
© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2018

For information regarding reproduction rights, contact Natural Resources Canada at 
nrcan.copyrightdroitdauteur.rncan@canada.ca.

Permanent link: https://doi.org/10.4095/308417

This publication is available for free download through GEOSCAN (http://geoscan.nrcan.gc.ca/).

Geological Survey of Canada
Open File 8387

Publications in this series
have not been edited;
they are released as
submitted by the author.

Les publications de cette
série ne sont pas révisées;
elles sont publiées telles
que soumises par l’auteur.

O P E N F I L E
D O S S I E R P U B L I C

GEOLOGICAL SURVEY OF CANADA
COMMISSION GÉOLOGIQUE DU CANADA

8387

2018

1Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8
2Laurentian University, Department of Earth Sciences, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6 

For more information, please contact C.J.M. Lawley (christopher.lawley@canada.ca)

MAPPING THE ORE ELEMENT SIGNATURE OF THE ABITIBI GREENSTONE BELT CRATONIC MANTLE, ONTARIO

C.J.M. Lawley1, B.A. Kjarsgaard1, S.E. Jackson1, Z. Yang1, D.C. Petts1, and E. Roots2

Geological Survey of Canada

Recommended citation
Lawley, C.J.M., Kjarsgaard, B.A., Jackson, S.E., Yang, Z., Petts, D.C., and Roots, E., 2018. Mapping the ore 
element signature of the Abitibi greenstone belt cratonic mantle, Ontario; Geological Survey of Canada, Open 
File 8387, 1 poster. https://doi.org/10.4095/308417 

Diamond Lake – spongy clinopyroxene
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Robust principal component analysis (PCA) suggests that low-T, 
large-ion lithophile element alteration (PC1; 57% and 50% of 
variability for olivine and clinopyroxene, respectively; Fig. 7a, c), 
which likely occurred during kimberlite emplacement, represents 
the largest source of variance for the xenocryst dataset. 
PT-dependent, sub-solidus partitioning represents the second most 
important control on olivine and clinopyroxene chemistry (PC2; 17% 
of variability for olivine and clinopyroxene; Fig. 7b, d). 

Sub-solidus PT-partitioning document a depth-dependent shift in 
the mineral phases controlling ore elements within equilibrated 
garnet peridotite. The role of silicate-hosted metals may impact the 
fertility of mantle-derived melts. Kimberlites also sampled PGE and 
Au modi�ed cratonic mantle underlying the Abitibi (Fig. 8), 
corresponding to the lithosphere-asthenosphere boundary (180-200 
km) and a conductive feature of the mid-lithosphere (75-100 km; Fig. 
2). All results are reported in Lawley et al. (2018). 

Clinopyroxene depth pro�les were constructed using single-grain clinopyroxene PT 
determinations (calculated using enstatite-in-clinopyroxene thermometer and 
Cr-in-clinopyroxene geobarometer, respectively; Nimis and Taylor, 2000). Based on the 
depth pro�les for least-altered clinopyroxene xenocrysts, we suggest that even some 
so-called chalcophile and siderophile elements participate in PT-dependent substitution 
reactions during sub-solidus equilibration (Fig. 6). 

Cold, stable and refractory mantle lithosphere represents an 
unconventional source region for metal-rich magmas. However, the 
behaviour of ore elements and their host mineral phases within 
these deep mantle roots remain poorly understood. Mantle 
fragments (e.g., xenoliths/xenocrysts) entrained within Kimberlites 
sample the cratonic mantle and allow us to address some of these 
knowledge gaps (Figs. 1-2). 

Herein we present electron probe microanalysis (EPMA) and laser 
ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 
geochemical datasets for olivine (Figs. 3-4) and clinopyroxene (Figs. 
5-6) mantle xenocrysts from the Jurassic Kirkland Lake kimberlite
�eld, Abitibi greenstone belt, Canada. We speci�cally focus on the
trace elements (Fig. 7-8)

Figure 5 – LA-ICP-MS clinopyroxene mapping results for a spongy clinopyroxene xenocryst from Diamond Lake. 
SEM-BSE image (a) shows the pitted clinopyroxene and thin rim. Inclusions and rims yield anomalous compositions 
that in�ltrate the xenocryst (b–l).

Figure 6 – Clinopyroxene depth pro�les for select elements. PT-dependent elements yield coherent depth pro�les. 
Elements that occupy clinopyroxene’s M1-site typically increase in concentration with depth along with Mg. 
Elements that occupy clinopyroxene’s M2-site typically decrease in concentrations with depth along with Ca. Trace 
element analyses that are divorced from coherent depth pro�les, within otherwise equilibrated xenocrysts, likely 
re�ect a metasomatic processes operating at depth. 

Figure 4 – Olivine depth pro�les for select elements. PT-dependent elements yield coherent depth pro�les. 
Elements that occupy olivine’s M-site typically increase in concentrations with depth. High-�eld-strength-element 
(HFSE; Nb-Ta-Zr) yield contrasting depth pro�les that probably re�ect PT-dependent, coupled substitution 
reactions with elements occupying olivine’s T-site. Elements (e.g. Ti, Na) that are divorced from coherent depth 
pro�les, within otherwise equilibrated xenocrysts (based on good agreement between major elements such as 
Al-Ca), likely re�ect metasomatic processes operating at depth. Given the high di�usion rates for olivine at these 
elevated-T, we suggest that metasomatism likely occurred during, and/or immediately preceding, kimberlite 
volcanism.     

Figure 3 – LA-ICP-MS element mapping results for a complex olivine xenocryst from B30. Olivine scanning electron 
microscope (SEM) backscatter-electron (BSE) image (a) shows bright rim and etched olivine core. Each olivine type 
(i.e., narrow rim, homogenous interior and etched core) yield a distinct major and trace element signature (b–l).  

Olivine depth pro�les were calculated using the Al-thermometer (Bussweiler et al., 2017), 
with olivine pressure (i.e., depth) determined by calculating the intersection of each 
temperature with the xenolith-based geotherm (re-calculated after Vicker, 1997). We adopt 
the geochemical classi�cation of Bussweiler et al. (2017) to focus on least-altered mantle 
xenocrysts (Fig. 3-4). Some trace metals (e.g., Cu; Fig. 4) yield concentrations that tend to 
correlate with depth, consistent with PT-partitioning during sub-solidus equilibration.   

Figure 7 – PCA biplot for olivine analysis colour coded to olivine type (a) and 
temperature (b).  PCA biplot for clinopyroxene analyses colour coded to clinopyroxene 
type (c) and Temperature (d). 

Figure 8 – Ore elements at trace (low ppm to ppb; Se and Mo) and ultratrace (low ppb; 
Pt, Pd, and Au) concentrations yield two distinct signatures within magmatic and 
xenocryst olivine crystals. The ore element composition of magmatic olivine crystals 
are correlated with Mg# melt proxies; whereas ore element compositions of 
xenocrysts are independent of Mg# melt proxies. Ultratrace concentrations (Pt, Pd, Au) 
occur at, or slightly above, the detection limit and are subject to large analytical 
uncertainties due to counting statistics, but tend to be associated with mantle 
xenocrysts (i.e., metasomatized mantle lithosphere) rather than magmatic olivine.

Figure 2 – Interpolated section through 3D magnetotelluric inversion model (Roots 
and Craven, 2017). Vertical lines represent the trace of kimberlites included as part of 
this study projected to 200 km depth.

Figure 1 – Regional geological map of the southern Abitibi greenstone belt showing 
the locations of ore deposits and kimberlites. Map modi�ed after Percival et al. (2012).
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