DEPARTMENT OF THE INTERIOR

CANADA

HON. W. J. ROCHF, Minister.

W. W. CORY, C.M.G., Deputy Minister.

PUBLICATIONS

OF THE

Dominion Observatory

OTTAWA

W. F. KING, C.M.G., LL.D., Director.

Vol. II, No. 2

The Spectroscopic Binary θ^2 Tauri

BY

J. S. PLASKETT, D. Sc.

OTTAWA Government Printing Bureau 1915

76334-1

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

THE SPECTROSCOPIC BINARY 02 TAURI.

BY J. S. PLASKETT, D.Sc.

The star θ^2 Tauri (α 4^h 22^m·9, δ +15° 39', magnitude 3.6, spectral type A5) was announced as a spectroscopic binary by Moore in the Lick Observatory Bulletin, No. 62, and by Frost in the Astrophysical Journal XXIX, page 238. Their published velocities with the date, Julian day, phase and residual (the two latter being obtained from the elements finally accepted) are given at the beginning of the table of measures below.

The star was placed under observation here on December 11, 1909, and between that date and March, 1912, 66 plates were obtained. Of these plates, 52 were selected and measured. The measures of the plates were discussed and a preliminary orbit obtained and published in the Journal of the Royal Astronomical Society of Canada VI, page 231, July-August, 1912. A summary of this work will be given later but, as it was felt desirable to have further observations, 16 more plates were obtained and measured making a total of 68 plates on which the present determination is based.

The spectrum is of type A5 containing numerous metallic lines, but unfortunately all these lines are wide and diffuse making the measurements more or less uncertain. This is shown by the poor agreement often present between different lines on the same plate and by the comparatively high probable error ± 3.6 km. per second of a single plate derived from the plate residuals from the final orbit. Four different dispersions were tried in the hope of getting more satisfactory measures with this type of spectrum, but no one showed very marked advantages over the others. This will be discussed more fully later.

The principal lines measured—all those used in the measures—with their chosen wave-lengths and source are given in the accompanying list. The titanium lines seem in general to be the best defined and most reliable in this spectrum.

76334 - 2

Wave-length.	Element.	Wave-length.	Element.
4504 010		AAPP 150	
4584.018	I'e	4455.116	Blend
4572.156	11	4415.293	I'e
$4563 \cdot 939$		4404.927	Fe
4549.766	Ti-Fe	4399.935	Ti-Cr
4534-139	Ti	4395-201	Ti
4515.508	Ti	4374.520	Blend
4508·455	Ti	4351.930	Cr
4501.448	Ti	4340.634	H
4494.738	Fe	4325.939	' Fe
4481.400	Mg	4315.138	Fe
4468.663	Ti	4290.377	Ti

LINES MEASURED IN θ^2 TAURI.

The summary of the measures of the early plates at the Lick and Yerkes observatories, of the 52 plates used in the first determination, and of the 16 plates obtained subsequently, with other data are given in the accompanying table and this is followed by tables containing the measured values of the individual lines, with the corrections required to reduce the velocities to the sun.

SUMMARY OF MEASURES.

Plate No.		Dat	e	Julian Date	Spectro- graph	Phase	Velocity	Residual O-C.	Remarks	
Lick Plates-	Dec.	1.	1903	2.416.450.70		139.10	+38	- 2.8		
20000 2 00000	Jan.	3.	1905	6.849.60		115.90	+50	+13.9		
	Oct.	4,	1906	7,488.65		51.45	+74	- 7.8		
	Sept.	8,	1908	8,193.90		53.20	+80	+ 0.6		
	Oct.	21,	1908	8,236.85		96.15	+17	-14.8		
	Oct.	25,	1908	8,240.85		100.15	+23	- 9.7		-
Yerkes Plate	Aug.	31,	1906	7,454.88		17.68	+42	- 5.9		
**	Nov.	4,	1907	884.77		25.47	+29	-22.4		
	Aug.	25,	1908	8,179.94		39.24	+64	+ 2.6		
	Sept	8,	1908	193.95		$53 \cdot 25$	+88	+ 9.08	lecondary +40	
	Sept.	18,	1908	203.85		$63 \cdot 15$	+10	-18.7		
	Oct	12,	1908	227.85		87.15	+39	+ 9.98	econdary +8	
	Nov.	8,	1908	254.78		114.08	+36	+ 0.3		
	Dec.	7,	1908	283.63		2.23	+38	- 6.0		
	Dec.	11,	1908	287.63		6.23	+31	-13.0		

Plate				Julian	Spectro-			Residual	
No.		Dat	e	Date	graph	Phase	Velocity	0-C.	Remarks
Altana Plates-				· · · · · ·					
3030	Dec.	11.	1909	2.418.652.73	IIIS	89.93	+28.2	- 2.3	
3041	Dec	16	1909	657.74	IIIS	94.94	+30.9	- 0.6	
3044	Dec.	18.	1909	659.66	IIIS	96.86	+34.7	+ 2.7	
2056	Dec.	28	1909	669.78	IIIS	106.98	+34.9	+ 0.8	
2000	Dec.	20,	1000	671.51	IIIS	108.71	+22.8	-11.7	
2076	Dec.	30,	1000	671-65	T	108.85	+22.1	-12.4	
2025	Lon	7	1010	679.52	IIIS	116.72	+31.4	- 4.8	
3080	Jan.	14	1010	686.66	TILS	123.86	120.2	- 8.6	
3108	Jan.	14,	1910	697.53	IIIS	120.00	138.0	1 0.8	
3116	Jan.	15,	1910	601 56	TILG	100.76	127.4	T 0.0	
3133	Jan.	19,	1910	091.00	TILO	2 90	146.0	1 2.0	
3169	Feb.	3,	1910	700.70	III S	3.20	+40.0	T 4.9	
3201	Feb.	21,	1910	724.55		21.05	+42.0	- 0.0	the state of the state of the
3208	Feb.	23,	1910	726.55	1	23.05	+57.0	+ 0.8	
3222	Feb.	24,	1910	727.56	ms	24.06	+46.7	- 4.0	
3255	Mar.	2,	1910	733.63	1	30.13	+60.6	+ 6.5	
3268	Mar.	3,	1910	734.59	1II R	31.09	+54.0	-0.7	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
3308	Mar.	10,	1910	741.61	III R	38.11	+58.6	-1.6	and the second
3334	Mar.	17,	1910	748.55	III R	45.05	+71.8	+ 2.5	Pr. +107 Sec. + 43
3623	Sept.	7,	1910	922.89	I	78.69	+31.9	+ 3.9	×
3651	Sept.	14,	1910	929.86	I	85.66	+37.3	+7.7	1. 18 A.
3658	Sept.	15,	1910	930.87	I	86.67	+42.5	+12.8	
3668	Sept.	16.	1910	931.79	I	87.59	+27.3	- 2.7	A
3687	Sept.	21.	1910	936.88	I	92.68	+36.0	+ 5.0	
3730	Oct	10.	1910	955.90	I	111.70	+25.8	- 9.3	
3741	Oct.	12	1910	957.88	I	113.68	+37.6	+ 2.0	
2794	Oct.	31	1010	976.73	Ī	132.53	+38.7	- 1.3	
2702	Nov.	2	1010	978.82	Î	134.62	+37.8	- 2.7	
2002	Nov.	4, 0	1010	084.81	Ť	140.61	+44.3	+ 2.3	
0004	Dec.	0,	1010	0.011.67	Ť	96.77	156.7	1 4.6	Pr +112 Sec + 11
3818	Dec.	0,	1910	9,011.07	T	20.77	156.2	1.7	$Pr \perp 66 Sec = 37$
3843	Dec.	9,	1910	010.07	T	30.11	+00-2	1 4.6	11, 700 000, - 01
3859	Dec.	12,	1910	018.00	T	00.70	+01.4	T 4.0	
3871	Dec.	15,	1910	021.00		30.10		- 5.9	
3888	Dec.	21,	1910	027.00		42.70	+07.0	+ 1.4	
3916	Jan.	5,	1911	042.57	1	57.07	+42.1	- 1.4	
3922	Jan.	9,	1911	046.61	1	61.71	+27.0	- 3.4	
3930	Jan.	12,	1911	049.61	1	64.71	+32.3	+ 4.6	
3938	Jan.	16,	1911	053.67	1	68.77	+25.8	-1.0	
3958	Jan.	18,	1911	055.59	I	70.69	+28.0	+1.0	
3973	Jan.	30,	1911	067.59	III L	82.69	+35.1	+ 6.1	
4627	Oct.	10,	1911	320.79	I	54.49	+70.7	- 1.3	
4636	Oct.	12,	1911	322.86	I	56.56	+62.1	+10.0	
4672	Oct.	28,	1911	338.75	III L	72.45	+26.9	-0.2	
4716	Dec.	6,	1911	377.77	I	111.47	+34.2	- 0.9	
4733	Dec.	19,	1911	390.82	III L	124.52	+26.7	-11.3	
4739	Dec.	25.	1911	396.75	I	130.45	+35.4	- 4.1	
4746	Jan.	1.	1912	403.71	III L	137.41			Pr. +54 Sec. +2
4760	Jan	10	1912	412.63	III L	5.63	+41.4	- 2.4	
4780	Jan	12	1912	414.67	I	7.67	+45.3	+ 0.9	
4788	Jan	13	1912	415.50	IIIL	8.50	+39.1	- 5.6	
4792	Jan	16	1912	418.60	T	11.60	+40.7	- 5.0	

, SUMMARY OF MEASURES-Continued.

Plate No.		Dat	te	Julian Date	Spectro- graph	Phase	Velocity	Residual O-C.	Remarks
-									
4832	Feb.	10,	1912	2,419,443.66		36.66	+60.9	+ 2.0	
4835	Feb.	12,	1912	445.65		38.65	+58.9	- 1.8	
4880	Mar.	11,	1912	$473 \cdot 52$		66.52	+25.8	- 1.4	
5218	Oct	4,	1912	680.78	1	133.08	+41.6	+1.5	
5236	Oct.	7,	1912	683.79	I	136.09	+48.7	+ 7.8	
5243	Oct.	16,	1912	692.80	I	4.40	+50.8	+7.3	
5244	Oct.	16,	1912	692.85	I	4.45	+44.4	+ 0.9	
5250	Oct.	17,	1912	693.82	I	5.42	+41.4	- 2.3	
5251	Oct.	17,	1912	693·85	I	5.45	+48.0	+ 4.3	-
5253	Oct.	20,	1912	696.64	I	8.24	+45.5	+ 0.9	
5254	Oct.	20.	1912	696.69	I	8.29	+46.9	+ 2.3	
5259	Oct.	25.	1912	701.71	I	13.31	+56.7	+10.0	
5260	Oct.	25.	1912	701.75	I	13.35	+43.9	- 2.8	
5892	Jan.	21.	1914	20.154.56	I	44.06	+63.4	- 4.6	
5902	Jan.	25.	1914	158.55	IIIL	48.05	+74.2	- 0.7	
5903	Jan	30	1914	163.62	IIIL	53.12	+76.1	- 3.2	
5904	Feb	2	1914	166-53	IIIL	56.03	+63.2	+ 6.2	
5005	Feb.	4	1014	168.50	TILL	58.0	+37.6	- 4.4	
5014	Fob.	5,	1014	169.60	T	59.10	+33.4	- 3.9	

SUMMARY OF MEASURES .- Concluded.

-

	3030		3041		3044		3056	5	3068		3076		3085	6
	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4584.018 4572.156 4563.939 4549.766 4534.139 4481.400 4468.663 4395.201 4374.520 4351.930 4325.939 4315.138	+ 30.53 + 35.41 + 43.01 + 32.94	1 1 1 	$\begin{array}{r} + 31.73 \\ + 32.72 \\ + 48.78 \\ + 35.02 \\ + 53.88 \\ + 50.21 \\ + 53.11 \\ + 47.19 \\ + 24.80 \\ \end{array}$		$+ 36 \cdot 31$ + 40 \cdot 33 + 43 \cdot 58 + 42 \cdot 15 + 54 \cdot 83 + 48 \cdot 36 + 38 \cdot 45	$\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	+ 49.89 + 49.71 + 51.27 + 51.97	1	+ 37.42 + 44.85 + 37.45 + 34.92 + 37.24	1	+ 46.35 + 40.56 + 54.00 + 26.70 + 30.80 + 29.11	2 2 1 1 1 1 2 1	$+ 51 \cdot 11$ + 42 \cdot 46 + 47 \cdot 01 + 59 \cdot 33 	
Weighted mean Va Va Curv.	+ 35 - 6 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	47 87 09 28	+ 38.3 - 9.1 - 0.2 - 0.2	35 50 13 28	+ 45. - 10. - 0. - 0.	44 48 02 28	$+ 50 \cdot$ - 15 · - 0 · - 0 ·	51 06 26 28	+ 39 - 15 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	19 97 18 28	+ 38 - 16 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	43 03 05 28	+ 51 - 19 - 19 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	03 38 08 28
Radial Velocity	+ 28-	-2	+ 28.4	4	+ 34.	7	+ 34.	9	+ 22.	8	+ 22-	1	+ 31-	4

MEASURES OF θ^2 TAURI.

_

-

	3108		3118		3133		3169		3201		3208		3222	2
^	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4584 · 018 4572 · 156 4563 · 939 4549 · 766 4534 · 139 4508 · 455 4494 · 738 4481 · 400 4468 · 663 4395 · 201 4340 · 634 4325 · 939 4290 · 377	$\begin{array}{c} + 43.34 \\ + 40.98 \\ $	1 1 1 1 1 1 1 1 1 1 1 1 1	+ 49.55 + 61.98 + 66.26 + 55.07 + 63.19 + 77.62 + 60.38	11/2 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{r} + 35 \cdot 7 \\ + 52 \cdot 6 \\ + 78 \cdot 5 \\ + 48 \cdot 3 \\ + 66 \cdot 4 \\ \cdot \\ + 64 \cdot 5 \\ + 68 \cdot 6 \\ + 52 \cdot 6 \\ + 72 \cdot 2 \\ \cdot \\ + 76 \cdot 7 \end{array}$	$ \begin{array}{c} 6 & \frac{1}{2} \\ 7 & 1 \\ 8 & \frac{1}{2} \\ 1 & 1 \\ 1 & 1 \\ 9 & 2 \\ 5 & \frac{1}{2} \\ 8 & \frac{1}{2} \\ 6 & \frac{1}{2} \\ 8 & \frac{1}{2} \\ 8 & \frac{1}{2} \\ \end{array} $	$ \begin{array}{r} + & 66 \cdot 47 \\ + & 86 \cdot 48 \\ + & 73 \cdot 18 \\ + & 75 \cdot 29 \\ + & 72 \cdot 31 \\ \\ + & 73 \cdot 01 \\ \\ + & 62 \cdot 51 \\ \end{array} $		$\begin{array}{r} + & 61 \cdot 36 \\ + & 96 \cdot 96 \\ + & 90 \cdot 89 \\ + & 60 \cdot 65 \\ + & 78 \cdot 42 \\ + & 70 \cdot 53 \\ + & 72 \cdot 23 \\ + & 57 \cdot 16 \\ + & 86 \cdot 33 \\ + & 76 \cdot 51 \\ + & 71 \cdot 16 \\ + & 65 \cdot 38 \\ + & 81 \cdot 35 \end{array}$	$1 \\ \frac{1}{3} \\ \frac{1}{3} \\ 1 \\ 1 \\ 1 \\ \frac{1}{3} \\ 1 \\ 1 \\ \frac{1}{3} \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ $	$ \begin{array}{r} + & 78 \cdot 34 \\ + & 67 \cdot 37 \\ + & 97 \cdot 17 \\ + & 92 \cdot 25 \\ + & 82 \cdot 41 \\ + & 80 \cdot 41 \\ + & 75 \cdot 00 \\ \end{array} $	1 1 2 1 1 1 2	+ 61.49 + 88.19 + 73.43 + 82.12 + 76.62 + 77.57 + 74.10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Weighted mean Vs Vs Curv.	+ 51 - 22 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	72 09 14 28	+ 60 - 22 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	58 40 03 28	+ 63 - 23 + 0 - 0	l·44 3·74)·01)·28	+74 - 27 - 0 - 0	·40 ·70 ·27 ·28	+72 - 29 - 0 - 0	·24 ·89 ·14 ·28	+ 87 - 29 - 0 - 0	·60 ·87 ·14 ·28	+ 77 - 29 - 0 - 0	·36 ·88 ·14 ·28
Radial Velocity	+ 29-	2	+ 38-	9	+ 3	7-4	+ 46	·2	+ 42	.9	+ 57	7.3	+ 43	7.0.

MEASURES OF θ^2 TAURI—Continued.

-

THE SPECTROSCOPIC BINARY 02 TAURI.

λ	3255		3268		3308		3334		3623		3651		3658	3
	Vel.	Wt	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Ŵt.
4584.018 4572.156 4563.939 4549.766 4534.139 4515.508 4481.400 4468.663 4395.201 4351.930 4340.634 4325.939 4290.377	$\begin{array}{c} & & & & \\ & +114\cdot 28 \\ & + & 90\cdot 71 \\ & + & 98\cdot 28 \\ & & & \\ & & & \\ & + & 86\cdot 51 \\ & & & \\ & & & \\ & + & 108\cdot 27 \\ & + & 85\cdot 66 \\ & + & 84\cdot 46 \\ & + & 81\cdot 93 \\ & + & 79\cdot 04 \end{array}$	aster utter Tradition utter . Teat utter utter .	$+105 \cdot 18$ + 66 \cdot 55 + 71 \cdot 46 + 95 \cdot 03 + 75 \cdot 19 + 94 \cdot 50	ubju - sajas - ubju tajas taju - tajas -	$\begin{array}{r} + 87.86 \\ + 87.26 \\ + 73.94 \\ + 85.63 \\ + 95.35 \\ + 95.35 \\ + 103.75 \\ + 95.21 \\ + 92.86 \\ + 80.80 \\ + 84.85 \\ + 76.60 \end{array}$	-10 -10 -10 -10 -10 -10 -10 -10 -10	$+109 \cdot 32$ + 92 \cdot 34 + 96 \cdot 19 + 98 \cdot 48 + 110 \cdot 56 + 105 \cdot 91		+ 7.04 - 21.34 + 18.88 + 10.35 - 9.83	1 1 1 	+ 1.62 - 1.33 + 13.78 + 13.68 - 4.09 + 21.98 -		+ 25.35 + 9.70 + 20.47 + 20.25 + 4.79	····· ······
Weighted mean V. V. V. Curv.	+ 91.1 - 29.1 - 0.1 - 0.1	22 78 28 28	$+ 84 \cdot - 29 \cdot - 0 \cdot - 0 \cdot - 0 \cdot$	50 73 21 28	+ 88 - 29 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	56 13 28 28	$+100 \cdot - 28 \cdot - 0 \cdot - $	70 12 21 28	+ 3 + 29 + 0 - 0	06 03 08 28	+ 9 + 28 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	14 33 08 28	+ 14 + 28 + 0 - 0	· 55 · 19 · 06 · 28
Radial Velocity	+ 60.	9	+ 55-	3	+ 58.	8	+ 72.	1	+ 31.	9	+ 37.	3	+ 42	• 5

MEASURES OF θ^2 TAURI—Continued

.

 $76334 - 3\frac{1}{2}$

.

,	3668		3687		3730		3741		3784		3793		3802	8
A	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
4584.018 4572.156 4563.939 4549.766 4534.139 4515.508 4508.455 4501.448 4481.400 4468.663 4404.927 4399.935 4395.201 4374.520 4351.930 4340.634 4325.939	$ \begin{array}{r} - & 0.68 \\ - & 4.87 \\ + & 5.33 \\ - & 22.97 \\ \\ & & \\ + & 13.47 \\ \\ & & \\ + & 8.83 \\ - & 18.48 \\ \\ & & \\ - & 5.37 \\ + & 14.11 \\ - & 12.48 \end{array} $	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$ \begin{array}{r} - 17.44 \\ + 20.59 \\ + 10.68 \\ - 10.04 \\ + 27.32 \\ + 2.78 \\ + 2.29 \\ + 12.95 \\ + 0.58 \\ \end{array} $	$\frac{1}{2}$ $\frac{1}{2}$ 1 1 1 2 $\frac{1}{2}$	$\begin{array}{rrrr} - & 7 \cdot 90 \\ + & 11 \cdot 91 \\ + & 1 \cdot 33 \\ + & 8 \cdot 45 \\ - & - \\ + & 1 \cdot 03 \\ + & 4 \cdot 68 \\ - & - \\ + & 5 \cdot 52 \\ - & - \\ + & 2 \cdot 81 \\ + & 24 \cdot 87 \\ - & - \\ \end{array}$	1 1 2 1 2 1 1 1 1 2 	$ \begin{array}{r} - & 7 \cdot 22 \\ + & 26 \cdot 68 \\ + & 26 \cdot 04 \\ + & 19 \cdot 86 \\ + & 19 \cdot 86 \\ + & 12 \cdot 14 \\ + & 16 \cdot 00 \\ + & 18 \cdot 52 \\ - & 12 \cdot 15 \end{array} $	1 1 1 1 2 2 3 1 1 1 1 2 1 1 1 2	+ 32.98 + 22.32 + 29.48 + 16.01 + 49.64 + 10.01 + 28.17 + 36.31 + 14.88	1 1 1 3 3 3 1 1 1 1 1 1 1 3 	+ 20.57 + 42.93 + 20.67 + 30.90 		+ 19.35 + 15.15 + 22.68 + 40.14 + 30.26 + 48.50 + 33.34 + 50.42 + 29.58 + 38.95 + 33.55	
Weighted mean Va Va Curv.	$ \begin{array}{c} - & 0 \\ + & 28 \\ + & 0 \\ - & 0 \end{array} $	·72 ·06 ·20 ·28	+ 9 + 27 + 0 - 0	04 21 04 28	+ 3 + 22 - 0 - 0	-99 -24 -13 -28	+ 16 + 21 - 0 - 0	40 56 08 28	+ 25 + 13 - 0 - 0	·10 ·97 ·13 ·28	+ 25 + 13 - 0 - 0	·11 ·02 ·08 ·28	+ 34 + 10 - 0 - 0	·52 ·17 ·10 ·28
Radial Velocity	+ 27	.3	+ 36-	•0	+ 25	.8	+ 37	•6	+ 38	.7	+ 37	.8	+ 44	•3

.

MEASURES OF θ^2 TAURI-Continued.

λ	3818	3843	3859	3871	3888	3916	3922
1.7	Vel. We	t. Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.
$\begin{array}{r} 4584\cdot018\\ 4572\cdot156\\ 4563\cdot939\\ 4549\cdot766\\ 4534\cdot139\\ 4501\cdot448\\ 4481\cdot400\\ 4468\cdot663\\ 4404\cdot927\\ 4399\cdot935\\ 4395\cdot201\\ 4351\cdot930\\ 4340\cdot634\\ \end{array}$	$ \begin{array}{c} + 89.37 \\ + 50.69 \\ + 62.62 \\ + 63.54 \\ + 46.27 \\ + 46.27 \\ + 54.73 \\ \end{array} $	$\begin{array}{c} + 71 \cdot 83 & 1 \\ + 67 \cdot 24 & 1 \\ + 38 \cdot 90 & \frac{1}{2} \\ + 61 \cdot 36 & 1\frac{1}{2} \\ + 69 \cdot 88 & 1 \\ + 55 \cdot 99 & 1 \\ + 71 \cdot 20 & 2 \\ + 64 \cdot 55 & 1 \\ + 53 \cdot 65 & 1 \\ + 56 \cdot 11 & 1 \end{array}$	$\begin{array}{c} + 53 \cdot 03 & 1 \\ + 70 \cdot 03 & 1 \\ + 81 \cdot 37 & 1 \\ + 69 \cdot 92 & 1\frac{1}{2} \\ + 84 \cdot 38 & \frac{1}{2} \\ + 42 \cdot 14 & 1 \\ + 86 \cdot 13 & 1 \\ \end{array}$	$\begin{array}{c} + 48.66 \\ + 46.27 \\ + 79.95 \\ + 67.37 \\ + 67.37 \\ + 61.82 \\ + 57.38 \\ + 67.22 \\ + 68.84 \\ 1 \end{array}$	$\begin{array}{c ccccc} + & 52 \cdot 06 & \frac{1}{2} \\ + & 69 \cdot 27 & \frac{1}{2} \\ - & 72 \cdot 55 & \frac{1}{2} \\ + & 69 \cdot 37 & 1 \\ + & 100 \cdot 92 & \frac{1}{2} \\ & & & \\ + & 90 \cdot 34 & 1 \\ + & 100 \cdot 82 & 1 \\ & & & \\ + & 62 \cdot 20 & 1 \\ + & 77 \cdot 49 & \frac{1}{2} \\ + & 83 \cdot 88 & 1 \end{array}$	$\begin{array}{c} + 51 \cdot 66 & 1 \\ + 64 \cdot 67 & 1\frac{1}{2} \\ + 71 \cdot 34 & \frac{1}{2} \\ + 57 \cdot 50 & 1\frac{1}{2} \\ + 55 \cdot 08 & 1 \\ + 58 \cdot 44 & 1\frac{1}{2} \\ + 80 \cdot 58 & 1 \\ + 50 \cdot 01 & 1 \\ \\ \\ + 73 \cdot 05 & 1 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Weighted mean Va Va Curv.	+ 60.55 - 3.62 + 0.04 - 0.28	+ 62.13 - 5.69 0.00 - 0.28	+ 68.54 - 7.20 + 0.14 - 0.28	+ 64.08 - 8.74 0.00 - 0.28	+ 79.03 - 11.72 - 0.04 - 0.28	+ 61.43 - 18.48 + 0.06 - 0.28	$+ 47 \cdot 41$ - 20 \cdot 11 - 0 \cdot 04 - 0 \cdot 28
Radial Velocity	+ 56.7	+ 56.2	+ 61.2	+ 55.1	+ 67.0	+ 42.7	+ 27.0

MEASURES OF θ_2 TAURI—Continued.

-

λ.	3930	3938	3958	3973	4627	4636	4672
	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.
4584.018 4572.156 4563.939 4549.766 4534.139 4501.448 4481.400 4468.663 4404.927 4399.935 4395.201 4351.930 4340.634	$\begin{array}{c cccccc} + & 53 \cdot 04 & \frac{1}{2} \\ \hline + & 49 \cdot 89 & 1 \\ \hline + & 49 \cdot 41 & 1 \\ + & 66 \cdot 33 & \frac{1}{2} \\ + & 46 \cdot 96 & 1\frac{1}{2} \\ + & 79 \cdot 32 & \frac{1}{2} \\ \hline + & 79 \cdot 32 & \frac{1}{2} \\ \hline + & 57 \cdot 53 & \frac{1}{2} \end{array}$	$\begin{array}{c} + 50 \cdot 02 & \frac{1}{2} \\ + 42 \cdot 21 & \frac{1}{2} \\ + 38 \cdot 23 & \frac{1}{2} \\ + 55 \cdot 36 & 1 \\ + 42 \cdot 80 & \frac{1}{3} \\ + 42 \cdot 80 & \frac{1}{3} \\ + 57 \cdot 28 & \frac{1}{3} \\ + 33 \cdot 80 & \frac{1}{3} \\ + 45 \cdot 23 & \frac{1}{3} \\ + 63 \cdot 48 & \frac{1}{3} \\ + 52 \cdot 07 & 1 \end{array}$	$\begin{array}{c} + 65 \cdot 21 & \frac{1}{2} \\ + 49 \cdot 36 & 1\frac{1}{2} \\ + 49 \cdot 41 & \frac{1}{2} \\ + 50 \cdot 78 & 2 \\ + 55 \cdot 46 & \frac{1}{2} \\ + 44 \cdot 06 & \frac{1}{2} \\ + 59 \cdot 67 & 1 \\ + 48 \cdot 31 & \frac{1}{2} \end{array}$	$+ 61.27 \frac{1}{2}$ + 58.88 1 + 48.18 $\frac{1}{2}$ + 73.25 1	$ \begin{array}{c} + 47 \cdot 63 & \frac{1}{2} \\ + 24 \cdot 68 & \frac{1}{2} \\ + 38 \cdot 84 & \frac{1}{2} \\ + 50 \cdot 78 & 1 \\ + 50 \cdot 78 & 1 \\ + 52 \cdot 98 & 1\frac{1}{2} \\ + 57 \cdot 27 & 2 \end{array} $	$\begin{array}{c} + 39 \cdot 89 & 1 \\ + 49 \cdot 41 & \frac{1}{2} \\ + 48 \cdot 23 & 1 \\ + 21 \cdot 19 & \frac{1}{2} \\ + 30 \cdot 32 & \frac{1}{2} \\ + 48 \cdot 31 & \frac{1}{2} \\ + 41 \cdot 07 & 1\frac{1}{2} \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Weighted mean Va Va Curv.	$ \begin{array}{r} + 53 \cdot 92 \\ - 21 \cdot 25 \\ - 0 \cdot 06 \\ - 0 \cdot 28 \end{array} $	$\begin{array}{r} + 48.97 \\ - 22.70 \\ - 0.17 \\ - 0.28 \end{array}$	$\begin{array}{r} + 52 \cdot 35 \\ - 23 \cdot 99 \\ - 0 \cdot 06 \\ - 0 \cdot 28 \end{array}$	$\begin{array}{r} + \ 62 \cdot 28 \\ - \ 26 \cdot 75 \\ - \ 0 \cdot 11 \\ - \ 0 \cdot 28 \end{array}$	+ 48.48 + 22.36 + 0.10 - 0.28	+ 40.79 + 21.67 - 0.03 - 0.28	+ 11.73 + 15.42 + 0.07 - 0.28
Radial Velocity	+ 32.3	+ 25.8	+ 28.0	+ 35.1	+ 70.7	+ 62.1	+ 26.9

MEASURES OF θ^2 TAURI.-Continued.

THE SPECTROSCOPIC BINARY 02 TAURI.

11/2	4716		4733		4739		4760		4780		4788		4792	3
λ	Vel.	Wt.	Vel. V	Vt.	Vel. W	Vt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
$\begin{array}{r} 4584\cdot018\\ 4572\cdot156\\ 4563\cdot939\\ 4549\cdot766\\ 4534\cdot139\\ 4481\cdot400\\ 4455\cdot116\\ 4415\cdot293\\ 4395\cdot201\\ 4351\cdot930\\ 4340\cdot634\\ 4325\cdot939\\ \end{array}$	$\begin{array}{r} + & 8 \cdot 45 \\ + & 21 \cdot 92 \\ \cdot & \cdot \\ + & 35 \cdot 88 \\ \cdot & \cdot \\ + & 53 \cdot 34 \\ \cdot & \cdot \\ + & 32 \cdot 12 \\ + & 54 \cdot 73 \\ + & 37 \cdot 83 \\ + & 29 \cdot 52 \end{array}$	1 1 1 1 1 1 1 1 1 1	+ 32.92 + 40.28 1 + 53.10 + 46.51 1 + 35.84 + 26.48 1	12	$\begin{array}{c} + 30 \cdot 26 \\ \dots \\ + 45 \cdot 09 \\ + 41 \cdot 48 \\ + 48 \cdot 49 \\ \dots \\ + 51 \cdot 36 \\ \dots \\ + 59 \cdot 98 \\ 1 \\ + 59 \cdot 59 \\ \dots \\ \dots \end{array}$	· 10/14 · 10/14 0/14 0/14	+ 48.61 + 57.20 + 50.88 + 69.40 + 77.91		$\begin{array}{r} + 44.98 \\ + 78.07 \\ \cdot \\ + 58.69 \\ + 71.86 \\ + 65.46 \\ + 73.86 \\ \cdot \\ \cdot \\ + 71.65 \\ + 69.42 \\ + 56.45 \end{array}$	taja met sija sija sija sija sija sija sija sija	+ 50.48 + 56.31 + 73.09 + 74.59 + 58.60 + 43.21		$\begin{array}{r} + \ 66 \cdot 38 \\ + \ 72 \cdot 28 \\ + \ 61 \cdot 36 \\ + \ 73 \cdot 05 \\ + \ 76 \cdot 94 \\ + \ 41 \cdot 96 \\ + \ 56 \cdot 48 \\ + \ 73 \cdot 47 \\ + \ 51 \cdot 87 \end{array}$	1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 1
Weighted mean Va Va Curv.	+ 38.5 - 4.0 + 0.0 - 0.2	9 3 7 8	$\begin{array}{r} + 37.99 \\ - 10.70 \\ - 0.27 \\ - 0.28 \end{array}$		+ 49.35 - 13.54 - 0.17 - 0.28		$+ 62 \cdot - 20 \cdot - 0 \cdot - $	15 41 07 28	+ 66 - 21 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	88 18 14 28	+ 60 - 21 - 21 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	71 49 11 28	+ 63 - 22 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	67 60 05 28
Radial Velocity	+ 34.2		+ 26.7		+ 35.4		+ 41.	4	+ 45.	3	+ 39.	1	+ 40.	7

MEASURES OF θ^2 TAURI.—Continued.

	4832		4835		4880		5218		52	36	5243		5244	ł
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	wt.	Vel.	Wt.	Vel.	Wt.
4584 · 018 4572 · 156 4549 · 766 4534 · 139 4481 · 400 4468 · 663 4415 · 293 4395 · 201 4351 · 930 4340 · 634		······································	$ \begin{array}{c} + 92.74 \\ + 83.24 \\ + 86.39 \\ + 91.69 \\ + 78.07 \\ + 92.08 \\ + 89.67 \\ \end{array} $		$\begin{array}{c} + 44 \cdot 92 \\ + 52 \cdot 56 \\ + 57 \cdot 33 \\ + 59 \cdot 72 \\ \\ + 53 \cdot 65 \\ + 59 \cdot 98 \\ + 56 \cdot 11 \end{array}$		$ \begin{array}{r} + 5.87 \\ + 17.04 \\ + 35.49 \\ - + 23.23 \\ + 8.29 \\ + 19.10 \\ \end{array} $		$\begin{array}{c} + 18.0 \\ + 25.4 \\ + 25.4 \\ + 12.0 \\ + 26.0 \\ + 39.4 \\ \\ + 39.4 \\ \\ + 19. \\ + 23.4 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 26.14 + 37.50 + 33.45 		$+$ 18 \cdot 84 + 30 \cdot 38 + 29 \cdot 11 	
Weighted mean Vs Vs Curv.	+ 90 - 28 - 0 - 0	· 16 ·79 ·23 ·28	+ 88 - 29 - 0 - 0	· 50 · 05 · 24 · 28	+ 55 - 28 - 0 - 0	·20 ·96 ·18 ·28	+ 17 + 24 + 0 - 0	·72 ·06 ·12 ·28	+ 2 + 2 +	25 · 75 23 · 16 0 · 10 0 · 28	+ 30 + 20 + 0 - 0	·90 ·07 ·12 ·28	+ 24 + 20 + 0 - 0	·63 ·06 ·04 ·28
Radial Velocity	+ 60	.9	+ 58	•9	+ 25	.8	+ 41	·6	+ 4	18.7	+ 50	.8	+ '44	•4

MEASURES OF θ^2 TAURI.—Continued.

.

	5250	5251	5253	5254	5259	5260	5892 (t. Vel. Wt + 92.10 1	
•	Vel. W	t. Vel. Wt	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	Vel. Wt.	
4549.766 4534.939 4501.448 4481.400 4404.927 4395.201 4351.930 4340.634 4325.939	+ 32.01 + 8.70 + 30.39 + 21.30 + 16.80 + 35.30	$\begin{array}{c} + 24 \cdot 93 & \frac{1}{2} \\ + 46 \cdot 76 & \frac{1}{2} \\ + 13 \cdot 31 & 1 \\ + 43 \cdot 78 & 1 \\ + 27 \cdot 13 & 1 \\ + 27 \cdot 13 & 1 \\ + 23 \cdot 72 & 1 \\ + 23 \cdot 72 & 1 \end{array}$	$\begin{array}{c} + 32 \cdot 01 & 1 \\ + 34 \cdot 34 & 1 \\ + 20 \cdot 81 & \frac{1}{2} \\ + 36 \cdot 76 & 1\frac{1}{2} \\ + 8 \cdot 84 & \frac{1}{2} \\ + 17 \cdot 33 & 1 \\ + 32 \cdot 69 & \frac{1}{2} \\ + 20 \cdot 25 & \frac{1}{2} \\ \end{array}$	$\begin{array}{c} + 20 \cdot 69 & 1 \\ + 19 \cdot 81 & 1 \\ + 44 \cdot 49 & \frac{1}{2} \\ + 33 \cdot 43 & 2 \\ & & \\ + 32 \cdot 76 & \frac{1}{2} \end{array}$	$\begin{array}{c} + 31 \cdot 22 & 1 \\ + 39 \cdot 70 & \frac{1}{2} \\ + 41 \cdot 76 & \frac{1}{2} \\ + 45 \cdot 69 & 1 \\ + 39 \cdot 38 & \frac{1}{2} \\ + 46 \cdot 70 & 1 \\ + 36 \cdot 53 & \frac{1}{2} \\ + 38 \cdot 79 & \frac{1}{2} \\ \end{array}$	$\begin{array}{c ccccc} + & 19 \cdot 34 & 1 \\ + & 30 \cdot 39 & \frac{1}{2} \\ + & 32 \cdot 93 & 1\frac{1}{2} \\ + & 24 \cdot 59 & \frac{1}{2} \\ + & 26 \cdot 85 & \frac{1}{2} \\ + & 20 \cdot 90 & \frac{1}{2} \\ + & 35 \cdot 30 & \frac{1}{2} \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Weighted mean Vs Vd Curv.	$ \begin{array}{r} + 22 \cdot 13 \\ + 19 \cdot 68 \\ - 0 \cdot 10 \\ - 0 \cdot 28 \\ \end{array} $	$\begin{array}{r} + 28.76 \\ + 19.67 \\ - 0.15 \\ - 0.28 \end{array}$	$ \begin{array}{r} + 27.72 \\ + 17.75 \\ + 0.28 \\ - 0.28 \end{array} $	$\begin{array}{r} + 29 \cdot 20 \\ + 17 \cdot 74 \\ + 0 \cdot 21 \\ - 0 \cdot 28 \end{array}$	+ 40.31 + 16.51 + 0.14 - 0.28	$ \begin{array}{r} + 27.55 \\ + 16.50 \\ + 0.07 \\ - 0.28 \\ \end{array} $	$\begin{array}{r} + 88 \cdot 20 \\ - 24 \cdot 40 \\ - 0 \cdot 08 \\ - 0 \cdot 28 \end{array}$	
Radial Velocity	+ 41.4	+ 48.0	+ 45.5	+ 46-9	+ 56.7	+ 43.9	+ 63.4	

MEASURES OF θ^2 TAURI.—Continued.

.

	5902	8	5903	3	5904	1	5908	5	5914					
Α	Vel.	Wt.	Vel.	Wt.	Vel.	Wt	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
$\begin{array}{r} 4584\cdot018\\ 4572\cdot156\\ 4563\cdot939\\ 4549\cdot766\\ 4534\cdot139\\ 4481\cdot400\\ 4468\cdot663\\ 4340\cdot634\\ 4325\cdot939\end{array}$	$\begin{array}{r} + & 82 \cdot 38 \\ + & 82 \cdot 70 \\ + & 102 \cdot 95 \\ + & 104 \cdot 55 \\ \cdots \\ + & 105 \cdot 90 \\ + & 113 \cdot 83 \\ \cdots \\ + & 64 \cdot 40 \end{array}$		+ 88.72 + 99.00 +115.05 +107.80	· · · · · · · · · · · · · · · · · · ·	+ 83.95 + 62.84 +104.82 + 98.66 		+ 68.57 + 53.41 + 65.30 + 66.13 + 67.82 + 73.08		$\begin{array}{r} + 49.38 \\ $	122 122 122 122 122 122		· · · · · · · · · · · · · · · · · · ·		
Weighted mean Va Vd Curv.	+100 - 25 - 0 - 0	- 14 - 53 - 14 - 28	+103 - 27 - 0 - 0	-67 -04 -21 -28	+ 91 - 27 - 0 - 0 - 0	-10 -47 -14 -28	+ 65 - 27 - 0 - 0	77 85 04 28	+ 61.9 - 28.0 - 0.1 - 0.1	93 95 18 28			· · · · · · · · · · · · · · · · · · ·	
Radial Velocity	+ 74-	-2	+ 76-	1	+ 63	•2	+ 37	6	+ 33.4	4				

MEASURES OF θ_2 TAURI.—Concluded.

A summary of the previous work on the orbit, which has considerable bearing on this later determination will now be given. It was found necessary to carry through three least-squares solutions of the orbit. In the first one of these, a correction for the period was introduced but when this correction was carried forward to the Lick and Yerkes observations it was found to be quite inapplicable. Consequently the period was determined as closely as possible from a comparison of the early with the Ottawa values and the coefficient for this correction omitted from the later solutions.

The second solution resulted in such a large increase of K and consequent rise of the positive maximum velocity above any observed values as again to be inadmissible. This was undoubtedly due to the absence of any Ottawa observations near the peak of the curve, which is of course very sharp when the eccentricity is 0.7. For the third solution, therefore, one Lick observation of +80 km., and one Yerkes of +88 km., taken on the same day, Sept. 8, 1908, very near the maximum, were combined into an additional normal place and incorporated into the observation equations, and the resulting solution was satisfactory. These different solutions are given here:—

Element.	1st Preliminary.	-1st Solution.	2nd Preliminary.	2nd Solution.	3rd Preliminary.	3rd Solution (without Lick and Yerkes Observations)	3rd Solution (with Lick and Yerkes Observations)
Pariod	141.0	141.487	140.50	140.50	140.50	140.50	140.50
renou	0.65	0.600	0.65	0.758	0.70	0.779	0.604
K	25.0	26.59	27.0	33.76	32.0	37.99	29.128
ω	45°.0	47°.43	50°.0	39°.09	45°.0	38°.22	48°.57
T	51.0	51.075	56.33	54.876	55.74	55.207	56.12
Y	+41.51	+42.17	+42.72	+43.60	+43.16	+ 43.713	+ 42.90
Max. Vel.	+78.0	+81.34	+81.0	+97.22	+91.0	+104.7	+ 85.40
Min. Vel.	+28.0	+28.16	+27.0	+29.70	+27.0	+ 28.7	+ 27.14

The curious behaviour of these elements in the successive solutions is due to the preliminary elements in each case being not sufficiently close approximations to allow the second order differentials to be neglected, and also to the fact, and this also influenced the choice of the preliminary values, that there were no observations near the peak of the curve while the others were so situated as to abnormally influence the least-squares solutions. However it was not felt desirable, as was done in the 3rd solution, to combine the Ottawa measures with those from other observatories, especially in view of the high residuals given by some of the latter; and it was decided to secure further observations here, around the peak and on the descending branch of the curve, to enable a more accurate period and more consistent and homogeneous elements to be determined. Further, the question of a second spectrum shown by two of the Yerkes and also possibly on some Ottawa plates should, if possible, be settled.

The first series of additional plates in October, 1912, was, through an oversight, unfortunately taken at the wrong time, and it was not until January, 1914, that plates at the proper epoch were obtained. When these measures were combined with the earlier ones, it was at once seen

77

that the previous period of 140.50 days obtained from comparison of the Ottawa and earlier observations was not exact, but that it would have to be increased about 0.2 day. Observations 7 periods apart, at approximately the same place on the very steep descending branch, enabled the period to be determined quite accurately as 140.70 days. With this period all the observations were combined into 18 normal places, each plate being arbitrarily weighted according to its general quality and the number of lines measured. The weighted velocities and phases of these normal places are given in the accompanying table, the initial epoch T_{o} being taken as Julian Day 2,418,000.

The number and position of these normal places were so chosen and, at the same time, the extreme range of phase in any one of them was relatively so small, that they satisfactorily represent all the observations. Their weights are submultiples of the sums of the weight of the plates therein, so taken for convenience of the least-squares solutions, that the maximum weight is unity. The residuals are those determined from the final elements.

No.	Wt.	Phase	Velocity	Residual O-C.	No.	Wt.	Phase	Velocity	Residual O-C.
1	1	5.37	+ 44.84	+ 1.26	10	1	58.05	+ 37.87	- 4.00
2	14	12.75	47.10	+ 1.12	11	2	64.35	28.76	+ 0.88
3	1/2	23.24	50.15	- 0.07	12	1 1	70.12	26.90	+ 0.01
4	1	34.81	58.20	+ 0.93	13	i	80.69	33.50	+ 4.99
5	1	44.15	68.20	+ 0.57	14	2	87.20	35.04	+ 5.17
6	1	48.05	74.20	- 0.54	15	8	94.83	33.87	+ 2.36
7	1 the	53.12	76.10	- 3.33	16	34	111.28	29.98	- 5.04
8	18	54.49	70.70	- 1.07	17	1	125.55	33.63	- 4.58
9	7	56.26	62.70	+ 7.26	18	1 2	133.39	40.08	- 0.04

NORMAL PLACES.

When the normal places were plotted on cross-section paper, preliminary elements suiting the velocity curve fairly well were, with the experience gained in the previous determination, soon obtained by the aid of Dr. King's graphical method.*

*Report of Chief Astronomer 1908, p. 329 and Astrophysical Journal XXVII p. 125.

The values adopted were:

Period = 140.70 days e = 0.7 $\omega = 55^{\circ}$ K = 26.25 km. T = J. D. 2,418,054.80 $\gamma = +42.21$ km.

Observation equations for each of the 18 normal places were formed from these elements by Schlesinger's convenient method.* In these observation equations the numbering begins from the time of periastron instead of from T_{\circ} as in the normal places, or No. 1 here is No. 9 in the normal places.

A.M. ALIMANIA	and in	are Cox			discolution of	1	1
No.	Weight	F	ĸ	π	é	τ	δV
	1	1.000	+ .110	+ .994	+ .562	+ .895	+ 7.06
2	ī	1.000	376	+ .927	+ .837	+ .611	- 4.88
	2	1.000	948	+ .317	+ .248	+ .010	+ 1.01
	1	1.000	-1.000	010	006	001	+ 0.40
	1	1.000	944	330	125	021	+ 5.62
	2	1.000	893	451	133	023	+ 5.81
	oftee c	1.000	830	558	122	023	+ 3.01
	3	1.000	694	720	066	024	- 4.49
	1	1.000	570	822	+ .002	025	- 4.10
	1	1.000	496	868	+ .045	028	+ 0.41
	1	1.000	361	932	$+ \cdot 139$	034	+ 1.61
	1	1.000	268	963	+ .195	039	+ 1.42
	1	1.000	103	995	+ .303	052	+ 0.10
	1	1.000	+ .168	986	+ .471	086	+ 1.03
	1	1.000	+ .558	830	+ .612	160	+ 0.70
	1	1.000	+ .810	586	+ .526	- ·198	+ 0.13
	1	1.000	+ .925	+ .379	240	+ .33 }	- 1.03
	1	1.000	+ .659	+ .752	099	+ .747	+ 0.57

OBSERVATION EQUATIONS.

In these observation equations according to Schlesinger's notation,

 $\Gamma = \delta \gamma + e \cdot \cos \omega \cdot \delta K + K \cdot \cos \omega \cdot \delta e - K \cdot e \cdot \sin \omega \cdot \delta \omega$ $\kappa = \delta K$ $\pi = -K \cdot \delta \omega = -26 \cdot 25 \ \delta \omega$ $\epsilon = -K \cdot \frac{2 \cdot 21}{1 - e^3} \delta e = -113 \cdot 75 \ \delta e$ $\tau = K \cdot \mu \ \sqrt{\frac{1 + e}{1 - e}} \cdot \frac{1}{1 - e} \cdot \delta T = 9 \cdot 302 \ \delta T$

*Publications Allegheny Observatory I, p. 33

1

The resulting normal equations are:

 $7 \cdot 759 r - 2 \cdot 356\kappa - 4 \cdot 036\pi + 1 \cdot 659 \epsilon + \cdot 316\tau = + 2 \cdot 329$ $+ 2 \cdot 682\kappa + 1 \cdot 019\pi + \cdot 094 \epsilon - \cdot 027\tau = - \cdot 276$ $+ 5 \cdot 078\pi - \cdot 480 \epsilon + \cdot 856\tau = - 1 \cdot 709$ $+ 1 \cdot 013 \epsilon + \cdot 245\tau = - \cdot 227$ $+ \cdot 481\tau = - \cdot 127$

The solution of these equations gives the following values of the unknowns:

K	=	+	·8711	whence	δK	=	+	·87
π	=	+	·3865	"	δω	=	—	·844
e	-	-	1.927	"	бе	=	+	·0169
·τ	=	-	·7156	"	δT	=.	_	·0769
T	=	+	$1 \cdot 207$	"	δγ	=	+	·381

These corrections result in the following values for the elements with the derived values of the probable errors. Σpvv is reduced from 75.04 to 72.87, showing that the preliminary values were very close to the final ones. This is also indicated by the smallness of the differences between the values obtained by substituting in the observation equations and those obtained from the ephemeris from the corrected elements.

FINAL ELEMENTS

Period, $P = 140 \cdot 70$ days Eccentricity, $e = 0.717 \pm .022$ Longitude of Apse, $\omega = 54^{\circ} \cdot 16 \pm 4^{\circ} \cdot 35$ Semi-Amplitude, $K = 27 \cdot 12$ km. ± 1.44 km. Periastron Passage, T = J. D. 2,418,054 $\cdot 723 \pm 0.520$ day Velocity of System, $\gamma = + 42 \cdot 59$ km. Maximum Velocity = $+ 81 \cdot 10$ Minimum Velocity = $+ 26 \cdot 86$ Projected length semi-axis major, $a \sin i = 37,471,000$.

The comparatively high values of the probable error of the elements is due principally to the abnormal deviations between phases 70 and 134 from the velocity curve drawn from these elements and shown in full line in the accompanying figure. These deviations, which will be more fully discussed later, make the probable error of a normal place of unit weight and consequently the probable errors of the elements nearly double what they would otherwise be.

From a carefully drawn curve on a large scale, the residuals from the observations were obtained and are given in the last column but one of the table of observations. From these residuals, the probable error of a single Ottawa plate comes out as ± 3.6 km. per second. It will be of interest to compare the probable errors for the different dispersions used and these are given herewith.

Spectrograph	Å per mm. at H_{γ}	No. of Plates	Probable Error Single Plate
[33.4	45	3.7
II R II S	20·2 17·6	3 11	3.2
II L	10.1	9	3.9

There is very little difference in the accuracy of measurement with the different dispersions, the advantage seeming to lie with the three-prism dispersion and short camera. The advantage of increased linear scale is offset evidently by increased diffuseness of the lines. Considering the character of the spectrum and the presence of some abnormal effect the accuracy may be considered satisfactory.

In the velocity curve drawn from these elements the normal places are represented by circles. It will be seen that, considering the diffuse character of the spectrum lines, the agreement is quite satisfactory excepting between phases 70 and 134 where there is a marked double hump. As the five normal places in this region have on the average four plates each it is evident that this deviation must be considered to have a probable objective existence. It is impossible to give a definite cause for this abnormal effect. As its period is approximately half the main period and as there seems to be a continuance of this effect further along the velocity curve, one apparent explanation would be a secondary disturbance of half the period of the binary. Although such an effect does not admit of any probable physical explanation, it was thought worth while to determine the elements of the orbit on this supposition. Assuming suitable preliminary elements and carrying through a least-squares solution, adding terms for the amplitude and phase of a simple sine curve superposed on the velocity curve, the following elements were obtained.

> Periods, 140.70 days and 70.35 days Eccentricity, e=0.711Longitude of Apse, $\omega=50^{\circ}.80$ Semi-Amplitude Primary, K=29.03 km. Periastron Passage, T=J. D. 2,418,054.641 Velocity of System, $\gamma=+42.63$ km. Semi-Amplitude Secondary, K=3.57 km. Phase Ascending Node Secondary=J. D. 2,418,067.42 Maximum Velocity Primary 84.71 Combined 81.1 Minimum Velocity Primary 26.65 Combined 27.0.

The compound curve is shown in dotted lines in the figure, and it is quite evident that it does not represent the observations much, if any, more satisfactorily than the simple curve for, while the agreement is better between phases 80 and 130, it is poorer at other parts. The average plate residual is only reduced about 5 per cent by the introduction of the secondary. One possible explanation of the deviations is the presence of the spectrum of the companion to the principal star and the displacement of the measured velocities towards the γ line by the blend effect of the two spectra. It is difficult to see how such a blend effect can cause deviations of the peculiar character shown here, as the curve goes through a complete cycle below the γ line and exhibits no evidence of blending above this line. Yet Harper's orbit of θ Aquilae^{*}, a binary whose elements are quite similar to those of θ^2 Tauri, shows similar deviations below the γ line though not so strongly marked as here. In "the case of θ Aquilae *Journal R.A.S.C. III p. 87, Mar-Apr., 1909.

82

it was later shown that this was probably due to the presence of a second spectrum with the resultant blend effect. The inference is that the second spectrum is present in θ^2 Tauri, but as yet no reasonable evidence to that effect has been secured. On two of the early plates obtained at Yerkes, the second spectrum was measured, and on four obtained here some apparent The results at Yerkes and the attempted measures doubling was observed. here, given in the last column of the table of measures, all bring the secondary spectrum in impossible positions. For example, the secondary velocity in one plate and the primary velocity in the other plate at Yerkes fall within two or three kilometres of the γ line, while the velocities of primary and secondary in every suspected case here are in equally impossible relative positions. Furthermore, later trials on these suspected plates found me unable to repeat my measures and I strongly doubt the reality of the doubling. As previously stated, plates have been especially secured here, with three different dispersions, near the maximum positive velocity when the doubling should be most pronounced but in no case can doubled lines be definitely seen and while there is possibly a second spectrum present the lines are so broad, diffuse, and lacking in contrast, that I doubt whether positive evidence either way can be obtained.

Other reasons may be cited for suspecting abnormal conditions in this star. The large residuals from the orbit of some of the plates obtained at the Lick and Yerkes observatories, the average residual being 8.4 as compared with 4.1 km. at Ottawa, are much greater than can be explained by the poor character of the spectrum or by the choice of different lines with different wave-lengths for measurements. Another reason is to be found in the difference between the velocity of the system obtained here +42.6 km. per second and that obtained from its stream motion +39.2. θ^2 Tauri is of special interest as being one of the moving stream in Taurus described by Prof. Boss.* His computed radial velocity for θ^2 Tauri is 40.5 km. per second, 2.1 km. less than the Ottawa value. His velocity is based on Kustner's determination of the radial motion of three other stars of the group. In a later discussion of the Taurus stream by Wilson[†],

83

^{*} Astronomical Journal XXVI, p. 31.

[†] Popular Astronomy XX, p. 359.

in which the computed values are based on the radial velocities of 8 stars of the stream determined by Campbell and hence of much greater weight, the velocity of θ^2 Tauri comes out at $39 \cdot 2$ or $3 \cdot 4$ km. smaller than the Ottawa value.

It seems to me probable, therefore, that the Ottawa value is over 3 km. too high and though it is possible to explain this systematic difference by incorrect identifications or wave-lengths it is more likely due to some cause which may be also operative in producing the curious humps in the curve and causing the early observations to have such unreasonably large residuals.

It is of interest to interpolate here that if Boss's value of the proper motion and of the distance of the convergent be accepted, the value of the parallax of θ^2 Tauri is $0'' \cdot 023$ equivalent to a light journey of about 140 years.

The similarity between the velocity curve of θ^2 Tauri and that of the Cepheid variable W Sagitarii^{*} is quite marked, the deviations from simple elliptic motion occurring in exactly the same relative positions in the orbits and being of approximately equal relative magnitudes. Moreover, except in the longer period and higher eccentricity, the elements are quite similar and it may be that the abnormal effects are produced by the same causes. Although the variation must be small it is possible that accurate photometric observations might show θ^2 Tauri to be a variable star and it would be of interest to have this tested. Although it is possible that a better orbit would be obtained if a considerable number of additional spectra, were secured, the character of the spectrum lines is such as to render this additional work of doubtful value.

Dominion Observatory, Ottawa, February, 1915.

* Astrophysical Journal XX, p. 172,

THE SPECTROSCOPIC BINARY 02 TAURI.

.

