PUBLICATIONS •

OF THE

Dominion Observatory

OTTAWA

VOLUME XIX
No. 6

DIREGTION OF FAULTING IN SOME OF THE LARGER EARTHQUAKES OF 1954-1955

John H. Hodgson and J. Irma Cock

> EDMOND CLOUTIER, C.M.G., O.A., D.S.P. QUEEN'S PRINTER AND CONTROLLER OF STATIONERY OTTAWA, 1958

Ce document est le produit d'une numérisation par balayage de la publication originale.

Direction of Faulting in Some of the Larger Earthquakes of 1954-1955

BY
John H. Hodgson and J. Irma Cock

Abstract

Fault plane solutions are presented for twenty-three of the larger earthquakes of 1954-1955.

INTRODUCTION

For several years this Observatory has been producing fault plane solutions by Byerly's method. Two recent papers marked the end of the initial stage of this program. The first of these papers (Hodgson, 1957) reviewed the method, summarized the 65 solutions produced to date, showed that these solutions were self-consistent and discussed their implications to tectonic theory. The second paper (Hodgson and Adams, in press) was a statistical examination of the data on which the first 65 solutions had been based. It was the conclusion of this study that the data from the direct phases P and PKP were reasonably accurate but that those from the reflected phases were not acceptable. This latter conclusion was based partly on the first 65 solutions, but more particularly on the solutions to be presented in the present paper. The conclusion to be drawn from the two review papers is that the techniques of the fault plane project have justified themselves sufficiently that the program should be continued, but without the use of the reflected phases.

The present paper is the first of this second series; it presents solutions for 23 earthquakes which occurred in the period from February, 1954, to July, 1955. The data on which the solutions are based were obtained by means of a questionnaire circulated in September, 1955. We are very much indebted to those seismologists who, by completing our questionnaire, have made this study possible.

In this series of solutions we have had, for the first time, data from all the stations of the U.S.S.R. This has made it possible to obtain well-defined solutions without the use of the reflected phases, and as a result to appraise their accuracy. The technique has been to base the solutions on data from P and PKP only; once the diagrams were established, data from the reflected phases were plotted and checked for consistency. They were found to be inconsistent about as often as they were consistent, indicating random data. The detailed results are shown for each solution and a summary is given in the paper mentioned earlier (Hodgson and Adams, in press). It should be stressed that the data from reflected phases have not influenced any of the solutions given in this paper.

PRESENTATION OF THE DATA

Table I lists the earthquakes for which solutions have been attempted. On three of the dates listed there were two earthquakes; in each case the earlier earthquake has
been designated A , the later B . The earthquakes are listed in Table I in two sections, those for which solutions have been obtained and those for which no solution has been possible. In the latter case the reason for the failure has been indicated.

TABLE I
List of the Earthquakes Considered

| Date | H
 (G.M.T.) | Epicentre | | Focal
 Depth | Magnitude |
| :--- | :---: | :---: | :---: | :---: | :---: |\quad Remarks

Earthquakes for which solutions have not been obtained

Feb.	1,	1954...	01:06:54	$24 \frac{1}{2}^{\circ} \mathrm{N}$	$143{ }^{\frac{3}{4}}{ }^{\circ} \mathrm{E}$	0.00R	73	Conflict of Data
June	15,	1954.	13:29:59	$5^{\circ} \mathrm{S}$	$77^{\circ} \mathrm{W}$	0.01 R	$6 \frac{3}{4}$	Conflict of Data
Sept.	17.	1954...	11:03:18	$21 \frac{1}{2}^{\circ} \mathrm{S}$	$177^{\circ} \mathrm{W}$	0.03R	7	Conflict of Data
Jan.	5 B ,	1955...	23:42:03	$16^{\circ} \mathrm{S}$	$167 \frac{1}{2}^{\circ} \mathrm{E}$	0.00R	63	Insufficient Data
April	5 ,	1955..	15:09:15	$25^{\circ} \mathrm{N}$	$110^{\circ} \mathrm{W}$	0.00 R	7	Conflict of Data
May	31,	1955..	09:30:44	$27^{\circ} \mathrm{S}$	$177 \frac{1}{3}{ }^{\circ} \mathrm{W}$	0.01R	$6 \frac{3}{4}$	Insufficient Data
June	14,	1955..	06:11:18	$20^{\circ} \mathrm{N}$	$107^{\circ} \mathrm{W}$	0.00 R	7	Insufficient Data
July	6,	1955...	01:54:17	$51^{\circ} \mathrm{N}$	$158^{\circ} \mathrm{E}$	0.00R	$6 \frac{1}{2}$	Conflict of Data
Aug.	6,	1955...	08:31:25	$21^{\frac{1}{2}}{ }^{\circ} \mathrm{S}$	$177 \frac{1}{2}^{\circ} \mathrm{W}$	0.05R	63	Insufficient Data

Earthquakes for which solutions have been obtained

The data on which the solutions are based are shown in Table II. The notation used is that established in earlier papers of the series (see for example Hodgson, 1956, page 173).

ANALYSIS OF THE DATA

In this section solutions will be presented for each of the 23 earthquakes for which it has been possible to obtain them in the form that has been established in the earlier papers of the series. In each case the solution diagram will be given and a table will show the number of observations available and the number of these inconsistent. The reflected phases have not influenced the solutions, and these tables provide the material for the examination of their value.

Earthquake of $19: 07: 48$, Feb. 19, 1954. $\phi=30^{\circ} \mathrm{S}, \lambda=177_{3^{3}}{ }^{\circ} \mathrm{W}$
We have found two possible solutions for this earthquake, differing quite radically from each other, which explain the direct data equally well. We present both solutions.

The first solution is shown in Figure 1. In this solution we have assumed that College is incorrect but that the P_{2}^{\prime} dilatations recorded at Alicante and at Cartuja, and the P_{1} separation between Ottawa and Seven Falls, are correct and have obtained a solution accordingly. The score for this solution is shown in Table III.

Figure 1.

TABLE II
Data on which the Solutions are Based

TABLE II-Continued
Data on which the Solutions are Based-Continued

$\begin{aligned} & \text { Aug. } \\ & 18 . \\ & 1954 \end{aligned}$	Sept. 13. 1954	Sept. 15, 1954	$\begin{gathered} \text { Oct. } \\ 3 ; \\ 1954 \end{gathered}$	$\begin{aligned} & \text { Jan. } \\ & 5 \mathrm{~A}, \\ & 1955 \end{aligned}$	$\begin{gathered} \text { Jan. } \\ 13 . \\ 1955 \end{gathered}$	$\begin{gathered} \text { March } \\ 14, \\ 1955 \end{gathered}$	April 17. 195	April 19, 1955	$\begin{gathered} \text { May } \\ 30 \\ 1955 \end{gathered}$	$\begin{gathered} \text { June } \\ 2 \\ 1955 \end{gathered}$	$\begin{gathered} \text { June } \\ 20 . \\ 1955 \end{gathered}$	$\begin{gathered} \text { July } \\ 16.5 \\ 1955 \end{gathered}$
(C_{1}^{\prime})			(DD)	DD			D	C	$\xrightarrow[\text { CC }]{\text { D }}$	(D)		C
$\begin{aligned} & \left(C_{n}^{\prime}\right) \\ & (C C) \end{aligned}$	Di	(${ }_{(1)}$	(C)	D_{1}^{\prime}	C	C	(D)	C	C (CC)	C	D	(C)
				D_{1}^{\prime}		C	(D)	C	cC	(D)		D
C		(D)	(dD)									
D	,	C	D			D						
								(CC) (cCC)			$\because \cdots \cdots$
D_{1}^{\prime}		C_{1}^{\prime}	D			(D)	(D)		
$\begin{gathered} \mathrm{D} \\ (\mathrm{DD}) \end{gathered}$	$\begin{gathered} \dddot{D} \\ (\mathrm{c} \mathrm{C}) \end{gathered}$	C		D								
DD	(c)		D				${ }_{c} \mathrm{C}$			D
${ }_{\text {c }}$		$\mathbf{C r}_{1}^{\prime}$	D	D_{1}^{\prime}	C	$\begin{gathered} \mathrm{C} \\ (\mathrm{dD}) \end{gathered}$	C	….....	(did)	(D)	D	D
C	D	C	C		C	C		C	(CC)	D	D	C
$\begin{gathered} \mathrm{CC} \\ (\mathrm{dD}) \end{gathered}$	CC	$(\mathrm{PcP}=\mathrm{C})$				$\mathrm{PcP}=\mathrm{D}$			(DD)			
D_{1}^{\prime} D_{1}^{\prime}	DD	D	D	CC	$\xrightarrow{\text { (D) }}$		D	(D)	D
C	D	C	C		(D)		C	C	D	C	D	D
D	$\underset{\text { (C) }}{\text { C }}$	$\stackrel{\text { D }}{\text { (D) }}$	${ }_{C}^{C}$	D	D	(D)			(C)	(D)	D	$\xrightarrow[\left(\mathrm{D}_{1}^{\prime}\right)]{\text { C }}$
cC					CC				(eC)	$\mathrm{PcP}=\mathrm{D}$	(DD)	
		($\mathrm{C}_{\text {i }}$)										C
D		D	C		C	(D)		(D)	(C)	(D)	(C)	
					(D)				C			
	${ }_{\left(\mathrm{C}_{2}^{\prime}\right)}^{(}$	$\mathrm{D}_{\mathbf{1}}^{\mathbf{\prime}}$	$\begin{aligned} & (\mathrm{C}) \\ & (\mathrm{DD}) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{8}^{\prime} \\ & \mathrm{C}_{2}^{\prime} \end{aligned}$	C CC	(D) cC	$\begin{gathered} \mathrm{C} \\ (\mathrm{dD}) \end{gathered}$	$\begin{gathered} \mathrm{C} \\ (\mathrm{CC}) \end{gathered}$	$\left(\begin{array}{c} (\mathrm{CCC}) \end{array}\right.$	C ${ }_{\text {D }}$	$\begin{aligned} & (\mathrm{C}) \\ & (\mathrm{DD}) \end{aligned}$	(C)
(CC)	(CC)	(CO)	DDD	(CC)	(CCC)	(cCC)	CC	CCC	dDD	c ${ }^{\text {c }}$		DDD
$\mathrm{eCib}^{\text {d }}$	CCO^{\prime}	(cCC)	$\mathrm{PcP}=\mathrm{D}$				$\mathrm{Pc} P=\mathrm{C}$			(cCC)		$\mathrm{PcP}=\mathrm{D}$
dDD	$\left(\mathrm{CCO}_{2}^{\prime}\right)$	(CCC)		CCC		
	(DDD)					C		C		C		
	D											
			(C)	DD	C	D				C	D	
D	D	D		C				D	D			
			C		D	$\underset{\mathrm{dD}}{\mathrm{C}}$	C	D	(C)	C	D	
(C_{1}^{\prime})	D_{2}^{\prime}	D_{1}^{\prime}	D					C		C	D	D
(C_{8}^{\prime})	DD	(D_{2}^{\prime})										(DD)
	(CCC)	DD	D	C	D	C	D	D_{1}^{\prime}	D		(D)	
$\left(\mathrm{C}^{\prime}\right)$			D		C	C	C			C		D
D:	D_{1}^{\prime}		D		D	C		C	D	C
									(dD)			
			DD	D	C	di			C			D
(DD)	(cC)											
$\left(\mathrm{C}_{\mathrm{L}}^{\prime}\right)$			D									
D	(D)	D				(D)					D	
		$\mathrm{C}_{1}{ }^{\prime \prime}$	D						C			
	DD											

TABLE II-Continued
Data on which the Solutions are Based-Continued

TABLE II-Continued
Data on which the Solutions are Based-Continued

TABLE II-Continued
Data on which the Solutions are Based-Continued

TABLE II-Continued
Data on which the Solutions are Based-Continued

TABLE II-Continued
Data on which the Solutions are Based-Continued

TABLE II-Continued
Data on which the Solutions are Based-Continued

TABLE II-Concluded

Data on which the Solutions are Based-Concluded

TABLE II--Concluded
Data on which the Solutions are Based-Concluded

$\begin{gathered} \text { Aug. } \\ 18, \\ 1954 \end{gathered}$	Sept. 13. 1954	Sept. 15, 1954	$\begin{gathered} \text { Oct. } \\ 335 \\ 1954 \end{gathered}$	$\begin{aligned} & \text { Jan. } \\ & 5 \mathrm{~A}, \\ & 1955 \end{aligned}$	$\begin{aligned} & \text { Jan. } \\ & 11, \\ & 1955 \end{aligned}$	$\begin{gathered} \text { March } \\ 14, \\ 1955 \end{gathered}$	$\begin{gathered} \text { April } \\ 17 \\ 1955 \end{gathered}$	$\begin{gathered} \text { April } \\ 19, \\ 1955 \end{gathered}$	$\begin{gathered} \text { May } \\ 30 \\ 1955 \end{gathered}$	$\begin{gathered} \text { June } \\ 2, \\ 1955 \end{gathered}$	$\begin{gathered} \text { June } \\ 20 . \\ 1955 \end{gathered}$	$\begin{gathered} \text { July } \\ 16 \\ 1955 \end{gathered}$
(C_{1}^{\prime})	(C_{1}^{\prime})	(D_{1}^{\prime})	(C)	(C_{1}^{\prime})	${ }_{\text {C }}$		(D)		(D)		D	(D)
	D	C							C d			D
D	(D)	D	D	C			C	$\underset{(\mathrm{C})}{\mathrm{C}}$	D	C		D
									D	C	D	
		$\begin{gathered} \mathrm{Ci}_{4}^{*} \\ \mathrm{cC}_{1}^{*} \end{gathered}$	D	D	C	C	C		$\xrightarrow[c]{\mathrm{C}}$	C	D	D

TABLE III

	Direct Phases				Reflected Phases					Grand Total
	P	Pi^{\prime}	P_{2}^{\prime}	Total	PP	pPP	$\mathrm{p}^{\prime} \mathrm{P}^{\prime}$	PPP	Total	
Total Number of Observations	19	27	6	52	15	1	1	4	21	73
Number of Inconsistent Observations	5	3	0	8	7	1	0	2	10	18

The alternative solution is shown in Figure 2, and the score is given in Table IV. This solution supposes the field to be compressional, so that Ottawa is made inconsistent,

TABLE IV

	Direct Phases				Reflected Phases					Grand Total
	P	P_{1}^{\prime}	P^{\prime}	Total	PP	pPP	pPi	PPP	Total	
Total Number of Observations. .	19	27	6	52	15	1	1	4	21	73
Number of Inconsistent Observations	2	4	2	8	5	1	0	1	7	15

Figure 2.
and gives the solution in terms of a smaller pair of circles. As shown in Tables III and IV the score for the direct phases is the same in each case, whereas Figure 2 scores better on the reflected phases. Despite this better score we prefer the solution shown in Figure 1 because the null vector points in the direction we have come to anticipate. For this reason the inconsistencies listed in Table II are those associated with Figure 1.

Earthquake of $21: 34: 41$, Feb. 19, 1954. $\phi=12 \frac{1}{2}^{\circ} \mathrm{N}, \lambda=87 \frac{1}{2}^{\circ} \mathrm{W}$
The solution for this earthquake is shown in Figure 3 and the score is given in Table V. The earthquake is not large, and the percentage of inconsistencies is consequently higher

TABLE V

	Direct Phases				Reflected Phases				Grand Total
	P	P_{1}^{\prime}	P_{2}^{\prime}	Total	PP	PPP	Pc P	Total	
Total Number of Observations.	36	4	1	41	6	1	2	9	50
Number of Inconsistent Observations.	7	3	1	11	3	1	0	4	15

Figure 3.
than normal, but the solution must be approximately correct. The most serious criticism of the solution is the poor score shown for the PKP observations, 4 out of 5 having been made inconsistent. However all of these observations were described as weak, and it seems better to sacrifice them rather than some of the nearer observations.

Earthquake of $20: 10: 37$, April 17, 1954. $\phi=51 \frac{1}{2} \frac{\mathrm{~N}}{} \mathrm{~N}, \lambda=179^{\circ} \mathrm{W}$
This earthquake is another with a magnitude of $6 \frac{3}{4}$, a little too small for a satisfactory solution. As a result there is a good deal of ambiguity, and we have found two possible solutions, which explain the data about equally well.

The first solution is shown in Figure 4, and the score is given in Table VI. This solution has a slightly better score on the direct phases, and many of the observations made inconsistent in this solution have been described as doubtful by our collaborators.

Figure 4.

TABLE VI

	Direct Phase			Reflected Phases					Grand Total
	P	Pi	Total	PP	PPP	pPP	PcP	Total	
Total Number of Observations.	77	2	79	14	5	1	3	23	102
Number of Inconsistent Observations.	19	0	19	4	3	1	1	9	28

The alternative solution is shown in Figure 5, and the score is given in Table VII.
Because the solution shown in Figure 4 has the fewer inconsistencies, we have used it as the solution in marking the inconsistencies in Table II.

TABLE VII

	Direct Phases			Refiected Phases					Grand Total
	P	P_{1}^{\prime}	Total	PP	PPP	pPP	PcP	Total	
Total Number of Observations.	77	2	79	14	5	1	3	23	102
Number of Inconsistent Observations.	22	0	22	7	5	0	2	14	36

Figure 5.
Earthquake of $10: 06: 24$, April 27, 1954. $\phi=6^{\circ} \mathrm{N}, \lambda=82^{\frac{1}{2}}{ }^{\circ} \mathrm{W}$
This earthquake presented no problems; the solution is shown in Figure 6 and the score is given in Table VIII. It will be noted that the score is remarkably good; this undoubtedly reflects the fact that almost all stations in North America received an unambiguous recording of the earthquake.

TABLE VIII

	Direct Phases			Reflected Phases				Grand Total
	P	P_{1}^{\prime}	Total	PP	pP	Pc P	Total	
Total Number of Observations.	52	7	59	9	1	2	12	71
Number of Inconsistent Observations.	6	1	7	4	0	1	5	12

Figure 6.
Earthquakes of $10: 49: 27$ and $11: 34: 34$, April 29, 1954. $\varnothing=28 \frac{1^{\circ}}{} \mathrm{N}, \lambda=113^{\circ} \mathrm{W}$
These two earthquakes had the same epicentre, and their mechanisms were so nearly identical that a single solution suffices for the two. This is shown in Figure 7, the data plotted being those for the main shock. It will be noted that a good separation is obtained in California, between Berkeley and Mount Hamilton, and again in Mexico. There is however a good deal of confusion in Europe, and this has resulted in a high number of inconsistencies in the P observations. We have drawn circle b in a mean position; if we had drawn it smaller we might have made Rathfarnham correct, but at the expense of Tacubaya and Puebla. If we had made circle b larger the European dilatations could have been correct at the expense of the European compressions. Since most of the dilatations were called doubtful, and most of the compressions were not qualified the present solution seems the best compromise. We must admit an uncertainty in the dip of plane b of about $\pm 4^{\circ}$.

The score for the foreshock is given in Table IX and that for the main shock in Table X.

TABLE IX

	Direct Phases			Reflected Phases				Grand Total
	P	Pi_{1}^{\prime}	Total	PP	PPP	PeP	Total	
Total Number of Observations.	40	3	43	9	1	1	11	54
Number of Inconsistent Observations......	10	0	10	4	1	0	5	15

TABLE X

Figure 7.

Earthquake of 13:02:37, April 30, 1954. $\phi=39^{\circ} \mathrm{N}, \lambda=22^{\circ} \mathrm{E}$
The solution for this earthquake, shown in Figure 8, is a very satisfactory one, although the exact position of circle a may be questioned. As shown in Table XI, the

TABLE XI

score for the P phases is satisfactory, and although the P^{\prime} phases have a very poor score, most of these observations were described as doubtful by our collaborators. We might have made circle b smaller, to make San Juan inconsistent and Lwiro consistent; however the San Juan observation was described as an i while the direction observed at Lwiro was described as doubtful.

Figure 8.
The position of circle a appears to be very closely defined by the data but we must remember that the extended distances for short epicentral distance are not too reliable, so that the smaller circle may not be as closely defined as it appears to be. There seems little doubt however that the faulting is approximately normal.

Earthquake of 15:29:40, May 3, 1954. $\phi=51 \frac{1}{2}^{\circ} \mathrm{N}, \lambda=159 \frac{1}{2}^{\circ} \mathrm{E}$

The solution for this earthquake is shown in Figure 9, and the score is given in Table XII. The solution is straightforward except for some difficulties in Europe. A number of Italian stations (only Rome is shown in the diagram) recorded compressions. These

TABLE XII

	Direct Phases		Reflected Phases					Grand Total
	P	Total	PP	pP	PPP	PcP	Total	
Total Number of Observations.	74	74	6	1	2	4	13	87
Number of Inconsistent Observations.	11	11	3	0	0	3	6	17

could have been made consistent by increasing the radius of circle b slightly, but this would have made a number of other stations inconsistent, as shown in the figure. The present solution is a compromise which cannot be very far from correct.

Figure 9.
Earthquake of 22:39:26, May 14, 1954. $\phi=36^{\circ} \mathrm{N}, \lambda=137^{\circ} \mathrm{E}$
The solution for this earthquake is shown in Figure 10 and the score is given in Table XIII. The solution is quite straightforward, and the number of inconsistencies in the direct observations is gratifyingly small.

TABLE XIII

	Direct Phases			Reflected Phases						Grand Total
	P	P^{\prime}	Total	PP	pP	pPP	PPP	$\mathrm{Pc} P$	Total	
Total Number of Observations..	91	3	94	14	16	2	2	3	37	131
Number of Inconsistent Observations	10	0	10	7	7	0	0	2	16	26

Earthquake of 08:04:42, July 6, 1954. $\phi=46 \frac{1}{2}^{\circ} \mathrm{N}, \lambda=153 \frac{1}{2}^{\circ} \mathrm{E}$
We have not been able to obtain a unique solution for this earthquake; to illustrate the difficulty all the stations have been plotted on the diagram, although only a few of

Figure 10.

Figure 11.
them have been identified. As shown in Figure 11, circle b is well defined, but circle a may vary through wide limits. It has been shown in its extreme positions, and also in that position which would give pure thrust faulting. The insert diagram shows that anything between pure thrust faulting and almost pure strike-slip faulting would be consistent with the data. The score of the solution is given in Table XIV.

TABLE XIV

Earthquake of 04:42:20, August 18, 1954. $\phi=21 \frac{1}{2}^{\circ} \mathrm{S}, \lambda=176^{\circ} \mathrm{W}$
The solution, shown in Figure 12, is straightforward. The number of observations, and the number of these inconsistent, is shown in Table XV.

Figure 12.

Earthquake of 02:09:55, Sept. 13, 1954. $\phi=21^{\circ} \mathrm{S}, \lambda=17 \frac{1}{2}^{\circ} \mathrm{W}$

There is some doubt about the proper position for circle b. As drawn (see Figure 13) it makes Tucson, Bozeman and Palisades correct, the Mexican stations, Swan Island,

TABLE XV

	Direct Phases				Reflected Phases							Grand Total
	P	P_{1}^{\prime}	P_{2}^{\prime}	Total	PP	PPP	pP	pP_{1}^{\prime}	pPP	Pc P	Total	
Total Number of Observations.	49	38	3	90	23	2	12	6	3	1	47	137
Number of Inconsistent Observations.	2	9	2	13	11	2	4	0	2	1	20	33

Fayetteville and a large number of reflected phases inconsistent. A better score would be obtained by drawing a larger circle. This has not been done because most of the dilatations have been called doubtful observations whereas most of the compressions have been called certain. In any event the difference would be very slight geologically.

The score is given in Table XVI.

Figure 13.
Earthquake of $17: 56: 08$, Sept. 15, 1954. $\phi=18^{\circ} \mathrm{S}, \lambda=178 \frac{1}{2}^{\circ} \mathrm{W}$
As shown in Table XVII, there is a rather high percentage of inconsistencies among the PKP observations in this solution, but these inconsistent observations are so spread among consistent ones that no separation can be made, and they do not contribute a source of much doubt. There is some doubt about the exact position of circle b (see Figure 14); Tacubaya might have been made correct at the expense of Victoria. However the difference is slight.

TABLE XVI

	Direct Phases				Reflected Phases							Grand Total
	P	P_{1}^{\prime}	P_{2}^{\prime}	Total	PP	PPP	pP	pPP	pP^{\prime}	pP^{\prime}	Total	
Total Number of Observations. .	35	33	3	71	25	3	7	3	8	1	47	118
Number of Inconsistent Observations.	5	5	1	11	9	2	4	2	4	1	22	33

Figure 14.

TABLE XVII

Earthquake of $11: 18: 46$, Oct. 3 , 1954. $\phi=60 \frac{1}{2}^{\circ} \mathrm{N}, \lambda=151^{\circ} \mathrm{W}$
The solution, shown in Figure 15, is perfectly straightforward, and the number of inconsistent observations shown in Table XVIII is about normal; note however the surprisingly good score of the pP and PPP phases and the very bad score for the PP.

Figure 15.
TABLE XVIII

	Direct Phases			Reflected Phases						Grand Total
	P	P_{1}^{\prime}	Total	PP	PPP	pP	pPP	PcP	Total	
Total Number of Observations. .	90	1	91	15	6	9	3	2	35	126
Number of Inconsistent Observations.	14	1	15	11	0	1	1	1	14	29

Earthquake of $\mathbf{1 7 : 4 8 : 3 5}$, Jan. 5, 1955. $\phi=16^{\circ} \mathrm{S}, \lambda=167 \frac{1}{2}^{\circ} \mathrm{E}$
As shown in Table XIX, there are fewer observations than usual in this solution, but the percentage of inconsistencies is about normal. The solution is shown in Figure 16.

TABLE XIX

	Direct Phases				Reflected Phases					Grand Total
	P	P_{1}^{\prime}	$\mathrm{P}_{\mathrm{a}}^{\prime}$	Total	PP	PPP	pP	Pc P	Total	
Total Number of Observations....	26	21	2	49	12	1	2	1	16	65
Number of Inconsistent Observations.	4	2	0	6	6	0	2	1	9	15

Figure 16.

Figure 17.

Earthquake of $02: 03: 43$, Jan. 13, 1955. $\phi=53^{\circ} \mathrm{N}, \lambda=167 \frac{1}{2}^{\circ} \mathrm{W}$
The solution for this earthquake, shown in Figure 17, should be approximately correct, but there is some doubt about the exact position of circle b. As drawn it makes the Mexican stations inconsistent, and the stations at San Juan and Bogota consistent. If the circle were to be reduced in radius to reverse this, it would make Kiruna, Uppsala and Kew inconsistent. However something might be accomplished by swinging the circle around, and the fact that a number of Italian stations reported doubtful dilatations (not shown) might support this. There would be no geological significance in the change. The inconsistencies in Italy and Mexico contribute most of those shown in Table XX.

TABLE XX

	Direct Phases			Reflected Phases					Grand Total
	P	P_{1}^{\prime}	Total	PP	pP	PPP	PcP	Total	
Total Number of Observations.	77	1	78	12	2	4	5	23	101
Number of Inconsistent Observations.	14	1	15	6	1	1	2	9	25

Earthquake of $13: 12: 04$, March $14,1955 . \phi=52 \frac{1}{2}^{\circ} \mathrm{N}, \lambda=17 \frac{1}{2}^{\circ} \mathrm{W}$
The solution is shown in Figure 18 and the score is given in Table XXI. The solution requires no comment.

Figure 18.

TABLE XXI

	Direct Phases			Reflected Phases						Grand Total
	P	P_{1}^{\prime}	Total	PP	PPP	pP	pPP	PcP	Total	
Total Number of Observations.	71	2	73	4	1	15	1	2	23	95
Number of Inconsistent Observations.	12	1	13	1	1	7	1	0	10	23

Earthquake of $\mathbf{1 8 : 3 5 : 2 7}$, April 17, 1955. $\phi=52^{\circ} \mathrm{N}, \lambda=159 \frac{11^{\circ}}{}{ }^{\mathrm{E}}$
In the solution, shown in Figure 19, the position of circle a is clear, but circle b cannot be fixed exactly. As drawn, it makes Kiruna, Uppsala, Copenhagen and Paris correct,

Figure 19.

Kew, Alicante, Almeria and Malaga inconsistent. These could have been reversed by increasing the radius of the circle to correspond to a dip of 82°; the difference is of no geological consequence, but the uncertainty is reflected in the high percentage of errors in the P observations, as shown in Table XXII.

TABLE XXII

	Direct Phases			Reflected Phases				Grand Total
	P	P_{1}^{\prime}	Total	PP	pP	PcP	Total	
Total Number of Observations.	56	2	58	3	2	3	8	66
Number of Inconsistent Observations.	13	0	13	0	1	1	2	15

Earthquake of $20: 24: 05$, April 19, 1955. $\phi=30^{\circ} \mathrm{S}, \lambda=72^{\circ} \mathrm{W}$
There are relatively few data for this earthquake, but the solution shown in F^{*} gure 20 accounts for these so well that publication seems justified. The percentage of inconsistent observations in the directest phases is gratifyingly low, as shown in Table XXIII.

Figure 20.

TABLE XXIII

	Direct Phases			Reflected Phases			Grand Total
	P	P_{1}^{\prime}	Total	PP	PPP	Total	
Total Number of Observations.	34	5	39	13	3	16	55
Number of Inconsistent Observations.	4	1	5	8	1	9	14

Earthquake of $12: 31: 41$, May 30, 1955. $\phi=24 \frac{1_{2}}{}{ }^{\circ} \mathrm{N}, \lambda=142 \frac{1}{2}^{\circ} \mathrm{E}$
There were so many inconsistent observations in the direct phases in this solution - (see Figure 21 and Table XXIV) that we seriously considered withholding its publication, particularly since many of these inconsistent observations came from stations which are normally derendable. However most of these observations were surrounded by consistent ones so that the solution has a reasonable degree of probability.

The very high percentage of inconsistencies in pP is worthy of note.

Figure 21.

TABLE XXIV

| |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Earthquake of $\mathbf{0 0}: \mathbf{1 8 : 5 6}$, June 2, 1955. $\phi=51 \frac{1}{2} \mathrm{~N} \lambda=180^{\circ}$
In this earthquake, which occurs at the junction of the two sections of the Aleutian arc, a line striking $\mathrm{N} 86^{\circ} \mathrm{E}$ separates most of the compressions, lying to the north, from most of the dilatations, lying to the south. To show how well this has been accomplished all the points have been drawn in Figure 22 although only some of them have been identified. As drawn, the line passes through Hong Kong, Kurilsk, Berkeley and Mount Hamilton, and they may be regarded as correct. The only serious problem arises in the
stations of western North America. Six of the stations-Hungry Horse, Victoria, Shasta, Boulder City, Tucson and Woody-recorded compressions, eight of them-Butte, Bozeman, Salt Lake City, Mineral, Nelson, Berkeley and Mount Hamilton-recorded

Figure 22.
dilatations. If no second circle is drawn through the area the six compressions and the dilatations at Berkeley and Mount Hamilton are consistent, against six inconsistent dilatations. If we draw a circle to include the dilatations at Bozeman and Nelson all the dilatations become consistent but all the compressions inconsistent. Clearly there is no statistical justification for drawing a second circle through the area. Hence the second circle could be any small circle drawn on the line a as centre-in particular the circle of zero radius drawn at the centre and representing a horizontal plane through the focus would be justified. In any case the direction of the null vector, but not its dip, is known. The data are summarized in Table XXV.

TABLE XXV

	Direct Phases			Reflected Phases						Grand Total
	P	P_{1}^{\prime}	Total	PP	PPP	pP	pPP	PcP	Total	
Total Number of Observations. .	78	3	81	6	2	1	1	4	14	95
Number of Inconsistent Observations.	16	0	16	4	0	0	1	2	7	23

Earthquake of 12:07:25 June 20, 1955. $\phi=51 \frac{1}{2}^{\circ} \mathrm{N}, \lambda=180^{\circ}$
This earthquake has the same epicentre as that just discussed, but the solution, shown in Figure 23 is completely different. The percentage of inconsistent direct observations is again rather high, and it seems probable that both these solutions should be accepted

Figure 23.
with reservations. Most of the inconsistent observations derive from compressional observations at the greater distances, such for example as San Juan, Lwiro, Kodaikanal and the like. These are persistent enough to suggest the possibility of another mechanism. The score is given in Table XXVI.

TABLE XXVI

Earthquake of $07: 07: 08$, July 16, 1955. $\phi=37 \frac{1}{2}{ }^{\circ} \mathrm{N}, \lambda=27^{\circ} \mathrm{E}$
The solution is shown in Figure 24. Circle b is extremely well defined by the separation in Europe and in the western United States, but circle a is not so well limited. It might,
for example, be made larger to make Sverdlovsk correct and Magadan incorrect, or it might be made much smaller. The score is given in Table XXVII.

TABLE XXVII

	Direct Phases			Reflected Phases				Grand Total
	P	P_{1}^{\prime}	Total	PP	PPP	Pc P	Total	
Total Number of Observations.	71	2	73	12	3	1	16	89
Number of Inconsistent Observations.	14	2	16	6	1	0	7	23

Figure 24.

SUMMARY

It was mentioned in the Introduction that this is the first in a second series of papers giving fault plane solutions. Until more solutions have been completed in this new series there is little to add to the discussion given in the recent paper (Hodgson, 1957) which reviewed the solutions of the first series. For that reason we simply provide the summary shown in Table XXVIII; the form of this table and the order in which the material is arranged is the same as that used in the review paper.

Throughout the present paper the solutions have been based on P and PKP alone, and the reflected phases have been tested for accuracy with reference to these solutions. The score for the reflected phases has been given with each solution, but the results for

TABLE XXVIII

EARTHQUAKE				PLANE a					PLANE b					$\begin{aligned} & \text { NULL } \\ & \text { VECTOR } \end{aligned}$			
Date	φ	$\boldsymbol{\lambda}$			응 은	음					음			-	$\begin{aligned} & 0.0 \\ & \frac{5}{6} \\ & \hline \end{aligned}$		
Men zoaland - Xermadecs - Tongas - Fi,12																	
Pebruary 19A, 1954	$30^{\circ} \mathrm{S}$	177.70\%\|	Normal	$\mathrm{N} 29.5{ }^{\circ} \mathrm{E}$	S60.5 $5^{\circ} \mathrm{E}$	87°	. 985	+. 175	N60 ${ }^{\circ} \mathrm{w}$	$N 30^{\circ} \mathrm{E}$	80°	. 999	+. 053	N $48^{\circ} \mathrm{E}$	$79.5{ }^{\circ}$	b	a
	native	Solution	-	N78. $5^{\circ} \mathrm{E}$	N11.5 ${ }^{\circ}$	73°	. 889	+. 459	N21 ${ }^{\circ} \mathrm{W}$	S69\% ${ }^{\text {W }}$	64°	. 946	+. 325	N72 ${ }^{\circ} \mathrm{w}$	58°	b	a
August 18, 1954	$21.5{ }^{\circ} \mathrm{S}$	$176^{\circ} \mathrm{m}$	150	$\mathrm{N} 27{ }^{\circ} \mathrm{E}$	$563{ }^{\circ} \mathrm{E}$	81°	. 932	-. 363	N67 ${ }^{\circ}$	N23 ${ }^{\circ} \mathrm{E}$	69°	.986	-. 168	N50 ${ }^{\circ} \mathrm{E}$	$66.8{ }^{\circ}$	a	b
September 13, 1954	$21^{\circ} \mathrm{S}$	178. 5°	150	N17 ${ }^{\circ} \mathrm{E}$	S73 $3^{\circ} \mathrm{E}$	84°	. 939	-. 345	N75 ${ }^{\text {\% }}$	$N 15^{\circ} \mathrm{E}$	70°	. 994	-. 112	N32 ${ }^{\circ} \mathrm{E}$	89.6°	a	b
Sept ember 15, 1954	$18^{\circ} \mathrm{S}$	178.50\%	600	${ }^{5} 51.5^{\circ} \mathrm{E}$	N38.5 ${ }^{\circ} \mathrm{w}$	83°	. 864	-. 504	N34.5 ${ }^{\circ} \mathrm{W}$	N55.5 ${ }^{\circ} \mathrm{E}$	60°	. 990	-. 141	N39.5 ${ }^{\circ} \mathrm{E}$	$59.4{ }^{\circ}$	b	a
New Hebrides																	
January 5A, 1955	$16^{\circ} \mathrm{s}$	$167.5^{\circ} \mathrm{E}$	Normal	$\mathrm{N} 56.5^{\circ} \mathrm{E}$	\$33. $5^{\circ} \mathrm{E}$	56°	. 999	-. 022	N33. $5^{\circ} \mathrm{W}$	${ }^{N} 56.5^{\circ} \mathrm{E}$	89°	. 820	-. 572	S35. $5^{\circ} \mathrm{E}$	55.9°	a	b
Bonins - Japan - Sakhalins - Kuriles - Kamchatka																	
May 30, 1955	24.50\%	148.50 ${ }^{\text {E }}$ \|	600	$N 70^{\circ} \mathrm{E}$	N20\%\%	35°	1.000	-. 000	N20 ${ }^{\text {\% }}$	S70 ${ }^{\circ} \mathrm{W}$	90°	. 574	-. 819	$\mathrm{N} 21^{\circ} \mathrm{W}$	$35.4{ }^{\circ}$	a	b
May 14, 1954	$36^{\circ} \mathrm{N}$	1*5**	250	N56 ${ }^{\circ} \mathrm{E}$	N34* ${ }^{\circ}$	68°	. 991	+. 132	N31 ${ }^{\text {¢ }}$ \%	${ }^{\mathbf{N} 599^{\circ} \mathrm{E}}$	83°	. 926	+. 378	N14.5 ${ }^{\circ} \mathrm{W}$	66.9°	a	b
July 6, 1954	$46.5{ }^{\circ} \mathrm{N}$	159.40 ${ }^{\text {a }}$	100		Not de	ned		$+\longrightarrow$	N22.5 ${ }^{\circ} \mathrm{W}$	$\mathrm{N}^{6} 7.5{ }^{\circ} \mathrm{S}$	62°			Mot	defin		
May 3, 1954	$51.5^{\circ} \mathrm{N}$	109.50\%	Normal	ผ9 ${ }^{\circ} \mathrm{E}$	N81 ${ }^{\circ} \mathrm{W}$	70°	. 938	-. 346	N74 ${ }^{\circ}$	${ }^{N} 16^{\circ} \mathrm{E}$	71°	. 932	-. 362	N34**	$62.2{ }^{\circ}$	b	a
April 17, 1955	$52^{\circ} \mathrm{N}$	159.2\%	Normal	${ }^{\sim} 51{ }^{\circ} \mathrm{E}$	N39\%	84°	. 978	-. 210	N38 ${ }^{\circ}$	$\mathrm{N}^{5} 2^{\circ} \mathrm{E}$	78°	. 994	-. 107	$N 25^{\circ} \mathrm{E}$	76.9*	b	a
Aloutians - Alaska																	
June 2, 1955	$51.5{ }^{\circ} \mathrm{N}$	180°	Normal	$N 86{ }^{\circ} \mathrm{E}$		90°				ot defi				N86 ${ }^{\circ} \mathrm{E}$			\cdots
June 20, 1955	$51.5^{\circ} \mathrm{N}$	180*	Normal	$N 38{ }^{\circ} \mathrm{E}$	N52 ${ }^{\text {\% }}$	58°	. 752	-. 660	N27 ${ }^{\circ} \mathrm{W}$	N63 ${ }^{\circ} \mathrm{E}$	56°	. 769	-. 639	N7. $5^{\circ} \mathrm{B}$	39.7°	b	\cdots
April 17, 1954	$51.5^{\circ} \mathrm{N}$	179**	Normal	N87. $5^{\circ} \mathrm{E}$	$\mathrm{N} 2.5{ }^{\circ} \mathrm{W}$	82°	. 994	-. 106	$\mathrm{N}^{\circ} \mathrm{W}$	S87 ${ }^{\circ} \mathrm{W}$	84°	. 990	-. 140	N40 ${ }^{\circ}$ W	80.0°	a	b
	ernative	Solution	-	${ } 45^{\circ} \mathrm{E}$ E	S45 $5^{\circ} \mathrm{B}$	84°	. 965	-. 261	N46 ${ }^{\circ} \mathrm{W}$	$\mathrm{N} 44^{\circ} \mathrm{E}$	75°	. 994	-. 108	N66 ${ }^{\circ} \mathrm{E}$	$74.3{ }^{\circ}$	a	b
March 14, 1955	$52.5{ }^{\circ} \mathrm{N}$	173. $5^{\circ} \mathrm{W}$	100	$N 19^{\circ} \mathrm{E}$	N71 ${ }^{\text {¢ \% }}$	70°	. 979	-. 203	N67 ${ }^{\circ}$	$\mathrm{N} 23{ }^{\circ}{ }^{\circ} \mathrm{E}$	79°	. 938	-. 348	N39 ${ }^{\circ} \mathrm{W}$	$66.3{ }^{\circ}$	b	a
January 13, 1955	$53^{\circ} \mathrm{N}$	167.50\%	Normal	${ }^{\mathrm{N} 52}{ }^{\circ}{ }_{\mathrm{E}}$	$538{ }^{\circ} \mathrm{E}$	89°	. 961	+. 275	N39 ${ }^{\circ} \mathrm{W}$	${ }^{N 51}{ }^{\circ} \mathrm{E}$	74°	. 999	+. 018	N66 ${ }^{\circ} \mathrm{E}$	$73.3{ }^{\circ}$	b	a
October 3, 1954	$60.5^{\circ} \mathrm{N}$	$151^{\circ} \mathrm{W}$	100	N $36{ }^{\circ} \mathrm{E}$	$554{ }^{\circ} \mathrm{E}$	52°	-958	-. 285	N45.5**	S44. $5^{\circ} \mathrm{W}$	77°	. 775	-. 632	S31 ${ }^{\circ} \mathrm{E}$	$49.3{ }^{\circ}$	b	a
pacific Coast of North America																	
April 29A, 1954	$28.5{ }^{\circ} \mathrm{N}$	$113^{\circ} \mathrm{w}$	Normal	$\mathrm{N}^{46}{ }^{\circ} \mathrm{E}$ E	$544{ }^{\circ} \mathrm{E}$	88°	. 925	+. 379	N45 ${ }^{\circ} \mathrm{W}$	$\mathrm{N} 45^{\circ} \mathrm{E}$	68°	. 999	+. 038	$\mathrm{N} 50^{\circ} \mathrm{E}$	68°	b	a
April 298, 1954	$28.5{ }^{\circ} \mathrm{N}$	$113^{\circ} \mathrm{W}$	Norma 1	N46 ${ }^{\circ} \mathrm{E}$	S44 ${ }^{\circ} \mathrm{E}$	88°	. 925	+.379	$\mathrm{N} 45^{\circ} \mathrm{Y}$	$\mathrm{N} 45^{\circ} \mathrm{E}$	68°	. 999	+. 038	$N 50^{\circ} \mathrm{E}$	68°	b	a
February 198, 1954	$12.5{ }^{\circ} \mathrm{N}$	$87.5{ }^{\circ} \mathrm{W}$	Normal	N28.5 $5^{\circ} \mathrm{E}$	N61.50\%	55°	. 985	-. 170	N55 ${ }^{\circ}$	N35 ${ }^{\circ} \mathrm{E}$	82°	. 815	-. 579	$\mathrm{N} 44^{\circ} \mathrm{W}$	$53.3{ }^{\circ}$	b	a
South America																	
April 27, 1954	$6^{\circ} \mathrm{N}$	$82.5{ }^{\circ} \mathrm{W}$	Normal	N6. $5^{\circ} \mathrm{E}$	S83. $5^{\circ} \mathrm{E}$	85°	. 970	-. 243	N85 ${ }^{\circ}$	$N 5^{\circ} \mathrm{E}$	76°	. 996	-. 090	$N 27{ }^{\circ} \mathrm{E}$	75.20	a	b
April 19, 1955	$30^{\circ} \mathrm{s}$	$72^{\text {Tw }}$	Normal	N35 ${ }^{\circ} \mathrm{E}$	N55 ${ }^{\text {\% }}$	72°	. 946	-. 325	N49 ${ }^{\text {W }}$	N41 ${ }^{\circ} \mathrm{E}$	72°	. 946	-. 325	N6 ${ }^{\circ} \mathrm{W}$	$64.4{ }^{\circ}$	b	a
Mediterranean																	
July 16, 1955	$37.5^{\circ} \mathrm{N}$	$27^{\circ} \mathrm{E}$	Normal	$\mathrm{N} 40^{\circ} \mathrm{E}$	N50 ${ }^{\circ} \mathrm{W}$	84°	. 995	+. 105	N50 ${ }^{\circ} \mathrm{W}$	$N 40^{\circ} \mathrm{E}$	84°	. 995	+. 105	N5. $5^{\circ} \mathrm{W}$	81°	a*	b
April 30, 1954	$39^{\circ} \mathrm{N}$	$22^{\circ} \mathrm{E}$ E	Norma 1	N $86^{\circ} \mathrm{L}$	$\mathrm{N} 4^{\text {a }}$ W	18°	. 998	-. 069	$\mathrm{N} 46^{\circ} \mathrm{W}$	S440\%	78°	. 954	-. 301	N48.5**	13°	a	b

TABLE XXIX

	PHASE					
	PP	PPP	pP	$\mathrm{pP}{ }^{\prime}$	pPP	PcP
Number of Observations.	277	58	103	19	21	48
Number of Inconsistencies. .	128	25	52	6	10	25
Percentage of Inconsistencies.	46.2	43.1	47.7	31.6	47.6	52.1

all the solutions are summarized in Table XXIX. This table will be discussed in more detail in another paper (Hodgson and Adams, in press), but it is clear that the reflected phases are producing random observations and should not be used.

References

Hodgson, J. H.,
1956 "Direction of Faulting in some of the Larger Earthquakes of the Southwest Pacific, 1950-1954", Publications of the Dominion Observatory, 18, 169-216.
1957 "Nature of Faulting in Large Earthquakes", Bull. Geol. Soc. Amer., 68, 611-644.
Hodgson, J. H., and Adams, W. M.
"Inconsistent Observations in the Fault Plane Project", (in press) Bull. Seism. Soc. Amer.

