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FOREWORD

This publication is a compilation of descriptions of field localities in southern Ontario that were visited
during the CANQUA/AMQUA 2018 (joint meeting of the Canadian and American Quaternary
Associations: Crossing borders in the Quaternary) post-conference field trip, August 11th to 13th, 2018.

The field trip focused on the geomorphic record of former ice stream tracts within the Laurentide Ice
Sheet (LIS) between Lake Simcoe and Lake Ontario, which have been resolved and mapped using high-
resolution DEM (digital elevation model) and LiDAR (light detection and ranging) imagery. This exer-
cise showed that deglaciation of the LIS in the eastern Great Lakes sector after ca. 14,400 yrs BP resulted
in the onset of several fast-flowing ice streams in southern Ontario and adjacent parts of New York State
(NYS). This event postdates the deposition of the Valley Heads Moraine at the southern Finger Lakes in
NYS, is coeval with the previously recognized St. Lawrence Ice Stream, and it records region-wide reor-
ganisation of flow within the ice sheet. Topographic confinement and the presence of large ice frontal
lakes that formed during the regional warming of the Bölling-Alleröd interstadial appear to have been
keys to the onset of fast ice flow. Megascale glacial lineations on rock and sediment indicate a common
erosional origin along ice stream corridors. These lineations are part of a bedform continuum with drum-
lins: ‘channeled drumlins’ are an intermediate morphotype recording lowering of high-standing asperities
(drumlins) to form a lower relief megalineated bed. The 160 km-long Oak Ridges Moraine (ORM) was
formed between the convergence of the Simcoe and Halton ice streams just after ca. 13,300 yrs BP, pre-
ceding the formation of glacial Lake Iroquois. New subsurface data from deep drilling of the ORM also
inspires a review of past models and supports the new paradigm of LIS deglacial history. For additional
context, a long list of supplemental references is also provided for the reader.

The original CANQUA/AMQUA field trip guidebook has undergone review and editing by the
Geological Survey of Canada. The authors would like to acknowledge all the reviewers, especially Alain
Plouffe who provided a final review of this entire guidebook. Elizabeth Ambrose is thanked for a thor-
ough grammatical review and the digital page layout. We trust this collection of field stops and an exam-
ination of the surficial geology of southern Ontario under a new palaeo-ice stream paradigm will be of
interest and use to active and future Quaternary and related activities in the glaciated terrain of southern
Ontario. This publication is also available as Ontario Geological Survey Open File 6348.

Nick Eyles (email: eyles@utsc.utoronto.ca), 
Riley P.M. Mulligan (email: riley.mulligan@ontario.ca), 
Roger C. Paulen (email: Roger.Paulen@canada.ca),
and
Shane Sookhan (email: ssookhan15@gmail.com) 



ADVANCES IN
PALEOGLACIOLOGY

The last 25 years has seen a profound change in
understanding of the paleoglaciology of Pleistocene
and pre-Pleistocene ice sheets. What were origi-
nally modelled as simple domes are now recog-
nized to have resulted from a more complex struc-
ture and topography with very fast-flowing (<10
km/yr) low-profile ‘ice streams’ based on the dis-
tinct geomorphology of their beds (megascale gla-
cial lineations: MSGLs; Clark, 1993; Stokes and
Clark, 2002a; King et al., 2009; LeHeron, 2018;
Fig. 1) that were inset within more sluggish flow-
ing parts of the ice sheet. The role of these ice
streams has been likened to arteries within organ-
isms transporting large volumes of ice, water and
sediment (e.g. Bennett, 2003; Dowdeswell et al.,
2016). 

In North America, the glacially megalineated
flow paths of almost 220 paleo-ice streams have
been identified across the beds of the former Late
Wisconsin Laurentide Ice Sheet (LIS: Fig. 2) and
the Cordilleran Ice Sheet (CIS: Fig. 3) (e.g. Clark,
1993; Patterson, 1997; Dredge, 2001; Mickelson
and Colgan, 2003; De Angelis and Kleman, 2005,
2007; Ross et al., 2006, 2009; Dyke, 2008; Evans
et al., 2008; MacLean et al., 2010, 2015, 2017;
Margold et al., 2015a,b, 2018; Dowdeswell et al.,
2016; Eyles and Doughty, 2016; Putkinen et al.,
2017; Shaw and Longva, 2017; Stokes, 2017;
Veillette et al., 2017; Sookhan et al., 2018a,b;
Eyles et al., 2018). Several ‘ice stream landsys-
tem’ models have been proposed to portray their
depositional and geomorphic record (e.g. Stokes
and Clark, 1999, 2002a,b; Evans et al., 2008,
2014; Stokes, 2011) and there is corresponding
interest in implications of the ice stream paradigm
for mineral exploration (e.g. Dyke and Morris,
1988; Ross et al., 2011; McMartin et al., 2015a,b,
2017, 2018; McMartin, 2017; Paulen et al., 2017).
A pressing priority is to complete a full inventory

of ice streams at different stages within the life
cycles of the LIS and CIS, and to identify path-
ways in areas of hard bed, especially within the
Canadian Shield where bare smooth rock may
have had an analogous role in promoting fast flow
that deforming sediments have within soft beds
(e.g. Krabbendam et al., 2016). The critical impor-
tance of high-resolution imagery is apparent in
mapping former ice stream beds.

OBJECTIVES AND OVERVIEW OF
THE FIELD TRIP ROUTE

This field trip will examine the hard (rock) and
soft (sediment) beds of several ice streams that
developed during deglaciation of the Ontario
Basin (Figs. 4, 5). Deep drilling, geophysical sur-
veys, field mapping, and integration with detailed
outcrop studies, especially by the Ontario
Geological Survey, has provided greater under-
standing of the thickness, distribution, and charac-
ter of glacial sediments and regional groundwater
resources in southern Ontario (Figs. 6–10). This
information has revealed much of the early history
and paleogeography of pre-Last Glacial Maximum
(LGM) ice margins and lake bodies recorded by
the infill of a major buried valley (Laurentian
Valley: Figs. 10–13).

In southern Ontario during the LGM, regional
ice-flow directions were generally southward and
southwestward (Fig. 14A); however, during
deglaciation, ice flow was strongly topographi-
cally controlled and more than 10 Late Wisconsin
paleo-ice streams can be identified across the Lake
Ontario Basin, extending as far south as the Finger
Lakes in New York State (Sookhan et al., 2018a;
Figs. 4, 14B). The onset of ice streaming is marked
by deposition of the Valley Heads Moraine in cen-
tral New York State at ca. 14,500 ybp (uncali-
brated age) along the margin of the Seneca-
Cayuga Ice Stream (Fig. 4). The largest of these
ice streams (the Ontario-Erie Ice Stream: OEIS)
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flowed southwest along the St. Lawrence Valley
from the southern Quebec sector of LIS, along the
axis of the present-day Lake Ontario Basin (Eyles
and Doughty, 2016; Sookhan et al., 2018b). This
was the mirror-image of a long-recognized ice
stream that flowed eastward from southern
Quebec along the confines of the St. Lawrence
Valley to terminate at a marine-based ice margin in
the Gulf of St. Lawrence (the St. Lawrence Ice
Stream of Occhietti et al., 2001, 2011; Ross et al.,
2006). In contrast to earlier phases of flow, these
large ice streams were controlled by topography
(Figs. 5, 10); cross-cutting bedforms are wide-
spread and indicate dynamic changes in ice-flow
direction and the importance of ‘flow switching’
(e.g. Ross et al., 2006). The presence of a former
ice stream flowing along the axis of the Ontario
Basin had been suggested by Taylor (1913) based
on the then contemporary identification of modern
ice streams in Arctic Canada (see Brookes, 2007).
Fast ice flow through parts of the New York State
Drumlin Field was initially proposed by White
(1985), Mullins et al. (1996) and Hart (1999), and
subsequently confirmed by Briner (2007) and
Hess and Briner (2009) on the basis of so-called
highly elongated ‘megaflutes’—now confirmed as
megascale glacial lineations (MSGL) by LiDAR-
based mapping (Sookhan et al., 2018a). Current
discussion focusses on the timing and duration of
fast ice flow in the life cycle of the LIS and the
nature of the triggers on streaming, e.g., deep ice-
frontal lakes and ‘topographically constrained’
flow during deglaciation (see Stokes et al., 2016;
Stokes, 2017).

This three-day field trip starts and finishes in
Ottawa, Ontario and extends as far south as
Niagara Falls, along the border between the USA
and Canada (Fig. 5). The ‘hard’ (rock) and ‘soft’
(sediment) beds of three lateglacial ice streams
(Ontario-Erie, Halton and Simcoe: Figs. 4, 15) are
well exposed and have been recently mapped
using high-resolution digital imagery. We will dis-
cuss formative models for drumlins and MSGLs
on rock and sediment, and speculate on their rela-
tionship to ice-flow velocity. In addition, the trip
will review recent developments in the under-
standing of the earlier (pre-Late Wisconsin) glacial
history of the region, which is being revealed by
drilling of deep buried valleys such as the
Laurentian Valley. The trip will also include refer-
ence to the geology and origin of the region’s

largest glacial landform, the Oak Ridges Moraine
(ORM), which is 160 km in length with an esti-
mated volume of 70 km3 and is now recognized to
have formed between converging ice streams
(Sookhan et al., 2018b; Figs. 4, 14B). 

On Saturday August 11th (and the morning of
Sunday August 12th), we will examine the geo-
morphology of the upstream hard bed of the OEIS
in the Kingston area, which consists primarily of
glacially streamlined Paleozoic carbonates and
clastics, and the drumlins and MSGLs on its
downstream soft bed, which can be seen near
Peterborough (Figs. 15, 16). The geomorphology
of these two subglacial terrain types is directly
analogous to the upstream and downstream beds
of Antarctic ice streams (e.g. Livingstone et al.,
2012; Fernandez et al., 2018).

The OEIS flowed southwest into the Ontario
Basin from source areas in southern Quebec and
moved across a low-relief arch of ca. 1 billion-
year-old Proterozoic metasediments and gneisses
of the Canadian Shield near the city of Kingston
(Frontenac Arch: Fig. 10). This separates the
overdeepened basin of Lake Ontario (246 m below
sea level at its deepest in the Rochester Basin) from
the narrow fault-controlled St. Lawrence Valley. As
was first recognized by Gilbert (1899), ice flowed
across the Frontenac Arch onto offlapping gently
dipping and commonly faulted Cambro-
Ordovician carbonate and sandstone strata (Fig.
17), which comprise a glacially streamlined hard
bed present over an extensive area that can be
traced from southern Ontario across the floor of
Lake Ontario into upper New York State (Figs. 18–
21). North-facing escarpments, which mark the
outcrop of more resistant carbonate units, are
extensively drumlinized by fast ice flow, with dip-
slopes marked by megagrooves akin to mega-scale
glacial lineations (Eyles, 2012; Eyles and Doughty,
2016; Krabbendam et al., 2016). The associated
flow of turbulent, sediment-laden subglacial melt-
waters within bedrock channels is also recorded on
the hard bed (e.g. Shaw, 1988; Pair, 1997).

The hard bed of OEIS is partially covered by
hummocky spreads of locally derived morainal
debris of carbonate breccias with large angular
blocks and slabs of limestone, reflecting extensive
subglacial plucking and quarrying of well jointed
carbonates from north-facing escarpments (Fig.
15). Historically, this material has been mapped as
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the so-called ‘Dummer Moraine’, however, it is
not a moraine sensu stricto but comprises sub-
glacially transported limestone rubble of varying
thicknesses. The chaotic hummocky topography is
suggestive of passive melt-out of englacial debris
but new imagery reveals some local organization
into distinct small moraines that may be ice frontal
or Rogen moraines; discrimination awaits a
detailed study. Representative exposures occur 
on Highway 41 en route from Kingston to
Peterborough, where we will move on to the soft
bed to examine ‘drift drumlins’ (i.e. those com-
posed of sediment) and accompanying (and
demonstrably transitional) megascale glacial lin-
eations of the Peterborough Drumlin Field (PDF:
Fig. 22). The PDF is in fact, part of a broad
regional belt of streamlined till that extends west
to the Niagara Escarpment and beyond, and south
into upper New York State (Figs. 6, 7), with an
estimated 20,000 individual bedforms that have
long been studied by glacial geologists (Fairchild,
1900, 1929; Sookhan et al., 2018a,b and cited ref-
erences therein). Recent study of these bedforms
reveals drumlins that are transitional to MSGLs,
indicating that they are part of a bedform contin-
uum (Figs. 22–24).

Sunday morning we will drive south from
Peterborough toward the ORM and discuss the
implications for its origin in the context of con-
verging ice streams that have been identified north
and south of the ORM by MSGLs (Figs. 14B, 25–
31). Those to the south record the fast flow of the
Halton Ice Stream (HIS) at about 13,000 ybp,
whereas those to the north were left by the south-
ward-flowing Simcoe Ice Stream (SIS). The ORM
accumulated rapidly (in several hundred years) as
a series of en echelon subaqueous ice-contact fans
in a narrow lacustrine basin trapped between the
HIS and the SIS. By analogy with modern ice
streams and their margins, fast ice flow is known
to move very large volumes of ice, water and sed-
iment, which is reflected in the formation of large
‘morainal banks’ at their margins. We will discuss
the origin of valleys cut into the streamlined bed of
the SIS south of Lake Simcoe, which channeled
water and sediment to the ORM (Figs. 32–33).

As we drive from Peterborough to Toronto there
is a marked increase in the thickness of glacial
sediments associated with a prominent buried
bedrock valley system (Laurentian Valley: Figs.

10, 11). These deposits locally reach thicknesses
of >250 m. Deep drilling and geophysical studies
of its infill are providing new insights into the pre-
Wisconsin history of southern Ontario and the ori-
gins of subsequent Wisconsin sediments that pre-
date the LGM and subsequent deglacial phase of
ice streaming (Figs. 11–13). The infill records a
long history of Illinoian glacial, Sangamon inter-
glacial and Wisconsin glacial environments, and
the corresponding changes in drainage from the
upper Great Lakes to the Ontario Basin (Mulligan
and Bajc, 2018). Early and Middle Wisconsin
glaciolacustrine sequences are exposed at the
Scarborough Bluffs along the Lake Ontario shore-
line (Fig. 13B). There, we will discuss the broader
regional ‘cross border’ significance of these units.
If time permits we will visit the Don Valley
Brickyard in Toronto where Sangamon and under-
lying Illinoian deposits (York Till) were discov-
ered by A.P. Coleman during quarrying operations
in the 1890s.

Leaving Toronto, we will drive west to the city
of Hamilton along the floor of lateglacial Lake
Iroquois to see the Niagara Escarpment en route to
Niagara Falls (Fig. 5) There we will explore the
origin and history of the Niagara Gorge (Figs. 34–
36) in the light of new work on the postglacial his-
tory of the Great Lakes. 

On a historical note and in keeping with the
theme of the joint CANQUA/AMQUA meeting
(‘Crossing Borders’), the region covered by the
field trip lies along the Canada-US border, which
is one of the longest settled in Canada. Southern
Ontario saw an influx of Loyalist settlers from 
the US at the time of the American War of
Independence (1775–1783) and was the site of
numerous conflicts during the War of 1812
between the British and their Canadian allies and
the USA, and later during cross-border raids by
the Fenian Brotherhood (1866–1871), which
strengthened political support for Canadian con-
federation in 1867.

DETAILED ITINERARY

Note: The sites described in this field guide can
be found on a website that describes more than
600 sites of geological interest across Ontario
(https://planetrocks.utsc.utoronto.ca/). This web-
site supports both Street-View and Google Maps. 
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Day 1: Saturday August 11th 

We will leave Ottawa at 12:30 pm on Saturday
August 11th to drive to the Kingston area via Perth.
We will examine the hard bed of the OEIS that
developed on the Shield and offlapping Paleozoics
before crossing onto the soft bed near
Peterborough, which is characterized by drumlins
and megalineations. We will stay in Peterborough
Saturday night. 

Much of the city of Ottawa is built on the floor
of the lateglacial (ca. 11,500 ybp) Champlain Sea,
which flooded the newly deglaciated and still
glacio-isostatically depressed St. Lawrence
Lowlands. This created good farmland but left
unstable ‘quick clays’ (Leda Clay) that is prone to
landsliding, resulting in evacuation of communi-
ties (e.g. the Lemieux slide: Brooks et al., 1994).
Ongoing work by the Geological Survey of
Canada indicates many large pre-historic land-
slides along the Ottawa Valley may have been trig-
gered by earthquakes. 

At the close of the last ice age (ca. 11,000 ybp),
the Ottawa River carried meltwaters from exten-
sive proglacial lakes (Agassiz, Algonquin) ponded
in the upper lake basins by the retreating margin of
the LIS. An exit for rivers, this part of Ontario has
also been a doorway from Montreal to the interior
of the continent coveted at various times by First
Nations, French, Americans and British, whose
conflicts have played a crucial role in Canadian
history. In November 1813, the decisive battle of
the War of 1812 (the ‘battle that saved Canada’)
was fought between the USA and Britain at
Crysler’s Farm near Morrisburg, along the shores
of the St. Lawrence River. It confounded those in
Washington, such as former President Thomas
Jefferson who remarked in August 1812 that the
conquest of Canada would be a “mere matter of
marching”.

Ottawa lies within the so-called Ottawa
Embayment, underlain by Paleozoic carbonates
and clastic rocks that accumulated within a com-
plex failed rift system of a triple junction within
the margin of Proterozoic North America
(Laurentia) as Rodinia broke up after 750 Ma.
Both the Ottawa and St. Lawrence rivers follow
failed rifts, similar to other large rivers world-
wide. This complex structure (and its Paleozoic
fill) was reactivated during the subsequent
breakup of Pangea and the nation’s capital is

underlain by numerous faults that define the
Ottawa-Bonnechere graben. The sharp northern
margin of the graben is best seen from the
Champlain Lookout in the Gatineau Hills and
faults are well exposed at Hogs Back Falls. The
area lies within the Western Quebec Seismic Zone
(Fig. 17B), where an ‘intraplate’ earthquake
occurs on average every five days; in 1732,
Montreal received significant damage when it was
shaken by an earthquake estimated to have had a
magnitude of 5.8. In 1935, the Temiskaming area,
at the western end of the rift, experienced an earth-
quake of magnitude 6.2, and is associated with
ongoing neotectonic activity; the provinces of
Ontario and Quebec, whose border lies along the
rift, are separating. The 1944, magnitude 5.6 tem-
blor at Cornwall, Ontario is Canada’s most costly
earthquake to date. These events are related to
deep-seated (>10 km depth) structures, such as ter-
rane boundaries in the Shield, undergoing ductile
reactivation, resulting in brittle failure of overly-
ing crust. 

There is a distinct association between kimber-
lite pipes and the graben system in the upper
(northern) part of the Ottawa Valley near New
Liskeard and Lake Timiskaming. Several faults
cross the floor of Lake Ontario into upper New
York State. Well defined southwest-trending shear
zones, faults and other less well known ‘linea-
ments’ occur at the margins of ‘terranes’ (or
‘domains’), as a result of repeated obduction of
crustal blocks during prolonged collision of ances-
tral North America and northern South America
(Amazonas craton) during the Mesoproterozoic ca.
1.5–1.0 Ga Grenville Orogeny. The most promi-
nent structure is a ~5 km-wide seismogenic shear
zone, the Central Metasedimentary Belt Boundary
Zone (CMBBZ: Fig. 3), between the Central
Gneiss Belt (CGB) to the west and the Central
Metasedimentary Belt (CMB). This structure lies
below the nuclear generating facility at Pickering
on the northern shore of Lake Ontario and crosses
the lake to pass under the Niagara Peninsula into
Pennsylvania. Reactivation of old deep structures,
and propagation through younger overlying
Paleozoic rocks, a common theme in southern
Ontario, exerted a strong control on the depth of
Quaternary glacial erosion; most lake basins and
buried valley networks are structurally controlled
(e.g. Doughty et al., 2014; Fig. 17). 
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Hard bed
Southward from Ottawa near Perth on Highway
10, the irregular surface of the Canadian Shield
rises from under the cover of Paleozoic strata and
glacial sediments of the Ottawa Embayment,
resulting in a dramatic change in landscape and
land use of exposed Shield, forests and lakes—
best described as ‘cottage country’. Glacially
scoured monadnock-like knobs of granite, gran-
ulite, gneiss and mylonites together with a wide
variety of much softer metasedimentary rocks,
such as marbles and metaturbidites of the
Precambrian (Mesoproterozoic) Grenville Province
are ubiquitous. Differential weathering and glacial
erosion of weaker strata, such as marble, has cre-
ated thousands of ice-scoured lake basins. 

At Westport on Highway 10, we will cross the
Rideau Canal that connects Ottawa and Kingston
(which was founded in 1673 as the French trading
post, Fort Frontenac, and was briefly the capital of
the Province of Upper Canada from 1841 to 1844).
Kingston is known as ‘the limestone city’ because
of the widespread use of Ordovician limestone as
a building material. The Rideau Canal, which was
completed in 1832, was constructed to be a safe
inland route from Lake Ontario to the Ottawa
River and then to Montreal if US forces invaded
across the St. Lawrence River. It is the longest
continuously operating canal system in North
America. It terminates in Ottawa, which became
the capital of the new nation of Canada in 1867.
The location was purposely sited at the boundary
of the Shield to the north and the Paleozoics to the
south, and at the boundary of the former colonies
of Upper and Lower Canada that were established
in 1791 to accommodate Loyalist refugees from
the USA. 

The so-called ‘Great Unconformity’ between
the Shield (gneisses of the Central Metasedimen-
tary Belt of the Grenville Province) and overlying
Paleozoic carbonates (Ordovician Shadow Lake
Formation) can be seen at numerous sites around
Kingston, where the buried Shield slowly rises
eastward to be exposed as the Frontenac Arch. The
best example can be seen in a road cut at Inverary
(Stop 1). The 600 Ma-old Holleford Meteorite
Impact Crater occurs on the Shield 15 km to the
northwest and is infilled with the Lower Paleozoic
Shadow Lake Formation. 

Southwestward-dipping Paleozoic strata display

multiple glacially streamlined escarpments that
form a stepped topography across an area of at
least 500 km2 and which are cut by fault-con-
trolled ‘through valleys’ occupied by lakes
(Camden, Varty, Odessa, Loughborough, Collins,
Cataraqui, etc.). These valleys separate drumlin-
ized interfluves of varying width, from bullet-
shaped upglacier noses that are repeated down dip
on other escarpments on the limestone plains
(Figs. 16–21). The through valleys and lakes seen
on the field trip are representative, albeit on a
small scale, of the many large lakes found along
the margins of the Shield in Canada (Great Slave,
Great Bear, etc.) and record enhanced glacial ero-
sion of offlapping Paleozoic strata by ice stream-
ing off the Shield. Large erratics of Proterozoic
gneiss can been seen scattered across the lime-
stone plains (Stop 2).

Meltwater-cut scours (‘flutes’, ‘scallops’ and
potholes) are a common feature on ‘hard beds’
where recharge of subglacial meltwater into the
bed was limited. An abandoned quarry along
Wilton Creek (Stop 3) exposes erosional scours
cut in limestone along the floor of a bedrock valley
in the megagrooved limestone plain of the Middle
Ordovician Bobcaygeon Formation. The former
quarry consists of a series of bedrock steps that
reflect alternations of limestone and shale within
the Ordovician Bobcaygeon Formation. The site
lies on the northern margin of a large flow set of
megagrooves that were cut into the limestone and
that extend for 15 km from Highway 401 to the
northern end of Odessa Lake. Straight ‘spindle-
shaped’, curved and braided flutes (erosional scal-
lops) with sharply defined rims occur in large
numbers in conjunction with striations. These sub-
glacial fluvially cut forms are of some significance
as they were used by Shaw (1988) and Gilbert and
Shaw (1994) to develop a model of regionally
extensive catastrophic subglacial sheet floods (but
see Pair, 1997). 

Note: The site at Stop 3 is on gated private
land and permission must be obtained from the
owner to enter the site.

A road cut on Highway 6 north of Odessa (Stop
4) provides a cross-section through a mega-
grooved limestone plain that is underlain by the
Middle Ordovician Bobcaygeon Formation (Fig.
19A). The grooved plain is bounded to the north
by an escarpment that shows numerous ‘con-



N. Eyles, R.P.M. Mulligan, R.C. Paulen, and S. Sookhan

6

joined’ rock drumlins. This is the northern end of
a 15 km-long flow set of megagrooved limestone
plains that extends from Loughborough Lake
through Odessa Lake to Wilton Creek. The
grooved and drumlinized plain extends into New
York State (Figs. 18–21). See Eyles and Doughty
(2016), Krabbendam et al. (2016), and Newton et
al. (2018) for recent descriptions of bedrock mega-
grooves and their relationship to fast ice flow.

The southwest flow direction of the OEIS dur-
ing deglaciation reflects the important control the
deep bedrock basin (now occupied by Lake
Ontario) had on ice flow. During deglaciation
around 13,000 ybp when the western part of the
Ontario Basin was ice free, part of the ice mass
occupying the remainder of the basin surged
northwestward toward the Niagara Escarpment as
the Halton Ice Stream (HIS). An exposed surface
of Bobcaygeon limestone south of Highway 401 at
the end of Shane Street (Fig. 19B: Stop 5) shows
several sets of crossing striations on glacially
grooved surfaces, reflecting complex flow switch-
ing. 

Note: The site at Stop 5 is on gated private
land and permission must be obtained from the
owner to enter.

Large volumes of bouldery limestone rubble
(a.k.a. ‘Dummer Moraine’: Fig. 15) were plucked
from the flanks and fronts of drumlinized inter-
fluves along the escarpment of the Shadow Lake
and overlying Gull River formations. Highway 41,
between Grieves Corners and Roblindale Station,
exposes representative facies of the Dummer
Moraine (Stop 6). The railway track immediately
to the north follows low ground along the Salmon
River fault. The outcrop lies on the footwall block,
which can be traced southwest across the floor of
Lake Ontario into New York State. The same
plucking process occurred widely across the hard
bed, generating a very large flux of coarse debris
downglacier. Subglacial mixing of this debris with
overridden fine-grained glaciolacustrine sediment
was a very effective till-generating mechanism
that resulted in the typical carbonate-rich tills of
southern Ontario and the dilution of crystalline
lithologies derived from the Shield.

Tracts of Dummer Moraine were a major obsta-
cle to mid-nineteenth century European settlers
faced with the prospect of ‘farming rocks’ on the
limestone plains south of the Shield (popularly

known as ‘the land in between’). Today, it is a
strangely attractive landscape of bare limestone
plain: hummocks of bouldery rubble with large
slabs of limestone, farms that have gone back to
bush, lakes and forest, with the odd small patch of
glacial sediment that can be grazed. One of
Canada’s most acclaimed poets, A. Purdy (1918–
2000) (known as the ‘Voice of the Land’), who
was born in Wooler, just north of Trenton, wrote
about the area in his most famous poem, The
Country North of Belleville, contrasting the “fat
south” of rich farms and deep soils with the “coun-
try of our defeat” and the many hills that “pick-
nicking glaciers have left strewn with centuries’
rubble”.

Soft bed
As we drive west from Kingston along Highway
401, Paleozoic strata are progressively buried by
glacial sediments that comprise the ‘soft bed’ of
the OEIS, HIS and SIS (Fig. 4). As noted by
Gravenor (1957) and Eyles and Doughty (2016),
the margin between the two is very irregular and is
marked by closely juxtaposed rock drumlins
carved into Paleozoic carbonates of the underlying
‘hard bed’ and ‘drift drumlins’ (sediment-cored);
this relationship was used by Gravenor (1957) to
argue that both types were erosional in origin, an
idea supported by much prior work elsewhere in
drumlin fields (see Eyles et al., 2016 for a review). 

Highways 1 and 14 will take us north from
Highway 401 to Highway 7 where we will drive
west through the community of Marmora, which
has a long history of mining (iron, talc) Proterozoic
metasediments along the southern edge of the
Canadian Shield. Ontario’s first gold mine (the
Richardson Mine) opened (briefly) in 1866.
Paleozoic limestones exposed in road cuts imme-
diately west of Marmora contain thin (~10 cm)
bentonite layers from unknown volcanoes dated at
ca. 447 Ma, marking the onset of the Taconic
Orogeny when the African plate began to collide
against eastern North America (to create Pangea).
On Highway 7 west of the community of
Havelock, the landscape changes once again with
the appearance of large farms accompanying
thickening of the glacial sediment cover along the
eastern edge of the Peterborough Drumlin Field.
Highway 7 crosses a large esker system at
Norwood, which originates on the hard bed to the
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north. Ongoing work shows the widespread pres-
ence of MSGLs among drumlins, which is an
emerging theme in the international literature, as
‘drumlin’ fields are increasingly re-examined and
re-mapped using new high-resolution imagery. 

Peterborough Drumlin Field
Drilling and observation of quarry exposures and
road cuts shows that the ‘drift’ drumlins around
Peterborough are composed of a wide variety of
sediments; including poorly sorted, coarse-
grained, ice-contact glaciofluvial sediments and
fine-grained glaciolacustrine facies. These often
account for the entire volume of individual drum-
lins that lack any surficial till drape (Maclachlan
2011; Maclachlan and Eyles, 2013; Marich, 2016),
confirming that the drumlin form cross-cuts and
that drumlinization was genetically unrelated to
underlying sediments (Gravenor, 1957; cf. Sharpe,
1987). The importance of erosion in the formation
of drumlins (and the common presence of coarse-
grained sediment in their cores) conflicts with the
proposed theory that drumlins form as wave-like
‘bumps’ that grow upward from the bed as a result
of deformation of soft till (i.e. the ‘instability the-
ory’ of Stokes et al., 2013). 

Many drumlin cores show a dense and very
coarse-grained till rich in angular carbonate
debris, akin to Dummer facies, mixed with out-
wash. This unit thickens to the south to a maxi-
mum of ~70 m near Lake Ontario, where it is
mapped as Northern Till (and locally as
Newmarket Till). Geophysical, outcrop, and core
data show that the Northern Till is an accretionary
till sheet composed of distinct beds reflecting
‘incremental aggradation’ of deforming subglacial
debris (Boyce and Eyles, 2000; Evans and
Hiemstra, 2005). Quarrying of large volumes of
carbonate debris from the hard bed, the presence
of large ice frontal lakes, and the overriding and
remobilization of fine facies were important fac-
tors in generating thick till. We will see outcrops at
Peterborough of what can be called ‘immature’
Northern Till and discuss till-forming mecha-
nisms. 

The Peterborough area shows numerous exam-
ples of large northeast/southwest-oriented drum-
lins that are ‘grooved’, ‘bisected’ or ‘channeled’ to
form more elongate bedforms and MSGLs
(defined as having an elongation ratio of

length/width of >10). Many have a comet-like
appearance with distinct tails that are, in places,
oriented oblique to the original drumlin form,
pointing to multiple phases of ice flow.
‘Channeled’ bedform morphologies, which were
first identified in New York State by Fairchild
(1900), are very common and have been mapped
at Peterborough as ‘complex drumlins’ (Crozier,
1975). They are a recurring feature of drumlin
fields in general and provide strong evidence that
drumlins and MSGLs are transitional within a sub-
glacial bedform continuum (see also Barchyn et
al., 2016; Fig. 22). The transition points to the key
role of subglacial erosion in reducing the height of
bed asperities (drumlins) formed under relatively
low-velocity steady-state ice flows, to reduce fric-
tion and create a ‘low drag’ bed of MSGLs under
streaming ice (Sookhan et al., 2018a). The same
grooves and ridges occur on fault traces (from
micro to macro at sizes comparable to that of sub-
glacial forms), at the base of large landslides and
debris flows, on man-made surfaces undergoing
frictional wear, and notably in the biological
realm; they indicate a commonality of processes
and form. This is the subject of the science of ‘tri-
bology’, which recognizes the erosive role of ‘a
third body’ composed of eroded debris between
two surfaces undergoing wear. A thin deforming
till layer immediately below the ice base is in
effect a third body (what Eyles et al. (2016) term
an ‘erodent layer’) capable of shaping underlying
non-deforming sediments into streamlined residu-
als.

Figure 22A can be used as a basis for an
extended self-guided tour of the principal sub-
glacial bedform types in the Peterborough
Drumlin Field. A good starting point is the Coffee
Time store at the intersection of Highway 7
(Trans-Canada) and Highway 34 (Heritage Line) -
Highway 28. Drive north on Highway 28 and turn
left (west) on Old Norwood Road for a splendid
view of a drumlin on the left (south), about 750 m
from Highway 28. Proceed west, crossing the rail-
way track, and drive through narrow ridges that
are the tails of a large ‘comet-like’ drumlin (loca-
tion A). Note the well developed MSGL ridge at
location B. Cross over Providence Line and con-
tinue to Drummond Line; turn right and drive
north to Division Road and take a right (east). In
about 1 km, the road crosses the summit of a large
drumlin with a great view over the drumlin field.
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Note the high plateau area on the skyline to the
southeast; these are higher elevation parts of the
field underlain by thick antecedent sediments into
which drumlins have been carved; most of the
drumlin field occurs at lower elevation having
been lowered by subglacial erosion. In general, the
most elongated bedforms occur at the lowest ele-
vation, the least elongated on the higher parts.
Bedrock is close to the surface over large areas
between drumlins, likely resulting from the com-
plete removal of sediment, exposing successively
larger areas of the hard bed below. 

Continue east on Division, cross Highway 28,
turn left (north) on 5th Line, and immediately on
the right is a remarkable view of paired drumlins,
apparently carved from an initially larger drumlin
bedform (location C). Continue north on 5th Line
to turn right (east) onto Highway 8. At Douro 4th
Line - Jermyn Line turn right (south) to return to
Highway 7. Note an excellent example of ‘chan-
neled’ drumlin ridges that can be seen 1 km north
of Highway 7. 

Urban development and construction in
Peterborough has exposed temporary outcrops
through MSGLs; these show a thin (~1.5 m) sur-
face drape of a clast- and boulder-rich till, which is
possibly a preserved erodent layer (e.g. location
D). Other drumlins lack surface till drape and are
composed entirely of antecedent sediment, com-
monly glaciolacustrine and proglacial outwash
facies.

From Coffee Time Donuts at the intersection of
highways 28, 34, and 7, turn left (south) drive 3
km on Highway 34 (Heritage Line). Turn left
(east) onto Esson Line and follow this gravel road
back to Highway 7, noting numerous examples of
bisected drumlins. Turn right (east )on Highway 7
and proceed to Villiers Line, turn right and drive
south for 3 km and turn left (east) on Elmhirst
Road, where more channeled drumlins can be
seen, especially at the intersection of Elmhirst
Road and Villiers Line. Turn right (south) on
Villiers Line to Highway 2. Turn right (west) and
proceed across the Indian River to Highway 34
and right (north) back to Highway 7, noting the
many examples of channeled drumlins en route. 

We will stay in Peterborough Saturday night.
The city is located on the Trent-Severn Canal that
connects Trenton on Lake Ontario to Port Severn
on Georgian Bay; the first lock was built in 1833

and the entire system took 87 years to complete. It
was a financial disaster (until the advent of recre-
ational boating in the 1950s) but the hydraulically
operated lift lock at Peterborough is an engineer-
ing marvel not to be missed. 

Day 2: SUNDAY August 12th

On Sunday morning we will drive south from
Peterborough into the northern part of the Greater
Toronto Area to cross the ORM deposited between
the Simcoe and Halton ice streams (Figs. 14B, 25,
26). The ORM is the largest glacial landform in
southern Ontario and sits on a broad high on the
Late Wisconsin subglacial bed, composed of
bedrock in the west and thick pre-Late Wisconsin
sediments in the central and eastern parts, stretch-
ing from the Niagara Escarpment in the west to the
Trenton area, some 160 km to the east. Along its
length, the ORM occurs as 4 distinct 12–20 km-
wide beds that are separated by much thinner (3–5
km-wide) zones (the ‘wedges’ of Barnett et al.,
1998; Fig. 25). These are large fan-delta com-
plexes, which are composed of stacked cross-cut-
ting successions of sand, gravel, silt, and diamict
facies, which were deposited subaqueously in a
complex depocentre trapped between the Simcoe
and Halton ice streams. Most of the water was fed
across the bed of the Simcoe Ice Stream (Figs. 32,
33). Some 70 km3 of sediment was likely
deposited in 1000 years if not less (Gilbert, 1997),
which underscores the importance of ice streams
in moving large volumes of ice, water and sedi-
ment to their margins. 

Streamlined bed of the Simcoe Ice
Stream north of the Oak Ridges Moraine
We will stop near the town of Greenbank on Marsh
Hill Road (Stop 8), just north of the Oak Ridges
Moraine, to examine the broader glacial landscape
of streamlined bedforms and valleys on the bed of
the Simcoe Ice Stream (Figs. 25–27, 32–34). This
entire landscape has been previously attributed to
subglacial meltwater erosion by one or more cata-
strophic sheet floods that is thought to have flowed
across the entire region, from southern Ontario
into New York State, lifting the LIS from its bed
(Sharpe et al., 2013, 2018; see End Note below).
Valleys have long axes oriented NE–SW and
NNW–SE, and fed meltwaters and sediment under
and from the SIS to the evolving ORM depocentre
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trapped against the northwest-flowing Halton Ice
Stream. Some are >7 km wide and the largest,
such as that occupied by Holland Marsh, are >200
m deep and >30 km long, and display highly vary-
ing widths along their lengths. We will discuss the
characteristics of these complex valleys as estab-
lished by analysis of geophysical data, including
land-based (Pugin et al., 2018) and waterborne
(Mulligan, 2018) seismic reflection surveys and
surficial mapping and drilling (Mulligan and Bajc,
2012, 2018; Bajc et al., 2015; Mulligan, 2017a,b,c,
2018; Mulligan et al., 2018a,b). Collectively, these
data point to multiple episodes of cutting and fill-
ing rather than a single flood event. Mulligan et al.
(2018a) identify the importance of valley cutting
by subglacial meltwater discharge(s) in combina-
tion with piping from pressurized confined
aquifers and direct glacial erosion below the
Simcoe Ice Stream, similar to other modern and
Pleistocene subglacial valleys cut into thick
groundwater-bearing sediments and bedrock (e.g.
Bjornsson, 1996; Janszen et al., 2012). 

Streamlined bed of the Halton Ice Stream
south of the Oak Ridges Moraine
We will drive over the crest of the ORM noting the
characteristic high-relief hummocky topography
created by the melting of ice trapped and buried
below sediment deposited in the water body
between the SIS and HIS. On the northern flank of
the ORM, abandoned lateglacial lake shoreline
features occur at consistent elevations (300 masl
near Newmarket, 320 masl near Uxbridge, up to
360 masl east of Lake Scugog; Chapman, 1985;
Barnett et al., 1998; Mulligan et al., 2015) and
record the development of lakes impounded
between the retreating margins of the SIS and HIS
(Sookhan et al., 2018b). HIS records short-lived
‘flow switching’ of part of the northern margin of
OEIS during final deglaciation, which left a thin
spatially discontinuous and variable deposit called
the Halton Till. The megalineated bed of the HIS
is exposed from Lake Ontario north to the Oak
Ridges Moraine and the northward-trending forms
are very clearly visible in the Scarborough-
Oshawa area where numerous exposures through
MSGLs have become available as a result of the
construction of Highway 407 and rapid urbaniza-
tion (Figs. 28–31; Stops 9, 10). 

New mapping confirms the presence of a large
recessional moraine consisting of low-relief hum-
mocky till (the Scarborough Moraine of Taylor,
1913) that marks a pause in the recession of the
HIS and the advection of subglacial debris to the
margin by fast flow (Fig. 28). The moraine marks
the outer limit of the flow sets of MSGLs on the
bed of the HIS. Several stops near the Metro
Toronto Zoo, adjacent to the Rouge National
Urban Park, will allow discussion of their origin
and geology. Outcrop and geophysical data indi-
cates MSGLs are erosional in origin and cut across
a wide range of sediments, including LGM
Northern Till. Much of the northern part of the
Toronto urban area has been built across MSGLs
left by HIS. These characteristic landforms can
still be recognized in urbanized areas, notably
along hydro corridors and along roads that run
west-east, perpendicular to ice flow direction, e.g.,
Sheppard Avenue east of Markham Road just
north of Highway 401.

Scarborough Bluffs and the infill of the
Laurentian Valley
Leaving the Toronto Zoo we will drive south,
crossing the shoreline bluff of former glacial Lake
Iroquois to stop along the Lake Ontario shoreline
at Scarborough Bluffs (Stop 11). In the nearby
Don Valley Brickyard, we will briefly view Early
and Mid-Wisconsin glaciolacustrine sequences
(Fig. 13B) that immediately postdate the last inter-
glacial facies. Well studied lakeshore exposures,
up to 100 m high (most of which have now been
lost to urban development designed to prevent ero-
sion), record the complex fluctuation in depth and
extent of deep (<100 m) very large ice frontal
lakes across the Ontario-Erie basins as the LIS
grew in volume and entered the Great Lakes
basins. Discussion has hitherto focused on the ori-
gin(s) of pebbly silty-clays (‘diamicts’) interbed-
ded with rhythmically laminated silty clays (tills
versus subaqueous rain-out and debris flows) and
the corresponding geographic positions of the LIS
margin prior to maximum regional expansion
sometime after 30,000 ybp when the area was
completely overrun (Northern Till). There is
agreement that the succession records ice marginal
sedimentation in a very deep evolving water body
(see summary in Eyles et al., 2005; Mulligan and
Bajc, 2018). The succession includes muddy deep-
water diamict facies that contain in situ crus-
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taceans (ostracods) whose changing isotopic com-
position has been used as a chemostratigraphic
tool that records successive influxes of O16-rich
meltwaters from an expanding ice sheet (Schwarcz
and Eyles, 1991). Diamict facies are interbedded
with shallow-water fan-delta and shoreface sedi-
ments of the Thorncliffe Formation with abundant
ice-rafted debris in hummocky and swaley cross-
stratified sands deposited by large storm waves
and cut by iceberg scours.

The stop at Scarborough Bluffs will provide an
opportunity to review what is known of the pre-
Late Wisconsin chronology and paleogeography
of southern Ontario in the light of new information
from more than 100 continuously cored boreholes
through the fill of the Laurentian Valley drilled by
the Ontario Geological Survey, many of which
penetrate the entire sediment succession (Figs. 10–
13). New subsurface data provide insights into the
paleogeography of the eastern Great Lakes region
at various times prior to the Late Wisconsin
(Mulligan and Bajc, 2018) and a better under-
standing of regional groundwater systems hosted
within the Laurentian Valley and overlying ORM
(see also Gerber et al. (2018) and Sharpe et al.
(2018)).

Don Valley Brickyard 
If time/traffic permits, we will visit the Don Valley
Brickyard (Stop 12) near downtown Toronto,
which was in operation between 1893 and 1985
using shale from the Late Ordovician Georgian
Bay Formation; although now badly slumped,
penultimate glaciation (Illinoian) and last inter-
glacial (Sangamon) sediments were formerly
exposed above bedrock on the Brickyard’s ‘North
Slope’. An exhibit details work by A.P. Coleman
in the Brickyard in the late 1800s, which was
instrumental in demonstrating multiple ice ages
(later predicted by several astronomical theorists
—most notably Milankovitch) at a time when
many believed that only a single ice age occurred.
The succession is noteworthy among North
American interglacial sites because it retains a
paleontological record of climate cooling toward
the end of the last interglacial (but which is still
inadequately dated) at a time of dramatic increases
in the depth of an ancestral Lake Ontario, and
which includes the remains (teeth) of the giant
beaver Castoroides ohioensis. A complete skeleton

is on display in the Field Museum of Natural
History in Chicago. 

Coleman, who produced the first Quaternary
geological map of Toronto in 1912, is also remem-
bered for his discovery of the Gowganda Forma-
tion glacial deposits (now established at 2.4 Ga
ybp) in Northern Ontario, his mapping of the
nickel deposits of the Sudbury Basin, his survey-
ing and exploration of the eastern Canadian
Rockies, and the 1926 book Ice Ages; Recent and
Ancient. 

We will leave Toronto by driving west along the
Lake Ontario shoreline, along the Queen Elizabeth
Way (QEW) toward Hamilton. As we leave down-
town Toronto the original Fort York can be seen to
the north. In 1793, it was constructed on the then
shoreline of Lake Ontario by Upper Canada’s first
governor, John Graves Simcoe; it is now inland as
a consequence of extensive landfilling. The garri-
son was attacked and overrun by American troops
in April 1813; many US soldiers, including the
commanding officer Zebulon Pike (after whom
Pikes Peak is named in Colorado), were killed by
flying glacial erratic boulders when the main mag-
azine was set afire. In 1834, the community that
developed around the fort was named Toronto.

Hamilton
The QEW was the first intercity divided highway
in North America when it opened in 1937 and was
based on the German autobahn. Part of the original
highway is preserved near Hamilton as York
Boulevard; it was built atop the raised spit
(Burlington Heights; Stop 13) of glacial Lake
Iroquois (Fig. 36), which now separates Hamilton
Harbour from the waters of Cootes Paradise,
which drained at ca. 12,000 ybp. This area lies
above the buried Dundas Valley, which is cut into
the face of the Niagara Escarpment (Fig. 37). Data
from drilling suggests the glacial fill is >195 m
thick; the bedrock surface within the re-entrant
valley is more than 120 m below sea level (Burt,
2017). 

We will visit the Jolley Cut in the Sam
Lawrence Park at Hamilton (Stop 14), which
affords a fine view of the modern-day Dundas
Valley and Niagara Escarpment, with its hard cap
rock of Silurian Lockport Dolostone. Eastward
from Hamilton, the QEW follows the shoreline of
glacial Lake Iroquois, at the foot of the Niagara
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Escarpment. The route crosses the Welland Canal
near the city of St. Catherines, which lies above
another major buried valley that may have for-
merly carried drainage from the Erie Basin into the
Ontario Basin (e.g. Gao, 2011; Fig. 10). It has
been postulated that the Laurentian Valley and the
Dundas Valley may be part of an ancestral St.
Lawrence system pre-dating the Great Lakes
(Spencer, 1890). 

Immediately south of the crest of the Niagara
Escarpment lies a series of low-relief to hum-
mocky moraines left by the retreating Halton Ice
Stream (HIS). The southernmost limit of the HIS
in the Erie Basin is marked by the Hamburg
Moraine near Buffalo, New York and a series of
small recessional moraines (Unnamed moraine,
Mohawk Bay, Wainfleet, Crystal Beach, Fort Erie,
Niagara Falls, Vinemount) that stretch from the
Dundas Valley in the west into New York State in
the east the position of which were strongly influ-
enced by the position of the Niagara Escarpment
(Feenstra, 1981; Burt and Mulligan, 2017). Large
exposures in bedrock quarries indicate that the
sedimentology of the Vinemount Moraine is dom-
inated by glaciotectonized and subglacially
reworked glaciolacustrine silty clays (e.g.
Menzies, 2001; Maclachlan and Eyles, 2011), sug-
gesting subglacial reworking of ice-marginal sedi-
ments by the HIS, similar to that seen in numerous
outcrops of the Halton Till across the south slope
of the Oak Ridges Moraine. Below the Niagara
Escarpment, the retreating HIS left a series of
moraines cored by fine-grained pebble-poor till,
such as the Trafalgar and Scarborough moraines,
which record submarginal aggradation of fine-
grained deforming till being advected toward the
ice margin (see Eyles et al., 2010). Analogous sed-
iment associations have recently been observed in
dozens of continuously cored boreholes, which
penetrate the surficial and buried segments of the
moraines that stretch across the Niagara Peninsula,
(Burt, 2016, 2017). Subglacial remolding and
reworking of fine-grained sediment in ice mar-
ginal waterbodies aided fast ice flow throughout
the eastern Great Lakes sector of the Laurentide
Ice Sheet. Flow sets of bedrock megagrooves
along escarpments and MSGLs poking through
glaciolacustrine sediment in the central and west-
ern part of the Niagara Peninsula record the fast
ice-flow velocities of the HIS and OEIS (see
Sookhan et al., 2018b; Fig. 14B). Large glaciola-

custrine kame deltas, such as that at Fonthill,
which was deposited at the mouth of the 12 Mile
re-entrant valley, and that of the Niagara Falls
Moraine (Fig. 37), were deposited downflow of re-
entrant valleys cut into the face of the Escarpment
as the HIS retreated eastward in glacial Lake
Whittlesey.

We will stay in Niagara Falls on Sunday night
(August 12th).

Day 3: MONDAY August 13th

Niagara Falls and Gorge 
After breakfast on Monday, we will stop at the site
of the Battle of Lundy’s Lane (1814), along the
crest of the Niagara Falls Moraine (Stop 15). This
battle ended in stalemate and brought the war of
1812–1815 to a conclusion. We will then stop at
the Niagara Falls overlook, at the intersection of
Livingstone Street and Fallsview Boulevard,
which affords a fine view of the Horseshoe Falls
and American Falls (Stop 16), for a discussion of
recession rates and processes (Figs. 38–40). We
will then drive north along the Niagara Parkway,
which Sir Winston Churchill called “the prettiest
Sunday afternoon drive in the world” during a visit
in 1943. We will discuss the geological history of
the Niagara Falls and Gorge, stopping at the
Whirlpool (Stop 17), the Sir Adam Beck Power
Plant (opened in 1957; Stop 18), and Queenston
Heights on the crest of the Niagara Escarpment
(Stop 19). The last of which was the site of the
October 1812 battle—the first major battle of the
War of 1812—that repelled US invaders but
resulted in the loss of British Army officer, Major
General Sir Isaac Brock; he is memorialized by the
Brock Monument nearby. 

The Niagara Gorge is where the modern view of
the great age of planet Earth was first recognized,
opening the way to exploration of ‘deep time’ by
geologists. The length of postglacial time was first
broadly established by Charles Lyell (in 1841),
and later by James Hall, on the basis of the
assumed age of the Gorge, which was established
from the average annual retreat rate of the
Horseshoe Falls in response to undercutting of the
Lockport Dolostone cap rock (Fig. 38). The rate of
retreat (then approximately 1 m/yr) was compared
to the length of the Gorge, measured from the ini-
tial postglacial location of Niagara Falls some 12
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Figure 3. Ice streams within the Cordilleran Ice Sheet immediately prior to deglaciation (from Eyles et al., 2018).
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Figure 14. A) Inferred paleoglaciological setting of the field trip area at the time of the last glacial maximum. 
B) Converging ice streams (SIS: Simcoe Ice Stream and HIS: Halton Ice Stream) during the final retreat of the
Laurentide Ice Sheet sometime shortly before 13,000 ybp. The Oak Ridges Moraine was deposited in a narrow
glaciolacustrine depocentre trapped between the two ice streams and dammed to the west by the Niagara
Escarpment (see Fig. 26).
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Figure 18. A) Megagrooved and drumlinized limestone surfaces north and west of Kingston (see location on Figs.
4 and 15) with locations of Stops 1, 4 (Fig. 19A) and 5 (Fig. 19B). Canadian Shield occurs to the north. B) Mega-
grooved limestone surface near Stop 5 (Fig. 19B).

A

B
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Figure 19. A) Image from Google
Earth showing the megagrooved
limestone surface and associated
glacially sculpted escarpments in
an area of Highway 6 near Odessa.
Highway 6 cuts across grooves
(Stop 4). B) Google Earth image of
the megagrooved limestone surface
at the east end of Shane Street,
Odessa (Stop 5). See Figure 18A
for locations.
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B
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Figure 22. A) (opposite) Topography of the Peterborough Drumlin Field just east of Peterborough showing the
locations A to D mentioned in the text (see Figs. 4 and 15 for location). Higher standing drumlinized ‘uplands’ west
of the Trent River are cored by antecedent sediment. East of the river, the overall topography is much reduced and
residual outliers of the upland surface show consistent downglacier changes from large drumlins into ‘channeled
drumlins’ to megascale glacial lineations (MSGLs) that record erosional lowering of the bed. The same overall
downglacier bedform evolution is shown in the beds of ice streams in New York State (see Fig. 23) and suggests
headward propagation of fast flow and accompanying erosion of the drumlinized bed into MSGLs (see Fig. 24).
B) (above) Suggested evolution of MSGLs from a large drumlin uplands (DU) as a result of progressive bed low-
ering and smoothing to produce a low-drag surface that enables fast flow.

B



N. Eyles, R.P.M. Mulligan, R.C. Paulen, and S. Sookhan

34

H
ig

h

Lo
w

H
ig

h

Lo
w

E
le

v
a

ti
o

n

Ic
e
 F

lo
w

V
e
lo

c
it

y

1 2 3 F
ig

u
re

 2
4
.

H
yp

ot
he

ti
ca

l 
m

od
el

 s
ho

w
in

g 
th

e 
‘r

et
ro

-
gr

ad
e 

di
ss

ec
ti

on
’ 

of
 

a 
dr

um
li

ni
ze

d 
be

d 
to

 
fo

rm
m

eg
as

ca
le

 
gl

ac
ia

l 
li

ne
at

io
ns

 
(M

S
G

L
s)

 
to

 
re

du
ce

ba
sa

l 
sh

ea
r 

an
d 

fa
ci

li
ta

te
 u

pg
la

ci
er

 p
ro

pa
ga

tio
n

of
fa

st
 f

lo
w

 f
ro

m
 t

he
 g

la
ci

er
 m

ar
gi

n,
 g

iv
in

g 
ri

se
 t

o 
a

do
w

ng
la

ci
er

 g
eo

m
or

ph
ic

 c
on

tin
uu

m
fr

om
 

hi
gh

-
st

an
di

ng
, 

li
tt

le
-m

od
if

ie
d 

dr
um

li
n 

be
df

or
m

s 
in

 a
re

as
of

 th
ic

ke
r 

an
te

ce
de

nt
 s

ed
im

en
t t

o 
in

te
rm

ed
ia

te
 f

or
m

s
(‘

ch
an

ne
le

d 
dr

um
li

ns
’)

, 
to

 t
he

 f
in

al
 s

ta
ge

 o
f 

M
S

G
L

s
in

 a
re

as
 o

f 
th

in
 d

ri
ft

 c
ov

er
 (

or
 r

oc
k)

. 
In

 t
hi

s 
m

od
el

dr
um

li
ns

 a
nd

 M
S

G
L

s 
fo

rm
 a

 b
ed

fo
rm

 c
on

ti
nu

um
th

at
 i

s 
co

nt
ro

ll
ed

 b
y 

ch
an

gi
ng

 i
ce

 v
el

oc
it

y.
 

F
ig

u
re

 2
3
.
A

 p
or

ti
on

 o
f 

th
e 

be
d 

of
 t

he
 C

ay
ug

a 
Ic

e 
S

tr
ea

m
 (

se
e

F
ig

. 4
 f

or
 l

oc
at

io
n)

 i
n 

up
pe

r 
N

ew
Y

or
k 

S
ta

te
 s

ho
w

in
g 

tr
an

si
ti

on
s 

fr
om

 d
ru

m
li

ns
 t

hr
ou

gh
 ‘

di
ss

ec
te

d 
dr

um
li

ns
’ 

to
 m

eg
as

ca
le

 g
la

ci
al

li
ne

at
io

ns
, w

hi
ch

 c
an

 a
ls

o 
be

 s
ee

n 
in

 P
et

er
bo

ro
ug

h 
(F

ig
. 2

2)
 a

s 
fi

rs
t 

no
te

d 
by

 F
ai

rc
hi

ld
 (

19
00

).



Subglacial bedforms in southern Ontario—from flood paths to flow sets: CANQU/AMQUA 2018 post-conference field trip

35

Figure 25. Greatly simplified glacial geology of southern Ontario showing the principal till plains and moraines
(based on various authors, principally Barnett, 1992). Note the prominent bulges in width of the Oak Ridges
Moraine forming large fan-deltas, which are referred to as the Albion (1), Uxbridge (2), Pontypool (3) and Rice
Lake (4) ‘wedges’ by Barnett et al. (1998). These were deposited in an elongate highly dynamic ice-contact lake
basin trapped between two ice streams (Fig. 26). Paleocurrents are dominantly to the west.



N. Eyles, R.P.M. Mulligan, R.C. Paulen, and S. Sookhan

36

Oak Ridges Moraine

78°40'0"W79°0'0"W79°20'0"W79°40'0"W
44

°4
0'

0"
N

44
°2

0'
0"

N
44

°0
'0

"N
43

°4
0'

0"
N

0 5 10
km

F

L a k e  S i m c o e

L a k e  O n t a r i o

Flow Lines
Drumlins
MSGLs
Possible Ice Margin
Positions

Barrie

Oshawa

Aurora

Toronto

Ori l l ia

Vaughan

Markham

Uxbridge

Brampton

Etobicoke

Pickering

Newmarket

North York

Mississauga

Bowmanvil le

Scarborough

SCARBOROUGH

BLU
FFS

LAKE 

SCUGOG

STOP 8

STOP 9 

STOP 10

STOP 11
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Figure 27. Megascale glacial lineations and drumlins of the soft bed of the Simcoe Ice Stream on the north flank
of the Oak Ridges Moraine, northeast of Lake Simcoe.
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Figure 29. Flow set of the megascale glacial lineations immediately north of Lake Ontario that resulted from
northward flow of the Halton Ice Stream from the Lake Ontario basin. 
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Figure 30. Megascale glacial lineations (MSGLs) on the bed of the Halton Ice Stream on the south flank of the
Oak Ridges Moraine, between Highways 407 and 401. Highway construction has provided long exposures through
MSGLs, indicating they are erosional and cut across pre-existing till and sediments. 
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Figure 31. Flow set of megascale glacial lineations (MSGLs) in Scarborough near the Toronto Zoo. Locations A,
B, and C are sub-stops at individual MSGLs.
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Figure 32 opposite. A) Regional valley networks cut into the drumlinized and megascale glacially lineated till bed
north of the Oak Ridges Moraine (ORM), with central axes with drainage directions depicted by black arrows
(Mulligan et al., 2018a). The large inset box shows the location of channels on the bed of the Simcoe Ice Stream
at the southern end of Lake Simcoe (see Fig. 33). B) Digital elevation model of the bed of the Simcoe Ice Stream
(SIS) showing the location of Stop 8. C) Hillshaded relief map of the same area. Drumlins within or along the
lower flanks of valleys are highlighted with an ‘x’ at their stoss (NE) end. Postglacial features, such as shorelines,
outwash channels and groundwater piping scars, are shown in yellow; note the glaciofluvial outwash system that
originates at a recessional moraine (solid black line) in the south within the ORM, and terminates as a large fan
delta (shown as a circled R) north of the ORM (Roseville Delta; Barnett et al., 1998). This likely indicates earlier
northward retreat of the Simcoe Ice Stream compared to the Halton Ice Stream (HIS) south of the ORM (see Figs.
14B, 26).
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Figure 36. Late stages of deglaciation during the early Holocene; low lake levels persisted until after 7,000 ybp
during the Hypsithermal (principally after Donnelly et al. (2005) and McCarthy et al. (2012a)).
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Figure 37. Generalized stratigraphic cross-section through the Niagara Peninsula (after Middleton et al., 2009). 
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km downstream at Queenston Heights, at a time
when the early Niagara River overspilled north
from glacial Lake Tonawanda ponded in the Erie
Basin. Recent work suggests a much more com-
plex history due to the changing facies and thick-
ness (and thus erodibility) of the cap rock (the
Lockport Dolostone) along the length of the
Niagara Gorge. There have also been dramatic
changes in postglacial flow of the Niagara River,
including a long episode of low to non-existent
flows from the upper Great Lakes during the
Hypsithermal (McCarthy et al., 2012a,b). This was
a time of much reduced lake levels in the Great
Lakes (e.g. Lake Stanley low stand in the Huron
Basin and the equivalent Lake Hough in Georgian
Bay). There is also the possibility that parts of the
‘modern’ Upper Great Gorge results from re-exca-
vation of a relict pre-Wisconsin gorge (St. David’s
Gorge: Fig. 37). Drilling of the infill of still-buried
sections of the relict gorge provides some of the
few dates available from southern Ontario, which
constrains the age of the Late Wisconsin maxi-
mum of LIS to sometime after 22.8 14C ybp
(Hobson and Terasmae, 1969). The gorge was
likely in use for an extended period of time, and a
recent borehole intersected thick sequences of
organic-bearing sand and muds dated to 29,763 to
32,003 14C ybp (Burt, 2017). The relict gorge can
be seen along the walls of the present-day gorge at
the Whirlpool, where the Niagara River abruptly
widens and changes circulation according to the
changing volume of water that is removed
upstream of Niagara Falls for hydroelectricity gen-
eration; this varies from day (minimum) to the
night hours (maximum). The modern rate of
retreat is consequently much reduced.

Canada’s first parliament was held at Niagara-
on-the-Lake (1792–1796) and the various portages
that circumvent Niagara Falls have long been of
strategic importance. The Escarpment and
Peninsula separates Ontario and Erie basins; the
Welland Canal connects the two and is part of the
2,300 km-long St. Lawrence Seaway (‘Highway
H2O’) that opened in 1959. Construction of the
Seaway, which links the Atlantic Ocean to the
western end of Lake Superior and can accommo-
date large ocean-going ‘Great Lakers’, had to deal
with highly overconsolidated tills (often requiring
explosives), large boulders and cost overruns that
were the result of unforeseen paleo channels caus-
ing variations in the depth to bedrock. This gave

impetus to the study of till-forming processes and
the geotechnical properties of glacial sediments.

Development of the Falls ushered in hydroelec-
tric power generation and the birth of the US
chemical industry, as well as the ill-fated attempt
to build a diversion canal (Love Canal) by A.T.
Love on the US side of the Falls (which he aban-
doned in 1907). The canal was later infilled with
chemical wastes impacting the health of local res-
idents in the late 1970s and giving rise to the infa-
mous Love Canal episode that resulted in the cre-
ation of the Environmental Protection Agency in
the US and the development of the Superfund Act
to assess and clean up contaminated sites. This
event prompted study of the lateglacial glaciola-
custrine clays that cover Paleozoics on both sides
of the international border at the eastern end of
Lake Erie and the rapid fracture flow of contami-
nants; understanding of which led to changes to
the design of landfills. There are some 250 chem-
ical waste sites in the Niagara-Buffalo area and
many are associated with plumes of contaminated
groundwater. The biggest dump, Hyde Park, con-
tains the largest known volume of dioxin any-
where in the world.

Along the Niagara Peninsula in Ontario several
prominent north-facing bedrock benches (the out-
crop of resistant sandstones) along the face of the
Niagara Escarpment, together with the shoreline
and floor of the former glacial Lake Iroquois,
enjoy a less extreme winter climate and host
numerous vineyards. The best known product is
ice wine, an intensely sweet dessert wine produced
from frozen grapes. Simon Haynes of Brock
University has written extensively on the geologi-
cal controls on terroirs and potential sub-appella-
tions of Niagara Peninsula wines (see Middleton et
al., 2009). 

Leaving Queenston Heights, we will then drive
back to Ottawa via the QEW, and highways 407,
401 and 416, arriving late evening. If time permits
we will make a brief stop along bluffs on the Lake
Ontario shoreline at Courtice Road where MSGLs,
formed on the bed of the Halton Ice Stream, are
cored by Northern Till (Stop 20: Fig. 5). 

END NOTE

Research on the geomorphic and geological record
of paleo-ice streams in southern Ontario and New
York State is expanding rapidly. The ‘ice stream
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paradigm’ now provides a firm uniformitarian
approach to understanding the deglacial strati-
graphic and geomorphic record of the region based
on modern ice stream analogs (e.g. Antarctica,
Greenland) and closely aligns with work on the
LIS elsewhere in Canada by many university
groups, the Ontario Geological Survey and the
Geological Survey of Canada (e.g. Margold et al.,
2015a,b; Stokes et al., 2016; Stokes, 2017). This
represents a significant departure from previous
work in southern Ontario that, following the lead
of Shaw (1989) and Shaw and Gilbert (1990),
emphasized the supremacy of regionally extensive
catastrophic subglacial meltwater floods in shap-
ing the geomorphology and geology of much of
Canada. Hitherto, virtually all glacial landforms in
southern Ontario have been ascribed to subglacial
sheet floods that supposedly cut thousands of
drumlins (20,000 at the last count) on sediment
and rock, not only in Canada but also downstream
in adjacent parts of the US as far south as the
Finger Lakes, along with a notional regional net-
work of tunnel valleys as flood waters subsided
and became channeled (see Sharpe et al., 2013). 

For a wealth of substantive discussions refuting
the entire concept of colossal subglacial meltwater
floods on the trans-continental scale envisaged by
Shaw and Gilbert (1990) and Sharpe et al. (2013),
the interested reader is referred to Braun et al.
(2003), Fullerton et al. (2003, 2004), Clarke et al.
(2005), Evans et al. (2006, 2008), Benn and Evans
(2006, 2010, p. 274 et seq.), Ó Cofaigh et al.
(2010), Eyles (2012), Kehew et al. (2012, 2017),
Stumpf et al. (2014), Livingstone and Clark
(2016), and Eyles et al. (2018). Recent investiga-
tions of the Peterborough Drumlin Field by the
Ontario Geological Survey (Marich, 2016) found
no evidence of the subglacial flood invoked by
Sharpe (1987), echoing the conclusions of Eyles
and Doughty (2016). Superficial mapping and
deep drilling of the infills of ‘tunnel valleys’ cut
instantaneously during waning megafloods reveals
a protracted history of cutting and filling
(Mulligan et al., 2018a). Ross et al. (2006) mapped
the glacial geology of the eastern outlet area of the
Ontario Basin along the St. Lawrence Valley in the
vicinity of Montreal and showed that it is readily
explained as the product of an ice stream rather
than megaflooding, agreeing with previous work
by the Geological Survey of Canada on the impor-
tance of topographically constrained fast ice flow

from the southern Quebec sector of the LIS during
deglaciation (e.g. Parent and Occhietti, 1999;
Occhietti et al., 2001, 2011; Margold et al.,
2015a,b; Sookhan et al., 2018a,b). 

Fullerton et al. (2003) wrote in regard to postu-
lated subglacial megafloods crossing from western
Canada into what is now the US (Shaw et al.,
1996) that “morphologic and sedimentologic evi-
dence of a supercolossal, catastrophic, subglacial
megaflood has eluded us”, which is an apt summa-
tion of the situation along the entire Canada/USA
border.

Three dimensional conceptual models (a.k.a.
‘facies models’) arise from detailed site studies
aimed at understanding the origins and stratigra-
phy of glaciogenic sediments. These models, in
turn, provide an essential framework for construc-
tion and associated geoengineering projects, in
addition to hydrogeological studies and ground-
water management across the rapidly urbanizing
Greater Toronto Area, where the population is
expected to double to 10 million by 2030. This
field trip is particularly timely given the recent
publication of several articles that employ regional
subglacial megaflooding as an appropriate founda-
tion on which to base assessments of the area’s
glacial geology and to guide groundwater manage-
ment models (e.g. Sharpe and Russell, 2016;
Sharpe et al., 2018). These claims together with
the interpretations of subsurface data on which
they are based, are entirely at odds with the con-
clusions of much of the prior and ongoing work on
sediment architecture in southern Ontario by the
Ontario Geological Survey and university
researchers and also run counter to modern
approaches elsewhere in North America and
Europe that emphasize the importance of ice
stream dynamics. Identification of many paleo-ice
streams in southern Ontario (Fig. 4) and adjacent
parts of New York State confirms and amplifies
the importance of fast ice flow within the eastern
Great Lakes sector of the Laurentide Ice Sheet as
proposed by Briner (2007) and Margold et al.
(2015a,b, 2018) (Fig. 2). The hard and soft beds of
the paleo-ice streams so far identified in this part
of the Laurentide Ice Sheet are moreover directly
analogous to those of modern Antarctic ice
streams (see Fernandez et al., 2018).

In conclusion, the unambiguous and readily ver-
ifiable presence of flow sets of megascale glacial
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lineations around the Ontario Basin on both hard
and soft beds in both Canada and the USA is the
hallmark of dynamic, fast-flowing ice streams and
underscores the importance of re-mapping glacial
landforms using new high-resolution digital
imagery. Meltwaters played a ubiquitous role in
landscape development, as they do in modern-day
glacial environments (where glacial outburst
floods are common), but there is no evidence of
gigantic regional subglacial sheet floods that sup-
posedly lifted the LIS from its bed across the
entire eastern Great Lakes region and cut drumlins
and regional networks of tunnel valleys in south-
ern Canada and northern USA. 
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FIELD TRIP ROUTE

Day 1: SATURDAY August 11th

Leaving Ottawa from Carleton University Campus at 12:30 pm, drive north on Bronson Avenue to
Highway 417, west to Highway 7 exit and to Perth. Turn left (southeast) in Perth onto Wilson Street West
(Highway #43) then left (northeast) onto North Street and then turn right (southeast) onto Gore Street
(Highway 1). Turn right (southwest) onto Highway 10 (Scotch Line) to Westport.

Continue on Highway 10 (Perth Road) south to Inverary and turn left (east) onto Highway 12
(Moreland Dixon Road) and continue 1 km east and stop at unconformity outcrop (44.38292, -76.4685:
Stop 1).

Turn around and return to Highway 10; turn left (southwest) and stop at a large Proterozoic metased-
imentary erratic in the parking lot of the Northway Home Hardware at Davidson Side Road (3832 Perth
Road, Inverary; 44.377, -76.4786: Stop 2).

Continue south on Highway 10 and then west on Highway 401 to exit #593; turn right (north) on
Highway 4. Turn right (east) on Maple Road and proceed 1.5 km to where the road crosses Wilton Creek
and stop at the meltwater cut features on the south side of the valley (Private property: 44.28578, -76.773:
Stop 3)

Proceed eastward on Maple Road to Highway 6 and turn south and proceed 250 m, stopping at road-
side outcrop through megagrooves (44.3060, -76.727: Stop 4).

Proceed south on Highway 6 over Highway 401 and turn left (east) on Highway #2; at 500 m turn left
onto Shane Street. Drive to the end of the road. Large grooves can be seen cut into the limestone with
several sets of crossing striations (on gated private property to the south: 44.28392, -76.6843: Stop 5).

Return to Highway 401 to Napanee (exit #579) and proceed north on Highway 41, stopping at the
roadside outcrops of rubbly Dummer Moraine facies, just north of Grieves Corners (44.3658, -77.0156:
Stop 6).

Return to 401, drive west to exit #538, and drive north on Wallbridge-Loyalist Road (Highway 1) to
Highway 14 toward Stirling and continue north to Marmora. Turn left (west) onto Highway 7 and drive
toward Peterborough; turn north on Highway 28 at Coffee Time donuts and the Peterborough Drumlin
Field (44.3170, -78.198: Stop 7)

Turn right on Division Street to Douro 5th Line to view channeled a drumlin.
Return to Highway 48 and continue south to Old Norwood and drive west to Television Road and new

construction site on east side of road immediately south of the junction. 
Return north on Television Road to Old Norwood Road and turn left to Ashburnham Drive and proceed

south to Lansdowne Street and turn right (east) and proceed to 4.1 km to the hotel, which is on right after
the Parkway.

Quality Inn, 1074 Lansdowne St, Peterborough, Ontario (telephone: 705-748-6801)

Day 2: SUNDAY August 12th

Turn right (west) from the motel and proceed along Lansdowne Street to Highway 7; turn left (south) to
Highway 115 and drive south to Highway 7A. and proceed west toward Port Perry.

At Highway 12 turn right (north) to and continue to Highway 47. Turn left (west) at the gas station and
continue to Marsh Hill Road and turn left. Stop to view the drumlinized till plain and channels in the fore-
ground and Oak Ridges Moraine on southern skyline (44.111, -79.044: Stop 8).

Proceed south on Marsh Hill Road to Scugog Line 8 and turn right (west) toward Reach Street. Turn
right (west) on Reach Street (Highway 8) and proceed to Lake Ridge Road (Highway 23) and turn left
(south) to Columbus Road turning left (east) and stop on dead-end road immediately on the right (south)
amid flow set of MSGLs (43.957, -79.019: Stop 9).
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Back to Lake Ridge Road, turn left (south) and continue past Highway 401 to Taunton Road (Highway
4), and turn right (west). Continue on Taunton Road, which becomes Steeles Avenue East to Beare Road
(43.852 -79.179) turning left (south). At Plug Hat Road turn right (west) amid flow set of MSGLs on the
bed of the Halton Ice Stream in area of the Toronto Zoo: Stop 10). 

Continue on Plug Hat Road, which ends at Meadowvale Road and continue south past Highway 401
to Highway 2. Turn right (west) on Kingston Road/Highway 2. 

Either: continue on Highway 2 to Brimley Road South and turn left (south) toward Lake Ontario and
the Scarborough Bluffs outcrops of Early and Middle Wisconsin sedimentary rocks that are visible on
shoreline (43.702, -79.239: Stop 11). Return to Highway 2, turn left (west) and proceed onto Gardner
Expressway, which continues as Queen Elizabeth Way (QEW) west toward Hamilton.

Or: Proceed to Don Valley Brickyard (43.684, -79.366: Stop 12) by continuing on Highway 2 and
turn right (west) onto Danforth Road. Just past the Don Valley Parkway, Danforth Road becomes Bloor
Street East. Turn right (north) onto Bayview Avenue to the Brickyard. After which proceed south and
onto the Gardiner Expressway west either via Bayview Avenue or the Don Valley Parkway. Continue on
the Queen Elizabeth Way (QEW) and Highway 403 to Hamilton.

Either: Take Highway 403 westward to Hamilton and turn left onto Main Street West (Highway 8)
downtown to James Street. Turn right (south) onto James Street and proceed to St. Joseph’s Drive turning
left and follow Arkledun Avenue up through Jolley Cut to Concession Street. Turn right on Concession
Street to Sam Lawrence Park (43.244, -79.862) where there is a view of the Niagara Escarpment (Stop
13).

Or: From QEW turn north on Highway 6 up Escarpment. Exit and turn right on Old York Road and
then immediately turn left (south) onto Plains Road West. Continue southeast and turn right (southwest)
onto York Boulevard and continue to Burlington Heights (43.272, -79.886: Stop 14) and drive along
raised spit of glacial Lake Iroquois. Continue south on York Boulevard to Dundurn Castle and turn right
on Dundurn Street North. Continue through the intersection with King Street West, where Dundurn Street
North becomes Dundurn Street South to Main Street West to John Street South. Turn right (south) onto
John Street South and follow to Arkledun Avenue. Turn left (east) onto Arkledun Ave and this through
Jolley Cut, above, to Sam Lawrence Park (43.244, -79.862: Stop 13).

Turn left (east) onto Concession Street and proceed to Upper Wentworth Street and turn right (south).
At the Lincoln Alexander Parkway, turning left (east) and continue to the QEW towards Niagara Falls.

Take QEW east to Casablanca Boulevard (Highway 10) south to Casablanca Service Station. Return
to QEW eastbound to General Brock Parkway (Highway 405), Proceed east on Highway 405 to Stanley
Avenue exit. Turn left (north) on Stanley Avenue to Portage Road and continue eastward to the round-
about at the Niagara Parkway (Highway 420) and follow the gorge south (upriver).

On the Niagara Parkway, continue south by turning right (west) onto Queen Street and proceed to the
end of the street. Turn left (south) onto Victoria Avenue. Proceed west by turning right on Centre Street.
The Days Inn & Suites is on the left hand side of the street. 

Days Inn & Suites, 5068 Centre Street, Niagara Falls, Ontario (telephone: 905-357-2550).

Day 3: MONDAY August 13th

Exiting the hotel, turn right (southeast) onto Center Street and turn right again (southwest) onto Victoria
Avenue. Continue as the street becomes Ferry Street and then Lundy’s Lane. Breakfast will be at the
Flying Saucer (6768 Lundy’s Lane at the corner of Corwin Ave and Lundy’s Lane). Return east along
Lundy’s Lane and stop if time permits on the crest of Niagara Falls Moraine and Battle of Lundy’s Lane
(43.089, -79.096: Stop 15). 
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Continue east on Lundy’s Lane, which becomes Ferry Street, to turn right (south) onto Stanley Avenue.
Drive south to turn left onto Livingstone Street and stop at the intersection with Fallsview Boulevard
(43.077, -79.082: Stop 16).

Proceed north along Fallsview Boulevard to turn right (east) on Murray Street and join Niagara
Parkway northwards down the Niagara Gorge.

Traveling north on the Niagara Parkway to the Whirlpool (43.123, -79.068: Stop 17), The Sir Adam
Beck Generating Station (43.142, -79.039: Stop 18), and The Niagara Escarpment overlook at Queenston
Heights (43.162, -79.050: Stop 19).

Continue northward on the Niagara Parkway and turn left (west) onto York Road (Highway 81).
Follow this to rejoin the QEW west to Toronto.

Drive north and east on the QEW and continue driving east on Highway 407. Exit at Highway 412,
and drive south to Highway 401. Continue east to Exit #425, Courtice Road. At the top of the exit ramp,
turn right (south) toward Lake Ontario to view the outcrops of Northern Till in cores of MSGLs from the
Halton Ice Stream (43.868, -78.759: Stop 20).

Return to Highway 401 and drive east to Highway 416, taking exit 721A north to Ottawa and return
to Carleton University.
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