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Introduction Feature Extraction from Deep Learning Algorithms Organic Pore-Size Characteristics from === o

« Collaborative engagement to develop an artificial intelligence (Al) tool for * A modified and extended CNN to work with fewer training images and Deep Learning ” istin] |
hydrocarbon (HC) recovery from tight formations yield more precise segmentation (Ronneberger, et al. 2015) * Each pore size distribution was derived from one

* Applications of machine learning (ML) in feature extraction using scanning * Each repeated convolution was followed by a rectified linear unit (ReLU) single image of one of three maturity samples (P3 0
electron microscopy (SEM) images for nanopore characterization and a max-pooling operation in the encoding path to reduce spatial early oil window, P5 end of oil window, and P7 dry -

* Physico-chemical modeling of HC distribution in nanopores information and enhance feature information gas window) § 102

« Use ML for mineral classification to benefit our improved resource assessment * Feature and spatial information combined in the contracting path through * Pore size is measured by pixels "
and optimized production performance efforts a sequence of up-convolutions and concatenations with high-resolution  For over 500 images and multiple objects, feature 1o 5'%' .

e Develop Al decision-making tool to enhance resource recovery beyond the features in decoding path extraction and analysis take about two weeks by .;. | | | - -
current single-digit percent performance and address environmental computer time using machine learning o ot e por;[z;ix) 0o
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Statistical distributions of extracted pore
objects for samples of different thermal

Nanopore Feature Extraction and Characterization maturity

* Feature extraction: extract features from SEM images (shape, orientation,
grain size, location of organic pores, pore types, structure and pore size
distribution) with increasing thermal maturity

* Feature characterization: Treating features as objects, statistics of the
objects and their spatial associations used to describe nanopore structures
and their evolution with thermal maturity
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Physico-Chemical Modeling

e Predict the distribution and interactions of HC
within tight rock nanopores
| | | | e Account for oil and host rock chemistry
-10 0 _ 10 20 30 e Produce sorption, diffusion, and slip parameters to
Distance, & :
enable nanopore modeling at non-Darcy flow
regime
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Multilayer adsorption of a heavy oil
moiety on kaolinite in solution (Fafard
etal. 2013; Stoyanov, etal. 2018).

Challenges

'+ Large amount of data to handle

* Features with similar grey-level,

| Conventional processing algorithms
do not work (left)
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ML Model Development and Al Decision Making

Upper: A schematic of U-network architecture for image segmentation;

A few training datasets are Lower: Original image (left) showing rock matrix (grey, lacking texture), clay * QOrganic pore size characteristics based on deep learning analyses of rock images
vailable: Convolutional Neural mineral (grey narrow, linear clusters), organic matter (dark grey) and pores * Physico-chemical model based on HC and rock characterization data
within organic matter (black). Classification and segmentation results (right) * Al decision-making tool for HC recovery which accounts for life cycle analysis (LCA),

Network (CNN) deep learning
requires a large number of training
datasets

illustrating rock matrix (red), clay mineral clusters (yellow), organic matter
(blue) and pore spaces (black).

economic analysis (EA) and engineering modeling (EM)
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convolution + pooling layers fully connected layers  Nx binary classification

A schematic diagram showing a

typical CNN for image classification.
https://adeshpande3.github.io/adeshpande3.github.io/ABeginner's-

Guide-To-Understanding-Convolutional-Neural-Networks/
Right-Top: Original SEM images: d
kerogen (dark grey), Organic pores
(black) & clay-matrix (grey).
Right-Middle: Training masks

Right-Bottom: Results from deep
learning; reproducibility >95%.
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Left: Original secondary electron SEM image of early mature source
rock sample in Duvernay Shale (Tmax=431°C).

Right: Clay mineral networks segmented from the original SEM
image through deep learning.
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