PUBLICATIONS

OF THE

DOMINION OBSERVATORY

OTTAWA, CANADA

Vol. IV, No. 18

THE NEW STAR IN THE CONSTELLATION AQUILA

By W. E. HARPER, M.A.

The telegraphic announcement of a new star in Aquila was received here on June 9, 1918, and communicated to the writer on the afternoon of the same date. It was cloudy here the previous evening when the star was discovered by so many observers in Europe and the United States, but, fortunately, a good proportion of the nights during the remainder of June and the month of July were clear, or partly so, so that a good series of spectrograms were secured during this time when the star was changing rapidly in brightness and in the character of its spectrum. On 35 nights during June and July it was spectrographed using the single-prism instrument, having a dispersion of 33.5 angstroms per millimetre at H_{γ} and covering the region roughly from $\lambda 3850$ to $\lambda 5030$. Seed 27 plates were used in all but a few instances. After the end of July it was not felt necessary to photograph so often, since the changes were taking place more leisurely, and plates were secured on only 19 nights from that time up to the date of the last observation on December 17. Altogether about 140 spectra were made.

From a star of approximately the 11th magnitude on June 5 it rose to one of magnitude -1.5 on June 9 , thus increasing in brightness nearly 100,000 -fold in four days. The increase may have been still more rapid as there is no authentic record of it on the 6th. From its maximum brilliancy on the 9 th it rapidly diminished in brightness until about the 29th of June when its magnitude was $3 \cdot 8$. It then began to oscillate in brightness though gradually tending to become fainter. These variations will be better established when the definite light curve is issued by Harvard, but for the present approximate results which are the means of four observers, Messrs. Stewart, DeLury, Pearce and the writer, will be used. Minima occurred on June 29, July 11, July 22, August 3, August 14 and August 23; while maxima fell around July 3, July 15, July 27, August 8, August 18 and August 27 , the average period being 11 days and the range of variation about $0 \cdot 6 \mathrm{~m}$. The time required for the star to pass from a minimum to a maximum was on the average only two-thirds the time required for it to fall from a maximum to the next minimum. Cepheid variables are also characterized by a more rapid rise than decline and this
resemblance, while it should not be strained, should nevertheless be noted. It should also be noted that the photographic records of the star, which give its history back as far as 1888, show it to have been variable over a range of at least 2 magnitudes. In the case of Nova Persei (1901) the oscillations in brightness began about the same length of time after maximum brilliancy., but their period was much shorter and the range much greater. The average range was 1.5 m accomplished in a period of roughly 3 days and these oscillations continued for about 100 days.

At the end of August the star was about 4.5 m and through September diminished with smaller oscillations to a little brighter than 5.0 m , which brightness it maintained through October and November, decreasing to between 5.5 m and 6.0 m by the middle of December. In the table which follows, the estimates of brightness were made by comparing the nova with surrounding stars using their magnitudes as given in Harvard Annals, Vol. 50. Eor the first two nights, comparison was made principally with Vega and a correction should have been made for the different zenith distances but such has not been done. When the star became fainter it was possible to select stars of about the same zenith distance, thereby doing away with the necessity of considering this factor. The star field issued by Harvard College Observatory in Bulletin 661 was found very convenient in making the estimations of brightness. When the star became fainter than the 4 th magnitude it is possible that our estimations were vitiated by the light from the 6.26 m star, 17 minutes of arc, to the northeast. While the nova was of the 4 th magnitude, or brighter, the additional light of this star would never cause more than 0.1 me of a difference, but as the nova became fainter the light from the nearby star would have an increasing influence on the combined brightness amounting to 0.3 m when the nova was of 5 th magnitude. On certain nights, while the star was of about this brightness, the nova had a fuzzy appearance and, while ordinarily at Ottawa a 6.26 m star can not be seen with the unsided eye, its blended light may have been the cause of the peculiar blurred appearance. In any event no allowance was made for its effect; the combined light was recorded. For these and other reasons the magnitudes given are not claimed to be exact, but the means, which are given to tenths only, should be close approximations and after the first few days should not be in error much over 0.2 m at the outside. One instance will show that small variations can be detected by the unaided eye. One night the star was midway in brightness between two stars on either side of it in the sky, δ Aquilæ (3.44 m) and η Serpentis (3.42 m), and while either one or both may be in error or may be variable in light it is not likely that the difference would amount to more than 0.2 m , and there was no doubt about saying that the nova was brighter than δ Aquilæ and fainter than η Serpentis. On June 25 also in my notes is entered " η Serpentis, type K, certainly appears brighter than δ Aquilæ, type F."

NAKED EYE ESTIMATES OF MAGNITUDE OF NOVA AQUILA No. 3

NAKED EYE ESTIMATES OF MAGNITUDE OF NOVA AQUILe No. 3-Concluded

[^0]

Estimated Magnitudes of Nova Aquile No. 3

The spectrum on June 9 was of a continuous nature with broad absorption lines due principally to hydrogen. The next night showed the characteristic "nova" type of spectrum, the broad emission bands appearing and being flanked on their violet edges by pairs of absorption lines. Numerous other absorption lines were shown, as may be seen from an accompanying table. This persisted for a couple of nights, when the continuous spectrum weakened and the fainter of the absorption lines were lost. With their disappearance the emission band at $\lambda 4640$ began to make its appearance, being fairly noticeable on the 14th and becoming equally prominent with the hydrogen emissions before the end of the month. The nebular emission $N_{1}(\lambda 5007)$ seems to show first about June 18. The other nebulium bands $\lambda 4686, \lambda 4363$ and $\lambda 4959$ developed later in the order given, $\lambda 4686$ being seen at the minimum June 29, it and $\lambda 4363$ at minimum on July 11, while $\lambda 4959$ developed a few days later, though remaining very weak till the end of July. Since then the light from the star has been almost wholly emissive in character, with the general tendency for the nebular and $\lambda 4640$ emissions to equal in intensity those of hydrogen. A more detailed description is given later.

In connection with the variations in brightness it may be pointed out here, that every increase of brightness was accompanied by a return of the continuous spectrum which in turn faded as the star diminished in brightness. This is similar to what
occurred in the case of the Nova Persei (1901) as pointed. out by Professor Pickering, when he stated that the spectrum at a maximum was "normal" while at a minimum it was "peculiar."

Again the behaviour of an absorption band at about $\lambda 4060$ was in some way associated with these light variations. The details are given in the following table.

THE ABSORPTION BAND AT $\lambda 4060$

Comparing the data with the light curve, it would appear that the band seems to shift to the red at a minimum and in the opposite direction during a maximum, that is, that different absorption lines or series of lines arepresent in the two cases. The rule does not hold definitely, but seems to fit the case most of the time. Thus, during the two minima, June 26 to 29 and July 10 to 12 , the band is to be read from $\lambda 4063$ to $\lambda 4075$, while at the maximum, July 2 to 6 , it is at $\lambda 4052$ to $\lambda 4065$. July 9 seems to be a transition date with the former band absent and a new one at $\lambda 4048$ showing. Former novæ have been characterized by somewhat similar behaviour of this band, and the combined data should establish some definite connection between the quantity and quality of light.

Measures have been made upon the plates to determine the displacements of the absorption lines so numerous just after maximum brilliancy on June 9. The hydrogen lines were recognized without difficulty and assuming that the other lines suffered similar displacements it was found that they could be ascribed to the enhanced lines of certain metals, particularly those of iron and titanium, as has already been pointed out by Adams and others. In the preliminary work the pair near $\lambda 5016$ and $\lambda 4922$ were erroneously ascribed to helium, but when the definite measures came to be made it was found that the resulting displacements were discordant. From the residuals the correct normal values are as given in the following table, they being enhanced lines of iron. There may be a few wrong identifications in the list as given, as in some cases close pairs might overlap on our plates. The line $\lambda 4313$ may thus be blended with another enhanced titanium line at $\lambda 4315$ and the combined wave-length should be used, but, in any case, the mean of the displacements will not be materially affected. The table following is for the plates of one night only, June 10, given in detail to show just what agreement existed among the displacements for the various lines. The measures for the displacements on other dates follow later on. The expedient of quoting them as velocities is used, though it is not implied that these displacements are necessarily due to velocities of outrushing gases, much less to the velocity of the star itself. A summary follows for the other dates. The velocities obtained for the sharp calcium lines, H and K, show that within the limits of error they are constant and have a mean value of $-19.9 \mathrm{~km} . \pm 0.7 \mathrm{~km}$. per second. This may be looked upon as the velocity of the nova relative to the sun. The rova is $31^{\circ} 22^{\prime}$ distant from the point in the heavens toward which the solar system is moving and, if we remove the component due to this motion, we have a velocity of -2.8 km . per second for the nova with reference to the stellar system, so that we may consider it as approximately at rest with reference to the stellar system.

LINE DISPLACEMENTS ON JUNE 10, 1918

λ	Element	8554 b		8555		8556 a		8556 c		
		Vel.	Wt.	Vel.	Wt.	Vol.	Wt.	Vel.	Wt.	
$5018 \cdot 629$	Fe	-1432	$\frac{3}{2}$	-1439	$\frac{1}{2}$	-1424	${ }^{\frac{1}{2}}$	-1436	$\frac{3}{3}$	
$4924 \cdot 115$.	Fe	1422	1	1449	$\frac{1}{3}$	1399	$\frac{1}{2}$	1433	$\frac{3}{2}$	
4824.33.	$\mathrm{Fe}-\mathrm{Cr}$	1440	${ }_{1}^{1}$	1466	$\frac{1}{1}$	1439	,	1439	$\frac{1}{4}$	
4584.018	Fe	1424	\%	1451	$\frac{1}{2}$	1482	1			
$4572 \cdot 156$.	Ti	1433	1	1440	$\frac{1}{3}$	1449	$\frac{1}{1}$	1450	\pm	
4563.939.	Ti	1454	$\frac{3}{2}$			1460	${ }^{\frac{1}{4}}$	1436	\%	
4549.766	Fe-Ti	1426	$\frac{1}{2}$	1434	${ }^{\frac{1}{2}}$	1414	$\frac{1}{2}$	1430	,	
4534.139.	Ti	1449	$\frac{2}{4}$	1351	$\frac{1}{4}$	1421	$\frac{1}{4}$	1368	$\frac{2}{3}$	
4522 -871.	Fe	1481	1	1479	$\frac{1}{2}$	1466	\pm			
$4515 \cdot 508$.	Fe					1502	$\frac{1}{2}$			
$4508 \cdot 455$.	Fe	1440	$\frac{1}{1}$			1415	\%			
$4501 \cdot 448$.	Ti	1420	$\frac{1}{2}$	1411	$\frac{1}{2}$	1456	$\frac{1}{2}$	1459	1	
$4481 \cdot 400$	Mg	1450	$\frac{3}{4}$	1433	$\frac{1}{4}$	1438	${ }^{\frac{1}{3}}$	1418		
$4443 \cdot 976$.	Ti	1467	$\frac{3}{3}$	1445	$\frac{1}{1}$	1457	4	1458	$\frac{3}{3}$	
$4417 \cdot 88 .$.	Ti	1502	\%	1480	$\frac{1}{4}$					
4404.927.	Fe	1479								
4399.94.	Ti-Gr	1446	1			1451	${ }^{2}$	1455	1	
$4395 \cdot 286$.	Ti	1483	$\frac{3}{2}$			1466	${ }^{3}$			
4385.55.	Fe	1501	\ddagger	1494	$\frac{1}{2}$	1472	,	1505	$\frac{1}{2}$	
4352.006.	$\mathrm{Fe}-\mathrm{Mg}$	1439	$\frac{1}{2}$							
$4320 \cdot 992$. 4313.034	Ti	${ }_{1}^{1478}$	${ }^{\frac{2}{2}}$	1417 1384	t	1487 1387	$\frac{5}{4}$		$\frac{7}{4}$	
4313.034. 4308.081	$\mathrm{Ti}_{\mathrm{Fe}}$	1344 1452	$\frac{1}{4}$	1384	$\frac{1}{2}$	1387	$\frac{1}{4}$	1389	$\frac{1}{4}$	
$4308 \cdot 081$. $4300 \cdot 211$.	${ }_{\text {Fi }}$	1403	$\frac{1}{2}$	1405	$\frac{1}{2}$	1387	$\frac{1}{2}$	1390	$\frac{1}{2}$	
4294-301	Ti							1483	$\frac{1}{4}$	
4289.915.	$-T i$	1459	4							
4246-996.	Sc	1456	$\frac{1}{2}$	1469	$\frac{1}{2}$	1468	$\frac{1}{2}$	1471	$\frac{1}{4}$	
$4233 \cdot 328$	Fe	1451	$\frac{1}{2}$	1454	,	1458		1466	$\frac{1}{4}$	
4226.40..	Ca, Cr, Ti	1441		1429	,	1430	,	1459	$\frac{2}{4}$	
$4215 \cdot 668$	Sr-	1483	$\frac{1}{2}$	1477	,	1500	$\frac{1}{4}$	1482	$\frac{3}{3}$	
4163.80 .	Ti	1487	$\frac{1}{6}$	1483	?	1476	$\frac{3}{4}$	1476	$\frac{1}{2}$	
$4077 \cdot 885$.	$-S r$	1490	$\frac{1}{4}$	1496	$\frac{1}{4}$	1481		1476	!	
$4071 \cdot 901$.	Fe	1461	$\frac{1}{4}$	1459	,					
4063.756 .	Fe	1486	$\frac{1}{4}$			1498	$\frac{1}{8}$			
$4045 \cdot 975$.	Fe	1510	,	1484	$\frac{1}{2}$	1497	$\frac{1}{4}$			
$3933 \cdot 825$.	Ca	1408	$\frac{1}{4}$	1444	${ }^{\frac{1}{4}}$			1473	$\frac{1}{1}$	
4861.527.	H	1374	,	1375	,	- 1371	$\frac{1}{2}$	1373	$\frac{1}{2}$	
4340.634.	${ }_{H}$	1350			$\frac{1}{2}$	1345	$\frac{1}{2}$	1385	4	
4101.890.	H	1363	$\frac{3}{2}$	1372	${ }^{\frac{1}{2}}$	1378 -1432	$\frac{1}{1}$	1396 1379	$\frac{1}{4}$	
$3970 \cdot 177$. $3889 \cdot 150$	${ }_{H}^{H}$	1346	$\frac{1}{4}$	$\begin{array}{r} 1425 \\ -1320 \end{array}$	$\frac{1}{4}$	-1432	$\frac{1}{4}$	[1379	$\frac{1}{2}$	
$3889 \cdot 150$	H	-1308	$\frac{1}{4}$	-1320	$\frac{3}{2}$			-1384	4	
Means. Reduction to Sun.. Displacement...		$\begin{array}{r} -1436.2 \\ +\quad 10.3 \\ -1425.9 \end{array}$		$\begin{array}{r} -1433.8 \\ +\quad 10.3 \\ -1423.5 \end{array}$		$\begin{array}{r} -1437.0 \\ +\quad 10.3 \\ -1426.7 \end{array}$		$\begin{array}{r} -1436.7 \\ +\quad 10 \cdot 3 \\ -1426.4 \end{array}$		

Thus, taking the mean of the four, we have a line displacement to the violet on June 10th corresponding to a velocity of $1425 \cdot 6 \mathrm{~km}$. This represents a displacement at H_{β} of 23.1 angstroms, at H_{γ} of 20.6 angstroms, at H_{δ} of 19.5 angstroms, and at H_{ϵ} of 18.9 angstroms. I have purposely separated the five hydrogen lines, placing them at the end of the above table, as their displacements seem to be less than those of the metallic lines.

The displacements, relative to the sun, of the metallic lines alone, are respectively 1440 , 1436,1440 and 1437 km ., while corresponding figures for the hydrogen lines are 1343, 1358, 1364 and 1370 km ., an average difference of 79 km ., or more than one angstrom unit. Even allowing for the uncertainty of setting on these broad lines, the discrepancy seems to be real and must have some physical interpretation.

Besides the 41 lines in the above table there were others measured with similar displacements, but being of poorer quality they were not included. With identifications given where possible they are as follows.

The foregoing measurements relate to the set of lines which suffered the least displacement. Butas already stated there were in general two sets of lines for those lines appearing on the plates of the preceding evening. The displacements of the other members of the pair are as given in the following table.

The mean of these four displacements, $-2205 \cdot 6$, corresponds to a shift to the violet at H_{β} of 35.8 angstroms, at H_{γ} of 31.9 angstroms, at H_{δ} of 30.2 angstroms, and at H_{ϵ} of $29 \cdot 2$ angştroms.

SUMMARY OF ABSORPTION LINE DISPLACEMENTS

MEASURES OF NOVA AQUILE NO. 3

λ	8543		8546		8545		8549 a		8550 b		8551 a		8551 b	
	Vel. W	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.		Vel.	Wt.	Vel.	Wt.
$5018 \cdot 629$	-1298	${ }^{\frac{1}{4}}$	-1211	$\frac{1}{4}$	-1275	${ }^{\frac{1}{4}}$	-1285	+			-1224		-1235	
$4924 \cdot 115$	1302	$\frac{1}{2}$	1232		1255		1322	$\frac{1}{2}$	-1168		1273		1253	$\frac{1}{4}$
4861.527	1307	$\frac{1}{4}$	1308		1311		1317	$\frac{1}{3}$	1296		1296	$\frac{1}{2}$	1239	$\frac{1}{2}$
$4340 \cdot 634$	1296	$\frac{1}{2}$	1214		1279		1290	$\frac{1}{2}$	1231		1244	$\frac{3}{3}$	1238	$\frac{1}{4}$
4101.890	1247	$\frac{1}{2}$	1229		1264	$\frac{1}{2}$	1285	$\frac{1}{3}$	-1220		1206	3	1246	$\frac{1}{2}$
$3970 \cdot 177$	1257	$\frac{1}{4}$	-1300				-1257	$\frac{1}{8}$,		1264		1244	$\frac{1}{4}$
3933.825	1269				-1267	$\frac{1}{4}$					1264	$\frac{1}{4}$	-1319	
$3889 \cdot 150$	-1178										-1176	$\frac{1}{4}$		
Weighted														
	$-1277 \cdot 10$		-1249.48		-1276.99		$-1250 \cdot 30$		-1247.13		$-1250 \cdot 10$		$-1249 \cdot 70$	
Va	+ 10.95		+ 10.95		+ 10.95		+ 10.95		+ 10.95		+ 10.95		± 10.95	
$\mathrm{V}_{\text {d }}$	+ 0.19		+ 0.17		+ 0.17		+ 0.11		- 0.09		- 0.13		- 0.13	
Curv.	- 0.28		- 0.28		- 0.28		- 0.28		- 0.43		- 0.28		- 0.28	
Radial Velocity	$-1266 \cdot 2$													
			$-1238 \cdot 6$		$-1266 \cdot 1$		$-1239 \cdot 5$		$-1236 \cdot 7$		$-1239 \cdot 7$		-1239-3	

λ	8559 b		8561 a		8572 b		8568 a		8575 a		8585		8588	
	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.		Vel.		Vel.	
$5018 \cdot 629$	-1597	${ }^{\frac{3}{2}}$	-1619	3			-1685	$\frac{1}{4}$						
4924-115	1597	$\frac{1}{2}$	1575	${ }^{3}$			1670	1						
4861.527			1615	$\frac{1}{4}$			1754	1						
4584.018	1614	$\frac{1}{4}$	1617	$\frac{1}{4}$			1697	$\frac{1}{4}$	-1707	$\frac{2}{4}$	-1741	$\frac{1}{4}$		
$4549 \cdot 766$	1577	$\frac{1}{4}$	1645	$\frac{1}{2}$										
4481.400	1583	${ }_{4}^{1}$	1597	$\frac{1}{2}$	-1719	${ }^{1}$								
$4468 \cdot 663$	1584	$\frac{3}{4}$	1582	$\frac{1}{2}$	1638	$\frac{1}{2}$								
$4443 \cdot 976$	1583	$\frac{1}{4}$	1586	$\frac{1}{8}$	1661	$\frac{1}{4}$								
$4340 \cdot 634$	1605	$\frac{1}{2}$	1579	$\frac{3}{4}$	1700	$\frac{1}{4}$	1703	${ }^{\frac{1}{4}}$	1766	$\frac{1}{2}$	1735	1	-1763	
$4300 \cdot 211$			1493	$\frac{1}{4}$										
$4294 \cdot 301$			1638	$\frac{1}{2}$										
$4289 \cdot 915$			1579	$\frac{1}{2}$										
$4233 \cdot 328$	1595		1604	$\frac{1}{2}$	1645	$\frac{1}{4}$	1671	$\frac{1}{4}$					1718	$\frac{1}{2}$
4163.80-	1597		1575	$\frac{1}{4}$										
4101.890	1595		-1604	$\frac{1}{2}$	1669		1675		1746		1743		1760	
$3970 \cdot 177$	-1623				-1705		-1704		1755				1776	
3933-825									-1722		-1715		-1723	
Weighted														
mean	-1597.00		-1596.87		-1671.27		-1690.40		$-1783 \cdot 10$		-1735.02		-1751.86	
V_{4}	+ 9.22		$\begin{array}{r} \\ +\quad 9.22 \\ \\ \hline\end{array}$		+ 8.80		+ 8.38		+ 7.06		+ 7.30		+ 6.64	
V_{d}	+ 0.03				+ 0.10		+ 0.10		$+0.10$		- 0.12		+ 0.03	
Curv.	- 0 .		- 0.		- 0		- 0.		- 0.2		- 0.2		- 0.2	
Radial Velocity	-1588.2		$-1588 \cdot 1$		$-1662 \cdot 8$		-1682.4		-1725.4		$-1728 \cdot 3$		$-1745 \cdot 6$	

MEASURES OF NOVA AQUIL届 NO．3－Coniinued

λ	8589	8590	8596	8603	8605	8607	8609
	Vel．${ }^{\text {Wt．}}$	Vel． $\mathrm{Wt}^{\text {d }}$	Vel．Wt．	\％el．${ }^{\text {W }}$ Wt．	Vel．${ }^{\text {Wt．}}$	Vel．Wt．	Vel．Wt．
$4861 \cdot 527$			－1786				
$4340 \cdot 634$	$-1727{ }^{\frac{2}{2}}$	-1734 －$\frac{1}{2}$	1762	$-1678 \cdot 91$	-1662.51	$-1673 \cdot 41$	$-1663 \cdot 21$
4101.890	-1763 －$\frac{1}{2}$	1741	17641	1667．6 1	$1675 \cdot 11$	$1676 \cdot 51 \frac{1}{4}$	$1670 \cdot 31 \frac{1}{2}$
$3970 \cdot 177$		-1775	-1756	$-1669 \cdot 01$	-1663.71	$-1688 \cdot 2$	$-1663 \cdot 71$
Weighted mean Va V_{d} Curv．	$-1745 \cdot 00$	$-1744 \cdot 40$	－1763．27	－1671．83	－1667．10	－1678．39	－1666．09
	＋ 6.00	＋ 6.00	$+\quad 3.95$	＋ 0.81	$+\quad 0.37$	－ 0.08	－ 0.53
	＋ 0.23	＋ 0.19	0.00	＋ 0.11	＋ 0.09	＋ 0.16	＋ 0.02
	＋ 0.28	$0 \cdot 28$	0.28	0.28	0.28	0.28	0.28
Radial Velocity	－1739．2	－1738．6	－1759．6	－1671．2	-1666.9	$-1678 \cdot 6$	$-1666 \cdot 9$

	8612	8618	8619	8620	8621	8623	8624
－	Vel． Wt ．	Vel．${ }^{\text {Wt．}}$	Vel．Wt．	Vel．${ }^{\text {Wt．}}$	Vel．${ }^{\text {Wt．}}$	Vel．｜Wt．	Vel．${ }^{\text {Wt．}}$
$\begin{aligned} & 4340 \cdot 634 \\ & 4101 \cdot 890 \end{aligned}$	－1678．8 ${ }^{-1}$	－1680．9 $\left.{ }_{-1684 \cdot 3}\right\|^{\text {a }}{ }^{\frac{1}{2}}$	－1689．4 $\left.\right\|^{-1688 \cdot 0} \mid 1^{\text {a }}$	$\left\|\begin{array}{\|l\|l\|}-1677 \cdot 7 \\ -1684 \cdot 4\end{array}\right\|^{\text {a }}$	－1684．2 ${ }^{\text {a }}$	$-1681 \cdot 4 \quad \frac{1}{2}$	$-1698 \cdot 4$ 年
Weighted mean	－1678．80	$-1683 \cdot 17$	$-1688 \cdot 60$	－1681．30	－1688．65	－1681．40	－1698．40
Va	－ 2.39	－ 4.15	4．61	－ 5.06	－ 5.96	－6．38	－ 6.38
V_{d}	0.02	0.09	＋ 0.07	＋ 0.06	$+\quad 0.09$	＋ 0.14	＋ 0.04
Curv．	－ 0.28	0.28	0.28	0.28	0.28	－ 0.28	－ 0.28
Radial Velocity	－1681．6	－1687．7	－1693．4	－1686．6	$-1694 \cdot 8$	－1687．9	$-1705 \cdot 0$

λ	8559 b	8561 a	8572 b	8568 a	Vel．${ }^{\text {Wt．}}$		Vel．	Wt．
	Vel．${ }^{\text {Wt．}}$	Vel． \mid Wt．	Vel．${ }^{\text {Wt．}}$	Vel．${ }^{\text {Wt．}}$		Vel．${ }^{\text {W }}$ Wt．		
4861 － 527	$-2420 \quad \frac{1}{2}$	-2459 年	-2462 －$\frac{1}{3}$	－2281				
$4340 \cdot 634$	2448 年	2450 咅	2329 －$\frac{1}{3}$	2280				
4101.890	2229 妾	-2230	2335	2295 年				
$3970 \cdot 177$			-2342 交	-2307 －$\frac{1}{2}$				
Weighted								
mean	$-2316 \cdot 30$	－2369－30	$-2376 \cdot 53$	－2289．25．				
V_{u}	＋ $+\quad 9.22$	＋ 9.22	＋ 8.80	＋8．38				
Vad	＋ 0.03	0.00	＋ 0.10	＋ 0.10				
Curv．	－ 0.43	－ 0.43	－ 0.43	－ 0.43				
Radial Velocity	$-2307 \cdot 5$	$-2360 \cdot 5$	－2368．0	$-2281 \cdot 2$				

DETAILED DISCUSSION OF THE SPECTRUM OF NOVA AQUIL届 NO. 3

In addition to the main features of the spectrum, already discussed in the preliminary general statement, there were many less conspicuous but important details shown in the plates, and striking changes took place throughout the spectrum from time to time. These details and changes are dealt with in the following description of the spectrum as secured here from day to day.

June 9 th. -The plates showed a fairly strong continuous spectrum with absorption bands about 8 angstroms wide, which were none too well contrasted. Besides the hydrogen series there were the H and K lines of calcium, the presence of the former line being fairly certain from the complex character of the line as combined with H_{ϵ}. Then there were other bands, in general much fainter than the hydrogen, having the following wave-lengths, $\lambda \lambda 5018,4924$, $4584,4549,4481,4300,4233$ and 4163. All these bands were displaced froma their normal positions to the violet by an amount corresponding to a velocity of approach of 1250 km . per second. As previously stated, this does not imply a translation of the star or of its vapours at this rate, but is only a ready method of expressing the displacement of the lines from their normal positions. The agreement among the different lines was all and even better than what could be hoped for, and revealed that in this nova, as in previous ones, the displacement of the lines was proportional to the wave-length. Besides the broad calcium bands there were also sharp H and K lines very slightly displaced from their normal positions towards the violet. While the broad bands shifted their positions from time to time, these latter well-defined lines have maintained a constant position which, as may be seen from an accompanying table, is of the order of 20 km . per second approach; that is, a displacement of about one-third angstrom to the violet of their normal positions. Nothing definite in the nature of emission can be seen on the plates taken throughout the night.

Jure 10th.-The first plate taken on this evening showed a decided change in the spectrum. Emission bands, particularly of hydrogen had now made their appearance, flanked on the side of greater refrangibility by pairs of absorption lines. The continuous spectrum is quite strong, yet there would seem to be no uncertainty in regard to the presence of the emission bands, even though they are not pronounced as yet. It is quite a task in a spectrum where both emission and absorption bands are present, as in this case, to properly interpret what one sees on the plate, and different persons might read quite different results from the same plate. In some cases weight may be given to the interpretation of the absorption lines as being simply spaces between the emission bands, but it seems to me in the case of Nova Aquilæ No. 3, on this date we have genuine absorption taking place. The appearance on this date is that of a strong continuous spectrum crossed by a great many absorption bands, and in addition having broad emission bands of hydrogen and possibly a few other substances. These absorption bands have been identified as due to hydrogen, magnesium, calcium and enhanced lines of iron, titanium and other substances, as indicated in one of the accompanying tables. Pairs of absorption lines, as mentioned just now, occur at the violet edges of the hydrogen emission, and also for wave-lengths, $\lambda \lambda 5018,4924$, and 4481, the least refrangible of the pair-the one corresponding to that of the previous evening-being always the more intense of the two. Measurements upon the most suitable 30 or 40 out of the total 70 odd, that can be counted between $\lambda 3889$ and $\lambda 5018$, show a displacement from their normal positions equivalent to a velocity of approach of 1426 km . per second. The corresponding displacement for the other members of the pair, about 8 or 9 in number, is for this night 2206 km . per second, as shown in the summary of measures.

June 19th.-The emission bands have become strengthened relative to the continuous spectrum. The numerous absorption lines seen on the 10th are missing; only those visible on the 9 th remaining. All lines have shifted more to the violet, the displacements being represented by velocities of -1588 and -2360 km . respectively. The emission bands are not uniformly intense throughout their breadth, but appear as if annulled in several places by absorption lines. The more refrangible of the lines at $\lambda 5018$ and $\lambda 4924$ and apparently $\lambda 4481$ also are missing, while the corresponding one for H_{β} has become broadened and much intensified, with a corresponding decrease in intensity in the other member of the pair. The other hydrogen lines show a tendency to shift the intensity from the red to the violet member of the pair, though the effect is not so marked as in H_{β}.

June 14th.-The phenomena of the previous evening of the emission being "eaten out" in places by absorption is accentuated on plates of this date. There results the appearance of three distinct divisions to each of the hydrogen bands, the main one being some 10 or 15 angstroms wide at about the normal position of the line, the others less than half as broad, and centred roughly some 1200 or 1300 km ., respectively, to the red and violet of the normal positions. Numerous other emission bands are without doubt present, there being a pair around $\lambda 4625$ and $\lambda 4640$, while from $\lambda 4584$ to $\lambda 4501$ there are several emission bands. Fewer definite absorption lines are seen than on the previous evening, and their displacements correspond to a negative velocity of 1663 km ., while the second member of the hydrogen pair is about 2368 negative.

June 15th.-The emission and continuous spectrum is quite similar to that of the preceding evening, while the absorption lines have become fewer in number, being confined principally to the pairs of hydrogen lines; the enhanced lines, $\lambda \lambda 5018,4924,4584,4233$ and the calcium K.

June 17th.-There is considerable of a change on this date. The emission bands of hydrogen are much more unifu: m in intensity throughout their width. The change seems to have been gradual, as those of the 15 th are slightly more uniform than those of the 14 th. H_{β} extends from $\lambda 4833$ to $\lambda 4889 ; H_{\gamma}$ from $\lambda 4317$ to $\lambda 4364 ; I_{\delta}$ from $\lambda 4079$ to $\lambda 4122 ; H_{\epsilon}$ from $\lambda 3948$ to $\lambda 3990$, so that the centres of the emission bands are in the normal positions of the lines and their width varies approximately with the wave-length. The emission is sharply terminated at the violet edge by the absorption line. The main difference to the preceding plates is the absence of the more refrangible of the pair
of absorption lines which terminated the hydrogen emission bands on the violet, and which first appeared on the night of the 10th. Further, a new absorption band is beginning to show itself about $\lambda 4060$, with a tendency to have centres of intensity at $\lambda 4056.7$ and $\lambda 4065 \cdot 7$. If these have suffered displacement like the other absorption lines, their normal values would be about $\lambda 4081$ and $\lambda 4090$.

June 18th.-Quite similar to the 17th. When the characteristic pairs of absorption lines occurred on the 10th there was slight absorption to the violet of the pair at $\lambda 5018$, which was not present on the preceding night. This has been steadily increasing in intensity and, being some 50 angstroms wide, is quite a noticeable feature of the spectrum at this phase. Its centre is at $\lambda 4959 \cdot 5$ the position of N_{2}.

June 19th.-A pair of absorption lines to the violet of the 4640 band with centres at $\lambda 4607$ and $\lambda 4595$ are more definite, otherwise little change from the preceding night.

June 20th.-A further strengthening of intensity in the pair of absorption lines $\lambda 4607$ and $\lambda 4595$ and a decrease of the continuous spectrum relative to the emission are shown. The emission band at $\lambda 4640$, which could be detected as a strengthening of the continuous spectrum on the 13th, has gradually become stronger until now it is quite marked.

June \&ird.-The broad emission bands of hydrogen with an absorption line to the violet of each and with the additional very broad but not so intense emission at $\lambda 4640$ without absorption to the violet is what we find in spectra of this date. The continuous spectrum is weak. H_{β} has an absorption at the red edge of its emission. The appearance is as if emission was centrally superposed on a somewhat broader absorption. Instead of $\lambda 4057$ and $\lambda 4066$ which appeared on the 17th, though suspected on the 15th, there are two quite strong bands at $\lambda 4059 \cdot 4$ and $\lambda 4054 \cdot 3$, the former and $\lambda 4057$ perhaps being one and the same band.

June 25th.-Somewhat similar to the 23 rd , though the continuous spectrum is more intense and the $\lambda 4640$ emission relatively much fainter than on that date. Rough estimates of the relative intensities of the continuous speotrum to H_{δ}, H_{γ} and H_{β} are as 1 to 5 to 10 to 25 . Quite definite centres of intensity appear at $\lambda 4055$ and $\lambda 4060$.

June 26th.-The continuous spectrum is weak and the absorption lines which terminated the violet edges of emissions are now lost. The emission bands at $\lambda 4640$ and those due to hydrogen have the appearance of being double, owing to their centres being "eaten out" by absorption whose width is about one-half their own. Additional emission bands 5 or 10 angstroms wide are seen at $\lambda \lambda 4584,4530,4490,4450,4434,4395,4302$ and 4252 . Absorption extends from $\lambda 4062$ to $\lambda 4075$ without any particular centre of intensity.

June 28th.-The plate is too weak for definite study, but the emission bands appear to be the same as on the 26th. The centres of intensity for the $\lambda 4640$ emission are at $\lambda 4618$ and $\lambda 4658$.

June 29th.-Again the appearance of centrally superposed absorption bands on broader emission. Faint emission extends approximately from $\lambda 5030$ to $\lambda 4980$ with absorption cutting out the centre, leaving strips of emission about 8 or 10 angstroms wide whose centres are at $\lambda 5024$ and λ 4984. Strong H_{β} emission extends from $\lambda 4888$ to $\lambda 4834$, eaten out by centrally placed absorption about half the width of emission. The red portion of the amission is the more intense. Faint emission extends from $\lambda 4710$ to $\lambda 4666$, then emission as strong as H_{β} from there to λ 4614, whose central portion suffers partial absorption, leaving strong centres of emission at $\lambda 4658$ and $\lambda 4622$. Similar emission strips.are seen in the region $\lambda 4584$ to $\lambda 4382$, as on the 26 th. H_{γ} emission extends from $\lambda 4364$ to $\lambda 4316$, with central absorption, the red portion of the remaining emission centred at $\lambda 4359$ being more intense than the corresponding violet portion, just as was the case with H_{β}. H_{δ} extends from $\lambda 4124$ to $\lambda 4075$, with absorption and other features similar to H_{β} and $H_{\gamma} . \quad H_{\epsilon}$ is much fainter, but seems similar to others. In genergl, the emission bands are 50 angstroms wide and decrease in intensity with decreasing wave-length.

July 2nd.-The continuous spectrum has again become strong and with its increased intensity the absorption line, which formerly terminated the violet edges of the hydrogen emissions, again reappears, this time as a close double in H_{γ}, H_{δ} and H_{ϵ}. The emission band at $\lambda 4640$ has its intensity relative to the hydrogen bands diminished to a considerable degree, the appearance being more of a strengthening of the continuous spectrum in that region. Rather indefinite centres of intensity are seen at $\lambda 4053$ and $\lambda 4060$ for that particular absorption band. The star has, of course, brightened up since the last observation.
 Expressed in velocities they are -1667 km ., and -1802 km .

July 4th.-In general similar to preceding.
July 5th, 6th.-The more refrangible of the pair of absorption lines seen on the 2nd, 3rd and 4th is now missing. The $\lambda 4060$ band has a tendency to show centres of intensity at $\lambda 4057$ and $\lambda 4062$.

July 9 th.-Emission becoming the predominant feature, that at $\lambda 5007$ regaining in intensity relatively to the others. The only absorption line seen bordering the hydrogen emissions is that at H_{δ}. Absorption occurs at $\lambda \lambda$ 4573, $4555,4500,4445$, and a narrow pair at 4422, 4421, and faint absorption at $\lambda 4109$. There is also a pronounced absorption line near $\lambda 4096$. Its position is identical with those measured as hydrogen lines from July 19th to November 10th. This seems to be a transition date.

July 10th, 11th, 19th.-Emission similar to the 9 th. H_{δ} and $\lambda 4096$ absorption absent. The spectra of these dates is somewhat similar to that of June 29th, when the star was about the same magnitude. In the interval, it increased in brightness probably 0.7 magnitude and has diminished again by the same amount. There are some differences, and a fuller description is in order. There are six prominent emission bands, $H_{\beta}, H_{\gamma}, H_{\delta}$ and $\lambda 4640$, and of lesser intensity $\lambda 5007$ and H_{ϵ}. These have the appearance of being superposed on absorption bands greater in width by 20 to 40 angstroms. Emission extends from $\lambda 4671$ to $\lambda 4606$, and shows a tendency to resolve into two parts. More-
over, while it fades off gradually into the continuous spectrum at its violet edge it would apparently continue some 40 angstroms further to the red were it not for absorption which cuts into it, leaving two disjointed strips of emission. Similar faint emissions are seen at $\lambda \lambda 4584,4549,4529,4491$ and a strip from $\lambda 4466$ to $\lambda 4445$ terminated by an absorption band or series of absorption lines. The extreme limits of H_{γ} and the nebular $\lambda 4363$ emissions are from $\lambda 4316$ to $\lambda 4385$ and are fairly well defined. The strong portion is from $\lambda 4335$ to $\lambda 4363$, but this itself is eaten into centrally by absorption lines. H_{δ} and H_{ϵ} have the usual limits. Thus the emission bands of hydrogen, their widths 40 to 50 angstroms and roughly proportional to their wave-lengths, continue to be near the normal positions of the lines.

July 18th, 14th, 15th.-Differs from preceding in that sharp H_{γ} and H_{δ} absorption lines are seen to the violet of the emissions.

July 1γ th.-Continuous spectrum stronger. A decided pair of absorption lines at $\lambda 4051.3$ and λ 4057.9. Broad absorptiou lines have appeared gradually of late at $\lambda 4572$ and $\lambda 4554$. The stan for the last few evenings has been 2 or 3 tenths of a magnitude brighter than it was one week ago.

July 18th. -The line $\lambda 4051$ of the preceding night is faint, while $\lambda 4058$ is missing entirely. If H_{γ} absorption is present it is very faint and diffuse.

July 10th.- Continuous spectrum decidedly weaker. There are indications of the $\lambda 4051$ and $\lambda 4058$, but none of the $\lambda 4554$ and $\lambda 4572$, though the continuous spectrum is of sufficient intensity to reveal them. The absorption lines to the violet of the hydrogen emissions are missing entirely.

July 20th. -There is stronger absorption from $\lambda 4575$ to $\lambda 4549$ and emission at $\lambda 4584$ and λ 4528, which does not show on the plate of the preceding night.

July 21st.-Continuous spectrum weakened and emission less uniform as absorption has eaten into their centres. The spectrum of this date is a replica of June 26th, with the addition of the nebular emission $\lambda 4363$, which joins on to H_{γ}, and extends to $\lambda 4385$.

July $24 t h, 25 t h, 26 t h$. -The main emission at H_{β} is some 50 angstroms wide "eaten out" centrally by absorption. Emission reversal 10 angstroms wide is centred at the normal position of the line. All enission is more uniform, otherwise general features as on the 21st.

July 30 th and S1st.-The nebular emissions at $\lambda 5007, \lambda 4363$, are about equally bright with H_{γ} and only slightly less so than \boldsymbol{H}_{β}. Emission is even more uniform than immediately preceding dates.

August 1st.-Identical with spectirum of July 21st. Approaching minimum in both cases.
A ugust 23rd, 24th, 25th, 26th, 27th, 29th;
September 7th, 21st, 2Znd, 30th;
October Srd, 8th, 218t;
November 2nd, 10 th. - The plates of these dates are quite similar in general, and consist principally of emission bands as given in the following table. Since about the 218 st of July the continuous spectrum has pretty well vanished and what changes have taken place are detals within the emission. The nebular emissions, $N_{1}\left(\lambda 5007\right.$) and N_{2} (λ 4959) have on the whole strengthened during the interval. The tendency has been for the absorption within the emissions to show itself more as definite lines.

SUMMARY-EMISSION SPECTRUM—JULY 19 TO NOVEMBER- 10

The foregoing limits were computed from measures made upon the plates, using the Hartmann interpolation formula. Naturally more or less error exists in the measures, as some of the edges are not well defined. H_{δ} while fairly definite at the red edge, is not so at
the violet and towards the close of the interval stated the entire emission there becomes quite weak. $H \gamma$ cannot be dissociated from the nebular 4363 emission. At times an increased intensity is shown at $\lambda 4370$ to $\lambda 4358$ as if due to overlapping. A similar case exists with the 4640 band, though on July 21st and August 1st the two emissions are definitely separated with centres at $\lambda 4612$ and $\lambda 4659$. The N_{1}, N_{2} and H_{β} emissions are fairly well defined, however. With H_{β} the greatest range in the measures for either limit is 1.8 angstroms with a probable error for the mean of 24 plates of less than 0.1 angstrom, and it would seem that the displacement to the violet of 1 angstrom cannot wholly be accounted for by error of measurement. It should be stated that its centre for the period, June 17 to July 17 inclusive, was 0.4 angstroms to the violet but the limits were not nearly so definitely determined. Correction of course has been made for the 20 km . velocity of approach. H_{δ} is in the same direction 2 angstroms, but its centre likewise cannot be so definitely established.

Besides the absorption lines, hereafter spoken of as the hydrogen lines from the fact that their displacements from their normal positions are proportional to their wavelengths, the following are measured on the majority of the plates in this interval. A band 12 angstroms wide centred at $\lambda 4971.8$ is also a feature which intensifies as time proceeds.

ABSORPTION LINES

$5017 \cdot 0$	$4383 \cdot 4$	$4127 \cdot 2$
$4951 \cdot 6$	$4372 \cdot 0$	$4125 \cdot 1$
$4633 \cdot 5$	$4357 \cdot 2$	$4120 \cdot 0$
$4612 \cdot 3$	$4337 \cdot 5$	$4115 \cdot 8$

Absorption lines were always present some 6 or 7 angstroms to the violet of $\boldsymbol{H}_{\beta}, \boldsymbol{H}_{\gamma}$ and H_{δ} during the interval quoted, and became increasingly better defined as time proceeded. On the assumption that they are due to hydrogen, their displacements-using the velocity idea-are as given in the following table. The agreement among themselves was all that could be desired.

DISPLACEMENTS HYDROGEN ABSORPTION LINES

	Date	Velocity	Weight	Date	Velocity	Weight
	1918			1918		
July	19.	-455	${ }^{\frac{3}{4}}$	Aug. 26.	-443	13
"	20.	453	${ }^{\frac{3}{4}}$	" 27.	444	$1 \frac{1}{2}$
"	21	448	3	" 29.	451	11
"	24.	450	$\frac{1}{3}$	Sept. 7.	442	11
"	25.	456	1	" 21.	462	1
"	26	443	1	" 22.	447	$1 \frac{1}{2}$
	30	439	$1 \frac{1}{4}$	" 30.	446	1
"	31.	445	4	Oct. 3.	440	1
Aug.	1.	442	1	" 8.	449	13
"	23.	443	2_{4}^{12}	" 21.	447	1
"	24.	434	$1 \frac{12}{4}$	Nov. 2.	444	1
"	25.......	-449	$1{ }^{13}$	10.	-444	11

Spectrum of Nova Aquilæ No. 3

The mean is -446.0 corresponding to a displacement at H_{γ} of 6.5 angstroms with corresponding values for H_{β} and H_{δ}.

The spectra, shown are from the original negatives enlarged lengthwise three and nine tenths times and thirty-seven fold in width. They show the most characteristic types. The first two illustrate the rapid change that took place in the 16 hours or so between observations late on the 9 th and early on the 10th, and makes one sceptical of a stellar classification in which we are led to think of millions of years being required for a star to pass from one type to another.

To discuss fully the probable causes of the origin of new stars and the various theories that have been put forward from time to time to explain them would be out of place in an article already lengthy. It may be permitted to make some comparisons, however, between this nova and other striking ones, particularly Nova Aurigæ (1892), Nova Persei (1901) and Nova Geminorum (1912) and to point out wherein some of the theories fail to satisfy the observed facts.
(1) The region of the sky in which it occurred is noteworthy. Apart from the numerous faint novæ found recently in spiral nebulæ they are all situated in the plane of the Milky Way, where matter is more plentiful and where collisions would be more likely to occur than elsewhere.
(2) This was a known star and it required at least three days to increase to its maximum light. This would discredit the theory, adopted many years ago to account for new stars, of a collision occurring between two practically dead worlds, for according to that theory a few hours would suffice for the bodies to cut through each other with the tremendous velocities they were assumed to possess. The Director, Dr. Otto Klotz, has made the suggestion that since this was a known star if a change in proper motion can be shown to have taken place in the star after the outburst, then some weight would be lent to the collision theory. It is doubtful, however, if the previous observations were of sufficient precision to definitely settle the matter.
(3) If we accept the measures of the sharp H and K lines of calcium, which are presumably reversals, as representing the radial motion of the star then the three novæ,-Persei, Geminorum and this one-in which these lines have been well measurable, have radial velocities which are approximately zero with reference to the stellar system.
(4) The strong continuous spectrum before maximum light was reached, while possibly accounted for by high pressures, would more reasonably suggest that some internal cause was heating up the core of the star. On the other hand, the rapid diminution in light after it had reached its maximum would argue for superficial disturbances as would also the fact that the continuous spectrum rapidly faded and was replaced by one of a nebular type, noticeable after a week and quite strong in a month's time.
(5) The history of the star, since it was first photographed 30 years ago, shows it to have been varying in light over two magnitudes, and this might incline us to the idea that the causes operating in variable stars were present here also. Then the similarity of the oscillations, which took place in the light of the star during July and August, to those occurring in Cepheid variables in which the time from minimum to maximum is shorter than from maximum to minimum should be noted, though the point should not be strained too far. It may be added, that all the better observed novæ show these oscillations in brightness.
(6) The greater the outburst, the greater the widths of the emission lines and the greater the displacements of the absorption lines. Tabulating the four novæ in order of maximum brightness we have:

The collision theory was adopted in the case of Nova Aurigæ by several, among whom was Vogel; who afterwards discarded it in favour of the idea, that alternate layers in the star's atmosphere gave rise to bright and dark bands and that owing to pressure the emission bands were slightly displaced to the red from their normal positions, thereby leaving uncovered at their violet edges portions of the absorption bands. This conclusion was based upon Wilsing's work on the pressure effects on gases, and more particularly upon the earlier and more comprehensive work of Jewell, Humphreys and Mohler. This explanation will not suffice in the present instance, for in addition to the hydrogen lines, which appear as both emission and absorption, we have numerous metallic lines which appear as absorption only, and yet suffer displacements similar to those of hydrogen.

Seeliger's theory of a main body approaching the sun and running into a cosmic cloud, and Lockyer's idea of the meeting of not one but two cosmic streams, one denser than the other, both have some resemblance to the popularly accepted theory of a body approaching the inert stage and in its motion through space becoming enmeshed in a nebula.

The explosive theory was put forward by W. H. Pickering, and in view of our recent knowledge regarding the pent up energy in radio-active substances is not without merit, particularly if we assume, as did Huggins, that the close approach of the two bodies caused them to become more and more distorted and elongated until finally the great outburst occurred. Pickering's latest idea is that of a meteor plunging into a so-called dead world.

The earlier novæ all showed displacements of the emission bands towards the red, which in the case of Aurigæ amounted to about 6 angstroms, and these bright bands were assumed to belong to the receding star. When other novæ likewise showed redward displacements the case was weakened, for why should not novæ be found in which the bright-line star was approaching and not receding? The displacements of the emissions were in the same direction in Geminorum and Persei, but they were much smaller in amount, and in Nova Aquilæ the displacement was if anything to the violet.

When our knowledge of the laboratory behaviour of gases under varying conditions of pressure and temperature-not overlooking anomalous dispersion phenomens-is more complete, we will be in a better position to theorize regarding the origin of new stars. A hopeful sign lies in the fact, that spectra of some nebulæ show remarkable resemblance to those of novæ. Slipher secured a spectrogram of Hubble's variable nebula requiring 37
hours exposure, which shows numerous bands and lines that were present in certain stages of former novæ. In the meantime, we are glad that the present nova has given opportunity to learn a few additional facts regarding these interesting objects.

Dominion Observatory

Ottawa
December, 1918.

Note added while going through the press.
A spectrogram taken, 1919, March $13 \cdot 92$, shows the nebular emissions $\lambda \lambda 5007 \cdot 2$. $4959 \cdot 2$ and $4362 \pm$ in this order of intensity; the two former having well-defined limits and being about 12 angstroms wide, while $\lambda 4362$ was about 50 angstroms wide with ill-defined limits.

[^0]: *Added while going through the press.

