ENERGY MANAGEMENT SERIES

6

FOR INDUSTRY COMMERCE AND INSTITUTIONS

Boiler Plant Systems

TJ 163.4 .C2 A6 no.006 1985 Resources Can

This document was produced by scanning the original publication.

Ce document est le produit d'une numérisation par balayage de la publication originale.

Canadä

PREFACE

Much has been learned about the art and science of managing energy during the past decade. Today, energy management is a seriously applied discipline within the management process of most successful companies.

Initially, in the early 1970's, energy conservation programs were established to alleviate threatened shortages and Canada's dependency on off-shore oil supplies. However, dramatic price increases quickly added a new meaning to the term "energy conservation" - reduce energy costs!

Many industrial, commercial and institutional organizations met the challenge and reduced energy costs by up to 50%. Improved energy use efficiency was achieved by such steps as employee awareness programs, improved maintenance procedures, by simply eliminating waste, as well as by undertaking projects to upgrade or improve facilities and equipment.

In order to obtain additional energy savings at this juncture a greater knowledge and understanding of technical theory and its application is required in addition to energy efficiency equipment itself.

At the request of the Canadian Industry Program for Energy Conservation, the Commercial and Institutional Task Force Program and related trade associations, the Industrial Energy Division of the Department of Energy, Mines and Resources Canada, has prepared a series of energy management and technical manuals.

The purpose of these manuals is to help managers and operating personnel recognize energy management opportunities within their organizations. They provide the practitioner with mathematical equations, general information on proven techniques and technology, together with examples on how to save energy.

For further information concerning the manuals listed below or regarding material used

at seminars/workshops including actual case studies, please write o:

Industrial Energy Division

Energy Conservation Branch Department of Energy, Mines and Resources 580 Booth Street Ottawa, Ontario K1A 0E4

Energy Management/Employee **Participation** Conducting an Energy Audit Financial Analysis **Energy Accounting** Waste Heat Recovery Process Insulation Lighting Electrical **Energy Efficient Electric Motors** Combustion Boiler Plant Systems Thermal Storage Steam and Condensate Systems

ENERGIE MINES ET RESSOURCES Heating and Cooling Equipment (Steam and Water) Heating Ventilating and Air Conditioning Refrigeration and Heat Pumps Water and Compressed Air Systems Fans and Pumps Compressors and Turbines Measuring, Metering and Monitoring **Automatic Controls** Materials Handling and On-Site Transportation Equipment Architectural Considerations Process Furnaces, Dryers and Kilns.

PABLIOTHEQUE

Minister of Supply and Services Canada 1985 Cat. No. M91-6/6E ISBN 0-662-14158-X

TABLE OF CONTENTS

	Page
INTRODUCTION	1
FUNDAMENTALS	3
Basic Boiler Operation	3
Mass Balances Steam and Water Mass Balance Combustion Process Mass Balance	3 4 4
Combustion Process Natural Gas Combustion Oil Combustion Combustion Air	4 5 5 6
Energy Balance Boiler Energy Input Useful Energy Energy Losses	8 9 9 11
Boiler Efficiency Testing Direct Method Indirect Losses Method	14 14 15
Soot Blowing	17
Boiler Water Quality	17
Feedwater Temperature	18
Combustion Air Temperature	18
Heat Recovery Boilers	18
Energy Audits Walk Through Audit Diagnostic Audit	18 19 19
Boiler Performance Factors Summary	19
EQUIPMENT/SYSTEMS	21
Boilers Firetube Boilers Watertube Boilers Coiltube Boilers Electric Boilers	21 21 22 23 23
LICEUR DUICIS	43

Fuel Types, Characteristics and Conditioning	23
Fuel Burning Equipment	24
Oil Burners	24
Natural Gas Burners	25
Low Excess Air Burners	25
Pulverized Coal Burners	25
Stokers	25
Combustion Air Systems	26
Auxiliary Drives	27
Soot Blowing	27
Environmental Equipment	27
Ash Handling Equipment	27
Air Pollution Control Equipment	27
Heat Recovery	27
Air Preheaters	27
Economizers	28
Flue Gas Condensers	29
Blowdown Heat Recovery	30
Feedwater and Condensate Handling	30
Softeners	30
Dealkalizers	30
Demineralization	31
Deaerators	31
Condensate Tanks	31
Flash Tanks	31
Chemical Injection Equipment	31
Automation Systems	31
Safety Systems	32
Combustion Control Systems	32
Feedwater Control Systems	34
Monitoring Systems	34
Cogeneration Systems	35
ENERGY MANAGEMENT OPPORTUNITIES	37
Housekeeping Opportunities	37
Operation	37
Maintenance	37
Operation Examples	37
Maintenance Examples	38
Low Cost Opportunities	39

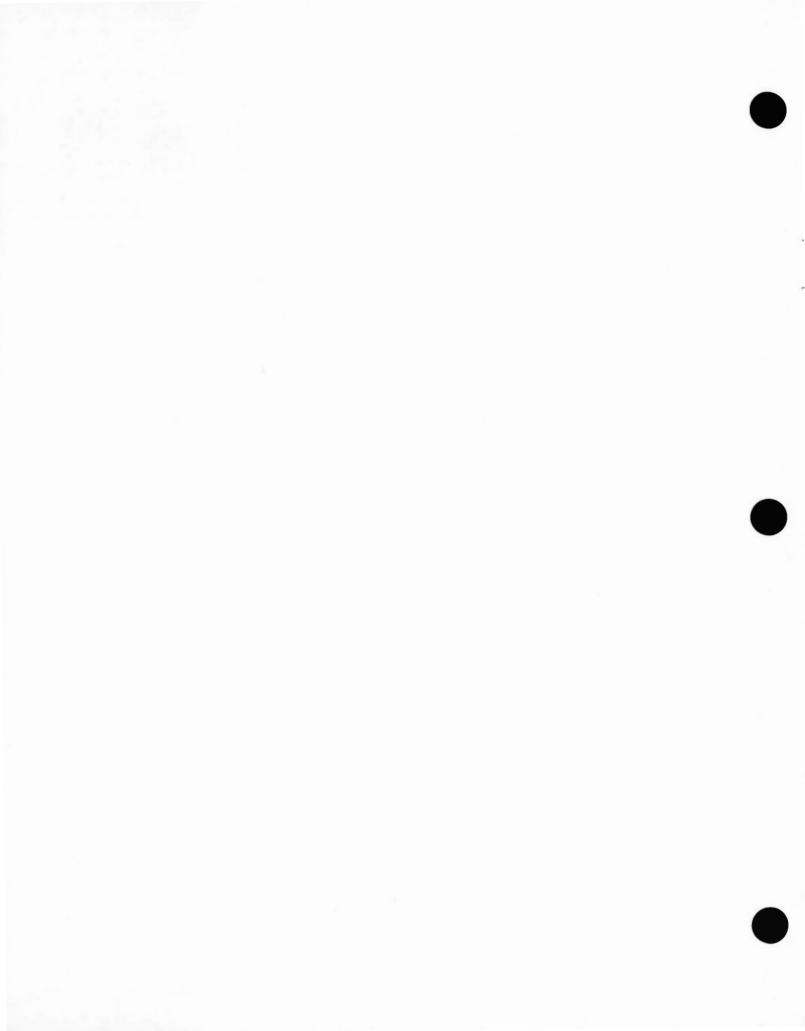
Low Cost Examples	
1. Install Performance Monitoring Equipment	39
2. Relocate Combustion Air Intake	40
3. Recover Blowdown Heat	40
4. Add Insulation	41
5. Reduce Boiler Excess Air	41
Retrofit Opportunities	41
Retrofit Examples	41
1. Install Economizer	41
2. Install Airheater	42
3. Install New Boiler	
4. Upgrade Burner	
5. Install Electric Coil Boiler	43
6. Install Turbulator in Firetube Boiler	44
7. Install Flue Gas Condenser	44
8. Convert From Oil to Gas	44

APPENDICES

A	Glossary
4 =	OTODOGET 1

- **B** Tables
- C Common Conversions
 D Worksheet

INTRODUCTION


Boiler plants are energy intensive operations which are common to many Industrial, Commercial, and Institutional facilities.

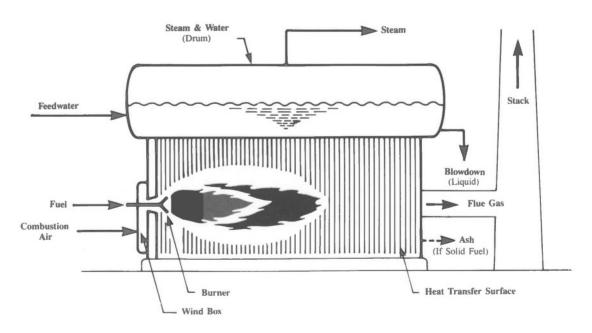
A practical approach has been taken to identify most boiler plant energy loss areas and to explain in detail those that are more typical of a boiler plant. Thus, this module will either demonstrate how to calculate the potential energy savings of alternatives or as a minimum, point out energy wasting factors which may be appropriately covered by other modules in this series. This module concentrates on natural gas and oil fired boilers although most of the material would also be applicable to boilers fired by other fuels.

The theme throughout this module has been to concentrate on practical energy saving opportunities. The reading and understanding of this module will provide a good appreciation of boiler plant operation with ideas for improved energy management and dollar savings.

This module describes boiler plant operating principles, equipment and energy saving opportunities. A brief summary of the module sections follow.

- Fundamentals of boiler plant operation describing the combustion process, energy distribution forms, and calculations of energy losses.
- Equipment/Systems describing types of boiler plant equipment.
- Energy Management Opportunities describing examples of the options normally associated with boiler plant facilities.
- Appendices that contain a glossary, tables, common conversions and a worksheet to assist in calculating boiler efficiency.

FUNDAMENTALS



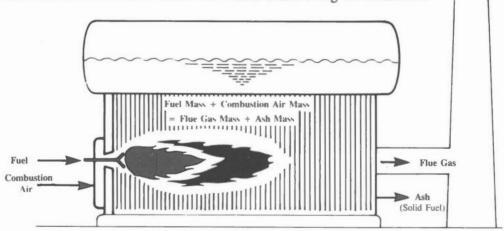
Boilers are used extensively in Industrial, Commercial and Institutional facilities to generate steam or hot water. Boiler plant operation is energy intensive, making efficient operation an important cost reduction activity. The objective of this module is to describe boiler plant operation and highlight the potential for energy and dollars savings.

Basic Boiler Operation

The basic components of a boiler can be shown schematically (Figure 1). The fuel is any substance that can be burned to give off heat and the air is required for the combustion of the fuel. Combustion is the combining of fuel and air in a burning process to produce heat energy. The furnace is an enclosed space within the boiler where the combustion of fuel occurs. The resulting hot combustion gas contacts heat transfer surfaces prior to leaving the boiler and discharging to the atmosphere through a chimney (stack). The gas leaving the boiler is called flue gas. The heat transferred from the combustion flame and hot gas heats the feedwater and converts it to steam or hot water. The steam or hot water are carriers of heat used according to the facility's requirements. Blowdown is not a useful form of energy, but it is necessary to achieve long term satisfactory boiler performance.

The boiler components and functions will be described in more detail. A good understanding of the energy conversion process is essential for optimizing an existing operation or for selecting the best energy source.

Basic Boiler Operation
Figure 1

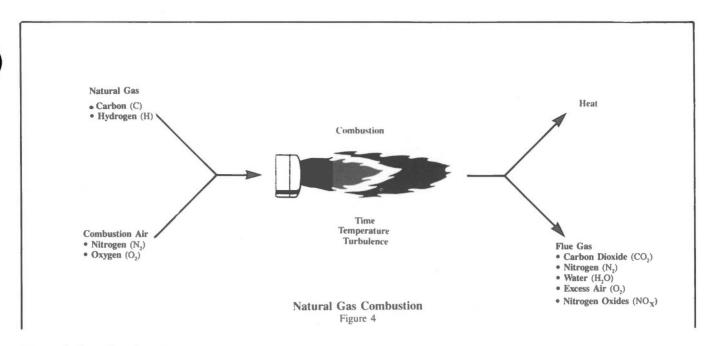

Mass Balances

A boiler must transfer heat to the feedwater to form steam while meeting other operational requirements such as steam capacity, pressure and temperature. The boiler functions are subdivided in the following text to demonstrate the mass balances that can be performed.

Steam and Water Mass Balance

The mass balance for the water and steam circuit within a boiler is described in Figure 2. In this context mass refers to weight of the components. The feedwater represents 100 per cent of the input while the output is represented by up to 10 per cent blowdown of boiler water with usable steam being the remainder.

Combustion Process Mass Balance Figure 3

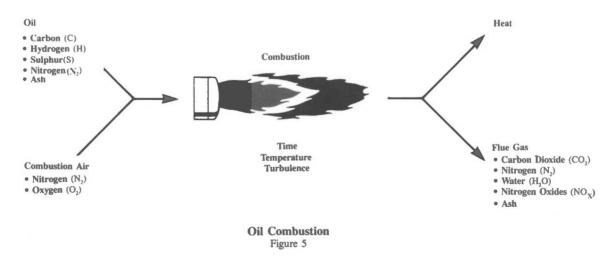

Combustion Process Mass Balance

In the combustion process the fuel and combustion air represent the mass input, and for gas and oil firing the flue gas represents the equivalent mass leaving the boiler (Figure 3). The combustion air mass is substantial because it is approximately 15 times the mass of fuel. In the case of solid fuels such as coal and wood, ash would be a part of the output mass in the balance equation.

Combustion Process

Combustion is the rapid chemical combination of carbon and hydrogen in the fuel with oxygen from the combustion air. Fuel burns as a gas even though it may be fed to the boiler as a liquid or solid. A successful combustion process requires time, temperature and turbulence which are sometimes referred to as the '3 Ts'. Turbulence refers to the intimate mixing of the fuel and air at the discharge of the burner in the case of gas and oil fired boilers. Temperature relates to the temperature within the combustion chamber (furnace) while time refers to the period of time required for the combustion process to be completed within the furnace. Good mixing of fuel and air plus turbulence in the burning zone accelerates the combustion process. This results in a higher furnace temperature and less time required to complete the combustion process.

Natural gas and various grades of oil are the most common fuels today. These fuels and the required combustion air will now be described in greater detail.



Natural Gas Combustion

Natural gas is an easy to use clean burning fuel. It does not require on-site storage and mixes easily. The prime constituents are methane (C_4) and ethane(C_2H_6). The higher heating value (HHV) of natural gas is 37.2 MJ/m³. The natural gas combustion process is shown in Figure 4. The flow of natural gas is normally specified in terms of m³/h at the standard conditions of 101.325 kPa (gauge) and 20°C.

Oil Combustion

Oil is more difficult to transfer and burn than natural gas. Oil must be stored on-site, and pumped to the boiler. The heavier and more viscous No. 6 oil must be heated in a storage tank and then again immediately before burning. Heating of this heavier oil is required for pumping and good atomization to achieve proper mixing with the combustion air. Normally up to 2 per cent of boiler steam output is used to assist in the atomizing action for No. 6 oil.

Oil is comprised of more chemical elements than natural gas and this results in more gas types and ash being in the flue gas. (Figure 5). The combustion process converts some of the carbon in the fuel to soot which collects on the boiler tubes to decrease the transfer of heat to the boiler water. If the flue gas temperature decreases below dew point, which is the temperature at which condensation begins, sulphurous and sulphuric acid will condense out of the flue gas. This acid then attacks the surfaces exposed to the low temperature flue gas to corrode air heaters, economizers, breeching, and stack.

Combustion Air

Stoichiometric air is the theoretical amount of combustion air required to burn a fuel completely. The stoichiometric air calculation assumes that there is perfect mixing and burning of fuel and air, however, this is never achieved. This air quantity can be calculated from the fuel analysis or determined from Table 1. The values quoted do not change significantly with variations in fuel analysis. The heating value of the fuel should be obtained from the fuel supplier, however the values given in Appendix C are sufficiently accurate for most purposes.

The recommended minimum amount of excess air for the burner and fuel should be obtained from the boiler or burner manufacturer. If this information is unavailable, the Table 1 typical mass values can be used as a guide. Analysis of the flue gases, and observation of the combustion conditions and stack outlet are necessary to arrive at the best achievable result. As an example, the total combustion air requirements for a boiler using 1500 m³/h of natural gas with a burner designed for 10 per cent excess air can be calculated.

From Table 1, the combustion air required at 0 per cent excess air (stoichiometric) is 318 kg/GJ. From Appendix C, the heating value of natural gas is 37.2MJ/m³.

Total heat input = Fuel consumption x Fuel heating value
=
$$1500 \text{ m}^3/\text{h} \times 37.2 \text{ MJ/m}^3$$

= $55 800 \text{ MJ/h}$
= $\frac{55 800 \text{ MJ}}{\text{h}} \times \frac{1}{1000} \frac{\text{GJ}}{\text{MJ}} = 55.8 \text{ GJ/h}$

Combustion air mass (0% excess air) = Theoretical air required per unit of heat x heat input

=
$$318 \text{ kg/GJ x } 55.8 \text{ GJ/h}$$

= $17 744 \text{ kg/h}$

Combustion air mass (10% excess air) = 17 744 kg/h x 1.1 = 19 518 kg/h

The density of air at standard conditions 20°C and 101.325 kPa(absolute) is 1.204 kg/m³.

Total combustion air =
$$\frac{19 518 \text{ kg/h}}{1.204 \text{ kg/m}^3}$$

= 16 211 m³/h at standard conditions

The foregoing procedures can be repeated for an oil example in which a boiler burns 7000 L/h of No. 6 oil, at 15 per cent excess air. From Table 1, combustion air at 0 per cent excess is 327 kg/GJ. The HHV of No. 6 oil with 2.5 per cent sulphur is 42.3 MJ/L (Appendix C).

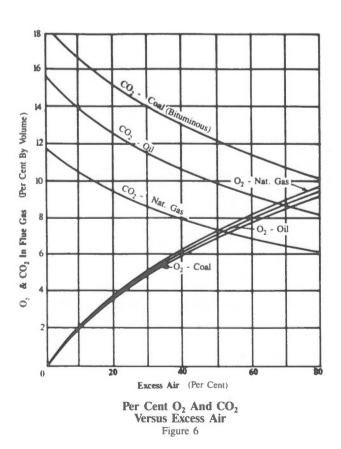
Total combustion air mass =
$$\frac{7000 \text{ L/h} \times 42.3 \text{ MJ/L} \times 327 \text{ kg/GJ} \times 1.15}{1000 \text{ MJ/GJ}}$$
$$= 111 348 \text{ kg/h}$$

Total combustion air volume =
$$\frac{111 348 \text{ kg/h}}{1.204 \text{kg/m}^3}$$

= 92 482m³/h at standard conditions

The appearance of the burner flame can be a guide to correct combustion conditions. Commissioning fuel firing equipment requires experience. It is wise for the operator to check the appearance of the flame immediately after an experienced burner service representative has performed this task. A natural gas flame should be clear or slightly blue. An oil flame should be a light brown or yellow. A short blowtorch shaped flame indicates too much air, whereas a long, lazy, smoky flame indicates too little air.

The actual excess air values should be regularly compared with the recommended values. The most accurate method of determining the actual percentage of excess air is by analyzing the flue gas leaving the boiler. This is often achieved with a continuous O₂ or CO₂ analyzer which indirectly identifies the excess air or a CO analyzer which measures the presence of combustibles.


The Orsat is an instrument for analyzing a flue gas sample for the percentage by volume of oxygen (O_2) , carbon dioxide (CO_2) , and carbon monoxide (CO). The remaining gas is nitrogen (N_2) . The sample should be taken as close to the boiler exit as possible to reduce errors caused by the infiltration of air. There are simpler manual analyzers available that measure CO_2 or O_2 in the flue gas. These are easier to use and can be useful as a cross check against the primary analyzer provided that CO is not present. If CO is detected, it is an indication that there is inadequate air to complete the combustion process. For natural gas, oil or coal firing, the percentage excess air can be obtained from Figure 6 provided that CO is not present. For other fuels, or when CO is in the flue gas, the following equation should be used.

% Excess air =
$$\frac{O_2 - 0.5 \text{ CO}}{0.2682N_2 - (O_2 - 0.5 \text{ CO})} \times 100$$

Where, O_2 = oxygen by volume (%)

CO = carbon monoxide by volume (%)

 N_2 = nitrogen by volume (%)

This equation can also be used as a check against the Figure 6 values for natural gas or oil firing. For example, the flue gas analysis by volume for burning natural gas in a boiler gives the following result.

$$O_2 = 5.4\%$$

$$CO_2 = 8.8\%$$

$$CO = 0\%$$

$$N_2 = 85.8\%$$
 (by difference)

Figure 6 shows that the excess air is about 30 per cent. These flue gas readings can be used in the previous equation to calculate the excess air for comparison purposes.

% Excess air =
$$\frac{5.4 - (0.5 \times 0)}{(0.2682 \times 85.8) - [5.4 - (0.5 \times 0)]} \times 100$$

= 30.7%

Another example is a boiler burning bituminous coal. The flue gas analysis is shown below.

$$O_2 = 4.1\%$$

$$CO_2 = 14.8\%$$

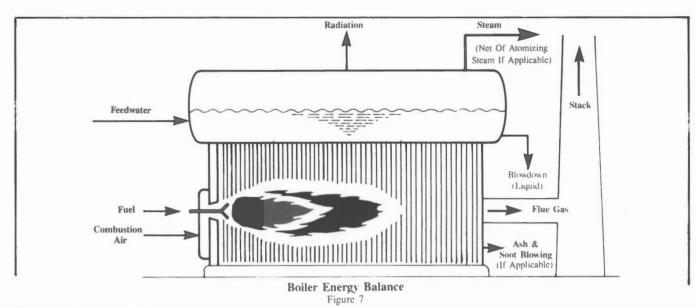
$$CO = 0\%$$

$$N_2 = 81.1\%$$
 (by difference)

With the use of Figure 6 and the O_2 reading, the excess air equals approximately 24 per cent. Using the CO_2 reading with the same figure results in a value of about 23 per cent excess air. Obviously, there cannot be two excess air values for a common gas sample and the difference could be attributed to two possibilities.

- The analysis of coal from different parts of North America varies so that the CO₂ curve in particular might not quite match the coal in the example.
- There could be an error in the O2 or CO2 reading.

The excess air can be calculated as a check against the use of Figure 6.


% Excess air =
$$\frac{4.1 - (0.5 \times 0)}{(0.2682 \times 81.1) - [4.1 - (0.5 \times 0)]} \times 100$$

= 23.2%

The two Figure 6 curve readings of 24 and 23 per cent as well as the calculated value of 23.2 per cent are sufficiently close together for purposes of routinely checking the combustion process for efficient operation. It is desirable to reduce the combustion air relative to the fuel flow to determine whether the excess air can be reduced further. Would combustibles occur in the form of CO or would some undesirable conditions occur within the furnace? If not, the excess air can be reduced to save boiler fuel. Some margin in the excess air is required to protect against undesirable changes in the adjustments of instruments and other equipment.

Energy Balance

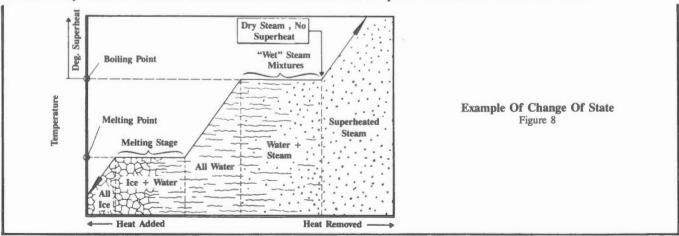
An energy balance, as shown in Figure 7, is a method of accounting for the useful energy and losses of a boiler. The energy balance can be generalized in equation form.

Boiler energy input = Usable energy + Energy losses

Boiler Energy Input

The three sources of boiler heat energy input are the fuel, feedwater and combustion air.

The major energy source is from the fuel which can be expressed in terms of MJ/m³ for gas and MJ/L for oil. In the case of No. 6 oil it is necessary to heat the oil in the storage tank sufficiently to permit pumping and then it is heated further prior to going to the burner. The thermal energy of the oil as it is delivered to the boiler should be added to the *higher heating value* of the oil to represent the total fuel energy input. Representative fuel heating values are provided in Appendix C.


The feedwater temperature must also be considered as part of the energy input (i.e. higher temperature feedwater requires less heat energy from the fuel to be converted to steam which is the useful energy). The feedwater temperature can be used to determine this heat energy input level. The energy content of the feedwater is the enthalpy (h_f) as determined in steam tables corresponding to the feedwater temperature (Table 2).

Combustion air is normally drawn from within the boiler plant, but it may be ducted from outside and heated with steam. A higher combustion air temperature will reduce the energy input required from the fuel.

Useful Energy

The boiler converts fuel energy into a form that is suitable to convey heat energy throughout a facility. The most common forms of energy distributed from boilers are steam, hot water and thermal fluids.

Steam is the most common means of conveying heat throughout a facility. As heat is added to water, the temperature of the water increases until the boiling point is reached (Figure 8). This heat, which increases the water temperature, is called *sensible heat*. When the boiling point is reached, the further addition of heat causes some of the water to change to steam, but the mixture of steam and water remains at the boiling temperature. At atmospheric pressure the boiling point of water occurs at 100°C. The heat which converts the water to steam at the constant boiling temperature is called *latent heat*. When the steam has been fully vaporized at the boiling temperature it is called dry saturated steam. This means that there are no droplets of moisture within the steam.

When water is heated at a pressure above atmospheric, the boiling point will be higher than 100°C and the sensible heat required will be greater. For every pressure there is a corresponding boiling temperature, and at this temperature the water contains a fixed, known amount of heat. The greater the pressure, the higher the boiling temperature and heat content.

The unit of heat energy used in the SI system is the joule. Steam tables (Table 2, Appendix B) are used to establish the energy content of water and steam. The use of steam tables is helpful in analyzing the operating effectiveness of a boiler plant. *Enthalpy* is the expression used to identify the energy content of water, steam and water mixture, or steam.

Under the enthalpy heading there are three columns indentifying enthalpy; enthalpy of the liquid (h_f) , enthalpy of evaporation (h_{fg}) , and enthalpy of steam (h_g) .

The *enthalpy of liquid* (h_f) is a measure of the amount of heat energy contained in the water at a specific temperature.

The enthalpy of evaporation (h_{fg}) (correctly called the latent heat of vaporization) is the quantity of heat energy required to convert one kilogram of water to one kilogram of steam at the given pressure.

The enthalpy of steam (h_g) is the total heat energy contained in dry saturated steam at the given pressure. This quantity of energy is the sum of the enthalpy of the liquid (h_g) and the amount of energy required to evaporate one kilogram of water at the saturation temperature (h_{fg}) .

The three previous figures for enthalpy may be expressed in an equation.

$$h_{\sigma} = h_f + h_{f\sigma}$$

Where, hg = Enthalpy of dry saturated steam (kJ/kg)

h_f = Enthalpy of liquid (kJ/kg)

h_{fg} = Enthalpy of evaporation (kJ/kg)

Most boilers are designed to produce dry saturated steam. Steam tables can be used to compare the energy content of dry saturated steam at the two pressures of 200 and 1000 kPa(absolute).

Note that the steam tables give properties based on absolute values of pressure. Pressure gauges normally indicate values above atmospheric pressure, which, at sea level, is 101.325 kPa. Absolute values of pressure are given by the following equation.

Absolute pressure = Gauge pressure +101.325 kPa

• 200 kPa(absolute) Dry Saturated Steam

Sensible heat (h_f) 504.7 kJ/kg

Latent heat of evaporation (h_{fg}) 2201.6

Total heat (hg) 2706.3 kJ/kg

• 1000 kPa(absolute) Dry Saturated Steam

Sensible heat (h_f) 762.6 kJ/kg

Latent heat of evaporation (h_{fg}) 2013.6

Total heat (h_g) 2776.2 kJ/kg

From the foregoing enthalpy comparison it should be noted that, as the steam pressure increases, the amount of sensible and total heat increases and the latent heat decreases.

The enthalpy cannot be directly obtained from steam tables when there is moisture in the steam. The steam quality can be expressed in equation form.

Steam quality =
$$\frac{\text{Mass of steam vapor}}{\text{Mass of steam vapor and water mixture}}$$

It should be noted that steam quality of 0.98 means that there is 2 per cent moisture in the steam. The heat content of 1000 kPa and 0.98 quality steam can be calculated using steam table data.

Sensible heat (h_f) 762.6 kJ/kg

Latent heat $= h_{fg} x$ steam quality

 $= 2013.6 \times 0.98$ 1973.3

Total heat 2735.9 kJ/kg

The difference between this condition and the previously calculated dry saturated steam enthalpy represents the heat required to eliminate the 2 per cent moisture.

Heat required to eliminate moisture = 2776.2 - 2735.9

= 40.3 kJ/kg

Superheated steam is produced when saturated steam is heated to a temperature higher than the saturation temperature. The enthalpy value (heat content) can be read directly from superheated steam tables (Table 2) at the point corresponding to the steam temperature and pressure. The amount of superheat in steam is expressed in degrees of superheat (the number of degrees Celsius to which the steam is heated above the saturation temperature).

Hot water can also be used as the medium to transport heat. The temperature conditions vary according to the heating system design, but are generally classed as follows:

- High-temperature hot water (HTHW) Greater than 176°C
- Medium-temperature hot water (MTHW) 121°C to 176°C
- Low-temperature hot water (LTHW) Less than 121°C

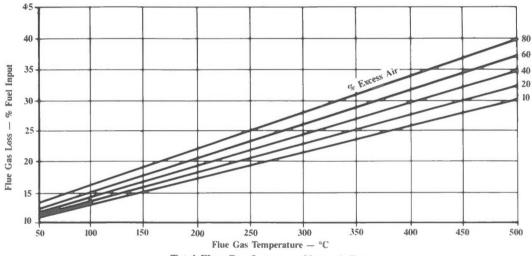
A thermal fluid boiler is similar to a hot water boiler, but is fired by oil or gas to heat thermal fluid that is pumped to where the heat energy is required. This fluid might be heated to 370°C at pressures below 350 kPa(gauge) while still remaining in the liquid form.

Energy Losses

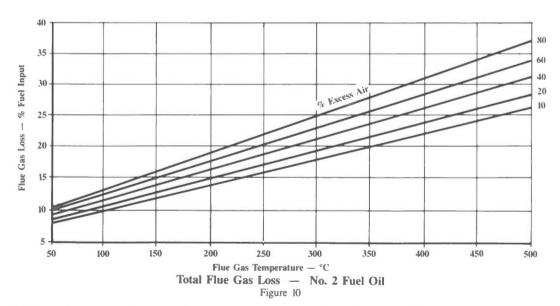
Energy loss is a crucial topic in terms of efficient boiler plant operation. The losses which follow, can be influenced by design and operating factors.

- Flue gas
- Radiation
- Unburned combustibles
- Unmeasured

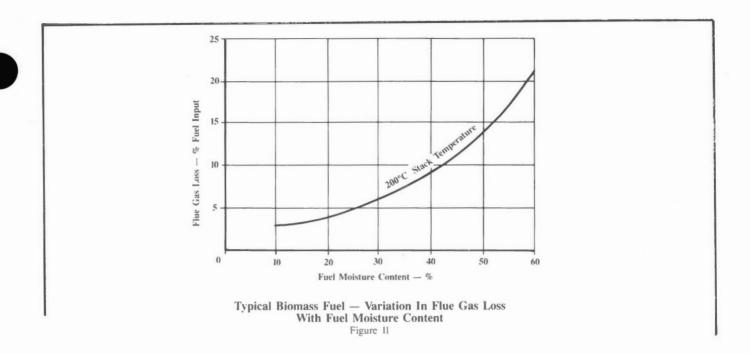
The *flue gas heat loss*, which is the heat discharged from the stack, is usually the largest loss in a fuel fired boiler. Flue gas analysis and flue gas temperature can be used to calculate the loss. If there is no heat recovery equipment on the boiler these measurements should be taken at the boiler outlet to minimize the possibility of the readings being affected by air infiltration. With heat recovery equipment the readings should be taken immediately downstream of the equipment.

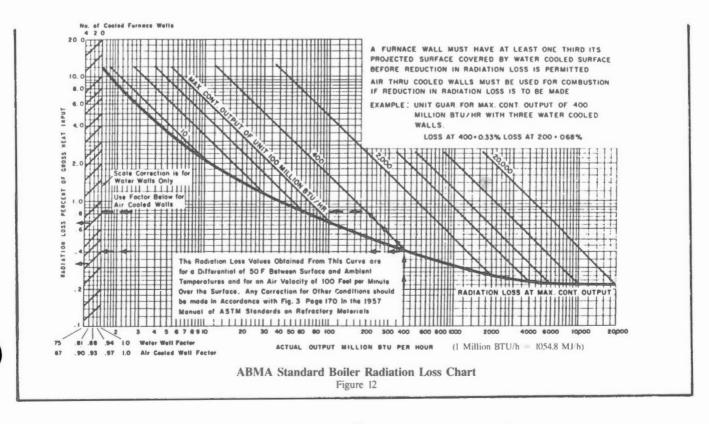

The flue gas heat loss has three components which can be calculated separately.

- Dry gas heat loss.
- Heat loss from the water vapor produced by the combustion of the hydrogen in the fuel.
- Heat loss from the water vapor produced by the evaporation of moisture in the fuel.


Calculations of these losses are given in Combustion, Module 5. For natural gas and oil, the moisture in the fuel is minimal, and the evaporation of the moisture heat loss can be ignored. Thus, the total of the first two losses can be obtained with sufficient accuracy from Figure 9 for natural gas and Figure 10 for No. 2 Oil. Calculation of these losses follow in the text.

Consider a previous natural gas example where the excess air percentage was calculated to be 30.7 per cent. The temperature of the flue gas leaving the boiler was 200° C. From Figure 9, the flue gas heat loss to the stack is 18.5 per cent of the fuel input. From Appendix C, the HHV of natural gas is 37.2 MJ/m^3 .


Flue gas heat loss = $37.2 \times 0.185 = 6.9 \text{ MJ/m}^3 \text{ of fuel burned.}$


Total Flue Gas Loss — Natural Gas

For fuels such as coal, biomass, industrial waste or municipal refuse, the heat loss from the moisture in the fuel can be considerable. Wood, for instance, could have a moisture content of up to 60 per cent, depending on the source and capability of the wood burning equipment. Figure 11 shows the variations in the moisture heat loss for a typical biomass fuel having different moisture contents at a flue gas temperature of 200°C. At 30 per cent moisture, this fuel heat loss is 5.5 per cent of the fuel heat content. At 60 per cent moisture, the loss increases to 21 per cent.

The radiation heat loss of a boiler is primarily a function of the applied thermal insulation. Insulation reduces the heat radiating from the boiler, and maintains the outside surfaces at a temperature low enough for safety. The quality and thickness of the insulation on the various sections of the boiler are normally determined by the surface temperature. Most safety regulations require that metal surfaces within reach of personnel not exceed 50°C. The heat loss from the casing is difficult to measure accurately. Figure 12 is derived from the American Boilermakers' Association Standard Radiation Chart, and can be used to estimate the heat loss. Radiation loss is independent of the type of fuel fired, and use of this chart requires only a knowledge of the output rating of the boiler and the nature of the furnace walls.

For example, consider a packaged watertube boiler with a full load rated output equivalent to 50 GJ/h with all four furnace walls water cooled. From the chart, the heat loss due to radiation would be 0.65 per cent of gross heat input. Note that if the boiler was operating at half capacity, the radiation loss would be 1.4 per cent of gross heat input. It can therefore be seen that a penalty will be paid in increased percentage radiation losses if a boiler is operated on part load for an extended period of time. The absolute heat loss to the flue gas would be lower at part load, because the gas volume is lower. However, the overall boiler efficiency would likely be lower.

The unburned combustible heat loss is not significant for properly operating oil and gas fired installations, but it can be for solid fuel boilers. Figure 13 demonstrates that there could be a minor unburned fuel loss at the maximum efficiency point, but the real significance of this figure is that the losses increase very rapidly as the total air is decreased. The measure of this condition is reflected by the presence of significant combustibles in the flue gas.

In coal, biomass and other solid fuels, unburned combustible material will be found in the refuse collected in the ash pit and the fly ash hopper. The loss should be determined when the boiler is tested for efficiency. To do so requires a method of collecting and weighing the refuse under controlled conditions and laboratory testing the refuse for its HHV. The loss can be calculated as shown.

Unburned combustible heat loss = Dry refuse quantity x Refuse heat content

Where units are:

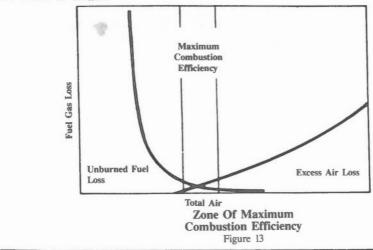
Heat loss (MJ/kg fuel as-fired)

Dry refuse (kg of refuse/kg of as-fired fuel)

Refuse heat content (MJ/kg of refuse)

Unmeasured losses include relatively minor losses such as sensible heat in the ash or slag, radiation to the ash pit, moisture in the air and heat pick-up in the cooling water. They are usually not measured because the effort is not justified. Minor losses also include a tolerance for instrument error. The boiler manufacturer will usually recommend an overall allowance, but this should not exceed 0.5 per cent of the heat in the fuel.

Boiler Efficiency Testing


Boiler efficiency can be determined by the direct and indirect methods which follow.

Direct Method

This method measures the efficiency of the boiler as the ratio of the heat produced by the boiler (heat output) to heat content of the fuel (heat input).

Boiler efficiency =
$$\frac{\text{Boiler heat output}}{\text{Boiler heat input}} \times 100$$

This method requires accurate measurement of the quantity and heating value of the fuel, and of the heat produced by the boiler in the form of steam.

Oil flow can be measured by volumetric instruments of the displacement rotating disc type. For natural gas, orifice flow measurement or displacement type meters can be used. Solid fuels require measurement by gravimetric feeders or weigh scales. All fuels require an accurate determination of the HHV which may involve careful sampling and laboratory tests. Natural gas and oil heating values should be obtainable from the fuel supplier. Solid fuels require careful sampling techniques to ensure that moisture is not lost between the sample being taken and the laboratory test.

The heat output of the boiler requires a measurement of the steam flow at the boiler outlet and this is usually an orifice flow measurement. A pressure measurement is required at the boiler outlet and a temperature measurement must be taken at the boiler feedwater inlet. If the steam generated is superheated it will be necessary to measure the steam temperature. The steam quality should be confirmed for boilers designed to produce dry and saturated or wet steam. The efficiency is expressed by the following equation.

Boiler efficiency =
$$\frac{\text{Heat added to feedwater}}{\text{Total boiler heat input}} \times 100$$

= $\frac{f_s}{w_f} \frac{(h_1 - h_2)}{x \text{ HHV}} \times 100$

Where, f_s = Steam flow at boiler outlet (kg/h)

h₁ = Enthalpy (total heat) in steam flow at boiler outlet (kJ/kg)

h₂ = Enthalpy of feedwater (kJ/kg)

Wf = Fuel flow (kg/h for liquid or solid fuel and m³/h for gaseous fuels)

HHV= Higher heating value (kJ/kg for liquid or solid fuel and kJ/m³ for gaseous fuels)

Example: A packaged watertube boiler, when tested, was evaporating 10 000 kg/h of water at 1720 kPa(gauge) and 105°C to steam at 1500 kPa(absolute) and 240°C. The No. 2 oil flow rate during the test was 805 L/h. Laboratory tests established an oil HHV of 38.68 MJ/L. The boiler efficiency can be calculated from this data.

From superheat steam tables

Enthalpy of steam at 1500 kPa(absolute) and 240°C 2899.2 kJ/kg

Enthalpy of water at 105°C

440.17 kJ/kg

Efficiency =
$$\frac{10\ 000\ x\ (2899.2\ -\ 440.17)}{805\ x\ 38.68\ x\ 1000}\ x\ 100$$

$$= 79.0\%$$

Indirect Losses Method

This method measures the efficiency of the boiler as the heat content of the fuel (heat input), minus the heat losses from the boiler, divided by the heat input.

Boiler efficiency =
$$\frac{\text{Boiler heat output}}{\text{Boiler heat input}} \times 100$$

Boiler efficiency =
$$\frac{Input - Losses}{Input} \times 100$$

Boiler efficiency testing using the direct input-output method is inconvenient and expensive if the boiler is not equipped with fuel and steam flow meters. Even if this metering equipment is available, the efficiency measurement by the heat-loss method has the following advantages over the input-output method.

- More informative since it establishes the individual losses for comparison with predicted performance.
- More accurate, since the total losses are normally in the region of 15 to 25 per cent of the fuel heat input, hence errors in measurement have less effect on the end results.
- The basic loss measurements are simple, being only fuel analysis and heating value, exit gas temperature, boiler exit flue gas analysis, combustion air temperature and refuse combustible content.

Boiler heat losses are evaluated in accordance with the following categories.

- Dry gas heat loss.
- · Moisture in fuel heat loss.
- · Heat loss owing to water vapor from combustion of hydrogen in the fuel.
- · Radiation heat loss
- · Combustible in refuse heat loss.
- · Unmeasured losses.

These losses have already been explained in this module. Procedures for the calculation of boiler efficiency for different fuels are given in the ASME Performance Test Code for Steam Generating Units, PTC 4.1. Worksheet 6-1 can be used to calculate heat losses and boiler efficiency for boilers burning natural gas or oil. This worksheet can be used for the input-output and the indirect methods of efficiency calculation.

Consider the previous example used to illustrate the input-output method. The packaged watertube boiler, with 4 water-cooled combustion chamber walls had a rated capacity of 10 000 kg/h of steam at 1500 kPa(absolute) and 240°C.

Steam pressure at boiler outlet 1500 kPa(absolute)

Steam temperature at boiler outlet 240°C

Water temperature at boiler inlet 105°C

Air temperature around boiler 20°C

Flue gas temperature leaving boiler 260°C

Fuel temperature 20°C

Water evaporation rate 10 000 kg/h

Rate of fuel fired 805 L/h

Oil HHV 38.68 MJ/L

Flue gas analysis at boiler outlet (% by volume)

 $CO_2 = 12.8$

 $O_2 = 3.8$

CO = 0

 $N_2 = 83.4$ (by difference)

Worksheet calculations:

Excess air (Figure 6) 20%

Dry gas + H_2O loss (Figure 10) 17.2%

Radiation loss (Figure 12) 1.2.%

Unmeasured loss, 0.5% (estimated)

Total losses = 17.2 + 1.2 + 0.5 = 18.9%Boiler efficiency = 100 - 18.9

= 81.1%

The data and results of this example, together with those of the previous input-output example, are shown on Worksheet 6-1.

When a new boiler is installed, the efficiency should be checked throughout the firing range against the purchase guarantees. The boiler efficiency should then be regularly checked using the acceptance test values as the basis of comparison. Figure 13 clearly demonstrates that the total air should not be decreased or increased beyond the zone of maximum combustion efficiency.

Soot Blowing

Soot blowing systems are required on all boilers burning solid fuels or oil. Natural gas is a clean-burning fuel and does not require soot blowers. Soot blowing is the on-line fireside cleaning of the heat absorbing surfaces. This prevents sections of the boiler from becoming plugged with ash and other solid products of combustion. Plugged sections can restrict flue gas flow causing load limitations and tube erosion. Most importantly, soot blowing assists energy management by maintaining the maximum rate of heat transfer from the fuel to the water and steam.

Inadequate soot blowing can result in the boiler exit gas temperature rising by as much as 80°C. Every 20°C rise in exit gas temperature will increase the stack heat loss by an additional 1 per cent of the fuel fired. For example, from Figure 10, it can be seen that a boiler firing No. 2 oil with 10 per cent excess air will give up an additional 4.2 per cent of the fuel input if the gas temperature rises by 100°C.

Boiler Water Quality

In using water for the generation of steam, consideration must be given to water treatment for the prevention of corrosion and scaling of the boiler surfaces in contact with the water. This includes the treatment of the raw water introduced into the boiler cycle, and the conditioning of the water in the boiler.

The boiler manufacturer usually dictates what the feedwater quality and boiler water analysis should be, and the operator must ensure that the appropriate treatment is maintained. Failure to do so may result in the formation of scale, which eventually leads to failure of the boiler tubes. Scale inhibits the transfer of heat which raises the boiler exit gas temperature and increases the flue gas heat loss. As noted, a moderate rise of 20°C in the flue gas will result in 1 per cent more of the heat in the fuel being wasted.

The boiler water conditioning usually includes phosphate dosing to convert residual hardness salts into a sludge that is removed by blowdown. If left unchecked, the buildup would ultimately cause the boiler water to foam, resulting in undesirable solids being carried over with the steam. Blowdown is the term used to describe the purposeful discharge of a portion of the boiler water to eliminate undesirable sludge and chemical concentrations. Blowdown may be continuous or periodic. The operator usually adjusts the blowdown manually, although equipment is available that automatically adjusts the blowdown rate from a conductivity measurement of the boiler water. In low pressure boilers, where the allowable level of solids in the boiler water may be higher, the required blowdown will be 5 to 10 per cent of the feedwater flow. The required level of blowdown must be strictly maintained, but care must also be taken to ensure that the recommended level is not exceeded.

The blowdown is sometimes piped to an atmospherically vented vessel and the resulting discharge dumped to waste. If the blowdown is 5 per cent or more, consideration should be given to recovering the flash steam from the vessel by diverting it to the deaerator, or by using the heat for space heating or domestic water.

Feedwater Temperature

Cold water is not normally fed directly to a boiler. The boiler feed pump inlet is usually connected to a condensate return tank, or a deaerator which is used to remove O_2 and CO_2 from the feedwater. The feedwater fed to most low pressure boilers (less than 1000 kPa) is usually between 80 and 120°C.

To keep the size of the boiler heating surfaces within practical limits, the boiler designer selects a flue gas exit temperature about 60 to 90°C above the temperature of the coldest heating surface in the boiler. If the feedwater is introduced directly into the boiler drum it mixes immediately with the already heated boiler water. The result is that the coldest heating surfaces will be only a few degrees lower than the saturation temperature corresponding to the boiler pressure. For example, a boiler operating at 1500 kPa(absolute) with a saturation temperature 198.29°C, will have a flue gas exit temperature of approximately 260°C.

The boiler efficiency can be increased by using flue gas to heat the feedwater. The transfer of heat from the flue gas to the feedwater is accomplished in a heat exchanger called an economizer.

The metal temperature of the coldest section of the economizer will be only a few degrees higher than the feedwater entering the economizer. The exit gas temperature can now be lowered to around 170°C, resulting in a boiler efficiency increase of 3 to 4%.

Including an economizer in a new boiler design, or retrofitting an existing boiler with an economizer, is an effective means of saving energy.

Combustion Air Temperature

A substantial improvement can also be made by preheating the combustion air. This can be achieved by installing an air heater which uses the heat in the flue gas to heat the incoming air. Referring to the previous example, an air heater could be installed instead of an economizer. The combustion air could be preheated by about 120°C, and the exit gas temperature would drop the same amount as in the economizer example, resulting in a 3 to 4 per cent increase in boiler efficiency.

The choice of flue gas heat recovery equipment (air heater or economizer), depends on a number of factors. It is usually feasible to recover the same amount of heat from the flue gas with either type of equipment. The water temperature entering the economizer is generally higher than the air temperature entering the air heater, which would suggest that more heat would be recovered using an air heater. However, the rate of heat transfer from gas to air as in an air heater, is lower than the rate of heat transfer from gas to water, as in an economizer. This tends to favor the economizer. The final choice should be based on a detailed engineering analysis of the boiler and heat recovery system, to consider physical installation arrangements and the best financial payback.

Heat Recovery Boilers

Heat recovery boilers recover sensible heat from flue gas produced by equipment external to the boiler. Such boilers are effectively a continuation of the exhaust duct from the gas producing equipment such as a gas turbine, incinerator or furnace.

The efficiency of a waste heat boiler does not have the same meaning as the efficiency of a fuel fired boiler. This is because the heat input is in the form of flue gas heat instead of heat produced by burning fuel. The losses to the boiler stack are calculated in the same way as for a fuel fired boiler, but consist of dry gas losses only since there is no fuel burned to produce water vapor. Effective heat recovery depends almost entirely on reducing the temperature of the gas leaving the boiler to the lowest economical level.

Radiation losses from the boiler can be determined from Figure 12 but some allowances must be made for the the ductwork heat loss between the flue gas source and boiler.

The operator must minimize wasted energy by properly using soot blowing, water treatment and blowdown procedures. Good maintenance practices ensure minimum heat wastage through steam and water leaks, and deteriorating insulation and casing.

Energy Audits

An energy audit involves the identification of the amount of energy consumed by a boiler and the associated auxiliaries. The audit may be applied to the entire boiler plant, or it may be concentrated on one or two pieces of equipment, depending on how much is known about existing energy usage. Reference should be made to the manual, "Conducting An Energy Audit" in this series for further information.

Walk Through Audit

The initial action is a walk through audit which is a tour through the plant looking for obvious signs of energy waste. It is often helpful to engage someone for this task who is not normally associated with the plant operation. A fresh viewpoint will often detect items that have been overlooked.

Diagnostic Audit

An overall appreciation of energy usage is achieved in a diagnostic audit by reviewing plant records to determine energy usage per unit of boiler output over the last several years.

The original equipment specifications and any initial commissioning test reports are an excellent way to determine if the individual items of equipment are performing as they should, or if there has been significant performance deterioration. Confirmation of the plant's present performance should be made by conducting tests at several loads. The boiler efficiency, and the associated boiler heat losses can be determined by the previously described methods.

All boiler plants should at least have a fuel input recorder, a steam or feedwater flow recorder, a boiler outlet pressure indication, and temperature measurements of the incoming feedwater and the flue gas leaving the boiler.

After obtaining an overview of past and present patterns of energy consumption, comparisons can be made with the original equipment specifications and performance. Significant performance deterioration should indicate which equipment or system requires further detailed investigation.

The audit may also suggest where the original design of the equipment could be improved or replaced. Major retrofits consisting of heat recovery equipment should be evaluated.

The determination of the energy consumed per unit of boiler output (kg/h of steam) will often show significant variations. If the fuel consumption per unit of output rises significantly as the process demand on the boiler falls, it may be possible to improve the situation with better steam production scheduling so that the boiler is operated at maximum efficiency.

Boiler Performance Factors Summary

Large amounts of energy are used in boiler plants and there are many factors which can affect the energy utilization efficiency. This section briefly summarizes the key performance factors to help focus attention on the potentially high energy savings available. In some cases there will be boiler or auxiliary equipment design limitations, but it is still important to be fully aware of the efficiency improvement possibilities.

Flue gas temperature is a key measurement to highlight the largest energy loss source in boiler operation. It is important to regularly monitor this temperature at different firing rates so that departures from normal are detected quickly. Some of the factors which could affect the flue gas temperature are listed.

- Increased excess air causes the flue gas temperature to rise.
- Gas short circuiting between the furnace and boiler exit will decrease the heat transfer area and increase flue gas temperature.
- Infiltration air into the furnace lowers the temperature of the flue gas, increases the volume and velocity of the gas, all of which decrease the heat transfer.
- Heat recovery equipment increases the heat transfer area which increases the transfer of otherwise wasted heat to lower the temperature of the flue gas at the heat exchanger exit.
- Heat transfer surfaces, which are fouled on the outside with soot or on the inside with scale, decrease heat transfer and increase the flue gas temperature.
- Higher boiler operating pressure results in a higher temperature on the inside of the boiler tubes. Higher boiler water temperature decreases the heat transfer rate which increases the flue gas temperature and losses.

Figures 9 and 10 illustrate the impact of the flue gas temperature on the flue gas heat loss.

The minimum attainable excess air is a function of the design capabilities of the boiler and burner at different firing rates and the combustion control system. *Excess air* influences boiler efficiency as illustrated by the following examples.

- Insufficient excess air causes combustibles to be present in the flue gas which results in rapid increases in the fuel energy losses.
- Too much excess air increases the mass flow of the flue gas which increases the flue gas losses. Flue gas temperature increases 1 per cent for each additional 4 per cent excess air.

Fouled heat transfer surfaces caused by the build-up of soot on the outside or of scale on the inside of the boiler tubes retards heat transfer from flue gas to boiler water.

- With oil or solid fuel firing the tubes should be cleaned regularly by means of sootblowers. The buildup of soot over a few days of operation can increase the flue gas loss by 50 per cent.
- Scale build-up on the inside of water tubes retards heat transfer and can overheat the metal to cause a rupture.

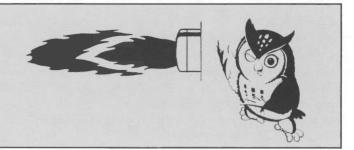
 A 1 mm scale build-up may increase the fuel consumption by 2 per cent.

Improper feedwater treatment can cause scale build-up as just described or require additional blowdown to avoid scale build-up. For a 1600 kPa(absolute) boiler with feedwater at 105°C, an increase in blowdown from 4 to 8 per cent results in a 0.5 per cent additional heat loss.

Radiation loss (in MJ's absolute) from a boiler is approximately constant for all firing rates. Thus, the percentage loss from radiation increases as the boiler load decreases. Other factors interact, but the net result is that the efficiency capability of a boiler is affected by load. Each boiler should be tested to establish the variation of efficiency with load.

Combustion air temperature affects the energy input to the boiler. The use of an air preheater, which uses the flue gas to heat the combustion air, increases the heat input while at the same time decreasing the flue gas temperature and heat loss.

Boiler efficiency will be influenced by the fuel primarily because of the latent heat loss from moisture in the fuel. Using natural gas as the base, the ranking of common fuels is as follows:


- Coal with approximately 6 per cent higher efficiency than natural gas.
- Oil with approximately 4 per cent higher efficiency than natural gas.
- Wood with 50 per cent moisture at 12 per cent lower efficiency than natural gas.

It must be realized that the criteria for selecting one fuel over another is the overall operating cost comparison and not the efficiency in isolation. Depending on the fuel costs, the lowest efficiency wood fuel could represent the best economic choice.

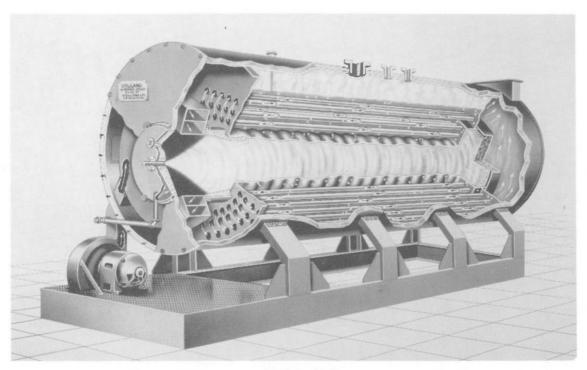
To summarize, there are important principles for efficiently operating a boiler plant as listed below.

- Know the optimum values of the described important measurements.
- Understand the energy loss impact of the measurements departing from the optimum values.
- Regularly monitor all important boiler variables.
- Take action to eliminate undesirable variances as soon as they occur.

EQUIPMENT SYSTEMS

Boilers

The four principal boiler types are the firetube, watertube, coiltube and electric.


Firetube Boilers

These are essentially shell and tube heat exchangers where the combustion gas passes through tubes immersed in water (Figure 14).

Firetube boilers usually burn natural gas or oil, although some, with a firebox type of combustion chamber, can be installed on top of a coal or wood burning stoker. They can generate dry saturated steam or hot water up to a maximum pressure of 1700 kPa(gauge). The output ranges from 350 to 28 000 MJ/h. The boilers are shop assembled and delivered with integral burner, forced draft fan, and controls.

Since firetube boilers operate at low pressures, the boiler water temperature is correspondingly low, ranging from 110°C to 200°C. By ensuring that the combustion gas contacts as much of the heat transfer surface as possible, the flue gas temperature can be reduced to within 50°C of the boiler water temperature. This minimizes the flue gas heat loss and can result in boiler efficiencies in excess of 80 per cent.

Firetube boilers respond relatively slowly to changes in demand for steam. The controls can be arranged for the steam pressure to be maintained during periods of low or no demand by the intermittent firing of the burner. This type of boiler is commonly used in smaller boiler plants.

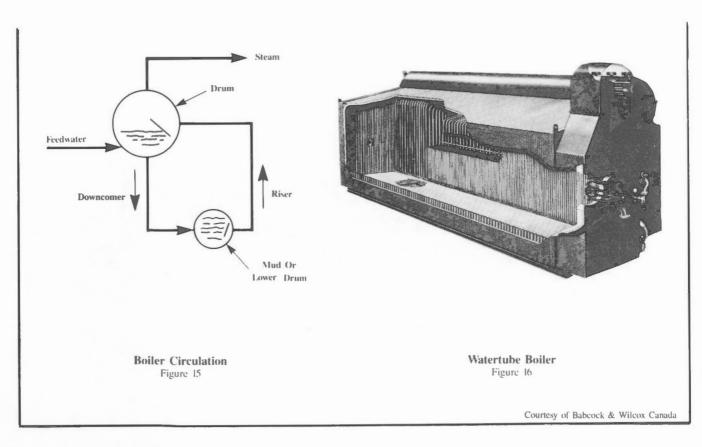
Firetube Boiler Figure 14

Courtesy of Volcano Limited

Watertube Boilers

The watertube boiler is capable of firing any type of combustible material in a wide range of capacities. Watertube boilers operate at pressures up to 30 000 kPa(absolute) and can produce steam at up to 565°C.

The water to be heated is carried inside banks of steel tubes, with the hot gas on the outside of the tubes. The most common boilers consist of a drum connected by vertical tubes (downcomers) to a lower drum or header(s). The downcomers can be heated or unheated. A further set of tubes (risers) connect the two drums and form the walls of the combustion chamber (Figure 15). Natural circulation begins when the heat supplied to the risers exceeds that supplied to the downcomers, thereby producing a mix of steam and water in the risers of less density than that of the water in the downcomers.

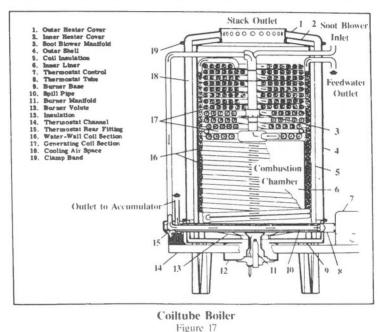

Natural gas or oil fired units are usually delivered as factory-assembled "packaged" boilers (Figure 16). Packaged boilers range in size from about 1500 to 190 000 MJ/h, which covers the normal size range of most boilers. For solid fuels, the boilers are site erected, as the large size of the combustion chamber and fuel-firing equipment does not make shipment possible.

Steam heating systems have inherent efficiency losses in phase changes between water and steam, trap and vent losses, and the flashing of steam from condensate. Hot water and thermal fluid systems experience heat losses, but they do not approach those described for steam. Thus, fluid boilers utilize energy more effectively and may also be sized for a lower MJ/h capacity than a steam boiler.

Hot water boilers are similar in appearance and operation to steam units. The circulation of water through the tubes is achieved by pumping.

All watertube boilers are capable of operating continuously at any load, from about 15 to 100 per cent of the rated capacity. The highest thermal efficiency normally occurs at about 85 per cent of rated capacity, with efficiencies falling more significantly at loads lower than 60 per cent. The small internal water capacity permits quick response to sudden steam demand changes, and frequent start-up and shutdown operation.

The best energy utilization of a watertube boiler results from steady demand at 85 per cent of rated capacity with the avoidance of sudden swings in demand or frequent shutdowns.


Coiltube Boilers

Coiltube boilers are essentially forced circulation watertube boilers (Figure 17). The convection bank can be constructed from a single coiled tube or parallel connected tubes. The water is forced through the coils by means of a positive displacement pump. This assembly is shop assembled complete with insulation, combustion air blower, burner, feed pump, separator and controls.

Coiltube boilers burn natural gas or oil, or a combination of both fuels. They generate hot water or saturated steam at pressures ranging from 450 to 2400 kPa(absolute). They are available in many capacities up to a maximum of 17 500 MJ per hour.

The normal water content of coiltube boilers is very low compared to other boiler types. Consequently, they can be started up and shutdown in a comparatively short time (10 minutes). They respond rapidly to large load swings, and can maintain low fire for long periods of time. Under no-load conditions, they can cycle between "On" and "Off" to maintain system pressure and temperature. The full-load thermal efficiency compares with watertube boilers (+80 per cent), and low load efficiencies are 1 to 2 per cent higher with coiltube boilers.

Coiltube boilers are ideal for small steam and hot water systems that are started and shutdown on a shift or daily basis or where there is a combination of sudden, large load demands and long periods of low or no demand.

Courtesy of Clayton Industries

Electric Boilers

Hot water or steam can be generated in boilers where the water is heated electrically with immersion coils. Electric boilers are more efficient than fuel fired boilers because there are no flue gas losses to the stack. Electrical energy is often not competitive with other fuels, but this should be checked particularly with respect to interruptible or "off-hour" rates.

New 3-pass firetube boilers, with ratings of 1600 to 16 000 MJ/h, are available with electric heaters as well as gas or oil burners. These boilers are considerably more expensive, but they provide the flexibility of frequent changes which could be the use of gas during the day and electricity at night.

Fuel Types, Characteristics and Conditioning

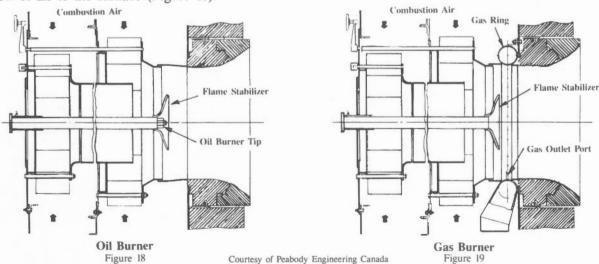
The most common types of fuels used in boiler plants are listed below:

- · No. 2 Oil
- No. 6 Oil
- · Natural gas
- Coal
- Biomass (wood & wood waste)
- Municipal waste

No. 6 oil is viscous at ambient temperature which means that it has a high resistance to flow. Consequently, No. 6 oil requires heating so that it can be pumped through the oil piping system and be suitable for atomization by the burner. The heating starts at the storage tank where coil heaters, in the bottom of the tank, or suction heaters, connected to the outlet flanges, raise the temperature of the oil to about 65°C. The oil pressure is then raised to between 700 and 1700 kPa(absolute) and further heated to a temperature of 90 to 120°C, depending upon the type of burner and grade of oil. This is done by pumps and heaters placed close to the boiler. Oil pipelines require heat-tracing to prevent the oil from becoming too viscous when the system is not in use. The heat for this equipment can be supplied by steam or electricity, but plant steam is preferred because of lower cost. Because of these handling difficulties, No. 6 oil is not normally used as a standby to another fuel. Until recent years, the price of No. 2 oil was much higher than that for No. 6 oil, which made the use of No. 6 an economic proposition, despite the additional equipment required. The current low price differential may create an energy management opportunity of replacing No. 6 oil with No. 2 oil, and eliminating the need for heating the standby fuel.

Pulverized coal facilities require significant energy for drying, grinding, classification and transport purposes. Wood residue from primary and secondary wood industries can be burned as a substitute for natural gas and oil. Wood firing requires more operator involvement than more common fuels but, depending on the cost of the wood residue and the ability of the wood burning facility to operate throughout the year, the conversion could be financially attractive. Wood firing has been successfully achieved in institutional environments where dirt and noise cannot be tolerated. Some size reduction and metal recovery may be required on-site depending on the wood fuel source.

Municipal waste represents a source of energy that can be used to generate steam and hot water. The public attitude toward transporting this material to user sites and storing it, plus the high cost of building a facility to prepare the material for burning, short term storage, moving and burning it and then cleaning the flue gases before discharging them to the atmosphere has limited the use of this abundantly available energy source.


Fuel Burning Equipment

Burner designs vary according to the type of fuel and the application objectives, but they all must do the following.

- · Direct the fuel to the combustion chamber
- · Direct the air to the combustion chamber
- Effectively mix the fuel and air
- Once the burner has been ignited it must continue to ignite the incoming fuel

Oil Burners

Oil must be atomized and simultaneously mixed with air to sustain combustion. An oil burner consists of a central tube with an atomizing device at the end, and a register that surrounds the barrel and serves to distribute the flow of air to the furnace (Figure 18).

Mechanical oil burners can be used to atomize No. 2 or 6 oil, but the pressure must be very high to obtain acceptable turndown. The burner turndown ratio is the ratio of the maximum to minimum fuel flows which produce satisfactory combustion. An example of the pressure difference for 5:1 turndown would be that a mechanical oil burner would require 4500 kPa oil pressure whereas a steam atomized burner would only require 650 kPa pressure for the same turndown.

Most No. 6 oil burners use steam-assisted atomizers where steam is mixed with the oil in the atomizing tip to break up the oil particles. This type of burner requires less oil pressure than the straight mechanical type, and has a better turndown ratio of up to 5:1.

Burners firing No. 2 oil often use air-assisted atomizers to attain turndown ratios of up to 5:1. Steam-assist burners may also be used for this lighter oil.

Natural Gas Burners

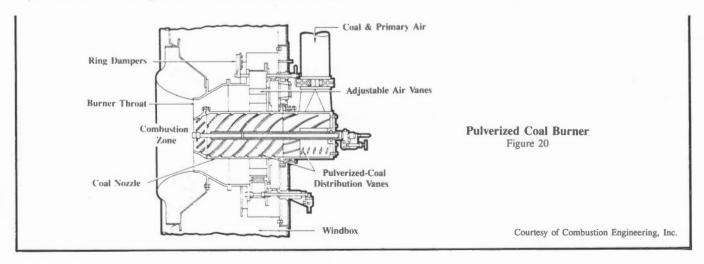
Natural gas mixes readily with air. The ring-type gas burner consists of a circular barrel ringed with multiple outlet ports (Figure 19). The "spud"type burner consists of a ring of 4 to 8 single barrels, each with a widened end containing multiple outlet ports. In either case the register surrounds the barrels with air.

Many boilers are equipped with combination natural gas and oil burners with the second fuel used as back up for the prime fuel.

Low Excess Air Burners

Standard natural gas and oil burners operate at 10 to 15 per cent excess air at full capacity and higher excess values at lower firing rates. The increasing excess air with decreasing firing rate phenomenon results from burner registers which are fixed at settings that provide best results at full capacity. Low excess air burners permit operation at 2 to 5 per cent excess air. A reduction of excess air from 15 to 5 per cent would reduce fuel costs by almost 1 per cent. These savings result from higher cost features as follows:

- Better design of the air diffusers, air register, and burner which achieve better mixing and combustion.
- Burner registers which are modulated with the firing rate to provide better combustion at firing rates below 100 per cent.

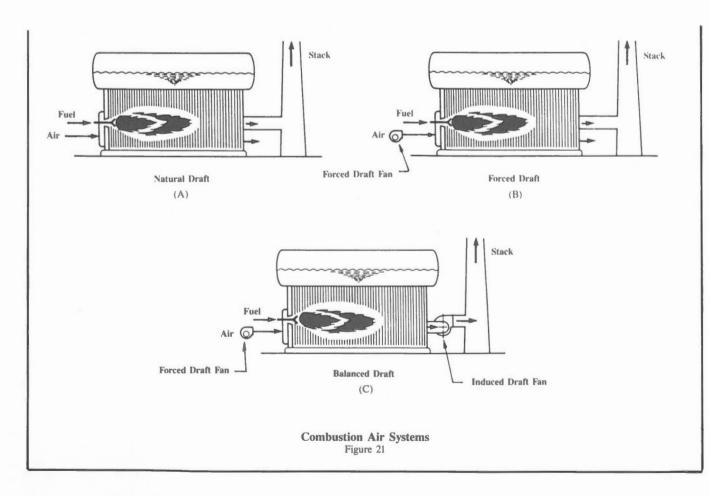

Pulverized Coal Burners

The barrel of a pulverized coal burner (Figure 20) consists of a large diameter steel tube fitted with internal distribution vanes. The coal and hot primary air, which were previously mixed in the pulverizer, are introduced tangentially to the barrel, to impart a strong rotation in the barrel. Adjustable inlet vanes also impart a rotation to the preheated secondary air entering the register. The degree of air and fuel swirl, coupled with the shape of the burner throat, establishes a recirculation pattern extending into the combustion chamber. Once the coal is ignited, the combustion heat in the furnace stabilizes the flame.

Stokers

Stokers are mechanical devices that burn solid fuel in a bed at the bottom of a combustion chamber. They are designed to permit continuous or intermittent fuel feed, fuel ignition, adequate supply of combustion air, release of gaseous products, and disposal of ash.

Stokers are classified according to the manner in which the fuel reaches the fuel bed. In an underfed stoker, the fuel and air enter the burning zone from beneath the bed. Overfed stokers have the fuel entering the combustion zone from above, in the opposite direction to the air flow. The spreader-type overfeed stoker delivers fuel so that a portion burns in suspension while the remainder falls and burns on the moving grate.


Combustion Air Systems

Combustion air can be supplied to the boiler by a natural, forced, or balanced draft system (Figure 21).

Natural draft (Figure 21A) uses the negative pressure (draft) produced by the boiler stack to draw air into the boiler, and remove the flue gas. The most common example of this is the domestic gas furnace. It is more difficult to control the fuel-air ratio for efficient combustion with natural draft firing and the leakage of air into the furnace increases the flue gas losses. The draft must be great enough to draw the combustion gas over the heating surfaces. An induced draft fan could overcome the lack of stack created draft, but if a fan had to be added a forced draft fan would normally be preferred. Natural draft is usually applied only to small furnaces with less than 1000 MJ/h of heat input.

The forced draft combustion air system is most commonly used for firing natural gas or fuel oil (Figure 21B). A fan supplies combustion air to the boiler and also forces the combustion gas over the heating surfaces of the boiler to the base of the stack. The draft generated by the stack assists in discharging the gas to atmosphere. Air flow is regulated by varying the fan inlet dampers to control the fuel-air ratio at all firing rates. Better mixing of the air and fuel is possible because of the turbulence caused by the higher air pressure differential across the burner. The percentage of excess air can be lower for forced draft systems with resulting lower heat loss to the flue gas. The disadvantage of the forced draft system is that a relatively high positive pressure within the boiler casings results in some heat losses if the furnace casing is poorly designed, constructed or maintained. This type of system is successfully used for small to very large boilers.

The balanced draft system (Figure 21C) is used when firing fuels such as coal (either pulverized or stoker fired), biomass, or municipal refuse. Solid fuels require a slightly negative pressure in the furnace to prevent leakage of fly ash and gas into the boiler room. The forced draft (F.D.) fan, provides the combustion air while the induced draft (I.D.) fan draws the gas from the combustion chamber over the boiler heating surfaces to the base of the stack. This system also permits close control of the fuel-air ratio at all firing rates. Maintaining the gas pressure within the boiler casing at a slight negative value minimizes the infiltration of air through the casing and the subsequent heat loss.

Auxiliary Drives

The drives of the feed pumps, forced and induced draft fans are usually electric motors. These pumps or fans may be steam turbine driven if there is a use for the low pressure exhaust steam from the turbines. Otherwise the steam must be vented to a condenser or to atmosphere, which reduces the economic benefit.

Soot Blowing

Soot blowing is required on boilers burning solid and liquid fuels but not on gas-fired boilers. The two blowing mediums are steam and air, with both being equally effective in deposit removal. The air pressure required at the soot blower head is usually in excess of the available plant air. Therefore, a separate compressor must be installed with an integrated piping system around the boiler. Steam soot blowing systems are usually supplied from the boiler drum through a pressure reducing station so that superheated steam is delivered to the soot blower head. Economics usually favour the use of steam for soot blowing.

Environmental Equipment

Ash Handling Equipment

All solid fuels produce ash that must be removed from the boiler. The ash is in bottom ash and fly ash forms. Bottom ash is from the coarse particles of slag that fall into the ash pit under the combustion chamber. Fly ash is the fine ash that is carried with the flue gas, and deposits in the hoppers beneath the economizer, air heater, dust collector and precipitator. The ash is conveyed from the pit and hoppers either to a silo, where it can be periodically removed by truck, or directly to an ash pond adjacent to the boiler plant. The conveying can be achieved mechanically, or by mixing the ash with air or water and blowing or pumping the mixture. Electrical energy is expended on drives for conveyors, pumps, compressors or blowers, and care should be taken in the operation and maintenance to ensure that system energy is minimized.

Air Pollution Control Equipment

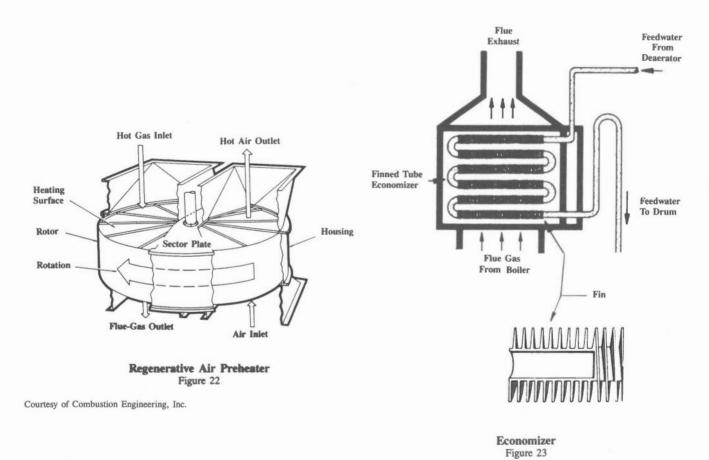
These systems are designed to reduce fly ash (particulates), sulphur oxide and nitrous oxide emissions from the boiler plant. Equipment use or nonuse and selection are influenced by government environmental regulations. This equipment is not usually required on small boilers firing natural gas or oil. All solid fuel firing boilers will require at least one of the following types of pollution control equipment.

- Mechanical cyclone collectors (dust collectors) remove particulates by centrifugal and gravitation forces developed in a vortex separator. Their use is now limited to small stoker-fired units because of their low collection efficiency of very small particles.
- *Electrostatic precipitators*, electrically charge suspended particles in the gas and then attract them to collecting plates with an electric field. The collecting plates are then rapped to cause the particles to drop into hoppers. Precipitators can be designed for a high collecting efficiency of 98 per cent or more.
- Fabric filters, or baghouses, have a long history of applications in dry and wet filtration processes to recover chemicals or control stack emissions. The dirty gas is passed through fabric filters with the particulate matter forming a cake on the fabric. The deposit is periodically removed from the filter by mechanically shaking the fabric, or by a pulse of air. Fabric filters can be designed for collecting 99 per cent of particulates or more.
- Lime or limestone scrubbing is the oldest method of removing sulphur dioxide from flue gas. The boiler flue gas enters a Venturi scrubber and contacts the injected absorbent lime slurry. The flue gas then passes through a vertical spray tower where the slurry and absorbed sulphur compounds are washed out of the gas.

All items of pollution control equipment use varying amounts of electrical energy that significantly increase the energy used per plant output. It is imperative that operation and maintenance staff keep this equipment in first rate working order.

Heat Recovery

Heat recovery takes the form of removing heat from the flue gases leaving the boiler or from the blowdown steam. This heat is normally used to heat combustion air, feedwater, or treated water.


Air Preheaters

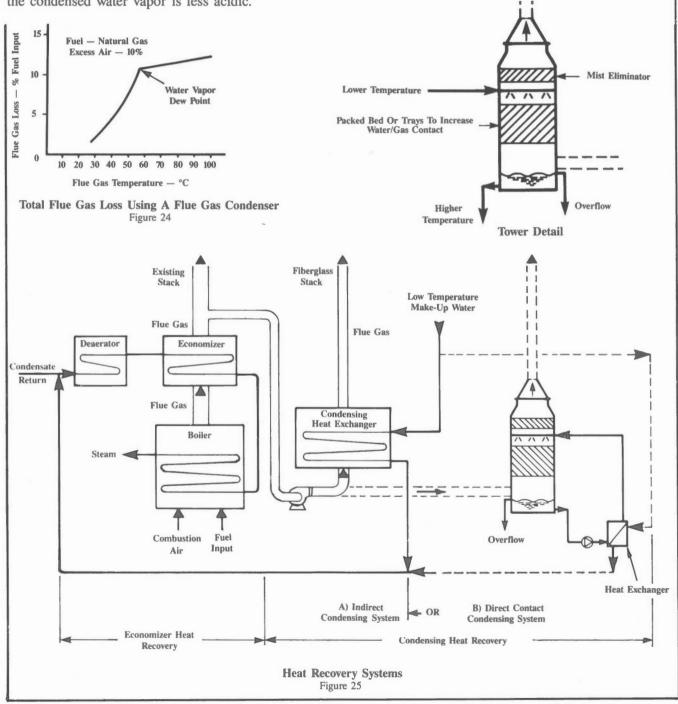
Air preheaters heat the incoming combustion air with the hot flue gas leaving the boiler. Tubular recuperative and regenerative airheaters are the principal types.

The principle of the regenerative heater is shown schematically in Figure 22. Heat is transferred by a regenerative surface that is alternatively rotated through the gas and combustion air streams. The heating surfaces are alternately heated by the flue gas and then cooled by transferring heat to the combustion air. The speed of rotation is very slow (1 to 3 RPM) to ensure maximum heat transfer and minimize leakage of air into the gas.

Additional energy is required to drive the rotating elements, and for the fan(s) to overcome the resistance of the heating surfaces. As the air-side of the heater is always at a higher pressure than the gas-side, leakage of air to the gas will always be present. The operator must ensure that the seals are well maintained since severe leakage will increase the air and gas capacity requirements and the fan energy. Air heaters are subject to "cold-end deposition", where the fly ash combines with moisture and sulphur derivatives to form a fine-grained deposit on the elements at the "cold-end" of the heater, i.e. on the surfaces closest to the cold air inlet. The operators must regularly use the airheater soot blowers to minimize deposits. Buildup of deposits requires extra fan energy to overcome the increased flow resistance.

Recuperative airheaters are shell and tube heat exchangers where the hot gas flows through the inside of the tubes, and the air over the outside. They require additional energy for the fan(s) to force the air and draw the gas over the heating surfaces. Unlike regenerative types, there is no leakage of air to the gas side. However, they have similar "cold-end" problems that require the operating staff to regularly use the soot blowers.

Economizers


Economizers improve the boiler efficiency by extracting heat from the flue gas leaving the boiler, and transferring it to the feedwater (Figure 23). Economizers can be positioned inside the main boiler casing or separately cased and supported outside the boiler. The tubes are plain steel or finned to improve heat transfer. In coal or oil fired boilers, the fins are wide-pitched to minimize the effect of ash deposits. Economizers require additional energy for the boiler feed pump to force the feedwater through the economizer tubes, and for the boiler fan(s) to force the air and draw the flue gas. Economizers are subject to the same cold-end problems as air heaters. Care must be taken to ensure that the soot blowing is preventing the buildup of deposits on the outside of the economizer tubes. This can be confirmed by visual examination through observation doors.

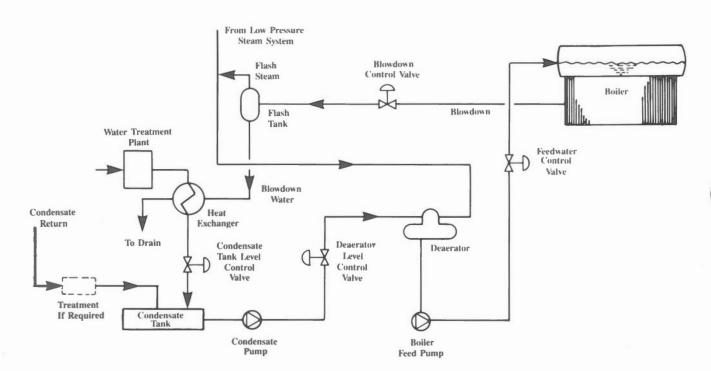
Flue Gas Condensers

Flue gas condensers remove more sensible heat from the flue gas than standard boilers with economizers or air preheaters. They also remove some latent heat which results in significant energy savings. The latent heat of water vapor contained in flue gas is equivalent to about 10 per cent of the HHV of natural gas. Only sensible heat is recovered until the natural gas flue gases are cooled to approximately 55°C. Figure 24 demonstrates the rapid flue gas loss reduction that occurs as the dew point is reached and latent heat is recovered. These systems may take the form of indirect condensing or direct contact heat recovery systems.

Indirect condensing systems are designed so that the flue gases are not in contact with the water that is removing the heat from the gases (Figure 25A).

Direct contact condensing systems cool the flue gas by spraying water in a tower arrangement (Figure 25B). There are different tower designs, but they are basically the same as scrubbers that are sometimes used to clean the gases. Flue gas condensers can be used most confidently on a natural gas fired installation because the condensed water vapor is less acidic.

Blowdown Heat Recovery


Flash steam, resulting from blowdown, is normally fed to the deaerator so that this energy is saved. However, the residual water contains heat which may be discharged to the sewer. Some of this energy can be recovered by passing the water through a heat exchanger before discharging it to the sewer.

Feedwater and Condensate Handling

A feedwater conditioning and handling system must continuously satisfy certain conditions to discourage operating problems.

- Keep suspended and dissolved solids, and sludge in a form that can be removed through blowdown.
- Reduce corrosion by preventing the buildup of oxygen and carbon dioxide in the water.
- · Control water pH.
- Prevent foaming conditions within the drum which allow water carryover with the steam.

A typical boiler feedwater system is shown in Figure 26.

Typical Boiler Feedwater System Figure 26

Softeners

The chief source of scale in boilers is water hardness from the presence of calcium and magnesium salts. Various softening processes are available for treating the boiler make-up water. These include the hot lime-soda process, hot-process phosphate softening, and a hot-lime zeolite softener. The softening process requires energy in the form of pumping power. For maximum softening efficiency low pressure steam is also required. However, the steam energy is recovered in the feedwater.

Dealkalizers

Dealkalizers remove alkalinity in the form of bicarbonates from the raw water make-up. Bicarbonates break down into carbonates and CO₂. CO₂ leaves the boiler with the steam and forms acidic condensate, which causes corrosion of the condensate piping system.

A split stream dealkalizer is a common method of reducing alkalinity and hardness. Another type of dealkalizer is the chloride-anion system.

Demineralization

In demineralization, ion exchange removes ionized mineral salts. Demineralization can yield pure water required by high pressure boilers. The process does not require heat energy, but it requires significant pumping power.

Deaerators

Noncondensible gases cause corrosion in the feedwater and condensate systems. The deaerator, which is the final stage of feedwater treatment, removes noncondensible gases such as O_2 and CO_2 from the feedwater. The water fed to the deaerator is a mixture of returned condensate and treated make-up water. Both may be taken to the deaerator separately, or they may have been previously mixed in a condensate receiving tank and then pumped to the deaerator.

The deaerating process is started by steam heating the incoming water to saturation temperature. The separated gases are vented through the top of the deaerator, and the heated and deaerated water falls into a storage tank under the deaerating head. Deaerators usually operate slightly above atmospheric pressure. This results in the deaerated water being fed to the boiler at about 105°C. Some older plants have deaerators operating at a slight negative pressure, which requires a vacuum pump to remove the gases. The energy required by the deaeration process is the power needed to pump the water and condensate to the deaerator and the steam to perform the deaerating process. The steam energy is recovered in the feedwater.

Condensate Tanks

Condensate tanks are designed to hold the returned condensate and treated make-up water. Receivers can be pressurized or vented to atmosphere. Vented tanks lose from 2 to 10 per cent of the heat in condensate as flash steam. The cost of the treated boiler water that must be replaced and pumping costs must also be considered. A pressurized tank avoids these losses, but a low pressure steam system must be available to absorb the vented steam. An alternative is to cool the condensate with cold make-up water to reduce or eliminate flashing of the condensate.

Flash Tanks

Flash tanks are used to separate condensate and flash steam produced when condensate is reduced in pressure. This may be done so that plant discharges can be reduced to atmospheric pressure before being disposed as effluent or to produce quantities of low-pressure steam for heating or deaerating purposes. If a plant discharge produces a consistent flow of significant quantities, some attempt should be made to recover heat by using the flash steam to heat domestic or service water.

Chemical Injection Equipment

Residual hardness can be removed from the boiler water by the injection of phosphate compounds into the feedwater or boiler drum. These chemicals convert calcium and magnesium salts to their respective phosphate compounds that are readily dispersed and removed by blowdown. The equipment involved includes a mixing tank, and a pump capable of injecting small quantities against the boiler pressure.

Chemical agents are sometimes pumped into the feedwater to remove small residual quantities of O_2 .

Automation Systems

Some form of monitoring and automation equipment is usually present within boiler plants, but the form and quantity varies substantially. Energy losses can be significant and measurements are required to quantify the energy performance and to expose deterioration in the operation. The combination of measurement data and automatic control can provide operational benefits.

- More precise and consistent operation to maintain the optimum conditions established during boiler testing.
- Automatic control permits operating personnel to be freed from the task of continuously adjusting variables
 to satisfy changing demand conditions so that they can be more effective in monitoring the efficiency of
 the overall operation. Personnel will also have more time available for equipment maintenance.
- Automation improves the safety aspects of the boiler plant operation.
- The proper use of automation can improve the boiler plant energy utilization, reduce operating costs and save dollars.

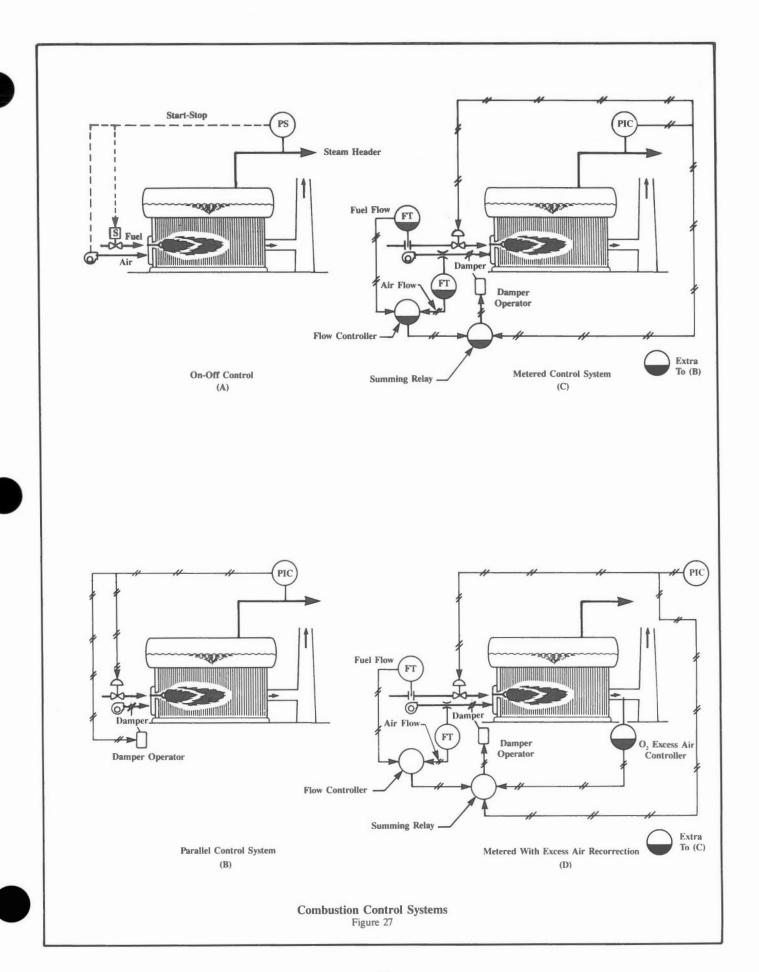
There are many types of automation hardware that can be used to approximately achieve the same results. Examples of this would be the possible use of on-off control, pneumatic or electronic modulating control, programmable controller, microprocessor or minicomputer. Measuring, Metering and Monitoring, Module 15 and Automatic Control, Module 16 would be useful references for this subject.

Safety Systems

This is the first level of automation to consider since it affects the safe operation of equipment and personnel safety. Minimum safety requirements are established by regulatory bodies and insurance companies. Requirements will be influenced by the type and size of boiler, number of burners and the fuel. An overview of potential safety system features follow.

- Steam drum safety relief valve designed for full boiler capacity and set to relieve at a fixed pressure above the operating value.
- Burner management system which often incorporates several safety features. This system must satisfy regulatory body requirements and could include the boiler purge with air prior to admitting fuel to the burner, confirmation that the fuel valve and air dampers and registers were in the correct position prior to light-off, operation and confirmation of the pilot system, opening of the fuel shut-off valve and confirmation that the main flame was established. The burner flame would then be continuously monitored to ensure safe operation. Several interlocks are usually designed into the system to anticipate problems before they result in an unsafe condition. Representative of these boiler operating parameters are fuel supply conditions, atomizing steam if applicable, combustion air supply conditions, furnace pressure, and low drum water level.

Combustion Control Systems


The choice of combustion control is extremely important because it influences the safe and efficient operation of the boiler. The major classifications of systems are described below.

- Two or three position control systems are the most basic and least expensive. With 2-position control (Figure 27A), the firing operation is initiated by a pressure switch for a steam boiler or a temperature switch for a hot water generator. The burner fires at the full rate or else is off. This is the least efficient control since in the firing position the boiler may be operating slightly beyond the optimum point and while "off" the heat transfer surfaces are cooled by air which is drawn through the unit by the stack effect. The 3-position system operates at off, low and high firing rates which tend to reduce "off" position inefficiencies while also controlling the steam pressure better.
- Modulating control means that the boiler can continuously operate at any firing rate between minimum and maximum firing capability to satisfy steam demand. This tends to better match the energy input with the boiler output demand at all times and is generally more efficient than 2 or 3 position control. The variety of modulating systems has evolved primarily to improve the combustion efficiency on a continuous basis, but also to satisfy severe steam demand requirements.

With a parallel modulating control system the fuel valve and combustion air dampers respond in unison to steam demand in accordance with a predetermined relationship which repeats within limits (Figure 27B). The dampers are schematically shown in the fan discharge duct but they usually position the louvres that adjust the air flow into the fan.

A metered modulating control system is one where the fuel and air are initially parallelled as in the previous example to respond to steam demand, but a fuel flow/air flow relationship is used to fine tune the parallelling to better maintain the combustion test conditions (Figure 27C). A further refinement would be a feature known as "cross-limiting". This uses the measured air flow to limit the fuel flow to the amount which can be safely burned. It also increases the air flow to the amount which is required to safely burn the measured fuel flow. This method of control has the following advantages:

- The rate of increase of fuel flow on a load increase is limited to match the rate of increase of air flow.
- The rate of decrease of air flow on a load decrease is limited to match the rate of decrease of fuel flow.
- At high loads, the rate of firing is limited by the combustion air system capacity, not the fuel system capacity. This prevents operation at high fuel-air ratios which may produce dangerous firing conditions.
- There is a measure of protection against the danger of a fuel control valve sticking open because the system will increase the air flow to conform to the metered fuel flow.

A further refinement can be incorporated into parallel or metered control systems. It uses the analysis of the combustion flue gas as the final measure of combustion effectiveness (Figure 27D). This is referred to as an excess air recorrection system. O₂, CO₂ and CO have all been used as the index of combustion efficiency. O₂ recorrection is the most common type. CO₂ should not be used because the same value can occur when there is a deficiency of air or when the excess air is correct. If CO is used, it is maintained at very low mg/kg (CO to flue gas) values, but the high cost analyzer is a disadvantage. Excess air recorrection is the ideal method because it is a true final measure of the combustion effectiveness. In other words, regardless of whether dampers slip, metering conditions change to introduce flow measurement errors or other variations occur, gas analysis is still a good final measure of the combustion process. A gas analysis measurement can be used to allow the operator to manually trim the excess air or it can be introduced as an automatic recorrection to the controls. In the latter case, the optimum flue gas analysis for all firing rates is "programmed" into the controls and compared to the actual value and the fuel/air ratio is then automatically trimmed to achieve the 'programmed' value. (Use of the word "programmed" is not to suggest that computer hardware is required although it could be used).

Retrofitting a boiler combustion control system can represent an opportunity to reduce operating energy costs. The savings potential will depend upon the ability of the existing hardware and the potential ability of new control systems to be adjusted for efficient conditions and to maintain them for extended periods of time.

Feedwater Control Systems

The purpose of a feedwater control system is to maintain adequate water in the drum regardless of the steam demand and firing rate. The description of these systems is briefly described below.

- Small boilers sometimes have an *on-off level control system* which starts a feedwater pump on low drum level and stops it at high level. This is the least expensive and most inefficient system.
- Most boilers are equipped with modulating drum level control, but this classification can in turn be divided into three distinct systems. The first is a single element system whereby the incoming feedwater is controlled from drum level only. This can take the form of a mechanical, pneumatic or electronic control system which is normally restricted to units of 15 000 kg/h capacity with generally steady loads. A 2-element system employs drum level and steam flow measurements. The steam flow signal helps to anticipate demand changes and thus feedwater requirements. A 3-element system adds the measurement of feedwater flow to the 2-element system. This compensates for feedwater supply variations and the shrink and swell effect of the boiler water level during severe load changes.

Monitoring Systems

The term *monitoring* refers to the act of observing the overall boiler plant equipment operation plus the actual measurement data available.

Regular monitoring of the boiler plant variables is an essential part of consistently maintaining energy efficient conditions. Combustion is a complex process which is dependent on a large number of interacting boiler plant variables. Thus, the possibility for combustion air and fuel conditions or equipment to change and alter the combustion efficiency must always be anticipated. A significant large change would be obvious, but a gradual change might only be detected quickly as a result of good consistent monitoring habits by operating personnel.

There is a variety of monitoring equipment available to assist operating personnel in the task of ensuring that efficient operation is being achieved.

- An annunciator is an alarm system that brings undesirable conditions to the operator's attention by means of audible and visual signals.
- Combinations of indicators and recorders are used to display important information.
- Totalizers are often provided for steam and fuel flows so that the direct boiler efficiency can be calculated.
- Data loggers can be used to automatically scan measured variables to provide alarming features, shift operation summaries and trend recording of critical variables.
- Microprocessors can be provided as a strict monitoring tool or as a combination burner management, combustion and feedwater control plus monitoring system. These systems provide management and operating personnel with performance profiles of each boiler and the complete plant.

Cogeneration Systems

Cogeneration can be defined as the simultaneous generation of electrical power and process heat. The most common example is the back-pressure or extraction steam turbine-generator. Another example is a gas turbine connected to an electric generator, with steam being raised by a heat recovery boiler absorbing the heat in the turbine exhaust gases. In these cases, the boiler could deliver steam direct to the process or via a back-pressure turbine.

Gas turbine exhaust contains 75 to 80 per cent of the oxygen found in free atmospheric air. It can therefore supply sensible heat and combustion air to the boiler. The resultant saving of fuel at the steam generator can be considered as a reduction of the heat rate (input per kWh of electrical output) of the gas turbine. In almost all cases, this will result in a heat rate of about two-thirds the heat rate of the most efficient electrical utility generating plant.

Small boiler plants are sometimes designed for a higher pressure than that required by the plant process. Raising the boiler pressure and passing the steam to process through a small turbine generator may give a low cost supply of electricity for a modest increase in boiler fuel.

ENERGY MANAGEMENT OPPORTUNITIES

Energy Management Opportunities is a term that represents the ways that energy can be used wisely to save money. A number of typical Energy Management Opportunities, subdivided into Housekeeping, Low Cost, and Retrofit categories, are outlined in this section to illustrate potential energy savings. This is not a complete listing of the available opportunities. It is intended to provide ideas for management, operating and maintenance personnel to identify other opportunities that are applicable to a particular facility.

Housekeeping Opportunities

Implemented housekeeping opportunities are energy management actions that are done on a regular basis and never less than once a year. This includes activities such as efficient operation, regular maintenance and troubleshooting.

Operation

- 1. Regularly check water treatment procedures.
- 2. Maintain the TDS of the boiler water suitably low.
- 3. Operate at the lowest steam pressure or hot water temperature that is acceptable to the distribution system requirements.
- 4. Condition fuel for optimum combustion.
- 5. Minimize load swings and schedule demand where possible to maximize the achievable boiler efficiencies.
- 6. Regularly check the efficiency of boilers.
- 7. Regularly monitor and compare performance related data.
- 8. Regularly monitor the boiler excess air.

Maintenance

- 1. Keep burners in proper adjustment.
- 2. Overhaul the seals of regenerative airheaters during scheduled boiler shutdowns.
- 3. Check for and repair leaking flanges, valve stems and pump glands.
- 4. Maintain tightness of all air ducting and flue gas breeching.
- 5. Check for "hot spots" on the boiler casing that may indicate deteriorating boiler settings that should be repaired during the annual shutdown period.
- 6. Keep the fireside surfaces of boiler tubes clean.
- 7. Replace or repair missing or damaged insulation.
- 8. Replace boiler observation or access doors, and repair any leaking door seals.
- 9. Replace or repair any leaking or malfunctioning steam traps.
- 10. Periodically calibrate measurement equipment and tune the combustion control system.

Operation Examples

These are items that should become part of the normal operating routine.

Recommended water treatment procedures must be consistently followed to avoid scale build up. This applies
to the chemical injection procedures in addition to the treatment of the make-up water. Because scale build
up occurs on unseen heating surfaces, the operator will be unaware of the occurrence until a tube ruptures.
Up until that time, the fuel wasted could amount to an additional 1 per cent for a considerable length of time.

2. It is important that the recommended level of total dissolved solids (TDS) in the boiler water be maintained by proper blowdown procedures to prevent carry-over of solids by the steam. However, it is equally important that the blowdown rate not be excessive.

Example: A packaged watertube boiler is generating 10 000 kg/h of steam at 1500 kPa(absolute) and 240°C, from feedwater at 105°C by firing 805 L/h of No. 2 oil with an HHV of 38.68 MJ/L. The drum pressure is 1600 kPa (absolute) which establishes the acceptable boiler water condition. The minimum required blowdown rate is 5 per cent, but the actual rate is 10 per cent. The wasted heat can be calculated

Enthalpy of boiler water at 1600 kPa(absolute) 858.6 kJ/kg

Enthalpy of feed water at 105°C

440.17 kJ/kg

Heat loss in excess blowdown = $10\ 000\ x\ (0.10\ -\ 0.05)\ x\ (858.6\ -\ 440.17)$

= 209 215 kJ/h

Heat loss as percentage of fuel input = $\frac{209 215}{805 \times 38.68 \times 1000} \times 100$

= 0.67%

- 3. Any reduction in pressure and temperature at the outlet of the boiler will result in decreased fuel input. The operator should check with the end user of the steam or hot water to determine if reduction can be tolerated. Before any change is adopted, it should be referred to the boiler manufacturer for comments and approval, as such changes could interfere with the boiler water circulation.
- 4. Proper fuel conditioning procedures must be maintained. For example, an increase in the viscosity of No. 6 oil because of faulty operation of the oil heating equipment, will result in extra pumping energy and less efficient combustion.
- 5. The heat surfaces must be kept clean through regular soot blowing and tube monitoring. If no visible improvement to the cleanliness of the surfaces is observed after soot blowing the operator must change the sequence, timing and duration of the soot blowing until satisfactory improvement occurs.
- 6. Rescheduling of steam consumption can eliminate inefficient load swings and low load operation. It may be possible to operate a boiler at maximum load every other day instead of 50 per cent continuously. Alternatively, the load may be switched to a smaller boiler that can operate near full load continuously.
- 7. The boiler efficiency should be calculated regularly, by either the input-output or the indirect losses method.
- 8. Operational logs should be used to regularly compare the performance with that achieved in the past.
- 9. Check the excess air and other constituents in the flue gas regularly. A continuous monitor is best, but the capital cost of this equipment is high. Sampling tests by Orsat or other chemical means can be a reliable guide to the existing combustion conditions. Readjustment of the burners or the air-fuel ratio should be performed promptly if high excess air or the presence of carbon monoxide is detected. Figure 13 demonstrates the impact of a deficiency or excess of combustion air on the boiler losses.

Maintenance Examples

These are items that should be done on a regular basis, and never less than once a year. They may be considered to be part of preventive maintenance procedures.

- 1. Maintain proper burner adjustments. It is a good idea to have an experienced burner manufacturer's representative adjust the burners. The operator can then identify the appearance of a proper burner flame for future reference. The flame should be checked frequently, and always after any significant change in operating conditions.
- 2. Overhaul regenerative air heater seals. Excessive amounts of air can leak from the air side to the gas side of the air heater if the seals are in poor condition. This results in increased forced draft fan power consumption and may reduce the maximum boiler capacity.

- 3. Repair leaking flanges, valve stems and pump glands. Prompt attention to steam and water leaks will not only save energy but may also prevent costly damage to the stems and flange faces because of the high velocity steam or water jets.
- 4. Maintain tightness of air ducting and gas breeching. Leakage of air out of the air ducts will impose an extra load on the forced draft fan. Leakage of gas will not affect the forced draft fan, but it may cause hazardous operating conditions inside the boiler room. If an induced draft fan is used, any leaks in the gas breeching will draw air into the flue gas system which will increase the load on the induced draft fan.
- 5. Check fans for boiler casing hot spots. "Hot spots" are an indication of excessive heat losses from the boiler enclosure. The temperature of the surface of the outer skin should not be more than 50°C, although higher temperatures may be unavoidable where insulation cannot be installed, such as around the burner assembly. Eliminating hot spots is a safety measure, and will help to maintain comfortable working conditions.
- 6. Replace or repair missing and damaged insulation. Substantial quantities of heat are lost from bare steam and hot water lines.
- 7. Replace boiler doors and repair leaking door seals. Leakage of air or gas will create the same problems as described in Example 4. In addition, an open furnace door will cause considerable heat loss by radiation of heat from the furnace to the outside. There is also a danger that a furnace upset will cause hot gas to be ejected suddenly through the opening to create a personnel safety hazard.
- 8. Repair malfunctioning steam traps. Steam traps may fail in the open or the shut position. An open steam trap will pass excessive quantities of steam to increase the heat loss. A closed trap will not permit condensate to escape. If the trap is connected to a heat exchanger, the heat exchanger will gradually fill with condensate and eventually fail to operate. If the heat exchanger is heating outside air, the condensate may freeze in winter and damage the tubes of the unit. If the closed trap is draining a steam line, excessive condensate may build up in the line to cause water hammer in the system. This may damage fittings and equipment. A regular steam trap maintenance program is a very positive step toward minimizing energy losses.
- 9. Calibrate and tune measurement and control equipment. A common cause of deteriorating boiler efficiency is operation at higher excess air values than necessary. If the combustion control system is not operating properly there is a tendency to increase the air flow to ensure that the fuel-air ratio will not become excessive for load changes or upset conditions. If the fuel-air ratio is too high, meaning that there is a deficiency of combustion air, there is a possibility of unstable combustion conditions which could lead to a furnace "puff". A properly operating combustion control system will permit operation at the lowest attainable excess air while maintaining proper combustion during load changes. Typically a reduction in the excess air from 20 to 10 per cent will increase the efficiency 1.5 per cent.

Low Cost Opportunities

Implemented low cost opportunities are energy management actions that are done once and for which the cost is not great. This creates a separation from the housekeeping activities which must be repeated regularly.

Some of the potential low cost energy saving opportunities in boiler plants are listed below.

- 1. Install performance monitoring equipment.
- 2. Relocate combustion air intake.
- 3. Recover blowdown heat.
- 4. Add insulation.
- 5. Reduce boiler excess air.

Low Cost Examples

1. Install Performance Monitoring Equipment

Minimum monitoring instrumentation should provide the ability to determine the boiler energy input and output. The fuel meter or wattmeter could be a portable instrument used for several boilers. Additional instruments would be required to measure the flow, pressure and temperature at the boiler outlet, and the temperature of the boiler feedwater. Flue gas temperature and gas analysis should be used to determine the flue gas loss. If an airheater or economizer is used to recover heat from the flue gas, temperature measurements of gas and air in and out could be used to check the performance.

2. Relocate Combustion Air Intake

The combustion air intake can sometimes be relocated to the top of the boiler house to use heated air and save energy.

Example: A boiler firing No. 2 oil uses 14 500 kg/h of air at 20°C average temperature. Installation of a duct to the top of the boiler house increases the average air temperature to 30°C. The specific heat of the air is 1.01 kJ/kg.°C.

The boiler operates 6000 hours per year, and the fuel costs \$5/GJ.

Annual fuel savings =
$$\frac{146 \ 450 \ \text{x} \ 6000 \ \text{x} \ 5}{10^6}$$

= \$4,393 per year

The ducting cost is \$10,000.

Simple payback =
$$\frac{$10,000}{$4,393}$$
 = 2.3 years

3. Recover Blowdown Heat

Blowdown heat can be recovered by diverting the flash steam to the deaerator and/or putting the blowdown water through heat exchangers to heat the feedwater make-up.

Example: Consider a boiler evaporating 13 500 kg/h of dry saturated steam at 1400 kPa(absolute) with a blow-down rate of 5 per cent. The feedwater is supplied to the boiler at 1500 kPa and 105°C.

A study of the deaerator steam and feedwater systems shows that 75 per cent of the blowdown is recoverable. The boiler operates 5000 hours per year and fuel costs \$5/GJ.

Annual savings =
$$\frac{560 \ 317 \ x \ 0.75 \ x \ 5000 \ x \ 5}{10^6}$$

= \$10.506

Blowdown recovery equipment including a heat exchanger to transfer heat from the blowdown water to treated water make-up, plus the associated piping costs \$15,000.

Simple payback =
$$\frac{\$15,000}{\$10,506}$$

= 1.4 years

4. Add Insulation

Add insulation to areas previously left uninsulated or increase thickness in areas already insulated. Boilers installed 15 to 20 years ago were sometimes insulated for reasons of personnel protection rather than energy conservation. Insulation thicknesses were selected to give an outside casing temperature of 55°C. If additional insulation was added to reduce the skin temperature to 40°C, the energy saving could amount to at least 0.25 per cent of the annual fuel bill. Also, some areas out of the reach of operating staff may not be insulated.

5. Reduce Boiler Excess Air

Reduction in the excess air may be achieved by minor adjustments to the control system, and burner assembly. These changes can be effected at low cost.

Example: A boiler burning natural gas is operating at 60% excess air. Boiler efficiency has been tested and found to be 77%. Annual fuel costs are \$400,000. Recalibration of the controls and minor repairs to the burner windbox dampers cost \$2000. These changes permit operation at 40% excess air.

From Figure 9, it can be seen that a reduction in excess air from 60% to 40% results in a reduction in flue gas losses from 21% to 19% at a flue gas temperature of 210°C. Assuming that other losses and the flue gas temperature remain unchanged, the boiler efficiency will be 79%.

Annual fuel cost at 40% excess air = \$400,000 x
$$\frac{77}{79}$$
 = \$389,873

Annual savings =
$$$400,000 - $389,873$$

= $$10.127$

Payback =
$$\frac{$2,000}{$10.127}$$
 = 0.2 year (2.4 months)

Retrofit Opportunities

Implemented retrofit opportunities are energy management actions which are done once and for which the cost is significant. This section provides a few examples of how the installation of new equipment can contribute to the saving of energy dollars. They usually involve technical changes that can affect the performance and arrangement of plant auxiliaries. It is suggested that the boiler manufacturer or a consulting engineering firm be retained to make an evaluation of the proposed changes. Boiler plant retrofit opportunities are listed below.

- 1. Install economizer.
- 2. Install airheater.
- 3. Install new boiler.
- 4. Upgrade burner.
- 5. Install electric coil boiler.
- 6. Install turbulator in fire tube boiler.
- 7. Install flue gas condenser.
- 8. Convert from oil to gas.

Retrofit Examples

1. Install Economizer

The introduction of an economizer into the boiler breeching will increase the pressure drop in the flue gas system. In a forced draft boiler, this may mean the installation of a new forced draft fan, or at least a new impeller and motor. The resultant increase in combustion chamber pressure may necessitate changes to the burner. In an induced draft system, the induced draft fan may be changed, but the combustion chamber pressure and burner will remain the same. There will be an additional water-side pressure loss that may mean a modification to the boiler feed pumps and motors. The temperature of the gas to the stack will be less which reduces the stack draft. Feedwater piping modifications, economizer support, and possible breeching modifications must be evaluated.

Example: The analysis that follows is based on the actual addition of a free standing economizer to a forced draft packaged water-tube boiler producing a maximum of 20 000 kg/h of superheated steam at 3100 kPa(gauge). The natural gas fired boiler operated with 10 per cent excess air, 300°C gas outlet temperature and a tested efficiency of 80 per cent. Before conversion, the boiler's annual fuel consumption was 292 780 GJ at a cost of \$4.24/GJ. The modification included changes to the F.D. fan, burners and feed pump motors. The total cost of the project was reported to be \$158,000 (1984).

Annual fuel cost before conversion =
$$292,780 \text{ GJ x } \$4.24/\text{GJ}$$

= $\$1,241,387$

After conversion, the excess air was still 10%, but the exit flue gas temperature had decreased to 180° C. From Figure 9, it can be seen that the reduction in the flue gas heat loss would be equal to 4.8 per cent. An additional radiation loss of 0.2 per cent of the fuel input can be allowed for the economizer heat transfer efficiency of approximately 96 per cent. Thus, the heat recovered in the economizer = 4.8 - 0.2 = 4.6 per cent of fuel input.

Fuel energy after conversion =
$$\frac{234\ 224}{(.80\ +\ .046)}$$

= 276 860 GJ

Annual fuel savings =
$$$1,241,387 - 1,173,886$$

= $$67,501$

Simple payback =
$$\frac{$158,000}{$67,501}$$

= 2.34 years

2. Install Airheater

When considering an airheater the burner manufacturer should be consulted to determine the maximum allowable combustion air temperature. This could be as low as 250°C, and it is unlikely to be higher than 400°C since that would require alloy steels instead of carbon steel.

The introduction of an airheater will increase the pressure loss on the flue gas and combustion air systems. A forced draft system, with only a single F.D. fan, may require the installation of a new fan and motor. For a balanced draft system, both fans may have to be replaced, although a new impeller and motor might be sufficient. The forced draft system may also include modifications to the burner, as the combustion chamber pressure will increase significantly. New air and gas ductwork must be installed, and modifications to the stack may be necessary.

3. Install New Boiler

Installing a new boiler to replace an inefficient boiler will make a substantial improvement in fuel economy, particularly if the boiler is constantly operating at loads much lower than rated capacity.

Example:In an actual case history, a gas fired water-tube boiler was originally designed to generate a maximum of 15 000 kg/h of dry saturated steam at 2200 kPa(absolute) from feedwater at 105°C. Through energy conservation measures, the load was reduced to 5000 kg/h for 6000 hours annually. When tested at the reduced load, the efficiency was calculated at 71 per cent. Fuel costs \$4.24/GJ. A new coil-tube boiler, capable of generating 5000 kg/h at the same conditions with an efficiency of 80 per cent was installed at a total cost of \$50,000.

Enthalpy of saturated steam at 2200 kPa(absolute) 2797.1 kJ/kg (From Table 2)

Enthalpy of feedwater at 105°C

440.17 kJ/kg (From Table 2)

Old boiler fuel energy =
$$\frac{5000 (2799.1 - 440.17)}{0.71 \times 10^6}$$

$$= 16.61 \, \text{GJ/h}$$

Annual fuel cost =
$$16.61 \times 6000 \times 4.24$$

Annual new boiler fuel cost =
$$422,558 \times \frac{71}{80} = $375,020$$

Annual savings =
$$$422,558 - $375,020 = $47,538$$

Simple payback =
$$\frac{$50,000}{47,538}$$
 = 1.05 years

4. Upgrade Burner

Installation of a new burner assembly may produce energy savings from the reduction of excess air in the flue gas. Example: A packaged boiler burning natural gas is operating with 40% excess air. It is not possible to reduce the excess air below this level because of the poor mixing of the fuel and air in the existing burner. A new burner assembly, which is guaranteed to operate at 10% excess air, costs \$45,000 installed. Annual fuel cost is \$400,000. Flue gas temperature is 250°C.

From Figure 9, it can be seen that a reduction in excess air from 40% to 10% reduces flue gas losses from 23% to 20%. The corresponding increase in boiler efficiency, allowing 2% for radiation and unmeasured losses, is from 75% to 78%.

Annual fuel cost after conversion = \$400,000 x
$$\frac{75}{78}$$

Annual savings
$$= $400,000 - $384,615$$

$$=$$
\$15,385

Simple payback =
$$\frac{$45,000}{$15,385}$$
 = 2.9 years

5. Install Electric Coil Boiler

For light summer loads, such as the heating of domestic water, it is inefficient to start-up a large boiler and operate it at a very low load. An electric boiler, sized so that it can meet the load operating at or near full capacity, may provide an opportunity for energy and dollar savings.

6. Install Turbulator in Firetube Boiler

In firetube boilers of less than 100 HP, or in those converted from coal to gas or oil firing, the combustion chamber tends to be large in relation to the volume of gas passing through. The heat transfer therefore is less effective, with a resultant decrease in thermal efficiency. A turbulator is a simple spiral plate that is rotated by a small electric motor to induce a swirling action to the combustion gases. The increase in thermal efficiency is claimed to be 3 or 4 per cent of the heat input.

Consider a 70 HP firetube boiler with an annual fuel bill of \$65,000 per year. A turbulator costs \$2,500 to install.

Annual fuel savings =
$$65,000 \times 0.03 = $1,950$$

Simple payback =
$$\frac{$2,500}{$1,950}$$
 = 1.3 years

7. Install Flue Gas Condenser

A flue gas condenser reduces the temperature of the boiler exit gas below the dew point of the water vapor in the gas, thereby recovering latent heat from the flue gas. The following analysis applies to an actual retrofit of a large commercial greenhouse complex. The heating plant consisted of a 350 HP gas or oil fired coiltube boiler using 12 GJ/h of natural gas at 10 per cent excess air for 4000 hours per year. Fuel costs \$4.24/GJ. A flue gas condenser was installed to reduce the stack gas temperature from 260°C to 50°C. The capital cost of the retrofit amounted to \$22,000.

The recovered heat was used to heat water which otherwise would have been heated by burning natural gas in the boiler at 78 per cent efficiency. A 95 per cent efficient heat exchanger was used to transfer heat from the condenser water.

From Figure 9, the stack loss at 260°C with 10 percent excess air is 19 per cent of the input energy. From Figure 24 the stack loss at 50°C is 7.3 per cent.

Net efficiency improvement =
$$(19 - 7.3) \times .95$$

$$= 11.1\%$$

Annual fuel savings = 12 GJ/h x
$$\frac{11.1}{(78 + 11.1)}$$

$$= 1.495 \text{ GJ}$$

$$=$$
 \$25,355

Simple payback =
$$\frac{$22,000}{$25,355}$$

8. Convert From Oil to Gas

The conversion of a boiler from oil to gas firing does not necessarily save energy, but it can result in substantial dollar savings.

Example: A packaged type boiler, rated at 10 000 kg/h, burns No. 2 oil which costs \$.30/L. Annual oil consumption is 2.2 million litres. The conversion cost to natural gas is estimated at \$60,000, including a new burner assembly, new and modified controls, gas piping, and installation labour. The boiler operates with an excess air of 40% and a flue gas temperature of 240°C. For this installation the natural gas costs were \$5.00/GJ.

Conversion from oil to gas firing means that the boiler efficiency is reduced, because of the higher water vapor losses in the flue gases which result from the combustion of hydrogen in the fuel.

From Figure 10, the total flue gas loss at 40% excess air and 240°C flue gas temperature for No. 2 oil firing is 18%. Radiation and unmeasured losses are approximately 2%. Thus, boiler efficiency is 100 - (18 + 2)% = 80%.

From Figure 9, the total flue gas loss at the same excess air and flue gas temperature when firing natural gas is 21%. Radiation and unmeasured losses are the same at 2%. Boiler efficiency for gas is 100 - (21 + 2)% = 77%.

Annual oil cost =
$$$0.30 \times 2.2 \times 10^6$$
 litres
= $$660,000$

The annual cost of pumping oil is \$5,000 so that the total annual cost for it is \$665,000

No.2 oil has a heating value (Appendix C) of 38.68 MJ/L.

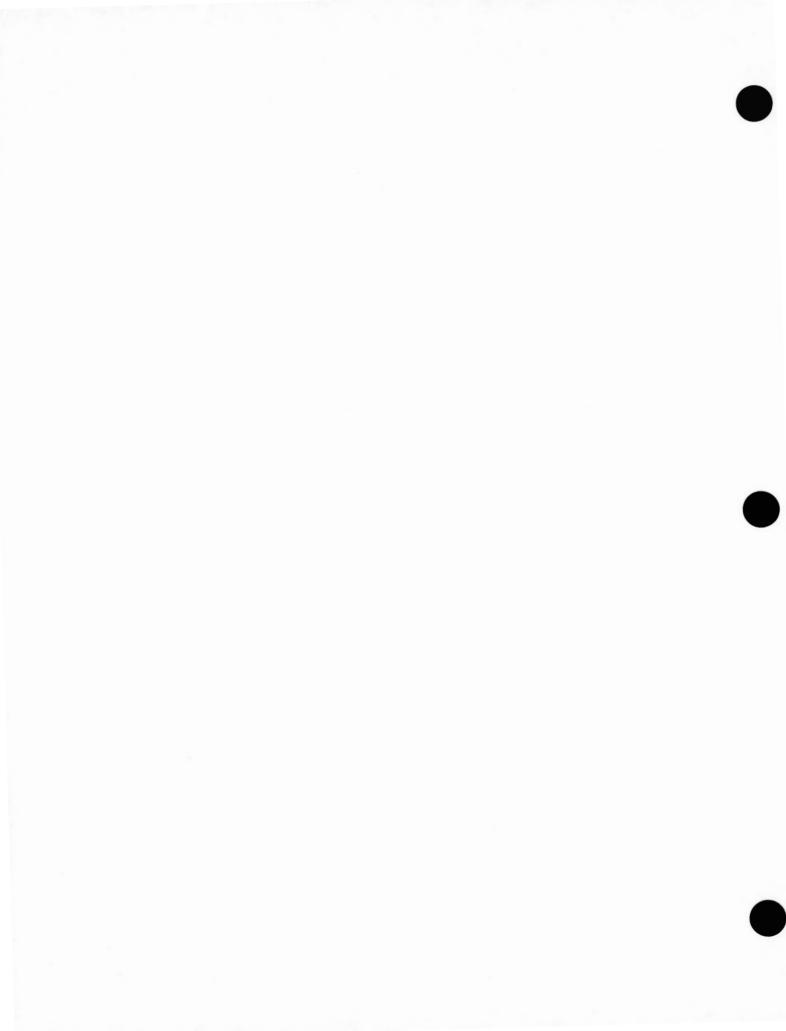
Annual oil energy =
$$\frac{2.2 \times 10^6 \text{ L/yr} \times 38.68 \text{ MJ/L}}{1000 \text{ MJ/GJ}}$$

= 85 096 GJ/y

Total energy input per year when burning gas will be higher owing to the lower boiler efficiency.

Annual gas energy = 85,096 GJ x
$$\frac{80}{77}$$
 = 88,411 GJ/yr

Simple payback =
$$\frac{$60,000}{$222,945}$$
 = 0.269 year (3 months)


Further savings could be made by reducing the excess air from 40% to 10% with a better gas burner.

Boiler Efficiency Test Worksheet 6-1

Company: WORKED EXAMPLE	Date:	8/3/85	
Location:	Ву:	IBE	
Boiler Number: 2	Fuel Fired:	No.2 OIL	
Rated Capacity: 12000 kg/h	Test No3	B-HIGH LOAD	
Pressures & Temperatures Steam pressure at boiler outlet Steam temperature at boiler outlet Water temperature at boiler inlet Combustion air temperature Fuel temperature Gas temperature leaving boiler		1500 kPa 240 °C 105 °C 20 °C 20 °C 260 °C	(1) (2) (3) (4) (5) (6)
Unit Quantities Enthalpy of steam at boiler outlet Enthalpy of feedwater to boiler Heat absorbed per kg of steam (7-8) Higher heating value of fuel (state units)		2009.2 kJ/kg .440.17 kJ/kg 2459 kJ/kg 38.68 kJ/kg	(7) (8) (9) (10)
Hourly Quantities Actual water evaporated Rate of fuel firing (state units) Total heat input (12 x 10)* = 805 x 38	. 68_	10.000 kg/h 805 kg/h 311.37 MJ/h	(11) (12) (13)
Total heat output $\frac{(11 \times 9)}{1000} = \frac{10000 \times 24}{1000}$	59	24590 MJ/h	(14)
Direct efficiency $\frac{14}{13} \times 100 = \frac{24590}{31137} \times \frac{14}{31137}$	100	79:0 %	(15)
*Units of 12 x 10 must equal MJ/h			
Flue Gas Analysis CO ₂ O ₂ CO N ₂ by difference Excess air		% Volume 17.8 3.8 0 83.4	(16) (17) (18) (19) (20)
Heat Loss Efficiency Heat loss to dry gas and H ₂ O(Figure 9 for natural gas Heat loss to radiation (Figure 12) Unmeasured losses Total losses (21 + 22 + 23) Indirect efficiency (100 - 24)	and Figure 10 for No. 2	% Loss of as fired fuel 2 oil) 17. 2	(21) (22) (23) (24) (25)

APPENDICES

A — Glossary of Terms
B — Tables
C — Common Conversions
D — Worksheets

Glossary

Air Infiltration — The leakage of air into a boiler, duct or breeching.

Ambient Temperature — The temperature of air surrounding the equipment.

Ash — The incombustible inorganic matter in the fuel.

Atomizer — A device which reduces a liquid to a fine spray.

Audit, diagnostic — The analysis of a potential opportunity to save energy which could involve the assessment of the current process operation and records, calculation of savings, and estimates of capital and operating costs so that the financial viability of the project can be established.

Audit, walk through — The visual inspection of a facility to observe how energy is used or wasted.

Bag Filter — A device containing one or more cloth bags for recovering particles from the dust laden gas which passes through it.

Base Load — Base load is the term applied to a boiler load that is essentially constant for long periods.

Blowdown — Removal of a portion of the boiler water for the purpose of reducing concentration, or to discharge sludge.

Blowdown, continuous — The uninterrupted removal of boiler water.

Blowdown, intermittent — The blowing down of boiler water at intervals.

Blowdown Rate — A rate expressed as a percentage of the feedwater flow to the boiler.

Boiler — A closed vessel in which water is heated and steam is generated.

Boiler, electric — A boiler in which electric heating means serves as the source of heat.

Boiler, firetube — A boiler with straight tubes that are surrounded by water and steam and through which the products of combustion pass.

Boiler Water — The water within the boiler.

Boiler, watertube — A boiler in which the tubes contain water and steam, the heat is applied to the outside surfaces of the tubes.

Boiling — The conversion of liquid into vapor with the formation of bubbles.

Breeching — A duct which transports the products of combustion between the boiler and the stack.

Burner — A device which introduces the fuel and air into a furnace at the desired velocities and turbulence to maintain proper combustion.

Burner Windbox — A plenum chamber around a burner in which the air pressure is sufficiently high to ensure proper distribution of air.

Carryover — The chemical solids and liquid entrained in the steam leaving the boiler.

Casing — A covering of metal used to enclose a boiler.

Circulation — The movement of water and steam within a boiler.

Combustible — The heat producing constituents of a fuel.

Combustible Loss — The unliberated thermal energy loss from unburned combustible matter.

Combustion — The rapid chemical combination of oxygen with the combustible elements of a fuel resulting in the production of heat.

Combustion Rate — The quantity of fuel fired per unit of time.

Complete Combustion — The complete oxidation of all the combustible constituents of a fuel.

Condensate — Condensed water resulting from the removal of latent heat from steam.

Control Valve — A valve used to control the flow of fuel or air.

Damper — A variable resistance device for regulating the flow of water.

Deaeration — Removal of air and gases from boiler feedwater prior to its introduction to a boiler.

Dew Point — The temperature at which condensation begins when cooling air or gas.

Dissolved Solids — Those solids in water which are in solution.

Draft — The difference between atmospheric pressure and some lower pressure existing in the furnace or gas passages of a boiler.

Drum — A cylindrical shell closed at both ends that is designed to withstand pressure.

Drum Pressure — The pressure of the steam maintained in the boiler steam drum.

Dry Gas — That portion of flue gas which contains no water vapor.

Dry Gas Loss — The loss representing the difference between the heat content of the dry exhaust gases and their heat content at the temperature of ambient air.

Dry Saturated Steam — Steam containing no moisture at saturated temperature.

Efficiency — The ratio of output to the input. The efficiency of a boiler is the ratio of the heat absorbed by water and steam to the heat in the fuel fired.

Energy Management Opportunities (EMO), housekeeping — Potential energy saving activities which should be done on a regular basis and never less than once per year. This includes preventive maintenance programs.

Energy Management Opportunities (EMO), low cost — Potential energy saving improvements that are done once and for which the cost is not considered great.

Energy Management Opportunities (EM), retrofit — Potential energy saving improvements that are done once and for which the cost is significant.

Enthalpy — Enthalphy is a measure of the heat energy per unit mass of a material. Units are expressed as kJ/kg.

Evaporation Rate — The quantity of water evaporated in a unit of time.

Excess Air — Air supplied for combustion in excess of that theoretically required for completed oxidation.

Feedwater — Water introduced into a boiler during operation. It includes make-up water and returned condensate.

Feedwater Treatment — The treatment of boiler feedwater by the addition of chemicals to prevent the formation of scale or to eliminate other objectionable characteristics.

Flue Gas — The gaseous products of combustion.

Forced Draft Fan — A fan supplying air under pressure to the fuel burning equipment.

Fuel-Air Ratio — The ratio of the mass or volume, of fuel to air.

Furnace Draft — The draft in a furnace.

Gas Analysis — The determination of the constituents of the flue gas.

Hardness — A measure of the amount of calcium and magnesium salts in the make-up water.

Heating Surface — Heating surface is the area of boiler water surfaces which receive heat from the products of combustion.

Higher Heating Value — The amount of heat recovered when the products of complete combustion of a unit quantity of fuel are cooled to the initial temperature of the fuel and air.

Induced Draft Fan — A fan exhausting hot gas from the heat absorbing equipment.

Insulation — A material of low thermal conductivity used to reduce heat losses.

Lower Heating Value — The higher heating value minus the latent heat of vaporization of the water vapor in the products of combustion.

Mechanical Atomizing Oil Burner — A burner which uses the pressure of the oil for atomization.

Orsat — The gas analysis apparatus in which O₂, CO₂ and CO constituents are measured by absorption.

Perfect Combustion — The complete oxidation of all the combustible constituents of a fuel, utilizing all the oxygen supplied.

Precipitator — An ash separator and collector of the electrostatic type.

Products of Combustion — The gases, vapors, and solids resulting from the combustion of fuel.

Radiation Loss — A term used to account for the conduction, radiation, and convection heat losses from the boiler settings to the ambient air.

Register — The apparatus used in a burner to regulate the direction of combustion airflow.

Saturated Temperature — The temperature at which evaporation occurs at a particular pressure.

Scrubber — An apparatus for the removal of solids and gases from flue gas by entrainment in water, or a chemical solution.

Sludge — A deposit in the boiler water which normally can be removed by blowdown.

Smoke — Small gas borne particles of carbon or soot, resulting from incomplete combustion.

Sootblower — A mechanical device for discharging steam or air to clean heat absorbing surfaces.

Stack — A vertical "duct", which due to the difference in density between the internal hot gas and external air creates a draft at its base.

Steam Atomizing Oil Burner — A burner for firing oil which is atomized by steam.

Theoretical Air — The quantity of air required for perfect combustion. Also called stoichiometric air.

Total Air — The total quantity of air supplied for combustion expressed as a percentage of theoretical air.

Treated Water — Water which has been chemically treated to make it suitable for make-up water

Unaccounted for Loss — That portion of a boiler heat balance which represents the difference between 100 per cent and the sum of the heat absorbed by the unit and all the classified losses expressed as a per cent.

Unburned Combustible — The combustible portion of the fuel which is not completely oxidized.

Water Level — The level of the water in a boiler drum.

COMBUSTION AIR REQUIREMENTS TABLE 1

Fuel	Theoretical Air Mass kg/GJ As Fired (Stoichiometric Air)	Typical Excess Air (Minimum)	Total Air Mass kg/GJ As Fired
Natural Gas	318	5% *	334
#2 Fuel Oil	323	10% *	355
#6 Fuel Oil	327	10% *	360
Bituminous Coal (40% Volatiles, Moisture & Ash Free Basis)	327	20%	392
Biomass (Pine Wood Bark, Moisture & Ash Free Basis)	315	50%	473

^{*} Note: Burners designed for low excess air firing can permit operation at as low as 1 to 2 per cent excess air.

PROPERTIES OF SATURATED STEAM AND SATURATED WATER (TEMPERATURE) TABLE 2

Temp	erature	Press.	Vol	ume, m ³ /	kg	Ent	halpy, kJ	/kg	Entr	opy, kJ/k	g K
°C	K	kPa	Water	Evap.	Steam	Water	Evap.	Steam	Water	Evap.	Steam
t	T	P	Vf	Vfg	ν_g	hf	hfg	hg	Sf	Sta	Sg
0.	273.15	0.6108	0.0010002	206,30	206,31	-0.04	2501,6	2501,6	-0.0002	9,1579	9.1577
0.01	273.16	0.6112	0.0010002	206.16	206,16	0.00	2501,6	2501,6	0.0000	9,1575	9.1575
2.0	275.15	0.6566	0.0010001	192,61	192,61	4,17	2499,2	2503,4	0.0153	9,1158	9,1311
3.0	276.15	0.7575	0.0010001	168,17	168,17	8,39 12,60	2496.8	2505,2	0.0306	9,0741	9.1047
4.0	277.15	0.8129	0.0010000	157,27	157,27	16,80	2492.1	2508,9	0.0611	9.9915	9.0526
5.0	278.15	0.8718	0.0010000	147.16	147.16	21.01	2489.7	2510.7	0.0762	9,9507	9.0269
7.0	280.15	1.0012	0.0010001	129.06	137,78	25.21	2487.4	2512,6 2514,4	0.0913	8.8699	9.0015
8.0	281.15	1.0720	0.0010001	120,96	120,97	33.60	2482.6	2516,2	0.1213	8.8300	8,9513
9.0	282.15	1.1472	0.0010002	113,43	113,44	37.80	2480,3	2518,1	0,1362	8.7903	8,9265
10.0	283.15	1.2270	0.0010003	106.43	106,43	41,99	2477,9	2519.9	0.1510	4,7510	8,9020
12.0	285.15	1,4014	0.0010004	93.83	93,84	50.34	2473,2	2523.6	0.1805	4.6731	8,8536
16.0	289.15	1.8168	0.0010007	82,90 73,38	82,90	58,75 67,13	2468,5	2527,2	0.2098	8,5963	8,8060
18.0	291.15	2.0624	0.0010013	65.09	65.09	75.50	2459.0	2534,5	0.2677	8.4458	8,7593
20.0	293.15	2.337	0.0010017	57.84	57,84	83.84	2454,3	2538.2	0.2963	4.3721	8,6694
22.0	295.15	2.642	0.0010022	51,49	51.49	92.23	2449,6	2541,8	0,3247	H. 2994	8,6241
24.0	297.15	2,982	0.0010026	45.92	45,93	100,59	2444,9	2545,5	0.3530	8.2277	8.5806
28.0	301.15	3.778	0.0010037	36.73	36,73	108,95	2440.2	2549,1 2552.7	0,3810	8.1569 A.0870	8,5379
30.0	303.15	4.241	0.0010043	32.93	32.93	125.66	2430,7	2556.4	0.4365	*.0181	8.4546
32.0	305.15	4.753	0.0010049	29.57	29,57	134.02	2425,9	2560.0	0.4640	7.9500	8,4140
34.0	307.15	5.318	0.0010056	26.60	26,60	142.34	2421,2	2563,6	0,4913	7.8828	8,3740
36.0	309.15	5.940	0.0010063	23.97	23,97	150.74	2416,4	2567,2	0.5184	7,8164	8,3348
1,673,170					21,63	T-12-2-1-2-1-2-2-2-2-2-2-2-2-2-2-2-2-2-2	2411,7	2570.8	0.5453	7,7509	8,2962
40.0	313.15	7.375 8.198	0.0010078	19,545	19.546	167,45	2406.9	2574,4	0.5721	7,6861	8,2583
44.0	317.15	9.100	0.0010094	16.035	16.036	184.17	2402.1	2577,9 2581,5	0.5987	7,6222	8,2209
46.0	319.15	10.086	0.0010103	14,556	14,557	192.53	2392.5	2585,1	0.6514	7.4966	8,1481
48.0	321.15	11.162	0.6010112	13,232	13.233	200.89	2387,7	2588,6	0.6776	7,4350	8,1125
50.0	323.15	12.335	0.0010121	12,045	12.046	209,26	2382.9	2592.2	0.7035	7.3741	8.0776
52.0 54.0	325.15	13.613	0.0010131	10,979	10.980	217.62	2378.1	2595,7	0.7293	7,3138	8.0432
56.0	329.15	16.511	0.0010140	9,158	9.159	225,99	2373,2	2599,2	0.7550	7.2543	8.0093 7.9759
58.0	331.15	18.147	0.0010161	8,380	8,381	242.72	2363.5	2606,2	0.8058	7,1373	7.9431
60.0	333.15	19.920	0.0010171	7.678	7.679	251.09	2358,6	2609.7	0.8310	7,0798	7.9108
64.0	335.15	21.838	0.0010182	7,043	7.044	259,46	2353.7	2613,2	0.8560	7,0230	7,8790
66.0	339.15	26.150	0.0010205	5,947	5.948	276.21	2348,9	2616,6	0.8809	6.9667	7.8477
68.0	341.15	28.563	0.0010217	5,475	5.476	284,59	2338,9	2623,5	0.9303	6,8561	7.8168 7.7864
70.0	343.15	31.16	0.0010228	5.045	5.046	292,97	2334,0	2626,9	0.9548	6.8017	7.7565
72.0	345.15	33.96	0.0010241	4,655	4,656	301.36	2329.0	2630,3	0.9792	6,7478	7,7270
76:0	347.15	36,96	0.0010253	3,975	4.300	309,74	2324,0	2633,7	1.0034	6,6945	7,6979
78.0	351.15	43,65	0.0010279	3,679	3.680	326,52	2318,9	2637.1	1.0275	6.5418	7.6693 7.6410
80.0	353.15	47,36	0.0010292	3.408	3.409	334.92	2308.9	2643.8	1.0753	4.5380	7,6132
82.0	355.15	51.33	0.0010305	3,161	3.162	343,31	2303,8	2647.1	1.7990	4,4868	7.5858
84.0	357.15	55.57 60.11	0.0010319	2,934	2.935	351.71	2298,6	2650,4	1,1225	A. 4362	7,5588
88.0	361.15	64.95	0.0010333	2,726	2.727	360.17	2293,5	2653,6	1.1460	6,3365	7.5321 7.5058
90.0	363.15	70.11	0.0010361	2.3603	2.3613	376.94	2283,2	2660.1	1.1925	6.2873	7,4799
92.0	365.15	75.61	0.0010376	2,1992	2,2002	355,36	2278.0	2063,4	1,2156	6.2387	7,4543
94.0	367.15	81.46	0.3013391	2.0509	2.0519	393,7	2272,9	2666.6	1.2386	6,1905	7,4291
98.0	371.15	94.30	0.0010406	1.7883	1,7893	402,20	2267,5	2669,7	1.2615	6.1427	7.4042
100.0	373.15	101.33	0.0010421	1.6720	1.6730	419.06	2256,9	2676.0	1.2842	6,0954	7,3796
			214273141	210/20	210/00	747.00	25.014	20,0,0	1,3069	6.0485	7,3554

PROPERTIES OF SATURATED STEAM AND SATURATED WATER (TEMPERATURE) TABLE 2

Temp	erature	Press.	Vo	olume, m³/k	ø	Fnt	halpy, kJ	/lea	Ente	ony LTh.	· V
°C	K	kPa	Water	Evap.	Steam	Water	Evap.	Steam	Water	ppy, kJ/k	Steam
t	T	P	Vf	Vig	v _g	hf	h _{fg}	hg	Sf	Evap.	Steam
100.0	373.15	101.33	0.0010437	1.6720	1.6730	419.06	2256.9	2676.0	1,3669	6.0485	7.3554
105.0	378.15	120.60	0.0010477	1.4182	1,4193	440.17	2243.6	2683.7	1,3630	5.9331	7.2962
110.0	383.15	143.27	0.0010519	1.2089	1,2099	461.32	2230.0	2691.3	1,4185	5.8203	7.2388
115.0	388.15	169.06	0.0010562	1.0352	1.0363	482.50	2216.2	2698.7	1,4733	5.7099	7.1832
120.0	393.15	198.54	0.0010606	0.8905	0,8915	503.72	2202.2	2706.0	1,5276	5.6017	7.1293
125.0	398.15	232.1	0.0010652	0.7692	0.7702	524.99	2188.0	2713.0	1,5813	5.4957	7.0769
130.0	403.15	270.1	0.0010700	0.6671	0.6681	546.31	2173.6	2719.9	1,6344	5.3917	7.0261
135.0	408.15	313.1	0.0010750	0.5807	0.5818	567.68	2158.9	2726.6	1,6869	5.2897	6.9766
140.0	413.15	361.4	0.0010801	0.5074	0.5085	589.10	2144.0	2733.1	1,7390	5.1894	6.9284
145.0	418.15	415.5	0.0010853	0.4449	0.4460	610.59	2128.7	2739.3	1,7906	5.0910	6.8815
150.0	423.15	476.0	0.0010908	0.3914	0.3924	632.15	2113.2	2745.4	1.8416	4.9941	6.8358
155.0	428.15	543.3	0.0010964	0.3453	0.3464	653,77	2097.4	2751.2	1.6923	4.8989	6.7911
160.0	433.15	618.1	0.3011022	0.3057	0.3068	675,47	2081.3	2756.7	1.9425	4.8050	6.7475
165.0	438.15	700.8	0.3011082	0.2713	0.2724	697.25	2064.8	2762.0	1.9923	4.7126	6.7048
170.0	443.15	792.0	0.0011145	0.2414	0.2426	719.12	2047.9	2767.1	2.0416	4.6214	6.6630
175.0	448.15	892.4	0.0011209	0.21542	0.21654	741.07	2030.7	2771.8	2.0906	4.5314	6.6221
180.0	453.15	1002.7	0.0011275	0.19267	0.19380	763.12	2013.2	2776.3	2.1393	4.4426	6.5819
185.0	458.15	1123.3	0.0011344	0.17272	0,17386	785.26	1995.2	2780.4	2.1876	4.3548	6.5424
190.0	463.15	1255.1	0.0011415	0.15517	0.15632	807.52	1976.7	2784.3	2.2356	4.2680	6.5036
195.0	468.15	1398.7	0.0011489	0.13969	0,14084	829.88	1957.9	2787.8	2.2833	4.1821	6.4654
200.0 205.0 210.0 215.0 220.0	473.15 478.15 483.15 488.15 493.15	1554.9 1724.3 1907.7 2106.0 2319.8	0.3011565 0.0011644 0.0011726 0.0011726 0.0011811 0.0011900	0.12600 0.11386 0.10307 0.09344 0.08485	0.12716 0.11503 0.10424 0.09463 0.08604	A52.37 A74.99 697.73 920.63 943.67	1938.6 1918.8 1898.5 1877.6 1856.2	2790.9 2793.8 2796.2 2798.3 2799.9	2,3307 2,3778 2,4247 2,4713 2,5178	4.0971 4.0128 3.9293 3.8463 3.7639	6.4278 6.3904 6.3539 6.3176 6.2817
225.0	498.15	2550.	0.0011992	0.07715	0.07835	966.88	1834.3	2601.2	2.5641	3.6820	6.2461
230.0	503.15	2798.	0.0012087	0.07024	0.07145	990.27	1811.7	2602.0	2.6102	3.6006	6.2107
235.0	508.15	3063.	0.0012187	0.06403	0.06525	1013.83	1788.5	2602.3	2.6561	3.5194	6.1756
240.0	513.15	3348.	0.0012291	0.05843	0.05965	1037.60	1764.6	2602.2	2.7020	3.4386	6.1406
245.0	518.15	3652.	0.0012399	0.05337	0.05461	1061.58	1740.0	2601.6	2.7478	3.3579	6.1057
250.0	523.15	3978.	0.0012513	0.04879	0.05004	1085,78	1714.7	2800.4	2,7935	3.2773	6.0708
255.0	528.15	4325.	0.0012632	0.04463	0.04590	1110.23	1688.5	2798.7	2,8392	3.1968	6.0359
260.0	533.15	4694.	0.0012756	0.04086	0.04213	1134.94	1661.5	2796.4	2,8848	3.1161	6.0010
265.0	538.15	5088.	0.0012887	0.03742	0.03871	1159.93	1633.5	2793.5	2,9306	3.0353	5.9658
270.0	543.15	5506.	0.0013025	0.03429	0.03559	1185.23	1604.6	2789.9	2,9763	2.9541	5.9304
275.0	548.15	5950.	0.0013170	0.03142	0.03274	1210.86	1574.7	2785.5	3.0722	2.8725	5.8947
280.0	553.15	6420.	0.0013324	0.02679	0.03013	1236.84	1543.6	2780.4	3.0683	2.7903	5.8586
285.0	558.15	6919.	0.0013487	0.02638	0.02773	1263.21	1511.3	2774.5	3.1146	2.7074	5.6220
290.0	563.15	7446.	0.0013659	0.02417	0.02554	1290.01	1477.6	2767.6	3.1611	2.6237	5.7848
295.0	568.15	8004.	0.3013844	0.02213	0.02351	1317.27	1442.6	2759.8	3.2079	2.5389	5.7469
300.0	573.15	8593,	0.0014041	0.020245	0.021649	1345.05	1367.7	2751.0	3,2552	2.4529	5.7081
305.0	578.15	9214,	0.0014252	0.018502	0.019927	1373.40		2741.1	3,3029	2.3656	5.6685
310.0	583.15	9870,	0.0014480	0.016886	0.018334	1402.39		2730.0	3,3512	2.2766	5.6278
315.0	588.15	10561,	0.0014726	0.015383	0.016856	1432.09		2717.6	3,4002	2.1856	5.5858
320.0	593.15	11289,	0.0014995	0.013980	0.015480	1462.60		2703.7	3,4500	2.0923	5.5423
325.0	598.15	12056.	0.0015289	0.012666	0.014195	1494.03	1194.0	2688.0	3.5108	1.9961	5.4969
330.0	603.15	12863.	0.0015615	0.011428	0.012989	1526.52	1143.6	2670.2	3.5528	1.8962	5.4490
335.0	608.15	13712.	0.0015978	0.010256	0.011854	1560.25	1089.5	2649.7	3.6563	1.7916	5.3979
340.0	613.15	14605.	0.0016387	0.009142	0.010780	1595.47	1030.7	2626.2	3.6416	1.6811	5.3427
345.0	618.15	15545.	0.0016858	0.008077	0.009763	1632.52	966.4	2596.9	3.7193	1.5636	5.2828
350.0	623.15	16535,	0.0017411	0.007058	0.008799	1671.94	895.7	2567.7	3,7800	1.4376	5.2177
355.0	628.15	17577,	0.0018085	0.006051	0.007859	1716.63	813.8	2530.4	3,8489	1.2953	5.1442
360.0	633.15	18675,	0.0018959	0.005044	0.006940	1764.17	721.3	2485.4	3,9710	1.1390	5.0600
345.0	638.15	19833,	0.0020160	0.003996	0.006012	1817.96	610.0	2428.0	4,6721	C.9558	4.9579
370.0	643.15	21054,	0.0022136	0.002759	0.004973	1890.21	452.6	2342.8	4,1108	G.7036	4.8144
371.0 372.0 373.0 374.0 374.15	644.15 645.15 646.15 647.15 647.30	21306. 21562. 21820. 22081. 22120.	0.0022778 0.0023636 0.0024963 0.0028427 0.00317	0.002446 0.002075 0.001588 0.000623	0.004723 0,004439 0,004084 0.003466 0.00317	1710.50 1935.57 1970.50 2046.72 2107.37	407.4 351.4 273.5 109.5 0.0	2317.9 2287.0 2244.0 2156.2 2107.4	4,1414 4,1794 4,2326 4,3493 4,4429	0.6324 0.5446 0.4233 0.1692	4.7738 4.7240 4.6559 4.5185 4.4429

PROPERTIES OF SATURATED STEAM AND SATURATED WATER (PRESSURE) TABLE 2

Press.	Temp.	Val	lume, m³/k				T /2	-			_	
kPa	°C	Water	Evap.	Steam	Water	nthalpy, k Evap.	J/kg Steam	Water	opy, kJ/k		Energy, k	
P	t	Ve	Vfq	Va	he	hfg	h _g		Evap.	Steam	Water	Steam
		.,	- 19	· g	""	"tg	"g	Sf	Sfg	Sg	u_f	ug
1.0	6.983	0.0010001		129.21	29,34	2485.0	2514.4	0.1060	8,87:6	8,9767	29.33	2385.2
1.2	9.668	0.0010002		118,04	35.20	2481,7	2516,9 2519,3	0,1269	8,8149	8,9418	35,20	2387,1
1:3	10.866	0.0010003	100.76	100.76	45.62	2475.9	2521,5	0,1638	8.7171	8,8809	40.60	2388.9
1.5	13.036		93.92	93,92	50.31	2473.2	2523,5	0.1803	8,6737	8,8539	50.31	2392.0
1.6	14.026	0.0010006	87.98	87.98	54.71 58.86	2470.7	2525,5 2527,3	0.1957	8,6332	8,8288	54.71	2393,5
1.8	15.855	0.0010010	74.03	74,03	66.52	2464.1	2530,6	0,2367	8,5240	8.8054	58.86	2394.8
2.2	19.031	0.0010012	67.01	67,01	73.46	2450.2	2933,6 2536,4	0.2607	8,4639	8,7246	73.46	2399,6
2.4	20.433	0.0010013	56.39	56.39	85.67	2453.3	2539.0					2401,7
2.6	21.737	0.0010021	52.28	52,28	91.12	2450.2	2541,3	0.3025	8,3563	8,6587	85.67 91.12	2403,6
3.0	22.955	0.0010024	48.74	48.74	96.22	2447.3	2543,6	0,3382	9,2650	8,6033	96.21	2407,1
3.5	26.694	0.0010033	39.48	39,48	111.85	2438.5	2550.4	0,3544	8,2241	8,5785	101.00	2408,6
4.0	28.983	0.0010040	34.80	34.80	121.41	2433.1	2554,5	0,4225	8,0530	8,4755	121.41	2415,3
5.0	32.898	0.0010052	31.14	31.14 28,19	129.99	2428,2	2558.2 2561.6	0.4507	7,9827	8.4335	129,98	2418.1
5.5	34.605	0.0010058	25.77	25,77	144.91	2419.0	2564.7	0,4995	7,8626	8,3621	144.90	2420,6
6.5			23.74	23,74	151.50	2416.0	2567,5	0,5209	7.8194	8,3312	151.50	2425,1
7.0	37.651 39.025	0.0010069	22.015	22.016	157.64	2412.5	2570.2	0,5407	7.7622	8.3029	157.63	2427.0
7.5	40.316	0.0010079	19.238	19.239	168,77	2406.2	2574.9	0,5763	7.7176	8,2767	163.37	2428.9
9.0	43.787	0.0010084	18.104	18,105	173.86	2403,2	2577.1	0.5925	7.6370	8,2296	173.86	2432,3
10.	45.833	0.0010102	14.674	14,675	191.83	2392.9	2584.8	0.6493	7,5618	8,1511		2438.0
11.	47.710	0.0010111	13.415	13,416	199.68	2388,4	2588.1	0,6738	7,4439	8.1177	191.82	2440,5
13.	51.062	0.0010126	11.465	11,466	206.94	2384.3	2591.2	0,6963	7,3999	8,0872	206.93	2442,8
14.	52.574	0.0010133	10.693	10,694	220.02	2376.7	2596.7	0.7367	7.2967	8.0334	220.01	2447.0
15.	53.997 55.341	0.0010140	9.432	10.023	225.97	2373.2	2599.2	0.7549	7,2544	8.0093	225.96	2448.9
18.	57.826	0.0010160	8.444	9.433	231.59	2370.0	2601.6	0.7721	7,2148	7,9869	231.58	2450.6
20.	60.086	0.0010172	7.649	7,650	251,45	2358,4	2609,9	0,8321	7.0774	7,9094	251.43	2456.9
24.	64.082						2613,5	0,8581	7,0184	7,8764	260.12	2459,6
26.	65.871	0.0010194	5,979	5,980	268.18	2348.6	2616.8	0.8620	6.9644	7,8464	268.16	2462.1
28.	67,547	0.0010214	5,578	5,579	282,69	2340.0	2622,7	0,9248	6,8685	7,7933	275.65	2464,4
35.	72,709	0.0010245	4,525	5.229	289.30	2336.1	2625.4	0,9441	6,8254	7,7695	289.27	2468,6
40.	75.886	0.0010265	3.992	3,993	317.65	2319.2	2636.9	1.0261				
45. 50.	78,743	0.0010284	3.575	3,576	329.64	2312.0	2641.7	1,0603	6.6448	7,6709	317.61	2477.1
55.	83.737	0,0010301	3.239	3,240	340,56	2305.4	2646.0	1,0912	6,5035	7.5947	340.51	2484.0
60.	85,954	0.0010333	2,731	2,732	359.93	2293.6	2653.6		6,4428	7,5623		2486,9
65.	88,021	0.0010347	2.5335	2,5346	368,62	2288.3	2656,9	1,1696	6.3350	7,5055	368.55	2492,2
75.	91.785	0.0010361	2,3637		376.77	2283,3	2660,1	1,1921	6,28A3 6,2439	7,4804	376.70	2494,5
90.	93.512	0.0010387	2.0859	2,0870	391.72	2274.1	2665.8	1,2330	6,2622	7,4352	384.37	2496.7
			1.8682	1,8692	405,21	2765,6	2670,9	1,2696	6,1258	7,3954	405,11	2502.6
110.	99.632	0.0010434	1.6927	1,6937	417.51	2257.9	2675,4	1,3027	6.0571	7,3598	417.41	2506.1
120.	104.808	0.0010476	1.4271	1,4281	439.36	2244.1	2679.6	1,3330	5,9947	7,3277	428.73	2509,2
140.	109.315	0.0010495	1.3240	1,3251	449,19	2237,8	2687.0	1,3868	5,8847	7,2715	449.05 458.27	2514.7 2517.2
150.	111.37	0.0010530	1.1580	1.1590	467,13	2226,2	2693,4	1,4336	5,7898			
180.	113.32	0.0010547	1.0901	1,0911	475.38	2220.9	2696,2	1,4550	5.74A7	7,2234	466.97	2519,5
200.	120.23	0.0010608	0.9762		490.70 504.70	2210.8	2701.5 2706.3	1,4944	5,6678	7,1622	490.51	2525,6
220.	123.27	0.0010636	0.8088	0.8098		2193.0	2710.6	1,5627	5,5321	7,1268	504,49	2529.2
240.	126.09	0.0010663	0.7454	0.7465	529.63	2184.9	2714,5	1,5929	5,4728	7,0657	529.38	2535.4

PROPERTIES OF SATURATED STEAM AND SATURATED WATER (PRESSURE) TABLE 2

Press.	Temp.	Vo	olume, m³/k	g		alpy, kJ/	kg	Entr	opy, kJ/k	g K	Energy,	kJ/kg
kPa	*C	Water	Evap.	Steam	Water	Evap.	Steam	Water	Evap.	Steam	Water	Steam
P	t	VI	Vig	Vg	hf	hig	hg	Sf	Sfg	Sg	Uf	ug
240.	126.09	0.0010463	0,7454	0.7445	529.6	2184.9	2714.5	1.5929	5,4728	7.0657	529.38	2535.4
260.	128.73	0.0010468	0,6914	0.4925	540.9	2177.3	2718.2	1.6209	5,4180	7.0309	540.60	2538.1
280.	131.20	0.0010712	0,6450	0.4440	551.4	2170.1	2721.5	1.6471	5,3670	7.0140	551.14	2540.6
300.	133.54	0.0010739	0,6045	0.4056	561.4	2163.2	2724.7	1.6716	5,3173	6.9909	561.11	2543.0
350.	138.87	0.0010789	0,8229	0.5240	564.3	2147.4	2731.6	1.7273	5,2119	6.9392	583.89	2548.2
400. 450. 500. 550. 600.	143.62 147.92 151.84 158.47 158.84	0.0010839 0.0010865 0.0010928 0.0010969 0.0011009	0.4611 0.4127 0.3736 0.3414 0.3144	0.4622 0.4138 0.3747 0.3425 0.3155	604.7 623.2 640.1 655.8 670.4	2133.0 2119.7 2107.4 2095.9 2085.0	2737,6 2742,9 2747,5 2751,7 2755,5	1.7764 1.0204 1.0604 1.8970 1.9308	5.1179 5.0343 4.9588 4.8900 4.8267	6.8943 6.8547 6.8192 6.7870 6.7575	604.24 622.67 639.57 655.20	2552.7 2556.7 2560.2 2563.3 2566.2
650.	161.99	0.0011046	0.29138	0.29249	684.1	2074,7	2758.9	1,9423	4.7681	6.7304	683.42	2568.7
700.	164.96	0.0011082	0.27157	0.27268	697.1	2064,9	2762.0	1,9918	4.7634	6.7052	696.29	2571.1
750.	167.78	0.0011116	0.25431	0.25543	709.3	2055,5	2764.8	2,0195	4.6621	6.6817	708.47	2573.3
800.	170.41	0.0011150	0.23914	0.24026	720.9	2046,5	2767.5	2,0457	4.6139	6.6596	720.04	2575.3
900.	179.36	0.0011213	0.21369	0.21481	742.6	2029,5	2772.1	2,0941	4.5250	6.6192	741.63	2578.0
1000.	179.88	0.0011274	0.19317	0.19429	762,6	2013,6	2776,2	2,1362	4.4446	6,5828	761.48	2581.9
1100.	184.07	0.0011331	0.17629	0.17738	781,1	1998,5	2779,7	2,1786	4.3711	6,5497	779.88	2584.5
1200.	187.96	0.0011386	0.16206	0.16320	798,4	1984,3	2782,7	2,2161	4.3033	6,5194	797.06	2584.9
1300.	191.61	0.0011438	0.14998	0.15113	814,7	1970,7	2785,4	2,2510	4.2403	6,4913	813.21	2589.0
1400.	198.04	0.0011489	0.13997	0.14072	830,1	1997,7	2787,8	2,2837	4.1814	5,4651	828.47	2590.8
1500.	198.29	0.0011539	0.13050	0,13166	844.7	1945.2	2789.9	2.3145	4.1261	6.4406	842.93	2592.4
1600.	201.37	0.0011566	0.12253	0,12369	858.6	1933.2	2791.7	2.3436	4.0739	6.4175	856.71	2593.8
1800.	207.11	0.0011678	0.10915	0,11032	864.6	1910.3	2794.8	2.3976	3.9775	6.3751	882.47	2596.3
2000.	212.37	0.0011766	0.09836	0,09954	908.6	1888.6	2797.2	2.4469	3.8898	6.3367	906.24	2598.2
2200.	217.24	0.0011850	0.08947	0,09065	931.0	1868.1	2799.1	2.4922	3.8093	6.3015	928.35	2599.6
2400.	221.78	0.0011932	0.08201	0.08320	951.9	1848.5	2800.4	2,5343	3.7347	6.2690	949.07	2600.7
2400.	228.04	0.0012011	0.07565	0.07486	971.7	1829.6	2801.4	2,5736	3.6651	6.2387	968.60	2601.5
2800.	230.05	0.0012088	0.07018	0.07139	990.5	1811.5	2802.0	2,6100	3.5998	6.2104	987.10	2602.1
3000.	233.84	0.0012163	0.06541	0.04663	1008.4	1793.9	2802.3	2,6455	3.5382	6.1837	1004.70	2602.4
3500.	242.54	0.0012345	0.05579	0.05703	1049.8	1752.2	2802.0	2,7253	3.3976	6,1228	1045.46	2602.4
4000.	290.33	0.0012921	0.04850	0.04975	1087,4	1712.9	2800.3	2,7965	3.2720	6,0685	1082.4	2601.3
4500.	257.41	0.0012691	0.04277	0.04404	1122,1	1675.6	2797.7	2,8412	3.1579	6,0191	1116.4	2599.5
5000.	263.91	0.0012858	0.03814	0.03943	1154,5	1639.7	2794.2	2,9206	3.0529	5,9735	1148.0	2597.0
5500.	269.93	0.0013023	0.03433	0.03563	1184,9	1605.0	2789.9	2,9757	2.9552	5,9309	1177.7	2594.0
4000.	275,55	0.0013187	0.03112	0.03244	1213,7	1571.3	2785.0	3,0273	2.8635	5,8908	1205.8	2590.4
6500.	280.82	0.0013350	0,026384	0,029719	1241.1	1538.4	2779,5	3.0759	2,7768	5.8527	1232.9	2586.3
7000.	285,79	0.0013513	0,026022	0,027373	1267.4	1506.0	2773,5	3.1219	2,6943	5.8162	1258.0	2581.8
7500.	290.50	0.0013677	0,023959	0,025327	1292.7	1474.2	2766,9	3.1657	2,6193	5.7811	1262.4	2577.0
8000.	294.97	0.0013642	0,022141	0,023525	1317.1	1442.8	2759,9	3.2076	2,5395	5.7471	1304.0	2571.7
9000.	303.31	0.0014179	0,019078	0,020495	1363.7	1380.9	2744,6	3,2867	2,3953	5.6820	1351.0	2560.1
10000.	310.96	0.0014526	0.016589	0.018041	1408.0	1319,7	2727.7	3,3605	2.2593	5,6198	1393.9	2547.3
11000.	318.05	0.0014887	0.014517	0.016006	1450.6	1258,7	2709.3	3,4304	2.1291	5,5595	1434.2	2533.2
12000.	324.65	0.0015268	0.012756	0.014283	1491.8	1197,4	2689.2	3,4972	2.0030	5,5002	1473.4	2517.0
13000.	330.83	0.0015672	0.011230	0.012797	1532.0	1135,0	2667.0	3,5616	1.8792	5,4408	1511.6	2500.6
14000.	336.64	0.0016106	0.009884	0.011495	1571.6	1070,7	2642.4	3,6242	1.7960	5,3803	1549.1	2401.4
15000.	342.13	0:0016579	0.005682	0.010340	1611.0	1004.0	2615.0	3,6859	1.6320	5,3178	1586.1	2459.9
16000.	347.33	0:0017103	0.007597	0.009308	1650.5	934.3	2504.9	3,7471	1.5040	5,2531	1623.2	2434.0
17000.	352.26	0:0017696	0.006601	0.008371	1691.7	859.9	2551.6	3,8107	1.3748	5,1855	1661.6	2409.3
18000.	356.96	0:0018399	0.005658	0.007498	1734.8	779.1	2513.9	3,8765	1.2342	5,1128	1701.7	2378.9
19000.	361,43	0:0019260	0.004751	0.006678	1778.7	692.0	2470.6	3,9429	1.0903	5,0332	1742.1	2343.8
20000.	369.70	0.0020370	0.003840	0.005877	1826.5	591,9	2418.4	4.0149	0.9243	4,9412	1785.7	2300.8
21000.	369.78	0.0022015	0.002822	0.005023	1886.3	461,3	2347.6	4.1048	0.7175	4,8223	1840.0	2242.1
22000.	373.69	0.0026714	0.001056	0.003728	2011.1	184,9	2195,6	4.2947	0.2852	4,5799	1952.4	2113.6
22120.	374.15	0.00317	0.0	0,00317	2107,4	0.0	2107,4	4,4429	0.0	4,4429	2037.3	2037.3

- 1											
		PROPE	RTIES OF		HEATED SERATURE			PRESSED	WATER		
	Press. ρ , kPa (t_2)					LE 2	,				
1		0.	20.	40.	60.	80.	100.	120.	140.	160.	
	1.0 h (6.983) s	0.0010002 -0.0 -0.0002	135.23 2538.6 9.0611	144.47 2575.9 9.1842	153.71 2613.3 9.3001	162,95 2650.9 9,4096	172.19 2688.6 9.5136	181.42 2726,5 9,6125	190.66 2764.6 9.7070	199.89 2802.9 9,7975	
	1.5 h (13.04) s	-0.0002 -0.0	90,131 2538,4 8.8736	96,298 2575,8 8,9968	102.46 2613.2 9.1127	108.62 2650.8 9.2223	114,78 2688,6 9.3263	120.94 2726.5 9.4253	127.10 2764.6 9.5198	133.25 2802.9 9.6103	
	2.0 h (17.51) s	-0.0002 -0.0002	67,582 2538,3 8.7404	72,211 2575,6 8,8637	76,837 2613,1 8,9797	81,459 2650,7 9.0894	86.080 2688.5 9.1934	90.700 2726.4 9.2924	95.319 2764.5 9.3870	99.936 2802.8 9.4775	
	3.0 h (24,10) s	-0.0002 -0.0002	0.0010017 83.9 0.2963	48,124 2575,4 8,6760	51,211 2612,9 8,7922	54,296 2650.6 8,9019	57,378 2688,4 9.0060	60.460 2726.3 9.1051	63,540 2764.5 9.1997	66.619 2802.8 9,2902	
	4.0 h (28,98) s	-0.0002 -0.0002	0.0013017 83.9 0.2963	36,081 2575.2 8.5426	38,398 2612,7 8,6589	40.714 265g.4 8.7688	43,027 2688,3 8,8730	45.339 2724.2 8.9721	47,650 2764,4 9,0668	49.961 2802.7 9.1573	
	5.0 h (32,90) s	0.0010002 -0.0 -0.0002	0.0010017 83.9 0.2963	28,854 2574,9 8,4390	30,711 2612,6 8,5555	32,565 2650,3 8,6655	34,417 2688,1 8,7698	36,267 2726,1 8,8690	38,117 2764.3 8,9636	39.966 2802.6 9.0542	
	6.0 h (36.18) s	-0.0002 -0.0002	0.0010017 83.9 0.2963	24,037 2574,7 8,3543	25,586 2612.4 8.4709	27,132 2650.1 8,5810	28,676 2688,0 8.6854	30.219 2726.0 8.7846	31.761 2764.2 8.8793	33.302 2802.6 8.9700	
	8.0 h (41,53) s	0.0010002 -0.0 -0.0002	0.0010017 83.9 0.2963	0.0010078 167.5 0.5721	19,179 2612,0 8,3372	20.341 2649.8 8.4476	21,501 2687,8 8,5521	22.659 2725.8 8,6515	23,816 2764,1 8,7463	24.973 2802.4 8.8370	
	10.0 h (45.83) s	0.0010002 -0.0 -0.0002	0.0010017 83.9 0.2963	0.0010078 167.5 0.5721	15,336 2611,6 8.2334	16,266 2649.5 8,3439	17,195 2687,5 8,4486	18,123 2725,6 8,5481	19.050 2763.9 8.6430	19.975 2802.3 8.7338	
	15.0 h (54.00) s	0.0010002 -0.0 -0.0002	0.0010017 83.9 0.2963	0.0010078 167.5 0.5721	10,210 2610.6 8.0440	10.834 2648.8 3.1551	11,455 2686,9 8.2601	12.075 2725.1 8.3599	12,694 2763,5 8.4551	13.312 2802.0 8.5460	
	20.0 h (60.09) s	-0.0002 -0.0002	0.0010017 83.9 0.2963	0.0010078 167,5 0.5721	0.0010171 251.1 0.8310	8.1172 2648.0 8.0206	8.5847 2686,3 8.1261	9,0508 2724.6 8,2262	9,516 2763,1 8,3215	9.950 2801.6 8.4127	
	30.0 h (69.12) s	0.0010002 -0.0 -0.0002	0.0010017 83.9 0.2963	0.0010078 167.5 0.5721	0.0010171 251.1 0.8310	5.4007 2646.5 7.8300	5,7144 2685,1 7.9363	6.0267 2723.6 8.0370	6.3379 2762.3 8.1329	6.6483 2801.0 8.2243	
	40.0 h (75,89) s	-0.0010002 -0.0002	0.0010017 83.9 0.2963	0.0010078 167.5 0.5721	0.0010171 251,1 0.8310	4.0424 2644.9 7.6937	4,2792 2683,8 7,8009	4,5146 2722,6 7,9023	4.7489 2761,4 7.9985	4.9825 2800.3 8.0903	
	50.0 h (81,35) s	0.0010002 0.0 -0.0002	0.0010017 83.9 0.2963	167.5	0.0010171 251,1 0.8310	0.0010292 334.9 1.0753	3.4181 2682.6 7.6953	3,6074 2721,6 7,7972	3.7955 2760.6 7.8940	3,9829 2799.6 7,9861	
	60.0 h (85,95) s	-0.0001	0.0010017 83.9 0.2963	167.5	0.0010171 251.1 0.8310	0.0010292 334.9 1.0792	2.8440 2681,3 7,6085	3,0025 2720,6 7,7111	3.1599 2759.8 7.8083	3,3165 2798.9 7,9008	
	80.0 h (93,51) s	-0.0001	0.0010017 83.9 0.2963	167.5	0,0010171 251,1 0,8310	334.9 1,0752	2,1262 2678,8 7,4703	2,2464 2718,6 7,5742	2.3654 2758.1 7.6723	2,4836 2797,5 7,7655	
	100.0 h (99,63) s	-0.0001	0.0010017 84.0 0.2963	167.5	0.0010171 251,2 0.8309	0,0010202 335.0 1,0752	1.6955 2676,2 7,3618	1,7927 2716,5 7,4670	1,8886 2756,4 7,5662	1,9838 2796.2 7,6601	
	150.0 h (111.4) s	0.0010001	0.0010017 84.0 0.2963	167.6 0,5721	251,2 0,8309	335.0 1,0752	419,1 1.3068	1,1876 2711,2 7,2693	1,2529 2752,2 7,3709	1.3173 2792.7 7.4667	
	200.0 h (120.2) s	-0.0001	0.2963	0.5720	0.0010171 251.2 0.8309	0.0010201 335.0 1.0752	0,0010437 419.1 1.3068	0.0010606 503.7 1.5276	0.9349 2747.8 7.2298	0.9840 2789.1 7.3275	
	300.0 h (133.5) s	-0,0001	0.0010016 84.1 0.2962	167.7	251,3 0,8308	0.0010291 335.1 1.0751	0,0010436 419,2 1,3067	0,0010606 503,8 1,5275	0.6167 2738.8 7.0254	0,6506 2781,8 7,1271	
	400.0 h (143.6) s	0.0010000 0.4 -0.0001	0.0010015 84.2 0.2962	0.0010076 167,8 0,5720	0.0010170 251.4 0.8308	0.0010290 335.2 1.0790	0.0010436 419.3 1.3066	0.0010605 503.9 1.5274	0.0010800 589.1 1.7389	0,4837 2774.2 6,9805	

PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE)

۱								,			
						BLE 2 rature, t, °C				Press.	
ı	180.	200.	220.	240.	260.	280.	300.	320.	340.		
	209.12 2841.4 9.8843	218.35 2880.1 9,9679	227,58 2919.0 10,0484	236.82 2958.1 10,1262	246.05 2997.4 10,2014	255.28 3037.0 10.2743	264,51 3076.8 10,3450	273,74 3116.9. 10.4137	282.97 v 3157.2 h 10.4805 s	1.0	
	139.41 2841.4 9.6972	145.56 2880.0 9.7807	151.72 2918.9 9,8612	157.87 2958.1 9,9390	164.03 2997.4 10,0142	170.18 3037,0 10.0871	176,34 3076.8 10,1578	182,49 3116.9 10.2266	188.64 v 3157.2 h 10,2934-s	1.5	
	104.55 2841.3 9.5643	109.17 2850.0 9.6479	113.79 2918.9 9,7284	118.40 2958.0 9,8062	123,02 2997.4 9,8814	127.64 3037.0 9.9943	132,25 3076.8 10,0251	136.87 3116.9 10.0938	141.48 V 3157.2 h 10,1606 s	2.0	
	2841.3 9,3771	72,777 2880.0 9,4607	75.855 2918.9 9,5412	78.933 2958.0 9.6190	82,010 2997,4 9,6943	85.088 3037.0 9,7472	88.165 3076.8 9,8379	91,242 3116.9 9,9066	94.320 V 3157.2 h 9,9735 s	3.0	
	52,270 2841,2 9,2443	54,580 2879,9 9,3279	56.889 2918.8 9,4084	59.197 2958.0 9,4862	61.506 2997.3 9,5615	63,814 3034,9 9.6344	66,122 3076.8 9,7051	68.430 3116.8 9.7738	70.738 v 3157.2 h 9,8407 s	4.0	
	41.814 2841.2 9.1412	43,661 2879,9 9,2248	45,509 2918.8 9,3054	47.356 2957.9 9.3832	49.203 2997.3 9,4584	51.050 3034.9 9.5313	52.897 3076.7 9.6021	54.743 3116.8 9:6708	56.590 v 3157.1 h 9.7377 s	5.0	
	34.843 2841.1 9.0569	36,383 2879,8 9,1406	37.922 2918.8 9,2212	39.462 2957,9 9,2990	41.001 2997.3 9,3742	42,540 3036,9 9,4472	44.079 3076.7 9.5179	45.618 3116.8 9.5866	47.197 v 3197.1 h 9.6535 s	6.0	
	26.129 2841.0 8.9240	27,284 2879,7 9,0077	28.439 2918.7 9.0883	29,594 2957,8 9,1661	30,749 2997,2 9,2414	31,903 3036,8 9.3143	33.058 3076.7 9,3851	34,212 3116,8 9,4538	35.367 v 3157.1 h 9.5207 s	8.0	
	20.900 2840.9 8.8208	21.825 2879.6 8,9045	22.750 2918.6 8,9852	23,674 2957,8 9,0630	24,598 2997.2 9,1383	25.521 3036.8 9.2113	26,445 3076.6 9,2820	27,369 3116,7 9.3508	28,292 v 3197.0 h 9,4177 s	10.0	
	13.929 2840.6 8.6332	14.546 2879.4 8.7170	15.163 2918.4 8.7977	15.780 2957,6 8,8757	16.396 2997.0 8,9510	17.012 3036.6 9.0240	17.628 3076.5 9.0948	18,244 3116,6 9,1635	18.860 v 3157.0 h 9.2304 s	15.0	
	10.444 2840.3 8.5000	10.907 2879,2 8,5839	11.370 2918.2 8,6647	11,832 2957,4 8,7426	12.295 2996.9 8,8180	12,757 3034,5 8,8910	13,219 3076.4 8,9618	13.68 ₁ 3116.5 9.0306	14.143 v 3156.9 h 9.0975 s	20.0	
	6,9582 2839.8 8,3119	7.2675 2878,7 8,3960	7,5766 2917.8 8,4769	7,8854 2957,1 8,5550	8,1940 2996.6 8,6305	8.5024 3036,2 8,7035	8.8108 3076.1 8.7744	9.1190 3116.3 8.8432	9.4272 v 3156.7 h 8.9102 s	30,0	
	5.2154 2839.2 8.1782	5,4478 2878,2 8,2625	5,6800 2917,4 8,3435	5,9118 2956.7 8,4217	6,1435 2996.3 8,4973	6.3751 3036.0 8,5704	6.6065 3075.9 8.6413	6.8378 3116.1 8.7102	7.0690 v 3156.5 h 8.7772 s	40.0	
	4.1697 2838.6 8.0742	4.3560 2877.7 8.1587	4,5420 2917.0 8,2399	4,7277 2956,4 8,3182	4,9133 2995,9 8,3939	5.0986 3035,7 8.4671	5,2839 3075.7 8,5380	5.4691 3115.9 8.6070	5.6542 v 3156.3 h 8.6740 s	90.0	
	3,4726 2838,1 7,9891	3.6281 2877.3 8.0738	3,7833 2916.6 8,1552	3,9383 2956.0 8,2336	4,0931 2995,6 8,3093	4,2477 3035,4 8,3826	4,4022 3075,4 8,4536	4.5566 3115.6 8.5226	4.7109 v 3156.1 h 5,5896 s	40,0	
	2.6011 2836.9 7.8544	2,7183 2876,3 7,9395	2,8350 2915,8 8,0212	2,9515 2955,3 8,0998	3,0678 2995.0 8,1757	3,1840 3034,9 8,2491	3,3000 3075.0 8,3202	3.416n 3115,2 8,3893	3,5319 V 3155.7 h 8,4564 s	80.0	
	2.0783 2835.8 7,7495	2.1723 2875,4 7.8349	2,2660 2915.0 7,9169	2,3595 2954,6 7,9958	2,4527 2994,4 8,0719	2,5458 3034,4 8,1454	2,6387 3074.5 8,2166	2.7316 3114.8 8.2857	2,8244 v 3155.3 h 8,3529 s	100.0	
	1,3811 2832,9 7,5574	1.4444 2872,9 7.6439	1,5073 2912.9 7,7266	1,5700 2952,9 7,8061	1,6325 2992,9 7,8826	1,6948 3033,0 7,9965	1,7570 3073,3 8,0280	1.8191 3113.7 8.0973	1,8812 v 3154.3 h 8,1646 s	150,0	
	1.0325 2830.0 7.4196	1.0804 2870.5 7.5072	1,1280 2910.8 7,5907	1,1753 2951,1 7,6707	1,2224 2991.4 7,7477	1.2693 3031.7 7.8219	1.3162 3072.1 7.8937	1.3629 3112.6 7.9632	1.4095 V 3153.3 h 8.0307 s	200.0	
	0.6837 2824.0 7,2222	0.7164 2865.5 7.3119	0,7486 2906.6 7,3971	0,7805 2947,5 7,4783	0,8123 2988.2 7,5562	0.8438 3028.9 7.6311	0.8753 3069.7 7,7034	0.9066 3110.5 7.7734	0.9379 v 3151.4 h 7,8412 s	300.0	
	0.5093 2817.8 7.0788	0.5343 2860,4 7.1708	0,5589 2902.3 7,2576	0,5831 2943.9 7,3402	0,6072 2985.1 7,4190	0.6311 3026.2 7,4047	0,6549 3067.2 7,5675	0.6785 3106.3 7.6379	0.7021 v 3149.4 h 7.7061 s	400.0	

ſ		DDODE									
		PROPE	RTIES OF	SUPERH (TEMPE	EATED S RATURE	AND PRI	ND COMP ESSURE)	PRESSED	WATER		
	Press. p, kPa (t _s)				TAB Tempera	LE 2 sture. t, °C					
		360.	380.	400,	420.	440.	460.	480.	500.	520.	
	1.0 h (6.983) s	292.20 3197.8 10.5457	301.43 3238.6 10.6091	310.66 3279.7 10.6711	319.89 3321.1 10.7317	329.12 3362.7 10.7909	338,35 3404,6 10.8488	347.58 3446.8 10.9056	356.81 3489.2 10.9612	366.04 3531.9 11.0157	
	1.5 h (13.04) s	194.80 3197.8 10.3585	200.95 3238.6 10.4220	207.11 3279,7 10,4840	213.26 3321.1 10.5445	219.41 3362.7 10.6037	225.57 3404,6 10.6617	231,72 3446,8 10,7184	237.87 3489.2 10,7741	244.03 3531.9 10.8286	
	(17,51) s	146.10 3197.8 10.2257	150.71 3238.6 10.2692	155,33 3279,7 10,3512	159.94 3321.1 10.4118	164.56 3362.7 13.4710	169.17 3404,6 10,5289	173,79 3446,8 10,5857	178.41 3489.2 10.6413	183.72 3531.9 10.6958	
	3.9 h (24.10) s	97.397 3197.8 10.0386	100.47 3238.6 10.1021	103.55 3279.7 10.1641	106.63 3321.1 10.2246	109.71 3362.7 10.2838	112.78 3404.6 10.3418	115,86 3446,8 10,3985	118,94 3489.2 10,4541	122.01 3531.9 10.5087	
	4.0 h (28,98) s	73.046 3197.7 9.9058	75,354 3238,6 9,9693	77,662 3279,7 10,0313	79,970 3321.0 10,0918	92,278 3362,7 10,1510	84,586 3404.6 10,2090	86.893 3446,7 10.2657	89,201 3489,2 10,3214	91.509 3531.9 10.3759	
	5.0 h (32,90) s	58.436 3197.7 9,8028 48.696	60,283 3238.6 9.8663	62,129 3279,7 9,9283	63,975 3321.0 9,9888	65.822 3362.7 10.0480	67,668 3404.6 10.1060	69.514 3446.7 10.1627	71,360 3489.2 10.2184	73.207 3531.9 10.2729	
	6.0 h (36,18) s	3197.7 9.7186 36.521	50,235 3238,5 9.7821	51,773 3279,6 9,8441	53,312 3321.0 9,9047	54,851 3362,6 9,9639	56,389 3404,5 10.0218	57.928 3446.7 10.0786	59,467 3489.2 10,1342	61.005 3531.9 10.1888	
	8.0 h (41.53) s	3197.7 9.5858 29.216	37,675 3238.5 9.6493	38,829 3279,6 9,7113	39,983 3321.0 9.7719	41.137 3362.6 9.8311	42,291 3404,5 9,8890	43,445 3446,7 9,9458	44,599 3489,1 10.0014	45.753 3531.9 10.0540	
	10.0 h (45,83) s	3197.6 9.4828	30,139 3238.5 9.5463 20.091	31,062 3279,6 9,6083	31,986 3321.0 9.6689	32,909 3362,6 9,7281	33,832 3404,5 9,7860	34,756 3446,7 9,8428	35,679 3489.1 9.8984	36,602 3531.9 9.9530	
	15.0 h (54.00) s	3197.5 9.2956 14.605	3238.4 9.3591 15.067	20,707 3279,5 9,4211 15,529	21,323 3320,9 9.4817	21,938 3362,5 9,5409	22,554 3404,4 9.5988	23,169 3446,6 9,6556	23,785 3489.1 9.7112	24.400 3531.8 9.7636	
	20.0 h (60.09) s	3197.5 9.1627 9.7353	3238.3 9.2262	3279.4 9.2882	15,991 3320,8 9,3488	16.493 3362.5 9.4081	16,914 3404,4 9,4660	17.376 3446,6 9.5228	17,838 3489.0 9.5784	18.300 3531.8 9.6330	
	30.0 h (69.12) s	3197.3 8,9754 7,3002	3238.2 9.0389 7.5314	3279,3 9.1010 7.7625	3320.7 9.1615 7.9935	10.947 3362.3 9.2208	11,275 3404,2 9,2788	11,583 3446,4 9,3355	11,891 3488.9 9,3912	12,199 3531.6 9,4458	
	40.0 h (75,89) s	3197.1 8.8424 5.8392	3238.0 8.9060	3279,1 8,9680 6,2091	3320,5 9.0286	8.2246 3362.2 9.0879	8.4556 3404.1 9.1459	8.6866 3446,3 9.2027	8,9176 3488,8 9,2583	9.1495 3531.5 9.3129	
	50.0 h (81,35) s	3196.9 8,7392 4,8652	3237.8 8.8028 5.0194	3279.0 6,8649 5,1736	3320,4 8,9255 5,3277	3362.1 8,9848 5,4819	6,7638 3404,0 9,0428 5,6360	6,9487 3446,2 9,0996	7,1335 3488,7 9,1552	7,3183 3531.4 9,2098	
	(85,95) s	3196.7 8,6549 3,6477	3237.7 8.7185 3.7634	3278.8 8.7806	3320.2 8,8412 3,9948	3361.9 8.9005	3403.9 8.9585	5.7900 3446.1 9.0153	5,9441 3488,6 9,0710	6,0981 3531:3 9,1256	
	(93,51) s	3196.4 8.5217 2.9172	3237.3 8.5854 3.0098	3278,5 8,6475 3,1025	3320.0 8.7081 3.1951	3361.7 8.7675	3403.6 8.8255 3.3803	4,3418 3445,9 8,8823	4,4974 3488,4 8,9380	4,5729 3531,1 8,9926	
	100.0 h (99,63) s	3196.0 8,4183	3237.0 8.4820 2.0051	3278,2 8,5442 2,0669	3319,7 8,6049 2,1288	3361.4	3403,4	3,4728 3445,6 8,7791	3,5653 3488.1 8,8348	3,4578 3530.9 8,8894	
	150.0 h (111.4) s	3195.1 8.2301	3236.2 8,2940 1.5027	3277.5 8.3562 1.5492	3319,0 8,4170	3360.7	2.2524 3402.8 8.5345	2,3142 3445,0 8,5914	2,3759 3487.6 8,6472	2,4377 3530,4 8,7018	
	200.0 h (120.2) s	3194.2 8,0964 0.9691	3235.4 8.1603	3276.7 8,2226	3318.3 8.2835	1,6421 3360,1 8,3429	1.6885 3402.1 8.4011	1,7349 3444,5 8,4581	1,7812 3487.0 8,5139	1,8276 3529,9 8,5686	
	300.0 h (133.5) s	3192.4 7.9072 0.7256	3233.7 7.9713	3275,2 8,0338	3316,8 8,0949	3358.8	1.1245 3400.9 8.2128	1,1556 3443,3 8,2698	1,1865 3486.0 8,3257	1,2175 3528.9 8,3805	
_	400.0 h (143.6) s	3190.6 7.7723	3232.1 7.8367	3273.6	3315,4 7,9606	0,8192 3357,4 8,0203	0.8426 3399,7 8.0787	0,8459 3442,1 8,1359	0,8892 3484,9 8,1919	0,9125 3527.8 8,2468	

PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE)

				TA Tempera	ABLE 2 ature, t, °C				Press. p, kPa
540.	560.	580.	600.	625.	650.	700.	750,	800.	
375,27 3574,9 11,0693	384.50 3618.2 11.1218	393,74 3661.8 11,1735	402.97 3705.6 11,2243	414,50 3760,8 11,2866	426.04 3816.4 11.3476	449,12 3928,9 11,4663	472.19 4043.0 11.5807	495.27 V 4158.7 h 11.6911 S	1.0
250.18 3574,9 10.8821	256.34 3618.2 10.9347	262,49 3661.8 10,9864	268,64 3705,6 11,0372	276,33 3760.8 11,0995	264,03 3814,4 11,1605	299,41 3928,9 11,2792	314.79 4043.0 11.3935	330,18 ¥ 4158.7 h 11.5040 s	1.5
187.64 3574.9 10.7494	192.25 3618.2 10.8019	196.87 3661.8 10,8536	201.48 3705,6 10,9044	207,25 3760.8 10,9667	213.02 3814.4 11.0277	224,56 3928.8 11,1464	236,10 4043.0 11.2608	247.63 V 4158.7 h 11,3712 s	2.0
125.09 3574.9 10.5622	128.17 3618,2 10.6148	131.24 3661.8 10,6665	134.32 3705.6 10,7173	138,17 3760.8 10,7796	142.01 3816.4 10.8406	149,70 3928.8 10,9593	157,40 4043.0 11.0736	165.09 v 4158.7 h 11.1841 s	3.0
93.817 3574.9 10.4295	96.124 3618.2 10.4820	98.432 3661,7 10,5337	100.74 3705.6 10.5845	103,62 3760.8 10,6468	106.51 3816.4 10.7078	112,28 3928,8 10,8265	118,05 4043,0 10,9409	123.82 V 4158.7 h 11.0513 s	4.0
75.053 3574.9 10.3265	76.899 3618.2 10.3790	78.745 3661.7 10.4307	80.592 3705.6 10,4815	82.899 3760.7 10,5438	85.207 3816.3 10.6049	89.822 3928.8 10,7235	94.438 4043.0 10.8379	99.053 V 4158.7 h 10.9483 S	5.0
62,544 3574,9 10.2423	64.082 3618.2 10.2949	65.621 3661.7 10,3466	67,159 3705,6 10,3973	69,082 3760.7 10,4596	71.005 3816.3 10.5207	74,852 3928,8 10,6394	78,698 4043.0 10.7537	82,544 v 4158,7 h 10,8642 s	6.0
46,907 3574,9 10,1095	48.061 3618,2 10.1621	49.215 3661.7 10,2138	50.369 3705.5 10.2646	51.811 3760.7 10.3269	53,254 3816,3 10,3879	56,138 3928,8 10,5066	59,023 4043.0 10.6210	61.908 V 4158.7 h 10.7314 s	8.0
37.525 3574.9 10.0065	38,448 3618.1 10.0591	39.372 3661.7 10.1108	40.295 3705.5 10.1616	41.449 3760.7 10,2239	42.603 3816,3 10.2849	44.910 3928.8 10.4036	47,218 4042,9 10,5180	49.526 V 4158.7 h 10.6284 s	10.0
25, 016 3574.8 9.8194	25,632 3618.1 9,8719	26.247 3661.7 9,9236	26,863 3705,5 9,9744	27,632 3760.7 10,0367	28,401 3816,3 10,0978	29.940 3928.8 10.2164	31,478 4042.9 10.3308	33.017 V 4158.7 h 10.4413 S	15.0
18.761 3574.8 9.6865	19.223 3618.0 9.7391	19.685 3661.6 9,7908	20,146 3705,4 9,8416	20.723 3760.6 9,9039	21.300 3816.2 9.9650	22.455 3928.7 10.0836	23,609 4042.9 10.1980	24.762 V 4158.7 h 10.3085 s	20.0
12,507 3574.7 9,4993	12,815 3618.0 9.5519	13.122 3661.5 9.6036	13.430 3705.4 9.6544	13.815 3760.6 9,7167	14.200 3616,2 9,7778	14.969 3928.7 9,8965	15,739 4042.8 10.0109	16.508 V 4158.6 h 10.1213 s	30.0
9.3795 3574.6 9.3665	9.6104 3617.9 9.4191	9.8413 3661.4 9.4708	10.072 3705.3 9,5216	10.361 3760.5 9,5839	10.649 3816,1 9,6450	11.227 3928,6 9,7636	11,804 4042.8 9,8780	12.381 V 4158.6 h 9.9885 s	40.0
7,5031 3574,5 9,2634	7,6878 3617,8 9,3160	7.8726 3661.3 9.3677	8,0574 3705,2 9,4185	8,2883 3760.4 9,4808	8,5192 3816.0 9,5419	8,9810 3928,6 9,6606	9.4427 4042.7 9.7750	9,9044 v 4158.5 h 9,8855 s	50.0
6.2521 3574.4 9.1792	6.4062 3617.7 9.2318	6.5602 3661.3 9.2835	6,7141 3705,1 9,3343	6,9066 3760.3 9,3966	7.0991 3816,0 9,4577	7.4839 3928.5 9,5764	7.8687 4042.7 9.4908	8,2535 V 4158.5 h 9,8013 s	60.0
4,6885 3574,2 9,0462	4,8040 3617,5 9:0988	4,9196 3661.1 9,1506	5.0351 3705.0 9.2014	5,1795 3760.2 9,2637	5.3239 3815,8 9.3248	5.6126 3928.4 9.4436	5.9013 4042.6 9.5580	6,1899 V 4158,4 h 9,6685 s	00,0
3,7503 3574.0 8,9431	3,8428 3617.3 8,9957	3,9352 3660.9 9,0474	4,0277 3704.8 9,0982	4,1432 3760.0 9,1606	4.2988 3819,7 9.2217	4,4898 3928,2 9,3405	4.7208 4042.5 9.4549	4,9517 v 4158.3 h 9,5654 s	100.0
2.4994 3573.5 8.7555	2.5611 3616.9 8.8082	2,6228 3660.5 8,8599	2,6845 3704,4 8,9108	2,7616 3759,6 8,9732	2.8386 3819,3 9.0343	2.9927 3927,9 9.1531	3.1468 4042.2 9.2676	3,3008 v 4158.0 h 9,3781 s	150.0
1.8739 3573.0 8.6223	1.9202 3616.4 8.6750	1,9666 3660.0 8,7268	2.0129 3704.0 8,7776	2,0707 3759.3 8,8401	2.1286 3819.0 8,9012	2.2442 3927.6 9.0201	2,3598 4041.9 9,1346	2.4754 v 4157.8 h 9.2452 s	200.0
1.2485 3572.0 8.4343	1,2794 3615,5 8,4870	1,3103 3659,2 8,5389	1,3412 3703,2 8,5898	1,3799 3758,5 8,6523	1,4185 3814,2 8,7135	1.4957 3927.0 8.8325	1.5728 4041.4 8.9471	1,6499 v 4157,3 h 9,0577 s	300.0
0.9357 3571.1 8.3006	0.9590 3614.6 8.3534	0.9822 3658.3 8.4053	1.0054 3702.3 8,4563	1,0344 3757,7 8,5189	1.0634 3813,5 8.5802	1.1214 3926,4 8.6992	1.1793 4040.8 6.8139	1.2372 v 4156.9 h 8.9246 s	400.0

		PROPI	ERTIES O		EATED S'		D COMPR	RESSED V	VATER	
Press. p, kPa (t _s)				(IEMIE	TARI		SSURE)			
(*8/		0.	20.	40.	60.	00.	100.	120.	140.	160.
500.0 (151.8)	h	0.0010000 0.5 -0.0001	0.0010015 84.3 0.2962	0.0010076 167.9 0.5719	0.0010169 251.5 0.8307		0,0010435 419,4 1,3066	0.0010605 503.9 1,5273	0.0010800 589.2 1.7388	0.38347 2766.4 6,8631
600.0 (158.8)	h	0.0009999 0.6 -0.0001	0.0010015 84.4 0.2962	0.0010075 168.0 0.5719	0.0010169 251.6 0.8307	0.0010289 335.4 1.0749	0,0010434 419,4 1,3065	0.0010604 504.0 1.5272		0.31659 2758.2 6.7640
800.0 (170.4)	h	0.0009998 0.8 -0.0001	0.0010014 84.6 0.2961	0.0010075 168.2 0.5718	0.0010168 251.7 0.8306	0.0010288 335.5 1.0748	0,0010433 419,6 1,3063	0.0010603 504.1 1.5270	0,0010798 589,4 1,7385	0,0011021 675.6 1,9423
1000.0	h	0.0009997 1.0 -0.0001	0.0010013 84.8 0.2961			335.7	0,0010432 419.7 1.3062	0.0010602 504,3 1.5269		0.0011019 675.7 1.9420
	h	0.0009995 1.5 -0.0000		0.0010071 168.8 0,5715	0.0010165 252,3 0,8302	336.1	0,0010430 420,1 1,3058	0.0010599 504.6 1.5264	589,8	676.0
2000.0	h	0.0009992 2.0 0.0000	0.0010008 85.7 0.2959	0.0010069 169.2 0.5713	0.0010162 252.7 0.8299	336.5	0,0010427 420,5 1,3054	0.0010596 505.0 1.5260		676.3
3000,0 (233,8)	h	3.0	0.0010004 86.7 0.2957		253,6	337.3		505,7	590.8	676.9
4000.0 (250.3)	h	4.0	0.0009 9 99 87.6 0.2955	0.0010060 171.0 0.5706	0.0010153 254,4 0.8289	0.0010273 338.1 1.0726	0,0010417 422,0 1,3038	0.0010584 506.4 1.5242	0,0010777 591,5 1,7352	677.5
5000.0 (263.9)	h	5.1	0.0009995 88.6 0.2952		0.0010149 255,3 0,8283	338.8	0,0010412 422,7 1.3030	507,1	592.1	678.1
6000.0	h	6.1	0.0009990 89.5 0.2950	0.0010052 172.7 0,5698	0.0010144 296,1 0.8278	0.0010263 339.6 1.0713	0,0010406 423,5 1,3023	0.0010573 507,8 1.5224	592.8	678.6
8000.0	h	8.1	0.0009981 91.4 0.2946	0.0010043 174.5 0.5690	0.0010135 257.8 0.8267	341.2	0,0010396 425,0 1,3007	509.2	594,1	679.8
10000,0	h	0.0005	93.2	176.3	259.4 0.8257	342.8 1.0687	1.2992	510,6 1,5188	595.4 1.7291	1,9315
15000,0	h	15.1	97.9	0.0010013 180.7 0.5663	263.6	0,0010221 346.8 1,0655	0,0010361 430,3 1,2954	514,2	598.7	684.0
20000.0	h	20.1	0.0009929 102.5 0.2919	0.0009992 185,1 0,5643	267,8	350.8		0.0010497 517.7 1.5101	602.0	687.1
30000.0			111.7	193.8	276,1	358.7		524,9	608.7	693,3
40000.0	S	39.7	120.8	202.5	284,5 0,8102	366.7 1.0498	1,2771	532.1 1,4935	615.5 1,7004	1,8991
50000.0	s	-0.0002	129.9	211.2 0,5525	292,8 0,8052	374.7 1.0438	456,8 1,2701	539,4 1,4856	622.4	1.8890
60000.0	s	-0.0012	138.9 0.2815	219.8	301.1 0.5002	382.6 1.0379	1,2633	1,4778	629.2	1,8793
80000.0	s	77,5 -0,0037	156,6	236,9	317,6	398.5	479,7	561.3	643,2	
100000.0	h	95.9	174.0	253.8	334,0	414.4	495,1	576,0	657,2	

	PROPE	RTIES OF	SUPERHI (TEMPE	EATED ST RATURE A	EAM ANI	COMPR SURE)	ESSED W	ATER	
				TABL. Temperatu	E 2	,			Press p, kP
180.	200.	220.	240.	260.	280.	300.	320,	340.	
0,4045	0.4250	0.4450	0.4647	0.4841	0.5034	0.5226	0.5416	0.5606 1	500.
2811.4	2855.1	2898.0	2940.1	2981,9	3023.4	3064,8	3106.1	3147.4	
6,9647	7.0592	7,1478	7.2317	7,3115	7.3879	7.4614	7.5322	7.6008	
0.3346	0.3520	0.3690	0.3857	0,4021	0.4183	0.4344	0.4504	0.4663 :	600.
2804.8	2849.7	2893.5	2936.4	2978.7	3020.6	3062.3	3103.9	3145.4 :	
6.8691	6.9662	7.0567	7,1419	7,2228	7.3000	7,3740	7.4454	7.5143 :	
0.2471	0.2608	0,2740	0,2869	0.2995	0.3119	0.3241	0.3363	0.3483	800.
2791.1	2838.6	2884.2	2928,6	2972.1	3014.9	3057.3	3099.4	3141.4	
6.7122	6.8148	6,9094	6,9976	7,0807	7.1595	7.2348	7.3070	7.3767	
0.1944	0.2059	0.2169	0,2276	0,2379	0.2480	0.2580	0.2678	0.2776	1000.
2776.5	2826,8	2874.6	2920,6	2965,2	3009.0	3052.1	3094,9	3137.4	
6,5835	6.6922	6.7911	6,8825	6,9680	7.0485	7,1251	7.1984	7.2689	
763.4 2.1386	0.1324 2794,7 6,4508	0,1406 2848.6 6,5624	0.1483 2899.2 6.6630	0.1556 2947.3 6.7550	0,1628 2993,7 6,8405	0.1697 3038.9 6,9207	0.1765 3083.3 6.9967	0.1632 3127.0 7.0693	1500.
763.6 2.1379	0.0011560 852.6 2.3300	0.1021 2819.9 6,3829	0.1084 2875.9 6,4943	0,1144 2928.1 6,5941	0,1200 2977,5 6,6852	0.1255 3025.0 6.7696	0.1308 3071.2 6.8487	0.1360 3116.3 6,9235	2000.
764.1 2.1366	0.0011550 853.0 2.3284	0.0011891 943,9 2,5165	0.06816 2822,9 6,2241	0.07283 2885.1 6,3432	0,07712 2942,0 6,4479	0.08116 2995.1 6.5422	0.08500 3045,4 6.6285	0.08871 3093.9 6.7088	h 3000.
764.6 2.1352	0.0011540 853.4 2.3268	0.0011878 944.1 2,5147	0.0012280 1037,7 2,7006	0.05172 2835.6 6,1353	0.05544 2902.0 6.2576	0.05883 2962.0 6.3642	0.06200 3017.5 6.4593	0.06499 3069.8 6.5461	h 4000.
765.2 2.1339	0.0011530 853.8 2.3253	0.0011866 944.4 2.5129	0.0012264 1037,8 2,6984	0.0012750 1134.9 2,6840	0.04222 2856,9 6,0886	0.04530 2925.5 6.2105	0.04810 2987.2 6.3163	0.05070 3044.1 6.4106	h 5000.
765.7 2,1325	0.0011519 854.2 2.3237	0.0011853 944.7 2,5110	0.0012249 1037.9 2.6962	0.0012729 1134.7 2.8813	0.03317 2804,9 5,9270	0.03614 2885.0 6,0692	0.03874 2954.2 6.1880	0.04111 3016.5 6.2913	h 6000.
.0011216	0.0011500	0.0011829	0.0012218	0.0012687	0.0013277	0.02426	0.02681	0.02896	h 8000.
766.7	855.1	945.3	1038.1	1134.5	1236.0	2786.8	2878.7	2955.3	
2.1299	2.3206	2,5075	2,6919	2,8761	3.0629	5,7942	5.0519	6.0790	
.0011179	0.0011480	0.0011805	0.0012188	0.0012648	0.0013221	0.0013979	0.01926	0.02147	h 10000.
767.8	855,9	945.9	1038.4	1134.2	1235.0	1343.4	2783.5	2883.4	
2.1272	2.3176	2,5039	2,6877	2,8709	3.0563	3,2488	5.7145	5.8803	
.0011159	0.0011433	0.0011748	0.0012115	0.0012553	0.0013090	0.0013779	0.0014736	0.0016324	h 15000.
770.4	858,1	947.6	1039,2	1134.0	1232.9	1338.3	1454.3	1593.3	
2.1208	2.3102	2,4953	2,6775	2,8585	3.0407	3,2278	3.4267	3.6571	
.0011120 773.1 2.1145	0.0011387 860,4 2,3030	0011693 949.3 2,4869	0.0012047 1040,3 2,6677	0.0012466 1134.0 2,8468	0.0012971 1231.4 3.0262		0.0014451 1445.6 3.3998	0.0015704 1572.4 3.6100	h 20000.
.0011046	0.0011301	0.0011590	0.0011922	0.0012307	0.0012763	0.0013316	0.0014012	0.0014939	h 30000.
778.7	865,2	953.1	1042.8	1134,7	1229,7	1328.7	1433.6	1547.7	
2.1022	2.2891	2,4710	2,6492	2,8250	2,9998	3,1797	3.3556	3.9447	
.0010976	0.0011220	0.0011495	0.0011808	0.0012166	0.0012583	0.0013077	0.0013677	0.0014434	h 40000.
784.4	870.2	957.2	1045.8	1136.3	1229.2	1325.4	1425.9	1532.9	
2.0905	2.2758	2,4560	2.6320	2,8050	2.9761	3,1469	3.3193	3.4965	
.0010910	0.0011144	0.0011407	0.0011703	0.0012040	0.0012426	0.0012874	0.0013406	0.0014055	h 50000.
790.2	875,4	961.6	1049,2	1138.5	1229,8	1323.7	1421.0	1523.0	
2.0793	2,2632	2,4417	2,6158	2,7864	2,9545	3,1213	3.2882	3,4572	
.0010847	0.0011073	0.0011325	0.0011607	0.0011924	0,0012265	0.0012698	0.0013179	0.0013791	h 60000.
796.2	880.8	966,3	1053.0	1141.2	1231,1	1323.2	1418.0	1516.3	
2.0684	2.2511	2,4281	2.6005	2,7690	2,9345	3.0981	3.2606	3,4236	
.0010731	0.0010941	0.0011174	0.0011433	0.0011720	0.0012041	0.0012401	0.0012809	0.0013280	h 80000.
808.4	891.9	976.2	1061,4	1147.8	1235,4	1324.7	1415.7	1508,6	
2.0478	2.2281	2,4026	2.5720	2,7370	2,8985	3,0570	3.2130	3,3671	
.0010623	0.0010821	0.0011039	0.0011279	0.0011543	0.0011833	0.0012155	0.0012514	0.0012921	h 100000.
820.9	903.5	986.7	1070.7	1155.6	1241,5	1328.7	1416.9	1505.9	
2.0283	2.2067	2,3789	2.5458	2,7081	2.8463	3.0210	3.1723	3.3200	

	PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE)								
Press. p, kPa (t _s)		`	I ENII EN	TABLE Temperatu	2	OKL)			
('s)	360.	380.	400.	420.	440.	460.	480.	500.	520.
500.0 h (151.8) s	0,5795 3188,8 7,6673	0.5984 3230.4 7.7319	0.6172 3272.1 7.7948	0.6359 3314.0 7.8561	0.6547 3356.1 7.9160	0.6734 3398.4 7.9745	0.6921 3441.0 8.0318	0.7108 3483.8 8.0879	0,7294 3526,8 8,1428
600.0 h (158.8) s	0.4821 3187.0 7.5810	0.4979 3228.7 7.6459	0,5136 3270.6 7,7090	0.5293 3312.6 7.7705	0,5450 3354.8 7,8305	0.5606 3397,2 7.8891	0,5762 3439,8 7,9465	0.5918 3482,7 8.0027	0.6074 3525.8 6,0577
800.0 h (170.4) s	0.3603 3183.4 7.4441	0.3723 3225.4 7.5094	0.3842 3267.5 7,5729	0.3960 3309.7 7,6347	0.4078 3352.1 7,6950	0.4196 3394,7 7,7539	0.4314 3437,5 7,8115	0.4432 3480.5 7.8678	0,4549 3523.7 7,9230
1000.0 h (179.9) s	0.2873 3179.7 7.3368	0.2969 3222,0 7.4027	0.3065 3264.4 7.4665	0.3160 3306.9 7,5287	0,3256 3349.5 7,5893	0,3350 3392,2 7,6484	0.3445 3435.1 7.7062	0.3540 3478.3 7.7627	0,3634 3521.6 7,8181
1500.0 h (198.3) s	0.1898 3170.4 7.1389	0.1964 3213.5 7.2060	0.2029 3256.6 7,2709	0.2094 3299.7 7.3340	0.2158 3342.8 7,3953	0,2223 3386,0 7,4550	0,2267 3429,3 7,5133	0.2350 3472.8 7.5703	0.2414 3516.5 7.6261
2000.0 h (212.4) s	0,1411 3160.8 6,9950	0.1461 3204.9 7.0635	0.1511 3248.7 7,1296	0,1561 3292,4 7,1935	0.1610 3336.0 7.2555	0.1659 3379,7 7.3159	0.1707 3423,4 7,3748	0.1756 3467.3 7.4323	0.1804 3511.3 7.4885
3000.0 h (233.8) s	0,09232 3140.9 6,7844	0.09584 3187.0 6.8561	0.09931 3232,5 6,9246	0,1027 3277,5 6,9906	0.1061 3322.3 7.0543	0.1095 3367,0 7.1160	0.1128 3411.6 7.1760	0.1161 3456,2 7.2345	0.1194 3500.9 7,2916
4000.0 h (250.3) s	0.06787 3119,9 6,6265	0.07066 3168.4 6.7019	0.07338 3215.7 6,7733	0.07604 3262,3 6.8414	0.07866 3308.3 6.9069	0.08125 3354.0 6.9702	0.08381 3399,6 7.0314	0.08634 3445.0 7.0909	0.08886 3490.4 7.1489
5000.0 h (263.9) s	0,05316 3097.6 6,4966	0.05551 3148.8 6.5762	0.05779 3198.3 6.6508	0.06001 3246.5 6.7215	0.06218 3294.0 6,7890	0,06431 3340,9 6,8538	0,06642 3387,4 6,9164	0,06849 3433,7 6,9770	0.07055 3479.8 7.0360
6000.0 h (275.5) s	0,04330 3074.0 6,3836	0.04539 3128.3 6.4680	0.04738 3180.1 6.5462	0.04931 3230,3 6.6196	0,05118 3279.3 6,6893	0,05302 3327,4 6,7559	0,05482 3375,0 6,8199	0,05659 3422,2 6,8818	0.05834 3469.1 6.9417
8000.0 h (295.0) s	0,03088 3022,7 6,1872	0.03265 3084.2 6.2828	0.03431 3141.6 6.3694	0,03589 3196,2 6,4493	0.03740 3248.7 6,5240	0,03887 3299,7 6,5945	0.04030 3349.6 6.6617	0.04170 3398.8 6.7262	0.04308 3447,4 6,7883
10000.0 h (311.0) 5	0,02331 2964.8 6,0110	0.02493 3035.7 6.1213	0.02641 3099.9 6,2182	0,02779 3159,7 6,3057	0,02911 3216.2 6,3861	0,03036 3270,5 6,4612	0,03158 3323,2 6,5321	0.03276 3374.6 6.5994	0.03391 3425.1 6.6640
15000.0 h (342.1) s	0,01256 2770.8 5,5677	0.01428 2887,7 5.7497	0.01566 2979.1 5,8876	0.01686 3057.0 6.0016	0.01794 3126.9 6,1010	0.01895 3191,5 6.1904	0.01989 3252.4 6.2724	0,02080 3310,6 6,3487	0.02166 3366,8 6,4204
20000.0 h (365.7) s	0.0018269 1742.9 3,8835	0.008246 2660,2 5.3165	0,009947 2820,5 5,5585	0,01120 2932,9 5,7232	0,01224 3023,7 5,8523	0,01315 3102,7 5,9616	0.01399 3174.4 6.0581	0,01477 3241,1 6,1456	0.01551 3304,2 6,2262
30000.0 h	0.0016285 1678.0 3,7541	0.001874 1837.7 4.0021	0,002831 2161,8 4,4896	0.004921 2558.0 5.0706	0,006227 2754.0 5,3499	0,007189 2887,7 5,5349	0,007985 2993,9 5,6779	0.008681 3085,0 5.7972	0.009310 3166.6 5.9014
40000.0 h	0.0015425 1650.5 3,6856	0.001682 1776.4 3.8814	0.001909 1934.1 4.1190	0.002371 2145,7 4,4285	0,003200 2399,4 4,7893	0.004137 2617.1 5.0906	0.004941 2779.8 5.3097	0.005616 2906.8 5,4762	0.006205 3013.7 5.6128
50000.0 h	0.0014862 1633.9 3,6355	0.001589 1746.8 3.8110	0,001729 1877,7 4,0083	0.001938 2026,6 4,2262	0,002269 2199,7 4,4723	0.002747 2387,2 4.7316	0.003308 2564.9 4.9709	0.003682 2723.0 5.1782	0.004408 2854.9 5.3466
60000.0 h	0.0014444 1622.8 3,5948	0.001528 1728.4 3.7589	0,001632 1847,3 3,9383	0.001771 1975.0 4.1252	0,001962 2113.5 4,3221	0.002226 2263.2 4.5291	0,002565 2418,8 4,7385	0.002952 2570,6 4,9374	0.003358. 2712.6 5.1189
80000.0 h	0.0013833 1609.7 3,5296	0.001445 1707.0 3.6807	0,001518 1814,2 3,8425	0,001605 1924,1 4,0033	0,001710 2036,6 4,1633	0,001841 2152,5 4,3237	0.001999 2272,8 4,4855	0.002188 2397,4 4,6488	0.002405 2524.0 4.8104
100000.0 h	0.0013388 1603.4 3,4767	0.001390 1696.3 3.6211	0,001446 1797,6 3,7738	0.001511 1899,0 3,9223	0,001587 2000.3 4,0664	0,001675 2102,7 4,2079	0,001777 2207,7 4,3492	0.001893 2316.1 4.4913	0.002024 2427.2 4.6331

PROPERTIES OF SUPERHEATED STEAM AND COMPRESSED WATER (TEMPERATURE AND PRESSURE)									
				TAB:	LE 2 sture, t, °C				Press.
540.	560.	580.	600.	625.	650,	700.	750.	800.	,,
0.7481	0.7667	0:7853	0.8039	0.8272	0.8504	0,8968	0.9432	0.9896 V	500.0
3570.1	3613.6	3657.4	3701.5	3757.0	3812.8	3925,8	4040.3	4156.4 h	
8.1967	8.2496	8;3016	8.3526	8.4152	8,4766	8,5957	8.7105	8,8213 s	
0.6230	0.6386	0,6541	0,6696	0,6890	0.7084	0,7471	0.7858	0,8245 V	600.0
3569.1	3612.7	3656.6	3700,7	3756.2	3812,1	3925.1	4039.8	4155,9 h	
8.1117	8.1647	8,2167	8,2678	8,3305	8.3919	8,5111	8.6259	8,7348 s	
0.4666	0.4783	0.4900	0.5017	0,5163	0.5309	0,5600	0.5891	0.6181 V	800.0
3567.2	3610.9	3654.8	3699.1	3754,7	3810,7	3923,9	4038.7	4155.0 h	
7.9771	8.0302	8:0824	8,1336	8,1964	8.2579	6,3773	8.4923	8,6033 s	
0,3728	0,3822	0,3916	0,4010	0.4127	0.4244	0,4477	0.4710	0.4943 v	1000.0
3565.2	3609.0	3653.1	3697,4	3753.1	3809,3	3922,7	4037.4	4154.1 h	
7,8724	7,9256	7,9779	8,0292	8,0921	8,1537	8,2734	8.3885	8,4997 s	
0.2477	0.2540	0,2604	0,2667	0,2745	0.2824	0,2980	0.3136	0.3292 v	1500.0
3560.4	3604,5	3648.8	3693,3	3749.3	3805,7	3919.6	4034.9	4151.7 h	
7.6808	7,7343	7,7869	7,8385	7,9017	7,9636	8,0838	8.1993	8.3108 s	
0.1852	0.1900	0,1947	0,1995	0,2054	0.2114	0.2232	0.2349	0.2467 v	2000.0
3555.5	3599.9	3644.4	3689,2	3745.5	3802,1	3916.5	4032.2	4149.4 h	
7,5435	7.5974	7,6503	7,7022	7,7657	7.8279	7.9485	6.0645	8,1763 s	
0,1226	0.1259	0,1291	0,1323	0,1364	0.1404	0.1463	0.1562	0.1641 V	3000.0
3545.7	3590,6	3635.7	3681.0	3737,8	3795.0	3910.3	4026.8	4144.7 h	
7,3474	7.4020	7,4554	7,5079	7,5721	7.6349	7,7564	7.8733	7,9857 s	
0.09135	0,09384	0.09631	0,09876	0,1018	0.1049	0.1109	0.1169	0.1229 V	4000.0
3535.8	3581,4	3627.0	3672,8	3730.2	3787.9	3904.1	4021.4	4140.0 h	
7,2055	7,2608	7,3149	7,3680	7,4328	7.4961	7.6187	7.7363	7.8495 S	
0.07259	0,07461	0.07662	0.07862	0.08109	0.08356	0.08845	0.09329	0.09809 V	5000.0
3525.9	3572.0	3618.2	3664,5	3722.5	3780.7	3897.9	4016.1	4135.3 h	
7,0934	7,1494	7,2042	7,2578	7,3233	7.3872	7.5108	7.6292	7.7431 s	
0.06008	0.06179	0.06349	0.06518	0.06728	0.06936	0.07348	0.07755	0.08159 V	6000.0
3515.9	3562.7	3609.4	3656,2	3714.8	3773,5	3891.7	4010.7	4130.7 h	
7.0000	7.0568	7,1122	7,1664	7,2326	7,2971	7,4217	7.5409	7,6554 s	
0.04443	0,04577	0.04709	0,04839	0.05001	1.05161	0.05477	0,0578A	0.06096 v	8000.0
3495.7	3543,8	3591.7	3639,5	3699.3	3759.2	3879.2	3999.9	4121.3 h	
6,8484	6,9068	6.9636	7,0191	7,0866	7.1523	7,2790	7,3999	7.5158 s	
0.03504	0.03615	0.03724	0.03832	0.03965	3,04096	0.04355	0.04609	0.04858 V	10000.0
3475.1	3524.5	3573.7	3622.7	3683.8	3744,7	3866.8	3989.1	4112.0 h	
6,7261	6.7863	6,8446	6,9013	6,9703	7,0373	7,1660	7.2886	7.4058 s	
0.02250	0.02331	0.02411	0.02488	0.02584	0.02677	0.02859	0.03036	0.03209 v	15000.0
3421.4	3475.0	3527.7	3579.8	3644.3	3708.3	3835.4	3962.1	4088.6 h	
6,4885	6.5535	6,6160	6,6764	6,7492	6.8195	6,9536	7.0806	7,2013 s	
0.01621	0.01688	0.01753	0.01816	0.01893	0.01967	0.02111	0.0225^	0.02385 v	20000.0
3364.7	3423.0	3479.9	3535.5	3603.8	3671.1	3803.8	3935.0	4065.3 h	
6.3015	6.3724	6.4398	6.5043	6,5814	6.6554	6,7953	6.9267	7.0511 s	
0,009890	0.01043	0.01095	0.01144	0.01202	3.01258	0.01365	0,01465	0.01562 v	30000.0
3241.7	3312.1	3378.9	3443.0	3520.2	3595.0	3739.7	3880.3	4018.5 h	
5,9949	6.0805	6,1597	6,2340	6,3212	6.4033	6,5560	6,697 _C	6.8288 s	
0,006735	0.007219	0.007667	0.008088	0,008584	0.009053	0,009930	0.01075	0.01152 v	40000.0
3108.0	3193.4	3272.4	3346,4	3433.8	3517.0	3674.8	3825.5	3971.7 h	
5,7302	5.8340	5,9276	6,0135	6,1122	6.2035	6,3701	6.521r	6.6606 s	
0,004888	0.005328	0.005734	0.006111	0,006550	0.006960	0,007720	0,008421	0,009076 v	50000.0
2968.9	3070.7	3163.2	3248,3	3346.8	3438.9	3610.2	3770,9	3925,3 h	
5,4886	5.6124	5.7221	5,8207	5,9320	6.0331	6,2138	6,3749	6,5222 s	
0,003755	0.004135	0.034496	0.004835	0,005229	0.005596	0.006269	0.006885	0.007460 v	60000.0
2838.3	2951.7	3055.8	3151,6	3261.4	3362.4	3547.0	3717.4	3879.6 h	
5,2755	5.4132	5.5367	5,6477	5,7717	5.8827	6.0775	6.2483	6.4031 s	
0,002641	0.002886	0.003132	0.003379	0.003652	0.003974	0,004519	0,005017	0,005481 v	80000.0
2648.2	2765.1	2874.9	2980,3	3104.6	3220.3	3428.7	5516.7	3792.8 h	
4,9650	5.1072	5.2374	5,3595	5,4999	5.6270	5,8470	6.0354	6,2034 s	
0.002168	0.002326	0.002493	0.002668	0,002891	0.003106	0.003536	0.003952	0.004341 v	100000.0
2538.6	2648.2	2754.5	2857,5	2985,8	3105.3	3324.4	3526.1	3714.3 h	
4,7719	4.9050	5.0311	5,1505	5,2954	5.4267	5.6579	5.8600	6.0397 s	

COMMON CONVERSIONS

1 barrel (35 Imp gal)	= 159.1 litres	1 kilowatt-hour	= 3600 kilojoules
(42 US gal)		1 Newton	$= 1 \text{ kg-m/s}^2$
1 gallon (Imp)	= 1.20094 gallon (US)	1 therm	$= 10^5 Btu$
1 horsepower (boiler)	= 9809.6 watts	1 ton (refrigerant)	= 12002.84 Btu/hour
1 horsepower	= 2545 Btu/hour	1 ton (refrigerant)	= 3516.8 watts
1 horsepower	= 0.746 kilowatts		
1 joule	= 1 N-m	1 watt	= 1 joule/second
-		Rankine	= (°F + 459.67)
Kelvin	$= (^{\circ}C + 273.15)$		

	Cubes	Squares
1 yd^3	$= 27 \text{ ft}^3$	$1 yd^2 = 9 ft^2$
1 ft ³	$= 1728 \text{ in}^3$	$1 \text{ ft}^2 = 144 \text{ in}^2$
1 cm^3	$= 1000 \text{ mm}^3$	$1 \text{ cm}^2 = 100 \text{ mm}^2$
1 m^3	$= 10^6 \text{ cm}^3$	$1 \text{ m}^2 = 10000 \text{ cm}^2$
1 m^3	= 1000 L	

SI PREFIXES

Prefix	Symbol	Magnitude	Factor
tera	T	1 000 000 000 000	1012
giga	G	1 000 000 000	109
mega	M	1 000 000	10^{6}
kilo	k	1 000	10^{3}
hecto	h	100	10^{2}
deca	da	10	101
deci	d	0.1	10^{-1}
centi	С	0.01	10^{-2}
milli	m	0.001	10^{-3}
micro	u	0.000 001	10^{-6}
nano	n	0.000 000 001	10^{-9}
pica	p	0.000 000 000 001	10^{-12}

UNIT CONVERSION TABLES METRIC TO IMPERIAL

FROM	SYMBOL	то	SYMBOL	MULTIPLY BY
amperes/square centimetre	A/cm ²	amperes/square inch	A/in ²	6.452
Celsius	°C	Fahrenheit	°F	$(^{\circ}C \times 9/5) + 32$
centimetres	cm	inches	in	0.3937
cubic centimetres	cm ³	cubic inches	in ³	0.06102
cubic metres	m^3	cubic foot	ft ³	35.314
grams	g	ounces	OZ	0.03527
grams	g	pounds	lb	0.0022
grams/litre	g/L	pounds/cubic foot	lb/ft ³	0.06243
joules	J	Btu	Btu	9.480×10^{-4}
joules	J	foot-pounds	ft-lb	0.7376
joules	J	horsepower-hours	hp-h	3.73×10^{-7}
joules/metre, (Newtons)	J/m, N	pounds	lb	0.2248
kilograms	kg	pounds	lb	2.205
kilograms	kg	tons (long)	ton	9.842×10^{-4}
kilograms	kg	tons (short)	tn	1.102×10^{-3}
kilometres	km	miles (statute)	mi	0.6214
kilopascals	kPa	atmospheres	atm	9.87×10^{-3}
kilopascals	kPa	inches of mercury (@ 32°F)	in Hg	0.2953
kilopascals	kPa	inches of water (@ 4°C)	in H ₂ O	4.0147
kilopascals	kPa	pounds/square inch	psi	0.1450
kilowatts	kW	foot-pounds/second	ft-lb/s	737.6
kilowatts	kW	horsepower	hp	1.341
kilowatt-hours	kWh	Btu	Btu	3413
litres	L	cubic foot	ft ³	0.03531
litres	L	gallons (Imp)	gal (Imp)	0.21998
litres	L	gallons (US)	gal (US)	0.2642
litres/second	L/s	cubic foot/minute	cfm	2.1186
lumen/square metre	lm/m^2	lumen/square foot	lm/ft ²	0.09290
lux, lumen/square metre	$lx, lm/m^2$	footcandles	fc	0.09290
metres	m	foot	ft	3.281
metres	m	yard	yd	1.09361
parts per million	ppm	grains/gallon (Imp)	gr/gal (Imp)	0.07
parts per million	ppm	grains/gallon (US)	gr/gal (US)	0.05842
permeance (metric)	PERM	permeance (Imp)	perm	0.01748
square centimetres	cm ²	square inches	in ²	0.1550
square metres	m^2	square foot	ft ²	10.764
square metres	m ²	square yards	yd^2	1.196
tonne (metric)	t	pounds	lb	2204.6
watt	W	Btu/hour	Btu/h	3.413
watt	W	lumen	lm	668.45

4138T/T33(-4)

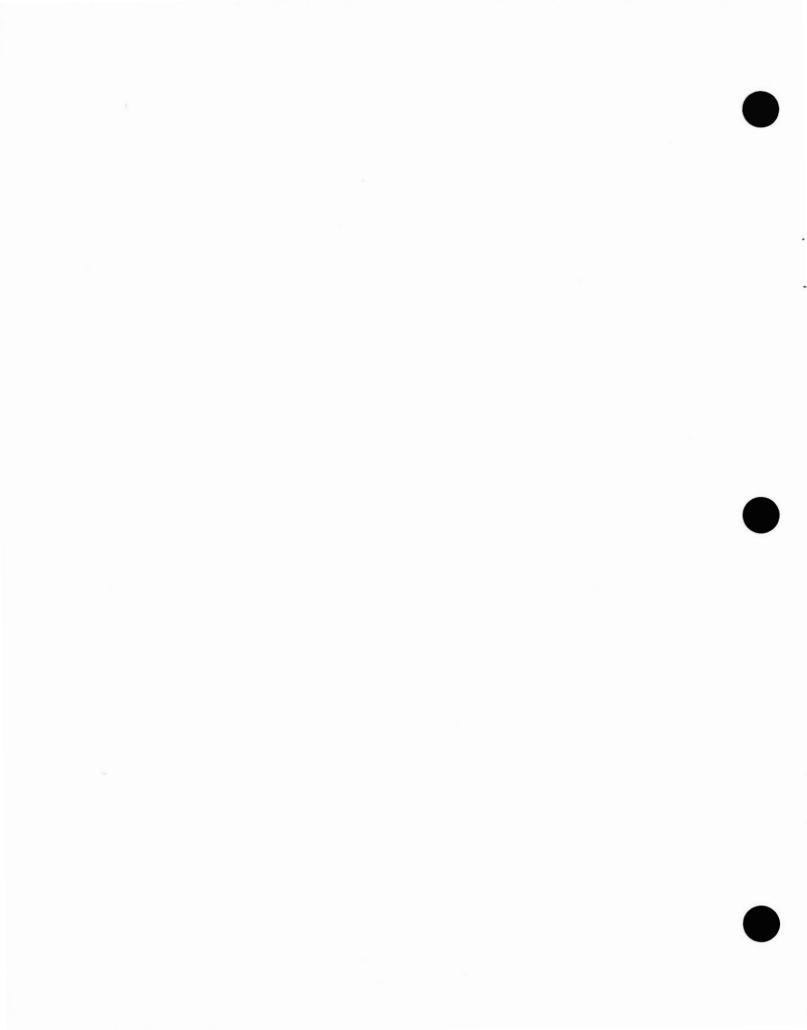
UNIT CONVERSION TABLES IMPERIAL TO METRIC

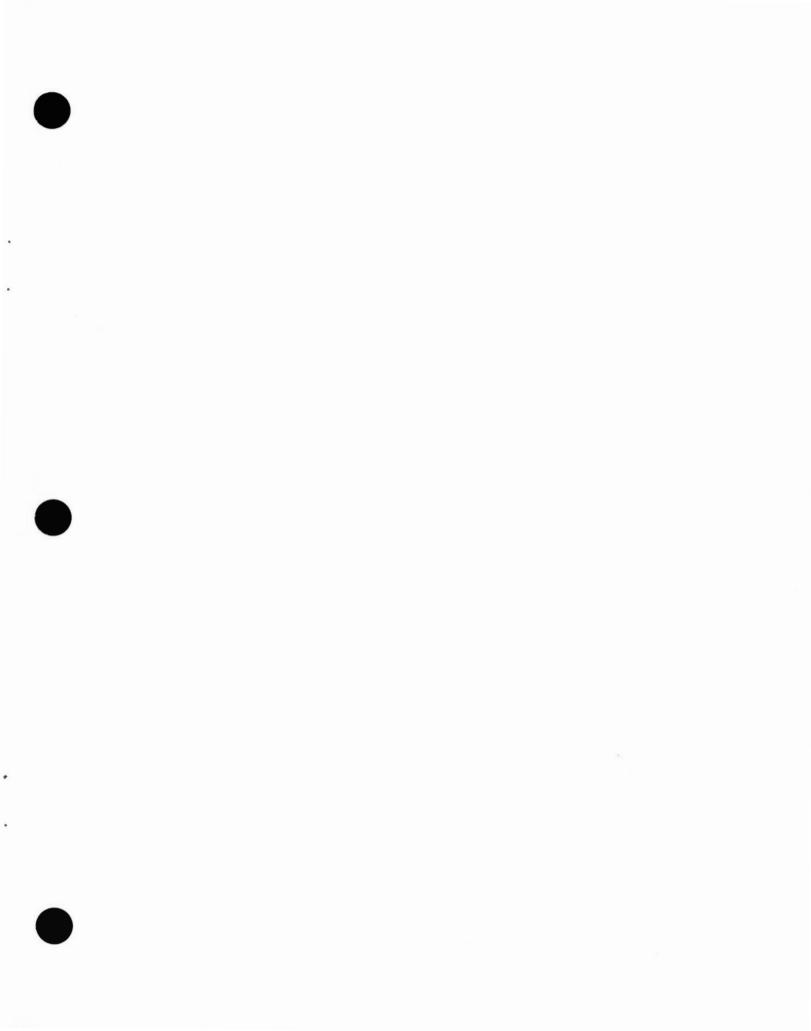
FROM	SYMBOL	то	SYMBOL	MULTIPLY BY
ampere/in ²	A/in ²	ampere/cm ²	A/cm ²	0.1550
atmospheres	atm	kilopascals	kPa	101.325
British Thermal Unit	Btu	joules	J	1054.8
Btu	Btu	kilogram-metre	kg-m	107.56
Btu	Btu	kilowatt-hour	kWh	2.928×10^{-4}
Btu/hour	Btu/h	watt	W	0.2931
calorie, gram	cal or g-cal	joules	J	4.186
chain	chain	metre	m	20.11684
cubic foot	ft^3	cubic metre	m^3	0.02832
cubic foot	ft^3	litre	L	28.32
cubic foot/minute	cfm	litre/second	L/s	0.47195
cycle/second	c/s	Hertz	Hz	1.00
Fahrenheit	°F	Celsius	°C	(°F-32)/1.8
foot	ft	metre	m	0.3048
footcandle	fc	lux, lumen/ square metre	lx, lm/m ²	10.764
footlambert	fL	candela/square metre	cd/m^2	3.42626
foot-pounds	ft-lb	joule	J	1.356
foot-pounds	ft-lb	kilogram-metres	kg-m	0.1383
foot-pounds/second	ft-lb/s	kilowatt	kW	1.356×10^{-3}
gallons (Imp)	gal (Imp)	litres	L	4.546
gallons (US)	gal (US)	litres	L	3.785
grains/gallon (Imp)	gr/gal (Imp)	parts per million	ppm	14.286
grains/gallon (US)	gr/gal (US)	parts per million	ppm	17.118
horsepower	hp	watts	W	745.7
horsepower-hours	hp-h	joules	J	2.684×10^{6}
inches	in	centimetres	cm	2.540
inches of Mercury (@ 32°F)	in Hg	kilopascals	kPa	3.386
inches of water (@ 4°C)	in H ₂ O	kilopascals	kPa	0.2491

UNIT CONVERSION TABLES IMPERIAL TO METRIC (cont'd)

	FROM	SYMBOL	то	SYMBOL	MULTIPLY BY
	lamberts	* L	candela/square metre	cd/m ²	3.183
	lumen/square foot	lm/ft^2	lumen/square metre	lm/m^2	10.76
	lumen	lm	watt	W	0.001496
	miles (statute)	mi	kilometres	km	1.6093
	ounces	OZ	grams	g	28.35
	perm (at 0°C)	perm	kilogram per pascal- second-square metre	kg/Pa-s-m ² (PERM)	5.721×10^{-11}
	perm (at 23°C)	perm	kilogram per pascal- second-square metre	kg/Pa-s-m ² (PERM)	5.745×10^{-11}
	perm-inch (at 0°C)	perm. in.	kilogram per pascal- second-metre	kg/Pa-s-m	1.4532×10^{-12}
	perm-inch (at 23°C)	perm. in.	kilogram per pascal- second-metre	kg/Pa-s-m	1.4593×10^{-12}
	pint (Imp)	pt	litre	L	0.56826
	pounds	lb	grams	g	453.5924
	pounds	lb	joules/metre, (Newtons)	J/m, N	4.448
	pounds	lb	kilograms	kg	0.4536
	pounds	lb	tonne (metric)	t	4.536×10^{-4}
	pounds/cubic foot	lb/ft ³	grams/litre	g/L	16.02
	pounds/square inch	psi	kilopascals	kPa	6.89476
	quarts	qt	litres	L	1.1365
	slug	slug	kilograms	kg	14.5939
	square foot	ft^2	square metre	m^2	0.09290
	square inches	in^2	square centimetres	cm ²	6.452
	square yards	yd ²	square metres	m^2	0.83613
	tons (long)	ton	kilograms	kg	1016
	tons (short)	tn	kilograms	kg	907.185
	yards	yd	metres	m	0.9144

^{* &}quot;L" as used in Lighting


⁴¹³⁸T/T33(-2)


The following typical values for conversion factors may be used when actual data are unavailable. The MJ and Btu equivalencies are heats of combustion. Hydrocarbons are shown at the higher heating value, wet basis. Some items listed are typically feedstocks, but are included for completeness and as a reference source. The conversion factors for coal are approximate since the heating value of a specific coal is dependent on the particular mine from which it is obtained.


ENERGY TYPE	METRIC	IMPERIAL
COAL — metallurgical — anthracite — bituminous — sub-bituminous — lignite	29,000 megajoules/tonne 30,000 megajoules/tonne 32,100 megajoules/tonne 22,100 megajoules/tonne 16,700 megajoules/tonne	25.0 × 10 ⁶ Btu/ton 25.8 × 10 ⁶ Btu/ton 27.6 × 10 ⁶ Btu/ton 19.0 × 10 ⁶ Btu/ton 14.4 × 10 ⁶ Btu/ton
COKE — metallurgical — petroleum — raw	30,200 megajoules/tonne 23,300 megajoules/tonne	26.0×10^6 Btu/ton 20.0×10^6 Btu/ton
— calcined	32,600 megajoules/tonne	28.0×10^6 Btu/ton
PITCH	37,200 megajoules/tonne	$32.0 \times 10^6 \text{ Btu/ton}$
CRUDE OIL	38,5 megajoules/litre	$5.8 \times 10^6 \text{ Btu/bbl}$
No. 2 OIL	38.68 megajoules/litre	5.88×10^6 Btu/bbl $.168 \times 10^6$ Btu/IG
No. 4 OIL	40.1 megajoules/litre	6.04×10^6 Btu/bbl $.173 \times 10^6$ Btu/IG
No. 6 OIL (RESID. BUNKER	C)	
@ 2.5% sulphur	42.3 megajoules/litre	6.38 × 10 ⁶ Btu/bbl .182 × 10 ⁶ Btu/IG
@ 1.0% sulphur	40.5 megajoules/litre	6.11×10^6 Btu/bbl $.174 \times 10^6$ Btu/IG
@ .5% sulphur	40.2 megajoules/litre	6.05×10^6 Btu/bbl $.173 \times 10^6$ Btu/IG
KEROSENE	37.68 megajoules/litre	$.167 \times 10^6 \text{ Btu/IG}$
DIESEL FUEL	38.68 megajoules/litre	$.172 \times 10^6 \text{ Btu/IG}$
GASOLINE	36.2 megajoules/litre	.156 \times 10 6 Btu/IG
NATURAL GAS	37.2 megajoules/m ³	$1.00 \times 10^6 \text{ Btu/MCF}$
PROPANE	50.3 megajoules/kg 26.6 megajoules/litre	$.02165 \times 10^{6} \text{ Btu/lb} .1145 \times 10^{6} \text{ Btu/IG}$
ELECTRICITY	3.6 megajoules/kWh	.003413 \times 10 6 Btu/kWh

Boiler Efficiency Test Worksheet 6-1

Company:	Date:	-
Location:	Ву:	_
Boiler Number: F	Fuel Fired:	_
Rated Capacity:	Test No.	_
Pressures & Temperatures Steam pressure at boiler outlet Steam temperature at boiler outlet Water temperature at boiler inlet Combustion air temperature Fuel temperature Gas temperature leaving boiler	kPa (1°C (2°C (3°C (4°C (5°C (6	9)
Unit Quantities Enthalpy of steam at boiler outlet Enthalpy of feedwater to boiler Heat absorbed per kg of steam (7-8) Higher heating value of fuel (state units)	kJ/kg (7kJ/kg (8kJ/kg (9(10))
Hourly Quantities Actual water evaporated Rate of fuel firing (state units) Total heat input $(12 \times 10)^* = \frac{x}{1000}$ Total heat output $\frac{(11 \times 9)}{1000} = \frac{x}{1000}$		()
Direct efficiency $\frac{14}{13}$ x 100 = x 100	% (15)
*Units of 12 x 10 must equal MJ/h		
Flue Gas Analysis CO ₂ O ₂ CO N ₂ by difference Excess air	% Volume))))
Heat Loss Efficiency Heat loss to dry gas and H_2O (Figure 9 for natural gas and F Heat loss to radiation (Figure 12) Unmeasured losses Total losses $(21 + 22 + 23)$ Indirect efficiency $(100 - 24)$	as fired fuel Figure 10 for No. 2 oil)	()

