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INTRODUCTION

As part of the Northwest Territories Protected Area
Strategy (PAS), several candidate areas, including
the Sambaa K’e (Trout Lake region), Ka’a’gee Tu
(Kakisa Lake region), and Lue Túé Sųlái (Jean
Marie River region), were assessed for their poten-
tial to host economic bedrock mineralization (Fig.
1; Watson, 2011a,b, 2013). Part of the evaluation
involved regional surficial till and stream sediment
sampling surveys, which were conducted during
the 2008, 2009, and 2012 field seasons (Watson,
2011a,b, 2013). Till samples from these surveys
yielded encouraging results, with many samples
containing high numbers of sphalerite, chalcopy-
rite, galena, and arsenopyrite grains, as well as
some kimberlite indicator minerals (Watson,
2011a,b, 2013). The focus of this report is the
picked base metal sulphide minerals (i.e. spha-
lerite, chalcopyrite, galena, and arsenopyrite) that
were recovered during this initial evaluation. The
data from these grains can assist in evaluating the
potential for long-distance transport of sulphide
grains from outside the immediate area (e.g. the
Pine Point Mississippi Valley-type (MVT) district)
and assist in evaluating the base metal mineral
potential of the region. Preliminary in situ sulphur
and lead isotopic analytical data of the sulphide

grains are reported herein and are compared with
previous studies. 

LOCATION AND 
REGIONAL SETTING

The study area is located south of the headwaters
of the Mackenzie River and extends from Hay
River in the east to Liard River in the west (Fig. 1).
Sampling was conducted over several field sea-
sons, with work in the 2008 field season focused
on NTS (National Topographic System) map
sheets 95A (Trout Lake), with smaller sections of
95H (Fort Simpson), 95B (Fort Liard), and 85D
(Kakisa River) (Fig. 2). Sampling during the 2009
field season was centred around NTS map sheet
85C (Tathlina Lake), with some sampling in 85D
and 85F (Falaise Lake) (Fig. 2). Samples collected
in 2012 were in NTS map sheet 95H. 

Physiographically, this region is part of the
Great Slave Plain and Alberta Plateau of the
Interior Plains (Bostock, 1970). The Great Slave
Plain contains abundant organic deposits and
numerous small lakes and ponds, reflecting the
poor drainage in the area due to the low relief
(150–200 m). Areas classified as the Alberta
Plateau occur in the southern portions of map
sheets 95A, 85D, and 85C and are characterized by
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ABSTRACT
This report presents analytical data from sphalerite, galena, chalcopyrite, and arsenopyrite grains recovered
during recent surficial sampling programs in the region southwest of the headwaters of the Mackenzie River,
Northwest Territories. Many samples were found to contain high numbers of sulphide mineral grains for
which there is no known local source. Lead and S isotopic determinations were conducted to evaluate if the
sulphide grains could have been transported from the nearest known source, the Pine Point Mississippi
Valley-type district, or whether the grains are sourced from yet-to-be-discovered bedrock mineralization.
Lead isotopic values from galena grains (207Pb/204Pb = 15.57 to 15.70; 206Pb/204Pb = 18.00 to 18.20) indi-
cate a more radiogenic source than the Pine Point district and are, therefore, likely to have been locally
sourced. Sulphur isotopic values from galena grains range from 0 to 27‰ δ34S, comparable to Pine Point
and other Mississippi Valley-type deposits globally, indicating that similar styles of mineralization may
occur in the region. Chalcopyrite δ34S values range from -22 to +28‰, indicating that the grains are sourced
from either sediment-hosted Cu or Manto-style mineralization. Arsenopyrite δ34S values indicate a sulphur
source similar to orogenic gold deposits near Yellowknife, Northwest Territories, and are likely derived from
the Canadian Shield, north of the study area.
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rolling hills and higher elevations (600–792 m). In
addition to the numerous small lakes and ponds,
several major lakes occur within the region,
including Trout Lake in map sheet 95A, and
Kakisa and Tathlina lakes in 85C. 

REGIONAL GEOLOGY

Basement rocks in the region consist of
Precambrian crystalline granite and gneiss. These
are overlain by undated, pre-Devonian sandstone
and clastic sedimentary rocks of the La Loche
Formation, which were derived from the basement
rocks (Meijer Drees, 1993; Gal, 2007). Overlying
the La Loche Formation are Lower Devonian
evaporite, shale, and dolostone (Meijer Drees,
1993; Gal, 2007). Middle Devonian rocks are pre-
dominantly platform carbonate, which locally
form a distinct unit called the Presqu’ile reef-like
barrier complex (Rhodes et al., 1984; Hannigan,
2006a). This barrier complex is formed by the Keg
River, Sulphur Point, Watt Mountain, and Slave

Point formations and is locally dolomitized, form-
ing the Presqu’ile dolomite, which is coarse-
grained and vuggy and hosts the Pine Point MVT
district to the east (Rhodes et al., 1984; Hannigan,
2006a; Gal, 2007). Upper Devonian rocks con-
formably overly Middle Devonian strata and are
composed of thick shale (up to 1.5 km), which are
locally pyritic and bituminous, and are interbed-
ded with reefal carbonate beds, especially in the
lowest formation (Muskwa Formation) of the
Upper Devonian sequence (Gal, 2007). The Upper
Devonian Fort Simpson Formation locally hosts
Manto-style Cu mineralization (Dudek, 1993;
Watson, 2011a).

Conformably overlying the Devonian strata are
Carboniferous limestone, shale, and sandstone,
which are unconformably overlain by thin chert of
the Permian Fantasque Formation. Shallow-dip-
ping Cretaceous rocks dominate the southern map
sheets (NTS 95A, 95B, and 85D; Fig. 2) and are
subdivided into upper and lower Cretaceous units
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Figure 1. Location map of the study area in southwestern Northwest Territories, south of the Mackenzie River and
east of the Liard River. Inset map shows the Canadian Shield (red), Western Canada Sedimentary Basin (yellow),
and the Canadian Cordillera (green) (modified from Oviatt et al., 2015). 
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(Gal, 2007). Upper Cretaceous units in the region
consist of interbedded conglomerate, sandstone,
siltstone, and shale of the Dunvegan Formation
and are restricted to highland regions northwest
and southeast of Trout Lake (Gal, 2007). Lower
Cretaceous units include the Fort St John Group
shale, siltstone, and sandstone with local conglom-
erate (Gal, 2007; Berdnaski, 2008). Where pres-
ent, Cretaceous units unconformably overly
Paleozoic strata (Gal, 2007).

Surficial material in the region consists of
muskeg, multiple tills, gravel, and sand, which is
locally up to 25 metres thick (Fulton, 1995;
Huntley et al., 2008). Several till units have been
identified in the region. The lower till is blue-grey
and clay-rich; it was either locally sourced or is an
advance deposit from the Late Wisconsin
Laurentide Ice Sheet (Huntley et al., 2008). An
outwash unit separates the lower till units from the
overlying, sandy, brown tills that represent lodg-
ment and ablation tills or deformation tills and
contain locally derived Devonian and Cretaceous
siliciclastic and carbonate clasts and exotic
igneous and metamorphic clasts, likely derived
from the Canadian Shield (Huntley et al., 2008).
Dominant ice flow during deglaciation in the Late
Wisconsin was to the southwest, as indicated by
numerous glacially streamlined features in the
region that extend towards the Rocky Mountains
and northeastern British Columbia (Huntley et al.,
2008). Eastern parts of the map area were inun-
dated by glacial Lake McConnell during deglacia-
tion, which winnowed and reworked tills into
glaciolacustrine littoral sediments (Lemmen,
1990).

PROTECTED AREA STRATEGY
SURVEY SAMPLES

Sulphide mineral samples were provided by the
Northwest Territories Geological Survey. Indicator
mineral analysis of samples collected under previ-
ous Protected Area Strategy surveys (Watson,
2011a,b, 2013) recovered numerous sand-sized
(0.25–2.0 mm) grains of sphalerite, galena, chal-
copyrite, and arsenopyrite. Indicator mineral
results reported here have been normalized to a 
25 kg table feed weight for all samples. The num-
ber of normalized grains of each mineral species
have been plotted on proportional circle diagrams
(Fig. 3–6). Data breaks were arbitrarily assigned to

control the large variations in the number spha-
lerite, galena, and chalcopyrite grains.

Sphalerite, which ranges in colour from red to
orange to black, occurs in 22 samples from the
Trout Lake region and in 35 samples from the
Kakisa region, with the highest counts being 183
and 334 grains, respectively (Fig. 3). Chalcopyrite
grains were picked from 133 samples from the
Trout Lake region, with the highest count at 31
grains, 28 samples from the Kakisa region, with
the highest count at 27 grains, and 2 samples from
the Jean Marie River region, with the highest
count at 30 grains (Fig. 4). Several of the samples
containing sphalerite also contain varying
amounts of galena, with the highest number of
grains (28) occurring in a sample from the Trout
Lake region (Fig. 5). Rare arsenopyrite grains
were recovered only in Trout Lake samples, with
the highest count being 3 grains (Fig. 6).

METHODS

Picked grains of sphalerite, arsenopyrite, chal-
copyrite, and galena were mounted in 25 mm
epoxy pucks and carbon coated prior to imaging
on a JEOL JSM 7100F field emission gun (FEG)
scanning electron microscope (SEM) equipped
with a Thermo energy dispersive spectrometer
(EDS) and a high-resolution silicon drift detector,
at the Department of Earth Science, Memorial
University of Newfoundland. Each grain was
imaged using a 15.0 kV beam in backscatter
(BED-C) and secondary electron (LED) mode. In
addition to SEM imaging, each grain was analyzed
at two points to determine the semi-quantitative
chemical composition of the mineral grain and to
ensure that the minerals were correctly identified
during the optical identification and indicator min-
eral picking stages. 

Epoxy mounted grains of sphalerite, galena,
chalcopyrite, and arsenopyrite were polished and
sputter coated with 300 Å of Au prior to analysis
by the Cameca IMS 4f secondary ion mass spec-
trometer (SIMS) at the MAF-IIC Microanalysis
Facility, Memorial University. Lead-isotope deter-
minations were conducted on 6 galena grains
(n=12) using a primary ion microbeam of 14 to 
16 nA of O-, accelerated through a nominal 10 keV
potential, and focused into an ~20 µm diameter
spot following the methods of Gill et al. (2015). 
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Sulphur-isotope determinations were carried out
on 6 galena grains (n=7), 18 chalcopyrite grains
(n=18), and 7 arsenopyrite grains (n=7) using a
primary ion microbeam of 350–1150 pA of Cs+,
accelerated by a 10 keV potential and focused into
a 5–15 μm diameter spot following the methods of
Brueckner et al. (2014). The Cs+ current depended
on the sulphide phase analyzed. To prevent con-
tamination of the polished surface, each spot was
first pre-sputtered for 120 s with a 25 μm square
raster. Negatively charged sputtered secondary
ions were accelerated into the mass spectrometer
using a potential of 4.5 keV. Sulphur isotope
results are reported using per mil (‰) notation. 

RESULTS

Lead isotope values for galena grains are listed in
Appendix A and plotted in Figure 7. Results are
plotted against the shale curve of Godwin and
Sinclair (1982), a Pb-isotope growth curve unique
to the Canadian Cordillera that was determined

from Pb-isotopic compositions of galena from
middle Proterozoic to Mississippian, sediment-
hosted Zn-Pb deposits in the Cordillera. This curve
is interpreted to reflect the upper continental
crustal composition of the Cordilleran basement
and western Laurentia. Several additional deposits
and occurrences were plotted for comparison,
including bedrock samples from the Pine Point
District (Cumming et al., 1990; Paradis et al.,
2006; Oviatt et al., 2015), and data for Pb-Zn
deposits in the Canadian Cordillera and the
Western Canada Sedimentary Basin (Godwin et
al., 1988; Paradis et al., 2006).

Six galena grains were analyzed with 2 spot
analyses per grain. Significant variations are
observed among the grains with 206Pb/204Pb ratios
ranging from 18.00 to 18.20 and 207Pb/204Pb
ratios ranging from 15.58 to 15.71, with analyses
clustering proximal to the shale curve, but with
greater variation than mineralized samples from
the Pine Point District (Fig. 7; Cumming et al.,
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Figure 7. Lead isotope bivariate plot of 206Pb/204Pb versus 207Pb/204Pb for galena grains from the Trout Lake
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exhalative (SEDEX) Pb-Zn deposits in Yukon and Mississippi Valley-type (MVT) deposits in northern British
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1990). The 206Pb/204Pb and 207Pb/204Pb ratios are
typical of Pb derived from evolved upper crustal
sources (e.g. Zartman and Doe, 1979; Zartman and
Haines, 1988; Kramers and Tolstikhin, 1997). The
distinctive array along an older isochron suggests
that the galena grains from this study were from
crustal sources but were likely older than the
galena grains from the Pine Point District, or the
fluids that formed galena grains in the region
tapped separate, older, more radiogenic Pb sources
compared to galena samples from Pine Point 
(Fig. 7; Cumming et al., 1990; Oviatt, 2013). The
206Pb/204Pb and 207Pb/204Pb ratios for grains in
this study and in samples from Pine Point plot
above and below the shale curve are indicating
that the Pb was derived from mixed, more radi-
ogenic sources (Fig. 7).

Sulphur isotope data for the galena, arsenopy-
rite, and chalcopyrite grains are presented in
Appendix B and plotted in Figures 8 to 10; sulphur
isotope data for the sphalerite grains will be pre-
sented in a subsequent report. Galena δ34S values
are plotted along with values from a number of
additional sources (Fig. 8): sphalerite in till sam-
ples from northwest Alberta (Paulen et al., 2011);
sphalerite from bedrock and till around pit O-28 at
Pine Point (Oviatt et al., 2015); pyrite, galena, and
sphalerite from the Prairie Creek MVT and quartz-

carbonate vein-hosted sulphide deposit (Paradis,
2007); sphalerite and galena from various MVT
deposits in northeastern British Columbia, includ-
ing Robb Lake, Mount Burden, and Nabesche
River (Macqueen and Thompson, 1978); and
galena from Manto-style Zn-Pb mineralization in
Peru (MacFarlane and Shimizu, 1991). Samples of
northwest Alberta (Paulen et al., 2011) and Pine
Point (Oviatt et al., 2015) till were selected due
their proximity to the Great Slave Lake Shear
Zone (Eaton and Hope, 2003) and because they are
known to contain some of the only significant
bedrock mineralization in the region. The Prairie
Creek MVT and vein-hosted sulphide deposits
were selected because of their proximity to the
study area and occurrence in the Cordillera, pro-
viding a good comparison for this study (Paradis,
2007), whereas MVT deposits and occurrences in
northeastern British Columbia were chosen
because they occur proximal to, and within the
Presqu’ile barrier (Macqueen and Thompson,
1978). Manto-style Zn-Pb deposits in Peru were
chosen because their mineralogy is similar to the
known Manto occurrences in the Fort Simpson
Formation (i.e. the presence of galena; MacFarlane
and Shimizu, 1991).

The δ34S values for chalcopyrite are plotted in
Figure 9 against values from the Kamoto and

In situ microanalytical S and Pb isotopic compositions of sulphide indicator minerals from surficial sediments in southwestern NWT
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Luiswishi sediment-hosted Cu deposits in Africa
(El Desouky et al., 2010), carbonate-hosted Cu-
bearing veins at the Blende deposit (Robinson and
Godwin, 1995), Manto-style chalcopyrite mineral-
ization in Peru (Ripley and Ohmoto, 1977), and
chalcopyrite from the Tom SEDEX deposit
(Gardner and Hutcheon, 1985). The δ34S values
from sediment-hosted Cu deposits in Africa were
used as representative values for sediment-hosted
Cu deposits globally, as no work on deposits of
this type has been done in the study area, and
because of the potential for similar styles of min-
eralization in the region (El Desouky et al., 2010).
Carbonate-hosted Cu-bearing veins of the Blende
deposit and Manto chalcopyrite mineralization in
Peru was selected because of their mineralogy; the
Tom SEDEX deposit was selected due to its occur-
rence in the Cordillera and the potential for
SEDEX mineralization in the study region (Ripley
and Ohmoto, 1977; Gardner and Hutcheon, 1985;
Robinson and Godwin, 1995).

Arsenopyrite δ34S values in Figure 10 are plot-
ted against arsenopyrite δ34S values from selected
Canadian orogenic gold deposits (Giant Mine and
Negus system; Wanless et al., 1960) and from sed-

imentary-hosted gold deposits (Meguma deposits;
Kontak and Smith, 1989). δ34S values from
deposits occurring in the Yellowknife region were
chosen because they occur up-ice from the sam-
ples collected in this study and they may be an
analogue for expected δ34S values from similar
deposits up-ice of the region (Wanless et al.,
1960). The sedimentary-rock-hosted Meguma
gold deposits were selected because they contain
arsenopyrite (Kontak and Smith, 1989).

The SIMS δ34S values for galenas are consis-
tent with values for sulphides (sphalerite and
galena) from the Pine Point deposits, ranging from
0.73 to 26.87‰ (Fig. 8; Oviatt et al., 2015) and are
generally more positive than δ34S values of galena
from Manto-style deposits (MacFarlane and
Shimizu, 1991). Chalcopyrite has a wide range of
δ34S values (-20.64 to 28.33‰), similar to that for
sediment-hosted Cu deposits in Africa as well as
chalcopyrite from Manto deposits and associated
disseminated sulphides in Peru (Fig. 9; Ripley 
and Ohmoto, 1977; El Desouky et al., 2010).
Arsenopyrite δ34S values range from -2‰ to 2‰,
similar to values for igneous rocks (e.g. δ34S = 0
±3‰; Ohmoto and Rye, 1979; Ohmoto and

R.D. King, S.J. Piercey, and R.C. Paulen
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Goldhaber, 1997). Such δ34S values for arsenopy-
rite could indicate that sulphur in the arsenopyrite
in the study area was derived from igneous base-
ment rocks. However, it may also indicate that the
arsenopyrite originated from orogenic veins, as
arsenopyrite is a common accessory mineral in
orogenic gold deposits and has similar sulphur iso-
tope signatures to that of deposits near
Yellowknife (Fig. 10; Wanless et al., 1960; Marini
et al., 2011).

POTENTIAL EXPLORATION

TARGETS

Very little follow-up work has been undertaken in
the region to identify potential bedrock sources of
sulphide grains in surficial materials. However,
based on the similarity of the δ34S values for
galena grains from the study area to those from
MVT deposits, the galena in the study area likely
originated from MVT-style mineralization up-ice
from where the samples were collected (e.g. Oviatt
et al., 2015). Previous work in the Pine Point
region by Oviatt (2013) showed that 700 m down-
ice from mineralization, till samples generally
contain tens of grains of galena, which is a reflec-
tion of the hardness of galena (2.5–3) and its brittle
nature due to its cubic structure. Furthermore,
galena rarely survives beyond transport distances
of 1 km because of its susceptibility to disintegra-

tion during glacial transport. By analogy, it is
assumed that the galena grains in the present study
are locally sourced (i.e. likely less than 1 km from
their source regions). As previously suggested by
Hannigan (2006b), exploration should be focused
in carbonate units proximal to the faults in the
region, including the Trout Lake, Rabbit Lake, and
Tathlina fault zones, as well as the Cameron Hills
structure (Fig. 2). Chalcopyrite found in tills
throughout the study area may have been sourced
from sediment-hosted Cu mineralization, as indi-
cated by the significant variations in δ34S values,
a feature found in sediment-hosted Cu deposits
globally (Leblanc and Arnold, 1994; El Desouky
et al., 2010). Alternatively, Manto deposits in Peru
possess multiple mineralization styles, including
vein- and sedimentary-hosted chalcopyrite, and
though these are younger than mineralization in
the study area, they have analogous chalcopyrite
δ34S values (e.g. Ripley and Ohmoto, 1977;
MacFarlane and Shimizu, 1991); thus, Manto-type
Cu may also be a potential target source for the
chalcopyrite grains. Though the origin of the fluids
and sulphur in Andean Manto deposits is debated
(Barra et al., 2014), there is no current data for
Manto targets in the region, thus requiring the use
of global analogues; the latter should therefore be
taken into consideration in any exploration of the
area. The δ34S signatures of arsenopyrite in till
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samples from this study fall within a range similar
to that of arsenopyrite found in orogenic deposits
near Yellowknife, approximately 380 km up-ice of
the study area (Wheeler et al., 1996).

SUMMARY

A full interpretation of results, with additional data
from picked sulphide indicator minerals recovered
from a survey conducted in 2017 (Paulen et al.,
2017; Day et al., 2018), will be presented in a later
publication. The Pb and S isotopic compositions of
galena grains recovered from till samples in the
regions around Trout Lake and Kakisa Lake indi-
cate that the grains were likely not dispersed from
Pine Point but are from a proximal source within
the study area. Similarly, the chalcopyrite, which
is not noted as being present at Pine Point (Oviatt,
2013; Stanley Clemmer, Pine Point Mines, pers.
comm., 2018), was found to have a wide range of
δ34S values, more akin to sediment-hosted Cu
deposits (El Desouky et al., 2010); however,
undiscovered Manto-style mineralization in the
Fort Simpson Formation may present a potential
source for chalcopyrite grains, as Manto-style
mineralization and veins as well as disseminated
sulphides at deposits in Peru have similar ranges
of δ34S values (Ripley and Ohmoto, 1977;
MacFarlane and Shimizu, 1991). The δ34S values
for the arsenopyrite grains indicate an igneous
source, either directly via magmatic fluids or via
hydrothermal fluid leaching sulphur from igneous
rocks. However, there is no known proximal, up-
ice arsenopyrite source in the region, which pres-
ents an area requiring further investigation.
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