This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

PUBLICATIONS

CHOTA DE DESO MORREDO

OF THE

DOMINION OBSERVATORY

OTTAWA, CANADA

Vol. IV, No. 3

ORBIT OF THE SPECTROSCOPIC BINARY 2 SAGITTÆ

BY REYNOLD K. YOUNG, Ph.D.

The binary character of 2 Sagittæ ($\alpha = 19^{h} 20^{m}$, $\delta = +16^{\circ} 46'$, type A3, mag. 6.2) was announced by Adams in the Astrophysical Journal, Vol. 35, page 177. Other designations for 2 Sagittæ are Boss 4947 and H.R.P. 7369. Forty-four spectrograms secured at this observatory, with a one-prism spectrograph, have been used in determining an orbit.

Shortly after the star was placed on the observing programme, it was discovered that both spectra were present. The widest separation between the components is somewhat over one hundred kilometres. These conditions make it difficult to determine accurate elements with the low dispersion used. However, the secondary spectrum is so much fainter than the primary, that the measures of blends, where such occur, tend to follow the primary curve. The elements may probably be regarded therefore as a first approximation. Better elements could be obtained with higher dispersion, for the lines when not confused by the secondary spectrum are fairly sharp and narrow.

Table I gives the data necessary for correcting the wave-lengths used in making the reductions. The residuals are taken in the sense, observed minus the mean of the plate. Several other lines besides those given in the table were occasionally measured.

The journal of observations taken at Mount Wilson and Ottawa follows in Tables II and III. Phases are counted from Julian Day $2,420,940 \cdot 0$. The residuals given in the eighth column are taken from the final curve, and should be accurate to the nearest kilometre. Those marked with an asterisk, result from plates which lie on that part of the orbit where the two sets of lines are not clearly separated and the velocity is the measure of the blend. Such measures were kept separate in forming the normal places, and in selecting preliminary elements allowance was made for the tendency of the measures of such blends to lie off the primary curve and toward the γ -axis.

54041-1

- how down in all of the first of the state of the state

			1.		1		
	Durs State						
ate and							
							and the second
	Re- to Sig Law						
		1 2 1					
10 10 1			A. Of the				
					1是一次8月11日		
		ि अख्य जना स्ट					
	* 19 19 19						
		· anno i		n at al .	1 manuel		L'ESTROLL
					1-159-51		menau
						128 64	. A second
					1 × 5 1		
							. Destinit

Conterments when

and a second

200-

Wave- Length	Element	Arithmetic Residual	Algebraic Residual	Number of times measured	Wave- Length	Element	Arithmetic Residual	Algebraic Residual	Number of times measured
				1.077	71 - 383 				
1005 414	17.	0.0	1.0.0	0	4071 075	77.			
4005.414	re	0.8	+ 0.0	0	42/1.0/5	re	5.2	+ 0.9	11
$4045 \cdot 940$	Fe	4.7	- 1.2	18	4307.974	Fe	3.4	+ 0.6	5
$4063 \cdot 730$	Fe	5.7	+ 0.3	11	4351.977	Cr-Mg	6.2	- 0.6	7
4143.839	Fe	8.4	+ 0.9	8	4481.477	Mg	5.0	- 0.5	31
4215.733	Fer	5.1	- 0.6	9	4534 . 158	Ti	2.8	+ 2.4	8
4233 . 425	Mg-Fe	4.6	+ 2.8	11	4549.743	Fe	5.8	- 1.0	31

TABLE I

TABLE II

Date Julian Day Phase Velocity 0-C . . • • 1911 August 9.. 2,419,258.765 3.685 + 61 - 5 October 31. 341.657 5.287+ 18 - 6

MOUNT WILSON OBSERVATIONS OF 2 SAGITTÆ

TABLE III

Phase Weight Plate **Observer*** Date Julian Day Velocity 0-C Velocity Secondary 1916 Y 7575 Mar. 23 2,420,946.892 6.892 -26.8 1 + 7* Y Mar. 25 948.888 1.498 - 0.3 +11* 7577 1 H Mar. 30 953.892 6.502 -14.2 + 9* 7591 1-2 H +11.3 7597 April 2 956.894 $2 \cdot 104$ 1 - 4 +31.0 7605 Y April 5 959.890 5.110 1 0 Y 6.677 -24.5 1 7612 April 14 968.847 + 4 C 7619 April 19 973.809 $4 \cdot 249$ +22.6 H May 986.838 2.498 -11* 7631 2 + Y May +54.8 7636 988.788 4.448 - 1 4 1 May 7639 H 7 991.778 0.048-35.5 + 3 1-2 H 7647 May 9 993.787 2.057+16.71 +27650 Y May 13 997.802 6.072+ 0.6 +10* 1 7666 Y May 24 2,421,008.788 2.278+11.11 -12^{*} 7669 Y May 25 009.786 3.276 +55.4 - 6 1 H +67.9 7672 May 26 010.777 $4 \cdot 267$ + 7 -43.9 12 7675 H May 28 012.762 6.252. 7680 May 31 C + 4.8 015.767 1.867 1 0 Y June 7685 1 $016 \cdot 820$ 2.920+55.1+ 5 · -46·7 1 H-Y 7692 June 6 021.731 0.441 -31.51 + 7 +86.6 7695 Y June 13 028.670 7.380 -43.0 +93.9 1 - 4 7699 Y +55.2 June 17 032.816 $4 \cdot 136$ 1 - 8 -63.8 7700 Y June 20 035.705 7.025 -40.91 - 5 +78.1 C 7704 June 23 038.781 2.711+35.6 - 8* 1-2 7706 Y June 25 040.684 4.614 +45.3 - 6 -64.6 1 7710 Y June 29 044.667 $1 \cdot 207$ - 9.2 12 +13*7714 C June 30 045.647 2.187 7715 Y July 4 049.816 6.356- 4.0 +15* 12 Y +27717 July 050.691 7.231-35.7+70.25 1.2 Y +71.4 7724 July 9 $054 \cdot 603$ 3.753 -63.6+ 51 Y +59.07725 July 9 054.687 3.837- 7 -72.3 1 7731 Y -41.0 July 13 058.7470.507- 4 12 7738 Y July 17 $062 \cdot 639$ 4.399+68.4+11-64.7 1 Y 7743 July 19 $064 \cdot 601$ 6.351-16.8+ 2 12 Y 7753 July 23 $068 \cdot 625$ 2.995+50.2-66.91 - 3 7755 Y July 24 3.965 +67.8+ 3 -70.5 $069 \cdot 595$ 1 Y 7767 Aug. 1 $077 \cdot 603$ 4.588+59.11 + 8 -58.3Y 7771 Aug. 2 +12.6 $078 \cdot 590$ 5.5751 +17775 Y Aug. 10 086.771 6.366+ 8.0 0 Y 7779 Aug. 14 090.5662.766+38.6 1 - 9* -45.7Y 7803 Sept. 8 115.5445.574+ 9.0 - 2 1 Y 7808 Sept. 10 $117 \cdot 552$ 0.192-33.4+ 6 +94.8 1 Y 7815 Sept. 24 $131 \cdot 611$ 6.861 -37.612 - 5 Y 7816 Sept. 25 $132 \cdot 521$ 0.381-48.6- 9 +79.6 1 Y 7829 Oct. 1 $138 \cdot 589$ 6.449 $-21 \cdot 4$ 11/20 0 Y 7842 Oct. 3 140.5130.983-34.01 - 6 +85.8 7868 Y Oct. 10 $147 \cdot 529$ 0.609-42.21 - 6 7908 Y Nov. 21 $189 \cdot 455$ 5.585+ 7.4 1 - 4 Y 7947 Dec. 17 $215 \cdot 453$ 2.023+21.51 +10

OTTAWA OBSERVATIONS OF 2 SAGITTÆ

* H = Harper: C = Cannon: Y = Young

PUBLICATIONS OF THE DOMINION OBSERVATORY

	7578	5*	7577	17111 (*	7597		7605		7612	2	7636		7643	7 .
λ										1			1	L
	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
					1	1								
4005.414					- 14.6	1								
4045.940			- 3.3	1	- 11.4	1			- 44.6	1	+ 35.1	1	- 5.1	1
4063.730							+ 11.7	1					+ 0.9	1
4071.865			- 27.9	1					- 45.1	1			- 1.5	1
4128.214			- 20.6	1										
4143.839			- 7.8	1					- 63.5	1			0.66	
4215.733							+ 2.7	1					213	
4233 . 425	- 59.5	1	- 38.7	+			- 1.3	i	- 34.9	1			+ 0.8	I
4250.586								1.00			all is	1.10	- 0.3	1
4271.675			- 21.8	1	- 1.4	1	+ 10.1	1			ald .		- 0.3	1
4290.053				1.00			1			1	+ 35.7	1		1 3
4307.974						10.0	+ 13.0	1			+ 29.9	1		
4340.645	- 38.6	1		1		1	1 10 0	2	- 50.8	1	1 40 0	2	1.1.1	1
4351.977							- 1.8	1	00.0	2			_ 2.5	1 1
4443.976	- 41.2	1						2			1 99.9	1	- 0.0	3
4481.477	- 48.4	1	- 25.9	1	- 16.5	1	1 19.0	1	. 10.2	1	1 41 0	1 3	7.1	1
4515.508		1	20 0	1.	11.0	1	T 12.9	3	- 30.0	1	+ 41.0	1	- 1.1	1,
4534.158	- 56.2	1			2.6	2			AE 17	1			- 9.1	3
4540.743	_ 45.7	1 2	- 26.0	1	15.5	- 1	1 19 9		- 40.7	3				
4558.827	- 10.1	2	- 20.0	7	- 19.9	2	+ 19.9	1	- 30.1	3	+ 30.4	1	- 8.0	11
4579.100			- 44.0	2										
4504.010									- 61.8	3				
4004.019							• • • • • •		- 44.4	3				1
Weighted		-												
mean	- 48	.28	- 22	.07	- 11	.31	+ 8	.21	- 47	.65	1 22	.05	- 4	. 24
Va	+ 21	.58	+ 21	.87	+ 22	.73	1 2 22	.04	1 92	.91	T 00	.00	1 91	.14
Vd	+ 0	.21	+ 0	.21	+ 0	.16		.15	1 0	.18		.90		.17
Curv.	- 0	·28	- 0	·28	- 0	·28	- 0	·28	- 0	•28	- 0	28	- 0	·28
Dedial	-													
Velocity	- 26	.8	- 0	•3	+ 11	•3	+ 31	•0	- 24	.5	+ 54	8	+ 16	.7

MEASURES OF 2 SAGITTÆ

1729	7650'	•	7666	•	7669)	7680)	768	5	7692	2	7695	5
λ			-											
197 367	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
							1		131					
4005 • 414 4045 • 940 4063 • 730	-15.3 - 28.4		- 5.9	1 2 	+ 40.5 + 37.3 + 42.1	14 14 14	·····		+ 46.0 + 31.6 + 49.2		- 36.5 $- 51.2$	112	- 51.4	1
4071.865 4128.214 4143.839	- 21.4	····	· · · · · · · · · · · · · · · · · · ·	· · · · ·			- 16·0	1 	· · · · · · · · · · · · · · · · · · ·	••••	- 44.8	· · · · · · · · · · · · · · · · · · ·	- 58.4	
4202·366 4215·733 4233·425 4250·586	- 21.4	· · · · ·	- 6.8 - 16.0	· · · · · · · · · · · · · · · · · · ·	+ 39.2	· · · · · · · · · · · · · · · · · · ·	- 10·0		· · · · · · · · · · · · · · ·	• • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		$\begin{array}{r} - 53 \cdot 8 \\ - 51 \cdot 4 \\ \cdots \end{array}$	1 1
$\begin{array}{r} 4271 \cdot 675 \\ 4300 \cdot 211 \\ 4307 \cdot 974 \end{array}$	- 19.1	1/2		2	+ 39.1 + 42.2	13	- 9.4		 + 41·1	13	- 54.5		- 58.1	1
4351 · 977 4395 · 155 4443 · 976	- 7·4 - 11·9	13 13	- 10·3	1 2 	+ 29.0	1 	- 1·3	·····					- 59.7	1
4481 · 477 4534 · 158 4549 · 743 4572 · 100	-17.1 -19.7 -30.4 -16.0		$\begin{array}{r} - 5 \cdot 6 \\ - 2 \cdot 0 \end{array}$	1 1	+ 30.5 + 41.8	1 1	- 19.4 - 6.8	1	+ 34.2 + 37.8 + 41.3	1	-38.7 - 56.1	1	- 61.7 - 47.5	2
1012-150	- 10.0	2					- 10.4	2						
Weighted mean	- 19-	66	- 6	.77	+ 37	•73	- 11	.06	+ 39	43	- 45	-79	- 55	12
Va Vd Curv.	+ 20 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	41 12 28	+ 18 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	07 09 28	+ 17 + 0 - 0	·82 ·09 ·28	$+ 16 \pm 0 - 0$	·14 ·00 ·28	+ 15 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	95 00 28	+ 14 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	39 14 28	+ 12 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	21 15 28
Radial Velocity	+ 0.	6	+ 11-	-1	+ 55	•4	+ 4	8	+ 55.	-1	- 31.	5	- 43	0

MEASURES OF 2 SAGITTÆ-Continued

.

	7699	9	7700		7704	•	7706		7710		7724	LT.	7725	5
X	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
-			T			-								1
$\begin{array}{c} 4045\cdot 940\\ 4063\cdot 730\\ 4143\cdot 839\\ 4215\cdot 733\\ 4233\cdot 425\\ 4236\cdot 000\\ 4250\cdot 586\\ 4260\cdot 537\\ 4271\cdot 675\\ 4290\cdot 053\\ 4307\cdot 974\\ 4315\cdot 178\\ 4340\cdot 645\\ 4481\cdot 477\\ 4549\cdot 743\\ \end{array}$	$+ 41 \cdot 3$ + 47 \cdot 6 + 45 \cdot 0 + 54 \cdot 2 + 26 \cdot 2	1 1 1 1 1	$ \begin{array}{r} + 44.8 \\ - 58.7 \\ - 45.1 \\ - 46.2 \\ - 56.0 \\ - 56.6 \\ - 49.3 \\ - 49.3 \\ - 56.6 \\ - 56$	14 14 	+ 20.2 + 25.9 + 31.7 + 25.6	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{r} + 40 \cdot 4 \\ + 25 \cdot 0 \\ + 34 \cdot 0 \\ \\ \\ \\ \\ \\ \\ \\ + 28 \cdot 2 \\ + 44 \cdot 2 \\ + 41 \cdot 8 \\ \end{array} $		+ 20.1 - 30.6 - 3.4 - 3.4 - 13.8 - 12.3		+ 69.5 + 70.3 + 65.5 + 60.0 + 74.1 + 67.4	3 3 3 3 1 1	+ 55.8 + 55.5 + 55.5 + 50.6 + 61.0 + 54.3	1 1
Weighted mean Va Vd Curv.	+ 44 + 10 - 0 - 0	·75 ·84 ·07 ·28	$ \begin{array}{r} - 50 \\ + 9 \\ \pm 0 \\ 0 \end{array} $	46 85 00 28	+ 26 + 9 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	·78 ·12 ·04 ·28	+ 37 + 8 + 0 - 0	-45 -04 -12 -28	-15 + 6 + 0 - 0	67 63 15 28	+ 68 + 2 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0	-54 -92 -18 -28	+ 56 + 2 + 0 - 0	· 36 · 88 · 09 · 28
Radial Velocity	+ 55	·2	- 40	.9	+ 35	•6	+ 45	.3	- 9	2	+ 71-	4	+ 59	·0

MEASURES OF 2 SAGITTÆ-Continued

:

	7738	3	7743		775	3	775	5	776	7	777	1	777.	5
λ 1/// 367	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	.Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
$\begin{array}{r} 4005\cdot 414\\ 4045\cdot 940\\ 4063\cdot 730\\ 4071\cdot 865\\ 4143\cdot 839\\ 4202\cdot 366\\ 4215\cdot 733\\ 4233\cdot 425\\ 4233\cdot 425\\ 4236\cdot 000\\ 4260\cdot 537\\ 4271\cdot 675\\ 4290\cdot 053\\ 4307\cdot 974\\ 4315\cdot 178\\ 4351\cdot 977\\ 4431\cdot 477\\ 4551\cdot 508\\ 4534\cdot 158\\ 4549\cdot 743\\ 4572\cdot 190\\ \end{array}$	+72.6 +74.1 +59.8 +68.6	Light	- 18·3 - 19·5 - 9·2 - 15·7	1 1	+ 66.0 + 54.6 + 59.5 + 459.5 + 46.7 + 43.9	1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	+ 80.6 + 62.4 + 72.1 + 85.2 + 61.7 + 71.3	1 1 1 1 1 1	$ \begin{array}{r} + & 61 \cdot 1 \\ + & 56 \cdot 4 \\ + & 56 \cdot 4 \\ + & 63 \cdot 6 \\ \\ + & 72 \cdot 1 \\ + & 71 \cdot 9 \\ \\ + & 71 \cdot 9 \\ \\ + & 71 \cdot 9 \\ \\ + & 75 \cdot 4 \\ \\ + & 74 \cdot 8 \\ + & 54 \cdot 3 \\ \\ + & 66 \cdot 9 \\ + & 66 \cdot 1 \\ \\ \end{array} $	1 1 1 1 1	$\begin{array}{r} + & 3 \cdot 9 \\ + & 1 \cdot 1 \\ \\ + & 30 \cdot 2 \\ \\ + & 19 \cdot 1 \\ \\ + & 22 \cdot 0 \\ + & 10 \cdot 8 \\ + & 22 \cdot 4 \\ \\ \\ + & 19 \cdot 3 \\ + & 22 \cdot 4 \\ \\ \\ + & 17 \cdot 7 \\ + & 33 \cdot 3 \end{array}$		+ 24·1 + 18·0 + 22·1 + 2·1	····· ····· ····· ····· ····· ····· ····· ····· ····· ····· ······
Weighted mean Va Vd Curv.	$+ 68 \\ - 0 \\ + 0 \\ - 0$	·77 ·12 ·02 ·28	$ \begin{array}{r} - 15 \\ - 0 \\ + 0 \\ - 0 \end{array} $	·68 ·94 ·14 ·28	+ 52 - 2 + 0 - 0	·90 ·50 ·10 ·28	+ 70 - 2 + 0 - 0	-79 -88 -15 -28	+ 65 - 5 + 0 - 0	·25 ·94 ·10 ·28	+ 19 - 6 + 0 - 0	•12 •31 •12 •28	+ 17 - 9 - 0 - 0	·82 ·31 ·22 ·28
Radial Velocity	+ 68	•4	- 16	•8	+ 50	•2	+ 67	•8	+ 59	· 1	+ 12	·6	+ 8	·0

MEASURES OF 2 SAGITTÆ-Continued

-

PUBLICATIONS OF THE DOMINION OBSERVATORY

λ	7779	a	7803		7808	3	7868	3	781	5	7816	3	7829	•
att het	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4045 · 940 4063 · 730 4071 · 865 4143 · 839 4215 · 733 4233 · 425 4236 · 000 4250 · 586 4260 · 537 4271 · 675 4290 · 053 4307 · 974 4325 · 698 4340 · 645 4351 · 977 4395 · 155 4481 · 477 4534 · 158 4549 · 743 4584 · 018	$+ 56 \cdot 0$ + 56 $\cdot 1$ + 40 $\cdot 7$ + 43 $\cdot 7$ + 43 $\cdot 7$ + 42 $\cdot 1$ + 55 $\cdot 4$ - 47 $\cdot 8$	12 12 12 12 12 12 12 12 12 12 11 1	$+ 29 \cdot 0$ + 17 \cdot 3 + 30 \cdot 1 + 30 \cdot 5 + 33 \cdot 5 + 23 \cdot 1	Nur kiju kiju - kiju	$ \begin{array}{c} - 28.9 \\ - 17.0 \\ - 20.8 \\ - 18.6 \\ - 20.9 \\ - 9.4 \\ - 9.4 \\ - 0.0 \\ - 20.7 \\ \end{array} $	1 1 1 1 1 1 1 1	$ \begin{array}{r} - & 19 \cdot 0 \\ - & 7 \cdot 3 \\ - & 7 \cdot 3$	High High <td< td=""><td>- 16.8</td><td>· · · · · · · · · · · · · · · · · · ·</td><td>$\begin{array}{r} - 22 \cdot 7 \\ - 10 \cdot 0 \\ - 32 \cdot 0 \\ - 22 \cdot 5 \\ - 27 \cdot 5 \\ - 35 \cdot 9 \\ \end{array}$</td><td>12 12 12 12 12 1</td><td>- 7·5 + 10·5</td><td></td></td<>	- 16.8	· · · · · · · · · · · · · · · · · · ·	$ \begin{array}{r} - 22 \cdot 7 \\ - 10 \cdot 0 \\ - 32 \cdot 0 \\ - 22 \cdot 5 \\ - 27 \cdot 5 \\ - 35 \cdot 9 \\ \end{array} $	12 12 12 12 12 1	- 7·5 + 10·5	
Weighted mean Va Vd Curv. Radial Velocity	+ 49 - 10 + 0 - 0 + 38	·44 ·65 ·10 ·28	+ 27 - 18 + 0 - 0 + 9	·25 ·01 ·02 ·28	- 14 - 18 - 0 - 0 - 33	-57 -71 -03 -28	- 18 - 23 - 0 - 0	·64 ·19 ·12 ·28	-15 -21 -0 -0 -37	·73 ·49 ·18 ·28	- 26 - 21 - 0 - 0	· 50 · 83 · 02 · 28	+ 1 - 22 - 0 - 0 - 0	· 50 · 44 · 18 · 28

MEASURES OF 2 SAGITTÆ-Continued

the were bas 7-0 the faces	7843	2	7908		7943	10 7 dis	anticus Silv 3 alto 10		ie ad) emijor ratur		orean ing hi ing "ing	000 1000 1000 1000	noin7a no n ou ¶	
idgin if naise of	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4143 · 839 4215 · 733 4233 · 425 4260 · 537 4307 · 974 4340 · 645 4395 · 155 4481 · 477 4534 · 158 4549 · 743 4584 · 018	$ \begin{array}{r} - & 19 \cdot 4 \\ - & 13 \cdot 6 \\ - & 8 \cdot 9 \\ - & 3 \cdot 8 \\ - & 17 \cdot 4 \\ - & 13 \cdot 2 \\ - & 13 \cdot 2 \\ - & 4 \cdot 5 \\ - & 8 \cdot 7 \end{array} $	nden milen mise nden i nden i milen i milen	+ 14.5 + 31.3 + 31.3 + 31.7 + 30.5 + 28.9 + 21.8		+ 36.9	· · · · · · · · · · · · · · · · · · ·								
Weighted mean Va Vd Curv.	-11 -22 -0 -0	· 18 · 65 · 07 · 28	+ 27 - 19 - 0 - 0	-14 -31 -18 -28	• + 33 - 11 - 0 - 0	·55 ·46 ·28 ·28		· · · · · · · · · · · · · · · · · · ·						· · · · · ·
Radial Velocity	- 34	·0	+ 7	4	+ 21	•5		,						

MEASURES OF 2 SAGITTÆ-Concluded

PUBLICATIONS OF THE DOMINION OBSERVATORY

The writer has found the following method of getting preliminary elements very satisfactory. With the aid of a complete set of "protractors", which the observatory possesses for the simplification of King's graphical method, curves were drawn on tracing linen, representing all orbits from eccentricity 0.0 to 0.7 and $\omega = 0^{\circ}$ to $\omega = 360^{\circ}$. The interval for the eccentricity is 0.05, save for the large values which are seldom used. The interval for ω is fifteen degrees. It might seem labourious to draw all these curves, but one curve will do for four values of ω by inverting the sheet or looking through the linen from the back, so that the labour is not so great as it appears at first sight. The construction of a complete set of curves occupies about ten hours, if the protractors are already at hand. The calculations need be made but once. In selecting a set of elements, the normal places are plotted on the scale of these curves. This supposes that we know the amplitude of the curve. Although this is unknown, it is the most easily determined of all the elements and can usually be selected with sufficient accuracy at the first trial. The curves are now fitted in turn over the normal places till the one most satisfactory is found. If two or more curves seem to give equally good representations, it is quite possible to interpolate elements between the graphs plotted, and so obtain a result with the eccentricity within one or two hundredths and ω within a few degrees.

In the present case a wide range of values of ω will satisfy the normal places about equally well. These values center about $\omega = 330^{\circ}$ and e = 0.05. The uncertainty in the value of ω is partly dependent on the fact that the observations where the spectra are just separating can not be given much weight. In the least-square solution, recorded below, they were omitted, and to make the solution determinate periastron passage was fixed.

	Julian Day	Phase from J. D. 2,420,940.0	Velocity	Weight	O–C Preliminary	OC Final
				7 93		
1	2,420,940.041	0.041	-37.3	1.0	+ 2.22	+ 2.0
2	940.481	0.481	-41.1	1.0	- 2.27	- 3.2
3	941.058	1.058	-25.7	0.5	+ 2.69	+ 0.7
4	941.971	1.971	+10.8	1.5	+ 3.95	+ 1.1
5	942.685	2.685	+33.8		- 6.16	- 8.5
6	943.064	3.064	+53.6	1.0	- 0.52	- 2.3
7	943.852	3.852	+66.0	1.0	+ 0.11	- 0.0
8	944 . 267	4.267	+63.0	0.8	+ 1.93	+ 2.7
9	944.550	4.550	+53.1	1.0	- 0.82	+ 0.4
10	945.110	5.110	+31.0	0.3	- 2.58	- 0.6
11	945.578	5.578	+ 9.7	1.0	- 3.94	- 1.8
12	946.300	6.300	- 9.2		+ 5.89	+ 7.6
13	946.864	6.864	-31.7	1.0	- 0.18	+ 0.7

NORMAL PLACES

64

PRELIMINARY ELEMENTS

P = 7.390 daysT =Julian Day 2,420,943 · 233 $K = 53 \cdot 0$ km. $\omega = 330^{\circ}$ e = 0.05 $\gamma = +10.70$ km. $\mu = 48^{\circ} \cdot 7145$

OBSERVATION EQUATIONS

		1	1. A.	in in		S Gawa	
	x	y	z	р	q	-n	Weight
					•		
1	1	- 0.948	+ 0.966	- 0.110	+ 0.123	- 2.22	1.0
2	1	-0.935	+ 0.593	+ 0.233	- 0.193	+ 2.27	1.0
3	1	- 0.738	- 0.289	+ 0.649	- 0.602	- 2.69	0.5
4	1	- 0.073	- 0.980	+ 1.018	- 1.033	- 3.95	1.5
3	1	+ 0.819	+ 0.661	+ 0.656	- 0.694	+ 0.52	1.0
7	1	+ 1.041	+ 0.803	- 0.031	+ 0.061	- 0.11	1.0
8	1	+ 0.950	+ 0.162	- 0.397	+ 0.447	- 1·93	0.8
9	1	+ 0.815	- 0.339	- 0.611	+ 0.659	+ 0.82	1.0
0	1	+ 0.431	- 0.962	- 0.897	+ 0.911	+ 2.58	0.3
1	1	+ 0.055	- 0.861	- 0.975	+ 0.953	+ 3.94	1.0
3	1	- 0.797	+ 0.813	- 0.517	+ 0.489	+ 0.18	1.0

Where
$$x = d\gamma$$

 $y = dK$
 $z = Kde$
 $p = Kd\omega$
 $q = \frac{K\mu}{(1 - e^2)^{\frac{3}{2}}} dT$

NORMAL EQUATIONS

$$10 \cdot 100x + 0 \cdot 461y + 0 \cdot 863z - 0 \cdot 089p - 2 \cdot 640 = 0 + 5 \cdot 888y - 0 \cdot 851z - 0 \cdot 517p + 1 \cdot 326 = 0 + 5 \cdot 666z - 0 \cdot 321p + 1 \cdot 129 = 0 + 4 \cdot 218p - 10 \cdot 306 = 0$$

65

whence, dx = +0.295 or $d\gamma = +0.29$ km. dy = -0.051 dK = -0.05 km. dz = -0.114 de = 0.00 dp = +2.435 $\delta\omega = +2^{\circ}.63$ FINAL ELEMENTS

 $P = 7 \cdot 390 \text{ days}$ $T = \text{Julian Day } 2,420,943 \cdot 233$ $\omega = 332^{\circ} \cdot 6$ $e = 0 \cdot 05$ $K = 52 \cdot 95 \text{ km.}$ $\gamma = +11 \cdot 0 \text{ km.}$ $a \sin i = 5,370,000 \text{ km.}$ $\frac{m_1^3 \sin^3 i}{(m+m_1)^2} = 0 \cdot 11 \odot$

Russell's short graphical method was tried after the foregoing solution was completed. This method agrees with the first in establishing the presence of eccentricity. The "anomaly" diagram, however, does not yield a smooth curve, and the position of periastron and ω remain somewhat uncertain.

The measures of the secondary spectrum are not of sufficient value to help in determining the elements of the primary. They were formed into two normal places as follows:—

Phase	Velocity	Weight	0-C
0·21	+84 · 1 km.	7	+ 2.7 + 5.7
3·84	-64 · 0 km.	11	

From these we obtain the following additional elements:-

 $K_1 = 73.8$ km. $a_1 \sin i = 7,490,000$ km. $m_1 \sin^3 i = 0.65$ \odot $m \sin^3 i = 0.91$ \odot

Dominion Observatory

Ottawa, January, 1917.

67

