de base* décrit l'exploitation d'une chaufferie, soit le procédé de combustion, les différents modes de distribution de chaleur et les calculs de pertes d'énergie.
- Le chapitre Appareillage décrit les différents types d'appareillage d'une chaufferie.
- Le chapitre *Possibilités de gestion de l'énergie* présente des exemples concrets de possibilités d'économies d'énergie dans une chaufferie.
- Les annexes réunissent un glossaire, des tables, des conversions courantes et une feuille de travail pour le calcul du rendement d'une chaudière.

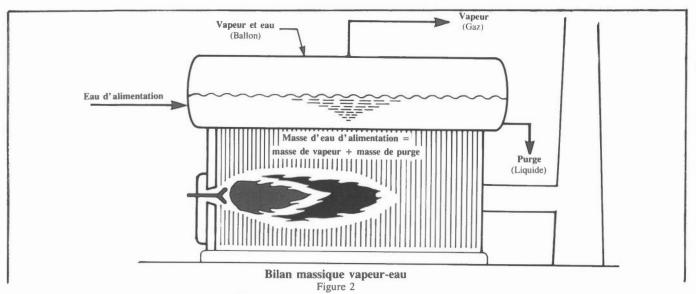
NOTIONS DE BASE



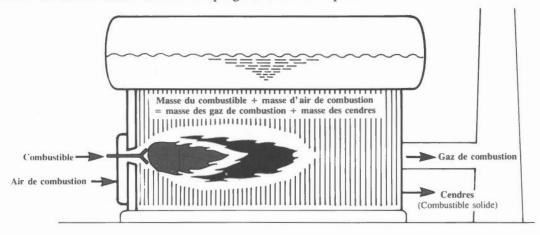
Les chaudières sont d'usage très courant dans les installations industrielles, les bâtiments commerciaux et les immeubles de caractère public pour produire de la vapeur ou de l'eau chaude. Comme une chaufferie est très énergivore, son rendement devient un facteur important dans la réduction des coûts. L'objectif du présent module est de décrire l'exploitation d'une chaufferie et de souligner les différentes possibilités d'économies d'énergie.

Fonctionnement d'une chaudière

Les principaux composants d'une chaudière sont illustrés dans la figure 1. Le combustible peut être toute substance qui brûle pour fournir de la chaleur; de l'air est nécessaire à la combustion. La combustion est un mélange de combustible et d'air brûlant pour produire de l'énergie calorifique. Le foyer est un espace clos à l'intérieur de la chaudière dans lequel a lieu la combustion. Les gaz chauds qui en résultent entrent en contact avec les surfaces d'échange thermique avant d'être évacués à l'atmosphère par une cheminée. Le gaz évacué de la chaudière est appelé gaz de combustion. La chaleur fournie par la flamme de combustion et le gaz chaud chauffe l'eau d'alimentation et la transforme en vapeur ou en eau chaude. La vapeur ou l'eau chaude sont des fluides caloporteurs utilisés selon les exigences de l'installation. La purge n'est pas une forme utile d'énergie, mais est une opération nécessaire à long terme pour le bon fonctionnement de la chaudière.


Les composants et les fonctions d'une chaudière seront décrits en plus amples détails. Il faut bien comprendre le procédé de conversion de l'énergie pour optimiser une installation déjà existante ou choisir la meilleure source énergétique.

Fonctionnement d'une chaudière Figure 1

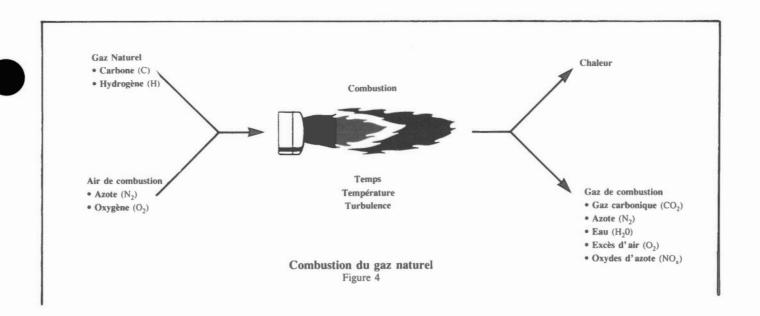

Bilans massiques

Une chaudière doit transmettre de la chaleur à l'eau d'alimentation pour former de la vapeur, tout en répondant à d'autres exigences d'exploitation telles que la capacité de production, la pression et la température de la vapeur. Les fonctions de la chaudière sont subdivisées dans le texte suivant pour démontrer les différents bilans massiques.

Bilan massique de la vapeur et de l'eau

Le bilan massique des réseaux d'eau et de vapeur à l'intérieur d'une chaudière est décrit dans la figure 2. Dans ce cas-ci, la masse représente le poids des composants. L'eau d'alimentation représente 100% de l'entrée alors que la sortie consiste en un maximum de 10% de purge et 90% de vapeur utilisable.

Bilan massique du procédé de combustion Figure 3

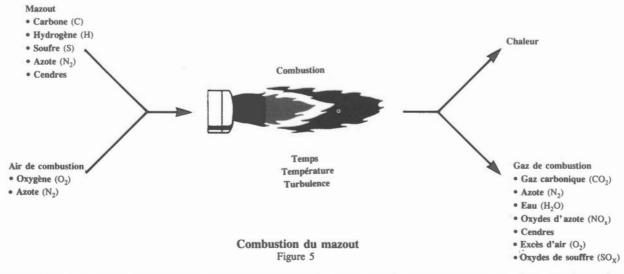

Bilan massique du procédé de combustion

Dans le procédé de combustion, le combustible et l'air de combustion représentent l'entrée massique et, lorsque la chaudière est au gaz ou au mazout, le gaz de combustion représente la masse équivalente à la sortie (figure 3). La masse de l'air de combustion est assez élevée puisqu'elle est environ 15 fois celle du combustible. Dans le cas de combustibles solides tel que le bois et le charbon, les cendres font partie de la masse de sortie dans l'équation.

Procédé de combustion

La combustion est la combinaison chimique rapide du carbone et de l'hydrogène du combustible avec l'oxygène de l'air de combustion. Le combustible brûle comme un gaz même s'il est alimenté à la chaudière sous forme liquide ou solide. Une combustion réussie demande du temps, une température précise et de la turbulence. On entend par turbulence, le mélange intime du combustible et de l'air à la sortie du brûleur lorsqu'il s'agit de chaudière au gaz et au mazout. La température est celle mesurée à l'intérieur de la chambre de combustion (foyer) et le temps représente la période requise par le procédé pour une combustion complète. Un bon mélange de combustible et d'air en présence de turbulence accélère le procédé de combustion, augmente la température de foyer et réduit le temps de combustion.

De nos jours, les combustibles les plus utilisés sont le gaz naturel et différentes qualités de mazout. Ces combustibles ainsi que la quantité d'air de combustion nécessaires sont traités en détail ci-après.



Combustion du gaz naturel

Le gaz naturel est un combustible brûlant sans résidu et facile à utiliser. Il ne requiert aucun entreposage sur place et est pulvérisé facilement. Ses principaux constituants sont le méthane (CH₄) et l'éthane (C₂H₆)et son pouvoir calorifique supérieur (HHV) est de 37,2 MJ/m³. Le procédé de combustion du gaz naturel est décrit dans la figure 4. Son débit s'éxprime habituellement en m³/h aux conditions normales de référence de 101,325 kPa (abs.) et 20°C.

Combustion du mazout

Le mazout est plus difficile à manipuler et à brûler que le gaz naturel. Il doit être entreposé sur place et pompé jusqu'à la chaudière. Le mazout n° 6, lourd et visqueux, doit être préchauffé dans le réservoir de stockage et encore chauffé avant d'être brûlé, afin qu'il se mélange avec l'air de combustion. Il faut soutirer habituellement 2% de la vapeur de la chaudière pour pulvériser avec efficacité le mazout n° 6.

Le mazout comprend plus d'éléments chimiques que le gaz naturel, et on retrouve un plus grand nombre de gaz différents et de cendres dans les gaz de combustion (figure 5). Le procédé de combustion transforme une certaine quantité de carbone en suie qui s'accumule sur les tubes de la chaudière et réduit la transmission de la chaleur à l'eau. Si la température des gaz de combustion descend à une valeur inférieure au point de rosée (température de condensation), de l'acide sulfureux et de l'acide sulfurique se condensent. L'acide attaque alors les surfaces exposées aux gaz de combustion de basse température et corrode les réchauffeurs d'air, les économiseurs, la culotte de cheminée et la cheminée.

Air de combustion

L'air stoechiométrique est la quantité théorique d'air de combustion requise pour brûler complètement un combustible. Pour calculer l'air stoechiométrique, on suppose une combustion et un mélange parfaits du combustible et de l'air; cependant ceci n'arrive jamais. Cette quantité d'air peut être calculée en analysant le combustible; elle peut aussi être déterminée à partir de la table 1. Les valeurs énoncées ne changent pas beaucoup en fonction des variations de l'analyse du combustible. Le pouvoir calorifique du combustible peut être obtenu du fournisseur de combustible, quoique les valeurs données dans l'annexe C sont de précision suffisante pour la plupart des applications.

On doit obtenir le taux minimal d'excès d'air recommandé pour le brûleur et le combustible auprès du constructeur de chaudières ou de brûleurs. S'il est impossible d'obtenir ces données, on peut se servir des valeurs de masse types de la table 1 comme guide. Pour obtenir les meilleurs résultats, il faut analyser les gaz de combustion et observer les conditions de combustion et la sortie de cheminée. Par exemple on peut calculer les exigences totales en air de combustion pour une chaudière utilisant 1 500 m³/h de gaz naturel muni d'un brûleur conçu pour un excès d'air de 10%.

Selon la table 1, l'air de combustion requis à 0% d'excès d'air (stoechiométrique) est de 318 kg/GJ. Selon l'annexe C, le pouvoir calorifique du gaz naturel est de 37,2 MJ/m³.

Débit calorifique total à l'entrée = consommation du combustible x pouvoir calorifique du combustible

$$= 1500 \text{ m}^3/\text{h} \times 37,2 \text{ MJ/m}^3$$

= 55 800 MJ/h

$$= 55 800 \frac{\text{MJ}}{\text{h}} \times \frac{1}{1000} \frac{\text{GJ}}{\text{MJ}} = 55.8 \text{ GJ/h}$$

Masse de l'air de combustion = air théorique requis par unité de chaleur x débit calorifique à l'entrée (0% d'excès d'air)

$$= 318 \text{ kg/GJ x } 55,8 \text{ GJ/h}$$

$$= 17744 \text{ kg/h}$$

Masse de l'air de combustion = 17 744 kg/h x 1,1 (10% d'excès d'air)

$$= 19518 \text{ kg/h}$$

La densité de l'air aux conditions normales de 20°C et 101,325 kPa (abs.) est de 1,204 kg/m³.

Débit total d'air de combustion =
$$\frac{19 518 \text{ kg/h}}{1,204 \text{ kg/m}^3}$$

= 16 211 m³/h aux conditions normales

On peut reprendre les mêmes calculs pour le mazout. En voici un exemple: une chaudière brûle 7 000 L/h de mazout n° 6 avec 15% d'excès d'air. Selon la table 1, l'air de combustion à 0% d'excès d'air est de 327 kg/GJ. Le HHV du mazout n° 6 avec 2,5 % de soufre est de 42,3 MJ/L (annexe C).

Masse totale de l'air de combustion =
$$\frac{7\ 000\ L/h\ x\ 42,3\ MJ/L\ x\ 327\ kg/GJ\ x\ 1,15}{1\ 000\ MJ/GJ}$$

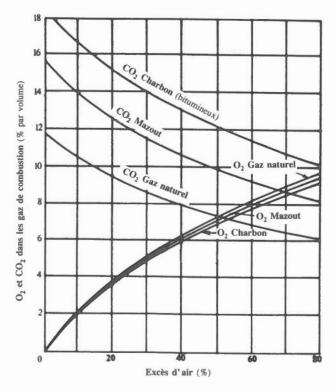
$$= 111 348 \text{ kg/h}$$

Débit total d'air de combustion =
$$\frac{111 \ 348 \ \text{kg/h}}{1,204 \ \text{kg/m}^3}$$

= 92 482 m³/h aux conditions normales

L'allure de la flamme du brûleur peut aider à corriger les conditions de combustion. La mise en service de l'appareillage de combustion doit être effectuée par un technicien d'expérience. L'opérateur devrait vérifier l'allure de la flamme une fois que le technicien du constructeur de brûleurs a terminé la mise en service. Une flamme de gaz naturel doit être transparente ou bleuâtre tandis qu'une flamme de mazout doit être brun pâle ou jaunâtre. Lorsque la flamme a l'aspect d'un chalumeau, il y a une trop grande quantité d'air; lorsqu'elle est étalée, longue et mêlée de fumée, il y a trop peu d'air.

Les taux réels d'excès d'air devraient être comparés aux taux recommandés. La méthode la plus précise pour déterminer le pourcentage réel d'excès d'air est l'analyse des gaz de combustion qui s'échappent de la chaudière. On utilise souvent un analyseur en continu d'O₂ ou de CO₂ pour identifier indirectement l'excès d'air, ou un analyseur de CO pour mesurer la présence de combustibles.


L'appareil d'Orsat est un instrument qui analyse les échantillons de gaz de combustion et détermine le pourcentage (par volume) d'oxygène (O₂), d'anhydride carbonique (CO₂) et de monoxyde de carbone (CO). Le gaz restant est de l'azote (N₂). L'échantillon doit être prélevé le plus près possible de la sortie de la chaudière pour minimiser les erreurs entraînées par les infiltrations d'air. D'autres analyseurs manuels plus simples mesurent le CO₂ ou l'O₂ dans les gaz de combustion. Ils sont plus faciles d'utilisation et peuvent servir à contre-vérifier l'appareil d'Orsat, pourvu qu'il n'y ait pas de CO. La présence de CO indique que la quantité d'air est insuffisante pour compléter le procédé de combustion. Pour le gaz naturel, le mazout ou le charbon, on peut déterminer le pourcentage d'excès d'air à partir de la figure 6, pourvu encore une fois, qu'il n'y ait pas de CO. Pour les autres combustibles, ou lorsqu'il y a présence de CO dans les gaz de combustion, on doit utiliser l'équation suivante:

% d'excès d'air =
$$\frac{O_2 - 0.5 \text{ CO}}{0.2682 \text{ N}_2 - (O_2 - 0.5 \text{ CO})} \times 100$$

où O₂ = oxygène par volume (%)

CO = monoxyde de carbone par volume (%)

 N_2 = azote par volume (%)

Pourcentage d' ${\bf O}_2$ et de ${\bf CO}_2$ en fonction de l'excès d'air Figure 6

On peut également se servir de cette équation pour vérifier les valeurs du gaz naturel ou du mazout de la figure 6. Par exemple, l'analyse des gaz de combustion par volume pour le gaz naturel donne les résultats suivants:

$$O_2 = 5,4\%$$

$$CO_2 = 8.8\%$$

$$CO = 0\%$$

$$N_2 = 85,8\%$$
 (différence)

Selon la figure 6, il y a environ 30% d'excès d'air. Substituons maintenant ces valeurs dans l'équation précédente pour fins de comparaison.

% d'excès d'air =
$$\frac{5.4 - (0.5 \times 0)}{(0.2682 \times 85.8) - [5.4 - (0.5 \times 0)]} \times 100$$

= 30.7%

Voici l'exemple d'une chaudière brûlant du charbon bitumineux et les résultats de l'analyse des gaz de combustion:

$$O_2 = 4.1\%$$

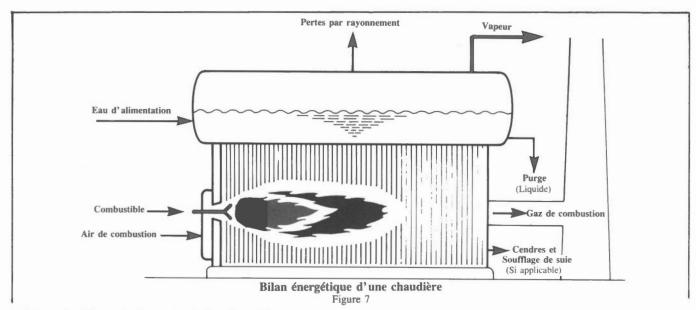
$$CO_2 = 14.8\%$$

$$CO = 0\%$$

$$N_2 = 81,1\%$$
 (différence)

Selon la figure 6 et le pourcentage d'O₂, il y a environ 24% d'excès d'air. Selon le pourcentage de CO₂ de cette même figure, on obtient 23% d'excès d'air. Comme il ne peut évidemment pas y avoir deux valeurs pour un même échantillon de gaz, on attribue cette différence à deux facteurs:

- L'analyse du charbon de différentes parties de l'Amérique du Nord varie, ainsi la courbe de CO₂ peut ne pas représenter exactement le charbon de l'exemple.
- Il peut y avoir une erreur dans les taux d'O₂ ou de CO₂. On peut calculer l'excès d'air pour contre-vérifier la valeur de la figure 6.


% d'excès d'air =
$$\frac{4,1 - (0,5 \times 0)}{(0,2682 \times 81,1) - [4,1 - (0,5 \times 0)]} \times 100$$

= 23.2%

Les valeurs de 24 et 23% des courbes de la figure 6 ainsi que la valeur calculée de 23,2% sont suffisamment rapprochées pour déterminer si le procédé de combustion s'effectue de manière appropriée. Il est souhaitable de réduire l'air de combustion en fonction du débit de combustible pour déterminer si l'on peut réduire davantage l'excès d'air. Obtiendrait-on des corps combustibles sous forme de CO dans les gaz de combustion? Certaines conditions indésirables surviendraient-elles dans le foyer? Si non, l'excès d'air peut être réduit pour économiser du combustible. La réduction doit toutefois être limitée pour éviter des variations indésirables dans le réglage des appareils de mesure et autre équipement.

Bilan calorifique

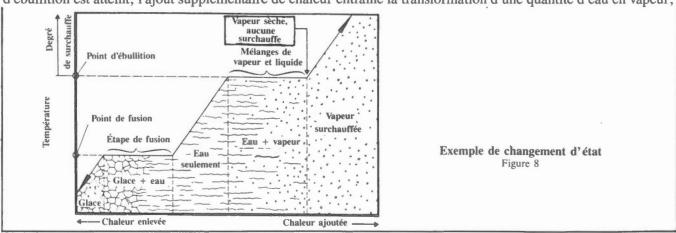
Un bilan calorifique, tel qu'illustré dans la figure 7, est une façon de comptabiliser l'énergie utile et les pertes d'une chaudière. Le bilan calorifique peut être représenté par l'équation suivante:

Débit calorifique à l'entrée de la chaudière = énergie utile + pertes d'énergie.

Débit calorifique à l'entrée de la chaudière

Les trois sources de débit calorifique d'une chaudière sont le combustible, l'eau d'alimentation et l'air de combustion.

La principale source d'énergie provient du combustible et s'exprime en MJ/m³ pour le gaz et en MJ/L pour le mazout. Lorsqu'il s'agit de mazout n° 6, il faut le préchauffer dans le réservoir de stockage pour qu'il puisse être pompé et ensuite le réchauffer avant d'atteindre le brûleur. L'énergie calorifique ajoutée pendant le parcours du mazout à la chaudière doit être ajoutée au *pouvoir calorifique supérieur* du mazout pour connaître le débit calorifique total du combustible. Des pouvoirs calorifiques de combustibles courants sont donnés à l'annexe C.


On doit également tenir compte de la température de l'eau d'alimentation pour calculer le débit calorifique (une eau d'alimentation à température élevée nécessite moins d'énergie calorifique du combustible pour se transfomer en vapeur, soit en énergie utile). La température de l'eau d'alimentation peut aider à déterminer le niveau d'entrée de cette énergie calorifique. Le contenu énergétique de l'eau d'alimentation est l'enthalpie (h_f) correspondant à la température de l'eau d'alimentation telle que déterminée par les tables de vapeur (table 2).

L'air de combustion provient généralement de la chaufferie même, quoiqu'il puisse également provenir de l'extérieur et être chauffé avec de la vapeur. Lorsque la température de l'air de combustion est élevée, il y a réduction du débit calorifique requis du combustible.

Énergie utile

La chaudière transforme l'énergie du combustible en une forme appropriée pour transmettre l'énergie calorifique dans toute l'installation. Les formes les plus courantes d'énergie distribuées par les chaudières sont la vapeur, l'eau chaude et les fluides thermiques.

La vapeur est le mode de distribution de chaleur le plus courant. À mesure que l'eau est chauffée, sa température augmente et atteint le point d'ébullition (figure 8). Cette chaleur est appelée *chaleur sensible*. Lorsque le point d'ébullition est atteint, l'ajout supplémentaire de chaleur entraîne la transformation d'une quantité d'eau en vapeur;

le mélange de vapeur et d'eau demeure toutefois à la température d'ébullition. À la pression atmosphérique, le point d'ébullition de l'eau survient à 100°C. La chaleur qui transforme l'eau en vapeur à une température d'ébullition constante est appelée *chaleur latente*. Lorsque la vapeur est complètement vaporisée à la température d'ébullition, elle est appelée vapeur sèche saturée. Cela signifie que la vapeur ne contient alors aucune gouttelette d'eau.

Lorsque l'eau est chauffée à une pression supérieure à la pression atmosphérique, le point d'ébullition dépasse 100°C et la quantité de chaleur sensible requise est supérieure. Pour une pression donnée, il y a une température d'ébullition correspondante et à cette température l'eau contient une quantité de chaleur déterminée. Plus la pression est grande, plus la température d'ébullition et l'enthalpie augmentent.

L'unité d'énergie calorifique utilisée dans le système SI est le joule. Les tableaux de vapeur (table 2, annexe B) servent à déterminer le contenu énergétique de l'eau et de la vapeur et à analyser le rendement d'une chaufferie. L'enthalpie identifie le contenu énergétique de l'eau, du mélange d'eau et de vapeur, ou de la vapeur.

Sous l'entête "enthalpie", se dressent trois colonnes: enthalpie du liquide (h_f) , enthalpie d'évaporation (h_{fg}) et enthalpie de la vapeur (h_g) .

L'enthalpie du liquide (h_f) est la mesure de la quantité d'énergie calorifique contenue dans l'eau à une température donnée.

L'enthalpie d'évaporation (h_{fg}) (chaleur latente de vaporisation) est la quantité d'énergie calorifique requise pour transformer un kg d'eau en un kg de vapeur à une pression donnée.

L'enthalpie de la vapeur (h_g) est l'énergie calorifique totale contenue dans la vapeur sèche saturée à une pression donnée. Cette quantité d'énergie est égale à la somme de l'enthalpie du liquide (h_g) et à la quantité d'énergie requise pour évaporer un kg d'eau à la température de saturation (h_{fg}) .

Les trois valeurs d'enthalpie peuvent être exprimées comme suit:

$$h_g = h_f + h_{fg}$$

où $h_g = \text{enthalpie}$ de la vapeur sèche saturée (kJ/kg)

 $h_f = \text{enthalpie}$ du liquide (kJ/kg)

 $h_{fg} = \text{enthalpie}$ d'évaporation (kJ/kg)

La plupart des chaudières sont conçues pour produire de la vapeur sèche saturée. On peut se servir des tables de vapeur pour comparer le contenu énergétique de la vapeur sèche saturée à 200 et 1 000 kPa (abs.).

Il est à noter que les tables de vapeur donnent des propriétés basées sur des valeurs absolues de pression. Les manomètres indiquent généralement des valeurs supérieures à la pression atmosphérique, soit 101,325 kPa au niveau de la mer. Les valeurs absolues de pression sont données dans l'équation suivante:

Pression absolue = pression éffective + 101,325 kPa

• 200 kPa (abs.) vapeur sèche saturée

Chaleur sensible (h _f)	504,7 kJ/kg
Chaleur latente d'évaporation (hfg)	2 201,6
Chaleur totale (hg)	2 706,3 kJ/kg

1 000 kPa (abs.) vapeur sèche saturée

Chaleur sensible (
$$h_f$$
) 762,6 kJ/kg

Chaleur latente d'évaporation (h_{fg}) 2 013,6

Chaleur totale (h_g) 2 776,2 kJ/kg

Selon la comparaison d'enthalpie citée ci-dessus, il est à noter qu'à mesure que la pression de vapeur augmente, la chaleur sensible et totale augmentent alors que la chaleur latente diminue.

On ne peut pas obtenir directement l'enthalpie des tables de vapeur lorsque la vapeur contient de l'humidité. La qualité de la vapeur peut s'exprimer par l'équation suivante:

Qualité de vapeur =
$$\frac{\text{masse de vapeur}}{\text{masse du mélange de vapeur et d'eau}}$$

Il est à noter qu'une qualité de vapeur de 0,98 signifie qu'il y a 2% d'humidité dans celle-ci. On peut calculer l'enthalpie de 1 000 kPa de vapeur dont la qualité est de 0,98 à l'aide des données de la table de vapeur.

Chaleur sensible (
$$h_f$$
) 762,6 kJ/kg

Chaleur latente = h_{fg} x qualité de la vapeur

= 2 013,6 x 0,98 1 973,3

Chaleur totale 2 735,9 kJ/kg

La différence entre cette valeur et l'enthalpie de la vapeur sèche saturée calculée précédemment représente la chaleur requise pour éliminer 2% d'humidité.

Chaleur requise pour éliminer l'humidité = 2 776,2 - 2 735,9

$$= 40,3 \text{ kJ/kg}$$

On obtient de la vapeur surchauffée lorsque la vapeur saturée est chauffée à une température supérieure à la température de saturation. L'enthalpie peut être obtenue directement des tables de vapeur surchauffée (table 2) au point correspondant à la température et à la pression de la vapeur. L'excès de chaleur contenu dans la vapeur est exprimé en degrés de surchauffe (nombre de degrés Celsius à laquelle la vapeur est chauffée au-dessus de la température de saturation).

On peut également utiliser de l'eau chaude comme fluide caloporteur. Les conditions de température varient selon le système de chauffage et se classent généralement comme suit:

- Eau chaude à haute température (HTHW) supérieure à 176°C
- Eau chaude à température moyenne (MTHW) 121 à 176°C
- Eau chaude à basse température (LTHW) inférieure à 121°C

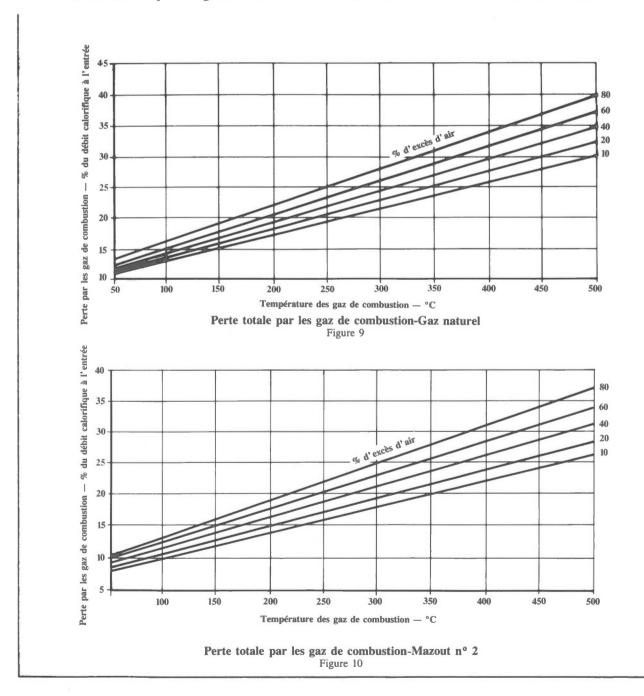
Une chaudière à fluide thermique est semblable à une chaudière à eau chaude mais brûle du mazout ou du gaz pour chauffer un fluide thermique qui est pompé à l'équipement consommateur d'énergie. Ce fluide pourrait être chauffé à 370°C à des pressions inférieures à 350 kPa (eff.) tout en demeurant sous forme liquide.

Pertes d'énergie

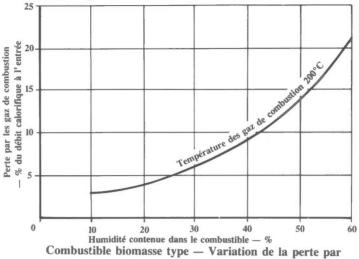
La perte d'énergie est un facteur très important dans le rendement d'une chaufferie. L'importance des pertes suivantes varie selon la conception et l'exploitation de l'installation:

- Par les gaz de combustion
- Par rayonnement (radiation)
- Par les imbrûlés
- Pertes non mesurées

La perte d'énergie par les gaz de combustion, soit la chaleur qui s'échappe de la cheminée, est habituellement la plus importante perte dans une chaudière à combustible. Elle se calcule en analysant les gaz de combustion et en mesurant la température de ceux-ci. Si la chaudière n'est pas équipée d'un récupérateur de chaleur, ces mesures doivent être prises à la sortie de la chaudière pour minimiser l'imprécision des lectures due aux infiltrations d'air. Lorsque la chaudière est munie d'un récupérateur de chaleur, les lectures doivent être prises immédiatement en aval de l'équipement.

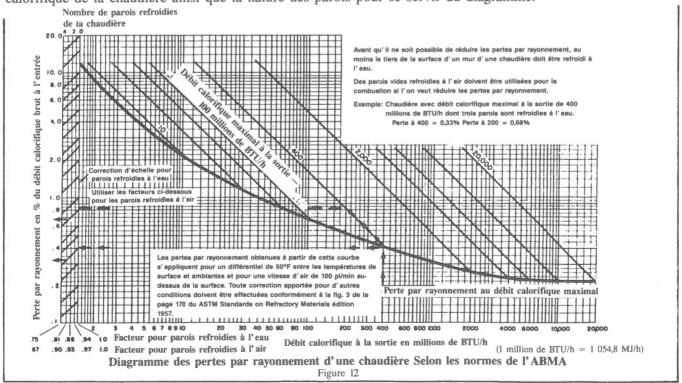

Les trois constituants des pertes de chaleur par les gaz de combustion peuvent être calculés séparément.

- Perte de chaleur par les gaz secs.
- Perte de chaleur par la vapeur d'eau produite par la combustion de l'hydrogène contenu dans le combustible.
- Perte de chaleur par la vapeur d'eau produite par l'évaporation de l'eau contenue dans le combustible.


Les calculs de ces pertes sont donnés dans le module 5 intitulé «Combustion». Dans le cas du gaz naturel et du mazout, comme l'eau contenue dans le combustible est minimale, son évaporation importe peu. On peut ainsi obtenir avec assez de précision la valeur totale des deux premières pertes à partir de la figure 9, pour le gaz naturel, et à partir de la figure 10 pour le mazout n° 2. Voici le calcul de ces pertes.

Reprenons l'exemple avec le gaz naturel où le pourcentage d'excès d'air était de 30,7%. La température des gaz de combustion évacués de la chaudière était de 200°C. Selon la figure 9, la perte de chaleur par les gaz de combustion à la cheminée est égale à 18,5% de l'entrée du combustible. Selon l'annexe C, le HHV du gaz naturel est de 37,2 MJ/m³.

Perte de chaleur par les gaz de combustion = 37,2 x 0,185 = 6,9 MJ/m³ de combustible brûlé.



Pour le charbon, la biomasse, les déchets industriels ou municipaux, la perte de chaleur entraînée par l'humidité contenue dans le combustible peut être importante. Le bois, par exemple, peut avoir une teneur en humidité pouvant aller jusqu'à 60% selon la source et le type de chaudière. La figure 11 illustre les variations de pertes de chaleur par l'humidité pour de la biomasse de diverses teneurs en humidité, lorsque la température des gaz de combustion est de 200°C. Lorsque la teneur en humidité est de 30%, la perte de chaleur du combustible est égale à 5,5% de son enthalpie. À 60%, la perte atteint 21%.

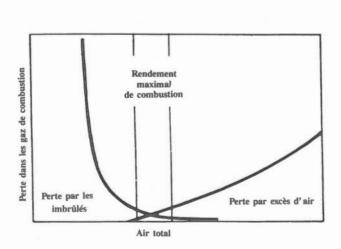
Combustible biomasse type — Variation de la perte par les gaz de combustion en fonction de l'humidité du combustible Figure 11

La perte de chaleur par rayonnement d'une chaudière est fonction de l'isolant thermique. Les isolants diffinuent la chaleur émise par la chaudière et maintiennent les surfaces extérieures à une température suffisamment basse pour assurer la sécurité du personnel. On détermine habituellement la qualité et l'épaisseur de l'isolant sur les différentes sections d'une chaudière par la température de la surface. La plupart des règlements de sécurité exigent que la température des surfaces métalliques à la portée du personnel ne dépasse pas 50°C. Il est plus difficile de mesurer avec précision la perte de chaleur de l'enveloppe de la chaudière. La figure 12 est tirée de l'American Boilermakers' Association Standard Radiation Chart et peut être utilisée pour évaluer la perte de chaleur. La perte de chaleur par rayonnement n'est pas fonction du type de combustible utilisé et il suffit de connaître la puissance calorifique de la chaudière ainsi que la nature des parois pour se servir du diagramme.

Prenons par exemple une chaudière aquatubulaire dont la puissance nominale à pleine charge est de 50 GJ/h; les quatre parois du foyer sont refroidies à l'eau. Selon le diagramme, la perte de chaleur par rayonnement serait égale à 0,65% du débit calorifique brut. Il est à noter que si la chaudière fonctionnait à demi-charge, la perte par rayonnement serait égale à 1,4% du débit calorifique brut. On peut alors en déduire que les pertes par rayonnement augmentent en pourcentage si une chaudière fonctionne à charge partielle pendant une période prolongée. La perte de chaleur absolue par les gaz de combustion est inférieure à charge partielle parce que le volume de gaz est inférieur. Toutefois, le rendement de la chaudière serait probablement inférieure aussi.

La perte de chaleur par les imbrûlés importe peu dans les installations à gaz et à mazout qui fonctionnent de manière appropriée, mais devient un facteur important lorsque les chaudières sont à combustible solide. La figure 13 démontre qu'il peut y avoir une légère perte de combustible non brûlé lorsque la chaudière fonctionne au rendement maximal mais que les pertes augmentent très rapidement à mesure que l'air total diminue. Cette condition se reflète par la présence d'une forte quantité de corps combustibles dans les gaz de combustion.

On retrouve des imbrûlés dans les déchets de charbon, de biomasse et d'autres combustibles solides recueillis dans le cendrier et le trémis de cendre volante. Il faudrait tenir compte de cette perte lorsqu'on vérifie le rendement de la chaudière. Pour ce faire, il faut recueillir et peser les déchets dans des conditions contrôlées et effectuer des essais en laboratoire pour en connaître leur HHV. On peut calculer la perte comme suit.


Perte de chaleur par les imbrûlés = quantité de déchets secs x enthalpie des déchets

Où Perte de chaleur = (MJ/kg de combustible)

Déchets secs= (kg de déchets/kg de combustible)

Enthalpie des déchets = (MJ/kg de déchets)

Les pertes non mesurés comprennent les pertes relativement faibles telles que la chaleur sensible dans la cendre ou la scorie, le rayonnement vers le cendrier, l'humidité dans l'air et le gain de chaleur dans l'eau de refroidissement. On ne mesure habituellement pas ces valeurs parce que l'effort n'en vaut pas la peine. Ces pertes comprennent également l'erreur de précision des appareils de mesure. Le constructeur de chaudières recommande habituellement une tolérance globale qui ne devrait pas dépasser 0,5% de la chaleur contenue dans le combustible à l'entrée.

Zone de rendement de combustion maximal Figure 13

Vérification du rendement de la chaudière

On peut déterminer le rendement de la chaudière par les méthodes directe et indirecte décrites ci-dessous.

Méthode directe

Selon cette méthode, on mesure le rendement de la chaudière par le rapport de la chaleur utile rendue par la chaudière (débit calorifique à la sortie) sur l'énergie contenue dans le combustible (débit calorifique à l'entrée).

Cette méthode exige la mesure précise de la quantité et du pouvoir calorifique du combustible, ainsi que de la chaleur produite par la chaudière sous forme de vapeur.

Le débit de mazout peut être mesuré par un compteur volumétrique et celui du gaz naturel par un compteur volumétrique ou un débitmètre différentiel (plaque à orifice). Les combustibles solides peuvent être mesurés à l'aide d'une conduite gravimétrique ou d'une balance. Il faut déterminer la valeur précise du HHV de tous les combustibles par échantillonnages et essais en laboratoire. On peut obtenir le pouvoir calorifique du gaz naturel et du mazout du fournisseur de combustible. L'échantillonnage des combustibles solides doit être effectué avec soin pour s'assurer qu'il n'y a pas de perte d'humidité entre la prise d'échantillon et l'essai en laboratoire.

Pour connaître la quantité de chaleur absorbée par la chaudière, il faut mesurer le débit de vapeur à la sortie de la chaudière, généralement à l'aide d'une plaque à orifice, la pression à la sortie de la chaudière et la température de l'eau d'alimentation. Si la vapeur est surchauffée, il faut mesurer sa température. Il faut vérifier la qualité de la vapeur produite lorsque les chaudières sont conçues pour une production de vapeur mouillée ou sèche et saturée. Le rendement de la chaudière s'exprime par l'équation suivante:

Rendement de la chaudière = chaleur ajoutée à l'eau d'alimentation débit calorifique total à l'entrée

$$= \frac{f_s \times (h_1 - h_2)}{w_f \times HHV \times 1000} \times 100$$

où f_s = débit de vapeur à la sortie de la chaudière (kg/h)

h₁ = enthalpie (chaleur totale) de la vapeur à la sortie de la chaudière (kJ/kg)

h₂ = enthalpie de l'eau d'alimentation (kJ/kg)

 w_f = débit du combustible liquide (L/h), solide (kg/h), ou gazeux (m³/h)

HHV = pouvoir calorifique supérieur (en MJ/L pour les liquides, MJ/kg pour les solides et en MJ/m³ pour les combustibles gazeux).

1 000 = facteur de conversion des unités, de MJ à kJ

Exemple: à l'essai, une chaudière aquatubulaire transformait 10 000 kg/h d'eau à 1 720 kPa (eff.) et 105°C en vapeur à 1 500 kPa (abs.) et 240°C. Le débit du mazout n° 2 était de 805 L/h. Selon les essais en laboratoire, on a déterminé un HHV de 38,68 MJ/kg. On peut calculer le rendement de la chaudière à partir de ces données.

Selon les tables de vapeur surchauffée:

Enthalpie de la vapeur à 1 500 kPa (abs.) et 240°C = 2 899,2 kJ/kg

Enthalpie de l'eau à 105°C = 440,17 kJ/kg

Rendement =
$$\frac{10\ 000\ x\ (2\ 899,2\ -440,17)}{805\ x\ 38,68\ x\ 1\ 000}\ x\ 100$$

Méthode indirecte

Selon cette méthode, on mesure le rendement de la chaudière en soustrayant les pertes de chaleur de la chaudière du débit calorifique du combustible, le tout divisé par le débit calorifique.

Rendement de la chaudière =
$$\frac{\text{débit calorifique à la sortie}}{\text{débit calorifique à l'entrée}} \times 100$$

La vérification du rendement de la chaudière par la méthode directe, soit le rapport entre les débits calorifiques entrée-sortie est peu pratique et coûteuse si la chaudière n'est pas équipée de débitmètres de combustible et de vapeur. Même si cet appareillage est disponible, la mesure du rendement selon la méthode des pertes de chaleur présente les avantages suivants:

- On obtient plus de renseignements puisque l'on peut comparer le détail des pertes et le rendement prévu.
- Les résultats sont plus précis puisque les pertes totales sont en général de 15 à 25% du débit calorifique du combustible. Par conséquent, les erreurs de mesure affectent moins le résultat.
- La méthode de base est simple puisqu'elle ne consiste qu'en l'analyse du combustible et la détermination de son pouvoir calorifique, la mesure de la température et l'analyse des gaz de combustion qui s'échappent de la chaudière, la mesure de la température de l'air de combustion et de la teneur en combustible imbrûlé.
- Les pertes de chaleur de la chaudière sont évaluées comme suit:
- Perte de chaleur des gaz secs.
- Perte de chaleur causée par l'humidité du combustible.
- Perte de chaleur due à la vapeur d'eau provenant de la combustion de l'hydrogène.
- Perte de chaleur par rayonnement.
- Perte de chaleur causée par des combustibles imbrûlés.
- Pertes non mesurées.

Ces pertes ont déjà été expliquées dans le présent module. Les procédures de calcul pour obtenir le rendement de la chaudière pour différents combustibles sont donnés dans l'ASME Performance Test Code for Steam Generating Units, PTC 4.1. On peut utiliser la feuille de travail 6-1 pour calculer les pertes de chaleur et le rendement des chaudières au gaz naturel ou au mazout. Cette feuille de travail peut être utilisée pour le calcul selon les méthodes directe et indirecte.

Prenons l'exemple précédent pour illustrer la méthode directe. La chaudière aquatubulaire, dont les quatre parois de la chambre de combustion étaient refroides à l'eau, avait une puissance nominale de 10 000 kg/h de vapeur à 1 500 kPa (abs.) et 240°C.

Pression de vapeur à la sortie de la chaudière	1 500 kPa (abs.)
Température de la vapeur à la sortie de la chaudière	240°C
Température de l'eau à l'entrée de la chaudière	105°C
Température de l'air autour de la chaudière	20°C
Température des gaz de combustion qui s'échappent de la chaudière	260°C
Température du combustible	20°C
Taux d'évaporation de l'eau	10 000 kg/h
Débit de combustible	805 L/h
HHV du mazout	38,68 MJ/L

Analyse des gaz de combustion à la sortie de la chaudière (% par volume)

 $CO_2 = 12,8$

 $O_2 = 3.8$

CO = 0

 $N_2 = 83,4$ (différence)

Calcul selon la feuille de travail:

Excès d'air (figure 6) 20%

Gaz sec + perte H_20 (figure 10) 17,2%

Perte par rayonnement (figure 12) 1,2%

Perte non mesurée 0,5% (estimée)

Pertes totales = 17.2 + 1.2 + 0.5 = 18.9%

Rendement de la chaudière = 100 - 18,9 = 81,1%

La feuille de travail 6-1 (voir page 22) fournit les données et les résultats de cet exemple ainsi que ceux de

l'exemple précédent de la méthode directe.

Lors de l'installation d'une nouvelle chaudière, on devrait en vérifier le rendement à toutes les allures de chauffe et comparer ces valeurs avec les valeurs garanties. Le rendement de la chaudière devrait par la suite être comparé à intervalles réguliers avec les valeurs déterminées à l'essai. La figure 13 démontre clairement que l'air total ne devrait pas diminuer ou augmenter au-delà de la zone d'efficacité de combustion maximale.

Soufflage de suie

Toute chaudière alimentée au combustible solide ou au mazout doit être équipée d'un système de soufflage de suie. Le gaz naturel est un combustible brûlant sans résidu et ne nécessitant pas de souffleurs de suie. Le soufflage de la suie consiste en le nettoyage des surfaces de chauffe pendant que la chaudière est en service, afin d'éviter l'obstruction de certaines sections de celle-ci par l'accumulation de cendre et d'autres produits solides de combustion. Les sections obstruées peuvent restreindre l'écoulement des gaz de combustion et par conséquent, limiter la charge et éroder le réseau de tuyauteries. Plus important encore, le soufflage de la suie entraîne des économies d'énergie en maintenant le taux maximal de transmission de chaleur du combustible à la vapeur et à l'eau.

Un soufflage de suie inadéquat peut augmenter la température des gaz d'évacuation de la chaudière de 80°C. Chaque hausse de 20°C des gaz de sortie augmente la consommation du combustible de 1%. Par exemple, selon la figure 10, une chaudière au mazout n° 2 avec 10% d'excès d'air consommait 4,2% additionnels de combustible si la température des gaz augmentait de 100°C.

Qualité de l'eau de la chaudière

Lorsqu'on utilise de l'eau pour produire de la vapeur, il est nécessaire d'effectuer un traitement de cette eau pour empêcher la corrosion et l'entartrage des surfaces de la chaudière en contact avec l'eau. Cela comprend le traitement de l'eau brute admise dans la chaudière ainsi que le traitement de l'eau à l'intérieur de celle-ci.

C'est généralement le constructeur de chaudières qui indique la qualité de l'eau d'alimentation et les analyses de l'eau de la chaudière requises. L'opérateur doit s'assurer que les traitements requis sont effectués. Si l'eau n'est pas traitée de manière appropriée, l'accumulation de tartre qui en résulte pourra endommager les tubes de la chaudière. Le tartre empêche la transmission de la chaleur, ce qui augmente la température des gaz de sortie de la chaudière ainsi que les pertes de chaleur par les gaz de combustion. Comme il a déjà été mentionné, une hausse modérée de 20°C dans les gaz de combustion entraîne un gaspillage additionnel de 1% de la chaleur contenue dans le combustible.

On traite habituellement l'eau de la chaudière avec des doses de phosphates qui transforment les dépots de sel en une boue facilement vidangeable. Si l'on ne surveille pas l'accumulation de ces sels, l'eau de la chaudière mousse et des solides indésirables sont entraînés avec la vapeur. Le terme purge décrit l'évacuation intentionnelle d'une partie de l'eau de la chaudière pour éliminer la boue et les concentrations chimiques indésirables. La purge peut être continuelle ou périodique. L'opérateur règle habituellement la purge manuellement quoique certains équipements règlent automatiquement le taux de purge en fonction de la conductivité de l'eau de la chaudière. Dans les chaudières à basse pression où le niveau admissible de solides dans l'eau d'alimentation peut être plus élevé, le taux de purge représente 5 à 10% du débit de l'eau d'alimentation. Le taux de fréquence des purges doit être maintenu rigoureusement sans toutefois dépasser le taux recommandé.

La chaudière est quelquefois raccordée à un réservoir à pression atmosphérique et l'eau purgée est rejetée aux égouts. Si le taux de purge est de 5% ou plus, on doit étudier la possibilité de récupérer la vapeur instantanée du réservoir en l'acheminant dans un désaérateur ou en utilisant la chaleur pour le chauffage des bâtisses ou de l'eau potable.

Temperature de l'eau d'alimentation

La chaudière n'est habituellement pas alimentée à l'eau froide. En effet, l'entrée de la pompe d'alimentation est habituellement raccordée à un réservoir de retour de condensat ou à un désaérateur qui élimine l'O₂ et le CO₂ de l'eau d'alimentation. L'eau qui alimente la plupart des chaudières à basse pression (moins de 1 000 kPa) est habituellement à des températures de 80 à 120°C.

Pour maintenir la dimension des surfaces de chauffe de la chaudière dans des limites pratiques, le concepteur de chaudières choisit une température de sortie des gaz de combustion d'environ 60 à 90°C au-dessus de la température de la surface de chauffe la plus froide. Si l'eau d'alimentation est admise directement dans le ballon de la chaudière, elle se mélange immédiatement avec l'eau déjà chauffée. Par conséquent, les surfaces de chauffe les plus froides ne sont que quelques degrés inférieurs à la température de saturation correspondant à la pression de la chaudière. Par exemple, la température de sortie des gaz de combustion d'une chaudière qui fonctionne à 1 500 kPa (abs.) dont la température de saturation est de 198,29°C sera d'environ 260°C.

On peut augmenter le rendement de la chaudière en utilisant les gaz de combustion pour chauffer l'eau d'alimentation. La transmission de la chaleur des gaz de combustion à l'eau d'alimentation s'effectue dans un échangeur de chaleur appelé économiseur.

La température du métal de la section la plus froide de l'économiseur ne sera que de quelques degrés supérieurs à celle de l'eau d'alimentation admise dans celle-ci. On peut alors abaisser la température des gaz de sortie à environ 170°C, ce qui augmente le rendement de la chaudière de 3 à 4%.

L'intégration d'un économiseur dans une nouvelle chaudière ou l'ajout d'un économiseur à une chaudière déjà existante est un moyen efficace d'économiser de l'énergie.

Température de l'air de combustion

On peut améliorer sensiblement le rendement de la chaudière en préchauffant l'air de combustion. Pour ce faire, on installe un réchauffeur d'air qui utilise la chaleur des gaz de combustion pour réchauffer l'air d'admission. Si l'on se réfère à l'exemple précédent, un réchauffeur d'air peut être installé au lieu d'un économiseur. L'air de combustion pourrait être préchauffé d'environ 120°C, et on obtiendrait la même température de gaz de sortie que dans l'exemple avec l'économiseur, soit une augmentation du rendement de la chaudière de 3 à 4%.

Le choix de l'équipement de récupération de chaleur des gaz de combustion (réchauffeur d'air ou économiseur) dépend d'un certain nombre de facteurs. Il est habituellement aussi rentable de récupérer la même quantité de chaleur avec un appareil ou l'autre. Comme la température de l'eau d'alimentation de l'économiseur est généralement plus élevée que la température de l'air d'alimentation d'un réchauffeur d'air, ce dernier semblerait plus efficace que l'économiseur. Toutefois, le taux de transmission de la chaleur du gaz à l'air dans un réchauffeur d'air est plus faible que le taux de transmission de la chaleur du gaz à l'eau (économiseur). L'économiseur semble ainsi offrir plus d'avantages. Le choix final devrait être basé sur l'analyse technique détaillée de la chaudière et du système de récupération de la chaleur, tout en tenant compte de la disposition des appareillages et de la meilleure rentabilité.

Chaudières de récupération de chaleur

Les chaudières de récupération de chaleur récupèrent la chaleur sensible des gaz de combustion par l'intermédiaire d'appareillages installés à l'extérieur de la chaudière principale. Ce type de chaudière prolonge la conduite d'évacuation d'un système de production de gaz chauds, que ce soit une turbine à gaz, un incinérateur ou un four.

Le rendement d'une chaudière de récupération ne peut être comparé à celui d'une chaudière à combustible. En effet, le débit calorifique à l'entrée est représenté par la chaleur des gaz de combustion au lieu de la chaleur produite par la combustion d'un combustible. Quoique les pertes par la cheminée de la chaudière soient calculées de la même façon que pour une chaudière à combustible, il s'agit de pertes par gaz sec seulement puisqu'aucun combustible n'est brûlé pour produire de la vapeur d'eau. L'efficacité de l'appareillage de récupération de chaleur est presqu'uniquement fonction de l'abaissement de la température des gaz de sortie de la chaudière.

Les pertes par rayonnement peuvent être déterminées à partir de la figure 12. Il faut toutefois tenir compte de la perte de chaleur par le réseau de tuyauteries entre la source des gaz de combustion et la chaudière.

Le gaspillage d'énergie peut être réduit au minimum grâce à l'utilisation correcte des souffleurs de suie et au maintien de la qualité de l'eau et du taux recommandé de purges. De plus, un bon programme d'entretien peut minimiser le gaspillage d'énergie entraîné par les fuites de vapeur et d'eau ainsi que par la détérioration des isolants et de l'enveloppe de la chaudière.

Analyses énergétiques

Une analyse énergétique consiste en l'identification de la quantité d'énergie consommée par une chaudière et son équipement. On peut faire l'analyse de toute la chaufferie ou étudier en détail une ou deux pièces d'équipement, selon la consommation énergétique connue. Pour de plus amples détails, le lecteur peut se référer au module intitulé «Évaluation de la consommation énergétique».

Analyse au passage

L'analyse au passage consiste en une visite de la chaufferie et l'observation de signes évidents de gaspillage d'énergie. Il est souvent très avantageux d'affecter à cette tâche une personne qui n'est habituellement pas associée à l'exploitation de la chaufferie pour obtenir un nouveau point de vue et par conséquent, mettre en évidence des points qui jusqu'ici avaient été négligés.

Analyse de diagnostic

Grâce à l'analyse de diagnostic, on peut déterminer la consommation énergétique globale d'une chaufferie en examinant les relevés de consommation de celle-ci pour en déterminer la consommation par unité de puissance de la chaudière pour un certain nombre d'années.

Les spécifications de l'appareillage d'origine ainsi que les rapports sur les essais de mise en service sont deux excellents facteurs qui peuvent déterminer si les composants de l'appareillage fonctionnent comme il se doit ou s'il y a détérioration importante du système. Le rendement actuel de la chaufferie devrait être confirmé en menant des essais à différentes charges. On peut déterminer le rendement de la chaudière et les pertes de chaleur qui s'y rattachent à l'aide des méthodes décrites précédemment.

Toute chaufferie devrait être munie d'un enregistreur d'alimentation en combustible, d'un enregistreur de débit de vapeur ou d'eau d'alimentation, d'un indicateur de pression de sortie de la chaudière et de thermomètres mesurant la température de l'eau d'alimentation et des gaz de combustion évacués de la chaudière.

Après avoir eu un aperçu global de la consommation énergétique antérieure et actuelle, on peut comparer le rendement actuel avec les spécifications de l'appareillage. S'il y a détérioration importante de performance, l'appareillage ou le système devrait faire l'objet d'une étude plus approfondie.

On peut également, grâce à cette analyse, mettre en évidence certains composants pouvant être modernisés ou remplacés et étudier la possibilité d'apporter des améliorations importantes au système en intégrant de l'équipement de récupération de chaleur.

La détermination de l'énergie consommée par unité de puissance de la chaudière (kg/h de vapeur) présente souvent de grandes variations. Si la consommation du combustible par unité de puissance augmente de manière importante à mesure que la charge de la chaudière diminue, on peut améliorer la situation en planifiant un meilleur horaire de production de vapeur pour que la chaudière fonctionne à sa capacité maximale.

Résumé des facteurs relatifs au rendement de la chaudière

De grandes quantités d'énergie sont utilisées dans les chaufferies et de nombreux facteurs peuvent influencer le rendement thermique de celles-ci. La présente section résume brièvement les facteurs de rendement clés pour aider le lecteur a cerner les possibilités d'économies d'énergie éventuelles. Quoique dans certains cas, la conception de la chaudière ou de l'appareillage auxiliaire puisse entraîner certaines limites, il n'en demeure pas moins que les possibilités d'amélioration du rendement de la chaufferie revêtent une importance capitale.

La température des gaz de combustion est une mesure-clé qui met en évidence la plus importante source de perte énergétique d'une chaudière. Il importe de surveiller régulièrement cette température à différentes allures de chauffe pour que toute variation anormale soit décelée rapidement. Voici une liste des facteurs qui peuvent influencer la température des gaz de combustion.

- Une augmentation de l'excès d'air entraîne une hausse de température des gaz de combustion.
- Lorsque des gaz passent directement du foyer à la sortie de la chaudière, il y a diminution de la surface de chauffe et augmentation de la température des gaz de combustion.
- Les infiltrations d'air dans le foyer abaissent la température des gaz de combustion, et augmentent le volume et la vitesse du gaz, ce qui diminue la transmission thermique.
- L'équipement de récupération de chaleur augmente la surface de chauffe, ce qui augmente la transmission de chaleur autrement perdue pour abaisser la température des gaz de combustion à la sortie de l'échangeur de chaleur.
- Les surfaces de chauffe ayant accumulé de la suie à l'extérieur ou du tartre à l'intérieur diminuent la transmission thermique et augmentent la température des gaz de combustion.
- Lorsqu'on augmente la pression de service de la chaudière, la température augmente sur la paroi intérieure des tubes. Lorsqu'on augmente la température de l'eau de la chaudière, le taux de transmission thermique diminue, ce qui augmente la température des gaz de combustion et les pertes.

Les figures 9 et 10 illustrent l'influence de la température des gaz de combustion sur les pertes de chaleur par ces derniers.

Le taux d'excès d'air minimal possible est fonction directe des caractéristiques de la chaudière et du brûleur à différentes allures de chauffe, ainsi que du système de régulation de la combustion. L'excès d'air agit sur le rendement de la chaudière, tel que le démontre les exemples suivants.

- Une insuffisance d'excès d'air entraîne la présence de corps combustibles dans les gaz de combustion, ce qui augmente rapidement les pertes énergétiques du combustible.
- Un trop grand volume d'excès d'air augmente l'écoulement massique des gaz de combustion, ce qui augmente les pertes par ceux-ci. La température des gaz de combustion augmente d'1% pour chaque 4% d'excès d'air additionnel.

Des surfaces de chauffe encrassées par l'accumulation de suie à l'extérieur, ou de tartre à l'intérieur des tubes de la chaudière, retardent la transmission de chaleur des gaz de combustion à l'eau de la chaudière.

- Lorsqu'il y a combustion de mazout ou de combustible solide, les tubes doivent être nettoyés régulièrement à l'aide de souffleurs de suie. Une accumulation de suie peut augmenter de 50% les pertes par les gaz de combustion.
- L'accumulation de tartre à l'intérieur des tubes d'eau retarde la transmission thermique et peut entraîner le surchauffage du métal et le rompre. Une accumulation de 1 mm de tartre peut augmenter la consommation de combustible de 2%.

Un traitement inapproprié de l'eau d'alimentation peut entraîner une accumulation de tartre comme ci-dessus ou exiger des purges additionnelles pour empêcher cette accumulation. Si, pour une chaudière de 1 600 kPa (abs.) dont l'eau d'alimentation est à 105°C, on augmente la fréquence de purge de 4 à 8%, il y a perte de chaleur additionnelle de 0,5%.

La perte par rayonnement d'une chaudière est à peu près constante pour toutes les allures de chauffe. Par conséquent, le pourcentage de pertes par rayonnement augmente à mesure que diminue la charge de la chaudière. Quoique d'autres facteurs interagissent, l'efficacité d'une chaudière est fonction directe de la charge. Chaque chaudière devrait faire l'objet d'essais pour déterminer son niveau d'efficacité selon une charge donnée.

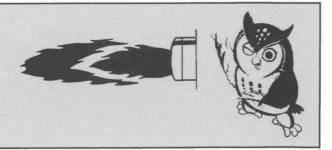
La température de l'air de combustion agit sur le débit calorifique à l'entrée de la chaudière. Lorsqu'on installe un préchauffeur d'air qui utilise les gaz de combustion pour chauffer l'air de combustion, le débit calorifique à l'entrée en est augmenté alors qu'en même temps, la température des gaz de combustion ainsi que les pertes de chaleur diminuent.

Le rendement de la chaudière est fonction du combustible surtout en raison de la perte de chaleur latente causée par l'eau contenue dans le combustible. En prenant le gaz naturel comme base, voici le pourcentage d'efficacité des combustibles courants:

- Le charbon est environ 6% plus efficace que le gaz naturel.
- Le mazout est environ 4% plus efficace que le gaz naturel.
- Le bois à 50% d'humidité est 12% moins efficace que le gaz naturel.

Il faut bien se rendre compte que les critères de sélection d'un combustible se basent sur la comparaison de l'ensemble des coûts d'exploitation et non pas sur le seul rendement d'une chaudière. Selon les coûts de combustible, le bois le moins efficace pourrait représenter le meilleur choix économique.

En résumé, voici les principes à retenir pour exploiter une chaufferie avec efficacité.


- Il faut connaître les valeurs optimales des paramètres importants décrits.
- Il faut comprendre l'impact sur les pertes énergétiques des paramètres qui s'éloignent des valeurs optimales.
- Il faut surveiller et documenter toutes les variables importantes de la chaudière d'une façon régulière.
- Il faut prendre les mesures nécessaires pour éliminer les écarts indésirables aussitôt qu'ils surviennent.

Vérification de rendement d'une chaudière

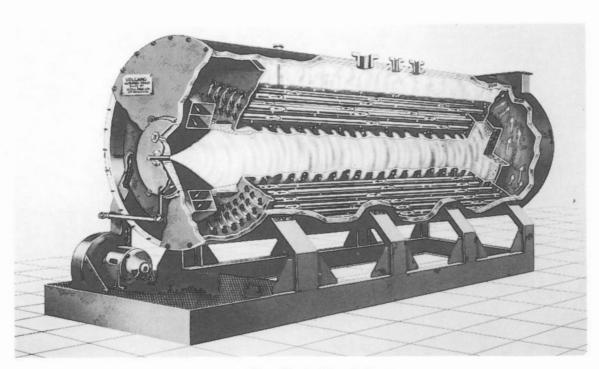
Feuille de travail 6-1

Installation: EXEMPLE CONCRET	Date:/	18/3/85	
Endroit:	Par:	MBE	
N° de chaudière:	Combustible	: MAZOUT Nº.	2_
Puissance nominale: 12 000 kg/h	Essai nº	3 - PLEINE CHAR	<u>GE</u>
Pressions et températures Pression de la vapeur à la sortie de la chaudière Température de la vapeur à la sortie de la chaudière Température de l'eau à l'entrée de la chaudière Température de l'air de combustion Température du combustible Température du gaz d'évacuation de la chaudière		/500 kPa 240 °C 105 °C 20 °C 20 °C 260 °C	(1) (2) (3) (4) (5) (6)
Quantités unitaires Enthalpie de la vapeur à la sortie de la chaudière Enthalpie de l'eau d'alimentation à la chaudière Chaleur absorbée par kg de vapeur [(7) - (8)] Pouvoir calorifique supérieur du combustible (citer les un	ités)	.2.899, 2. kJ/kg 440,17. kJ/kg .2.459 kJ/kg 38,68m]/L	(7) (8) (9) (10)
Quantités horaires Eau évaporée Débit de combustible (citer les unités) Débit calorifique total à l'entrée $[(12) \times (10)]^* = \frac{80}{1000}$ Puissance calorifique totale à la sortie $\frac{[(11) \times (9)]}{1000} = \frac{100}{1000}$			(11) (12) (13) (14)
		007.9, 0. %	(15)
*Les unités de mesure de [(12) x (10)] doivent être conve Analyse des gaz de combustion CO ₂ O ₂ CO N ₂ (par différence) Excès d'air	erties en MJ/h	% Volume	(16) (17) (18) (19) (20)
Pertes de chaleur Perte de chaleur par le gaz sec et l'H ₂ O (Figure 9, Figur Perte de chaleur par rayonnement (Figure 12) Pertes non mesurées Pertes totales [(21) + (22) + (23)] Rendement indirect [100 - (24)]	re 10)	% Perte de combustible tel que brûlé	(21) (22) (23) (24) (25)

APPAREILLAGE

Chaudières

Les quatres principaux types de chaudières sont: à tubes de fumées, aquatubulaires, multitubulaires et électriques.


Chaudières à tubes de fumées

Celles-ci sont essentiellement des échangeurs de chaleur à calandre multitubulaire dans lesquels le gaz de combustion passe à travers des tubes immergés dans l'eau (figure 14).

Les chaudières à tubes de fumées brûlent généralement du gaz naturel ou du mazout, quoique quelques-unes sont munies de foyer ou de chambre de combustion et peuvent être installées au-dessus d'une grille à charbon ou à bois. Elles peuvent générer de la vapeur saturée sèche ou de l'eau chaude à une pression maximale de 1 700 kPa (eff.). Leur puissance varie de 350 à 2 000 MJ/h. Ces chaudières sont assemblées en usine et livrées avec le brûleur, le ventilateur de tirage forcé et les appareils de régulation.

Comme les chaudières à tubes de fumées fonctionnent à basse pression, la température de l'eau est basse et varie de 110 à 200°C. Si l'on s'assure que le gaz de combustion entre en contact avec la plus grande surface de chauffe possible, la température des gaz de combustion peut être ramenée à 50°C de la température de l'eau de la chaudière. Il y a donc réduction des pertes de chaleur par les gaz de combustion et le rendement de la chaudière peut excéder 80%.

Les chaudières à tubes de fumée réagissent lentement aux variations de charge de la vapeur. On peut maintenir la pression de la vapeur pendant les périodes où il y a peu ou pas de charge par l'allumage intermittent du brûleur. Ce type de chaudière est utilisé couramment dans les chaufferies de petites dimensions.

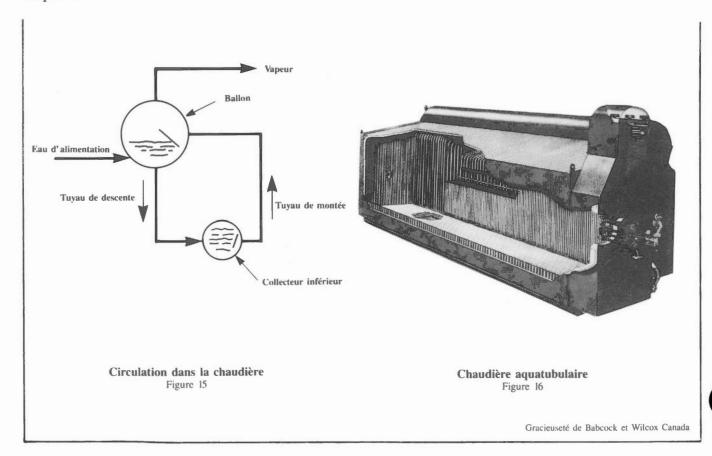
Chaudière à tubes de fumées Figure 14

Gracieusete de Volcano

Chaudières aquatubulaires

La chaudière aquatubulaire peut brûler tous les genres de combustibles et sa gamme de puissance calorifique est très vaste. Ce type de chaudière fonctionne à des pressions jusqu'à 30 000 kPa (abs.) et peut produire de la vapeur d'une température maximale de 565°C.

L'eau à chauffer circule à l'intérieur de faisceaux de tubes d'acier alors que le gaz chaud circule à l'extérieur de ces tubes. La chaudière la plus courante consiste en un ballon raccordé par des tubes verticaux (tuyaux de descente) à un ballon inférieur, ou collecteur. Ces tuyaux de descente peuvent être chauffés. Un autre faisceau de tubes (tuyaux de montée) raccorde les deux ballons pour former les parois de la chambre de combustion (figure 15). La circulation naturelle est amorçée lorsque la quantité de chaleur fournie aux tuyaux de montée dépasse celle fournie aux tuyaux de descente, ce qui entraîne un mélange de vapeur et d'eau dont la densité est plus faible dans les tuyaux de montée que celle de l'eau dans les tuyaux de descente.

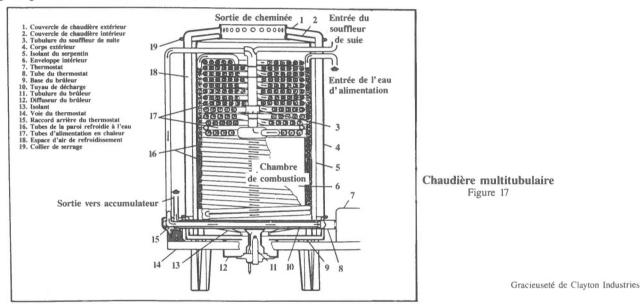

Les chaudières au gaz naturel ou au mazout sont habituellement montées en usine et livrées complètes (figure 16). La capacité de ces chaudières varie d'environ 1 500 à 190 000 MJ/h. Pour des combustibles solides, les chaudières sont construites sur place à cause de l'encombrement du foyer et de l'équipement de combustion.

Dans les systèmes de chauffage à vapeur, il y a perte de rendement lors de la transformation de l'eau en vapeur, par les purgeurs et les évents et lors de la vaporisation instantanée du condensat. Quoique les systèmes à eau chaude et à fluide thermique perdent de la chaleur, ces pertes ne sont pas aussi importantes que celles des systèmes à vapeur. Par conséquent, les chaudières à fluide utilisent l'énergie de manière plus efficace et peuvent être choisies pour une puissance calorifique en MJ/h plus faible qu'une chaudière à vapeur.

Les chaudières à eau chaude ressemblent en apparence et fonctionnement aux chaudières à vapeur. La circulation de l'eau à travers les tubes est provoquée par pompage.

Toutes les chaudières aquatubulaires peuvent fonctionner continuellement, peu importe la charge, de 15 à 100% de leur puissance nominale. Elles sont le plus efficaces près de 85% et le rendement diminue de manière importante lorsque les charges sont inférieures à 60%. La petite capacité d'eau dans la chaudière permet à celle-ci de réagir rapidement aux variations soudaines de la demande en vapeur et facilite les démarrages et arrêts fréquents.

Cependant la meilleure façon d'exploiter efficacement une chaudière aquatubulaire consiste à maintenir une demande stable à 85% de sa puissance nominale tout en évitant les variations soudaines de la demande et les arrêts fréquents.


Chaudières multitubulaires

Les chaudières multitubulaires sont essentiellement des chaudières aquatubulaires à circulation forcée (figure 17). La section de convection peut être construite à partir d'un seul tube en serpentin ou de tubes raccordés en parallèle. L'eau est forcée à travers les serpentins à l'aide d'une pompe volumétrique. L'ensemble est complètement monté en usine avec l'isolation, le ventilateur d'air de combustion, le brûleur, la pompe d'alimentation, le séparateur et les appareils de régulation.

Les chaudières multitubulaires brûlent du gaz naturel ou du mazout ou un mélange des deux. Elles produisent de l'eau chaude ou de la vapeur saturée à des pressions de 450 à 2 400 kPa (abs.). Leur puissance peut atteindre 17 500 MJ par heure.

La capacité d'eau dans ce type de chaudière est beaucoup plus petite que celle des autres types. Par conséquent, elles peuvent être démarrées et arrêtées en un temps relativement court (10 minutes). Elles réagissent rapidement aux grandes variations de charge et peuvent maintenir une faible allure de chauffe pendant une longue période. Lorsqu'il n'y a pas de charge, elles peuvent démarrer et arrêter à brefs intervalles pour maintenir la pression et la température du système. Le rendement thermique à pleine charge de ce type de chaudière se compare à celui des chaudières aquatubulaires (80%), alors que leur rendement à faible charge est de 1 à 2% supérieure.

Les chaudières multitubulaires sont idéales pour les petits systèmes à vapeur et à eau chaude qui démarrent et s'arrêtent selon un horaire fixe, ou lorsqu'il y a une succession de demandes soudaines à charges élevées et de longues périodes de faible demande.

Chaudières électriques

L'eau chaude ou la vapeur peut être produite dans des chaudières où l'eau est chauffée électriquement à l'aide d'élements immergés. Les chaudières électriques sont plus efficaces que les chaudières à combustible parce qu'il n'y a pas de perte par les gaz de combustion à la cheminée. L'énergie électrique n'est souvent pas concurrentielle avec les autres combustibles. Cependant, les tarifications de puissance interruptible ou hors-pointe peuvent modifier ces conditions.

Les nouvelles chaudières à tubes de fumées passe dont la puissance calorifique est de 1 600 à 16 000 MJ/h, peuvent être munies d'élements électriques en plus des brûleurs au gaz ou au mazout. Ces chaudières sont beaucoup plus coûteuses mais procurent une souplesse de fonctionnement intéressante, par exemple en permettant d'utiliser le gaz le jour et l'électricité le soir.

Types, caractéristiques et préparation des combustibles

Les combustibles les plus couramment utilisés dans les chaufferies sont les suivants:

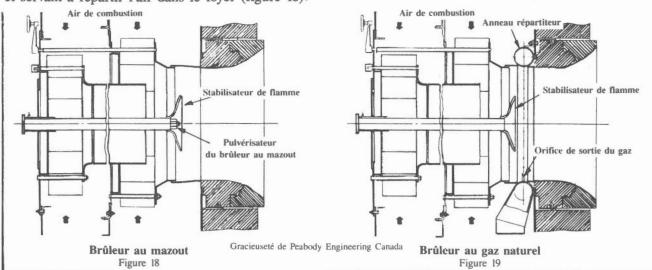
- Mazout no 2
- Mazout nº 6
- · Gaz naturel
- Charbon
- Biomasse (bois et résidus de bois)
- Déchets municipaux

Comme le mazout n° 6 est visqueux à la température ambiante, il s'écoule avec difficulté. Il doit donc être chauffé et pompé dans le réseau de tuyauteries de mazout avant d'être pulvérisé par le brûleur. Le chauffage s'effectue dans le réservoir de stockage: des serpentins placés dans le fond de ce dernier ou des réchauffeurs d'aspiration raccordés aux brides de sortie augmentent la température du mazout à environ 65°C. La pression de celui-ci est alors augmentée pour atteindre 700 à 1 700 kPa (abs.) et il est réchauffé à une température de 90 à 120°C, selon le type de brûleur et la qualité du mazout. Cette opération s'effectue à l'aide de pompes et de réchauffeurs placés près de la chaudière. Les conduites d'huile doivent être réchauffées pour empêcher le mazout de devenir trop visqueux lorsque le système n'est pas en service. Le réchauffement peut se faire par vapeur ou électricité. La vapeur générée par l'usine même est souvent employée à cause de son faible coût. À cause de ces difficultés, le mazout n° 6 n'est pas habituellement utilisé comme combustible de rechange. Jusqu'à ces dernières années, comme le prix du mazout n° 2 était beaucoup plus élevé que celui du mazout n° 6, ce dernier s'avérait une option plus économique malgré la nécessité d'installer de l'équipement additionnel. Puisque la différence de prix est presque nivelée, on pourrait économiser de l'énergie en remplacant le mazout n° 6 par du mazout n° 2 et éliminer ainsi le besoin de chauffer le combustible de rechange.

Les installations au charbon pulvérisé consomment une grande quantité d'énergie pour le séchage, la pulvérisation, le triage et le transport du combustible.

Les résidus des industries du bois primaires et secondaires peuvent être brûlés comme substitut du gaz naturel et du mazout. L'utilisation du bois exige une plus grande participation de l'opérateur. Cependant, dépendant du coût des résidus de bois et de l'aptitude de l'installation de chauffage à fonctionner toute l'année, la conversion peut être rentable. Le chauffage au bois a obtenu du succès même dans les environnements institutionnels où la saleté et le bruit ne peuvent être tolérés. Selon l'origine du bois, il peut être nécessaire d'installer un système de déchiquetage du bois et même d'enlèvement de métal.

Les déchets municipaux représentent une source énergétique pouvant être utilisée pour la production de vapeur et d'eau chaude. L'attitude du public à l'égard du transport et de l'entreposage de ce combustible sur les lieux d'utilisation, ainsi que les coûts élevés des installations de préparation pour la combustion, de l'entreposage à court terme, de la manipulation, de la combustion, ainsi que le nettoyage des gaz de combustion avant leur rejet à l'atmosphère limitent l'utilisation de cette source énergétique abondante.


Appareillage de combustion

Les différents brûleurs varient selon le type de combustible et l'application. Ils doivent toutefois remplir les fonctions suivantes:

- Acheminer le combustible et l'air vers la chambre de combustion.
- Mélanger efficacement le combustible et l'air.
- Après allumage, maintenir la combustion.

Brûleurs au mazout

Le mazout doit être pulvérisé et simultanément mélangé avec l'air pour maintenir la combustion. Un brûleur au mazout consiste en un tube central muni d'un pulvérisateur à une extrémité et d'un registre entourant le canon et servant à répartir l'air dans le foyer (figure 18).

Les brûleurs mécaniques au mazout peuvent être utilisés pour pulvériser le mazout n° 2 ou n° 6, mais une très haute pression de pulvérisation est requise pour obtenir un rapport de réglage raisonnable. Le rapport de réglage du brûleur est le rapport de l'écoulement maximal sur l'écoulement minimal du combustible permettant une combustion satisfaisante. Par exemple, un brûleur de type mécanique aurait besoin d'une pression de 4 500 kPa Pour une pulvérisation adéquate du mazout à un rapport de réglage de 5 à 1, tandis qu'un brûleur avec pulvérisateur à vapeur n'aurait besoin que d'une pression de 650 kPa pour le même rapport.

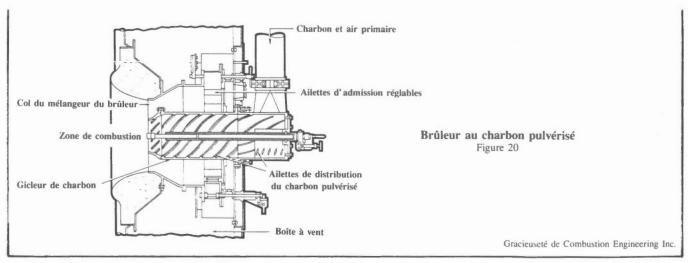
La plupart des brûleurs au mazout n° 6 sont dotés de pulvérisaturs à vapeur où celle-ci est mélangée avec le mazout dans la buse de pulvérisation pour en disperser les particules. Ce type de brûleur demande une pression de mazout plus faible que celle du type mécanique et le rapport de réglage est meilleur, soit de 5:1.

Les brûleurs au mazout n° 2 sont souvent munis de pulvérisateurs à air pour obtenir un rapport de réglage allant jusqu'à 5:1. Les brûleurs à pulvérisation par vapeur peuvent également être utilisés pour ce mazout plus léger.

Brûleurs au gaz naturel

Le gaz naturel se mélange facilement avec l'air. Le brûleur à gaz à rampe annulaire consiste en un anneau muni de multiples orifices de sortie (figure 19). Le brûleur à injecteur de combustible consiste en un anneau de 4 à 8 canons dont une extrémité élargie contient de multiples orifices de sortie. Dans les deux cas, le registre permet d'entourer les canons avec de l'air.

De nombreuses chaudières sont équipées de brûleurs au gaz naturel et au mazout combinés où le deuxième combustible devient le combustible de rechange.


Brûleurs à faible excès d'air

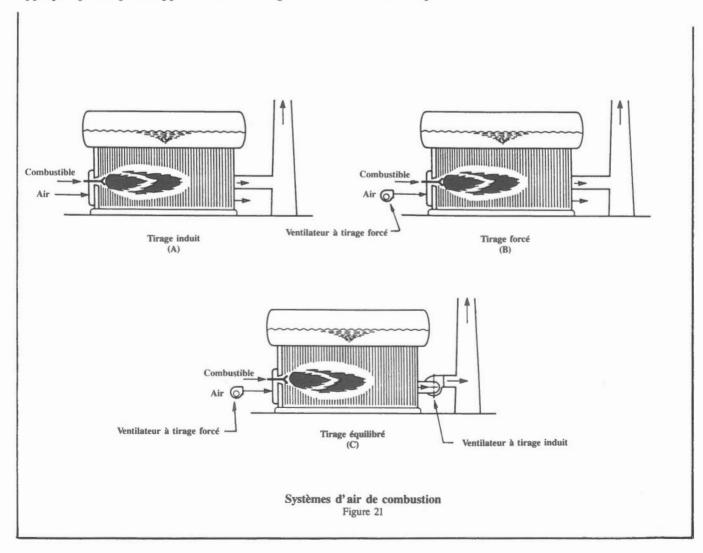
Les brûleurs au gaz naturel et au mazout de conception standard fonctionnent avec 10 à 15% d'excès d'air à pleine charge, et à des taux supérieurs lorsque l'allure de chauffe est plus faible. Cela est dû aux registres du brûleur qui sont réglés à des valeurs qui assurent les meilleurs résultats à pleine charge. Les brûleurs à faible excès d'air peuvent fonctionner avec 2 à 5% d'excès d'air. Une réduction de 15 à 5% du taux d'excès d'air réduit les coûts en combustible de presque 1%. Ces économies sont obtenues par l'usage de caractéristiques plus coûteuses, soit:

- Une meilleur conception des diffuseurs d'air, du registre d'air et du brûleur, ce qui assure un meilleur mélange et une meilleure combustion.
- Des registres de brûleurs modulés en fonction de l'allure de chauffe pour assurer une meilleure combustion à des taux inférieurs à 100%.

Brûleurs au charbon pulvérisé

Le canon d'un brûleur au charbon pulvérisé (figure 20) consiste en un tube d'acier de grand diamètre muni d'ailettes de distribution internes. Le charbon et l'air primaire chaud, qui sont d'abord mélangés dans le pulvérisateur, sont introduits tangentiellement dans le canon et les ailettes leur donnent une forte rotation. Les ailettes d'admission réglables communiquent également une rotation à l'air secondaire préchauffée admis dans le registre. La force de tourbillonnement de l'air et du combustible, ainsi que la forme du col du mélangeur du brûleur établissent un certaine circulation qui se maintient jusqu'à la chambre de combustion. Une fois le charbon allumé, la chaleur de combustion du foyer stabilise la flamme.

Grilles mécaniques


Les grilles mécaniques sont des appareils qui brûlent du combustible solide dans un lit placé dans le fond d'une chambre de combustion. Ils sont conçus pour assurer une alimentation en combustible continuelle ou intermittente, l'allumage du combustible, l'approvisionnement approprié en air de combustion, l'évacuation des produits gazeux et la vidange des cendres.

Les grilles mécaniques sont classées selon la façon dont le combustible atteint le lit de combustible. Dans une grille alimentée par le bas, le mélange de combustible et d'air pénètre la zone de chauffage depuis le dessous du lit. Dans les grilles mécaniques alimentées par le haut, le combustible pénètre la zone de combustion par le dessus, dans la direction opposée au débit d'air. La grille alimentée par le haut de type «à projection» achemine du combustible de façon qu'une portion brûle en suspension tandis que le reste tombe et brûle sur la grille mobile.

Systèmes d'air de combustion

On peut alimenter une chaudière en air de combustion avec un système à tirage induit, à tirage forcé ou à tirage équilibré (figure 21).

Le tirage induit (figure 21A) utilise la pression négative (tirage) produite par la cheminée de la chaudière pour aspirer l'air dans celle-ci et éliminer les gaz de combustion. L'appareil de chauffage à gaz résidentiel est l'exemple le plus courant de ce type de chaudière. Il est plus difficile de régler le rapport combustible-air pour assurer une combustion efficace lorsque le tirage est induit, et l'infiltration de l'air dans le foyer augmente les pertes par les gaz de combustion. Le tirage doit être assez fort pour aspirer le gaz de combustion au-dessus des surfaces de chauffe. Un ventilateur de tirage induit pourrait compenser l'insuffisance de tirage par la cheminée mais, si un ventilateur devait être ajouté, il serait préférable d'installer un ventilateur de tirage forcé. Le tirage induit n'est habituellement appliqué qu'aux petits appareils de chauffage dont le débit calorifique est inférieur à 1 000 MJ/h.

Le système d'air de combustion à tirage forcé est plus couramment utilisé pour la combustion du gaz naturel ou du mazout (figure 21B). Un ventilateur fournit l'air de combustion à la chaudière tout en forçant le gaz de combustion au travers des surfaces de chauffe jusqu'à la base de la cheminée. Le tirage provoqué par la cheminée aide à l'évacuation des gaz à l'atmosphère. Le débit d'air est réglé en fonction de l'allure de chauffe par les registres d'entrée du ventilateur qui règlent le rapport combustible-air. L'air et le combustible sont ainsi mieux mélangés à cause de la turbulence provoquée par le plus grand différentiel de pression d'air dans le brûleur. Dans les systèmes à tirage forcé, le pourcentage d'excès d'air peut être inférieur, ce qui minimise les pertes de chaleur dans les gaz de combustion. Le désavantage que présente ce type de système est la pression positive relativement élevée à l'intérieur de l'enveloppe de la chaudière, ce qui entraîne des pertes de chaleur si l'enveloppe du foyer est mal conçue, mal construite ou mal entretenue. Ce type de système est employé couramment dans les chaudières de toutes dimensions.

Le système à tirage équilibré (figure 21C) est utilisé pour le charbon (pulvérisé ou brûlé sur une grille), la biomasse et les déchets municipaux. Les combustibles solides demandent une pression légèrement négative dans le foyer pour empêcher les fuites de cendre volante et de gaz dans la chaufferie. Le ventilateur de tirage forcé fournit l'air de combustion alors que celui de tirage induit aspire le gaz de la chambre de combustion au-dessus des surfaces de chauffe jusqu'à la base de la cheminée. Ce système permet également la surveillance étroite du rapport combustible-air à toutes les allures de chauffe. Lorsqu'on ne maintient la pression du gaz à l'intérieur de l'enveloppe de la chaudière qu'à une valeur légèrement négative, il y a diminution des infiltrations d'air à travers l'enveloppe et par conséquent, une réduction des pertes de chaleur.

Entraînements auxiliaires

Les pompes d'alimentation, les ventilateurs de tirage forcé et les ventilateurs de tirage induit sont habituellement entraînés par des moteurs électriques. Ces pompes ou ventilateurs peuvent aussi être entraînés par des turbines à vapeur s'il y a possibilité d'utiliser la vapeur de sortie à basse pression de celles-ci. Sinon, la vapeur doit être ventilée à l'atmosphère ou acheminée dans un condenseur réduisant ainsi les économies.

Soufflage de suie

On doit installer des souffleurs de suie dans les chaudières à combustibles solides et liquides, mais non sur les chaudières au gaz naturel. Les deux fluides de soufflage utilisés, soit la vapeur et l'air, sont tous deux efficaces pour éliminer les dépôts. Comme la pression d'air requise à la tête du souffleur de suie est habituellement supérieure à celle de l'air comprimé disponible, on doit installer un compresseur distinct muni d'un réseau de tuyauteries entourant la chaudière. Les souffleurs de suie à vapeur sont habituellement alimentés à partir du ballon de la chaudière par le biais d'un détendeur pour que la vapeur surchauffée soit acheminée jusqu'à la tête du souffleur de suie. Il est généralement plus économique d'installer un souffleur de suie à vapeur.

Appareillage de contrôle des rejets

Manipulation des cendres

Tous les combustibles solides produisent des cendres qui doivent être éliminées de la chaudière. La cendre se présente sous forme de résidus ou de cendres volantes. Les résidus proviennent des particules grossières de scorie qui tombent dans le cendrier placé sous la chambre de combustion. La cendre volante est une cendre très fine transportée par les gaz de combustion et qui se dépose dans les trémis sous l'économiseur, le réchauffeur d'air, le dépoussiéreur et le séparateur électrique. La cendre est transportée du cendrier et des trémies à un silo où elle peut être périodiquement enlevée par un camion ou transportée directement à un bassin de cendres adjacent à la chaufferie. Le transport peut se faire par convoyeur mécanique, pneumatique ou sous forme de boues. Comme on utilise de l'énergie électrique pour l'entraînement des convoyeurs, des pompes, des compresseurs ou des souf-fleurs, il faut bien vérifier leur fonctionnement et les entretenir avec soin pour minimiser les pertes d'énergie.

Contrôle des émissions

Ces systèmes sont conçus pour réduire la cendre volante (particules) et les émissions d'oxyde de soufre et d'oxyde d'azote qui s'échappent de la chaufferie. Les besoins et les choix de l'équipement sont régis par le gouvernement. Cet équipement n'est habituellement pas requis sur les petites chaudières au gaz naturel et au mazout. Toutes les chaudières au combustible solide doivent être munies d'au moins un des équipements de lutte contre la pollution suivants.

• Les séparateurs cycloniques (dépoussiéreurs) éliminent les particules par force centrifuge et de gravité par l'intermédiaire d'un séparateur à vortex. Ils sont surtout utilisés dans les petites installations à grille en raison de leur faible efficacité à retenir des particules fines.

- Les dépoussiéreurs électrostatiques chargent positivement les particules en suspension dans le gaz et les attirent ensuite sur des plaques collectrices portées à un potentiel négatif. Ces plaques sont alors secouées pour les débarrasser des particules, qui tombent dans des trémies. L'efficacité des dépoussiéreurs peut atteindre et même dépasser 98%.
- Les dépoussiéreurs à couche filtrante ou à sacs ont une vaste gamme d'applications dans les procédés de filtration à sec et humide pour la récupération des produits chimiques ou le contrôle des émissions de cheminée. Le gaz poussiéreux passe au travers de sacs en tissu qui retiennent un dépôt de filtration sur leur surface. À intervalles réguliers, on retire le dépôt du filtre en le secouant mécaniquement ou par jets d'air. L'efficacité des dépoussiéreurs à sacs peut atteindre ou dépasser 99%.
- Le lavage à la chaux est la méthode la plus ancienne pour éliminer les oxydes de soufre des gaz de combustion. Ces derniers sont admis dans un laveur Venturi et entrent en contact avec la liqueur de chaux absorbante qui y est injectée. Les gaz circulent ensuite à travers une tour de pulvérisation verticale où ils sont débarrassés de la liqueur et des composés sulfureux absorbés.

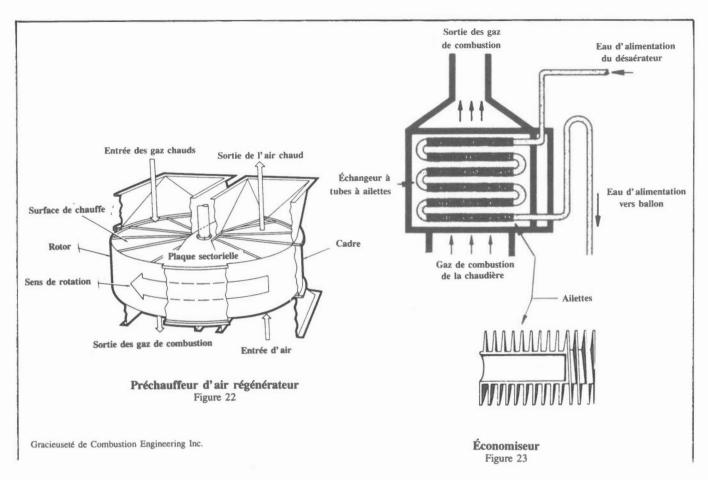
Tous les équipements de contrôle des émissions consomment des quantités variables d'énergie électrique, ce qui augmente de façon importante l'énergie totale utilisée dans une installation. Il importe donc que le personnel d'exploitation et d'entretien maintienne ces équipements en excellent état.

Récupération de chaleur

La récupération de chaleur peut se faire en retirant la chaleur des gaz de combustion qui s'échappent de la chaudière ou de la vapeur des purges. Cette chaleur est habituellement utilisée pour chauffer l'air de combustion, l'eau d'alimentation ou l'eau traitée.

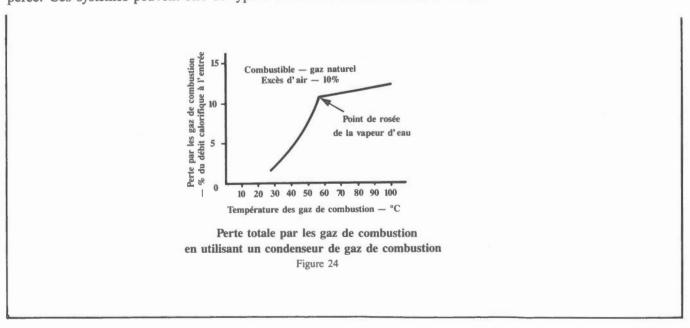
Préchauffeurs d'air

Les préchauffeurs d'air chauffent l'air de combustion à partir des gaz de combustion chauds qui s'échappent de la chaudière. Les principaux types de préchauffeurs d'air sont les récupérateurs et régénérateurs de type tubulaire.

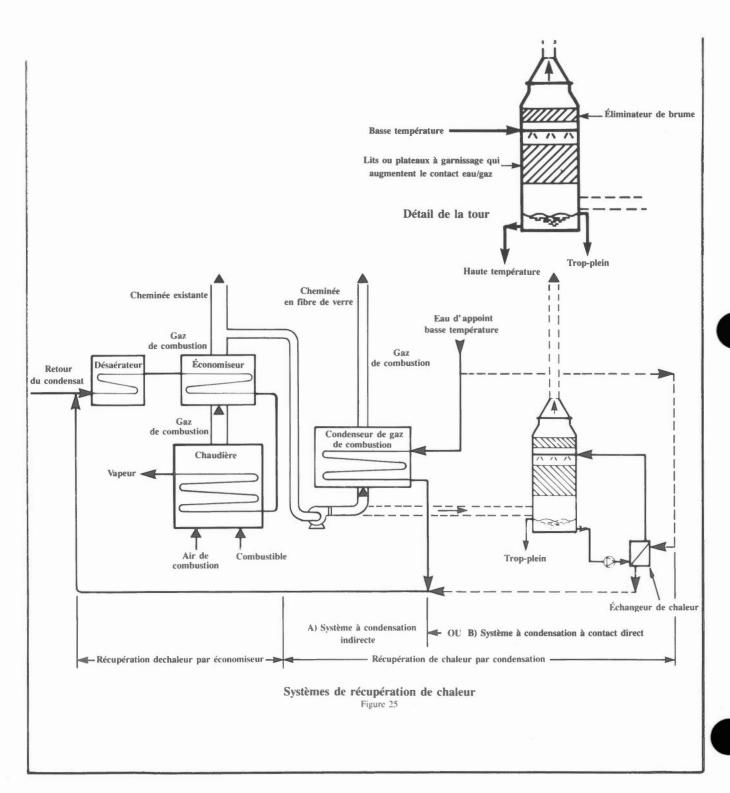

Le principe du préchauffeur régénérateur est illustré schématiquement dans la figure 22. La chaleur est transmise par une surface régénératrice qui est tournée alternativement dans les écoulements de gaz et d'air de combustion. Les surfaces de chauffe sont chauffées alternativement par les gaz de combustion puis refroidies lorsqu'elles transmettent la chaleur à l'air de combustion. La vitesse de rotation est très faible (1 à 3 tr/min) pour optimiser la transmission thermique et minimiser les infiltrations d'air dans le gaz.

Il faut une quantité d'énergie additionnelle pour entraîner les éléments rotatifs et alimenter le ou les ventilateurs qui doivent vaincre la résistance des surfaces de chauffe. Comme la pression du côté air du préchauffeur est toujours plus élevée que celle du côté gaz, il y a toujours infiltration d'air dans le gaz. L'opérateur doit s'assurer que tous les joints sont en bon état car des fuites importantes augmentent les exigences en air et en gaz, ainsi que la consommation électrique du ventilateur. Il peut y avoir accumulation de dépôts sur l'extrémité froide des réchauffeurs d'air. En effet, de la cendre volante combinée à l'humidité et à des composés sulfureux forme un dépôt de fines particules sur les éléments de l'extrémité froide du réchauffeur, c'est-à-dire sur les surfaces les plus proches de l'entrée d'air froid. L'opérateur doit se servir des souffleurs de suie à intervalles réguliers pour réduire ces dépôts. L'accumulation de dépôts force le ventilateur à consommer davantage pour vaincre la résistance.

Les préchauffeurs d'air récupérateurs sont des échangeurs de chaleur à calandre multitubulaire dans lesquels les gaz chauds circulent à l'intérieur des tubes et l'air circule à l'extérieur de ceux-ci. Il faut une quantité addition-nelle d'énergie pour que le ou les ventilateurs soufflent l'air et aspire le gaz au-dessus des surfaces de chauffe. Contrairement aux régénérateurs, il n'y a pas d'infiltration d'air dans le gaz. Ces deux types de réchauffeurs ont toutefois des problèmes "d'extrémité froide" semblables qui nécessitent l'usage fréquent de souffleurs de suie.


Économiseurs

Les économiseurs améliorent le rendement de la chaudière en récupérant la chaleur des gaz de combustion évacués de la chaudière et en la transférant à l'eau d'alimentation (figure 23). Les économiseurs peuvent être placés soit à l'intérieur de l'enveloppe principale de la chaudière ou montés à l'extérieur de celle-ci. Les tubes sont en acier ordinaire et ils peuvent être munis d'ailettes pour améliorer la transmission thermique. Dans les chaudières à charbon ou à mazout, les ailettes sont bien espacées pour réduire les dépots de cendre. Les économiseurs exigent une quantité additionnelle d'énergie pour que la pompe d'alimentation de la chaudière puisse forcer l'eau à travers les tubes et que le ou les ventilateurs puissent forcer l'air et les gaz de combustion. Les économiseurs présentent les mêmes problèmes d'extrémité froide que les réchauffeurs d'air. Il faut s'assurer que le soufflage de la suie empêche l'accumulation de dépôts sur l'extérieur des tubes. On peut effectuer une inspection visuelle par les portes d'observation.

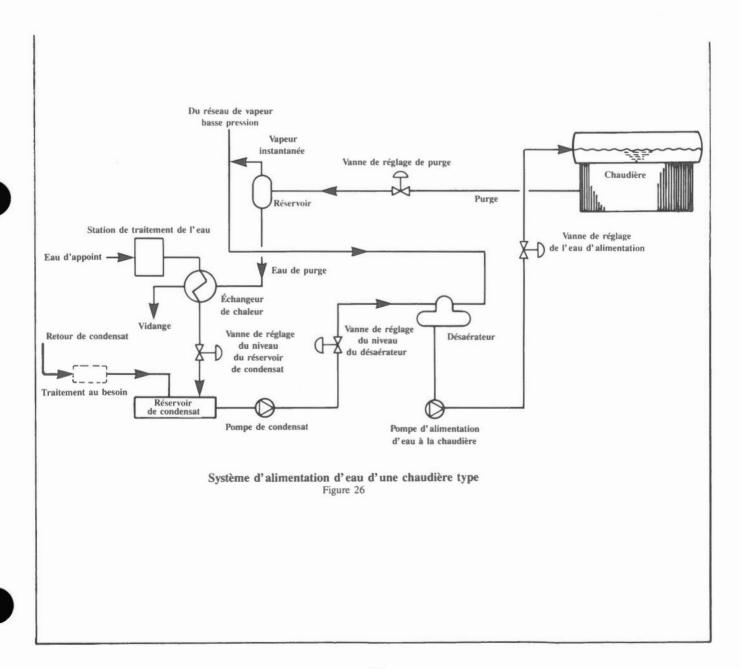

Condenseurs de gaz de combustion

Les condenseurs de gaz de combustion extraient une plus grande quantité de chaleur sensible des gaz de combustion que les économiseurs ou préchauffeurs d'air. Ils récupèrent également de la chaleur latente, ce qui entraîne d'importantes économies d'énergie. La chaleur latente de la vapeur d'eau contenue dans les gaz de combustion équivaut à environ 10% du HHV du gaz naturel. Seule la chaleur sensible est récupérée jusqu'à ce que les gaz de combustion du gaz naturel soient refroidis aux environs de 55°C. La figure 24 démontre la réduction rapide des pertes dans les gaz de combustion à mesure que le point de rosée est atteint et que la chaleur latente est récupérée. Ces systèmes peuvent être de type à condensation indirecte ou à contact direct.

Dans les systèmes à condensation indirecte, les gaz de combustion n'entrent pas en contact avec l'eau qui extrait la chaleur des gaz (figure 25A).

Les systèmes à condensation à contact direct refroidissent les gaz de combustion en les arrosant avec de l'eau pulvérisée dans une tour (figure 25B). Quoiqu'il existe différents types de tours, à la base, elles ressemblent aux laveurs qui sont quelquefois utilisés pour dépoussiérer les gaz. Les chaudières au gaz naturel se prêtent mieux à l'emploi de condenseurs de gaz de combustion puisque la vapeur d'eau condensée est moins acide que dans le cas du mazout.

Récupération de la chaleur des purges


La vapeur instantanée provoquée par les purges est habituellement acheminée au désaérateur pour économiser de l'énergie. Toutfois, l'eau résiduelle contient de la chaleur. Une partie de cette énergie peut être récupérée en faisant passer l'eau dans un échangeur de chaleur avant son évacuation à l'égout.

Traitement de l'eau d'alimentation et du condensat

Certaines exigences dans le traitement et le conditionnement de l'eau permettent d'éviter des problèmes d'exploitation.

- Il faut maintenir la boue et les solides dissouts et en suspension sous une forme qui facilite la purge.
- Il faut réduire la corrosion en évitant l'accumulation d'oxygène et de gaz carbonique dans l'eau.
- Il faut contrôler le pH de l'eau.
- Il faut empêcher la formation de mousse à l'intérieur du ballon car celle-ci provoque l'entraînement de l'eau par la vapeur.

On peut voir un système d'eau d'alimentation de chaudière à la figure 26.

Agents d'adoucissage

La principale source de tartre dans les chaudières provient de la dureté de l'eau due à la présence de calcium et de sels de magnésium. Il existe différents procédés d'adoucissement pour le traitement de l'eau d'appoint d'une chaudière: le traitement à la chaux sodée chaude, le traitement au phosphate chaud et celui au zéolite et à la chaux chaude. Le procédé exige de l'énergie sous forme de pompage. Pour obtenir une efficacité maximale, il faut en outre une quantité de vapeur à basse pression. L'énergie de la vapeur est toutefois récupérée dans l'eau d'alimentation.

Désalcaliseurs

Les désalcaliseurs extraient l'alcalinité, sous forme de bicarbonates, de l'eau d'appoint non traitée. Les bicarbonates se divisent en carbonates et en CO₂. Ce dernier est évacué de la chaudière avec la vapeur et forme un condensat acide qui corrode le réseau de tuyauteries du condensat. Les désalcaliseurs à écoulement divisé sont d'usage courant pour réduire l'alcalinité et la dureté de l'eau. Un autre type de désalcaliseur est le système à l'anion chlorure.

Déminéralisation

Lors de la déminéralisation, l'échange d'ions élimine les sels minéraux ionisés. On a recours à ce procédé pour obtenir l'eau pure requise pour les chaudières à haute pression. Le procédé ne nécessite pas d'énergie thermique mais la puissance de pompage est assez importante.

Désaérateurs

Les gaz non condensables corrodent les réseaux de tuyauteries de l'eau d'alimentation et du condensat. Le désaérateur, qui est l'appareil de traitement final de l'eau d'alimentation, élimine les gaz non condensables tels que l'O₂ et le CO₂ de l'eau d'alimentation. L'eau alimentée au désaérateur est un mélange de condensat de retour et d'eau d'appoint traitée. Les deux peuvent être acheminés séparément au désaérateur ou être mélangés au préalable dans un réservoir de condensat puis pompés au désaérateur.

On amorce le procédé de désaération en chauffant à la vapeur l'eau d'arrivée jusqu'à ce qu'elle atteigne la température de saturation. Les gaz séparés sont ventilés par la tête du désaérateur alors que l'eau chauffée et désaérée tombe dans un réservoir de stockage sous la tête de désaération. Les désaérateurs fonctionnent habituellement légèrement au-dessus de la pression atmosphérique. L'eau traitée est alors admise dans la chaudière à une température d'environ 105°C. Les chaufferies les plus anciennes sont munies de désaérateurs qui fonctionnent à une pression légèrement négative et elles doivent être équipées d'une pompe à vide pour extraire les gaz. L'énergie requise pour le procédé de désaération est la puissance exigée pour le pompage de l'eau et du condensat vers le désaérateur et la vapeur pour amorcer le procédé. L'énergie de la vapeur est récupérée dans l'eau d'alimentation.

Réservoirs de condensat

Les réservoirs de condensat emmagasinent le condensat de retour et l'eau d'appoint traitée. Les collecteurs peuvent être pressurisés ou ventilés à l'atmosphère. Les réservoirs ventilés perdent de 2 à 10% de la chaleur contenue dans le condensat sous forme de vapeur instantanée. Il faut tenir compte du coût de l'eau traitée qui doit être remplacée et du pompage. Un réservoir pressurisé évite ces pertes mais un système de vapeur à basse pression doit être disponible pour absorber la vapeur ventilée. On peut choisir de refroidir le condensat avec de l'eau d'appoint froide pour réduire ou éliminer la vaporisation du condensat.

Réservoirs de détente

Les réservoirs de détente servent à séparer le condensat et la vapeur instantanée produite lorsque la pression du condensat est réduite. Cela peut s'effectuer de façon que les décharges de condensat de la chaufferie soient réduites à la pression atmosphérique avant d'être retournées ou rejetées ou pour produire des quantités de vapeur à basse pression pour fins de chauffage ou de désaération. Si le débit de décharge d'une chaufferie est suffisamment élevé, on devrait tenter de récupérer la chaleur en utilisant la vapeur instantanée pour chauffer de l'eau potable ou de service.

Équipement d'injection de produits chimiques

On peut adoucir l'eau d'une chaudière en injectant des composés de phosphates dans l'eau d'alimentation ou le ballon de la chaudière. Ces produits chimiques transforment le calcium et les sels de magnésium en composés de phosphates qui s'éliminent facilement par des purges. L'équipement comprend un réservoir de mélange et une pompe pouvant injecter de petites quantités de produits chimiques en travaillant contre la pression de la chaudière.

Des agents chimiques sont quelquefois injectés dans l'eau d'alimentation pour l'en débarrasser de petites quan-

tités résiduelles d'O2.

Systèmes d'automatisation

Des équipements de surveillance et d'automatisation sont habituellement installés dans les chaufferies et leur forme et quantité varient d'une installation à l'autre. Comme les pertes d'énergie peuvent être importantes, il faut mesurer certaines valeurs pour quantifier le rendement énergétique et connaître les problèmes d'exploitation du système. La combinaison des systèmes de mesure et de régulation automatique peut améliorer sensiblement l'exploitation d'une chaufferie.

- Un fonctionnement plus précis et uniforme maintient les conditions optimales établies pendant l'essai de
- La régulation automatique libère le personnel d'exploitation des tâches de réglage continuel des variables en fonction de la demande. Il peut ainsi surveiller plus efficacement le rendement de l'ensemble de l'installation et disposer de plus de temps pour la maintenance de l'appareillage.
- L'automatisation améliore la sécurité d'exploitation d'une chaufferie.

• L'usage approprié d'un système automatisé peut diminuer la consommation énergétique de la chaufferie, réduire les coûts d'exploitation et économiser de l'argent.

Il existe plusieurs types de systèmes d'automatisation qui donnent environ les mêmes résultats. On peut donner comme exemple, un système de régulation tout ou rien, un système de régulation proportionnelle pneumatique ou électronique, un régulateur programmable, un microprocesseur ou un mini-ordinateur. Pour obtenir de plus amples renseignements, le lecteur peut se référer au module 15, «Mesures et contrôles» et au module 16, «Régulation automatique».

Systèmes de sécurité

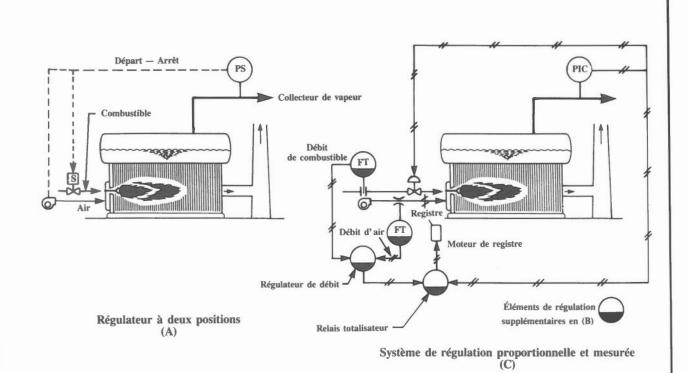
Il s'agit du premier système d'automatisation à prendre en considération puisqu'il affecte la sécurité de fonctionnement de l'équipement et la sécurité du personnel. Des exigences minimales en sécurité sont établies par les organismes de règlementation et les compagnies d'assurance. Les exigences sont fonction du type et de la capacité de la chaudière, du nombre de brûleurs et du combustible. Voici une vue d'ensemble des caractéristiques possibles d'un système de sécurité.

- Une soupape de sûreté conçue pour la pleine capacité de la chaudière et réglée pour décharger à une pression fixe au-dessus du point de consigne.
- Un système de réglage du brûleur qui intègre souvent plusieurs caractéristiques sécuritaires. Ce système doit répondre aux exigences d'un organisme de règlementation et peut comprendre la purge de la chaudière avec de l'air avant l'admission du combustible au brûleur, la confirmation de la bonne position de la vanne d'alimentation et des registres d'air avant l'allumage, le fonctionnement et la confirmation de la présence de la veilleuse, l'ouverture de la vanne d'arrêt du combustible et la confirmation de l'établissement de la flamme principale. La flamme du brûleur est par la suite surveillée de manière continuelle pour assurer un fonctionnement sûr. Plusieurs dispositifs de synchronisation sont habituellement intégrés au système pour anticiper les problèmes avant qu'ils n'entraînent une condition dangereuse. Les paramètres d'exploitation d'une chaudière sont les conditions d'alimentation en combustible, la vapeur de pulvérisation s'il y a lieu, les conditions d'alimentation en air de combustion, la pression du foyer et le bas niveau d'eau du ballon.

Systèmes de régulation de la combustion

Le choix d'un système de régulation de la combustion est très important puisqu'il affecte le fonctionnement sûr et efficace de la chaudière. Les différents systèmes sont décrits ci-dessous.

- Les systèmes de régulation à deux ou trois positions sont les plus simples et les moins coûteux. Lorsque l'installation est munie d'un régulateur à deux positions (figure 27A), l'allumage est amorcé par un pressostat, lorsqu'il s'agit d'une chaudière à vapeur, ou d'un rupteur thermique lorsqu'il s'agit d'une chaudière à eau chaude. Le brûleur est, soit arrêté, soit à son maximum. Ce genre de régulateur est le moins efficace. En effet, lorsque la chaudière est allumée, elle peut fonctionner légèrement au-delà de la limite maximale, et lorsqu'elle n'est pas en service, les surfaces de chauffe sont refroidies par l'air tiré par la cheminée. Un système à trois positions fonctionne selon trois régimes: arrêt, bas régime, plein régime. Ceci tend à réduire la durée des positions d'arrêt tout en permettant un meilleur contrôle de la pression de vapeur.
- Le système de régulation proportionnelle règle la chaudière pour qu'elle fonctionne continuellement à un régime qui varie entre une valeur minimale et maximale pour répondre à la demande de vapeur. Ce système tend à mieux faire correspondre le débit énergétique et la demande de puissance de la chaudière en tout temps et est généralement plus efficace qu'un régulateur à deux ou trois positions. Une grande variété de systèmes proportionnels a été mise au point pour améliorer l'efficacité de la combustion de manière continue tout en répondant aux exigences rigoureuses de la demande en vapeur.


Un système de régulation proportionnelle et parallèle règle la vanne d'alimentation et les registres d'air de combustion à l'unisson en fonction de la demande en vapeur et selon un rapport prédéterminé qui se répète à l'intérieur de certaines limites (figure 27B). Les registres sont montrés dans la gaine de sortie du ventilateur, mais habituellement des volets règlent le débit d'air à l'entrée de ce dernier.

Dans un système de régulation proportionnelle et mesurée, le combustible et l'air sont initialement réglés en parallèle en fonction de la demande en vapeur, comme dans l'exemple précédent, mais un rapport de débit combustible-air prédéterminé est utilisé pour mieux maintenir les conditions d'essai de combustion (figure 27C). On peut améliorer davantage le système par un «contrôle croisé». Dans ce cas, le débit d'air mesuré est utilisé pour limiter le débit de combustible à la quantité nécessaire pour une combustion sécuritaire. Il augmente également le débit d'air pour assurer la combustion sécuritaire du combustible mesuré. Ce type de régulation présente les avantages suivants:

- L'augmentation du débit de combustible en fonction d'une augmentation de charge est limitée pour correspondre à l'augmentation du débit d'air.
- La réduction du débit d'air en fonction d'une diminution de charge est limitée pour correspondre à la diminution du débit du combustible.
- Lorsque les charges sont élevées, le régime est limité par la capacité du système d'air de combustion et non par celui du combustible. Par conséquent, on évite le fonctionnement de la chaudière lorsque les rapports combustible-air sont élevés, pouvant entraîner des conditions d'allumage dangereuses.
- Il y a protection contre le danger que peut provoquer le blocage en position ouverte de la vanne de réglage du combustible puisque le système augmente le débit d'air pour compenser le débit de combustible.

On peut améliorer davantage les systèmes de régulation parallèle ou mesurée, en analysant les gaz de combustion comme mesure finale de l'efficacité de la combustion (figure 27D). On parle alors d'un nouveau réglage du taux d'excès d'air. L'O₂, le CO₂ et le CO ont tous été utilisés comme indice d'efficacité de la combustion. L'adjustement à partir de l'O₂ est le type le plus courant. Le CO₂ ne devrait pas être utilisé parce que la même valeur peut survenir lorsqu'il y a une insuffisance d'air ou lorsque le taux d'excès d'air est juste. Si l'on utilise le CO, on le maintient à des valeurs très faibles en mg/kg (CO aux gaz de combustion) mais cet analyseur présente le désavantage d'être coûteux. Le nouveau réglage du taux d'excès d'air est une méthode idéale puisqu'elle donne une mesure finale et réelle de l'efficacité de la combustion. En d'autres termes, même si les registres ne sont pas étanches, que les conditions de mesure varient et entraînent des erreurs de mesure de débit ou que d'autres variations surviennent, l'analyse du gaz demeure une mesure finale efficace du procédé de combustion. L'analyse et la mesure des gaz permettent à l'opérateur de diminuer manuellement l'excès d'air ou deviennent une référence pour la correction automatique. Dans ce dernier cas, l'analyse optimale des gaz de combustion à tous les régimes est «programmée» dans les régulateurs et comparée à la valeur réelle; le rapport combustible-air est alors automatiquement réduit pour correspondre à la valeur «programmée» (Le term "programmée" ne signifie pas nécessairement qu'un ordinateur est requis bien qu'il puisse être utilisé).

La modernisation du système de régulation de la combustion d'une chaudière peut représenter une possibilité de réduction des coûts d'exploitation. Les possibilités d'économies sont fonction directe de la capacité de l'équipement existant et des possibilités des nouveaux systèmes de régulation à assurer des conditions efficaces et à les maintenir pour une période prolongée.

PIC Débit de combustible 0 Débit d'air Régulateur Moteur de registre d'excès Moteur de registre $d'air - O_2$ Régulateur de débit Relais totaliseur Éléments de régulation Système de régulation proportionnelle et parallèle (B) supplémentaires en (C) Régulation mesurée avec nouveau réglage du taux d'excès d'air

Systèmes de régulation de la combustion Figure 27 (D)

Systèmes de régulation de l'eau d'alimentation

Le système de régulation de l'eau d'alimentation assure le niveau d'eau approprié dans le ballon indépendamment de la demande en vapeur et du régime de la chaudière. Voici une description brève de quelques systèmes.

- Les petites chaudières sont quelquefois équipées d'un système de régulation de niveau tout ou rien qui fait démarrer la pompe d'alimentation lorsque le niveau du ballon est bas et l'arrête lorsque le niveau est élevé. Il s'agit du système le moins coûteux et le moins efficace.
- Certaines chaudières sont équipées d'un régulateur de niveau proportionnel. Ces système sont classés en trois catégories distinctes. Dans un système à élément unique, l'eau d'admission est réglée en fonction du niveau du ballon seulement. Il peut s'agir d'un système de régulation mécanique, pneumatique ou électronique qui n'est utilisé que sur les chaudières dont la puissance est de 15 000 kg/h maximum et dont les charges sont constantes. Un système à deux éléments mesure le niveau du ballon et le débit de vapeur. Le signal de débit de vapeur aide à prévoir les variations de la demande et par conséquent, les exigences en eau d'alimentation. Un système à trois éléments mesure en plus le débit de l'eau d'alimentation. Cela compense les variations en approvisionnement d'eau d'alimentation, ainsi que celle du niveau d'eau de la chaudière pendant les changements de charge importantes.

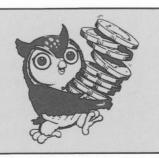
Systèmes de surveillance

On entend par *surveillance*, l'observation de l'ensemble du fonctionnement de l'appareillage de chaufferie, ainsi que l'indication des valeurs mesurées.

La surveillance des variables de la chaufferie à intervalles réguliers joue un rôle essentiel dans le maintien des conditions appropriées. La combustion est un procédé complexe qui dépend d'un grand nombre de variables qui interagissent. Par conséquent, il faut toujours prévoir la possibilité d'un changement dans l'efficacité de la combustion entraînée par des conditions variables du combustible, de l'air de combustion ou de l'équipement. Une grande variation serait évidente, mais une variation graduelle ne pourrait être détectée que par les bonnes habitudes de surveillance du personnel d'exploitation.

Il existe une vaste gamme d'équipements de surveillance pour aider le personnel à assurer l'exploitation efficace de l'installation.

- Un avertisseur est un système d'alarme qui indique des conditions indésirables par le biais de signaux sonores et visuels.
- Une combinaison d'indicateurs et d'enregistreurs sont utilisés pour afficher des renseignements importants.
- Des totalisateurs mesurent les débits de vapeur et de combustible afin de calculer le rendement de la chaudière.
- Des enregistreurs de données peuvent être utilisés pour scruter automatiquement les variables mesurées et provoquer des alarmes, fournir des rapports sur le fonctionnement pendant chaque période et enregistrer l'évolution des variables critiques.
- Des microprocesseurs peuvent agir comme appareils de surveillance seulement ou assurer simultanément le réglage du brûleur, la régulation de la combustion et de l'eau d'alimentation et la surveillance de toute l'installation. Grâce à ces systèmes, le personnel de direction et d'exploitation obtient des profils de performance de chaque chaudière et de l'ensemble de la chaufferie.


Systèmes de cogénération

La cogénération est la production simultanée de puissance électrique et de chaleur. L'exemple le plus courant est l'alternateur/turbine à contre-pression ou à extraction. Une turbine à gaz raccordée à un générateur d'électricité est un autre exemple où la vapeur est produite par une chaudière de récupération qui absorbe la chaleur des gaz d'évacuation de la turbine. Dans ce cas, la chaudière peut produire de la vapeur directement ou par le biais d'une turbine à contre-pression.

La conduite d'évacuation d'une turbine à gaz contient 75 à 80% de l'oxygène contenu dans l'air atmosphérique. Elle peut ainsi fournir la chaleur sensible et l'air de combustion à la chaudière. L'économie de combustible au générateur de vapeur peut être considérée comme une réduction de la consommation spécifique (énergie consommée par kWh de puissance électrique fournie) de la turbine à gaz. Dans presque tous les cas, cela entraîne une consommation spécifique d'environ deux tiers de celle de la centrale électrique la plus efficace.

Les petites chaufferies sont quelquefois conçues pour une pression supérieure à celle requise par le procédé. Si l'on augmente la pression de la chaudière et l'on achemine la vapeur au procédé par le biais d'un petit groupe turbine/alternateur, de l'électricité à bon marché peut être produite pour une modeste augmentation de la consommation du combustible.

POSSIBILITÉS DE GESTION DE L'ÉNERGIE

Les possibilités de gestion de l'énergie identifient différentes façons d'utiliser rationnellement l'énergie pour réduire les coûts d'exploitation. Dans le présent chapitre, plusieurs exemples de possibilités types sont données sous les rubriques Possibilités de maintenance, Possibilités d'amélioration de coût modique et Possibilités de rénovation. On n'énumère pas de façon exhaustive toutes les possibilités d'économie disponibles. Le chapitre est destiné à stimuler la vigilance du personnel de gestion, d'exploitation et de maintenance dans la recherche de toutes les possibilités qu'offre une installation.

Possibilités de maintenance

Les possibilités de maintenance sont des initiatives d'économie d'énergie exécutées de façon périodique, au moins une fois par année. L'efficacité de fonctionnement, la fréquence des activités d'entretien et le dépannage en sont des exemples.

Fonctionnement

- 1. Vérifier régulièrement les procédures relatives au traitement de l'eau.
- 2. Maintenir un niveau approprié des solides totalement dissous dans l'eau de la chaudière.
- 3. Fonctionner à la pression de vapeur ou à la température d'eau chaude la plus basse répondant aux exigences du système de distribution.
- 4. Préparer le combustible pour optimiser la combustion.
- 5. Réduire les variations de charge et planifier, s'il y a lieu, la demande pour maximiser le rendement de la chaudière.
- 6. Vérifier régulièrement le rendement des chaudières.
- 7. Contrôler les données sur le rendement et les comparer régulièrement.
- 8. Contrôler régulièrement l'excès d'air de la chaudière.

Entretien

- 1. Maintenir le réglage approprié des brûleurs.
- 2. Réparer les joints des réchauffeurs d'air récupérateurs lors des arrêts planifiés de la chaudière.
- 3. Vérifier et réparer les brides, les tiges de vannes et les presse-étoupes des pompes pour s'assurer de leur étanchéité.
- 4. Assurer l'étanchéité de toutes les gaines d'air et de la culotte de cheminée des gaz de combustion.
- 5. Vérifier s'il y a des «points chauds» sur l'enveloppe de la chaudière indiquant des réglages inappropriés devant être corrigés pendant la période d'arrêt annuelle.
- 6. Nettoyer les surfaces des tubes de la chaudière à proximité du foyer.
- 7. Remplacer ou réparer l'isolant manquant ou endommagé.
- 8. Remplacer les portes d'observation ou de visite de la chaudière et réparer ou remplacer au besoin les joints de portes.
- 9. Remplacer ou réparer tous les purgeurs de vapeur défectueux.
- 10. Régler périodiquement les appareils de mesure et faire la mise au point du système de régulation de la combustion.

Exemples concrets relatifs au fonctionnement

Les tâches suivantes devraient faire partie intégrante d'une routine normale.

1. Bien suivre les procédures recommandées pour le traitement de l'eau afin d'éviter l'entartrage, qu'il s'agisse des procédures relatives à l'injection de produits chimiques ou du traitement de l'eau d'appoint. Comme le tartre s'accumule sur des surfaces de chauffe invisibles à l'opérateur, celui-ci n'en est averti que lorsqu'un tube se rompt. Entre temps, le gaspillage de combustible peut se maintenir jusqu'à 1% sur une période prolongée.

2. Il importe de maintenir le niveau recommandé de solides dissous dans l'eau de la chaudière par des procédures appropriés de purge afin d'éviter l'entraînement des solides par la vapeur. Il est toutefois également important de ne pas excéder la fréquence recommandée des purges.

Exemple: une chaudière aquatubulaire produit 10 000 kg/h de vapeur à 1 600 kPa(abs.) et 240°C. L'eau d'alimentation est à 105°C, le débit du mazout n° 2 est de 805 L/h et le HHV est de 38,68 MJ/L. La pression du ballon est de 1 600 kPa (abs.), pression selon laquelle de traitement de l'eau doit être établi. Le taux minimal de purge exigé est de 5% mais le taux réel est de 10%. On peut calculer la chaleur perdue comme suit:

Enthalpie de l'eau de la chaudière à 1 600 kPa (abs.)

858,6 kJ/kg

Enthalpie de l'eau d'alimentation à 105°C

440,17 kJ/kg

Perte de chaleur entraînée par les purges excessives = 10 000 x (0,10 - 0,05) x (858,6 - 440,17)

= 209 215 kJ/h

Perte de chaleur en pourcentage de débit de combustible = $\frac{209215}{805 \times 38.68 \times 1000} \times 10^{-1}$

= 0.67%

- 3. Toute réduction de pression et de température à la sortie de la chaudière entraîne une diminution de la consommation du combustible. L'opérateur doit vérifier l'appareil consommateur de vapeur ou d'eau chaude pour déterminer si une réduction peut être tolérée. Avant d'adopter quelque changement que ce soit, l'opérateur doit consulter le manufacturier de chaudières car de tels changements peuvent influencer la circulation de l'eau de la chaudière.
- 4. On doit maintenir des procédures appropriées de préparation du combustible. Par exemple, si la viscosité du mazout n° 6 augmente à cause d'un mauvais fonctionnement de l'équipement de chauffage du mazout, la pompe requiert plus de force motrice et la combustion est moins efficace.
- 5. Il faut garder les surfaces de chauffe propres en utilisant des souffleurs de suie et en surveillant les tubes à intervalles réguliers. Si l'opérateur ne constate pas une amélioration visible de la propreté des surfaces après avoir utilisé un souffleur de suie, il doit changer la séquence, la synchronisation et la durée de fonctionnement du souffleur de suie jusqu'à ce qu'il obtienne les résultats souhaités.
- 6. Une meilleure planification de la consommation de vapeur peut éliminer les variations de charge inefficaces et un fonctionnement de la chaudière à faible charge. Il peut être possible de faire fonctionner la chaudière à pleine charge un jour sur deux au lieu de la faire fonctionner continuellement à 50% de son rendement. Alternativement, la charge peut être prise par une chaudière de plus petite capacité qui pourrait fonctionner continuellement proche du plein régime.
- 7. Il faut calculer le rendement de la chaudière régulièrement en utilisant la méthode directe ou indirecte.
- 8. Des données d'exploitation doivent être recueillies pour comparer régulièrement le rendement actuel au rendement obtenu antérieurement.
- 9. Il faut vérifier régulièrement l'excès d'air et les autres constituants des gaz de combustion. Quoiqu'une surveillance continuelle donne de meilleurs résultats, la mise de fond requise pour ce type d'équipement est élevée. Les essais d'échantillonnage par un appareil d'Orsat ou d'autres procédures chimiques peuvent se révéler fiables pour connaître les conditions de combustion existantes. Les brûleurs ou le rapport air-combustible devraient être réglés de nouveau rapidement lorsque le taux d'excès d'air est élevé ou qu'il y a présence de monoxyde de carbone. La figure 13 démontre l'impact d'une insuffisance ou d'un excès d'air de combustion sur les pertes de la chaudière.

Exemples concrets de maintenance

Ces tâches devraient être exécutées de façon périodique, au moins une fois par année. Elles peuvent être considérées comme faisant partie des procédures d'entretien préventif.

1. Maintien du réglage approprié du brûleur. Il est bon que la mise à feu du brûleur soit effectuée par un représentant d'expérience du constructeur de brûleurs. L'opérateur est alors en mesure d'identifier l'allure appropriée d'une flamme pour fins de référence. L'allure de la flamme devrait être vérifiée à intervalles réguliers et lorsque surviennent de nouvelles conditions de service.

- 2 . Réparation des joints des réchauffeurs d'air du type régénérateur. Lorsque les joints sont en mauvais état, des quantités excessives d'air peuvent circuler du côté air au côté gaz du réchauffeur d'air. Par conséquent, il y a augmentation de la consommation du ventilateur de tirage forcé et réduction possible du rendement de la chaudière.
- 3. Réparation des brides, des tiges de vannes et des presse-étoupes des pompes. La réparation sur-le-champ des fuites de vapeur et d'eau non seulement réalise des économies d'énergie mais évite d'endommager les tiges et les surfaces des brides par les jets d'eau ou de vapeur haute vitesse.
- 4. Entretien de l'étanchéité des gaines d'air et de la culotte de cheminée des gaz de combustion. Les fuites d'air des réseaux de gaines augmentent la charge du ventilateur de tirage forcé. Quoique les fuites de gaz n'affectent pas le fonctionnement de ce ventilateur, elles peuvent rendre les conditions de service dangereuses à l'intérieur de la chaufferie. Lorsqu'il y a un ventilateur de tirage induit, toutes les fuites de gaz dans la culotte de cheminée aspirent l'air dans le réseau des gaz de combustion, ce qui augmente la charge du ventilateur de tirage induit.
- 5. Vérification des points chauds de l'enveloppe de la chaudière. Les «points chauds» sont un indice de perte de chaleur excessive par l'enveloppe de la chaudière. La température de la surface de l'enveloppe extérieure ne doit pas être supérieure à 50°C, quoique des températures plus élevées peuvent être inévitables aux endroits où il est impossible d'installer de l'isolant, comme autour de l'équipement du brûleur. L'élimination des points chauds constitue une mesure de sécurité qui aide à assurer de bonnes conditions de travail.
- 6. Remplacement ou réparation de l'isolant manquant ou endommagé. D'importantes quantités de chaleur sont perdues lorsque les conduites de vapeur et d'eau chaude ne sont pas isolées.
- 7. Remplacement des portes de chaudière et réparation des joints de portes. Les fuites d'air ou de gaz causent les mêmes problèmes que ceux décrits dans l'exemple 4. De plus, lorsque la porte du foyer est ouverte, il y a une grande quantité de chaleur qui est perdue à cause du rayonnement de la chaleur vers l'extérieur. Il y a également danger qu'une perturbation du foyer entraîne l'éjection soudaine des gaz chauds à travers l'ouverture, présentant des risques pour le personnel.
- 8. Réparation de tous les purgeurs de vapeur défectueux. Les purgeurs de vapeur peuvent tomber en panne en position d'ouverture ou de fermeture. Lorsqu'un purgeur de vapeur est ouvert, il peut laisser passer des quantités excessives de vapeur, ce qui augmente les pertes énergétiques. Lorsque le purgeur de vapeur est fermé, aucun condensat ne peut s'échapper. Si le purgeur est raccordé à un échangeur de chaleur, ce dernier se remplit graduellement de condensat et tombe en panne. Si l'échangeur de chaleur sert à réchauffer de l'air extérieur, le condensat peut geler en hiver et endommager les tubes de l'appareil. Si le purgeur fermé sert à vidanger la canalisation de vapeur, une quantité excessive de condensat peut s'accumuler dans celle-ci, entraîner des coups de bélier et par conséquent, endommager les raccords et l'équipement. La mise en application régulière d'un programme d'entretien des purgeurs de vapeur est une mesure très importante pour minimiser les pertes énergétiques.
- 9. Réglage des appareils de mesure et mise au point du système de régulation. La baisse de rendement d'une chaudière est souvent provoquée par un taux d'excès d'air trop élevé. Si le système de régulation de la combustion ne fonctionne pas comme il se doit, on a tendance à augmenter le débit d'air pour s'assurer que le rapport combustible-air ne deviendra pas excessif en fonction des variations de la charge ou qu'il ne perturbera pas les conditions de service. Si le rapport combustible-air est trop élevé, c'est qu'il y a insuffisance d'air de combustion et que les conditions de combustion peuvent être instables entraînant des petites explosions dans le foyer. Lorsque le système de régulation de la combustion fonctionne bien, la chaudière fonctionne au plus faible taux d'excès d'air possible tout en maintenant une combustion appropriée pendant les variations de charge. En général, une réduction de 20 à 10% du taux d'excès d'air augmente le rendement de 1,5%.

Possibilités d'amélioration de coût modique

Les possibilités d'amélioration de coût modique sont des initiatives de gestion de l'énergie réalisées en une seule fois et dont le coût n'est pas élevé. Elles se différencient des possibilités de maintenance qui doivent être répétées de façon périodique. Voici des exemples de possibilités d'économie d'énergie de coût modique dans les chaufferies.

- 1. Installation d'un appareillage de surveillance du rendement.
- 2. Relocalisation de la prise d'air de combustion.
- 3. Récupération de la chaleur des purges.
- 4. Amélioration de l'isolation.
- 5. Réduction du taux d'excès d'air de la chaudière.

Exemples concrets d'amélioration de coût modique

1. Installation d'un appareillage de surveillance du rendement

L'appareillage de surveillance le plus rudimentaire devrait pouvoir déterminer le débit calorifique à l'entrée et à la sortie de la chaudière. L'appareil de mesure de combustible ou le wattmètre pourrait être un appareil portatif utilisé pour différentes chaudières. La mesure du débit, de la pression et de la température à la sortie de la chaudière ainsi que de la température de l'eau d'alimentation de celle-ci exige des appareils additionnels. L'analyse des gaz de combustion doit être effectuée pour déterminer les pertes par les gaz de combustion. Si le système est équipé d'un préchauffeur d'air ou d'un économiseur pour la récupération de la chaleur des gaz de combustion, on pourrait mesurer la température du gaz et de l'air à l'entrée et à la sortie pour vérifier le rendement.

2. Relocalisation de la prise d'air de combustion

La prise d'air de combustion peut quelquefois être relocalisée au haut de la chaufferie pour préchauffer l'air avec de la chaleur autrement gaspillée.

Exemple: une chaudière à mazout n° 2 utilise 14 500 kg/h d'air à une température moyenne de 20°C. L'installation d'une gaine au haut de la chaufferie augmente la température moyenne de l'air à 30°C. La chaleur spécifique de l'air est de 1,01 kJ/kg·°C.

$$= 146 450 \text{ kJ/h}$$

La chaudière fonctionne 6 000 heures par année, et le coût du combustible est de 5\$/GJ.

Économie annuelle de combustible =
$$\frac{146 450 \times 6000 \times 5}{10^6}$$
$$= 4 393\$ \text{ par an}$$

Le coût du réseau de gaines est de 10 000\$.

Période de rentabilité =
$$\frac{10\ 000\$}{4\ 393\$}$$

3. Récupération de la chaleur des purges

La chaleur des purges peut être récupérée en acheminant la vapeur instantanée au désaérateur et/ou en faisant passer l'eau purgée par des échangeurs de chaleur pour chauffer l'eau d'appoint.

Exemple: une chaudière évapore 13 500 kg/h de vapeur saturée sèche à 1 400 kPa (abs.) et son taux de purge est de 5%. L'eau d'alimentation de la chaudière est de 1 500 kPa à 105°C.

Enthalpie de l'eau de la chaudière = 830,1 kJ/kg (Voir la Table 2)

Après analyse des systèmes de vapeur et d'eau d'alimentation du désaérateur, on s'aperçoit que 75% de la chaleur contenue dans la purge est récupérable. La chaudière fonctionne 5 000 heures par année et le coût du combustible est de 5\$/GJ.

Économie annuelle =
$$\frac{560\ 317\ x\ 0,75\ x\ 5\ 000\ x\ 5}{10^6}$$

= 10506\$

Le coût de l'équipement de récupération de la chaleur des purges, y compris l'échangeur de chaleur pour la transmission de la chaleur à l'eau d'appoint traitée, et le réseau de tuyauteries est de 15 000\$.

Période de rentabilité =
$$\frac{15 000\$}{10 506\$}$$

= 1.4 an

4. Amélioration de l'isolation

On pourrait ajouter de l'isolant aux endroits non isolés ou augmenter l'épaisseur de l'isolant déjà installé. Les chaudières installées il y a 15 à 20 ans étaient quelquefois isolées pour protéger le personnel et non pour économiser de l'énergie. L'épaisseur de l'isolant était choisie en fonction d'une température de l'enveloppe extérieure de 55°C. Si l'on ajoute de l'isolant pour réduire la température à 40°C, on peut réaliser des économies d'énergie d'au moins 0,25% sur la facture annuelle de combustible. De plus, certains endroits non accessibles au personnel d'exploitation peuvent ne pas être isolés.

5. Réduction du taux d'excès d'air de la chaudière

On peut réduire le taux d'excès d'air de la chaudière en réglant le système de régulation et l'équipement du brûleur. Ces réglages peuvent être effectués à prix modique.

Exemple: une chaudière au gaz naturel fonctionne avec 60% d'excès d'air. Son rendement est de 77% et les coûts annuels de combustible sont de 400 000\$. Un nouveau réglage des appareils de régulation et des réparations mineures effectuées sur les registres de la boîte à vent du brûleur s'élèvent à 2 000\$. Ces changements permettent un fonctionnement avec 40% d'excès d'air.

Selon la figure 9, on s'aperçoit qu'une réduction du taux d'excès d'air de 60 à 40% entraîne une réduction des pertes par les gaz de combustion de 21 à 19%, à une température de gaz de combustion de 210°C. Si l'on suppose que les autres pertes et la température des gaz de combustion demeurent inchangées, le rendement de la chaudière est évalué à 79%.

Coût annuel du combustible à 40% d'excès d'air = 400 000\$ x
$$\frac{77}{79}$$

$$= 389 873$$
\$

Période de rentabilité =
$$\frac{2000\$}{10127\$}$$

$$= 0,2 \text{ an } (2,4 \text{ mois})$$

Possibilités de rénovation

Les possibilités de rénovation sont des initiatives de gestion de l'énergie réalisées en une seule fois et dont le coût est important. La présente section démontre comment l'installation d'un nouvel équipement peut réaliser des économies d'énergie. Les exemples exposés comprennent habituellement des changements qui peuvent affecter à la fois l'agencement et le fonctionnement des équipements secondaires de la chaufferie. On suggère de consulter une entreprise d'ingénieurs-conseils ou un manufacturier de chaudières pour évaluer les changements proposés. Voici des exemples types de possibilités de rénovation.

- 1. Installation d'un économiseur.
- 2. Installation d'un préchauffeur d'air.
- 3. Installation d'une nouvelle chaudière.
- 4. Modernisation du brûleur.
- 5. Installation d'une chaudière électrique.
- 6. Installation d'un «turbulateur» dans la chaudière à tubes de fumées.
- 7. Installation d'un condenseur de gaz de combustion.
- 8. Conversion du mazout au gaz.

Exemples concrets de rénovation

1. Installation d'un économiseur

L'installation d'un économiseur dans la culotte de cheminée de la chaudière augmente la chute de pression dans le réseau des gaz de combustion. Dans une chaudière à tirage forcé, il peut être nécessaire d'installer un nouveau ventilateur de tirage forcé ou au moins un nouveau rotor et un nouveau moteur. On obtient par conséquent, une augmentation de la pression dans la chambre de combustion, ce qui peut nécessiter un nouveau réglage du brûleur. Dans un système à tirage induit, le ventilateur peut être remplacé, mais la pression de la chambre de combustion et le brûleur demeurent les mêmes. Il y a une perte de pression additionnelle du côté de l'eau, ce qui peut nécessiter des modifications aux pompes d'alimentation de la chaudière. De plus, la température des gaz sera réduite, réduisant le tirage de la cheminée. En conséquence, il faut évaluer les modifications à apporter à la tuyauterie de l'eau d'alimentation, aux accessoires de l'économiseur et à la culotte de cheminée.

Exemple: l'analyse qui suit est basée sur l'ajout d'un économiseur autonome raccordé à une chaudière aquatubulaire à tirage forcé produisant un maximum de 20 000 kg/h de vapeur surchauffée à 3 100 kPa (eff.). La chaudière, du type au gaz naturel, fonctionnait avec 10% d'excès d'air, la température de sortie des gaz était de 300°C et le rendement était de 80%. Avant la conversion, la consommation annuelle de combustible de la chaudière était de 292 780 GJ à un coût de 4,24\$/GJ. Des modifications ont été apportées au ventilateur de tirage forcé, aux brûleurs et aux moteurs de la pompe d'alimentation. Le coût total du projet était de 158 000\$ (1984).

Coût annuel du combustible avant la conversion = 292 780 GJ x 4,24\$/GJ = 1 241 387\$

Après la conversion, l'excès d'air était toujours de 10%, mais la température des gaz de combustion avait diminué à 180°C. Selon la figure 9, on constate que la réduction de la perte de chaleur par les gaz de combustion est égale à 4.8%. On peut allouer une perte additionnelle par rayonnement de 0.2% du débit calorifique à l'entrée pour un rendement de transmission thermique de l'économiseur d'environ 96%. Ainsi, la chaleur récupérée dans l'économiseur = 4.8 - 0.2 = 4.6% du débit calorifique à l'entrée.

Énergie annuelle fournie par la vapeur= 292 780 x 0,8

= 234 224 GJ

Énergie fournie par le combustible après la conversion = $\frac{234\ 224}{(0.80\ +\ .046)}$ = 276 860 GJ

Coût annuel de combustible après la conversion = 276 860 x 4,24

= 1 173 886\$

Économie annuelle de combustible = 1 241 387\$ — 1 173 886\$

= 67 501\$

Période de rentabilité =
$$\frac{158\ 000\$}{67\ 501\$}$$

= 2,34 ans

2. Installation d'un préchauffeur d'air

Lorsqu'on étudie la possibilité d'installer un préchauffeur d'air, on doit consulter le constructeur de brûleurs pour connaître la température maximale admissible de l'air de combustion. Cette température est souvent assez basse, soit de 250°C. Elle ne peut être supérieure à 400°C puisque le brûleur devrait alors être construit en acier allié au lieu d'acier au carbone.

L'installation d'un préchauffeur d'air augmente la chute de pression dans le réseau des gaz de combustion et le système d'air de combustion. Si le système à tirage forcé n'est équipé que d'un seul ventilateur, il peut être nécessaire d'installer un nouveau ventilateur et un moteur. Lorsque le système est à tirage équilibré, il se peut que les deux ventilateurs aient besoin d'être remplacés quoique de nouveaux rotors et moteurs pourraient suffire. Il peut également être nécessaire de modifier le brûleur puisque la pression dans la chambre de combustion augmente de manière importante. Il faudrait installer un nouveau réseau de gaines pour les gaz et l'air et peut-être modifier la cheminée.

3. Installation d'une nouvelle chaudière

Le remplacement d'une chaudière inefficace par une nouvelle diminuera de façon sensible la consommation de combustible, tout particulièrement si la chaudière fonctionne constamment à des charges inférieures à sa capacité nominale.

Exemple: dans un cas réel, une chaudière au gaz aquatubulaire avait été conçue pour produire un maximum de 15 000 kg/h de vapeur saturée sèche à 2 200 kPa (abs.) à partir d'une eau d'alimentation de 105°C. Par des mesures de conservation d'énergie, la charge a été réduite à 5 000 kg/h pour 6 000 heures par année. Lorsque la chaudière fut soumise à des essais à cette charge réduite, on a calculé un rendement de 71%. Le combustible coûte 4,24\$/GJ. Une chaudière à serpentins capable de produire 5 000kg/h aux mêmes conditions avec un rendement de 80% fut installée pour un coût total de 50 000\$.

Enthalpie de la vapeur saturée à 2 200 kPa (abs.) 2 799,1 kJ/kg (selon la table 2)

Enthalpie de l'eau d'alimentation à 105°C

440,17 kJ/kg (selon la table 2)

Débit calorifique à l'entrée de l'ancienne chaudière = $\frac{5\ 000\ (2\ 799,1\ -440,17)}{0,71\ x\ 10^6}$

 $= 16,61 \, \text{GJ/h}$

Coût annuel du combustible = $16,61 \times 6000 \times 4,24$

= 422558\$

Coût annuel du combustible de la nouvelle chaudière = 422 558 $x \frac{71}{80}$ = 375 020x

Économie annuelle = 422558\$ - 375020\$ = 47538\$

Période de rentabilité = $\frac{50\ 000\$}{47\ 538\$}$

= 1,05 an

4. Modernisation du brûleur

L'installation d'un nouveau brûleur peut faire réaliser des économies d'énergie en réduisant l'excès d'air dans les gaz de combustion.

Exemple: une chaudière au gaz naturel fonctionne avec 40% d'excès d'air. On ne peut réduire le taux d'excès d'air à cause du mélange incomplet du combustible et de l'air dans le brûleur existant. Un nouveau brûleur garanti pour fonctionner avec 10% d'excès d'air coûte 45 000\$. Le coût annuel de combustible est de 400 000\$. La température des gaz de combustion est de 250°C.

Selon la figure 9, on constate qu'une réduction d'excès d'air de 40 à 10% diminue les pertes par les gaz de combustion de 22 à 19%. L'augmentation correspondante du rendement de la chaudière, tout en allouant 2% pour les pertes par rayonnement et les pertes non mesurées, est de 75 à 78%.

Coût annuel du combustible après la conversion =
$$400\ 000\$ \times \frac{75}{78}$$

= $384\ 615\$$

Période de rentabilité =
$$\frac{45\ 000\$}{15\ 385\$}$$

= 2.9 ans

5. Installation d'une chaudière électrique

Il n'est pas efficace de faire démarrer une chaudière de grande capacité et de la faire fonctionner à charge réduite, par exemple en été pour chauffer de l'eau potable. Une chaudière d'appoint électrique choisie pour fonctionner à pleine capacité ou presque, peut entraîner des économies d'énergie et d'argent importantes.

6. Installation d'un turbulateur dans la chaudière à tubes de fumées

Dans les chaudières à tubes de fumées de moins de 100 CV ou dans celles converties du charbon au gaz ou au mazout, la chambre de combustion tend à être trop grande par rapport au volume des gaz qui la traverse. Par conséquent, l'échange de chaleur est moins efficace, ce qui diminue le rendement thermique. Un «turbulateur» est une plaque spiralée mise en rotation par un moteur électrique pour induire une turbulence aux gaz de combustion. Le rendement thermique devrait augmenter ainsi de 3 à 4%.

Prenons une chaudière à tubes de fumées de 70 CV dont le coût annuel en combustible est de 65 000\$. L'installation d'un turbulateur coûte 2 500\$.

Économie annuelle de combustible = 65 000\$ x 0,03 - 1 950\$

Période de rentabilité =
$$\frac{2500\$}{1950\$}$$

= 1,3 an

7. Installation d'un condenseur de gaz de combustion

Un condenseur de gaz de combustion réduit la température des gaz de sortie de la chaudière à une valeur inférieure au point de rosée de la vapeur d'eau contenue dans le gaz, récupérant ainsi la chaleur latente des gaz de combustion. L'analyse suivante s'applique à la modernisation d'un système d'un complexe de serres commerciales de grandes dimensions. La chaufferie comprenait une chaudière à tubes de fumées de 350 CV au gaz ou au mazout utilisant 12 GJ/h de gaz naturel avec 10% d'excès d'air 4 000 heures par année. Le coût du combustible était de 4,24\$/GJ. On a installé un condenseur de gaz de combustion pour réduire la température des gaz de cheminée de 260°C à 50°C. La mise de fonds de cette modernisation s'est élevée à 22 000\$.

La chaleur récupérée a été utilisée pour chauffer l'eau qui autrement aurait été chauffée par le gaz naturel brûlant dans la chaudière, avec un rendement de 78%. Un échangeur de chaleur efficace à 95% a été utilisé pour transmettre la chaleur de l'eau du condenseur.

Selon la figure 9, la perte par la cheminée à 260°C avec 10% d'excès d'air est de 19% du débit calorifique à l'entrée. Selon la figure 24, la perte par la cheminée à 50°C est de 7,3%.

Amélioration nette du rendement =
$$(19 - 7.3) \times .95$$

= 11.1%

Économie annuelle de combustible = 12 GJ/h x
$$\frac{11,1}{(78 + 11,1)}$$
 = 1.495 GJ/h

Économie annuelle en dollars =
$$1,495$$
 GJ/h x $4,000$ h x $4,24$ \$/GJ = 25 355 \$

Période de rentabilité =
$$\frac{22\ 000\$}{25\ 355\$}$$

= 0,87 an (moins de 11 mois)

8. Conversion du mazout au gaz

Quoique la conversion d'une chaudière au mazout à une chaudière au gaz n'assure pas nécessairement des économies d'énergie, elle peut entraîner d'importantes économies d'argent.

Exemple: une chaudière d'une capacité nominale de 10 000 kg/h brûle du mazout n° 2 à un coût de 0,30\$/L. La consommation annuelle de mazout est de 2,2 millions de litres. On estime le coût de la conversion au gaz naturel à 60 000\$, y compris le nouvel équipement du brûleur, les modifications apportées aux appareils de régulation, la tuyauterie de gaz et le coût de l'installation. La chaudière fonctionne avec un excès d'air de 40 % et la température des gaz de combustion est de 240°C. Le gaz naturel coûte 5\$/GJ.

Lorsqu'on convertit du mazout au gaz, le rendement de la chaudière est réduit parce qu'il y a une plus grande quantité de vapeur d'eau dans les gaz de combustion provenant de la combustion de l'hydrogène contenu dans le combustible.

Selon la figure 10, pour le mazout n° 2, la perte totale par les gaz de combustion à un taux d'excès d'air de 40% et à une température de gaz de combustion de 240°C est de 18%. Les pertes non mesurées et les pertes par rayonnement sont d'environ 2%. Par conséquent, le rendement de la chaudière est de 100 - (18 + 2)% = 80%.

Selon la figure 9, pour le gaz naturel, la perte totale par les gaz de combustion au même taux d'excès d'air et à la même température de gaz de combustion est de 21%. Les pertes non mesurées et les pertes par rayonnement sont encore évaluées à 2%. Le rendement de la chaudière à gaz naturel est de 100 - (21 + 2)% = 77%.

Coût annuel en mazout =
$$0.30$$
\$ x 2.2 x 10^6 litres
= $660\ 000$ \$

Le coût annuel de pompage du mazout s'élève à 5 000\$, donc le coût total du chauffage au mazout est de 665 000\$.

Le pouvoir calorifique du mazout n° 2 (annexe C) est de 38,68 MJ/L.

Énergie annuelle consommée en mazout =
$$\frac{2,2 \times 10^6 \text{ L/an} \times 38,68 \text{ MJ/L}}{1\ 000 \text{ MJ/GJ}}$$

= 85 096 GJ/an

La consommation d'énergie totale par année est supérieure lorsque la chaudière est au gaz naturel à cause du rendement inférieur de celle-ci.

Énergie annuelle consommée en gaz = 85 096 GJ x
$$\frac{80}{77}$$
 = 88 411 GJ/an

Coût annuel en gaz = 88 411 GJ/an x
$$3.5/GJ = 442,055$$
\$
Économie annuelle = 665 000\$ — 442 055\$
= 222 945\$
Période de rentabilité = $\frac{60\ 000\$}{222\ 945\$}$
= 0,269 an (3 mois)

À noter qu'on pourrait économiser davantage en réduisant le taux d'excès d'air de 40 à 10% en utilisant un meilleur brûleur à gaz.

ANNEXES

- A Glossaire
- **B** Tables
- C Conversions courantes
 D Feuilles de travail

GLOSSAIRE

Air théorique — Volume d'air requis pour une combustion complète. Également appelé air stoechiométrique.

Air total — Volume total d'air fourni pour la combustion et exprimé en pourcentage d'air théorique.

Analyse au passage — Inspection visuelle d'une installation pour observer comment l'énergie est employée et déceler les cas où elle est gaspillée.

Analyse de diagnostic — Analyse des possibilités d'économies d'énergie, comprenant l'évaluation du fonctionnement du procédé actuel, l'étude des régistres correspondants, le calcul des économies possibles, de même que l'estimation de la mise de fonds et des coûts d'exploitation afin de déterminer la rentabilité du projet.

Analyse des gaz — Détermination des constituants des gaz de combustion.

Appareil d'Orsat — Appareil analyseur de gaz dans lequel sont mesurés l'O₂, le CO₂ et le CO par absorption.

Ballon — Réservoir cylindrique sous pression.

Boîte à vent du brûleur — Chambre de surpression autour d'un brûleur dans laquelle la pression d'air est suffisamment élevée pour assurer une bonne distribution d'air.

Boue — Dépot dans l'eau d'une chaudière qui s'élimine habituellement par purge.

Brûleur — Appareil qui introduit le combustible et l'air dans un foyer à la vitesse et à la turbulence désirées pour maintenir une combustion appropriée.

Brûleur au mazout à pulvérisation par la vapeur — Brûleur qui brûle du mazout à l'aide d'une pulvérisation provoquée par de la vapeur.

Brûleur au mazout à pulvérisation mécanique — Brûleur qui utilise la pression pour pulvériser le mazout.

Cendre — Matière inorganique incombustible contenue dans le combustible.

Charge de base — Charge de chaudière essentiellement constante durant de longues périodes.

Chaudière — Récipient fermé où l'eau est transformée en vapeur.

Chaudière aquatubulaire — Chaudière dans laquelle l'eau et la vapeur sont contenues dans les tubes.

Chaudière à tubes de fumées — Chaudière dans laquelle les gaz de combustion circulent dans des tubes rectilignes, transmettant la chaleur à l'eau qui les entoure.

Chaudière électrique — Chaudière dans laquelle la source de chauffage est électrique.

Cheminée — Canalisation verticale qui, en raison de la différence de densité entre les gaz chauds internes et l'air externe, crée un tirage à sa base.

Combustion complète — Oxydation complète de tous les constituants combustibles et utilisant tout l'oxygène fourni.

Culotte de cheminée — Canalisation qui transporte les produits de combustion entre la chaudière et la cheminée.

Dépoussiéreur — Séparateur et collecteur de cendres de type électrostatique.

Désaération — Élimination de l'air et des gaz de l'eau d'alimentation d'une chaudière avant son admission dans celle-ci.

Dureté — Mesure de la quantité de calcium et de sels de magnésium dans l'eau d'appoint.

Eau d'alimentation — Eau admise dans une chaudière pendant son fonctionnement. L'eau d'alimentation comprend l'eau d'appoint et le condensat de retour.

Eau de chaudière — Eau à l'intérieur d'une chaudière.

Eau traitée — Eau traitée chimiquement pour servir d'eau d'appoint.

Ébullition — État d'un liquide soumis à l'action de la chaleur et dans lequel se forment des bulles de vapeur.

Enthalpie — Mesure de l'énergie thermique par unité de masse d'une matière. L'enthalpie s'exprime en kJ/kg.

Entraînement — Solides et liquides chimiques entraînés par la vapeur évacuée de la chaudière.

Enveloppe — Couverture métallique renfermant la chaudière.

Excès d'air — Air excédentaire fourni pour la combustion afin d'obtenir une oxydation complète.

Filtre à sacs — Filtre dont la couche filtrante se présente sous forme de sacs en tissu et qui recueille les particules des gaz qui le traverse.

Fumée — Petites particules de gaz de carbone ou de suie provenant d'une combustion incomplète.

Gaz de combustion — Produits gazeux d'une combustion.

Gaz sec — Quantité de gaz dans les gaz de combustion qui ne contient pas de vapeur d'eau.

Imbrûlé — Matière combustible qui n'est pas complètement oxydée.

Infiltration d'air — Air qui pénètre dans une chaudière, une gaine ou une culotte de cheminée.

Isolant — Matériau à faible conductivité thermique utilisé pour réduire les pertes de chaleur.

Laveur — Appareil utilisé pour éliminer les solides et certains gaz des gaz de combustion par entraînement dans l'eau ou une solution chimique.

Niveau d'eau — Niveau de l'eau dans le ballon d'une chaudière.

Perte dans les gaz secs — Perte représentant la différence entre l'enthalpie des gaz sec d'évacuation et leur enthalpie à la température de l'air ambiant.

Perte non mesurée — Partie du bilan thermique d'une chaudière qui représente la différence entre 100% et la quantité de chaleur absorbée par l'unité, ainsi que toutes les pertes classifiées et exprimées en pourcentage.

Perte par rayonnement — Terme utilisé pour désigner les pertes de chaleur par conduction, par rayonnement et par convection d'une chaudière à l'air ambiant.

Point de rosée — Température à laquelle commence la condensation lors du refroidissement de l'air ou du gaz.

Possibilités d'amélioration de coût modique — Initiatives de gestion de l'énergie qui sont réalisées une seule fois et dont le coût n'est pas élevé.

Possibilités de maintenance — Initiatives de gestion de l'énergie qui sont exécutées de façon périodique, une fois par année. Ces possibilités comprennent des programmes d'entretien préventif.

Possibilités de rénovation — Initiatives de gestion de l'énergie qui sont réalisées une seule fois et dont le coût est important.

Pouvoir calorifique inférieur — Pouvoir calorifique supérieur moins la chaleur latente de vaporisation de la vapeur d'eau dans les produits de combustion.

Pouvoir calorifique supérieur — (HHV) Quantité de chaleur recueillie en refroidissant les produits de la combustion complète d'une quantité unitaire de combustible jusqu'à la température initiale du combustible et de l'air.

Pression de ballon — Pression de la vapeur maintenue dans le ballon de vapeur de la chaudière.

Produits de combustion — Gaz, vapeurs et solides provenant de la combustion d'un combustible.

Pulvérisateur — Dispositif qui transforme le liquide en un fin jet.

Purge — Vidange d'une partie de l'eau de la chaudière pour réduire la concentration ou évacuer la boue.

Purge continuelle — Vidange ininterrompue de l'eau de la chaudière.

Purge intermittente — Vidange de l'eau de la chaudière à intervalles.

Rapport combustible-air — Rapport de la masse ou du volume du combustible à l'air.

Registre — Appareil utilisé dans un brûleur pour régler la direction du débit d'air de combustion.

Rendement — Rapport de la sortie et de l'entrée. Le rendement d'une chaudière est le rapport entre la chaleur absorbée par l'eau et la vapeur à la chaleur dans le combustible brûlé.

Solides dissouts — Solides en solution dans l'eau.

Souffleur de suie — Appareil mecanique qui utilise la vapeur ou l'air pour nettoyer les surfaces de chauffe.

Surface de chauffe - Surfaces d'échange de chaleur d'une chaudière, entre les gaz de combustion et l'eau.

Taux d'évaporation — Quantité d'eau évaporée par unité de temps.

Taux de purge — Taux exprimé en pourcentage du débit de l'eau d'alimentation acheminée à la chaudière.

Température ambiante — Température de l'air autour de l'équipement.

Température de saturation — Température à laquelle survient l'évaporation à une pression donnée.

Tirage — Différence entre la pression atmosphérique et la pression dans le foyer ou les conduites de gaz d'une chaudière.

Tirage du foyer — Tirage dans un foyer.

Traitement de l'eau d'alimentation — Préparation de l'eau d'alimentation d'une chaudière par l'ajout de produits chimiques pour éviter la formation de tartre ou éliminer d'autres conditions indésirables.

Vapeur saturée sèche — Vapeur à la température de saturation et ne contenant pas d'humidité.

Ventilateur de tirage forcé — Ventilateur fournissant de l'air sous pression à l'appareillage de combustion.

Ventilateur de tirage induit — Ventilateur qui évacue les gaz chauds de l'équipement d'échange de chaleur.

EXIGENCES EN COMBUSTION D'AIR

TABLE 1

Combustible	Masse d'air théorique kg/GJ tel que brûlé (air stoechiométrique)	Excès d'air type	Masse d'air total kg/GJ tel que brûlé
Gaz naturel	318	5% *	334
Mazout N° 2	323	10% *	355
Mazout Nº 6	327	10% *	360
Charbon bitumineux (40% de produits volatils, basé sur l'absence d'humidité et de cendre)	327	20%	392
Biomasse (écorce de pin, basé sur l'absence d'humidité et de cendre)	315	50%	473

^{*} Note: les brûleurs conçus pour un allumage avec un faible taux d'excès d'air peuvent fonctionner avec 1 à 2% d'excès d'air.

PROPRIÉTÉS DE LA VAPEUR ET DE L'EAU SATURÉES (TEMPÉRATURE) TABLE 2

Temp	pérature	Press.	Ve	olume,m ³ /	kg	Eau	Enthalpie	,kJ/kg	E	ntropie,kJ.	/kg K
°C	K	kPa	Eau	Évap.	Vapeur		Évap.	Vapeur	Eau	Évap.	Vapeur
t	T	P	v_f	v_{fg}	v_g	h_f	h_{fg}	h_g	S_f	S_{fg}	S_g
0.	273.15	0.6108	0.0010002	206,30	206,31	-0.04	2501.6	2501,6	-0,0002	9.1579	9.1577
0.01 1.0 2.0 3.0 4.0	273.16 274.15 275.15 276.15 277.15	0.6112 0.6566 0.7055 0.7575 0.8129	0.0010002 0.0010001 0.0010001 0.0010001	206,16 192,61 179,92 168,17 157,27	206,16 192,61 179,92 168.17 157,27	0.00 4.17 8.39 12.60 16.80	2501,6 2499,2 2496,8 2494.5 2492.1	2501,6 2503,4 2505,2 2507,1 2508,9	0.0000 0.0153 0.0306 0.0459 0.0611	9,1575 9,1156 9,0741 9,0326 5,9915	9.1575 9.1311 9.1047 9.0785 9.0526
5.0	278.15	0.8718	0.0010000	147,16	147.16	21.01	2489.7	2510.7	0.0762	9,9507	9.0269
6.0	279.15	0.9345	0.0010000	137,78	137,78	25.21	2487.4	2512.6	0.0913	4,9102	9.0015
7.0	280.15	1.0012	0.0010001	129,06	129.06	29.41	2485.0	2514.4	0.1063	8,8699	8.9762
8.0	281.15	1.0720	0.0010001	120,96	120.97	33.60	2482.6	2516.2	0.1213	8,8300	8.9513
9.0	282.15	1.1472	0.0010002	113,43	113,44	37.80	2480.3	2518.1	0.1362	8,7903	8.9265
10.0	283.15	1.2270	0.0010003	106.43	106,43	41.99	2477,9	2519.9	0.1510	8.7510	8,9020
12.0	285.15	1.4014	0.0010004	93.83	93.84	50.34	2473,2	2523.6	0.1805	8.6731	8,8536
14.0	287.15	1.5973	0.0010007	82.90	82,90	58.75	2468,5	2527.2	0.2096	8.5963	8,8060
16.0	289.15	1.8168	0.0010010	73.38	73.38	67.13	2463,8	2530.9	0.2388	8.5205	8,7593
18.0	291.15	2.0624	0.0010013	65.09	65,09	75.50	2459,0	2534.5	0.2677	8.4458	8,7135
20.0	293.15	2.337	0.0010017	57.84	57.84	83,86	2454,3	2538,2	0.2963	8.3721	8.6654
22.0	295.15	2.642	0.0010022	51.49	51.49	92,23	2449,6	2541,8	0.3247	8.2994	8.6241
24.0	297.15	2.982	0.0010026	45.92	45,93	100,59	2444,9	2545,5	0.3530	8.2277	8.5806
26.0	299.15	3.360	0.0010032	41.03	41.03	108,95	2440,2	2549,1	0.3810	8.1569	8.5379
28.0	301.15	3.778	0.0010037	36.73	36,73	117,31	2435,4	2552,7	0.4088	8.0870	8.4959
30.0	303.15	4.241	0.0010043	32.93	32.93	125.66	2430,7	2556,4	0.4365	P.0181	8,4546
32.0	305.15	4.753	0.0010049	29.57	29,57	134.02	2425,9	2560.0	0.4040	7.9500	8,4140
34.0	307.15	5.318	0.0010056	26.60	26,60	142.35	2421,2	2563,6	0.4913	7.8828	6,3740
36.0	309.15	5.940	0.0010063	23.97	23.97	150.74	2416,4	2567,2	0.5184	7.8164	8,3348
38.0	311.15	6.624	0.0010070	21.63	21.63	159.09	2411,7	2570,8	0.5453	7.7509	8,2962
40.0	313.15	7.375	0.0010078	19,545	19.546	167,45	2406,9	2574,4	0.5721	7.6861	8,2583
42.0	315.15	8.198	0.0010086	17,691	17.692	175,81	2402,1	2577,9	0.5967	7.6222	8,2209
44.0	317.15	9.100	0.0010094	16,035	16.036	184,17	2397,3	2581,5	0.6252	7.5590	8,1842
46.0	319.15	10.086	0.0010103	14,556	14.557	192,53	2392.5	2585,1	0.6514	7.4966	6,1481
48.0	321.15	11.162	0.G010112	13,232	13.233	200,89	2387,7	2588,6	0.6776	7.4350	8,1125
50.0	323.15	12.335	0.0010121	12,045	12.046	209,26	2382,9	2592,2	0.7035	7.3741	8.0776
52.0	325.15	13.613	0.0010131	10,979	10.980	217.62	2378,1	2595,7	0.7293	7.3138	8.0432
54.0	327.15	15.002	0.0010140	10,021	10.022	225.99	2373,2	2599,2	0.7550	7.2543	8.0093
56.0	329.15	16.511	0.0010150	9,156	9.159	234,35	2368,4	2602,7	0.7604	7.1955	7.9759
58.0	331.15	18.147	0.0010161	8,380	8.381	242.72	2363,5	2606,2	0.8058	7.1373	7.9431
60.0	333.15	19.920	0.0010171	7.678	7.679	251.09	2358,6	2609.7	0.8310	7.0798 7.0230 6.9667 6.9111 6.8561	7.9108
62.0	335.15	21.838	0.0010182	7.043	7.044	259.46	2353,7	2613.2	0.8560		7.8790
64.0	337.15	23.912	0.0010193	6.468	6.469	267.84	2348,9	2616.6	0.8809		7.8477
66.0	339.15	26.150	0.0010205	5.947	5.948	276.21	2343,9	2620.1	0.9057		7.8168
68.0	341.15	28.563	0.0010217	5.475	5.476	284.59	2338,9	2623.5	0.9303		7.7864
70.0	343.15	31.16	0.3010228	5.045	5.046	292,97	2334,0	2626,9	0.9548	6.8017	7,7565
72.0	345.15	33.96	0.0010241	4.655	4.656	301,36	2329,0	2630,3	0.9792	6.7478	7,7270
74.0	347.15	36.96	0.0010253	4.299	4.300	309,74	2324,0	2633,7	1.0034	6.6945	7,6979
76.0	349.15	40.19	0.0010266	3.975	3.976	318,13	2318,9	2637.1	1.0275	6.6418	7,6693
78.0	351.15	43.65	0.0010279	3.679	3.680	326,52	2313,9	2640.4	1.0514	6.5896	7,6410
80.0	353.15	47,36	0.0010292	3.408	3.409	334.92	2308.8	2643.8	1.0753	6.5380	7.6132
82.0	355.15	51,33	0.0010305	3.161	3.162	343.31	2303.8	2647.1	1.0990	4.4868	7.5858
84.0	357.15	55,57	0.0010319	2.934	2.935	351.71	2298.6	2650.4	1.1225	6.4362	7.5588
86.0	359.15	60,11	0.0010333	2.726	2.727	360.12	2293.5	2653.6	1.1460	6.3861	7.5321
88.0	361.15	64,95	0.0010347	2.535	2.536	368.53	2288.4	2656.9	1.1693	6.3365	7.5058
90.0	363.15	70.11	0.0010361	2,3603	2,3613	376.94	2283,2	2660.1	1.1925	6.2873	7.4799
92.0	365.15	75.61	0.0010376	2,1992	2,2002	395,36	2278.0	2663.4	1.2156	6.2387	7.4543
94.0	367.15	81.46	0.0010391	2,0509	2,0519	393,78	2272.5	2666.6	1.2386	6.1905	7.4291
96.0	369.15	87.69	0.0010406	1,9143	1,9153	402.20	2267.5	2669.7	1.2615	6.1427	7.4042
98.0	371.15	94.30	0.0010421	1,7883	1,7893	410.63	2262,2	2672.9	1.2842	6.0954	7.3796
100.0	373.15	101.33	0.0010437	1.6720	1.6730	419.06	2256,9	2676.0	1.3069	6.0485	7,3554

PROPRIÉTÉS DE LA VAPEUR ET DE L'EAU SATURÉES (TEMPÉRATURE) TABLE 2

Temp	érature	Press.	V	∕olume,m³/kg	S	Eau	Enthalpie,	kJ/kg	E	ntropie,kJ	/kg K
°C	K	kPa	Eau	Évap.	Vapeur		Évap.	Vapeur	Eau	Évap.	Vapeur
t	T	P	v_f	v_{fg}	v_g	h_f	h_{fg}	h_g	s_f	Sfg	Sg
106.0	373.15	101.33	0.0010437	1.6720	1.6730	419.06	2256.9	2676.0	1,369	6.0485	7.3554
105.0	378.15	120.80	0.0010477	1.4182	1,4193	440.17	2243.6	2683.7	1,3630	5.9331	7.2962
110.0	383.15	143.27	0.0010519	1.2089	1,2099	461.32	2230.0	2691.3	1,4189	5.8203	7.2388
115.0	388.15	169.06	0.0010562	1.0352	1.0363	482.50	2216.2	2698.7	1,4733	5.7099	7.1832
120.0	393.15	198.54	0.0010606	0.8905	0,8915	503.72	2202.2	2706.0	1,5276	5.6017	7.1293
125.0	398.15	232.1	0.0010652	0.7692	0.7702	524.99	2188.0	2713.0	1.5813	5.4957	7.0769
130.0	403.15	270.1	0.0010700	0.6671	0.6681	546.31	2173.6	2719.9	1.6344	5.3917	7.0261
135.0	408.15	313.1	0.0010750	0.5807	0.5818	567.68	2158.9	2726.6	1.6669	5.2897	6.9766
140.0	413.15	361.4	0.0010801	0.5074	0.5085	589.10	2144.0	2733.1	1.7390	5.1894	6.9284
145.0	418.15	415.5	0.0010853	0.4449	0.4460	610.59	2128.7	2739.3	1.7906	5.0910	6.8815
150.0	423.15	476.0	0.0010908	0.3914	0.3924	632.15	2113.2	2745.4	1.8416	4.9941	6.8358
155.0	428.15	543.3	0.0010964	0.3453	0.3464	653,77	2097.4	2751.2	1.8923	4.8989	6.7911
160.0	433.15	618.1	0.3011022	0.3057	0.3068	675,47	2081.3	2756.7	1.9425	4.8050	6.7475
165.0	438.15	700.8	0.3011082	0.2713	0.2724	697.25	2064.8	2762.0	1.9923	4.7126	6.7048
170.0	443.15	792.0	0.0011145	0.2414	0.2426	719.12	2047.9	2767.1	2.0416	4.6214	6.6630
175.0	448.15	892,4	0.0011209	0.21542	0.21654	741.07	2030.7	2771.8	2.0906	4.5314	6.6221
180.0	453.15	1002.7	0.0011275	0.19267	0.19380	763.12	2013.2	2776.3	2.1393	4.4426	6.5819
185.0	458.15	1123.3	0.0011344	0.17272	0.17386	785.26	1995.2	2780.4	2.1876	4.3548	6.5424
190.0	463.15	1255.1	0.0011415	0.15517	0.15632	807.52	1976.7	2784.3	2.2356	4.2680	6.5036
195.0	468.15	1398.7	0.0011489	0.13969	0.14084	829.88	1957.9	2787.8	2.2833	4.1621	6.4654
200.0	473.15	1554.9	0.3011565	0.12600	0.12716	A52.37	1938.6	2790.9	2.3307	4.0971	6.4278
205.0	478.15	1724.3	0.0011644	0.11386	0.11503	R74.99	1918.8	2793.8	2.3778	4.0128	6.3904
210.0	483.15	1907.7	0.0011726	0.10307	0.10424	697.73	1898.5	2796.2	2.4247	3.9293	6.3539
215.0	488.15	2106.0	0.0011811	0.09344	0.09463	920.63	1877.6	2798.3	2.4713	3.8463	6.3176
220.0	493.15	2319.8	0.0011900	0.08485	0.08604	943.67	1856.2	2799.9	2.5178	3.7639	6.2817
225.0	498.15	2550.	0.0011992	0.07715	0.07835	966.88	1834.3	2801.2	2.5641	3.6820	6.2461
230.0	503.15	2798.	0.0012087	0.07024	0.07145	990.27	1811.7	2802.0	2.6102	3.6006	6.2107
235.0	508.15	3063.	0.0012187	0.06403	0.06525	1013.83	1786.5	2802.3	2.6561	3.5194	6.1756
240.0	513.15	3348.	0.0012291	0.05843	0.05965	1037.60	1764.6	2802.2	2.7920	3.4386	6.1406
245.0	518.15	3652.	0.0012399	0.05337	0.05461	1061.58	1740.0	2801.6	2.7478	3.3579	6.1057
250.0	523.15	3978.	0.0012513	0.04879	0.05004	1085.78	1714.7	2800.4	2.7935	3.2773	6.0708
255.0	528.15	4325.	0.0012632	0.04463	0.04590	1110.23	1688.5	2798.7	2.8392	3.1968	6.0359
260.0	533.15	4694.	0.0012756	0.04086	0.04213	1134.94	1661.5	2796.4	2.8848	3.1161	6.0010
265.0	538.15	5088.	0.0012887	0.03742	0.03871	1159.93	1633.5	2793.5	2.9306	3.0353	5.9658
270.0	543.15	5506.	0.0013025	0.03429	0.03559	1185.23	1604.6	2789.9	2.9763	2.9541	5.9304
275.0	548.15	5950.	0.3013170	0.03142	0.03274	1210.86	1574.7	2785.5	3.0722	2.8725	5.8947
280.0	553.15	6420.	0.0013324	0.02879	0.03013	1236.84	1543.6	2780.4	3,0683	2.7903	5.8586
285.0	558.15	6919.	0.0013487	0.02638	0.02773	1263.21	1511.3	2774.5	3,1146	2.7074	5.8220
290.0	563.15	7446.	0.0013659	0.02417	0.02554	1290.01	1477.6	2767.6	3,1611	2.6237	5.7848
295.0	568.15	8004.	0.3013844	0.02213	0.02351	1317.27	1442.6	2759.8	3,2079	2.5389	5.7469
300.0	573.15	8593.	0.0014041	0.020245	0.021649	1373.40	1406.0	2751.0	3.2552	2.4529	5.7081
305.0	578.15	9214.	0.0014252	0.018502	0.019927		1367.7	2741.1	3.3:29	2.3656	5.6685
310.0	583.15	9870.	0.0014480	0.016886	0.018334		1327.6	2730.0	3.3512	2.2766	5.6278
315.0	588.15	10561.	0.0014726	0.015383	0.016856		1285.5	2717.6	3.4002	2.1856	5.5858
320.0	593.15	11289.	0.0014995	0.013980	0.015480		1241.1	2703.7	3.4500	2.0923	5.5423
325.0	598.15	12056.	0.0015289	0.012666	0,014195	1494.93	1194.0	2688.0	3.5108	1.9961	5.4969
330.0	603.15	12863.	0.0015615	0.011428	0,012989	1526.52	1143.6	2670.2	3.5428	1.8962	5.4490
335.0	608.15	13712.	0.0015978	0.010256	0.011854	1560.25	1089.5	2649.7	3.6;63	1.7916	5.3979
340.0	613.15	14605.	0.0016387	0.009142	0.010780	1595.47	1030.7	2626.2	3.6416	1.6811	5.3427
345.0	618.15	15545.	0.0016858	0.008077	0.009763	1632.52	966.4	2596.9	3.7193	1.5636	5.2828
350.0	623.15	16535.	0.0017411	0.007058	0.008799	1671.94	895.7	2567.7	3.7A00	1.4376	5.2177
355.0	628.15	17577.	0.0018085	0.006051	0.007859	1716.63	813.8	2530.4	3.8489	1.2953	5.1442
360.0	633.15	18675.	0.0018959	0.005044	0.006940	1764.17	721.3	2485.4	3,9710	1.1390	5.0600
365.0	638.15	19833.	0.0020160	0.003996	0.006012	1817.96	610.0	2428.0	4.G^21	G.9558	4.9579
370.0	643.15	21054.	0.0022136	0.002759	0.004973	1890.21	452.6	2342.8	4.1108	G.7036	4.8144
371.0 372.0 373.0 374.0 374.15	644.15 645.15 646.15 647.15 647.30	21306. 21562. 21820. 22081. 22120.	0.0022778 0.0023636 0.0024963 0.0028427 0.00317	0.002446 0.002075 0.001588 0.000623	0.004723 0.004439 0.004084 0.003466 0.00317	1710.50 1935.57 1970.50 2046.72 2107,37	407.4 351.4 273.5 109.5 0.0	2317.9 2287.0 2244.0 2156.2 2107.4	4.1414 4,1794 4,2326 4,3493 4,4429	0.6324 0.5446 0.4233 0.1692	4.7738 4.7240 4.6559 4.5185 4.4429

PROPRIÉTÉS DE LA VAPEUR ET DE L'EAU SATURÉES (PRESSION) TABLE 2

Pro kPa	ess.Temp.	Volum Eau	me,m ³ /kg Évap. Vapeur		nalpie,kJ/l Evap. V	g apeur	Entro Eau	pie,kJ/kg Évap.	K Vapeur	Énergie Eau	e,kJ/kg Vapeur
p	t	v_f	v_{fg} v_g	h_f	h_{fg}	h_g	s_f	Sfg	s_g	U_f	U_g
1.0 1.1 1.2 1.3	6.983 8.380 9.668 10.866 11.985	0.0010001 0.0010001 0.0010002 0.0010003	129.21 129.21 118.04 118.04 108.70 108.70 100.76 100.76 93.92 93.92	35.20 40.60 45.62	2481,7 2478,7 2475,9	2514,4 2516,9 2519,3 2521,5 2523,5	0.1060 0.1269 0.1461 0.1638 0.1803	8,87,6 8,8149 8,7640 8,7171 8,6737	8.9767 8.9418 8.9101 6.8809 8.8539	29.33 35.20 40.60 45.62 50.31	2385,2 2387,1 2388,9 2390,5 2392,0
1.5 1.6 1.8 2.0 2.2	13.036 14.026 15.855 17.513 19.031	0.0010006 0.0010007 0.0010010 0.0010012 0.0010015	87.98 87.98 82.76 82.77 74.03 74.03 67.01 67.01 61.23 61.23	58,86 66.52 73.46	2468.4 2464.1 2460.2	2525,5 2527,3 2530,6 2533,6 2536,4	0.1957 0.2101 0.2367 0.2607 0,2825	8,6332 8,5952 8,5240 8,4639 8,4077	8,8288 8,8054 8,7627 8,7246 8,6901	54.71 58.86 66.52 73.46 79.81	2393,5 2394,8 2397,4 2399,6 2401,7
2.4 2.6 2.8 3.0 3.5	20.433 21.737 22.955 24.100 26.694	0.0010019 0.0010021 0.0010024 0.0010027 0.0010033	56.39 56.39 52.28 52.28 48.74 48.74 45.67 45.67 39.48 39.48	91.12 96.22 101.00	2450.2 2447.3 2444.6	2539,0 2541,3 2543,6 2545,6 2550,4	0,3025 0,3210 0,3382 0,3544 0,3907	8.3563 9.3089 9.2650 8.2241 8.1325	8,6587 8,6299 8,6033 8,5785 8,5232	85.67 91.12 96.21 101.00 111.84	2403,6 2405,4 2407,1 2408,6 2412,2
4.0 4.5 5.0 5.5 6.0	28.983 31.035 32.898 34.605 36.183	0.0010040 0.0010046 0.0010052 0.0010058 0.0010064	34.80 34.80 31.14 31.14 28.19 28.19 25.77 25.77 23.74 23.74	129.99 137.77 144.91	2428,2 2423.# 2419.8	2554.5 2558.2 2561.6 2564.7 2567.5	0.4225 0.4507 0.4763 0.4995 0.5209	8.0530 7.9827 7.9197 7.8626 7.8114	8,4755 8,4335 8,3960 8,3621 8,3312	121.41 129.98 137.77 144.90 151.50	2415,3 2418,1 2420,6 2422,9 2425,1
7.5 8.0 9.0	37.651 39.025 40.316 41.534 43.787	0.0010069 0.0010074 0.0010079 0.0010084 0.0010094	22.015 22.016 20.530 20.531 19.238 19.239 18.104 18.105 16.203 16.204	163.38 168.77 173.86	2409.2 2406.2 2403.2	2570,2 2572,6 2574,9 2577,1 2581,1	0.5407 0.5591 0.5763 0.5925 0.6224	7,7622 7,7176 7,6760 7,6370 7,5657	8.3029 8.2767 8.2523 8.2296 8.1881	157.63 163.37 168.76 173.86 183.27	2427.0 2428.9 2430.6 2432.3 2435.3
10. 11. 12. 13. 14.	45.833 47.710 49.446 51.062 52.574	0.0010102 0.0010111 0.0010119 0.0010126 0.0010133	14.674 14.675 13.415 13.416 12.361 12.362 11.465 11.466 10.693 10.694	199.68 206.94 213.70	2388,4 2384.3 2380.3	2584.8 2588.1 2591.2 2594.0 2596.7	0.6493 0.6738 0.6963 0.7172 0.7367	7,5018 7,4439 7,3999 7,3420 7,2967	8.1511 8.1177 8.0872 8.0592 8.0334	191.82 199.67 206.93 213.68 220.01	2438.0 2440.5 2442.8 2445.0 2447.0
15. 16. 18. 20. 22.	53.997 55.341 57.826 60.086 62.162	0.0010140 0.0010147 0.0010160 0.0010172 0.0010183	10.022 10.023 9.432 9.433 8.444 8.445 7.649 7.650 6.994 6.995	231.59 241.99 251.45	2370.0 2363.9 2358.4	2599.2 2601.6 2605.9 2609.9 2613.5	0,7549 0,7721 0,8036 0,8321 0,8581	7.2544 7.2148 7.1424 7.0774 7.0184	8.0093 7.9869 7.9460 7.9094 7.8764	225.96 231.58 241.98 251.43 260.12	2448.9 2450.6 2453.9 2456.9 2459.6
24. 26. 28. 30. 35.	64.082 65.871 67.547 69.124 72.709	0.0010194 0.0010204 0.0010214 0.0010223 0.0010245	6.446 6.447 5.979 5.980 5.578 5.579 5.228 5.229 4.525 4.526	275.67 282.69 289.30	2344.2 2340.0 2336.1	2616.8 2619.9 2622.7 2625.4 2631.5	0.8620 0.9041 0.9248 0.9441 0.9878	6.9644 6.9147 6.8685 6.8254 6.7288	7,8464 7,8168 7,7933 7,7695 7,7166	268.16 275.65 282.66 289.27 304.29	2462.1 2464.4 2466.5 2468.6 2473.1
40. 45. 50. 55. 60.	75.886 78.743 81.345 83.737 85,954	0.0010265 0.0010284 0.0010301 0.0010317 0.0010333	3.992 3.993 3.575 3.576 3.239 3.240 2.963 2.964 2.731 2.732	329.64 340.56 350.61	2312.0 2305.4 2299.3	2636.9 2641.7 2646.0 2649.9 2653.8	1.0261 1.0603 1.0912 1.1194 1.1454	6.6448 6.5704 6.5035 6.4428 6.3873	7,6709 7,6307 7,5947 7,5623 7,5327	317.61 329.59 340.51 350.56 359.86	2477,1 2480,7 2484,0 2486,9 2489,7
65. 70. 75. 80. 90.	88.021 89.959 91.785 93.512 96.713	0.0010347 0.0010361 0.0010375 0.0010387 0.0010412	2.5335 2.5346 2.3637 2.3647 2.2158 2.2169 2.0859 2.0870 1.8682 1.8692	376.77 384.45 391.72	2283,3 2278,6 2274,1	2656,9 2660,1 2663,0 2665,8 2670,9	1.1696 1.1921 1,2131 1.2330 1,2696	6.3350 6.28A3 6.2439 6.2622 6.1258	7.5055 7.4804 7.4570 7.4352 7.3954	368.55 376.70 384.37 391.64 405.11	2492.2 2494.5 2496.7 2498.8 2502.6
100. 110. 120. 130. 140.	99.632 102.317 104.808 107.133 109.315	0.0010434 0.0010455 0.0010476 0.0010495 0.0010513	1.6927 1.6937 1.5482 1.5492 1.4271 1.4281 1.3240 1.3251 1.2353 1.2363	428.84 439.36 449.19	2250.8 2244.1 2237.8	2675,4 2679,6 2683,4 2687,0 2690,3	1,3027 1,3330 1,3609 1,3868 1,4109	6.0571 5.9947 5.9375 5.8847 5.8356	7,3598 7,3277 7,2984 7,2715 7,2465	417.41 428.73 439.24 449.05 458.27	2506.1 2509.2 2512.1 2514.7 2517.2
150. 160. 180. 200. 220.	111.37 113.32 116.93 120.23 123.27	0.0010530 0.0010547 0.0010579 0.0010608 0.0010636	1.1580 1.1590 1.0901 1.0911 0.9762 0.9772 0.8844 0.8854 0.8888 0.8098	475.38 490.70 504.70	2220.9 2210.8 2201.6	2693.4 2696.2 2701.5 2706.3 2710.6	1,4336 1,4550 1,4944 1,5301 1,5627	5.7898 5.7467 5.6678 5.5967 5.5321	7,2234 7,2017 7,1622 7,1268 7,0949	466.97 475.21 490.51 504.49 517.39	2519.5 2521.7 2525.6 2529.2 2532.4
240.	126.09	0.0010663	0.7454 0.7465	529.63	2184,9	2714,5	1,5929	5,4728	7,0657	529,38	2535.4

PROPRIÉTÉS DE LA VAPEUR ET DE L'EAU SATURÉES (PRESSION) TABLE 2

Press kPa	s.Temp.	Vol Eau	ume,m³/kg Évap.	/apeur	Eau E	nthalpie,k. Évap.	J/kg Vapeur	Ent Eau	ropie,kJ/k Évap.	g K Vapeur	Énergie Eau	e,kJ/kg Vapeur
p	t	v_f	v_{fg}	v_g	h_f	h_{fg}	h_g	S_f	Sfg	s_g	U_f	U_g
240. 260. 280. 300. 350.	120.09 128.73 131.20 133.54 138.87	0.0010663 0.0010688 0.0010712 0.0010735	0.7454 0.4914 0.4450 0.4045 0.8229	0.7465 0.6925 0.6460 0.6056 0.5240	929.6 940.9 951.4 961.4 584.3	2184,9 2177,3 2170,1 2163,2 2147,4	2714,5 2718,2 2721,5 2724,7 2731,6	1,5929 1,6209 1,6471 1,6716 1,7273	5,4728 5,4180 5,3670 5,3193 5,2119	7.0657 7.0309 7.0140 6.9909 6.9392	529.38 540.60 551.14 561.11 583.89	2535.4 2538.1 2540.6 2543.0 2548.2
400. 450. 500. 550.	143.62 147.92 151.84 189.47 158.84	0.0010839 0.0010885 0.0010928 0.0010969 0.0011009	0.4611 0.4127 0.3736 0.3414 0.3144	0,4622 0,4138 0,3747 0,3425 0,3155	404.7 423.2 440.1 455.8 470.4	2133.0 2119.7 2107.4 2095.9 2085.0	2737.6 2742.9 2747.5 2751.7 2755.5	1.7764 1.8204 1.8604 1.8970 1.9308	5.1179 5.0343 4.9588 4.8900 4.8267	6,8943 6,8547 6,8192 6,7870 6,7575	604.24 622.67 639.57 655.20 669.76	2552.7 2556.7 2560.2 2563.3 2566.2
650.	161,99	0.0011046	0.29138	0.29249	484.1	2074.7	2758.9	1.9423	4.7681	6,7304	683,42	2548.7
700.	164,96	0.0011082	0.27157	0.27268	697.1	2064.9	2762.0	1,9918	4.7134	6,7092	694,29	2571.1
750.	167,76	0.0011116	0.25431	0.25943	709.3	2095.5	2764.8	2.0195	4.6621	6,6817	788,47	2573.3
800.	176,41	0.0011150	0.23914	0.24026	720.9	2046.9	2767.5	2.0497	4.6139	6,6596	720,04	2575.3
900.	175,36	0.0011213	0.21369	0.21481	742,6	2029.5	2772.1	2,0941	4.5250	6,6192	741,63	2578.8
1000.	179.88	0.0011274	0,19317	0.19429	762.6	2013,6	2776,2	2.1382	4,4446	6,5828	761.48	2581.9
1100.	184.07	0.0011331	0,17625	0.17738	781.1	1998,5	2779,7	2.1786	4,3711	6,5497	779.88	2584.5
1200.	187.96	0.0011384	0,16204	0.16320	798.4	1984,3	2782,7	2.2161	4,3033	6,5194	797.06	2586.9
1300.	191.61	0.0011438	0,14998	0.15113	814.7	1970,7	2785,4	2.2510	4,2403	6,4913	813.21	2589.0
1400.	198.04	0.001149	0,13957	0.14072	830.1	1957,7	2787,8	2.2837	4,1814	6,4651	828.47	2590.8
1500.	198.29	0.0011539	0.13050	0.13166	844.7	1945,2	2789.9	2.3145	4,1261	6,4406	842.93	2592.4
1600.	201.37	0.0011584	0.12253	0.12369	858.6	1933,2	2791.7	2.3436	4,0739	6,4175	856.71	2593.8
1800.	207.11	0.0011678	0.10915	0.11032	884.6	1910,3	2794.8	2.3976	3,9775	6,3751	882.47	2596.3
2000.	212.37	0.0011744	0.09836	0.09954	908.6	1888,6	2797.2	2.4469	3,8898	6,3367	906.24	2598.2
2200.	217.24	0.0011850	0.08947	0.09065	931.0	1868,1	2799.1	2.4922	3,8093	6,3015	928.35	2599.6
2400.	221.78	0.0011932	0.08201	0.08320	951.9	1848,5	2800,4	2,5343	3.7347	6,2690	949.07	2600.7
2600.	226.04	0.0012011	0.07565	0.07686	971.7	1829,6	2801,4	2,5736	3.6651	6,2387	968.60	2601.5
2800.	230.05	0.0012088	0.07018	0.07139	990.5	1811,5	2802.0	2,6106	3.5998	6,2104	987.10	2602.1
3000.	233.84	0.0012163	0.06541	0.06663	1008.4	1793,9	2802,3	2,6455	3.5382	6,1837	1004.70	2602.4
3500.	242.54	0.0012345	0.05579	0.05703	1049.8	1752,2	2802,0	2,7253	3.3976	6,1228	1045.44	2602.4
4000.	290.33	0.0012521	0,04890	0.04975	1007.4	1712.9	2800.3	2,7965	3.2720	6.0685	1082.4	2601.3
4500.	297.41	0.0012691	0.04277	0.04404	1122.1	1675.6	2797.7	2,8612	3.1579	6.0191	1116.4	2599.5
5000.	263.91	0.0012858	0.03814	0.03943	1154.5	1639.7	2794.2	2,9206	3.0529	5.9735	1148.0	2597.0
5500.	269.93	0.0013023	0.03433	0.03563	1184.9	1609.0	2789.9	2,9757	2.9552	5.9309	1177.7	2594.0
4000.	275.55	0.0013187	0.03112	0.03244	1213.7	1571.3	2785.0	3,0273	2.8635	5.8908	1205.8	2590.4
6500.	280.82	0.0013350	0.028384	0.029719	1241.1	1538,4	2779.5	3.0759	2,7768	5,8527	1232.5	2586.3
7000.	285.79	0.0013513	0.026022	0.027373	1267.4	1586,0	2773.5	3.1219	2,6943	5,8162	1250.0	2581.8
7500.	290.50	0.0013677	0.023959	0.029327	1292.7	1474,2	2766.9	3.1657	2,6193	5,7811	1282.4	2577.0
8000.	294.97	0.0013842	0.022141	0.023525	1317.1	1442,8	2759.9	3.2076	2,5395	5,7471	1306.0	2571.7
9000.	303.31	0.0014179	0.019078	0.020495	1363.7	1380,9	2744.6	3.2867	2,3953	5,6820	1351.0	2560.1
10000. 11000. 12000. 13000.	310.96 318.05 324.65 330.83 336.64	0.0014524 0.0014887 0.0015268 0.0015672 0.0016106	0.016589 0.014517 0.012756 0.011230 0.009884	0.016041 0.014006 0.014283 0.012797 0.011495	1408.0 1450.6 1491.8 1532.0 1571.6	1319,7 1258,7 1197,4 1135,0 1070,7	2727.7 2709.3 2689.2 2647.0 2642.4	3,3605 3,4304 3,4972 3,5616 3,6242	2.2593 2.1291 2.0030 1.0792 1.7960	5.6198 5.5595 5.5002 5.4408 5.3803	1393.5 1434.2 1473.4 1511.6 1549.1	2547.3 2533.2 2517.8 2500.6 2481.4
15000. 16000. 17000. 18000. 19000.	342.13 347.33 352.26 356.96 361.43	0.0016579 0.0017103 0.0017696 0.0018399 0.0019260	0.007597 0.006601 0.005658	0.010340 0.009308 0.008371 0.007498 0.006678	1611.0 1650.5 1691.7 1734.8 1778.7	1004.0 934.3 859.9 779.1 692.0	2615.0 2584.9 2551.6 2513.9 2470.6	3,6899 3,7471 3,8107 3,8765 3,9429	1.6320 1.5040 1.3748 1.2362 1.0903	5,3176 5,2531 5,1655 5,1126 5,0332	1586.1 1623.2 1661.6 1701.7 1742.1	2459.9 2436.0 2409.3 2378.9 2343.8
20000.	365,70	0.0020370	0.003840	0.005077	1826.5	591,9	2418,4	4.0149	0.9243	4,9412	1785.7	2300.8
21000.	369,78	0.0022015	0.002822	0.005023	1886.3	461,3	2347,6	4.1048	0.7175	4,8223	1840.0	2242.1
22000,	373,69	0.0026714	0.001056	0.003728	2011,1	184,5	2195,6	4.2047	0.2692	4,5799	1952.4	2113.6
22120.	374,15	0.00317	0.0	0.00317	2107.4	0.0	2107.4	4,4429	0.0	4,4429	2037.3	2037.3

]	PROPRIÉ	TÉS DE	LA VAPI	EUR SUR	CHAUFF	ÉE ET D	E L'EAU	COMPRI	MÉE	
	Press. p, kPa			(I DIVI	TA	BLE 2	RESSIO	1)			
1	(1,)	0.	20.	40.	60.	80.	100.	120,	140.	160.	
	1.0 h (6.983) s	0.0010002 -0.0 -0.0002	135.23 2538.6 9.0611	144.47 2575.9 9,1842	153.71 2613.3 9.3001	142,95 2650.9 9,4096	172.19 2688.6 9.5136	181,42 2726,5 9,6125	190.66 2764.6 9,7070	199.89 2802.9 9,7975	
	1.5 h (13.04) s	0.0010002 -0.0 -0.0002	90,131 2538.4 8.8736	96,298 2575,8 8,9948	102.46 2613.2 9.1127	108.62 2650.8 9.2223	114,78 2688,6 9.3263	120,94 2726,5 9,4253	127,10 2764,6 9,5198	133,25 2802,9 9.6103	
	2.0 h (17.51) s	0.0010002 -0.0002	67,582 2538,3 8,7404	72,211 2575,6 8,8637	76,837 2613,1 8,9797	61,459 2650,7 9.0894	86,080 2688,5 9,1934	90.700 2726.4 9.2924	95,319 2764,5 9,3870	99.936 2802.8 9.4775	
	3.0 h (24.10) s	0.0010002 -0.0 -0.0002	0.0010017 83.9 0.2963	48,124 2575,4 8,6760	51,211 2612,9 8,7922	54,296 2650,6 8,9019	57,378 2688,4 9,0060	60,460 2726,3 9,1051	63,540 2764,5 9,1997	66.619 2802.8 9,2902	
	4.0 h (28,98) s	0.0010002 -0.0 -0.0002	0.0013017 63.9 0.2963	36,081 2575.2 8.5426	38,398 2612,7 8,6589	40.714 2650.4 8.7688	43,027 2688,3 8,873g	45.339 2724,2 8,9721	47,650 2764.4 9.0668	49.961 2802.7 9.1573	
	5.0 h (32,90) s	0.0010002 -0.0 -0.0002	0.0010017 83.9 0.2963	28,854 2574,9 8,4390	30,711 2612,6 8,5555	32,565 2650,3 8,6655	34,417 2688,1 8,7698	36,267 2726,1 8,8690	38,117 2764,3 8,9636	39.966 2802.6 9.0542	
	6.0 h (36.18) s	0.0010002 -0.0 -0.0002	0.0010017 83.9 0.2963	24,037 2574,7 8,3543	25,586 2612,4 8,4709	27.132 2650.1 8.5810	28,676 2688.0 8.6854	30.219 2726.0 8.7846	31.761 2764.2 8.8793	33.302 2802.6 8.9700	
	8.0 h (41,53) s	0.0010002 -0.0 -0.0002	0.0010017 83.9 0.2963	0.0010078 167.5 0.5721	19,179 2612,0 8,3372	20.341 2649.8 8,4476	21,501 2687,8 8,5521	22,659 2725,8 8,6515	23,816 2764,1 8,7463	24.973 2802.4 8.8370	
	10.0 h (45,83) s	0.0010002 -0.0 -0.0002	0.0010017 83.9 0.2963	0.0010078 167.5 0.5721	15,336 2611,6 8,2334	16,246 2649.5 8,3439	17,195 2687,5 8,4486	18.123 2725.6 8,5481	19.050 2763.9 8.6430	19.975 2802.3 8.7338	
	15.0 h (54.00) s	0.0010002 -0.0 -0.0002	0.0010017 83.9 0.2963	0.0010078 167.5 0.5721	10,210 2610,6 8.0440	10.834 2648.8 3.1551	11,455 2686,9 8.2601	12.075 2725.1 8.3599	12,694 2763,5 8.4551	13.312 2802.0 8.5460	
	20.0 h (60.09) s	0.0010002 -0.0 -0.0002	0.0010017 83.9 0.2963	0.0010078 167,5 0.5721	0.0010171 251,1 0.8310	8.1172 2648.0 8.0206	8,5847 2686,3 8,1261	9.0508 2724,6 8.2262	9,516 2763,1 8,3215	9.950 2801.6 8.4127	
	30.0 h (69.12) s	0.0010002 -0.0 -0.0002	0.0010017 83.9 0.2963	0.0010078 167.5 0.5721	0.0010171 251.1 0.8310	5.4007 2646.5 7.8300	5,7144 2685,1 7,9363	6.0267 2723.6 8.0370	6.3379 2762.3 8.1329	6.6483 2801.0 8.2243	
	40.0 h (75,89) s	0.0010002 -0.0 -0.0002	0.0010017 83.9 0.2963	0.0010078 167.5 0.5721	0.0010171 251.1 0.8310	4.0424 2644.9 7.6937	4,2792 2683,8 7,8009	4,5146 2722,6 7,9023	4,7489 2761,4 7,9985	4.9825 2800.3 8.0903	
	50.0 h (81,35) s	0.0010002 0.0 -0.0002	0.0010017 83.9 0.2963	0.0010078 167.5 0,5721	0.0010171 251,1 0.8310	0.0010292 334.9 1.0753	3.4181 2682,6 7,6953	3,6074 2721,6 7,7972	3.7955 2760.6 7.8940	3,9829 2799.6 7,9861	
	60.0 h (85,95) s	0.0010002 0.0 -0.0001	0.0010017 83.9 0.2963	0.0010078 167.5 0.5721	0.0010171 251.1 0.8310	0,0010292 334,9 1,0792	2.8440 2681,3 7,6085	3.0025 2720.6 7.7111	3.1599 2759.8 7.8083	3.3165 2798.9 7.9008	
	80.0 h (93,51) s	0.0010002 0.0 -0.0001	0,0010017 83,9 0,2963	0.0010078 167,5 0.5721	0,0010171 251,1 0.6310	0,0010292 334,9 1,0752	2,1262 2678,8 7,4703	2,2464 2718,6 7,5742	2,3654 2758,1 7,6723	2,4836 2797,5 7,7655	
	100.0 h (99,63) s	0.0010002 0.1 -0.0001	0,0010017 84.0 0,2963	0.0010078 167.5 0.5721	0.0010171 251.2 0.8309	0,0010292 335,0 1,0752	1.6955 2676,2 7,3618	1,7927 2716,5 7,4670	1,8886 2756,4 7,5662	1,9838 2796,2 7,6601	
	150.0 h (111.4) s	0.0010001 0.1 -0.0001	0.0010017 84.0 0.2963	0.0010077 167.6 0.5721	0.0010171 251.2 0.6309		0,0010437 419,1 1,3068	1,1876 2711,2 7,2693	1,2929 2752,2 7,3709	1,3173 2792,7 7,4667	
	200.0 h (120.2) s	0.0010001	0.2963	0.0010077 167,6 0.5720	251,2 0,8309	0.0010201 335.0 1.0752	1.3068	0.0010606 503.7 1.5276	0.9349 2747,8 7,2298	0.9840 2789.1 7,3275	
	(133.5) 5	0.0010001 0.3 -0,0001	0.2962	0,5720	0,6308	335.1	419,2 1,3067	503,8	0.6167 2738.8 7.0254	0,6506 2781,8 7,1271	
	400.0 h (143.6) s	0.0010000	0.0010015 84.2 0.2962	0.0010076 167,8 0,5720	0,0010170 251,4 0,8308	0,0010200 335,2 1,0750	0,0010436 419,3 1,3066	0,0010605 503,9 1,5274	0.0010800 589.1 1.7389	0,4837 2774,2 6,9805	

PROPRIÉTÉS DE LA VAPEUR SURCHAUFFÉE ET DE L'EAU COMPRIMÉE (TEMPÉRATURE ET PRESSION)

					ABLE 2				Press.
180.	200.	220.	240.	260.	280.	300.	320.	340.	ρ, κι α
209.12	218.35	227,58	236.82	246.05	255.28	264.51	273,74	282.97 V	1.0
2841.4	2880.1	2919,0	2958.1	2997.4	3037.0	3076.8	3116,9	3157.2 h	
9.8843	9,9679	10,0484	10.1262	10,2014	10.2743	10.3450	10,4137	10.4805 s	
139.41	145.56	151,72	157.87	164.03	170.18	176,34	182,49	188.64 v	1.5
2841.4	2880.0	2918.9	2958.1	2997.4	3037,0	3076.8	3116.9	3197.2 h	
9.6972	9.7807	9,8612	9.9390	10.0142	10.0871	10.1578	10.2266	10,2934 s	
104.55	109.17	113,79	118.40	123,62	127.64	132,25	136,87	141.48 V	2,0
2841.3	2880.0	2918.9	2958.0	2997.4	3037.0	3076.8	3116,9	3157.2 h	
9.5643	9.6479	9,7284	9.8062	9,8814	9.9943	10,0251	10.0938	10.1606 s	
69.698	72.777	75.855	78.933	82.010	85.088	88.165	91.242	94.320 v	3.0
2841.3	2880,0	2918.9	2958.0	2997.4	3037.0	3076.8	3116.9	3157.2 h	
9.3771	9,4607	9,5412	9.6190	9,6943	9.7672	9.8379	9.9066	9.9735 s	
52.270	54,580	56.889	59.197	61.506	63.814	66.122	68,430	70.738 v	4.0
2841.2	2879,9	2918.8	2958.0	2997.3	3036.9	3076.8	3116,8	3157.2 h	
9.2443	9,3279	9,4084	9.4862	9,5615	9.6344	9,7051	9.7738	9.8407 s	
41.814	43.661	45,509	47,356	49.203	51.050	52.897	54,743	56.590 v	5.0
2841.2	2879.9	2918.8	2957,9	2997.3	3034.9	3076.7	3116,8	3157.1 h	
9.1412	9.2248	9,3054	9,3832	9,4584	9.5313	9.6021	9,6708	9.7377 s	
34.843	36.383	37.922	39.462	41.001	42,540	44.079	45,618	47.157 v	6.0
2841.1	2879.8	2918.8	2957.9	2997.3	3036,9	3076.7	3116.8	3157.1 h	
9.0569	9.1406	9,2212	9,2990	9,3742	9,4472	9.5179	9,5866	9,6535 s	
26.129	27,284	28.439	29,594	30.749	31,903	33.058	34,212	35.367 v	8,0
2841.0	2879,7	2918.7	2957,8	2997.2	3034,8	3076.7	3116,8	3157.1 h	
8.9240	9,0077	9.0883	9,1661	9,2414	9,3143	9,3851	9,4538	9.5207 s	
20.900	21.825	22.750	23.674	24,598	25.521	26.445	27,369	28.292 v	10.0
2840.9	2879.6	2918.6	2957.8	2997.2	3036.8	3076.6	3116,7	3157.0 h	
8.8208	8.9045	8,9852	9.0630	9,1383	9.2113	9.2820	9.3508	9.4177 s	
13,929	14.546	15.163	15.780	16.396	17.012	17.628	18,244	18.860 v	15.0
2840.6	2879,4	2918.4	2957.6	2997.0	3036.6	3076.5	3116,6	3157.0 h	
8,6332	8,7170	8,7977	8.8757	8.9510	9.0240	9.0948	9,1635	9.2304 s	
10.444	10.907	11.370	11.832	12.295	12,757	13,219	13.681	14.143 v	20.0
2840.3	2879.2	2918.2	2957,4	2996.9	3034,5	3076.4	3116,5	3156.9 h	
8.5000	8.5839	8,6647	8,7426	8,8180	8,8910	8,9618	9.0306	9.0975 s	
6.9582	7,2675	7,5766	7,8854	8,1940	8,5024	8.8108	9.1190	9.4272 y	30.0
2839.8	2878,7	2917.8	2957.1	2996.6	3034,2	3076.1	3116.3	3156.7 h	
8.3119	8,3960	8,4769	8,5550	8,6305	8,7035	8.7744	8.8432	8.9102 s	
5.2154	5,4478	5,6800	5,9118	6,1435	6.3751	6.6065	6,8378	7.0690 v	40.0
2839.2	2878,2	2917.4	2956,7	2996.3	3036.0	3075.9	3116,1	3156.5 h	
8.1782	8,2625	8,3435	8,4217	8,4973	8.5704	8.6413	8,7102	8.7772 s	
4.1697	4.3560	4,5420	4,7277	4,9133	5,0986	5,2839	5.4691	5,6542 v	50.0
2638.6	2877.7	2917.0	2956,4	2995.9	3035,7	3075,7	3115.9	3156,3 h	
8.0742	8.1587	8,2399	8,3182	8,3939	8,4671	8,5380	8.6070	8,6740 s	
3.4726	3.6281	3,7833	3,9383	4.0931	4,2477	4,4022	4.5566	4.7109 v	60,0
2838.1	2877.3	2916.6	2956.0	2995.6	3035,4	3075,4	3115.6	3156.1 h	
7.9891	8.0738	8,1552	8,2336	8.3093	8,3826	8,4536	8.5226	8,5896 s	
2,6011	2,7183	2,8350	2,9515	3,0678	3,1840	3,3000	3.416n	3,5319 v	80.0
2836,9	2876,3	2915,8	2955,3	2995.0	3034,9	3075.0	3115.2	3155,7 h	
7,8544	7,9395	8,0212	8,0998	8,1757	8,2491	8,3202	8,3893	8,4564 s	
2.0783	2.1723	2,2660	2,3595	2,4527	2,5458	2,6387	2.7316	2.8244 v	100,0
2835.8	2875.4	2915.0	2954,6	2994,4	3034,4	3074.5	3114.8	3155.3 h	
7,7495	7.8349	7,9169	7,9958	8,0719	8,1454	8,2166	8.2857	8.3529 s	
1,3811	1.4444	1,5073	1,5700	1.6325	1,6948	1.7570	1.8191	1.8812 v	150.0
2832,9	2872.9	2912.9	2952,9	2992.9	3033,0	3073.3	3113.7	3154.3 h	
7,5574	7.6439	7,7266	7,8061	7,8826	7,9565	8.0280	8.0973	8.1646 s	
1.0325	1.0804	1,1280	1.1753	1,2224	1.2693	1,3162	1.3629	1.4095 v	200.0
2830.0	2870.5	2910.6	2951.1	2991.4	3031.7	3072.1	3112.6	3193.3 h	
7.4196	7.5072	7,5907	7.6707	7,7477	7.8219	7,8937	7.9632	8.0307 s	
0.6837	0.7164	0,7486	0,7805	0,8123	0.8438	0.8753	0.9066	0.9379 v	300.0
2824.0	2865.5	2906.6	2947,5	2988.2	3028.9	3049.7	3110.5	3151.4 h	
7.2222	7.3119	7,3971	7,4783	7,5562	7.6311	7,7034	7.7734	7.8412 s	
0.5093	0.5343	0,5589	0,5831	0,6072	0.6311	0.6549	0.6765	0.7021 v	400.0
2817.8	2860,4	2902.3	2943,9	2965.1	3026.2	3067.2	3108.3	3149.4 h	
7.0788	7.1708	7,2576	7,3402	7,4190	7,4047	7.5675	7.6379	7.7061 s	

PROPRIÉTÉS DE LA VAPEUR SURCHAUFFÉE ET DE L'EAU COMPRIMÉE (TEMPÉRATURE ET PRESSION) Press. TABLE 2 p, kPa Température, t, °C (t,) 360. 380. 400 420 440. 460. 480. 500. 920. 292.20 329.12 301.43 310.66 319.89 338.35 347,58 356.81 1.0 h 366.04 3197.8 3238.6 3279.7 3321,1 3362.7 3404,6 3489.2 3446,8 3531.9 (6.983) 5 10.5457 10.4091 10,6711 10.7317 10.7909 10.9056 10.9612 194 80 200.95 207.11 213.26 225.57 231.72 237.87 1.5 h 244 03 \$197. A 3238.6 3279.7 3321.1 3404,6 3362 7 3446,8 3489.2 (13.04) 10.3585 3531.9 10.4220 10,4840 10,5445 10,6037 10.6617 10,7184 10,7741 146.10 150.71 155.33 159.94 164,56 169.17 173.79 178.41 (17,51) s 183.12 3197.8 3238.6 3279.7 3321.1 3362.7 3489.2 3446.8 10.2257 3531.9 10.2892 10.3512 10.4118 10.5289 10,5857 10.6413 10.6958 97 397 100.47 103.55 106.63 109.71 112.78 115.86 118.94 122.01 3.9 h 3197.8 3279.7 3321.1 3362 7 (24,10) 5 3446.8 3489.2 3531.9 10.0386 10.1021 10,2246 10.1641 10.3418 10.2838 10,3985 10.4541 73.046 75,354 77.662 79 970 92.278 84.586 89,201 86.893 4.0 h 91.509 3279.7 3197.7 3238.6 3321.0 3404,6 3362.7 3446.7 (28,98) 5 9,9058 3489.2 3531.9 9.9693 10.0313 10.0918 10.1510 10.2090 10,2657 10.3214 10.3759 58.436 60,283 63,979 62.129 65.822 67.668 69.514 5.0 h 71.360 73.207 3197.7 3279.7 3321.0 3362.7 3404,6 3446.7 (32.90) 5 9.8028 3489.2 3531.9 9.8663 9,9283 10.0480 10.1060 48.696 50.235 51.773 53.312 54,851 56.389 57.928 59.447 6.9 h 3197.7 3238,5 3279.6 3321,0 3362.6 3404.5 (36,18) 5 3446.7 3531.9 3489.2 9.7186 9.7821 9.9439 10.0218 10.0786 10,1342 10.1888 36,521 38.829 39.983 41.137 42,291 43.445 8.0 h 44 500 45.753 3197.7 3238.5 3279.6 3321.0 3362 6 3404,5 3446,7 (41,53) 5 3489.1 3531.9 9.6493 9.7113 9.8311 9.8890 9.9458 10.0014 10.0540 29,216 30.139 31 062 31.984 32,909 33,832 34.756 35.679 36.602 10.0 h 3197.6 3279.6 3321.0 3362.6 3404,5 (45,83) 5 3446,7 3489.1 3531.9 9.5463 19 475 20.091 20,707 21.323 21.938 22.554 23,169 23.785 15.0 h 24.400 3197.5 3238.4 3320.9 (54,00) s 3362 5 3404,4 3489.1 3531.8 9,2956 9.3591 9,4211 9.4817 9.5409 9.5988 9.6556 9.7112 9.7658 14.605 15,067 15,529 15.991 16,453 16,914 17.376 17.838 20.0 h 18.300 3197.5 3238,3 3320.8 3404,4 3362.5 3489.0 (60,09) 9.1627 3531. 9.2262 9.2882 9.4081 9.5228 9.5784 9,6330 9.7353 10.351 10.659 10.947 11,275 11.583 30.0 h 11.891 12.199 3197.3 3238.2 3320,7 3362.3 (69,12) 5 3404,2 3446,4 3488.9 3531,6 9.0389 9,1010 9,1615 9,2208 9,3912 7.3002 40.0 h (75,89) s 8.2246 8.4556 8,6866 8.9176 9.1485 3197.1 3238.0 3279.1 3320,5 3362.2 3404.1 3531.5 8,8424 8.9060 8.9680 9.0286 9.2027 9,2583 9.3129 5.8392 6.0242 6,2091 6.3941 6,5790 6.7638 6,9487 7,1335 7.3183 50.0 3196.9 3237.8 3279.0 3362.1 3446,2 3404.0 (81,35) 3531.4 8.8028 8.8649 8,9255 8,9848 9.0428 9.0996 9,1552 4.8652 5.0194 5.1736 5,3277 5,4819 5.6360 5,7900 5,9441 6.0981 3196.7 3278.8 h 3237 7 3320,2 3361.9 3403.9 3446.1 3488.6 (85,95) 8,6549 8.7185 3531:3 9,1256 3.6477 3,8792 3.7634 3,9946 4.1105 4.2261 4,3418 4,5729 80.0 h 3196.4 3237.3 3278.5 3320.0 3361.7 3531.1 3403.6 3445,9 3488,4 (93,51) 8,5217 8,6475 8.7081 8.7675 8.8255 8.9380 2,9172 3.0008 3.1951 3.2877 3.3803 3.4728 3,5653 3,4578 100 0 h 3237 0 3278.2 3319,7 3361.4 3488.1 3403.4 3445.6 (99,63) 3530.9 8,4183 8.4820 8.5442 8.6049 8.6642 8.7223 8.8348 8.8894 1,9431 2.0051 2.0669 2,1288 2.1906 2.2524 2.3142 150.0 h 2.4377 3195.1 3236.2 3319,0 3360.7 3277.5 3402.8 3445,0 3487.6 (111.4) s 8.2301 8.3562 8.4764 8,5345 8.7018 1.4561 1.5027 1,5492 1.5956 1.6421 1.6885 1.7349 1.7812 1.8276 3194.2 200.0 3235,4 3360.1 3318,3 3276 7 3402.1 3444,5 3487.0 (120.2) 8,0964 8.1603 8,2226 8,4011

1.0625

3316,8

8.0949

0.7950

3315.4

1.0935

3358.8

8.1545

3357.4

1.1245

3400.9

8,2128

0.8426

3399,7

1.1556

3443,3

8,2698

0.8459

3442,1

8,1359

1.1865

3486.0

0.8892

3484.9

1.0003

3233.7

7,9713

0.7491

3232,1

3192.4

7.9072

0.7256

3190.6

300.0

400.0 h

(133.5)

(143.6)

1.0314

3275.2

8.0338

0.7725

3273.6

7.8994

8.5686

1,2175

3528.9

8.3805

0,9125

3527.8

8,2468

PROPRIÉTÉS DE LA VAPEUR SURCHAUFFÉE ET DE L'EAU COMPRIMÉE (TEMPÉRATURE ET PRESSION)

			(-2	T	ABLE 2 frature, t, °C	I KESSI	JII)		Press. p, kPa
540.	560.	580.	600.	625,	650.	700.	750.	800.	
375,27 3574.9 11.0693	384.50 3618.2 11.1218	393.74 3661.8 11,1735	402.97 3705,6 11,2243	414.50 3760.8 11,2866	426.04 3816.4 11.3476	449,12 3928,9 11,4663	472,19 4043,0 11,5807	495.27 V 4158.7 h 11.6911 S	1.0
250.18 3574.9 10.8821	256.34 3618.2 10.9347	262,49 3661,8 10,9864	268,64 3705,6 11,0372	276,33 3760,8 11,0995	284.03 3816.4 11.1605	299.41 3928.9 11,2792	314,79 4043.0 11.3939	330.18 ¥ 4158.7 h 11.5040 s	1,5
187,64 3574,9 10,7494	192.25 3618.2 10.8019	194.87 3661.8 10,8536	201.48 3705,6 10,9044	207,25 3760,8 10,9667	213.02 3816,4 11.0277	224,56 3928,8 11,1464	236,10 4043.0 11,2608	247.63 v 4158.7 h 11,3712 s	2.0
125.09 3574.9 10.5622	128.17 3618.2 10.6148	131.24 3661.8 10,4665	134.32 3705.6 10,7173	138,17 3760.8 10,7796	142.01 3814.4 10.8406	149,70 3928.8 10,9593	157.4n 4043.0 11.0736	165.09 v 4158.7 h 11.1841 s	3.0
93.817 3574,9 10.4295	96.124 3618,2 10.4820	98.432 3661.7 10.5337	100.74 3705.6 10.5845	103,62 3760.8 10,6468	106.51 3814.4 10.7078	112,28 3928,8 10,8265	118.05 4043.0 10.9409	123.82 V 4158.7 h 11.0513 s	4.0
75.053 3574.9 10.3265	76.899 3618.2 10.3790	78.745 3661.7 10.4307	80.592 3705,6 10,4815	82.899 3760.7 10,5438	85,207 3816,3 10,6049	89,822 3928.8 10,7235	94.438 4043.0 10.8379	99.053 v 4158.7 h 10.9483 s	5.0
62,544 3574,9 10,2423	64.082 3618.2 10.2949	65.621 3661.7 10,3466	67.159 3705.6 10.3973	49,082 3760.7 10,4596	71.005 3814.3 10.5207	74,852 3928.8 10,6394	78,698 4043.0 10.7937	82,544 v 4198.7 h 10,8642 s	6.0
46.907 3574.9 10.1095	48.061 3618.2 10.1621	49.215 3661.7 10,2138	50.369 3785.5 10,2646	51.811 3760.7 10.3269	53,254 3816,3 10,3879	56.138 3928.8 10.5066	59.023 4043.0 10.6210	61.908 v 4158.7 h 10.7314 s	8,0
37.525 3574.9 10.0065	38,448 3618.1 10.0591	39.372 3661.7 10.1108	40.295 3705,5 10,1616	41.449 3760.7 10,2239	42.603 3814.3 10.2849	44.910 3928.8 10.4036	47.218 4042.9 10.5180	49.526 v 4158.7 h 10.6284 s	10.0
25,316 3574,8 9,8194	25,632 3618.1 9.8719	26.247 3661.7 9,9236	26.863 3785,5 9,9744	27,632 3760,7 10,0367	28,401 3816,3 10,0978	29.940 3928.8 10.2164	31,478 4042.9 10.3308	33.017 V 4158.7 h 10.4413 s	15.0
18.761 3574.8 9.6865	19.223 3618.0 9.7391	19.685 3661.6 9,7908	20.146 3705.4 9.8416	20.723 3760.6 9,9039	21.300 3816.2 9.9650	22.455 3928.7 10.0836	23,609 4042.9 10.1980	24.762 v 4158.7 h 10.3085 s	20.0
12,507 3574.7 9,4993	12.815 3618.0 9.5519	13.122 3661.5 9,6036	13.430 3705.4 9.6544	13.815 3760.6 9,7167	14.200 3816.2 9,7778	14.969 3928.7 9,8965	15.739 4042.8 10.0109	16.508 V 4158.6 h 10.1213 s	30.0
9.3795 3574.6 9.3665	9.6104 3617.9 9.4191	9,8413 3661.4 9,4708	10.072 3705.3 9.5216	10.361 3760.5 9,5839	10.449 3816.1 9.6450	11.227 3928.6 9.7636	11.804 4042.8 9.8780	12.381 V 4158.6 h 9.9885 s	40.0
7,5031 3574,5 9,2634	7,6878 3617,8 9,3160	7,8726 3661,3 9,3677	8,0574 3705,2 9,4185	8,2883 3760.4 9,4808	8.5192 3816.0 9.5419	8,9810 3928.6 9,6606	9.4427 4042.7 9.775 ₀	9,9044 v 4158.5 h 9,8855 s	90.0
6.2521 3574.4 9.1792	6.4062 3617,7 9.2318	6,5602 3661,3 9,2835	6,7141 3705.1 9,3343	6,9066 3760.3 9,3966	7.0991 3816.0 9.4577	7,4839 3928,5 9,5764	7.8687 4042,7 9.4908	8,2535 V 4158.5 h 9,8013 s	60.0
4.6885 3574.2 9.0462 3.7503	4.8040 3617,5 9.0988	4.9196 3661.1 9.1506	5.0351 3705.0 9.2014	5,1795 3760.2 9,2637	5,3239 3815,8 9,3248	5,6126 3928.4 9,4436	5.9013 4042.6 9.5580	6.1899 v 4158.4 h 9.6685 s	80,0
3574.0 8.9431	3,8428 3617,3 8,9957	3,9352 3660,9 9;0474	4,0277 3704.8 9,0982	4,1432 3760.0 9,1606	4,2588 3815,7 9,2217	4,4898 3928,2 9,3405	4,7208 4042.5 9,4549	4,9517 v 4158,3 h 9,5654 s	100.0
2,4994 3573.5 8,7555	2.5611 3616.9 8.8082	2,6228 3660,5 8,8599	2.6845 3704.4 8.9108	2,7616 3759.6 8,9732	2,8386 3815,3 9.0343	2,9927 3927,9 9,1531	3.1468 4042.2 9.2676	3,3008 v 4158.0 h 9,3781 s	150.0
1.8739 3573.0 8.6223	1.9202 3616.4 8.6750	1,9666 3660.0 8,7268	2,0129 3704.0 8,7776	2,0707 3759.3 8,8401	2,1286 3819,0 8,9012	2,2442 3927.6 9,0201	2,3598 4041.9 9,1346	2,4754 v 4157.8 h 9,2452 s	200.0
1.2485 3572.0 8.4343	1,2794 3615,5 8,4870	1,3103 3659.2 8,5389	1,3412 3703,2 8,5898	1,3799 3758.5 8,6523	1,4185 3814,2 8,7135	1,4957 3927.0 8,8325	1.5728 4041.4 8.9471	1,6499 v 4157.3 h 9,0577 s	300,0
 0.9357 3571.1 8.3006	0.9590 3614.6 8.3534	0,9822 3658.3 8,4053	1.0054 3702.3 8,4563	1,0344 3757,7 8,5189	1,0634 3813,5 8,5802	1.1214 3926.4 8.6992	1.1793 4040.8 8.8139	1,2372 v 4156.9 h 8,9246 s	400.0

_												-
		PROPRIÉTÉS DE LA VAPEUR SURCHAUFFÉE ET DE L'EAU COMPRIMÉE (TEMPÉRATURE ET PRESSION)										
Pre	Pa				(I EIVI	TA	BLE 2	(LSSION)				
(t _s)			0	20,	40	An .	rature, t, °C	100.	120.	140	1.40	1
	00.0	h	0.5		167,9		335.3	0,0010435 419,4 1,3066	503.9	589.2	2766.4	
	00.0	h	0.0009999 0.6 -0.0001	0.0010015 84.4 0.2962	0.0010075 168.0 0.5719	0.0010169 251.6 0.8307	0,0010289 335,4 1,0749	0,0010434 419,4 1,3065	0.0010604 504.0 1.5272	0,0010799 589.3 1,7387	0.31655 2758.2 6.7640	
		h	0.8	0.0010014 84.6 0.2961	0.0010075 168.2 0.5718	0,0010168 251,7 0,8306	0,0010288 335,5 1,0748	0,0010433 419,6 1,3063	0,0010603 504,1 1,5270	589.4	0,0011021 475,6 1,9423	
	00.0	h	0.0009997 1.0 -0.0001	84.8	168.3	251,9	335.7	0,0010432 419,7 1.3062	504,3	0,0010796 589,5 1,7383	675.7	
	00.0	h	0.0009995 1.5 -0.0000	0.0010010 85.3 0.2960	0.0010071 168.8 0,5715	252,3	336.1	0,0010430 420,1 1,3056	504,6	569.6	676.0	
20	00.0	h	0.0009992					0.0010427 420,5 1.3054			0.0011012 676.3 1.9408	
	00.0	h	3.0	0.0010004 86.7 0.2957	170,1	253,6	337.3	0,0010422 421,2 1,3046	505.7	590.8	676.9	
40 (25	00.0	h	4.0	0.0009999 87.6 0.2955	0.0010060 171.0 0.5706	254,4	338.1	0,0010417 422,0 1,3038	506.4	591.5	677.5	
	00.0	h	5.1				338,8	0,0010412 422,7 1.3030		592.1	678.1	(
	00.0	h	6.1	0.0009990 89.5 0.2950	0.0010052 172.7 0,5698	0.0010144 256,1 0.8278	0,0010263 339.6 1,0713	0,0010406 423,5 1,3023	0.0010573 507,8 1.5224	0,0010764 592.8 1,7332	678,6	
80	00.0	h	8.1	0.0009981 91.4 0.2946		0.0010135 257,8 0.8267	341.2	0,0010396 425,0 1,3007	509.2	394.1	679.8	
100	1.0)	h	0.0009953 10.1 0.0005	0.0009972 93.2 0.2942	0.0010034 176.3 0.5682	0,0010127 259,4 0,8257	0,0010245 342.8 1,0687	0,0010386 426,5 1.2992	0,0010551 510,6 1,5188	0,0010739 595.4 1.7291	0.0010954 681.0 1.9315	
150	00.0	h	15.1	97.9	180,7	0,0010105 263,6 0,8230	346.8		514,2		684.0	
200	00.0	h	20.1	102.5		267,8	350.8	0,0010337 434,0 1,2916	517,7	602.0	687.1	
300	0.00	h s	0.0009857 30.0 0.0008	111.7	193.8	0.0010041 276,1 0,8153	358,7	0,0010289 441.6 1,2843	524,9	0,0010621 608,7 1,7097	693,3	
400	0.00	h	0.0009811 39.7 0.0004	120.8	0.0009910 202.5 0,5565	284,5	366.7	0,0010244 449,2 1,2771	0.0010395 532.1 1.4935	615,5	699,6	1
500	00.0	h	0.0009767 49.3 -0.0002	129.9	211.2		374.7			622.4	705.9	1
600	00.0	h	58.8	138,9	219.8	0.0009923 301.1 0.8002	0.0010031 382.6 1.0379	0,0010157 464,5 1,2633	0,0010301 546,6 1,4778	0,0010464 629,2 1,6828	0.0010645 712,4 1,8793	-
800	00.0	s	77.5 -0.0037	156.6 0.2756	236.9 0,5406	317,6 0,7904	398.5 1,0264	1,2501	561,3 1,4629	1,6661	725.5 1,8607	
1000	000.0	h	95.9	174.0	253,8	334.0	414.4	0,0009999 495,1 1,2373	576.0	657,2	738.9	

PROPRIÉTÉS DE LA VAPEUR SURCHAUFFÉE ET DE L'EAU COMPRIMÉE (TEMPÉRATURE ET PRESSION)											
TABLE 2 Température, t, °C											
	180.	200.	220.	240.	260.	ure, <i>t</i> , °C 280.	300.	320,	340.		
	0.4045 2811.4 6.9647	0.4250 2855,1 7,0592	0.4450 2898.0 7.1478	0.4647 2940.1 7.2317	0.4841 2981.9 7.3115	0.5034 3023,4 7.3879	0,5226 3064,8 7,4614	0.5416 3106.1 7.5322	0.5606 3147.4 7.6008	h	500.0
	0.3346 2804.8 6.8691	0.3520 2849.7 6.9662	0,3690 2893,5 7,0567	0.3857 2936.4 7.1419	0.4021 2978.7 7,2228	0.4183 3020.4 7.3000	0.4344 3062.3 7,3740	0.4504 3103.9 7.4454	0.4663 3145.4 7.5143	h	600.0
	0.2471 2791.1 6.7122	0.2608 2838.6 6.6148	0;2740 2884.2 6,9094	0.2869 2928.6 6,9976	0.2995 2972.1 7,0807	0.3119 3014.9 7.1595	0.3241 3057.3 7.2348	0.3363 3099.4 7.3070	0,3483 3141.4 7,3767	h	800.0
	0.1944 2776.5 6,5835	0.2059 2826,8 6.6922	0,2169 2874,6 6,7911	0,2276 2920,6 6,8825	0,2379 2965,2 6,9680	0.2480 3009.0 7.0485	0.2580 3052.1 7,1251	0.2678 3094.9 7.1984	0,2776 3137.4 7,2689	h	1000.0
	0.00112 ⁷ 1 763.4 2.1386	0.1324 2794.7 6.4508	0,1406 2848.6 6,5624	0,1483 2899,2 6,6630	0,1556 2947.3 6,7550	0.1628 2993.7 6,8405	0.1697 3038.9 6.9207	0.1765 3083.3 6.9967	0.1832 3127.0 7,0693	h	1500.0
	0.0011267 763.6 2,1379	0.0011560 852.6 2.3300	0;1021 2819,9 6,3829	0.1084 2875,9 6,4943	0.1144 2928.1 6,5941	0.1200 2977.5 6.6852	0.1255 3025.0 6.7696	0.1308 3071.2 6.8487	0.1360 3116.3 6,9235	h	2000.0
	0.0011258 764.1 2.1366	0.0011550 853.0 2,3284	0.0011891 943,9 2,5165	0,06816 2822,9 6,2241	0.07283 2885,1 6,3432	0.07712 2942.0 6.4479	0.08116 2995.1 6.5422	0.08500 3045.4 6.6285	0.08871 3093.9 6.7088	h	3000.0
	0.0011249 764.6 2.1352	0.0011540 853.4 2,3268	0.0011878 944.1 2.5147	0.0012280 1037,7 2,7006	0.05172 2835.6 6,1353	0,05944 2902.0 6,2576	0.05883 2962.0 6,3642	0.06200 3017.5 6.4593	0.06499 3069.8 6.5461	h	4000.0
	0.0011241 765.2 2.1339	0.0011530 853.8 2.3253	0.0011866 944.4 2.5129	0.0012264 1037,8 2,6984	0.0012750 1134.9 2,8840	0.04222 2856,9 6.0886	0.04530 2925.5 6.2105	0.04810 2987.2 6.3163	0.05070 3044.1 6.4106	h	5000.0
	0.0011232 765.7 2.1325	0.0011519 854.2 2,3237	0.0011853 944.7 2,5110	0,0012249 1037,9 2,6962	0.0012729 1134.7 2,8813	0,03317 2804,9 5,9270	0.03614 2885.0 6,0692	0.03874 2954.2 6.1880	0.04111 3016.5 6,2913	h	6000.0
	0.0011216 766.7 2.1299	0.0011500 855.1 2.3206	0.0011829 945.3 2,5075	0.0012218 1038.1 2.6919	0.0012687 1134.5 2,8761	0.0013277 1236,0 3.0629	0.02426 2786.8 5,7942	0.02481 2878.7 5.9519	0.02896 2955.3 6.0790	h	8000.0
	0.0011179 767.8 2.1272	0.0011480 855,9 2,3176	0.0011805 945.9 2,5039	0.0012188 1038.4 2,6877	0.0012648 1134.2 2,8709	0,0013221 1235,0 3,0563	0.0013979 1343.4 3,2488	0.01926 2783.5 5.7145	0.02147 2883.4 5.8803	h	10000.0
	0.0011159 770.4 2.1208	0.0011433 858,1 2.3102	0.0011748 947.6 2,4953	0.0012115 1039,2 2,6775	0.0012553 1134.0 2,8585	0.0013090 1232.9 3,0407	0.0013779 1338.3 3,2278	0,0014736 1454,3 3,4267	0.0016324 1593.3 3,6571	h	15000.0
	0.0011120 773.1 2.1145	0.0011387 860,4 2.3030	0.0011693 949.3 2,4869	0.0012047 1040,3 2,6677	0.0012466 1134.0 2,8468	0.0012971 1231.4 3.0262	0.0013606 1334.3 3,2089	0.0014451 1445.6 3.3998	0.0015704 1572.4 3.6100	h	20000.0
	0.0011046 778.7 2.1022	0.0011301 865.2 2.2891	0.0011590 953.1 2.4710	0.0011922 1042.8 2.6492	0.0012307 1134.7 2,8250	0.0012763 1229,7 2.9998	0.0013316 1328.7 3.1757	0.0014012 1433.6 3.3556	0.0014939 1547.7 3,5447	h	30000.0
	0.0010976 784.4 2.0905	0.0011220 870.2 2.2758	0.0011495 957.2 2,4560	0,0011808 1045,8 2,6320	0.0012166 1136.3 2,8050	0.0012583 1229,2 2,9761	0.0013077 1325.4 3,1469	0.0013677 1425,9 3.3193	0.8014434 1532.9 3,4965	h	40000.0
	0.0010910 790.2 2.0793	0.0011144 875.4 2.2632	0.0011407 961.6 2,4417	0.0011703 1049.2 2,6158	0.0012040 1138.5 2,7864	0.0012426 1229,8 2,9545	0.0012874 1323.7 3,1213	0.0013406 1421.0 3.2882	0.0014055 1523.0 3.4572	h	50000.0
	0.0010847 796.2 2.0684	0.0011073 880.8 2.2511	0.0011325 966.3 2,4281	0.0011607 1053.0 2.6005	0.0011924 1141.2 2,7690	0,0012285 1231,1 2,9345	0.0012698 1323.2 3.0981	0.0013179 1418.0 3.2606	0.0013791 1516.3 3.4236	h	60000.0
	0.0010731 808.4 2.0478	0.0010941 891.9 2.2281	0.0011174 976.2 2,4026	0.0011433 1061.4 2,5720	0.0011720 1147.8 2,7370	0.0012041 1235,4 2.8985	0.0012401 1324.7 3,0570	0.0012809 1415.7 3.2130	0.0013280 1508.6 3,3671	h	80000.0
	0.0010623 820.9 2.0283	0.0010821 903.5 2.2067	0.0011039 986.7 2,3789	0.0011279 1070,7 2,5458	0.0011543 1155.6 2,7081	0,0011833 1241,5 2,8663	0.0012155 1328.7 3,0210	0.0012514 1416.9 3.1723	0.0012921 1505.9 3.3200	h	100000.0

-												
		P	PROPRIÉT	ÉS DE L	A VAPEU (TEMPI	R SURCH	IAUFFÉE E ET PRE	ET DE 1 SSION)	L'EAU CO	MPRIMÉI	Ε	
	Press. p, kPa				• • • • • • • • • • • • • • • • • • • •		LE 2 ure, t. °C					1
1	(t_s)		360.	380.	400.	420.	440.	460.	480.	500.	520.	
1						10000						
1	500.0	V	0.5795	0.5984	0.6172 3272.1	0.6359	0.6547	0.6734	0,6921	0.7108	3526.8	
1	(151.8)		7.6673	7.7319	7,7948	7,8561	7,9160	7,9745	8.0318	8.0879	8,1428	
1												
1	600.0	b	0.4821 3187.0	0.4979	0,5136	0.5293	3354.8	0.5606	0,5762	0.5918	0.6074	
1	(158.8)		7.5810	7.6459	7.7090	7.7705	7.8305	7.889%	7,9465	8.0027	8.0577	
			0 2407		. 70.0	0.3960		0.4196	0.4314	0.4432	0.4549	
1	800.0	h	0,3603 3183.4	0.3723 3225.4	0.3842	3309.7	0,4078 3352.1	3394.7	3437.5	3480.5	3523.7	
1	(170.4)	5	7,4441	7.5094	7,5729	7.6347	7,6990	7.7539	7,8115	7.8678	7.9230	
1		ν	0.2873	0.2969	0.3065	0.3160	r,3256	0.3350	0,3445	0.3540	0.3634	
-	1000.0		3179.7	3222.0	3264.4	3306.9	3349.5	3392,2	3435,1	3478.3	3521.6	
-	(179.9)	2.	7.3368	7.4027	7,4665	7,5287	7.5893	7,6484	7,7062	7.7627	7,8181	
-		ν	0.1898	0.1964	0.2029	0.2094	0.2158	0.2223	0.2287	0.2350	0.2414	
1	1500.0		3170.4 7.1389	3213.5	3256.6	3299.7 7.3340	3342.8 7,3953	3386.0 7.4550	3429,3 7,5133	3472.8	3516.5 7,6261	
	(1,0,3)	2	7.1307	7.2000	1,2/09	7.3340	7,3993	7,4330	7,3100	7,3703	7,0201	1
	2000 0	ν	0,1411 3160.8	0.1461	0.1511	0.1561	0,1610	0,1659	0.1707	0.1756	0,1804	
1	(212.4)		6.9950	3204.9 7.0635	3248.7 7,1296	3292.4	3336.0 7,2555	7,3159	3423,4 7,3748	7,4323	3511.3 7,4885	
								0.1095	0.4428	0 1144	0.4404	
1	3000.0	h	0,09232 3140.9	0.09584	0.09931 3232.5	0,1027	0.1061 3322.3	3367.0	0.1128 3411.6	0.1161 3456.2	3500.9	
	(233.8)	S	6,7844	6.8561	6,9246	6,9906	7.0543	7.1160	7,1760	7,2345	7,2916	1
1		ν	0.06787	0.07066	0.07338	0.07604	0.07866	0.08125	0.08381	0.08634	0.08886	
	4000.0	h	3119.9	3168.4	3215.7	3262,3	3308.3	3354.0	3399.6	3445.0	3490.4	
1	(250.3)	S	6.6265	6.7019	6,7733	6,8414	6,9069	6.9702	7,0314	7.0909	7,1489	
1		ν	0,05316	0.05551	0.05779	0,06001	0.06218	0.06431	0.06642	0.06849	0.07055	ı
1	5000.0 (263.9)	h	3097.6	3148.8	3198.3	3246.5	3294.0	3340,9	5,9164	3433,7	3479.8 7.0360	1
	1200.77	S					C. 1/2 C. 1/2				100000	
-	6000.0	V	0.04330 3074.0	0.04539 3128.3	0.04738 3180.1	0.04931	0,05118	0,05302 3327,4	3375.0	3422.2	3469.1	ľ
1	(275.5)	h	6.3836	6.4680	6.5462	6.6196	6.6893	6.7559	6.8199	6.8818	6.9417	
1		ν	0.03088	0.03265	0.03431	0.03589	0.03740	0,03887	0.04030	0.04170	0.04308	
1	8000.0	h	3022.7	3084.2	3141.6	3196.2	3248.7	3299.7	3349.6	3398,8	3447.4	
	(295.0)	S	6.1872	6.2828	6.3694	6,4493	6,5240	6,5945	6,6617	6.7262	6,7883	
-		V	0.02331	0.02493	0.02641	0.02779	0.02911	0.03036	0.03158	0,03276	0.03391	
-	(311.0)		2964.8	3035.7	3099.9 6.2182	3159,7 6,3057	3216.2 6.3861	3270,5	3323,2 6,5321	3374,6	3425.1	
- 1	1011.07		1									1
-	15000.0	b	2770.8	0.01428 2887.7	2979.1	3057.0	0.01794	0,01895	3252.4	3310.6	0.02166	1
-1	(342.1)		5,5677	5.7497	5,8876	6.0016	6.1010	6.1904	6,2724	6.3487	6,4204	
-		ν	0.0018269	0.008246	0.009947	0,01120	0.01224	0.01315	0.01399	0.01477	0.01551	
	20000.0		1742.9	2660.2	2820,5	2932,9	3023.7	3102,7	3174,4	3241,1	3304,2	1
ı	(365.7)	S	3,8835	5.3165	5,5585	5.7232	5,8523	5.9616	6,0581	6,1456	6,2262	
- 1		ν	0.0016285	0.001874	0.002831	0.004921	0.006227	0.007189	0.007985	0.008681	0.009310	
- 1	30000.0	h	1678.0	1837.7	2161.8	2558,0 5,0706	2754.0 5.3499	2887,7	2993.9	3085.0 5.7972	3166.6 5.9014	
		,										1
-	40000.0	h	0.0015425	1776.4	0.001909	0.002371	2399.4	0.004137 2617.1	0.004941 2779.8	0.005616 2906.8	0.086205	
	.000010	S	3,6856	3.8814	4,1190	4,4285	4,7893	5.0906	5.3097	5.4762	5,6128	
-		ν	0.0014862	0.001589	0.001729	0.001938	0.002269	0.002747	0.003308	0.003882	0.004408	
1	50000.0	-	1633.9	1746.8	1877,7	2026,6	2199.7	2387,2	2564,9	2723.0	2854.9	1
		S	3,6355	3.8110	4,0083	4,2262	4,4723	4,7316	4,9709	5,1782	5,3466	
		V	0.0014444	0.001528	0.001632	0.001771	0.001962	0.002226	0,002565	0.002952	0.003358	
	60000.0	h	1622.8	1728.4	1847.3	1975.0	2113.5	2263.2	2418,8 4,7385	2570.6	2712.6 5,1189	
		3	•									- 1
	80000.0	V	0.0013833	0.001445	0.001518	0.001605	0,001710 2036.6	0,001841 2152,5	0,001999	2397.4	0,002405	
	00000.	S	3,5296	3.6807	3,8425	4,0033	4.1633	4,3237		4,6488	4.8104	
			0.0013388	0.001390	0.001446	0.001511	0.001587	0.001675	0.001777	0.001893	0.002024	E
	100000.	h	1603.4	1696.3	1797.6	1899,0	2000.3	2102,7	2207.7	2316,1	2427.2	
		5	3,4767	3.6211	3,7738	3,9223	4,0664	4,2079	4,3492	4,4913	4,6331	-

PROPRIÉTÉS DE LA VAPEUR SURCHAUFFÉE ET DE L'EAU COMPRIMÉE (TEMPÉRATURE ET PRESSION) TABLE 2 Press. Température, t. °C p, kPa 540. 560. 580. 600. 625. 650. 700. 750. 800. 0.7481 0.7667 0.7853 0,8039 0.8272 0.8504 0.8948 0.9432 0.9896 V 3570.1 3613.6 3701,5 3757.0 3812,8 4156.4 h 8,8213 s 3657.4 3925,8 4040.3 500.0 8.1967 8:3016 8.3526 8.4152 8.4766 8.5957 8,7105 0.6230 0.6386 0.4541 0.6696 0.6890 0.7084 0,7471 0.7858 3569.1 3612.7 3656.6 3700.7 3756.2 4039.8 3612,1 3925.1 4155.9 h 600.0 8.1117 8.1647 8.2167 8.2678 8.3305 8.3919 8.5111 8.7348 5 0.4783 0.4666 0.4900 0.5891 0,5017 0.5309 0.5600 0.5163 0.6181 V 3567.2 3610.9 3654,8 3699,1 3810,7 3754.7 3923.9 4155.0 h 8.6033 s 4038.7 800.0 7,9771 8.1964 0.3728 0.3822 0.3916 0.4010 0.4477 0.4127 0.4244 0.4710 3565.2 3609.0 3653.1 3697.4 3753.1 3809.3 3922.7 4154.1 h 8,4997 s 4037.6 1000.0 7.8724 7.9256 8.0292 8.0921 8.1537 8.2734 8.3885 0.2477 0.2540 0,2604 0.2667 0.2745 0.2824 0.2980 0.3136 0.3292 V 4151.7 h 3604.5 3560.4 3648.8 3693,3 3749.3 3805,7 3919.6 4034.9 1500.0 7.6808 8,0838 7.7869 7,8385 7.9017 8.3108 5 0.1852 0.1900 8:1947 0.1995 0,2054 0.2114 0.2232 0.2349 0.2467 V 3599.9 3689,2 3644.4 3802.1 4149.4 h 8,1763 s 3745.5 3916,5 4032.2 2008.0 7,5435 7.5974 7,7022 7.7657 7.8279 7,9485 8.0645 0.1291 0,1323 6.1364 0.1404 0.1483 0.1562 0.1641 P 3545.7 3590.6 3635.7 3681,0 3737.8 3795.0 3910.3 4144.7 h 7,9857 s 4026.8 3000.0 7.3474 7.4020 7.4554 0.09135 0.09384 0.09631 0.09876 0.1018 0.1049 0.1109 0.1169 0.1229 V 3535.8 3581.4 3627.0 3672.8 3904.1 4140.0 h 4021.4 4000.0 7.2055 7.2608 7.3149 7.3680 7,4328 7.8495 5 7.4961 7.6187 7.7363 0.07259 0.07461 0.07662 0.07862 0.08109 0,08356 0.08845 0.09329 0.09809 1 3525.9 3572.0 3618.2 3664,5 3780.7 3897.9 3722.5 4016.1 4135.3 h 7.7431 s 5000.0 7 0934 7,3233 7.5108 0.06008 0.06179 0.06349 0.06518 0.06728 0.06936 0.07348 0.07755 0.08159 V 3515.0 3562.7 3609.4 3656,2 3714.8 3773,5 4130.7 h 7.6554 s 3801.7 4010.7 6000.0 7.0000 7,1122 7,1664 7,2326 7,2971 7.5409 7,4217 0.04443 0.04577 0.04709 0.04839 0.05001 1,05161 0.05477 0.05788 0.06096 V 3495.7 3543.8 3591.7 3759.2 3639.5 3699.3 3879.2 4121.3 h 7,5158 s 3999.9 8000.0 7,0191 7.1523 6.8484 6.9068 6.9636 7,0866 7.3999 7.2790 0.03504 0.03615 0.03724 0.03832 0.03965 3,04096 0.04355 0.04609 0.04858 P 3475.1 3524.5 3622.7 3683.8 3866.8 3989.1 4112.0 h 7,4058 s 10000.0 6.7261 7.0373 6.8446 6.9013 6.9703 7,1660 0.02250 0.02331 0.02411 0,02488 0.02584 2.02677 3708.3 0.02859 0.03036 0.03209 V 3421.4 3644.3 3962.1 4088.6 h 15000.0 6.4885 6.5535 6,7492 6.6160 6.6764 6.8195 6.9536 7.0806 7,2013 s 0.01621 0.01688 0.01753 0.01816 0.01893 0.01967 0.02111 0.02250 0.02385 V 3423.0 4065.3 h 7.0511 s 3364.7 3671.1 3479.9 3535,5 3603.8 3803.8 3935.0 20000.0 6.3015 6.4398 6,5043 6,5814 0.009890 0.01043 0.01095 0.01144 0.01202 0.01258 0.01365 0.01465 0.01562 V 3312.1 3378.9 3520.2 3595.0 3880.3 3443.0 4018.5 h 30000.0 5 9040 6.0805 6.2340 6.3212 6.4033 6,5560 6.697C 0.006735 0.007667 0.007219 0.008088 0.008584 0.009053 0.009930 0.01075 0.01152 v 3108.0 3193.4 3433.8 3971.7 h 3674.8 3517,0 3825.5 40000.0 5,8340 5,9276 6,0135 6.3701 6.5210 0.004888 0.005328 0.005734 0.006111 0.007720 0.006550 0.006960 0.008421 0.00907A P 3070.7 3163.2 5.7221 3346.8 3248.3 3438.9 3610.2 3770.9 3925,3 h 50000.0 5.4884 5.6124 5,8207 6.0331 6.3749 0.003755 0.004135 0.034496 0.004835 0.005229 0.005596 0.006269 0.006865 0.007460 8 2951.7 2838.3 3055.8 3151.6 3261.4 3362.4 3547.0 3717.4 3879.6 h 60000.0 5.2755 5.5367 5,6477 5,7717 5.8827 6.0775 6.2483 6,4031 5 0.002641 0.002886 0.003132 0.003379 0.003682 0.003974 0.004519 0.005017 0.005481 W 2648.2 2765.1 2874.9 2980,3 3104.6 3220.3 3792.8 h 80000.0 3516.7 4.9650 5.1072 5.2374 5.4999 5.6270 5,8470 0.0354 6.2034 5 0.002326 0.002168 0.002493 0.002668 0.002891 0.003106 0.003536 0.303952 0.004341 P 2538.6 2648.2 2754.5 2857,5 2985.8

5,2954

5.1505

3105.3

5.4267

3324.4

3526. :

5.8600

3714.3 h

6,0397 5

100000.0

CONVERSIONS COURANTES

1 baril (35 gal imp.) (42 gal U.S.)	= 159,1 litres	1 kilowatt-heure	= 3600 kilojoules
1 gallon (imp.)	= 1,20094 gallon (U.S.)	1 Newton	$= 1 \text{ Kg-m/s}^2$
		1 thermie	$= 10^5 \text{ Btu}$
1 cheval vapeur (chaudière)	= 9809,6 watts	1 tonne (réfrigérant)	= 12002,84 Btu/heure
1 cheval vapeur	= 2545 Btu/heure	1 tonne (réfrigérant)	= 3516,8 watts
1 cheval vapeur	= 0,746 kilowatts	1 watt	= 1 joule/seconde
1 joule	= 1 N-m	degré Rankine	= (°F + 459,67)
Kelvin	$= (^{\circ}C + 273,15)$		

Cubes	Carrés
$1 v^3 = 27 pi^3$	$1 v^2 = 9 pi^2$
$1 \text{ pi}^3 = 1728 \text{ po}^3$	$1 pi^2 = 144 po^2$
$1 \text{ cm}^3 = 1000 \text{ mm}^3$	$1 \text{ cm}^2 = 100 \text{ mm}^2$
$1 \text{ m}^3 = 10^6 \text{ cm}^3$	$1 \text{ m}^2 = 10000 \text{ cm}^2$
$1 \text{ m}^3 = 1000 \text{ L}$	

PRÉFIXES SI

Préfixe	Symbole	Valeur numérique	Exposant
téra	T	1 000 000 000 000	10^{12}
giga	G	1 000 000 000	109
méga	M	1 000 000	106
kilo	k	1 000	10^{3}
hecto	h	100	102
déca	da	10	101
déci	d	0,1	10-1
centi	С	0,01	10-2
milli	m	0,001	10-3
micro	u	0,000 001	10-6
nano	n	0,000 000 001	10-9
pico	p	0,000 000 000 001	10-12

TABLES DE CONVERSION DES UNITÉS MÉTRIQUES EN UNITÉS IMPÉRIALES

DE	SYMBOLE	À	SYMBOLE	VALEUR NUMÉRIQUE
ampère/centimètre carré	A/cm ²	ampère/pouce carré	A/po ²	6,452
degré Celsius	°C	degré Fahrenheit	°F	$(^{\circ}C \times 9/5) + 32$
centimètre	cm	pouce	po	0,3937
centimètre cube	cm ³	pouce cube	po^3	0,06102
mètre cube	m^3	pied cube	pi ³	35,314
gramme	g	once	OZ	0,03527
gramme	g	livre	lb	0,0022
gramme/litre	g/L	livre/pied cube	lb/pi ³	0,06243
joule	J	Btu	Btu	$9,480 \times 10^{-4}$
joule	J	pied-livre	pi-lb	0,7376
joule	J	cheval vapeur-heure	cv-h	$3,73 \times 10^{-7}$
joule/mètre, (Newton)	J/m, N	livre	lb	0,2248
kilogramme	kg	livre	lb	2,205
kilogramme	kg	tonne (longue)	tonne	$9,842 \times 10^{-4}$
kilogramme	kg	tonne (courte)	tn	$1,102 \times 10^{-3}$
kilomètre	km	mille	mille	0,6214
kilopascal	kPa	atmosphère	atm	$9,87 \times 10^{-3}$
kilopascal	kPa	pouce de mercure (32°F)	po de Hg	0,2953
kilopascal	kPa	pouce d'eau (4°C)	po d'H ₂ O	4,0147
kilopascal	kPa	livre/pouce carré	lb/po ²	0,1450
kilowatt	kW	pied-livre/seconde	pi-lb/s	737,6
kilowatt	kW	cheval vapeur	cv	1,341
kilowatt-heure	kWh	Btu	Btu	3413
litre	L	pied cube	pi ³	0,03531
litre	L	gallon (imp.)	gal (imp.)	0,21998
litre	L	gallon (U.S.)	gal (U.S.)	0,2642
litre/seconde	L/s	pied cube/minute	pi ³ /min	2,1186
lumen/mètre carré	lm/m^2	lumen par pied carré	lm/pi ²	0,09290
lux, lumen/mètre carré	$lx, lm/m^2$	pied bougie	pi-b	0,09290
mètre	m	pied	pi	3,281
mètre	m	verge	yd	1,09361
partie par million	ppm	grain/gallon (imp.)	gr/gal (imp.)	0,07
partie par million	ppm	grain/gallon (U.S.)	gr/gal (U.S.)	0,05842
perméance (métrique)	PERM	perméance (imp.)	perm	0,01748
centimètre carré	cm ²	pouce carré	po ²	0,1550
mètre carré	m^2	pied carré	pi ²	10,764
mètre carré	m^2	verge carré	v^2	1,196
tonne (métrique)	t	livre	lb	2204,6
watt	W	Btu/heure	Btu/h	3,413
watt	W	lumen	lm	668.45

TABLES DE CONVERSION DES UNITÉS IMPÉRIALES EN UNITÉS MÉTRIQUES

DE	SYMBOLE	À	SYMBOLE	VALEUR NUMÉRIQUE
ampère/po ²	A/po ²	ampère/cm ²	A/cm ²	0,1550
atmosphère	atm	kilopascal	kPa	101,325
British Thermal Unit	Btu	joule	J	1054,8
Btu	Btu	kilogramme-mètre	kg-m	107,56
Btu	Btu	kilowatt-heure	kWh	$2,928 \times 10^{-4}$
Btu/heure	Btu/h	watt	W	0,2931
calorie, gramme	cal ou	g-cal joule	J	4,186
chaîne	chaîne	mètre	m	20,11684
pied cube	pi ³	mètre cube	m^3	0,02832
pied cube	pi^3	litre	L	28,32
pied cube/minute	pi³/m	litre/seconde	L/s	0,47195
cycle/seconde	c/s	Hertz	Hz	1,00
degré Fahrenheit	°F	degré Celsius	°C	$(^{\circ}F - 32)/1,8$
pied	pi	mètre	m	0,3048
pied bougie	pi-b	lux, lumen/mètre carré	$lx, lm/m^2$	10,764
pied lambert	pi-L*	candela/mètre carré	cd/m ²	3,42626
pied-livre	pi-lb	joule	J	1,356
pied-livre	pi-lb	kilogramme-mètre	kg-m	0,1383
pied livre/seconde	pi-lb/s	kilowatt	kW	$1,356 \times 10^{-3}$
gallon (imp.)	gal (imp.)	litre	L	4,546
gallon (U.S.)	gal (U.S.)	litre	L	3,785
grain/gallon (imp.)	gr/gal(imp.)	partie par million	ppm	14,286
grain/gallon (U.S.)	gr/gal(U.S.)	partie par million	ppm	17,118
cheval vapeur	cv	watt	W	745,7
cheval vapeur-heure	cv-h	joule	J	$2,684 \times 10^6$
pouce	po	centimètre	cm	2,540
pouce de mercure (32°F)	po de Hg	kilopascal	kPa	3,386
pouce d'eau (4°C)	po d'H ₂ O	kilopascal	kPa	0,2491

TABLES DE CONVERSION DES UNITÉS IMPÉRIALES EN UNITÉS MÉTRIQUES (CONT.)

DE	SYMBOLE	À	SYMBOLE	VALEUR NUMÉRIQUE
lambert	L*	candela/mètre carré	cd/m ²	3,183
lumen/pied carré	lm/pi ²	lumen/mètre carré	lm/m ²	10,76
lumen	lm	watt	W	0,001496
mille	mille	kilomètre	km	1,6093
once	OZ	gramme	g	28,35
perm (0°C)	perm	kilogramme par pascal-seconde- mètre carré	kg/(Pa-s-m ²) (PERM)	5,721 × 10 ⁻¹¹
perm (23°C)	perm	kilogramme par pascal-seconde- mètre carré	kg/(Pa-s-m ²) (PERM)	5,745 × 10 ⁻¹¹
perm-pouce (0°C)	perm-po	kilogramme par pascal-seconde-mètre	kg/(Pa-s-m)	$1,4532 \times 10^{-12}$
perm-pouce (23°C)	perm-po	kilogramme par pascal-seconde-mètre	kg/(Pa-s-m)	$1,4593 \times 10^{-12}$
chopine (imp.)	chopine	litre	L	0,56826
livre	lb	gramme	g	453,5924
livre	lb	joule/mètre (Newton)	J/m N	4,448
livre	lb	kilogramme	kg	0,4536
livre	lb	tonne (métrique)	t	$4,536 \times 10^{-4}$
livre/pied cube	lb/pi ³	gramme/litre	g/L	16,02
livre/pouce carré	lb/po ²	kilopascal	kPa	6,89476
pinte	pinte	litre	L	1,1365
slug	slug	kilogramme	kg	14,5939
pied carré	pi ²	mètre carré	m^2	0,09290
pouce carré	po ²	centimètre carré	cm ²	6,452
verge carré	v^2	mètre carré	m ²	0,83613
tonne (longue)	ton	kilogramme	kg	1016
tonne (courte)	tn	kilogramme	kg	907,185
verge	v	mètre	m	0,9144

^{* &}quot;L" tel qu'utilisé dans l'éclairement.

Les valeurs typiques qui suivent peuvent servir de facteurs de conversion quand les données réelles manquent. Les équivalents en MJ et en BTU correspondent à la chaleur de combustion. Les chiffres applicables aux hydrocarbures correspondent à la valeur calorifique la plus élevée (poids humide). Certains produits sont de toute évidence des matières premières, mais ont été inclus au tableau pour le rendre plus complet et pour servir de référence. Les facteurs de conversion pour le charbon sont approximatifs puisque la valeur calorifique de ce produit varie selon la mine d'où il a été extrait.

TYPE D'ÉNERGIE	MÉTRIQUE	IMPÉRIAL		
CHARBON — métallurgique — anthracite — bitumineux — sous-bitumineux — lignite	29 000 mégajoules/tonne 30 000 mégajoules/tonne 32 100 mégajoules/tonne 22 100 mégajoules/tonne 16 700 mégajoules/tonne	25,0 × 10 ⁶ BTU/tonne 25,8 × 10 ⁶ BTU/tonne 27,6 × 10 ⁶ BTU/tonne 19,0 × 10 ⁶ BTU/tonne 14,4 × 10 ⁶ BTU/tonne		
COKE — métallurgique — pétrolier — brut	30 200 mégajoules/tonne 23 300 mégajoules/tonne	$26,0 \times 10^6$ BTU/tonne $20,0 \times 10^6$ BTU/tonne		
— calciné	32 600 mégajoules/tonne	$28,0 \times 10^6 \text{ BTU/tonne}$		
POIX	37 200 mégajoules/tonne	$32,0 \times 10^6 \text{ BTU/tonne}$		
PÉTROLE BRUT	38,5 mégajoules/litre	$5.8 \times 10^6 \ BTU/baril$		
MAZOUT N° 2	38,68 mégajoules/litre	5,88 × 106 BTU/baril 0,168 × 106 BTU/GI		
PÉTROLE N° 4	40,1 mégajoules/litre	6,04 × 10 ⁶ BTU/baril 0,173 × 10 ⁶ BTU/GI		
PÉTROLE N° 6 (MAZOU	T LOURD C)			
— 2,5 % soufre	42,3 mégajoules/litre	6,38 × 10 ⁶ BTU/baril 0,182 × 10 ⁶ BTU/GI		
— 1,0 % soufre	40,5 mégajoules/litre	6,11 × 10 ⁶ BTU/baril 0,174 × 10 ⁶ BTU/GI		
— 0,5 % soufre	40,2 mégajoules/litre	6,05 × 10 ⁶ BTU/baril 0,173 × 10 ⁶ BTU/GI		
KÉROSÈNE	37,68 mégajoules/litre	$0,167 \times 10^6 \mathrm{BTU/GI}$		
DIESEL	38,68 mégajoules/litre	$0,172 \times 10^6 \text{ BTU/GI}$		
GAZOLINE	36,2 mégajoules/litre	0,156 × 10 ⁶ BTU/GI		
GAZ NATUREL	37,2 mégajoules/m³	$1,00 \times 10^6 \text{ BTU/M pi}^3$		
PROPANE	50,3 mégajoules/kg 26,6 mégajoules/litre	0,02165 × 10 ⁶ BTU/lb 0,1145 × 10 ⁶ BTU/GI		
ÉLECTRICITÉ	3,6 mégajoules/kWh	$0,003413 \times 10^6 BTU/kWh$		

Vérification de rendement d'une chaudière

Feuille de travail 6-1

Installation:	Date:		
Endroit:	Par:		
Nº de chaudière:	Combustible: _		
Puissance nominale:	Essai nº		
Pressions et températures Pression de la vapeur à la sortie de la chaudière Transferture de la chaudière		kPa °C	(1) (2)
Température de la vapeur à la sortie de la chaudière Température de l'eau à l'entrée de la chaudière Température de l'air de combustion		℃	(3)
Température du combustible Température du gaz d'évacuation de la chaudière		°C	(5) (6)
Quantités unitaires		170	
Enthalpie de la vapeur à la sortie de la chaudière		kJ/kg	(7)
Enthalpie de l'eau d'alimentation à la chaudière Chaleur absorbée par kg de vapeur [(7) - (8)]		kJ/kg	(8) (9)
Pouvoir calorifique supérieur du combustible (citer les unite	és)		(10)
Overtités hansins			
Quantités horaires Eau évaporée		kg/h	(11)
Débit de combustible (citer les unités)			(12)
Débit calorifique total à l'entrée [(12) x (10)]* =	x	MJ/h	(13)
Puissance calorifique totale à la sortie $\frac{[(11) \times (9)]}{1000} =$	x 1 000	MJ/h	(14)
Rendement direct $\frac{(14)}{(13)}$ x 100 =	x 100	%	(15)
*Les unités de mesure de [(12) x (10)] doivent être converti	es en MJ/h		
Analyse des gaz de combustion		% Volume	
CO_2			(16)
O ₂			(17) (18)
CO N ₂ (par différence)			(19)
Excès d'air			(20)
Pertes de chaleur		% Perte de combustible tel que brûlé	
Perte de chaleur par le gaz sec et l'H ₂ O (Figure 9, Figure	10)		(21)
Perte de chaleur par rayonnement (Figure 12)			(22)
Pertes non mesurées Pertes totales [(21) + (22) + (23)]			(23) (24)
Pertes totales $[(21) + (22) + (23)]$ Rendement indirect $[100 - (24)]$			(25)
TOUGOTHOUS THOMAS [(-, 1)			(_0)

