DEPARTMENT OF THE INTERIOR

CANADA

HON. W. J. ROCHE, Minister.

W. W. CORY, C.M.G., Deputy Minister.

PUBLICATIONS

OF THE

Dominion Observatory

OTTAWA

W. F. KING, C.M.G., LL.D., Director.

Vol. I, No. 13

Orbit of ξ Persei from the H and K Lines

BY

J. B. CANNON, M. A.

OTTAWA
GOVERNMENT PRINTING BUREAU
1914

62643-I

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

ORBIT OF & PERSEI FROM THE H AND K LINES.

BY J. B. CANNON, M.A.

 ξ Persei is one of those stars in which the velocities given by the H and K lines of calcium differ greatly from those from the broad lines of hydrogen and helium. The spectrum is placed by Miss Cannon in the Oe5B class. The lines showing are those of hydrogen, helium and calcium. A few iron lines appear, but not with sufficient frequency to make them useful for measurement. The hydrogen and helium lines are very broad and ill-defined, the latter lines especially being very poor. The calcium lines are fairly good, sometimes both being easily measurable, sometimes only one and in some cases neither appears sufficiently defined to make measurement possible.

The first published measures of this star appeared in the Astrophysical Journal, Vol. XVIII., p. 383, 1903, five measures being given of the broad lines in an article by Professor Frost under the heading—"An Orion Star of Great Radial Velocity." The range (9 kilometres) was not considered sufficient ground to pronounce it a binary. Later in the Astrophysical Journal, Vol. XXIX., p. 236, 1909, Professor Frost announced another measure of this star giving a range of 30 kilometres. In that note he remarked that the H and K lines have a moderate positive velocity with a range of about 25 kilometres, these lines differing greatly in the velocities shown from the values derived from the broad lines.

Observations on the star were first made here in 1908, a few plates being taken. It was then dropped from the observing list until 1910, and 62643—2

plates were taken in the seasons of 1910-11 and 1911-12. Although the broad lines were measured at first,—where measurement was possible,—as well as H and K, it was not felt that these diffuse lines would be of any aid in ascertaining anything in regard to the orbit of the star, and attention was given almost exclusively to the H and K lines of calcium. These lines were not always found on the plates, but generally one or other of them was well enough defined to be measured. Of the 1908 plates only two gave measures of K which were considered reliable. Of the later plates, 1910-11-12, 41 plates were good enough to be useful in the determination of the The later plates were all Seed 23 and were much better than the earlier ones of Seed 27, although the fine-grained plate did not serve to make the broad lines measurable. As stated above, these broad lines were measured at first. An attempt was also made to get measures on the members of the second series of hydrogen with a view to determining the wave-lengths of these lines in this star, but the utter impossibility of anything definite in this regard led to the abandonment of the attempt.

The wave-lengths used for H and K were $3968 \cdot 625$ and $3933 \cdot 825$ respectively. K was, with very few exceptions, stronger than H. Some plates were found in which H and K gave widely different results. In such a case, if the lines were equally good, the plate was left out of consideration: if one was much better than the other that line was used.

Great aid was given in the work by the use of Yerkes measures of ten plates kindly sent me by Professor Frost, and of nine more plates loaned by Professor Frost and measured by me. As a check on the measures of a plate, here and at Yerkes, two plates IB141 and IB402 were measured at both places. On one of these, IB402, the measures were practically the same, but on the other, not too well-defined, a difference of ten kilometres was found. Of the nine plates taken at Yerkes and measured here, unfortunately four of them gave H and K differing considerably, while one of them gave only H measurable. Otherwise the Yerkes plates fit the accepted curve as well as can be expected from a spectrum which gives only one and at most two lines on which to base results.

Table I. gives Yerkes plates measured at Yerkes; Table II. Yerkes plates measured by Cannon; and Table III. gives Ottawa observations.

TABLE I. YERKES OBSERVATIONS-MEASURED AT YERKES.

Plate.	Observer.	Date.	Exposure.	Julian Day.	Phase.	Lines.	Vel.	Wt.	o-c.
IB	14.60	1903							
101		Sept. 26		2,416,384.86	6.371		+ 23	3	+ 4.
119				404.81	5.468		+ 29		
141		Oct. 23		411.78	5.487				
179	1	Nov. 7		426.79	6.595				- 6.
203		Dec. 1		450.66	2.661		+ 2	3	+11.
232		Dec. 27 1904		476.50	0.697		+ 10)	+ 0
304		April 15		586 · 60	6.532		+ 2	4	+ 6
402		Sept. 30		754.93	1.087		+ :	2	- 6
465		Dec. 30 1906		845 · 56	1.354		+ 1:	2	+ 4
821	1	Aug. 10		2,417,433.89	5.800		+ 2	3	+ 1.

^{*}Cannon's Measure, +16, Residual-6.6.

TABLE II. YERKES PLATES-MEASURED BY CANNON.

Plate.	Observer.	Date.	Exposure.	Julian Day.	Phase.	Lines.	v	el.	Wt.	0-C.
IB²		1906	#251							
850		Sept. 14		2.417.468.90	6.055	K	+	14.5	.2	- 6.0
879		Oct. 12 1907		496.84	6.201	K	+	4.5		-15.0
935		Jan. 4		580 · 56	6.499	K	+	19.3	.5	+ 1.8
1199		Oct. 11		860.81	1.758	K	-	0.5	.5	- 8.3
1208		Oct. 18		867.75	1.747	K	-	5.9	.5	-13.7
1216		Oct. 20		869.76	3.757	H & K	+	12.3	1.5	- 6.2
1260		Nov. 30		910.68	2.971	H	+	3.4	.5	- 9.8
1289		Dec. 16 1908		926 · 58	4.969	K	+	7.9	1.0	-15-8
1350		Jan. 20		961 · 51	5.144	K	+	18.6	1.0	- 4.6

Remarks:-1199, 1208 - H and K differ. H is highly + ve.
H is much more + ve. 1289

1350

TABLE III. $\label{eq:table_initial}$ OTTAWA OBSERVATIONS OF ξ PERSEI.

	late.	Observer.	Date.	Exposure.	Julian Day.	Phase.	Lines.	V	el.	Wt.	о-с.
			1000								
40	74	P1	1908 Nov. 20	m. 60	0 410 000 00	4 000	77	NACON	10.0		
	74	C	Dec. 4	40	2,418,266.83	4.620	K K	+	18.0	-5	- 4
19	99	·	1910	40	280.72	4.613	Λ	+	26.0	·2	+ 3
37	40	C	Oct. 10	62	957.83	0.522	H & K	+	10.3	1.5	- 0
37	65	C	Oct. 19	85	964.81	0.555	K	+	4.9	-5	- 5
37	77	P	Oct. 25	45	970.91	6.653	H & K	+	16.0	1.5	- 0
38	17	C	Dec. 5	60	9,011.61	5.653	H & K	+	36.0	.7	+13
38	61	C	Dec. 12	76	018 · 68	5.763	H & K	+	22.0	1.2	+ 0
38	81	P ¹	Dec. 16 1911	42	022.79	2.922	K	+	14.2	.5	+ 1
39	15	P	Jan. 5	40	042.54	1.822	H & K	+	7.5	1.2	- 0
	21	C	Jan. 9	43	046 · 54	5.823	K	+	35.5	1.0	+13
	29	P	Jan. 12	65	049.55	1.882	K	+	2.7	.5	- 5
	36	C	Jan. 16	48	053.58	5.913	K	+	24.7	.7	+ 3
39	57	P1	Jan. 18	45	055.57	0.952	K	+	7.3	-5	- 1
	62	P	Jan. 19	60	056 · 58	1.962	H & K	+	3.1	1.2	- 4
	74	C	Jan. 30	60	067 - 66	6.083	K	+	16.2	.2	- 4
	91	H	Feb. 10	50	079.56	4.083	K	+	13.3	1.0	- 7
40	20	C	Feb. 27	55	091.58	2.202	K	+	15.0	1.0	+ 5
	56	C	Mar. 6	50	102.50	6.173	K	+	16.5	-5	- 3
40	67	H	Mar. 7	50	103.52	0.242	K	+	5.4	-5	- 6
45	52	C	Sept. 13	55	293 · 89	2.932	K	+	4.3	.2	- 8
46	34	\mathbf{P}^{1}	Oct. 12	60	322.77	4.113	K	+	17.4	1.0	- 3
46	45	P1	Oct. 13	60	323 · 81	5.053	H & K	+	30.5	.5	+ 7
46	76	P	Nov. 2	60	343.66	4.053	H & K	+	25.1	1.0	+ 4
46	85	P¹-C	Nov. 3	59	344.74	5.133	K	+	15.8	-5	- 7
46	90	C	Nov. 10	62	351.71	5.143	K	+	16.8	1.0	- 6
47	15	P1	Dec. 6	67	377.59	4.303	K	+	25.7	.2	+ 4
47	29	H	Dec. 19	40	390.60	2.332	K	+	5.4	-7	- 4
47	38	H	Dec. 25 1912	40	396.70	1.482	H & K	+	15.5	1.0	+ 7
	45	C	Jan. 1	55	403.58	1.402	·K	+	11.0	.2	+ 3
47	58	\mathbf{P}^1	Jan. 10	51	412.50	3.372	H & K	+	16.8	.7	+ 0
47	59}	\mathbf{P}^{1}	Jan. 10	49	412.53	3.375	K				
47	79	C	Jan. 12	90	414.60	5.473	K	+	18.5	1.0	- 3

Plate.	Observer.*	Date.	Exposure.	Julian Day.	Phase.	Lines.	Vel.	Wt.	0-C.
		1912	m.				107		
4801	Pl	Jan. 19	93	2,419,421.62	5.543	H & K	+ 21.0	1.5	- 1.6
4819	H	Jan. 26	93	428.56	5.533	K	+ 15.0	1.0	- 7.6
4828	C	Feb. 1	108	434.51	4.533	H & K	+ 21.8	1.2	- 0.5
4831	P	Feb. 10	90	443.52	6.593	K	+ 21.2	.2	+ 4.4
4833	P	Feb. 12	90	445.55	1.672	H & K	+ 11.9	.7	+ 4.2
4839	H	Feb. 13	98	446.53	2.652	H & K	+ 7.3	1.0	- 4.2
4843	C	Feb. 14	87	447.53	3.653	H & K	+ 21.6	1.2	+ 3.6
4849	H	Feb. 20	90	453 - 56	2.732	H & K	+ 14.0	1.2	+ 2.0
4853	H	Feb. 23	87	456.58	5.753	K	+ 17.8	1.0	- 4.6
4858	C	Feb. 28	92	461.54	3.763	H & K	+ 21.6	.7	+ 2.9
4869	H	Mar. 5	85	467.55	2.822	K	+ 14.2	-5	+ 1.7
4874	C	Mar. 6	89	468.55	3.813	K	+ 15.6	.5	- 3.2

^{*}P=Plaskett, H=Harper, Pl=Parker, C=Cannon.

MEASURES OF & PERSEI.

Yerkes Plates.

λ	IB: 85	50	IB2 8	79	IB ² 93	5	IB2 11	99	IB ² 120	08	IB: 12	216	IB ² 12	60
	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
3968·625 3933·825	- 12·16	1	- 15·18		+ 38.05	12	- 20.54		- 23.44		- 3·26 - 6·05	1 1 2	+ 6.05	1/2
Weighted mean V_a V_d Curv.				2000						10000	+ 16	· 19 · 90 · 07 · 30	- 2·	05 47 07 30
Radial Velocity	+ 14.8	,	+ 4	-45	+ 19	3	- 0	5	- 5	9	+ 12	-3	+ 3	4

MEASURES OF & PERSEI-Continued.

Yerkes Plates.

λ	IB: 12	89	IB: 13	50					,		rain i		i sunti	
	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
3968 · 625 3933 · 825	+ 18.46	1	+ 43·91	1										
Weighted mean V_a V_d Curv.	The state of the s													
Radial Velocity	+ 1	7.9	+ 18	3-6										

MEASURES OF & PERSEI—Continued.

λ	197	4	1974	1.	1999		1999	•	3740		3765		3777	
^	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
3968 · 625 3933 · 825	+ 17.3	1 1/2	+ 15.28	1	+ 32.94	1	+ 29.07	1	- 6·27 - 10·73		- 12·10	1/2	+ 5·58 + 1·66	-
Weighted mean V. V. Curv.		·31 ·31 ·21 ·28	-	·28 ·31 ·21 ·28	I-, .	94 60 11 28		07 60 11, 28	+ 19	24 88 03 28			+ 14	97 76 14 28
Radial Velocity	+ 1	9.1	+ 1	7.1	+ 28	3.0	+ 24	.1	+ 10	.3	+ 4	1.9	+ 17	7.3

^{*}Check Measurement.

MEASURES OF ξ PERSEI—Continued.

Ottawa Plates.

	3777	*	3817		3817	*	3861			3861	*	38	381		3915	j
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	v	el.	Wt.	Vel.	w	t.	Vel.	Wt
3968 · 625 3933 · 825	- 3·52 + 2·16	-	+ 36.86	1 2	+ 41.3	1 2	+ 28.95			35·19 23·97	1 1	+ 25.	13		+ 26·20 + 19·55	
Weighted mean Va Va Curv.	+ 14	27 76 14 28		86 02 05 28		30 02 05 28		95 52 04 28			11.00	1000	25·13 10·51 ·16 ·28			
Radial Velocity	+ 14	7	+ 31.	5	+ 36	0	+ 20.	0		+ 24.	1	+	14.2		+ 4	.5

^{*}Check Measurement.

MEASURES OF ξ PERSEI—Continued.

	3915	*	3921		3929		3936		3957		3957	7*	3962	2
λ	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
3968 · 625 3933 · 825	+ 27·74 + 34·69		+ 47.50 + 65.40	-	+ 24.63	1/3	+ 48.09	1 2	+ 34·20	1	+ 28.37	1 2	+ 30·15 + 26·71	-
Weighted mean V_a V_d Curv.		7.1	9									-37-44		
Radial Velocity	+ 10-	6	+ 35.	5	+ 2	7	+ 24.	7	+ 10.	3	+ 4	4	+ 3.	1

^{*}Check Measurement.

MEASURES OF & PERSEI-Continued.

Ottawa Plates.

λ		397	4		3991			4020		4	1020	*		4056		4	0564		40	067
^	V	el.	Wt.	Ve	1.	Wt.	V	el.	Wt.	Vel		Wt.	Ve	el.	Wt.	Vel.		Wt.	Vel.	w
3968 · 625 3933 · 825	+	43.70	3 1	+ 4	···· 2·10	1	+ 4	12.93	1	+ 48	5.84	1	+ 4	6.68		+ 45	.01	1 2	+ 34	19
Weighted mean V_a V_d Curv.		+ 43 - 27 -		-						10.10			-		O200374000	17.00		135-04	0.111.0	34 · 19 28 · 36 · 19 · 28
Rádial Velocity		+ 1	6.2	+	- 18	3.3	Ι.	+ 18	3.5	+	10	3.4	-	F 17	7.8	+	16	.1	+	5

^{*}Check Measurement.

MEASURES OF & PERSEI-Continued.

λ	4552		4634		4634	4*	464	5	4645	*	4676		4676	
^	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.
3968 · 625 3933 · 825	- 23.08	1	- 4·81	1	- 0.33	3 1	+ 10.1	1 1	+ 12.15	1	+ 9·96 + 16·56	_	+ 5·24 + 19·63	-
Weighted mean Va Va Curv.	+ 27	·08 ·64 ·02 ·28	+ 19 +	·81 ·99 ·07 ·28		·33 ·99 ·07 ·28	+ 10 + 11 - -	0·11 9·62 ·02 ·28						
Radial Velocity	+	4.3	+ 1	5.5	+ 1	9.4	+	29 · 4	+ 3:	1.5	+ 24	4.3	+ 24	5.9

^{*}Check Measurement.

MEASURES OF & PERSEI-Continued.

Ottawa Plates.

λ	4685		4865	9	4690)	4690		4715		4715		4729	
	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
3968 · 625 3933 · 825	+ ,4.16	1 2	+ 6.32	1	+ 8.64	1	+ 10.07	1	+ 31.86	1	+ 30.87	1	+ 18.22	2
Weighted mean V. V. Curv.		MINE CA 101			+ 7	·64 ·63 ·07 ·30	+ .	07 63 07 30		86 38 02 30	-	87 38 02 30		
Radial Velocity	+ 1	4.8	+ 10	8.9	+ 10	8-1	+ 17	.5	+ 26	.2	+ 21	5.2	+ 6	3.2

^{*}Check Measurement.

MEASURES OF & PERSEI-Continued.

λ	4729*		4738		4738*		4745		4758		4759		4779	
	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
3968 · 625 3933 · 825	+ 16.72	3	+ 23·36 + 33·11		+ 27·57 + 35·86		······ + 28·79	1	+ 51·63 + 36·69	-	+ 36·16 + 31·70	-	+ 38.35	1
Weighted mean V. V. Curv.										William I				
Radial Velocity	+ 4	4.7	+ 14	4.2	+ 16	3.7	+ 11	1.0	+ 20	0.6	+ 15	2.9	+ 16	8.4

^{*}Check Measurement.

MEASURES OF & PERSEI—Continued.

Ottawa Plates.

λ	4779*		4801		4	4801*		4819		4819*		4828		4831	
	Vel.	Wt.	Vel.	Wt.	Vel	. Wt	Vel	l.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
3968 · 625 3933 · 825	+ 42.52	1	+ 44·4 + 47·0		+ 40 + 45	·45 ½ ·84 1	+ 33 + 40	- 1	1	+ 42.93	1	+ 45·18 + 50·00	-	+ 54.83	1
Weighted mean V _a V _d Curv.			+ 40 - 23 - -		-	44·04 23·87 ·13 ··30	100		71			The second second			
Radial Velocity	+ 20) · 5	+ :	22.3	+	19.8	+	13	8	+ 16	3.9	+ 2	1.8	+ 26	6.1

^{*}Check Measurement.

MEASURES OF & PERSEI-Continued.

λ	4831	*	4833		4833	*	4839		4843		4849		4853	
	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
3968 · 625 3933 · 825	+ 45.00	1	+ 48.88 + 32.95	-	+52.06 +39.19	-	+ 46·81 + 33·61		+ 45.01 + 52.50		+ 39·60 + 44·43		+ 47·34	1
Weighted mean V _a V _d Curv.	1 -	-00 ·36 ·07 ·30												
Radial Velocity	+ 10	6.3	+ ' 9) • 4	+ 14	. 5	+ 7	.3	+ 22	.0	+ 14	·0	+ 17	7-8

^{*}Check Measurement.

MEASURES OF ξ PERSEI—Concluded.

Ottawa Plates.

λ	4858		4869		4874				-0					
	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt.	Vel.	Wt
3968 · 625 3933 · 825	+ 46·47 + 53·16		+ 43.18	1	+ 44.43	1 2	e i di marsili	100	eso ni	E STA	erika Igali bi	alian:	modu	
Weighted mean V _a V _d Curv.		5933			SALES CONTRACTOR		and crea	in 1	wale Parena	2 4 12	edo o	10 (11)	ide Husi	
Radial Velocity	+ 21	.6	+ 14	1.2	+ 18	5.6								

The period finally decided on after a great many trials was 6.951 days. There are some fairly large residuals but the probable error of an average plate is ± 3.6 , and that is very satisfactory when one considers that many values are dependent on one line which is not always very well defined.

The observations were grouped into eleven normals which appear in Table IV. (The phases are from the final T).

TABLE IV.

No.	Julian Day.	Phase.	Velocity.	Weight.	Residual
1	2,419,342.88	3.893	+ 19.42	3.0	+ 0.19
2	040 · 51	4.550	+ 22.42	1.0	+ 0.19
3	347.99	5.123	+ 19.98	1.0	- 3.22
4	349 · 25	5.543	+ 21.65	2.0	- 0.98
5	141.66	5.803	+ 24.96	2.0	+ 3.26
6	082 · 24	6.433	+ 17.36	1.5	- 0.62
7	8,988.36	0.472	+ 8.24	1.0	- 2.57
8	9,300-21	1.322	+ 12.23	1.0	+ 4.65
9	128.76	1.852	+ 6.44	2.0	- 1.48
10	302 · 20	2.412	+ 9.56	1.5	- 0.44
11	367-68	2.942	+ 13.95	1.5	+ 0.85

Preliminary elements for the orbit follow:-

Period =
$$6.951$$
 days
 $e = .1$
 $\omega = 150^{\circ}$
 $K = 7.75$ km.
 $T = 2,418,249.349$ J. D.
 $\gamma = +15.92$ km.

Observation equations were formed and a solution put through with the object of getting a closer approximation to the true values of the elements. The observation equations found were:—

TABLE V.

OBSERVATION EQUATIONS.

	《美····································			6 160 kg (16	Liednest		
No.	R 2	y	2	u u	v	-n	Weight
生 机化 3	et make	eres erace i	LACTO VILL	128787 208	they let be	dt bnach	
	SASSE SEGME		THE JUST E	(C) (C) (C) (C)	CRL SSALE OF	A STATE OF THE STA	
1	1	+ .461	139	+ .786	÷ ⋅694	+ 0.080	3.0
2	1	+ .786	878	+ .439	396	- 0.410	1.0
3	1	+ .911	925	+ .019	057	+ 3.000	1.0
4	1	+ .881	519	303	+ .218	+ 1.100	2.0
5	1	+ .807	− ·130	499	+ .410	- 2.780	2.0
6 -	1	+ .446	+ .839	896	+ .840	+ 2.020	1.5
7	1	497	+ .255	962	+ 1.066	+ 3.830	1.0
8	1	- 1.064	- 1.003	261	+ .253	- 4.560	1.0
9	1	- 1.024	305	+ .299	395	+ 1.550	2.0
10	1	699	+ .727	+ .740	812	+ 0.920	1.5
11	1	268	+ .975	+ .933	919	- 0.110	1.5

in which,

$$x = \delta \gamma$$

$$y = \delta K$$

$$z = K \delta e$$

$$u = K \delta \omega$$

$$v = \frac{K \mu \delta T}{(1 - e^2)^{\frac{3}{2}}}$$

The resulting normal equations were:-

Solving these equations the corrections to the various elements were found to be:—

$$\delta \gamma = -.52$$

$$\delta K = \pm .00$$

$$\delta e = -.11$$

$$\delta \omega = -22^{\circ}.47$$

$$\delta T = -.496 \text{ days.}$$

There is one peculiarity about these corrections, viz., δe has the value $-\cdot 11$ whereas the preliminary value is only $\cdot 1$. This would seem to indicate that the orbit is circular and ω indeterminate. This will be further seen from the oscillations in the value of ω in the following operations.

New preliminary values were taken in which,

$$e = .05$$

 $\omega = 60^{\circ}$
 $K = 7.75$ km.
 $T = 2,418,247.607$ J. D.
 $\gamma = 15.06$ km.

It might be stated here that the value of Σpvv was reduced by the least squares solution above, the corrected e being taken as zero, from 74.7 to 73.2. With the new preliminary values, Σpvv was 72.5. It was apparent that any solution would fail to make much reduction in the value of Σpvv , the signs being well distributed in the residuals. However a least squares solution was made with the new preliminary values.

The observation equations formed from the new preliminary values, using the same substitutions as before, were as follows:—

TABLE VI.

OBSERVATION EQUATIONS FROM SECOND PRELIMINARY VALUES.

No.	x	y	z	u	v	-n	Weight.
				graph (A	· 医咖啡药	-1972	
1	1	+ .419	953	+ .876	865	- 1.120	3.0
2	1	+ .847	634	+ .525	564	- 0.800	1.0
3	1	+ 1.023	+ .392	+ .016	062	+ 3.010	1.0
4	1	+ .966	+ .946	382	+ .365	+ 0.890	2.0
5	1	+ .849	+ 1.000	609	+ .618	- 3.320	2.0
6	1	+ .359	+ .147	986	+ 1.038	+ 0.480	1.5
7	1	561	998	853	+ .844	+ 2.470	1.0
8	1	960	+ .183	213	+ .164	- 4.620	1.0
9	1	935	+ .882	+ .237	261	+ 1.370	2.0
10	1	707	+ .891	+ .638	618	- 0.160	1.5
11	1	352	+ .252	+ .883	837	- 1.640	1.5

Normal equations resulting therefrom were:-

Solving these, the corrections found were:-

$$\delta \gamma = + \cdot 34 \text{ km.}$$
 $\delta K = + \cdot 12 \text{ km.}$
 $\delta e = + \cdot 022$
 $\delta \omega = +81^{\circ} \cdot 80$
 $\delta T = +1 \cdot 511 \text{ days.}$

whence the new values of the elements:-

$$\gamma = 15 \cdot 40 \text{ km.}$$
 $K = 7 \cdot 87 \text{ km.}$
 $e = \cdot 072$
 $\omega = 141^{\circ} \cdot 80$
 $T = 2,418,249 \cdot 118 \text{ J. D.}$

It is rather strange that e and ω should have come back to so nearly the original values. Σpvv was reduced from 72.5 to 69.5. The agreement between computed and observation equation residuals was bad and a third solution was made for the sake of completion.

The new observation equations follow:-

TABLE VII.

OBSERVATION EQUATIONS (3)

No.	x	у	z	u Elektron	v	-n	Weight
1	1	+ .504	299	+ .783	718	050	3.0
2	1	+ .843	956	+ .410	393	450	1.0
3	1	+ .943	- ⋅789	042	002	+ 2.850	1.0
4	1 -	+ .885	224	382	+ .312	+ 0.720	2.0
5	1	+ .787	+ .256	− ·581	+ .512	- 3.360	2.0
6	1	+ .364	+ .999	− ·951	+ .937	+ 0.820	1.5
7	1	580	175	− ·896	+ .971	+ 2.600	1.0
8	1	- 1.048	926	− ·178	+ .151	-5.070	1.0
9	1	978	094	+ .343	415	+ 1.260	2.0
10	1	658	+ .814	+ .754	796	+ 0.650	1.5
11	1	236	+ .928	+ .939	919	- 0.400	1.5

The corresponding normal equations were:-

$$17 \cdot 5x + 2 \cdot 254y + 0 \cdot 245z + 1 \cdot 515u - 1 \cdot 776v - 1 \cdot 375 = 0$$

$$9 \cdot 430y - 1 \cdot 317z - 1 \cdot 663u + 1 \cdot 656v - 0 \cdot 489 = 0$$

$$6 \cdot 728z - 127u + 065v + 1 \cdot 652 = 0$$

$$7 \cdot 578u - 7 \cdot 394v + 1 \cdot 371 = 0$$

$$7 \cdot 262v - 1 \cdot 073 = 0$$

Corrections resulting from the solution of these equations were:-

 $\delta \gamma = \pm \cdot 00 \text{ km.}$ $\delta K = \pm \cdot 00 \text{ km.}$ $\delta e = -\cdot 038$ $\delta \omega = -42^{\circ} \cdot 62$ $\delta T = -\cdot 810 \text{ days.}$

Hence the finally accepted elements:-

P = 6.951 days

K = 7.87 km.

 $\gamma = 15.40$ km.

 $e = \cdot 034$

 $\omega = 99^{\circ} \cdot 18$

 $T = 2,418,248 \cdot 308$ J. D.

A summary follows showing results of the various solutions made in the determination. The probable errors are added in the last column.

SUMMARY.

	Element.	Preliminary.	After 1st Solution.	New Preliminary	After 2nd Solution.	'After 3rd . Solution.
p	Period	6.951 days	6.951 days	6.951 days	6.951 days	6.951 days
K	Half-Amplitude,	7.75 km.	7.75 km.	7.75 km.	7.87 km.	7.87 km. ±0.80
γ	Vel. of system	15.92 km.	15.40 km.	15.06 km.	15·40 km.	15.40 km. ±0.60
e	Eccentricity	-1	01	-05	-072	·034 ± ·114
	Angular distance of					
ω	Periastron from ascending node	150°	127° · 53	60°	141° ·80	99°·18±15°·49
T	Time of Periastron pas-					
		2,418,249·349 J.D.	248 · 853	247 · 607	249 - 118	249 · 308 ± 1 · 575
sin i	Major axis × sine of inclin					751,800 km.
	Prob. Error of Nor. Place, Wt. Unity			100		+2.3 km
	Σpvv	74.7	73.2	72.2	69.5	68.2

After the completion of the orbit determination from the calcium lines, the results from the broad lines were reviewed. The diffuseness of the lines, however, and consequent uncertainty of the measures from them made it quite impossible to secure any reliable information from them. Some information in regard to these lines would have been very interesting, but it seems that so far we must be content with the one fact which seems assured — the broad lines show a much higher positive velocity than the H and K lines.

Dominion Observatory, Ottawa, June 1912.

