

CANADA

DEPARTMENT OF MINES AND TECHNICAL SURVEY Dept. Mines & Technical Surveys

MINES BRANCH MINERAL PROCESSING DIVISION

INDUSTRIAL WATER RESOURCES OF CANADA

WATER SURVEY REPORT NO. 14

THE UPPER GREAT LAKES DRAINAGE BASIN IN CANADA, 1957-63

BY J. F. J. THOMAS AND R. M. GALE

Price: \$2.50

Mines Branch Monograph No. 870

MINES BRANCH

OTTAWA, CANADA

CE

24 1965

02

ERRATA

Page	10	't' should appear after all bracketed numbers in "Total basin" column.
Page	11	'tt' should appear after all bracketed numbers in "Total basin" column.
		"**' should appear after 1,610 in "Total basin" column opposite Hudson Bay.
Page	18	Line 27 under "pH": 6.2 should read 8.2.
Page	22	Station No. 14: "" Analysis submitted by Alchem Ltd., Burlington, Ont." should appear as a footnote.
Page	40	Station No. 70: '†' should appear after "Water Level" heading.
Page	64	Station No. 162: "See also Station No. 183, page 68" should appear as a footnote.
Page	103	South River: "135" should appear after "page" in footnote.
Page	131	Twelfth line from bottom: "Pickeral" should read Pickerel.
Page	134	Fourth line from top: "Sheshagwaning" should read Sheshegwaning.

CANADA

DEPARTMENT OF MINES AND TECHNICAL SURVEYS

MINES BRANCH MINERAL PROCESSING DIVISION

INDUSTRIAL WATER RESOURCES OF CANADA

WATER SURVEY REPORT NO. 14

THE UPPER GREAT LAKES DRAINAGE BASIN IN CANADA, 1957-63

BY J. F. J. THOMAS AND R. M. GALE

Price: \$2.50

Mines Branch Monograph No. 870

© Crown Copyrights reserved

Available by mail from the Queen's Printer, Ottawa, and at the following Canadian Government bookshops:

OTTAWA Daly Building, Corner Mackenzie and Rideau

TORONTO Mackenzie Building, 36 Adelaide St. East

MONTREAL Aeterna-Vie Building, 1182 St. Catherine St. West

> WINNIPEG Mall Center Bldg., 499 Portage Avenue

> > VANCOUVER 657 Granville Avenue

or through your bookseller

A deposit copy of this publication is also available for reference in public libraries across Canada

Price: \$2.50

Catalogue No. M32-870

Price subject to change without notice

ROGER DUHAMEL, F.R.S.C. Queen's Printer and Controller of Stationery Ottawa, Canada 1965

CONTENTS

٠

Introduction	7
The Upper Great Lakes drainage basin in Canada	12
Survey procedure	13
Analytical procedure	14
Description of municipal water systems in the Upper Great Lakes drainage basin	70
Discussion	125
Summary	130
Appendix A – Surface-water sampling locations	
Appendix B - Index to data and analyses - by municipality	135
Appendix C - Index to data and analyses - by small community and townsite	137

Tables

.

•

.

I	Area and population distribution in the drainage basins of Eastern Canada	
	(1956 and 1961)	9
п	Chemical analyses of surface waters in the Upper Great Lakes drainage basin	17
III	Chemical analyses of municipal water supplies - Upper Great Lakes drainage	
	basin	<u>82</u>
IV	Some small community water supplies in the Upper Great Lakes drainage basin	110
v	Municipal systems, treatment and population served, 1959, 1961 and 1963	128
VI	Municipal water hardness, 1959, 1961 and 1963	128

Figures

1	Reference map of drainage basins in Eastern Canada	4
2	Reference map of drainage basins in Western Canada	5
3	Map showing the location of sampling stations and municipal water supplies in the Upper	
	Great Lakes drainage basins in Canada(in p	ocket)
4	Relationship between mineral content and river discharge, Spanish River at Espanola, Ont	122
5	Relationship between mineral content and river discharge, Michipicoten River at High Falls,	
	Ont	123
6	Relationship between mineral content and river discharge, Little White River near,	
	Bellingham, Ont.	124

.

•

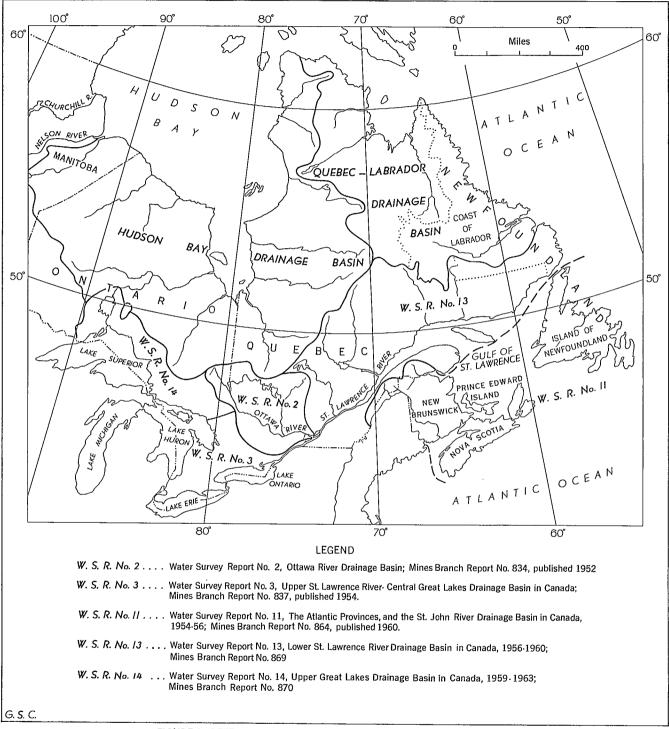
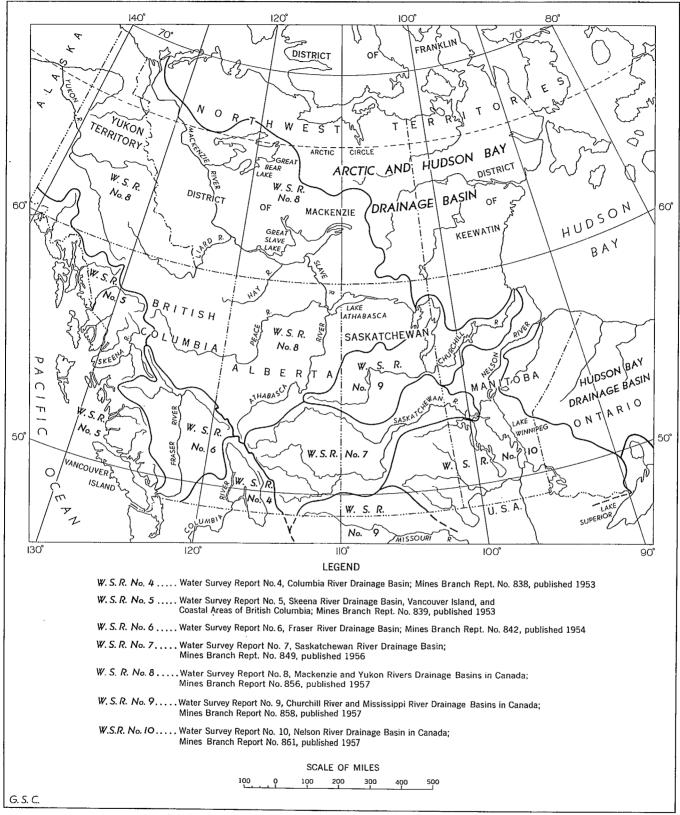



FIGURE 1. REFERENCE MAP OF DRAINAGE BASINS IN EASTERN CANADA

· .

Chemical Quality of Surface and Municipal Water Supplies in the Upper Great Lakes Drainage Basin in Canada, 1957-1963

INTRODUCTION

This report is the fourteenth in the series tabulating data on the chemical quality of surface and municipal water supplies available for industrial and domestic use in Canada. Water Survey Report 1¹ introduced this series and outlines the aim, scope and general procedure of the country-wide survey; it also includes general information, tables and graphs for use in interpreting the analytical results appearing in subsequent reports.

Studies on water quality in the specific areas or drainage basins outlined in Figures 1 and 2 are reported in detail in Water Survey Reports 2 to 11 inclusive, Report No. 13, and in this report, No. 14. These figures serve as indices to these twelve reports. Water Survey Report No. 12² and a supplement³ to it tabulate information on water quality at army installations in Canada and supplements the data given in the other reports of this series.

Quality studies of drainage into Hudson Bay (exclusive of the Nelson and Churchill River systems) and of the drainage basins of Labrador and the Arctic Coast and Islands are still to be reported (*see* Figures 1 and 2). Studies have been completed in some of these areas but data on water quality are still being collected from relatively inaccessible parts of these basins. A report on available data is now in preparation.

Water-quality studies are continuing-with a five-year program of monthly or quarterly sampling now under way-of a number of major surface-water supplies in western Canada, i.e. the area shown in Figure 2. Information is still being obtained on water quality in the Territories and of new municipal water supplies.

This report records the results of studies begun in late 1957 in the relatively small but important basin of the Upper Great Lakes in Canada. This basin is a part of the large Great Lakes-St. Lawrence River system that was divided into four sub-basins for purposes of chemical quality studies. It is defined as beginning at the French River tributary drainage and includes natural drainage in Canada into the Great Lakes system, north and west of this point. Because of unavoidable delay in publication of the data obtained during a year's study, 1957-1958, and because of rapidly changing industrial and population distribution within the basin, further studies were necessarily carried out in later years, especially in 1962 and 1963.

The method of presentation in this report remains essentially the same as that employed in previous reports so that continuity of the series be maintained. No attempt is made to discuss in detail all the information recorded herein or obtained during the survey. However, as in previous reports of this series, some statistics on water quality and use are presented and briefly discussed. A more detailed scientific interpretation and presentation of some of the data is possible but since the data are used by persons and organizations for different purposes the procedure used in the previous reports is continued, that is, the data are presented in such detail that the user can interpret and analyse these for his specific purpose.

Table I and Figures 1 and 2 show the relationships of area and population (1956 and 1961) in the basin covered by this report and the other basins or areas studied. Reference should be made to tables and maps included in the other reports of this series (Figures 1 and 2) for details on various basin boundaries.

Table II gives in detail the analytical results obtained on surface waters in this basin over the period 1957 to 1963. Most of these results are for the one-year period, late 1957 to late 1958, but, since 1958, spot samples were also collected at a number of key sampling locations to show the continuing quality of the waters. The quality data on samples collected in 1963 at some previous sampling locations are included under stations 164-183, inclusive, in Table II and should be compared to data previously obtained at the same locations and reported earlier in Table II. Figure 3 (in pocket) shows the location of the sampling stations, which are listed alphabetically in Appendix A.

Relationships found between dissolved mineral content and river discharge are shown in Figures 4, 5 and 6; these figures, respectively, report the quality data of Table II on Spanish River at Espanola, Ont., Michipicoten River at High Falls, Ont., and Little White River near Bellingham, Ont. Similar graphs can be prepared from Table II for a number of other rivers and locations.

Dept. Mines and Technical Surveys, Mines Branch. Scope, procedure and interpretation of survey studies. Water Survey Report No. 1, Mines Branch Report No. 833, Ottawa, 1953. 69p.
 Dept. Mines and Technical Surveys, Mines Branch. Water quality at some Canadian military establishments, 1956-57. Water Survey

Report No. 12, Mines and Technical Surveys, Mines Branch, Water quality at some Canadian military establishments, 1956-57. Water Survey Report No. 12, Mines Branch Report No. 865. Ottawa, 1959. 125p. ³ Dept. Mines and Technical Surveys, Mines Branch. Water quality at some Canadian military establishments, 1959-1962. Supplement to

^o Dept. Mines and Technical Surveys, Mines Branch. Water quality at some Canadian military establishments, 1959-1962. Supplement to Water Survey Report No. 12. Mines Branch Report No. 872, Ottawa, 1963. 56p.

Table III reports the chemical quality of most waters, including ground waters, supplied by organized municipal systems within the basin during the period of this report. These municipalities are listed alphabetically in Appendix B; their locations are shown on the map of the area (Figure 3, in pocket) to classify them as to water hardness. A description of these systems and water-works plants and their operation in 1959, 1961, or later is also given.

Table IV reports on the operation and quality of waters supplied by private systems in a number of mine townsites and small communities, particularly in the mining area of Elliot Lake. These small communities are listed in Appendix C, but most are not shown on the map (Figure 3, in pocket).

Table V summarizes information available on the number of water systems, the character of the water sources, type of water treatment, if any, and the population served by these systems in 1959, 1961 and/or 1963. Additional statistics, especially on water hardness of municipal waters, are presented in Table VI.

Survey studies in the area covered by this report were greatly facilitated by the cooperation of provincial and municipal officials, many of the latter collecting water samples and providing information on the operation of their water works. The assistance of a number of mining companies and industrial firms in the collection of surface-water samples and in supplying data on townsites, mining communities, and on industrial water use, is also gratefully acknowledged.

Officials of the Water Resources Branch, Department of Northern Affairs and National Resources supplied the data on river discharge.

TABLE I AREA AND POPULATION DISTRIBUTION IN THE DRAINAGE BASINS OF EASTERN CANADA (1956 AND 1961)

.

TABLE I

Area and Population Distribution in the Drainage Basins of Eastern Canada (1956 and 1961)

	Drainage basin			1		area drained in)		1		
		Ontario	Quebec	New Brunswick	Nova Scotia	Edward Island	Island	Labrador	Total basin	
с. А	Lower St. Lawrence River (W.S. Report No. 13)	0	189,600 (31.9)	0	0	0	0	11,200 (9.8)	200,800 [16.5]†	
R R E N C E	Upper St. Lawrence River - Central Great Lakes (W.S. Report No. 3)	55,200 (13.4)	0	0	0	0	0	0	55,200 [4.6]	
RI. VER SYSTEM	Ottawa River (W.S. Report No. 2)	29,675 (5.0)	38,560 (6.5)	0	0	0	0	0	59,235 [4•9]	
	Upper Great Lakes (This report)	67,800 ^a (16.4)	0	0	0	0	0	o	67,800 [5.6]	
d the	antic Provinces Saint John River Sport No. 11)	0	4,700 (0.8)	28,354 (100)	21,425 (100)	2,184 (100)	43,359 (100)	. 0	100,022 [8.1]	
elson] V.S. Re	River 2port No. 10)	47,045 (11.4)	0	0	0	0	0	0	47,045* [3.9]†	
udson	Bay	221,862ª (53.8)	207,250 (34.8)	0	0	0	0	o	429,112* [35.3]†	
abrado	π	0	154,750 (26.0)	0	0	0	0	101,626 (90.2)	256,376 [21.1]	
fotal pr	rovince	412,582 (100)	594,860 (100)	28,354 (100)	21,425 (100)	2,184 (100)	43,359 (100)	112,826 (100)	1,215,590 [100]	
er cent	t of Canada	10.71	15.44	0.74	0.55	0.057	1.13	2.92 ·	31.55	

Total basin area in eastern Canada only
 Total basin population in eastern Canada only
 Total basin population in eastern Canada
 Per cent of total area of eastern Canada
 Per cent of total population of eastern Canada
 Areas adjusted from previous reports to place Long Lake and Ogoki Diversions in the Hudson Bay drainage basin

Year	 		(Per o	ent of total popu	hundreds in draina lation in drainage	basins in)		
	Ontario	Quebec	New Brunswick	Nova Scotia	Prince Edward Island	Newfour Island	Labrador	Total basin
1956	0	39,287 (84.88)	0	0	0	0	19 (17.4)	39,306 [33.3]†
1961	0	44,642 (84.9)	0	0	0	0	18 (13·3)	44,660 [33.35]†
1956	43,928 (81.3)	0	0	0	0	0	0	43,928 [37 . 2]
1961	50,489 (81.0)	0	0	0	0	0	0	50,489 [37,7]
1956	5,585 (10.3)	5,120 (11.06)	0	0	0	0	0	10,705 [9,1]
1961	6,542 (10,5)	5,858 ^e (11.1)	0	0	0	0	0	12,400 [9.3]
1956	3,179 (5•9)	0	0	0	0	0	0	3,179 [2 . 7]
1961	3,882 (6.2)	0	0	0	0	0	0	3,882 [2.9]
1956	0	910 (1.97)	5,546 (100)	6,947 (100)	993 (100)	4,043 (100)	0	18,439 [15.6]
1961	0	1,015 (1.9)	5,979 (100)	7,370 (100)	1,046 (100)	4,443 (100)	0	19,853 [14.8]
1956	685 (1.3)	0	0	0	0	0	0	685** [0.6]
1961	735 (1.2)	0	0	0	0	0	0	735** [0.55]
1956	672 (1.2)	938 (2 .0 3)	0	0	0	0	0	1,610 [1.4]
1961	713 (1.1)	1,027 (2.0)	0	0	0	0	0	1,740* [1.3]
1956	0	29 (0.06)	0	0	0	0	90 (82.6)	119 [0.1]
1961	0	50 (0.1)	0	0	0	0	117 (86.7)	167 [0.1]
1956 1961	54,049 62,361	46,284 52,592	5,546 5,979	6,947 7,370	993 1,046	4,043 4,443	109 135	117,971 133,926
	34.1	28.8	3.3	4.0	0.6	2.4	0,1	73.3

TABLE I Area and Population Distribution in the Drainage Basins of Eastern Canada (1956 and 1961)

e estimated

THE UPPER GREAT LAKES DRAINAGE BASIN IN CANADA*

The St. Lawrence River-Great Lakes system, some 2,280 miles in length, drains about 383,000 square miles in Canada comprising 36 and 38 per cent of the area of the provinces of Ontario and Quebec, respectively. Since these areas include most of the heavily industrialized and highly populated regions of Canada, this large basin was divided into four basins for survey purposes: namely the Lower St. Lawrence River basin, the Upper St. Lawrence River-Central Great Lakes basin, the Ottawa River basin, and the Upper Great Lakes basin (see Figure 1). The first three basin studies were reported in Water Survey Reports Nos. 13, 2 and 3, respectively; this report covers survey studies carried out in the fourth sub-basin-the Upper Great Lakes drainage area in Canada.

Figure 3 shows the boundaries of the Upper Great Lakes Basin. Two areas, the Long Lake diversion (1,630 sq mi) and the Ogoki diversion (5,545 sq mi),-drainage from which is diverted by dams to the Upper Great Lakes system-have not been included in this basin but are in the Hudson Bay basin from which they are diverted.

Water quality of a southern portion of the French River drainage basin was reported in Water Survey Report No. 3 as part of the Upper St. Lawrence River-Central Great Lakes basin. Some recent data on this area are included in this report for information and comparison. The boundary between the Upper Great Lakes and Central Great Lakes basins still remains at the French-Pickerel rivers and the south shore of Lake Nipissing. However, a small heavily populated area on the east shore of Lake Nipissing-metropolitan North Bay- has been included in this basin and report although most of this area draws its water by organized system from the Ottawa River drainage basin. The portion of the French River-Lake Nipissing basin still included in the Central Great Lakes drainage basin (about 730 sq mi), as well as the above-mentioned two northern diversion areas, are shown dotted in Figure 3 (in pocket).

The Upper Great Lakes drainage basin in Canada lies entirely in Ontario and includes some 67,800 square miles, including the area of the Great Lakes out to the international boundary. Table I shows that this basin, some 16.4 per cent of Ontario, is somewhat larger than either the Ottawa River basin (59,235 sq mi) or the Upper St. Lawrence River-Central Great Lakes basins (55,200 sq mi). It is, however, considerably smaller than the Lower St. Lawrence River basin and about the same size as the provinces of Nova Scotia and Prince Edward Island and the island of Newfoundland (total area, 66,968 sq mi).

The Great Lakes-St. Lawrence River system has been of major importance to the development of Canada. For more than 300 years this system was the main route to Upper Canada and western Canada; it is still a major artery for the transport of raw and manufactured products between industralized eastern Canada and the United States, to the Canadian north and west.

Within the last half-century hydro-electric power from many tributary rivers of the Upper Great Lakes system has supplied the energy needed for industrial expansion in Ontario. These rivers, many of them short, rise in the Canadian Shield plateau in heavily forested areas dotted with lakes and, consequently, their discharge is rapid and fairly constant although they can be readily regulated by dams.

Except for Manitoulin and St. Joseph islands which are in the St. Lawrence Lowlands physiographic region, the basin lies in the Canadian Shield region. This Shield, covering about 49 per cent of Canada, is the core of the continent and is in the form of a shield with the top in the Far North. It tilts to the east to mountains on Baffin Island and the Torngat Mountains of Labrador. In the south and west it rises to uplands of 600 to 1,500 feet. The centre of the Shield is depressed and contains Hudson Bay. In the Upper Great Lakes basin the Shield extends along the north shore of Lake Superior as a plateau up to 1,500 feet elevation. It is mainly composed of Precambrian rocks formed by complex sequences of sedimentation, volcanism, metamorphism, mountain building, igneous intrusion, erosion and glaciation. Two series of rocks are found, the Archaean and Proterozoic; the former are mainly crystalline and occur in domes 1,200 to 1,500 feet high, with small sedimentary depressions.

The Proterozoic rocks are mainly sedimentary and often lie in shallow basins, 600 feet or more below the

^{*} Department of Mines. Div. Geol. Surv., Geology of Quebec. VII. Geol. Rept. No. 20. Quebec, 1944, 3v.

Department of Mines and Technical Surveys, Geol. Surv. Can. Geology and economic minerals of Canada. Econ. Geol. Ser. No. 1, 4th ed. Ottawa, 1957, 517 p.

Dominion Bureau of Statistics. Canada Year Book 1960. Ottawa, 1960, 1304 p.

uplands; such a basin is found near Port Arthur. These Proterozoic rocks were, however, squeezed into ranges of the Cuyana and Penokean mountains, north and south of Lake Superior, respectively, and the La Cloche mountains, north of Lake Huron.

When the Shield was glaciated the ice deepened the valleys, scooped out the soft plains, wore down ridges, and spread quantities of debris, leaving the present great lakes and clay belts. As a result of the receding glaciers, plains are found in this basin near Nipigon and North Bay. Glaciation also resulted in a rather disorganized drainage system of many lakes and streams.

Agricultural land in this basin is based entirely on the clays and beach gravels left on the lake margins and in depressions by sedimentary deposition and ice retreat. The lack of arable land and the geographical character of the basin has resulted in population concentration along the main rivers and lakes, except for certain areas where mining is an important industry.

The Shield is noted for its mineral wealth, much of which is probably still to be exploited. Minerals include iron, gold, nickel, copper, lead, zinc and uranium. Within the Upper Great Lakes basin occurs one of the richest mineral areas of the world-the nickel-copper basin at Sudbury. Important iron deposits are mined along the north shore of Lake Superior near Wawa; copper mining is carried on in the Manitouwadge area and, in recent years, large deposits of pitchblende have been mined in the Elliot Lake area. Gold and silver have also been mined in this drainage basin. Because the basin is heavily-wooded and hydro-electric power and water transport are readily available the production of pulp and paper is one of the most important industries of the area. Readily available power and water transportation has also contributed to the development of other important industries within the basin, such as iron and steel production at Sault Ste Marie.

Recent opening of the Great Lakes to ocean traffic, and rapid extension of highways within the basin will, no doubt, greatly accelerate economic and industrial growth. In the past, inaccessibility of much of the basin because of the rugged terrain, and the limited agricultural land available has slowed development. The 1956 population of the basin was about 318,000 (5.9 per cent of Ontario's population). This increased in 1961 to about 388,200 or 6.2% of the province's population.

The basin is a major tourist area for United States citizens and Canadians. Recent opening of new highways and the improvement of others is rapidly expanding this industry.

The 1,100 square miles of Manitoulin Island, and a very small area of nearby islands and mainland that lie in the St. Lawrence Lowlands physiographic region are composed mainly of sedimentary limestones. Manitoulin Island is relatively flat and agriculture is the principal industry. On the nearby mainland limestone is quarried, mainly for use in the Sudbury smelters.

SURVEY PROCEDURE

The methods of sampling and the survey procedure employed in this basin were essentially the same as those used in previous surveys in this series; they are outlined in some detail in Water Survey Report No. 1.

Most sampling stations were established in the basin in early 1957 and a year-long program of monthly, bi-monthly or quarterly sampling was initiated later that year. These stations, listed in Appendix A and shown in Figure 3 (in pocket), were chosen, where possible, to give representative samples of the larger river and lake waters. No daily sampling stations were operated, but, at each sampling location attempts were made to obtain additional samples at periods of high and low water.

Field work was carried out during the summers of 1958 and 1959 when samples of municipal waters and other surface waters were collected and, at times, partially analysed by field tests. Samples were also collected at this time at many of the monthly or quarterly stations, but ready access to a number of these on the north shore of Lake Superior was not then possible. These field results are shown in Tables II and III in brackets beside the analyses of the same samples made later in the Ottawa laboratory. A comparison of these results indicates certain qualities of the waters *in situ* and shows any significant changes in chemical quality that may have occurred during storage and shipment.

Since 1960, with the opening of a highway along the north shore of Lake Superior, additional surface and municipal water samples, as well as information on new municipal water works, have been obtained.

Because many mine townsites and other small communities, especially those in the Sudbury and Elliot Lake areas, used waters from small organized, private systems, a survey of these was carried out in 1959 and again in 1962-63. A study was also made of total industrial use of water in some areas in 1959-1960. Since then severe curtailment of the uranium mining industry, and major population shifts in the basin outdated much of the information obtained on municipal and industrial water use during 1959-1960. As a result publication of this report was delayed until most of the basin was resurveyed during 1962-1963. Additional surface waters were also collected in this resurvey and have been included in this report under Stations 164-183, inclusive, in Table II.

ANALYTICAL PROCEDURE

The analytical methods and techniques used in this study are essentially those employed in the survey studies published in Water Survey Reports 11 and 13. Basic analytical techniques and interpretation of data are also discussed in Water Survey Report No. 1.

Standard procedures for the analysis of water published by the American Public Health Association¹ and by the American Society for Testing and Materials² were employed for most determinations. However, close cooperation between the Mineral Processing Division of the Mines Branch and committees of these societies sometimes enabled the Division to use certain newer techniques and procedures prior to publication.

The analytical work of this report was carried out mainly during the period 1957 to 1959 inclusive, although a number of municipal waters were collected and analysed in later years. Although changes in analytical procedure discussed in Water Survey Reports No. 11 and 13 are applicable to most waters reported for this basin, the analytical methods used during the period of this report are briefly outlined as follows.

As soon as possible after receipt water samples were analysed in the laboratory for those constituents which could significantly change in storage. Although these *immediate tests* were usually carried out within 4 to 7 days after sample collection, longer storage sometimes resulted because of unforeseen circumstances such as delay in shipping. In Tables II, III and IV, the first figure listed under storage period is the number of days from sampling until these immediate tests were begun, the second figure is the number of days from sampling until the remaining tests were started.

The immediate tests carried out were as follows:

pH - measured by a pH meter.

Specific Conductance - measured with a 60-cycle current, 115-volt enclosed-switch-type Wheatstone bridge, a pointer-type a.c. galvanometer, an insulating transformer, and a pipette-type conductivity cell of about 0.3 cell constant.

Colour - by visual comparison of the supernatant or filtered water against Hazen colour standards in a commercial comparator.

Turbidity - the Jackson candle turbidimeter was used for high turbidity waters, the Hellige turbidimeter for for waters having low to medium turbidity.

Total hardness - by titration with a standard solution of sodium ethylenediaminetetraacetic acid (EDTA) using Erichrome Black T as visual endpoint indicator.

Calcium - by titration with standard EDTA using murexide or, after February 13, 1959, calcon as visual endpoint indicator.

Magnesium - calculated as the difference between the values found by titration for total hardness and for calcium.

Alkalinity - by titration with standard (0.02N) sulphuric acid employing a potentiometric endpoint. After February 11, 1959 alkalinities were determined by the technique developed in this Division's laboratories whereby errors caused by variations in the titration endpoint with total alkalinity concentration are eliminated³.

Oxygen Consumed by Permanganate (KMnO4) - This test, which measures the amount of a standard potassium permanganate solution reduced by a known amount of water at boiling temperature (100°C) in 1 hour, was carried out on a selected number of surface and municipal waters. The test is, to some degree, a measure of the organic matter and can with care be used to indicate pollution of a water supply.

Am. Public Health Assoc. Standard methods for the examination of water, sewage, and industrial wastes. 11th ed. New York, 1960. Am. Soc. for Testing and Materials. Manual on industrial water. Spec. Tech. Publ., No. 148D, Philadelphia. 1959. Thomas, J.F.J., and Lynch, J.J. Determination of carbonate alkalinity in natural waters. J. Am. Water Works. Assoc. New York. 1960. V. 52, No. 2, p. 259-268.

Copper and Zinc - periodically, spot tests are done on the supernatant water using a sensitive field method employing dithizone.

Ammonia - by direct Nesslerization of the supernatant water with visual comparison against prepared standards. No attempt was usually made to determine ammonia by distillation, even when direct Nesslerization failed because of interference by other constituents present in the water.

The following tests were usually done at a later date:

Aluminum - was determined spectrophotometrically by the aluminon method until about August 1957; since then it has been determined by a mixed ferron-orthophenathroline procedure².

Total Iron and Total Manganese - After July 28, 1959 separate samples of all ground waters were collected for the determination of iron and manganese. These separate samples, assumed clear when drawn, were acidified in the sample container and the total iron determined by the $\alpha \alpha$ dipridyl procedure; the total manganese, by the periodate method or, after November 26, 1958, by the persulphate method, or both.

Dissolved Iron and Dissolved Manganese - were determined on the supernatant or filtered portions of all waters by the same procedures as used for total iron and total manganese.

Copper and Zinc - when shown to be present in significant amounts by the above rapid field test, were determined until September 1959 by the dihydroxyethyldithiocarbamate³ and dithizone⁴ procedures, respectively. The neocuproine procedure⁵ was used to determine copper from May 1963 to October 1963; since then a zinc dibenzyldithiocarbamate procedure⁶ has been used. The zincon method⁵ was employed for zinc until June 1963; since then the sensitive dithizone procedure employing photometric colour detection was used.

Sulphate - Since March, 1956 sulphates have been determined by titration with barium chloride using thorin as a visual endpoint detector⁵. This method is particularly suited to waters with low sulphate content, ion exchange being used to remove cation interference; when the sulphate content is high the standard gravimetric procedure^{4,5} is often used to check the colorimetric procedure.

Chloride was determined by titration with a standard mercuric nitrate solution, using microburettes and visual endpoint detection.⁷, Since May 6, 1963 most chlorides have been potentiometrically titrated with standard silver nitrate solution using a silver-potassium sulphate electrode system as indicator⁸. The mercuric nitrate method is still used for very low chloride content waters and periodically as a check on the potentiometric method.

Fluoride was determined by the standard zirconium-alizarin procedure until December 12, 1960, distillation being employed only when interferences were suspected or high fluorides found. Since then fluoride has been determined by the SPADNS procedure, with distillation to isolate fluoride whenever interference is evident⁹.

Nitrate - Until about August 13, 1961 nitrate ion was determined by the standard phenoldisulphonic-acid method with visual comparison against standards in Nessler tubes⁹. High nitrate waters were checked by the brucine method⁷ with comparison being made in a spectrophotometer.

Between August 13, 1961 and November 4, 1963 the brucine method was routinely used for nitrate determination on most waters. Since November 4, 1963 a modification of the ultra-violet absorption procedure for nitrates¹⁰ has been used. The ultra-violet absorption method is rapid and sensitive if proper attention is given to interference by organic matter in the water.

Phosphate - the determination of total and/or dissolved phosphate was begun routinely on selected waters in late 1960, the standard procedure employing the reductant stannous chloride being used⁷. Since July 11, 1963 a modification of this method has been used which employs bismuth nitrate to increase the sensitivity of the test and amino naphthol sulphonic acid as the reductant.¹¹

Silica - The standard spectrophotometric procedure for silica employing reduction with stannous chloride was used, no attempt being made to solublize any silica present in a form not measured by this procedure.⁵

¹ Warren, N.V. Delavault, R.E. and Irish, Ruth I, Acetonic dithizone in geochemistry. Econ. Geol., Set. V.48, No. 4.1953.p. 306-311.

 ² Rainwater, F.H. and Thatcher, L.L. Methods for collection and analysis of water samples. U.S. Geol. Surv., Water Supply Paper 1454. Washington, U.S. Govt. Print. Off. 1960. p. 297.
 ³ Ibid p. 157

⁴ See footnote 1, page 15

⁵ See footnote 2, page 14

⁶ Hissel, J. and Cabot-Dethier, M. Le dosage du cuivre dans les eaux pour chaudiere-comparaison de trois methodes de dosage. Cebedeau. Nov. 1962, No. 228, p. 549-554.

⁷ See footnote 2, page 14

⁸ Modification of automatic titration of the method given in footnote 1, page 14

⁹ See footnote 1, page 14
¹⁰ Goldman, E and Jacobs, R. Determination of nitrate by ultra violet absorption. J. Amer. Water Works Assoc. New York, 1961 p. 187
V53, No. 1.

¹¹ Modified method reported by V.M. Marcy, Calgon Company, Pittsburg, Pa.

Boron was determined only on major surface-water supplies once or twice yearly, usually at or near times of high and low flow; the standard titration procedure with added mannitol was employed.1

Suspended Matter and Residue on Evaporation - To permit increased coverage on waters, the determination of suspended matter and residue on evaporation, as well as tests for copper, zinc, iron, aluminum and manganese, were omitted on two out of three samples received from the monthly sampling stations. Suspended matter was determined only when the turbidity was 3 units or over. It is considered that sufficient information is still obtained from this abbreviated analysis to show if significant seasonal variation is occurring.

Calculated 'averages' for water quality at monthly sampling stations are omitted from this report. Such averages mean little if the water quality varies widely or if adequate discharge records are not available. Averages should be determined from numerous samples weighted as to discharge.

Saturation Index, Stability Index and Per Cent Sodium are reported for all waters. Interpretation of these calculated values has already been discussed in Water Survey Reports Nos. 1, 10 and 12. In brief, per cent sodium when correlated with total mineralization and boron content indicates the suitability of a water for irrigation.

Since June 6, 1962 a Sodium Adsorption Ratio (SAR) has also been calculated. This ratio, Na (epm)

Ca + Mg (epm)

the result of work by the U.S. Dept. of Agriculture, is a revised form of the above sodium-percentage concept and is related to the experimentally determined adsorption of sodium by soils. It is considered to be more directly significant than the per cent sodium value for estimating the results of using a water for irrigation. However, its use is limited to considering base-exchange reactions in soils and evaluation of irrigation waters, whereas the per cent sodium is useful also in plotting quality data and direct comparison of analytical data. Both values are reported in this report, the per cent sodium partly to maintain continuity throughout the series2,3,4.

The Saturation and Stability Indices are useful for assessing the corrosive tendency of a water. Care, however must be exercised in interpreting these indices since many other factors are important to the rate and extent of corrosion in aqueous solution. For example, when calcium hardness is less than 10 ppm as CaCO₃ and the alkalinity correspondingly low, there is no pH at which calcium carbonate can precipitate and the indices-which are based on the carbon dioxide-pH-calcium carbonate equilibrium-then have little significance. This is the case with many of the very soft and low-mineralized waters of the Upper Great Lakes basin. These indices and the free carbon-dioxide contents are calculated and reported for each water at the temperature of analyses. They change significantly with changing temperature. The carbon-dioxide content of a cold, deep well water may be markedly different from the content of the same water at laboratory temperature.

Dissolved Oxygen was not determined on surface waters at sampling because it varies so widely with location, depth and temperature; in most rivers the dissolved oxygen content, unless depleted by algae growth or pollution, is always near saturation. A survey of the dissolved oxygen content or B.O.D. (Biochemical Oxygen Demand) of a river requires a detailed and specially designed survey of the river.

Elements other than those reported in this survey are in solution in trace amounts in surface and ground waters. Some of these have greatly increased in importance, but lack of personnel and laboratory facilities did not permit their routine determination in this study. Separate samples, filtered and acidified at the time of collection, are required if an accurate figure is to be obtained for trace elements, such as barium, silver, cobalt and nickel. These requirements limit the location of sampling stations and raise difficulties in obtaining sample collectors; spectrographic analyses of residues for these and other trace elements are done from time to time for special studies.

Modifications in techniques and new equipment are continually being tested in the laboratory; in some cases to increase the speed of analysis without loss of accuracy or precision, and in other cases to improve the sensitivity and precision of a method.

¹ See footnote 1, page 15 ² Wilcox, L.V. The quality of water for irrigation use. U.S. Dept. Agric. Tech. Bull, 962, 1948.

U.S. Salinity Laboratory Staff. Diagnosis and improvement of saline and alkali soils. U.S. Dept. Agric. Handbook No. 60, 1954.

⁴ Study and interpretation of the chemical characteristics of natural waters. U.S. Geol. Surv. Water Supply Paper 1473, U.S. Govt. Print. Off. 1959, p. 148-9.

TABLE IICHEMICAL ANALYSES OF SURFACE WATERS IN THEUPPER GREAT LAKES DRAINAGE BASIN

TABLE II
Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin
(In parts per million)

			Stream d (Secon			tmed	e				Suspe matt		dried	e on evan d at 105 ⁶ olved sol	с.	Loss	Specific	1
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO ₄	Carbon dioxide (calculated)	рН	Colour	Turbidiry	Dried ^{at} 105º C.	Ignited at 550°C.	P.P.M.	Tons per acre- foot	Tons per day	on igni- tion at 550°C.	specific conduct- ance $K \times 10^6$ at 25° C.	Calcium
		(Days)			(º F.)		(CO ₂)		(Hazen) (Units)	(Units)								(Ca)
													STA	TION NO	. 1 - LAK	E HURON	(GEORG.IA	N BAY)
			Water	Level													{	
1 2 3 4 5 6 7 8	Nov. 1/57 Dec. 1 Jan. 2/58 Feb. 1 Mar. 1 Apr. 1 May June 1	4:11	\$77.37† \$77.70 \$77.46 \$77.28 \$77.04 \$77.11 ble taken \$77.10	577.57† 577.34 577.25 577.27 577.16 577.16 577.16 577.16 577.08	46 40 37 36 35 35 46	4.5 3.9 3.7	1 3 1 2 1 3	7.8 7.4 7.8 7.7 7.8 7.4 7.9	20 25 20 15 20 20 15	0.4 0.9 0.4 0.3 0.3 0.9			71.6 78.4 83.2	0.097 0.107 0.113		18.4 25.2 24.8	115 99.3 111 117 124 119 122	14.7 12.4 14.2 14.5 14.8 14.4 15.6
9 10 11	July 1 July 31 Sept. 1	15:48 20:36 23:136	577.08 577.17 577.29	577.16 577.16 576.96	52 61 62	3.2 •••••	1 3 1	7.9 7.5 7.9	15 10 10	2 0 0			68.4	0.093	• • • • • • • • • • • • • • • • • • •	16 . 4	127 129 131	15.6 16.4 16.7
	† Elevation in feet above mean level at Father Pointreferred to the International Great Lekes Datum (1955) (IGLD 1955) at Collingwood, Ont. (Canadian Hydrographic Service.) STATION NO. 2 - LAKE HURON (GEORGIAN BAY)*																	
			Water L	evel					1									
12	July 23/57	38:67	578.18†	578.24†	70	2.4	3.5	7.7 (8.1)	0	0.9		•••••	133	0.181		25.2	219	27.9
13 14 15 16 17 18 19 20	Aug. Sept. Oct. 8 Nov. 7 Dec. 8 Jan. 8/58 Feb. Mar. 12	No sam 15:20 6:15 5:22 18:19	ple taken ple taken 577.60 517.60 578.22 577.26 ple taken 577.29	578.03 577.90 577.59 577.49 577.33 577.35 577.40 577.22	58 46 46 33 34	2.2 1.7	1 1 1 1	8.2 8.1 8.2 8.1 8.1	5 5 5 5	0.4 0.5 2 0.9 0.4			120 127 `	0.163		25.6 31.2	207 201 212 203 203	28.2 26.2 27.9 26.4 26.8
21 22 23 24 25	Apr. 8 May 9 June 8 July 7 Aug. 5	17:42 6:19 17:30 24:48 84:184	577.41 577.32 577.19 577.28 577.14	577.21 577.19 577.17 577.26 577.17	37 43 50 62 68	1.7 1.7	1 1 1 2 1	8.2 8.2 8.1 7.9 8.1 (8.4)	0 5 0 10 (10)	0.4 0.4 0.5 0.9 0			115 131 136	0.156 0.178 0.185		12.8 28.0 40.0	196 197 203 211 214	26.0 25.9 26.2 26.9 27.8
26 27	Aug. 10 Sept. 8	23:39 16:128	577.35 577.17	577.17 577.04	67 62		1 0.9	8.2	5	0							206 200	27.0 26.1
	† Elevation * From ferry		ove mean l	evel at Fa	ther Poi	nt referm	ed to I	GLD (1	1955) at (L Goderich						AN BAY, 1	NORTH CH	ANNEL)
			Water L	evel	1							[
28	July 24/57	44:83	578,16†	578.16†	58	2.2	3	7.7	0	0.8	•••••		108	0.147		27.2	178	22.0
29	Aug. 5/58	84:185	577.27	577.11	69	1.7	0.8	8.2 (8.2)	10 (10)	0			111	0.151		42.4	179	22.1

† Elevation in feet above mean level at Father Point referred to IGLD (1955) at Thessalon, Ont. (Canadian Hydrographic Service).
* At street tap, chlorinated.

STATION NO. 4 - LAKE HURON	GEORGIAN BAY	NOR TH CHANNEL)
DIMINION NO. 4 - DIME NOROH	(GLOROMIN DAL	

	Water L	evel												
30 Aug. 4/58* 8	4:185 577.17†	577.11†	72	1.5	1.5	7.9	5	0.8	 	98.0	0.133	 21.6	160	20.7

• At government whatf † Elevation in feet abave mean level at Father Point referred to IGLD (1955) at Thessalon, Ont. (Canadian Hydrographic Service)

												STAT	ION NO.	5 – LAKI	E HURON	(GEORGIA	N BAY, I	NORTHCHA	NNEL)
	I			Water L								-							
31	Aug.	3/58*	85:183	577.20†	577.07†	71	2	3	7.6 (7.9)	5 (15)	0.9	• • • • • • • • •		. 103	0.140		44.0	162	20.5

* At government wharf † Elevation in feet above mean level at Father Point referred to IGLD (1955) at Thessalon, Ont. (Canadian Hydrographic Service)

TABLE II
Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin
(In parts per million)

								_		(In	parts p	er mill	ion)												_
(S) Magnesium	Itor (Fe		B Manganese	(Y) Aluminum	ດີ Copper	(^L Zinc	Alka mipos (Na)	lis Dotassium (K)	(NH ⁷)	(CO2) Carbonate	CODH) Bicatbonate	SO Sulphate	D Chloride	Huoride	°ON) Vitrate	S Silica O (colorimetric)	Phosphate	Boron	Hardno as Cat Non- car- bonate	Total	Sum of constituents	Per cent sodium	Saturation index	Stability index	No.
at PAI	RRY SO	UND																							
3.9 3.1 3.6 3.8 3.9 4.0 4.1 4.3 4.3 4.6	· · · · · · · · · · · · · · · · · · ·	0.01 0.02 0.03 0.04	0.01 0.00 0.00	0.03 0.00 0.03 0.01	0.00 0.00 0.00 Trace	0.0 0.0 0.0 0.0	2.1 1.8 1.6 1.7 1.7 1.8 1.7 0.8 1.8 2.1	0.7 0.8 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	0.0 0.05 0.05 0.05 0.05 0.1 0.05 0.1 0.05 0.05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	49.1 40.3 47.4 47.3 49.1 47.9 51.8 53.1 56.4 55.5	12.2 12.2 11.2 11.5 12.5 13.3 12.1 11.4 12.0 12.6	2.9 2.5 2.7 3.1 2.8 3.0 2.6 3.0 3.1 4.3	0.0 0.0 0.0 0.0	0.4 .0.2 0.4 0.5 0.1 0.4 0.8 0.6 1.0 1.0	3.7 2.1 2.5 2.6 2.5 2.4 2.7 2.6 2.5 1.6	· · · · · · · · · · · · · · · · · · ·	0.00	13.0 12.7 13.1 13.3 .13.0 12.3	52.7 43.7 50.2 51.8 53.0 52.4 55.8 56.6 58.6 60,6	64.8 55.0 60.3 61.7 63.2 63.7 63.2 65.2 69.6 70.9	7.8 8.0 6.4 6.5 6.4 6.8 6.1 2.9 6.2 6.9	-0.8 -1.4 -0.9 -0.9 -0.8 -1.2 -0.9 -0.6 -1.0 -0.6	10 9.4 9.5 9.5 9.8 9.7 9.7 9.1 9.5	7 8 9
at SOI 8,8	UTH B/	AYMOU'I . Trace	сн, ма 0.00	NITOUI 0.05		.AND 0.01	2.5	0.9	0.0	0.0	111	16.9	4.0	0.0	0,4	3.3			14.6	106	120	4.8	-0.3	8,3	12
7.4 7,6 8.3 7.7 7.2 7.8	······	0.00 Trace 0.00	0.00	0.07	0.00	0.0 0.0 	2.2 2.6 2.8 2.3 2.3 2.3	0.8 0.9 0.9 0.9 0.9 0.8 0.7	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	104 99.6 107 101 100 98.7	16.1 14.6 17.5 13.7 14.0 13.8	4.3 4.9 4.5 5.0 4.7 4.0	0.0	0.1 0.6 0.1 0.6 0.8 0.6	2.5 3.5 4.0 2.4 2.8 7.4		0.00	15.3 14.9 16.0 14.9 14.3 15.9	96.6	119 109 109	4.5 5.5 5.5 4.9 4.9 5.1	+0.2 0 +0.1 0.0 0.0 0.0	8.1 8.0 8.1 8.1	13 14 15 16 17 18 19 20 21
7.2 7.8 7.3 7.8 8.2 8.8	· · · · · · · · · · · · · · · · · · ·	0.00	0.00	0.01 0.04	0.00 Trace	0.0 0.05	2.5 2.5 2.2 2.1	0.7 0.7 0.7 0.8	0.05 0.1 0.05 0.05	0.0 0.0 0.0	97.6 100 104 107	12.9 14.6 15.2 15.4	4.5 4.7 4.8 3.7	0.0	0.6 0.3 0.4 0.6	3.5 4.9 4.3 4.2		0.00		94.6 97.4 101 106	106	5.4 5.2 4.5 4.1	+0.1 0.0 -0.2 +0.1	8.0 8.1 8.3	22 23 24
8.3 7.7	·····						2.2 2.4	0.7 0.8	0.0 0.05	0.0 0.0	103 95.8	15.2 14.3	4.1 6.1		0.8	4.1 3.8		0.00	16.8 18.2	(107) 102 96,8	113 109	4.5 5.1	+0.1 0.0	8.0 8.2	26 27
at LIT	TTLE C	URREN	T, MAN	ITOUL	IN ISL	AND	1	1	1	1	1	1	1	1	1	<u>.</u>	1	1	,	1	1				·
6.5 6.6	0.03	0.03	0.00 0.00	0.05 0.03	Trace	0.00	2,6 3.3	0,8 0.8	0.0	0.0 0.0	82.3 83.1	14.4 13.0	4.5 5.6	0.2 0.0	0.8 0.8	3.1 5,2	 		14.1 14.1 (14.8)	81.6 82.3 (84.5	95.6 98.4	6.4 7,9	-0.6 0.0	8.9 8.2	
at GO	RE BAY	7, MANI	TOULI	N ISLA					1					_						1	- y			 .	
5.6		0.00	0,00	0,02	Trace	0.00	2.4	0.6	0,1	0.0	75.5	11.4	3.3	0.0	1.0	6.1			. 12.8	74.7	88.2	6,5	-0.4	8.7	30

at MELDRUM BAY, MANITOULIN ISLAND

	5.8		0.00	0.00	0.03	Trace	0.05	2.6	1.1	0,1	0.0	75.3	9.5	3.0	0,0	4.0	3.5	.		13.2	75.0	87.2	6.9	-0.7	9.0	31
--	-----	--	------	------	------	-------	------	-----	-----	-----	-----	------	-----	-----	-----	-----	-----	----------	--	------	------	------	-----	------	-----	----

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

			Stream d (Secon			med	e				Suspe matt		Residue dried (Disso	on evap at 105 ⁰ lved sol	oration C. ids)		s	
No.	Date of collection	Stotage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO ₄	Carbon dioxide (calculated)	рН	Colour	Turbidity	Dried at 105º C.	Ignited at 550° C.	P.P.M.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		(Days)	[(°F.)		(CO2)		(Hazen) (Units)	(Units)								(Ca)
											STAT101	1 NO. 6 –	LAKE HU	IRON (GI	EORGIAN	BAY, NOR	TH CHANN	IEL)
1	Sept. 29/59	189:217	<u>Water L</u> 577.20†	<u>evel</u> 577.14†	63		2	7.9 (7.9)	5	4							160	20.4
	† Elevation	in feet a	ibove mean	level at F	ather P	oint refe	rred to	1GLD	(1955) a	t Thessa	lon, Ont.	(Canadian	Hydrogra	phic Serv	vice)			
	* Total and	dissolved									STATION	V NO 7	IAVEHI		FORGIAN	BAY. NOR	TH CHAN	VFL)
-	r	1	Water L	aval	1				1	<u> </u>	31/110/							
2	Aug. 8/58	90:187	577.09†	577.11†	63	1.6	1	8.0 (7.9)	0 (10)	0			93.6	0.127	•••••	18.8	154	20.1
	• At plant is † Elevation	ntake	ove mean l	aval at Ea	thet Do	int referr	ed to I	GID (1955) at	Thessal	an. Ont. ((Canadian	Hydrograp	uic Servi	ce)			
	T Elevation	in reet up	ore mean r					020 (. ST. IOSI	EPH CHAN	NEL)
	·	1	Water L	evel			[[1			1					1	1
3	Aug. 13/58	86:194	577.14†	4		2.0	1	7.9	5	3	13	10	62.8	0.085		4.4	95.2	13.1
	* Sampled a † Elevation	t crossing in feet ab	; to St. Jos ove mean l	eph Island evel at Fa	ther Po	int referr	ed to l	GLD (1955) at	Thessal	on, Ont. ((Canadian	Hydrograpi	ic Servi	ce)			
														S	ration n	0. 9 – ST.	MARY'S R	IVER*
		1	Water	Level	1							1						
4	Oct. 25/5	ı 	601.37†	601.53†	48			7.8	2	2			•••••••		·····		. 94.2	14.7
5 6 7	July 26/57 Aug. Sept.	No samp No samp	600.69 ble taken ble taken	600.81 600.77 600.74	62	1.7	· 1	8.0	5	0.8	 		. 68,8	0.094		10.4	100	14.0
8 9	Oct. 11 Nov. 14	10:17 11:18	600.57 600.29	600.57 600.57	54 47	2.7	1 0.8	7.8	5	0.3 0.9			. 52.4	0.071		15.2	74.8	12.9 12.9
10 11	Dec. 13 Jan. 13/58		600.18 599.72	600.33 599.87	35 34	2.2	0.8	8.0	5	0.3			. 58.0	0.079		9.2	93.2 91.7	13.0 12.9
12 13	Feb. 11 Mar. 11	3I:41 26:44	599.70 599.56	599.73 599.54	34 34		0.8	8.0 7.9	3	0.3			•			•	. 90.9 . 94.2	13.0 13.0
14 15	Apr. 11 May 12	14:39 3:16	599.55 599.78	599.56 599.72	43	1.5	1	7.8 7.9	0 10	0.3			. 60.8	0.083		16.4	94.3 93.4	13.4 13.0
16 17	June 11 July 11	14:27 27:45	599.89 600.25	599.92 600.28	50 52	2.6	12	7.8	5	0			. 60.0	0.083		13.2	93.6 92.3	13.0 13.3
18 19	Aug. 11 Sept. 11	22:38 13:125	600.50 600.59	600.50 600.61	67 61		2.5	7.5	5	0 0.8						•	. 89.7 . 93.7	1 3. 0 12.9
20	May 26/6	30:32	599.82	598.46	47	<u> </u>	2	7.6	0	2			<u></u>			••••••	. 93.3	12.2

At plant intake pump (See also Table III, page 102)
At city tap
f Elevations in feet above mean level at Father Point referred to IGLD (1955) at upper entrance to Canadian lock at Sault Ste. Marie, Ont. (Canadian Hydrographic Service)
† Total and dissolved

STATION NO.	10 -	LAKE	SUPE	RIOR	(BAT	CHAN	#ANA	BAY)	

······	· · · · · · · · · · · · · · · · · · ·		en nor to Enkel OBI Ekick (Bittelit and Shir)	
21 Aug. 11/58 87:191 000.507 600.507	69 1.6 1	7,9 0 0	. 60.8 0.083 14.8 94.4 13.1	.1

From shore near Sand Point
 Flevation in feet above mean level at Father Point referred to IGLD (1955) at upper entrance to Canadian lock at Sault Ste. Marie, Ont. (Canadian Hydrographic Service)

Iron (Fe)	Dissolved	(uw) Manganese	maiumiv (A1)	Copper (a)	о.00	Alk fiipos (Na) 3.2	alis Inisser Od (K)	Ammonia A	(°03)	Bicarbonate Bicarbonate	S) Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Hardne as CaC Non- car- conate		Sum of constituents	Per cent sodium	Saturation index	Stability index
4A .22	0,01	(Mn)	(A1)	(Cu)	(Za)	(Na)			1	1	1			Nitrate	Silica (colorimetric	Phosphate	Boron	car-	Total	of	cent	Saturation in	Stability ind
,22							(К)	(NH ₃)	(CO ³)	(HCO3)	(SO4)	(C1)											E
,22		0.00	0.07	0.00	0.00	3.2						4	(F)	(NO3)	(SiO₂)	(PO4)	(B)						
ALO		0.00	0.07	0.00	0.00	3.2																	
	N						0.8	0.0	0,0	73.6	15.7	5.0	0.05	0,4	6.8	<0. 1		12,8	73.2	102	8.4	-0.4	8.7
1	Trace	0.00	0.03	0.00	0.00	2.1	0.5	0.1	0.0 (0)	74.0 (77.6)	8.5	3.4	0.0	1.0	3.3			12.1 (9.2)	72,8 (72,8)	80.9	5.8	-0.3	8.6
BAR/	ATS 0.03	0.00	0.02	0.00	0.05	1.2	0.6	0.05	0.0 (0)	50.8 (50.1)	3.1	1.3	0.0	0.9	2.6			2,9 (1.7)	44.6 (42.8)	51.0	5.4	-0.7	9.3
STE	E MARI	E				1		[·		1												<u> </u>
	0.03	0.00	0.09	 Trace	0.00	1.5 1.2	0.3 0.5	0.0	0.0 0.0	51.7 54.7	7.4 3.9	1.2		0.2 0.8	2.5 3.9	·····		6.0 2.0	48.4 46.9	61,7 55.6	6.3 5.2	-0.8 -0.6	9.4 4 9.2 5
	0.00 0.06 0.00 Trace	0.00 0.00 0.00	0.05	0.00 Trace	0.00	1.0 1.2 1.1 1.1 1.2 1.1 1.5 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2	0.5 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.5 0.5	0.0 0.0 0.0 0.05 0.05 0.05 0.05 0.05 0.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	50.6 50.8 50.2 50.5 51.7 51.4 51.4 51.4 51.4 51.5 51.1 51.8 51.3 48.9	3.4 3.6 3.8 4.3 3.2 3.3 3.5 3.3 4.4 3.8 3.6 2.5	1.6 1.7 1.2 1.5 1.0 1.3 1.2 1.3 1.4 1.5 0.8 2.2	0.0 0.0 0.0	0.5 0.6 0.7 0.5 0.8 0.8 0.8 0.8 1.2 0.8 0.7 1.2 0.5	3.0 2.8 2.9 3.6 3.6 3.1 4.2 2.5 3.2 4.7 5.8 3.5	· · · · · · · · · · · · · · · · · · ·	0.00 0.00	2.2 3.2 2.8 2.8 1.6 3.0 3.2 2.6 2.5 1.8 2.3 3.6	43.7 44.9 44.0 44.1 44.0 45.2 45.4 44.0 44.4 44.3 44.4 44.3	50.7 51.4 50.6 52.3 51.6 53.4 50.3 52.5 53.9 54.2 50.2	4.6 5.4 5.1 5.0 5.5 4.9 6.6 4.7 5.5 5.5 5.0 5.6	-1.0 -0.7 -0.9 -0.7 -0.8 -1.0 -0.7 -0.9 -0.9 -0.9 -1.2	9.8 8 9.4 9 9.4 1 9.7 1 9.7 1 9.5 1 9.8 1 9.8 1 9.8 1 9.8 1 9.5 1 9.5 1 9.5 1 9.5 1
	STI	STE MARI	STE MARIE 0.03 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 1.00 Trace 0.00	STE MARIE 0.03 0.00 0.09 0.00 0.00 0.05 0.06 0.00 0.08 0.00 0.00 0.04 Trace 0.00 0.03	STE MARIE 0.03 0.00 0.09 Trace 0.00 0.00 0.05 0.00 0.06 0.00 0.08 Trace 0.00 0.00 0.08 Trace 0.00 0.00 0.04 0.00 Trace 0.00 0.03 Trace	STE MARIE 0.03 0.00 0.09 Trace 0.00 0.00 0.00 0.09 Trace 0.00 0.00 0.00 0.05 0.00 0.00 0.06 0.00 0.08 Trace 0.00 0.00 0.00 0.04 0.00 0.00 Trace 0.00 0.03 Trace 0.00	STE MARIE 0.03 0.00 0.09 Trace 0.00 1.5 0.00 0.09 Trace 0.00 1.2 0.00 0.09 Trace 0.00 1.0 0.00 0.00 0.05 0.00 0.00 1.2 0.06 0.00 0.08 Trace 0.00 1.1 1.1 1.2 1.1 1.2 1.2 1.00 0.00 0.04 0.00 0.00 1.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	STE MARIE 0.03 0.00 0.09 Trace 0.00 1.5 0.3 0.00 0.00 0.09 Trace 0.00 1.2 0.5 0.00 0.00 0.05 0.00 1.0 0.5 0.06 0.00 0.08 Trace 0.00 1.1 0.4 1.1 0.4 1.1 0.5 1.2 0.4 0.00 0.00 0.04 0.00 1.5 9.5 Trace 0.00 0.03 Trace 0.00 1.2 0.5 1.1 0.5 1.2 0.5 1.1 0.5 1.0 0.00 0.04 0.00 1.2 0.5 Trace 0.00 0.03 Trace 0.00 1.2 0.5	STE MARIE 0.03 0.00 0.09 Trace 0.00 1.5 0.3 0.00 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.00 0.00 0.05 0.00 1.0 0.5 0.0 0.00 0.00 0.00 1.0 0.5 0.0 1.1 0.4 0.05 0.05 0.00 1.2 0.5 0.05 0.00 0.00 0.04 0.00 0.00 1.5 9.5 0.05 1.0 0.4 0.05 0.05 0.05 0.05 0.05 1.2 0.5 0.05 0.05 0.05 0.05 0.05 1.2 0.5 0.05 0.05 0.05 0.05 1.2 0.5 0.05 1.2 0.5 0.05 <td>STE MARIE 1.5 0.3 0.0 0.03 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 0.06 0.09 Trace 0.00 1.0 0.5 0.0 0.0 0.12 0.5 0.0 0.0 0.0 0.0 1.1 0.4 0.0 0.0 1.1 0.5 0.0 0.0 0.0 1.2 0.4 0.05 0.0 1.1 0.5 0.05 0.0 0.0 0.0 1.2 0.4 0.05 0.0 1.1 0.5 0.05 0.0 0.0 0.0 1.2 0.4 0.05 0.0 1.0 0.4 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0</td> <td>STE MARIE (0) (30.1) 0.03 0.00 0.09 Trace 0.00 1.5 0.3 0.0 51.7 0.03 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 54.7 0.00 0.05 0.00 0.00 1.2 0.5 0.0 0.0 50.6 1.1 0.4 0.0 0.0 50.2 1.1 0.5 0.00 0.05 50.7 0.06 0.00 0.08 Trace 0.00 1.1 0.5 0.0 50.5 1.1 0.5 0.05 0.0 51.7 1.2 0.4 0.05 0.05 51.7 1.2 0.4 0.05 0.0 51.7</td> <td>STE MARIE 0.03 0.00 0.09 Trace 0.00 1.5 0.3 0.0 51.7 7.4 0.03 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 54.7 3.9 0.00 0.05 0.00 0.00 1.0 0.5 0.0 0.0 50.6 3.4 0.06 0.09 0.08 Trace 0.00 1.1 0.5 0.0 0.0 50.6 3.4 0.06 0.09 0.08 Trace 0.01 1.1 0.4 0.05 0.0 50.7 4.3 0.00 0.00 0.00 1.0 0.5 0.05 0.0 51.7 7.4 1.1 0.4 0.0 0.0 50.2 3.8 3.8 1.1 0.5 0.05 0.0 51.4 3.3 1.1 0.5 0.05 0.0 51.4 3.5 1.2<td>STE MARIE </td><td>STE MARIE 0.03 0.00 0.09 Trace 0.00 1.5 0.3 0.0 51.7 7.4 1.2 0.03 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 54.7 3.9 1.2 0.1 0.00 0.00 0.00 1.2 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.06 0.09 0.08 Trace 0.00 1.1 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.06 0.09 0.08 Trace 0.00 1.1 0.5 0.0 0.0 50.5 4.3 1.5 0.0 0.06 0.08 Trace 0.00 1.1 0.5 0.05 0.0 51.4 3.3 1.3 0.00 0.00 0.04 0.05 0.05 0.05 3.3 1.3 1.4 1.4 1.4 1.4<</td><td>STE MARIE 0.03 0.00 0.09 Trace 0.00 1.5 0.3 0.0 51.7 7.4 1.2 0.2 0.03 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 54.7 3.9 1.2 0.1 0.8 0.00 0.09 0.00 1.2 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.5 0.00 0.09 0.00 1.2 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.5 0.06 0.09 0.00 1.1 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.5 0.06 0.09 0.08 Trace 0.00 1.1 0.5 0.0 0.0 50.5 4.3 1.5 0.0 0.8 0.00 0.00 0.00 0.00 1.0 0.5 0.05 0.0 51.4 3.5 1.3</td><td>STE MARIE </td><td>STE MARIE 0.0 (50.1) 0.0 (50.1) 0.0 (1.7) (42.8) 0.0 0.0 STE MARIE 0.0 51.7 7.4 1.2 0.2 2.5 6.0 48.4 61.7 6.3 -0.8 0.03 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 54.7 3.9 1.2 0.1 0.8 3.9 2.0 46.9 55.6 5.2 -0.6 0.00 0.00 0.00 1.0 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.5 3.0 2.2 43.7 50.7 4.6 -1.0 0.00 0.00 0.00 50.6 3.4 1.6 0.0 0.5 3.0 2.2 43.7 50.7 4.6 -1.0 -1.7 0.6 2.8 1.4 1.4 -0.7 2.9 2.8 44.9 51.4 5.4 -0.</td></td>	STE MARIE 1.5 0.3 0.0 0.03 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 0.06 0.09 Trace 0.00 1.0 0.5 0.0 0.0 0.12 0.5 0.0 0.0 0.0 0.0 1.1 0.4 0.0 0.0 1.1 0.5 0.0 0.0 0.0 1.2 0.4 0.05 0.0 1.1 0.5 0.05 0.0 0.0 0.0 1.2 0.4 0.05 0.0 1.1 0.5 0.05 0.0 0.0 0.0 1.2 0.4 0.05 0.0 1.0 0.4 0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	STE MARIE (0) (30.1) 0.03 0.00 0.09 Trace 0.00 1.5 0.3 0.0 51.7 0.03 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 54.7 0.00 0.05 0.00 0.00 1.2 0.5 0.0 0.0 50.6 1.1 0.4 0.0 0.0 50.2 1.1 0.5 0.00 0.05 50.7 0.06 0.00 0.08 Trace 0.00 1.1 0.5 0.0 50.5 1.1 0.5 0.05 0.0 51.7 1.2 0.4 0.05 0.05 51.7 1.2 0.4 0.05 0.0 51.7	STE MARIE 0.03 0.00 0.09 Trace 0.00 1.5 0.3 0.0 51.7 7.4 0.03 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 54.7 3.9 0.00 0.05 0.00 0.00 1.0 0.5 0.0 0.0 50.6 3.4 0.06 0.09 0.08 Trace 0.00 1.1 0.5 0.0 0.0 50.6 3.4 0.06 0.09 0.08 Trace 0.01 1.1 0.4 0.05 0.0 50.7 4.3 0.00 0.00 0.00 1.0 0.5 0.05 0.0 51.7 7.4 1.1 0.4 0.0 0.0 50.2 3.8 3.8 1.1 0.5 0.05 0.0 51.4 3.3 1.1 0.5 0.05 0.0 51.4 3.5 1.2 <td>STE MARIE </td> <td>STE MARIE 0.03 0.00 0.09 Trace 0.00 1.5 0.3 0.0 51.7 7.4 1.2 0.03 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 54.7 3.9 1.2 0.1 0.00 0.00 0.00 1.2 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.06 0.09 0.08 Trace 0.00 1.1 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.06 0.09 0.08 Trace 0.00 1.1 0.5 0.0 0.0 50.5 4.3 1.5 0.0 0.06 0.08 Trace 0.00 1.1 0.5 0.05 0.0 51.4 3.3 1.3 0.00 0.00 0.04 0.05 0.05 0.05 3.3 1.3 1.4 1.4 1.4 1.4<</td> <td>STE MARIE 0.03 0.00 0.09 Trace 0.00 1.5 0.3 0.0 51.7 7.4 1.2 0.2 0.03 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 54.7 3.9 1.2 0.1 0.8 0.00 0.09 0.00 1.2 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.5 0.00 0.09 0.00 1.2 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.5 0.06 0.09 0.00 1.1 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.5 0.06 0.09 0.08 Trace 0.00 1.1 0.5 0.0 0.0 50.5 4.3 1.5 0.0 0.8 0.00 0.00 0.00 0.00 1.0 0.5 0.05 0.0 51.4 3.5 1.3</td> <td>STE MARIE </td> <td>STE MARIE 0.0 (50.1) 0.0 (50.1) 0.0 (1.7) (42.8) 0.0 0.0 STE MARIE 0.0 51.7 7.4 1.2 0.2 2.5 6.0 48.4 61.7 6.3 -0.8 0.03 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 54.7 3.9 1.2 0.1 0.8 3.9 2.0 46.9 55.6 5.2 -0.6 0.00 0.00 0.00 1.0 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.5 3.0 2.2 43.7 50.7 4.6 -1.0 0.00 0.00 0.00 50.6 3.4 1.6 0.0 0.5 3.0 2.2 43.7 50.7 4.6 -1.0 -1.7 0.6 2.8 1.4 1.4 -0.7 2.9 2.8 44.9 51.4 5.4 -0.</td>	STE MARIE	STE MARIE 0.03 0.00 0.09 Trace 0.00 1.5 0.3 0.0 51.7 7.4 1.2 0.03 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 54.7 3.9 1.2 0.1 0.00 0.00 0.00 1.2 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.06 0.09 0.08 Trace 0.00 1.1 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.06 0.09 0.08 Trace 0.00 1.1 0.5 0.0 0.0 50.5 4.3 1.5 0.0 0.06 0.08 Trace 0.00 1.1 0.5 0.05 0.0 51.4 3.3 1.3 0.00 0.00 0.04 0.05 0.05 0.05 3.3 1.3 1.4 1.4 1.4 1.4<	STE MARIE 0.03 0.00 0.09 Trace 0.00 1.5 0.3 0.0 51.7 7.4 1.2 0.2 0.03 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 54.7 3.9 1.2 0.1 0.8 0.00 0.09 0.00 1.2 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.5 0.00 0.09 0.00 1.2 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.5 0.06 0.09 0.00 1.1 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.5 0.06 0.09 0.08 Trace 0.00 1.1 0.5 0.0 0.0 50.5 4.3 1.5 0.0 0.8 0.00 0.00 0.00 0.00 1.0 0.5 0.05 0.0 51.4 3.5 1.3	STE MARIE	STE MARIE	STE MARIE	STE MARIE	STE MARIE	STE MARIE	STE MARIE	STE MARIE 0.0 (50.1) 0.0 (50.1) 0.0 (1.7) (42.8) 0.0 0.0 STE MARIE 0.0 51.7 7.4 1.2 0.2 2.5 6.0 48.4 61.7 6.3 -0.8 0.03 0.00 0.09 Trace 0.00 1.2 0.5 0.0 0.0 54.7 3.9 1.2 0.1 0.8 3.9 2.0 46.9 55.6 5.2 -0.6 0.00 0.00 0.00 1.0 0.5 0.0 0.0 50.6 3.4 1.6 0.0 0.5 3.0 2.2 43.7 50.7 4.6 -1.0 0.00 0.00 0.00 50.6 3.4 1.6 0.0 0.5 3.0 2.2 43.7 50.7 4.6 -1.0 -1.7 0.6 2.8 1.4 1.4 -0.7 2.9 2.8 44.9 51.4 5.4 -0.

 TABLE II
 - (Continued)

 Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

near BATCHAWANA

	1				1	[1	1								1	1 1				1	_	r	
2.9		0.00	0.00	0.02	0.00	0.00	12	0.5	0.05	0.0	50.8	27	1 2	0.00	1 6	6.3		2.0					0.5	
		0.00	0.00	0.02	0.00	0.00	1.2	<u> </u>	0.05	(0)	(48.9)	2.7	1.3	0.00	1.)	0.5		 2.9 (4.5)	44.6 (45.6)	24.2	5.4	-0.8	9.5	21

TABLE	Ш-	(Continued)
-------	----	-------------

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

																		<u> </u>	
				Stream d (Secon			med	U				Susper		dried	on evap at 105 ⁰ lved sol	C.		0	
0.	6	ate of lection	Storage puriod	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO ₄	Carbon dioxid (calculated)	рН	변 이 이 (Hazen)	Turbidity	Dried at 105°C.	Ignited at 550°C.	P.P.M.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁵ at 25 ⁰ C.	Calcium
		1	(Days)			(° F.)		(CO ₂)		(Units)	(Units)								(Ca)
															s	TATION N	10.11 - 1	AKE SUPE	RIOR
				Water 1	evel	. !		[
l		16/57	9.20	600.60†	600.60†	55	2.5	0.8	8.2	5	3.	25	24	72.4	0.098	•••••	17.6	106	15.
3	Nov. Dec.		15:21 26:30	600.37 600.09	600.55 600.34	42 39	 	3 1	7.4 7.8	10 15	0.9 0.9					• • • • • • • • • • •		115 117	15. 14.
	Jan. Feb.		No sam 23:49	ple taken 599.95	600.04 599.84	36	1.6	1	7.9	5	0.4							104	13.
5	Mar.	18	10:44 20:26	599.62 599.51	599.67 599.59	34 37	•••••	2 1	7.7 7.8	10 10	0.3 0.4		•••••	•••••	• • • • • • • •	• • • • • • • • •		101 116	13. 14.
3	Apr. May	16	14:20	599.70	599.75	39	3.5	2	7.6	15	2			66.8	0.091		15.6	111	14.
	June July		24:32 30:40	600.05 600.41	599.95 600.33	43 48		1 2	7.8 7.6	10 5	0.9 0							115 95.4	14. 13.
	Aug. Sept.	. 19	24:147 9:126	600.40 600.74	600.51 600.75	54 54	2.0	1 2	7.8 7.7	5	0	••••		71.6	0.097		8,8	102 96,4	15. 13.
			l	1			·····)			l	. <u></u>						<u>, , , , , , , , , , , , , , , , , , , </u>	1	1.7
	T EI	evation i	n feet ab	ove mean l	evel at Fa	ther Poi	nt referre	ed to l	GLD (1955) at r	dichipic	oten Haibo	our, Ont. (Canadian	nyarogra	ipnic Servi	ce)		
															:	STATION	NO. 12 - 3	LAKE SUPI	ERIOF
				Water	Level													1	1
ļ			00.007	600.741	600.75†	-49	2.0	1	7.8	0	0.4			67.2	0.091		19.6	98.9	12
	Aug.	. 5/57	92:205																
		25/62 evation i	21:39	698.53 ove mean l	598.39 evel at Fa	45 ther Poi	2,6 nt referr	2.5 ed to I	7.5 GLD (10 1955) at 1	0 Port Artl	our, Ont.		62.8 STATIO	0.085		20.0	92,1	1
3	May † El	25/62 evation i	21:39 in feet ab	698.53 ove mean l			<u> </u>					ur, Ont.				 3 – LAKE	L	92.1 R (NIPIGON	11. BAY
£	May † El * Tr	25/62 evation i	21:39 in feet ab dissolved	698.53 ove mean l	evel at Fa		<u> </u>									 3 LAKE	L		I BAY
1	May † El * Tr Aug. † El	25/62 evation intal and . 14/59 evation i	21:39 in feet ab dissolved 26:46 in feet ab	698.53 ove mean l <u>Water</u>	evel at Fa Level 600.91† evel at Fa	ther Poi	nt referro 4.9	ed to I	GLD (7.9	1955) at 1 195	Port Artl			STATIO 101	N NO. 13 0.137		SUPERIO	R (NIPIGON	23.
1	May † El * Tr Aug. † El	25/62 evation intal and . 14/59 evation i	21:39 in feet ab dissolved 26:46 in feet ab	698.53 ove mean l <u>Water</u> 600.87† ove mean l	evel at Fa Level 600.91† evel at Fa	ther Poi	nt referro 4.9	ed to I	GLD (7.9	1955) at 1 195	Port Artl			STATIO 101	N NO. 13 0.137		SUPERIO	R (NIPIGON	23.
£	May † El * Tr Aug. † El	25/62 evation intal and . 14/59 evation i	21:39 in feet ab dissolved 26:46 in feet ab	698.53 ove mean l <u>Water</u> 600.87† ove mean l Red Rock -	evel at Fa Level 600.91† evel at Fa	ther Poi	nt referro 4.9	ed to I	GLD (7.9	1955) at 1 195	Port Artl		 	STATIO 101	N NO. 13 0.137		SUPERIO	R (NIPIGON	23.
	May † El. * Tr Aug. † El Sec	25/62 evation intal and . 14/59 evation i	21:39 in feet ab dissolved 26:46 in feet ab able III - 1	698.53 ove mean l <u>Water</u> 600.87† ove mean l Red Rock -	evel at Fa Level 600.91† evel at Fa page 101	ther Poi	nt referro 4.9	ed to I	GLD (7.9	1955) at 1 195	Port Artl			STATIO 101	N NO. 13 0.137		SUPERIO	R (NIPIGON	23
	May † El. * Tr Aug. † El Sec June	25/62 evation intal and . 14/59 evation i e also T	21:39 in feet ab dissolved 26:46 in feet ab able []] - 1	698.53 ove mean l Water 600.87† ove mean l Red Rock -	evel at Fa Level 600.91† evel at Fa page 101 Level	ther Poi	nt referro 4.9	ed to I	GLD (7.9 GLD (1955) at 1 10 195 5) at	Port Artl			STATIO 101 STATION	N NO. 13 0.137 NO. 14		SUPERIO	R (NIPIGON	23
	May † El. * Tr Aug. † El Sec June Mar.	25/62 evation in anal and in . 14/59 levation i <i>e</i> also T = 15/53	21:39 in feet ab dissolved 26:46 in feet ab able 111 - 1	698.53 ove mean 1 Water 600.37† ove mean 1 Red Rock - Water 601.16†	evel at Fa Level 600.91† evel at Fa page 101 Level 600.14†	ther Poi	nt referro 4.9	ed to I	GLD (7.9 GLD (7.3	1955) at 1 10 195 5) at 0	Port Artl 2 Port Art 2		 	STATIO 101 STATION 90	N NO. 1 0.137 NO. 14 0.122		SUPERIO	R (NIPIGON	23
i j	May † El. * Tr Aug. † El Sec June Mar. Mar.	25/62 evation in 14/59 evation i e also T = 15/53 17/54	21:39 in feet ab dissolved 26:46 in feet ab able 111 - 1	698.53 ove mean 1 <u>Water</u> 600.87† ove mean 1 Red Rock - G01.16† 599.79	evel at Fa <u>Level</u> 600.91† evel at Fa page 101 <u>Level</u> 600.14† 599.74	ther Poi	nt referro 4.9	ed to I	GLD (7.9 GLD (7.3 7.6	1955) at 1 10 105 5) at 0 0	2 Port Artl Port Art 2 3		 	STATIO 101 STATION 90 64 105	N NO. 13 0.137 NO. 14 0.122 0.087		SUPERIO	R (NIPIGON	23
1 5 5 7 8 9	May † El * Tr Aug † El See June Mar. Oct.	25/62 evation i ntal and . 14/59 evation i e also T = 15/53 . 17/54 . 22/55 . 14/55	21:39 in feet ab dissolved 26:46 in feet ab able III - 1	698.53 ove mean 1 Water 600.87† ove mean 1 Red Rock - Water 601.16† 599.79 599.52 600.80	evel at Fa Level 600.91† evel at Fa page 101 Level 600.14† 599.74 599.66 600.80	ther Poi	nt referre	ed to I 2 ed to I 3	GLD (7.9 GLD (7.3 7.6 6.9 7.5	1955) at 1 10 195 5) at 10 195 5) at 0 0 0 0	Port Artl 2 Port Art 2 3 2 2			STATIO 101 STATION 90 64 105 . 55	N NO. 12 0.137 NO. 14 0.122 0.087 0.143 0.075		SUPERIO 30.4 UPERIOR	R (NIPIGON 151 (THUNDEI	N BAY
4 5 5 6 7 8 8 9 9 0	May † El. * Tr Aug. † El Sec June Mar. Mar. Oct. Nnv.	25/62 evation intal and . 14/59 evation i e also T . 15/53 . 17/54 . 22/55 . 17/57 . 22	21:39 in feet ab dissolved 26:46 in feet ab able III -) 	698.53 ove mean 1 Water 600.87† ove mean 1 Red Rock - Water 601.16† 599.79 599.52 600.80 600.47 600.52	evel at Fa Level 600.91† evel at Fa page 101 Level 600.14† 599.74 599.66 600.80 600.55 600.43	ther Poi	1.9 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	ed to I 2 ed to I 3 1 2	GLD (7.9 GLD (7.3 7.6 6.9 7.5 7.8 7.6 7.8 7.6	1955) at 1 10 195 5) at 10 195 5) at 0 0 0 0 5 5	2 Port Artl 2 Port Art 3 2 2 2 0.3 3			STATIO 101 STATION 64 105 55 47.2	N NO. 12 0.137 NO. 14 0.122 0.087 0.143 0.075 0.064		SUPERIO 30.4 UPERIOR	R (NIPIGON 151 (THUNDE I 	23 23 23 23 23 23 23 23 23 23 23 23 23 2
1 5 5 5 7 7 8 8 9 9 1 1 2 3	May † El. * Tr Aug. † El Sec June Mar. Mar. Oct. Nnv. Dec. Jan.	25/62 evation intal and . 14/59 levation i e also T . 15/53 . 17/54 . 22/55 . 17/57 . 22 . 19 . /58	21:39 in feet ab dissolved 26:46 in feet ab able 111 - 1 8:19 11:24 29:39 No sam	Ø98.53 ove mean 1 Water 600.87† ove mean 1 Red Rock - Water 601.16† 599.79 599.52 600.47 600.52 600.47 600.52 600.47 600.52 600.47 600.52 600.47	evel at Fa Level 600.91† evel at Fa page 101 Level 600.14† 599.74 599.66 600.80 600.55 600.43 600.25	ther Poi	1.8	ed to I 2 ed to I 3 1 2 2	GLD (7.9 GLD (7.3 7.6 6.9 7.5 7.8 7.6 7.7	1955) at 1 10 105 5) at 0 0 0 0 0 5	2 2 2 2 3 2 2 2 0.3 3 0.7			STATIO 101 STATION 90 64 105 .55 .47.2 .64.8	N NO. 12 0.137 NO. 14 0.122 0.087 0.143 0.075 0.064 0.088		SUPERIO 30.4 UPERIOR 19.6 17.2	R (NIPIGON 151 (THUNDEI 96.8 100 99.6	X BAY 23 R BAY 13 13 13
	May † El. * Tr Aug. † El. Sec June Mar. Mar. Oct. Nnv. Dec. Jnn. Feb.	25/62 evation intal and . 14/59 evation i e also T . 15/53 . 17/54 . 22/55 . 14/55 . 14/55 . 17/54 . 22/55 . 19 . 19 . 19 . 19	21:39 in feet ab dissolved 26:46 in feet ab able III - 1 8:19 11:24 29:39 No sam 22:48	698.53 ove mean 1 Water 600.871 ove mean 1 Rock - Water 601.161 599.79 599.52 600.80 600.472 600.25 ple taken 599.75	evel at Fa Level 600.91† evel at Fa page 101 Level 600.14† 599.74 599.66 600.80 600.55 600.43	ther Poi	1.8 1.6	ed to I 2 ed to I 3 1 2 2 2 2	GLD (7.9 GLD (7.3 7.6 6.9 7.5 7.8 7.6 7.5 7.8 7.6 7.7 7.7	1955) at 1 10 10 195 5) at 0 0 0 0 0 5 5 5 5 5	2 2 Port Art 2 3 2 2 0.3 3 0.7 0.3			STATIO 101 STATION 64 105 55 47.2	N NO. 12 0.137 NO. 14 0.122 0.087 0.143 0.075 0.064		SUPERIO 30.4 UPERIOR	R (NIPIGON 151 (THUNDEI 	X BAY 23 23 23 23 23 23 23 23 23 23 23 23 23
	May † El. * Tr Aug. † El. Sec June Mar. Mar. Oct. Nav. Dec. Jan. Feb. Mar. Apri	25/62 evation intal and . 14/59 evation i e also T . 15/53 . 17/54 . 22/55 . 17/57 . 22 . 19 . 19 . 13 . 1	21:39 in feet ab dissolved 26:46 in feet ab able III - 1 8:19 11:24 29:39 No sam 22:48 21:49 No sam	698.53 ove mean 1 Water 600.871 ove mean 1 Red Rock - Water 601.161 599.79 599.52 600.80 600.47 600.52 600.47 600.52 600.52 600.59.71 ple taken	evel at Fa Level 600.91† evel at Fa page 101 Level 600.14† 599.74 599.66 600.80 600.55 600.43 600.55 600.43 600.59 80.25 600.974 599.66	ther Poi	1.8	ed to I 2 ed to I 3 1 2 2 2 3	GLD (7.9 GLD (7.3 7.6 6.9 7.5 7.8 7.6 7.7 7.7 7.7 7.5	1955) at 1 10 195 5) at 10 195 5) at 0 0 0 0 5 5 5 5 5	2 Port Artl 2 2 3 2 2 0.3 3 0.7 0.3 0			STATIO 101 STATION 64 105 55 47.2 64.8 59.6	N NO. 12 0.137 NO. 14 0.122 0.087 0.143 0.075 0.064 0.088 0.081		SUPERIO 30.4 UPERIOR 19.6 17.2 26.4	R (NIPIGON 151 (THUNDEI 96.8 100 99.6 99.5 99.1	X BAY 23 23 23 23 23 23 23 23 23 23 23 23 23
	May † El * Tr Aug. † El Sec June Mar. Mar. Oct. Nnv. Dec. Jan. Feb. Mar. Apri June	25/62 evation intal and . 14/59 levation i e also T 22/55 ⁴ 14/55 . 17/54 ⁴ . 17/57 . 22 . 19 	21:39 in feet ab dissolved 26:46 in feet ab able 111 - 1 8:19 11:24 29:39 No sam 22:48 21:49 No sam 16:22 21:47	Ø98.53 ove mean 1 Water 600.87† ove mean 1 Red Rock - Water 601.16† 599.79 599.52 600.80 6002.47 600.52 je taken 599.77 599.71 599.72 600.52 je taken 599.71 599.72 600.62 600.26 600.27	evel at Fa Level 600.91† evel at Fa page 101 Level 600.14† 599.74 599.66 600.80 600.55 600.43 600.55 600.43 600.59.83 599.81 599.67 599.82 600.04	ther Poi	A.9 A.9 Int referm 3.1 1.8 1.6 3.4	ed to I 2 ed to I 3 1 2 2 2 3 2 1	GLD (7.9 GLD (7.3 7.6 6.9 7.5 7.8 7.6 7.7 7.5 7.7 7.7 7.5 7.7 7.7	1955) at 1 10 10 10 10 10 10 10 0 0 0 0 0 0 5 5 5 5 10 10	2 Port Artl 2 2 2 3 2 2 0.3 3 0.7 0.3 0 0 0.8			STATIO 101 STATION 90 64 105 55 47.2 64.8 59.6 62.0	N NO. 12 0.137 NO. 14 0.122 0.087 0.143 0.075 0.064 0.088 0.081 0.084		SUPERIO 30.4 UPERIOR 19.6 17.2 26.4 28.8	R (NIPIGON 151 (THUNDET 96.8 100 99.6 99.5 99.1 97.6 94.3	23 23 23 23 23 23 23 23 23 23 23 23 23 2
	May † Elt * Tr Aug, † El Sec June Mar. Oct. Oct. Nnv. Dec. Jan. Feb. Mar, Apri May	25/62 evation intal and . 14/59 evation i e also T . 15/53 . 17/54 . 22/55 . 17/54 . 22/55 . 17/54 . 14/55 . 17/54 . 19 . 19 . 19 . 13 . 14 . 25 . 16	21:39 in feet ab dissolved 26:46 in feet ab able III - 1 8:19 11:24 29:39 No sam 22:48 21:49 No sam 16:22	698.53 ove mean 1 Water 600.871 ove mean 1 Red Rock - Water 601.161 599.79 599.52 600.80 600.47 600.52 ple taken 599.71 ple taken 599.71 599.71 599.72	evel at Fa Level 600.91† evel at Fa page 101 Level 600.14† 599.74 599.66 600.43 600.43 600.43 599.71 599.67 599.67	ther Poi 59 ther Poi 48 40 33 23 33 33 37	1.8	2 2 ed to I	GLD (7.9 GLD (7.3 7.6 6.9 7.5 7.8 7.6 7.7 7.7 7.7 7.7 7.7 7.7 7.9 7.3	1955) at 1 10 10 105 5) at 0 0 0 0 0 0 0 5 5 5 10 10 5	2 Port Artl 2 3 2 2 0.3 3 0.7 0.3 0 0 0			STATIO 101 STATION 64 105 55 47.2 64.8 59.6	N NO. 12 0.137 NO. 14 0.122 0.087 0.143 0.075 0.064 0.088 0.081		SUPERIO 30.4 UPERIOR 	R (NIPIGON 151 (THUNDEI 96.8 100 99.6 99.5 99.1 97.6 94.3 95.3	23 23 23 23 23 23 23 23 23 23 23 23 23 2
	May † Elt * Tr Aug, † El Sec June Mar. Oct. June Mar. Oct. June Mar. Oct. June Mar. Oct. June Sec June Mar. Sec Sec Sec Sec Sec Sec Sec Sec	25/62 evation intal and . 14/59 evation i e also T 22/55 17/54 22/55 14/55 17/57 22 . 19 . 17 . 13 1 1 1 2 . 25 . 24	21:39 in feet ab dissolved 26:46 in feet ab able III - 1 26:46 in feet ab able III - 1 1:24 29:39 No sam 22:48 21:49 No sam 22:48 21:49 No sam 22:48 21:49 No sam 21:49 No sam 21:49 No sam 16:22 21:47 21:43 15:121	698.53 ove mean 1 Water 600.871 ove mean 1 Red Rock - Water 601.161 599.79 599.52 600.80 600.47 600.25 ple taken 599.71 ple taken 599.82 600.45 600.45 600.45 600.45 600.35	evel at Fa Level 600.91† evel at Fa page 101 Level 600.14† 599.74 599.66 600.80 600.55 600.43 600.59 802.60 599.83 599.71 599.82 600.04 600.45 599.82 600.45 600.45	ther Poi 59 ther Poi 48 40 33 23 33 33 37 48 52	nt referm 4.9 nt referm 3.1 1.8 1.6 3.4 2.2	ed to I 2 ed to I 3 2 2 2 3 2 1 4 7	GLD (7.9 GLD (7.3 7.6 6.9 7.5 7.8 7.6 7.7 7.5 7.7 7.7 7.5 7.7 7.7	1955) at 1 10 10 10 10 10 10 10 0 0 0 0 0 0 5 5 5 5 10 10	2 2 2 2 2 2 3 2 2 2 0.3 3 0.7 0.3 0 0.0 0 0.0			STATIO 101 STATION 90 64 105 55 47.2 64.8 59.6 62.0	N NO. 12 0.137 NO. 14 0.122 0.087 0.143 0.075 0.064 0.088 0.081 0.084		SUPERIO 30.4 UPERIOR 19.6 17.2 26.4 28.8	R (NIPIGON 151 (THUNDET 96.8 100 99.6 99.5 99.1 97.6 94.3	23 23 23 23 23 23 23 23 23 23 23 23 23 2
	May † El. * Tr Aug, t El. Sec June Mar. Oct. Oct. June Mar. Oct. Oct. June Mar. Sec Nav. Apri May June Nav. Nav	25/62 evation intal and . 14/59 evation i e also T = 15/53 17/54 22/55 14/55 17/57 . 22 . 19 . 13 1 14 25 16 . 20 . 24 beer ember	21:39 in feet ab dissolved 26:46 in feet ab able 111 - 1 26:46 in feet ab able 111 - 1 9 11:24 29:39 No sam 22:48 21:49 No sam 16:22 21:47 30:47 23:43 15:121 No sam No sam	Ø98.53 ove mean 1 Water 600.871 ove mean 1 Red Rock - Water 601.161 599.52 600.80 600.47 600.52 600.80 600.47 600.52 600.80 600.47 600.52 fold of taken 599.77 599.81 599.62 600.02 600.45 600.69 ple taken jet taken jet taken	evel at Fa Level 600.91† evel at Fa page 101 Level 600.14† 599.74 599.66 600.80 600.55 600.43 600.25 600.43 599.83 599.67 599.82 600.43 600.45 600.55 600.45 600.55 600.55 600.45 600.55 600.	ther Poi 59 ther Poi 48 40 33 23 33 37 48 52 46 52	A.9 nt referm 3.1 1.8 1.6 3.4 2.2	2 2 ed to I 3 2 2 2 3 2 2 1 4 7 1	GLD (7.9 GLD (7.3 7.6 6.9 7.5 7.8 7.6 7.7 7.5 7.7 7.7 7.5 7.7 7.9 7.3 7.1 7.8 7.1 7.8	1955) at 1 10 10 105 5) at 0 0 0 0 0 5 5 5 10 10 5 5 5 10 10 5 5 5 10 10 5 5 10 10 10 10 10 10 10 10 10 10	2 Port Artl 2 2 2 3 2 2 0.3 3 0.7 0.3 0 0 0.8 0 0 0			STATIO 101 STATION 90 64 105 55 47.2 64.8 59.6 62.0 57.6	N NO. 12 0.137 NO. 14 0.122 0.087 0.143 0.075 0.064 0.088 0.081 0.084 0.078		SUPERIO 30.4 UPERIOR 19.6 17.2 26.4 28.8 10.4	R (NIPIGON 151 (THUNDEI 96.8 100 99.6 99.5 99.1 97.6 94.3 95.3 96.3 101	23 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	May † El. * Tr Aug. † El. Sec June Mar. Mar. Oct. Oct. Nav. Dec. Jan. Feb. May Jung Sept	25/62 evation intal and . 14/59 evation i e also T = 15/53 17/54 22/55 14/55 17/57 . 22 . 19 . 13 1 14 25 16 . 20 . 24 beer ember	21:39 in feet ab dissolved 26:46 in feet ab able III - 1 8:19 11:24 29:39 No sam 22:48 21:49 No sam 16:22 21:47 30:47 23:43 15:121 No sam	698.53 ove mean 1 Water 600.871 ove mean 1 Red Rock - Water 601.161 599.79 599.52 600.80 600.25 ple taken 599.71 ple taken 599.72 600.02 600.35 600.69 ple taken	evel at Fa Level 600.91† evel at Fa page 101 Level 600.14† 599.74 599.66 600.43 600.45 600.45 600.45 599.67 599.67 599.67 599.67 599.67 599.67 599.67 599.67 599.67 599.67 599.67 599.67 599.67 599.67 599.67 599.67 599.67 599.67 599.67 600.45 600.45 600.45 600.45 600.45 600.45 600.45 600.45 600.45 600.45 600.45 600.45 600.45 600.45 600.45 600.45 600.60 600.65 600.	ther Poi 59 ther Poi 48 40 33 33 37 48 52 46	A.9 nt referm 3.1 1.8 1.6 3.4 2.2	ed to I 2 ed to I 3 2 2 2 3 2 1 4 7	GLD (7.9 GLD (7.3 7.6 6.9 7.5 7.8 7.6 7.7 7.5 7.7 7.7 7.7 7.7 7.7 7.7 7.7 7.7	1955) at 1 10 10 10 10 10 10 5 5 5 5 10 10 5 5	2 2 2 2 2 2 3 2 0.3 3 0.7 0.3 0 0 0.8 0 0 0 0			STATIO 101 STATION 90 64 105 55 47.2 64.8 59.6 62.0	N NO. 12 0.137 NO. 14 0.122 0.087 0.143 0.075 0.064 0.088 0.081 0.084		SUPERIO 30.4 UPERIOR 19.6 17.2 26.4 28.8	R (NIPIGON 151 (THUNDEI 96.8 100 99.6 99.5 99.1 97.6 95.3 95.3 96.3	23.

† Elevation in feet above mean at Father Point referred to IGLD (1955) at Port Arthur, Ont.

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

		ron Fe)					Al	kalis												lness aCO3	ents				
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Вогод	Non- car- bonate	Total	Sum of constituents	Per cent sodium	Saturation index	Stability index	
lg)			(Mn)	(Al)	(Cu)	(Za)	(Na)	(K)	(NH,)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO3)		(PO4)								
MAR	ATHON	ł																							
								····	1										1						T
9 2 9		0.00	0.00	0.03	0.00	0.00	1.5 2.9 3.4	0.5 0.5 0.4	0.0 0.0 0.0	0.0 0.0 0.0	56.6 51.4 55.0	3.9 4.3 3.7	2.2 7.3 6.0	0.0 	0.1 0.8 0.3	6.9 2.3 3.7	 		3.0 9.1 4.0	49.4 51.3 49.1	60,9 61.9 62,4	6.2 11 13	-0.4 -1.2 -0.8	9.0 9.8 9.4	3
8 8		Trace	Trace	0.07	0.00	0.00	1.9 1.8	0.4 0.5	0.1 0.05	0.0 0,0	52.3 51.8	3.7 3.4	3.4 2.8	0.0	1,0 0,6	4.0 4,1			3.0 3.2	45.9 45.7	56.9 55.3	8,1 7,8	-0.8	9.5 9.5	
.4		0.03	Trace	0.04	0.00	0.00	2.8	0.5	0.1	0.0	51.9 53.1	3.9 3.8	6.2 4.9	0.0	0.6	2.8 3.7			8.3 6.2	50.9 49.8	60.6 59.9	11 9.0	-0.8	9.4 9.6	i 1
.8		 					3.1	0.5 0.4	0.05	0.0	55.3 53.5	4.1 3.3	4.4 1.8		0.6 0.6	2.8 4.0			3.3 2.5	48.7 46.4	56.0 54.1	12 4.8	-0.8	9.4 9.6	5
.0 .0		Trace	0,00	0.02	0.00	0.00	1.8	0.4 0.6	0.05	0.0	50.5 50.1	3.2 3.0	4.7 2.6	0.0 	0,5 0.5	3.8 3.9		0.00	5.7 4.7	47.1 45.8	56.9 53.1	7.6 6.1	-0.9 -0.9	9.6 9.5	
ar Ŗ	OSSPOR	Υ Τ												·							·	r			
0		0.00		0.04	0.00	0.05	1 -				(0.0														
.8		0.00	0.00	0.04	0.00	0.05	1.5	0,8	0.0	0.0	48,8	3.4	1.6	0.0	2,5	2,5		••••	3.5 (3.5)	43.5 (44.8)	52.0	6.8	-0.9	9.6	ľ
	0.02 ROCK	Trace	0.00*	0.00	0.00	0.00	1.2	0.4		0.0	48.0	3.9	1.6	0.06	1.0	2.2	<0.1	<u></u>	3.0	42.4	48.9	5.7	-1.2	9.9	<u>'</u>
REI			0.00* Trace		0.00 Trace			0.4	0.0	0.0	48.0 83.1	3.9 5.0	1.6 2.6	0.06	1.0	2.2	<0.1				48.9	5.7	-1.2	8.3	T
RED	0.34	0.02								·							<0.1		3.0	42.4		, 	<u> </u>		T
REI	ROCK	0.02								·							<0.1		3.0	42.4		, 	<u> </u>		T
REI	0.34	0.02								·							<0.1		3.0	42.4		, 	<u> </u>		
REE .7 POF	0.34 T ART	0.02 HUR		0.00					0.0	0.0		5.0	2.6			5.0	<0.1		<u>3.0</u> <u>6.1</u>	74.3		, 	<u> </u>		
RED	0.34 0.34 T ART 0.7 Trace 0.1	0.02 HUR	Trace	0.00					0.0 0.0 0.0 .0.0	0.0	83.1	5.0 0 4	2.6	0.0	1.5	5.0 4.0			3.0 6.1 0.0	42.4		, 	<u> </u>		
REE .7 POF	0.34 TART 0.7 Trace	0.02 HUR	Trace	0.00 0.00 0.00 0.00 0.10	Trace	0.10	1.5	0.7	0.0 0.0 0.0 .0.0 0.0	0.0	83.1 63.4	0 0 4 0	2.6 2 4 10 8	0.0	1.5	5.0 4.0 3.8 2.7 2.9			3.0 6.1 0.0 0.0 0.0 0.0	42.4 74.3 45 44 50 50	84.8	4.1	-0.2	8.3	
REE .7 POF	0.34 0.34 T ART 0.7 Trace 0.1	0.02 HUR	Trace	0.00 0.00 0.00 0.00 0.10 0.00 Trace	Trace	0.10	1.5 1.3 1.8 1.4	0.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	83.1 63.4 51.4 52.2 53.4	0 0 4 0 3.4 4.7 4.3	2.6 4 10 8 1.6 2.2 1.3	0.0	1.5 0.1 0.8 0.8	5.0 4.0 3.8 2.7 2.9 2.8 2.8 2.8			3.0 6.1 0.0 0.0 0.0 0.0 2.8 3.0 3.0	42.4 74.3 45 44 50 50 45.0 45.8 46.8	84.8 51.5 63.4 54.2	4.1 5.8 7.7 6.0	-0.2	8.3 9.4 9.8 9.5	-
.7	0.34 0.34 0.7 Trace 0.1 Trace	0.02 HUR	Trace	0.00 0.00 0.00 0.00 0.10 0.00	Ttace	0.10	1.5 1.3 1.8 1.4 1.2	0.7	0.0 0.0 0.0 .0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	83.1 63.4 51.4 52.2	0 0 4 0 3.4 4.7	2.6 2 4 10 8 1.6 2.2	0.0	1.5 0.1 0.8 0.8 0.8	5.0 4.0 3.8 2.7 2.9 2.8 2.8		0.00	3.0 6.1 0.0 0.0 0.0 0.0 2.8 3.0	42.4 74.3 45 44 50 50 45.0 45.8	84.8 51.5 63.4	4.1	-0.2 -0.9 -1.1 -0.9 -0.9	8.3 9.4 9.8 9.5 9.5	
REE .7 POF	0.34 0.34 0.7 Trace 0.1 Trace	0.02 HUR	Trace	0.00 0.00 0.00 0.10 0.00 Trace 0.04	Trace	0.10	1.5 1.3 1.8 1.4 1.4 1.2 1.3 1.3	0.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	83.1 63.4 51.4 52.2 53.4 54.0 53.0 51.9	5.0 0 4 0 3.4 4.7 4.3 3.4 3.5 3.7	2.6 2 4 10 8 1.6 2.2 1.3 1.7 1.4 1.5	0.0	1.5 0,1 0.8 0,8 1,3 0,8	5.0 4.0 3.8 2.7 2.9 2.8 2.8 2.8 2.9 2.9 3.9		0.00	3.0 6.1 0.0 0.0 0.0 2.8 3.0 3.0 2.1 2.1 2.1 3.2	42.4 74.3 45 44 50 50 45.0 45.0 45.8 46.4 45.6 45.8	84.8 51.5 63.4 54.2 53.9 53.6 53.8	4.1 5.8 7.7 6.0 5.2 5.7 5.7 5.7	-0.2 -0.2 -0.9 -1.1 -0.9 -0.9 -1.2 +1.0 -0.7	8.3 9.4 9.5 9.5 9.9 9.7 9.9	3
REE .7 	0.34 0.34 T ART 0.7 Trace 0.1 Trace	0.02 HUR Trace 0.02 0.01 0.02 Trace	Trace	0.00 0.00 0.00 0.00 0.10 0.00 Trace 0.04	Trace	0.10	1.5 1.3 1.8 1.4 1.2 1.3 1.4 1.4 1.2	0.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	83.1 63.4 51.4 52.2 53.4 54.0 53.0	5.0 0 4 0 3.4 4.7 4.3 3.4 3.5	2.6 2 4 10 8 1.6 2.2 1.3 1.7 1.4	0.0	1.5 0.1 0.8 0.8 1.3	5.0 4.0 3.8 2.7 2.9 2.8 2.8 2.8 2.8 2.9 2.9		0.00	3.0 6.1 0.0 0.0 0.0 0.0 2.8 3.0 3.0 2.1 2.1	42.4 74.3 45 44 50 50 45.0 45.0 45.8 46.8 46.8 46.4 45.6	84.8 51.5 63.4 54.2 53.9 53.6	4.1 5.8 7.7 6.0 5.2 5.7 5.7 5.7	-0.2 -0.2 -0.9 -1.1 -0.9 -0.9 -1.2 +1.0 -0.7	8.3 9.4 9.5 9.5 9.9 9.7 9.9	
REE .7 POF	0.34 T ART 0.7 Trace 0.1	0.02 HUR Trace 0.02 0.01 Trace	Trace	0.00 0.00 0.00 0.10 0.00 Trace 0.04 0.05	Trace	0.10	1.5 1.5 1.3 1.8 1.4 1.2 1.3 1.4 1.2 1.2 1.2	0.7 0.5 0.5 0.6 0.6 0.6 0.6 0.6 0.5 0.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	83.1 63.4 51.4 52.2 53.4 54.0 53.0 51.9 52.1 52.1 52.7 51.1	5.0 0 4 0 3.4 4.7 4.3 3.4 3.5 3.7 3.5 2.4 3.3	2.6 2 4 10 8 1.6 2.2 1.3 1.7 1.4 1.5 1.4 2.1 1.7	0.0	1.5 0,1 0.8 0,8 1.3 0,8 0,8 1.0 0,6	5.0 4.0 3.8 2.7 2.9 2.8 2.8 2.9 2.9 3.9 3.4 2.6 3.2		0.00	3.0 6.1 0.0 0.0 0.0 2.8 3.0 3.0 2.1 2.1 2.1 3.2 2.6 1.1 3.9	42.4 74.3 45 44 50 50 45.0 45.8 46.4 45.8 46.4 45.6 45.8 45.3 44.3	84.8 84.8 51.5 63.4 54.2 53.9 53.6 53.8 52.8 51.7 52.1	4.1 5.8 7.7 6.0 5.2 5.7 5.7 5.7	-0.2 -0.2 -0.9 -0.9 -0.9 -0.9 -0.9 -1.2 +1.0	8.3 9.4 9.5 9.9 9.7 9.3 9.9 9.9 9.9 9.9 9.9	3

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

			Stream di (Secon			шed	U				Suspe matt		dzied	on evap at 1050 lved soli	c,	7	Constitu	
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO4	Carbon dioxide (calculated)	pН	버 이이 (Hazen)	Turbidity	Dried at 105º C.	Ignited at 550°C.	р.р.м.	Tons per acze- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		(Days)			(° F.)		(CO2)			(Units)							<u> </u>	(Ca)
													STATIO	N NO. 14	i – LAKE	SUPERIO	R (THUNDE	R BAY)
		1	Water	I evel		[-	1								· · · · ·	
1	June 10/59	6:14	600,48	600.47	44	2.5	2	7.7	10	0.3			68.0	0.092	<i></i>	17,2	95.8	13.2
23	July 17 Aug. 7	5:10 11:19	600.76 600.76	600.73 600.91	47 56	3.5	2.5 2.5	7.5	10 10	0.8 0.8			50.0 67.6	0.068 0.092		10.4 15.6	94.4 94.0	13.2 13.4
4	May 25/62		598.53	598.39	48		14	6.8	5	0							. 95.0	12.9
<u> </u>	• At city ta	·······				L	<u> </u>	L.,				··	•••••••				· · · · · · · · ·	· · · · · · · · · ·
	† Elevation	in feet al	ove mean a	it Father F	oint refe	erred to :	IGLD ((195 5)	at Port A	arthur, O	nt,				STATIC	ON NO. 15	- LAKE T	MAG AMI
5	Aug. 15/57	84:136			69	4.0	1	7.5	10 (40)	0.4			46.8	0.064		12.8	71.5	8.4
	See TableI	II, Timaga	mi, page 12		l	L.		(, 10)	1 (10)	L	I	1	l	L	STATION	NO 16	TIMAGAMI	DIVED
		<u> </u>			<u>.</u>				1				50.0	0.000	(·	1	r
	July 21/57		1,010†	2,880†		5.9	1	7.3	20	1			50,8	0.069	138	19.2	58.0	6.5
7 8	Nov, 13 Dec.	No sam	1,460 le taken	2,170 1,460	43	10.0	1.5	7.2	40	0.4		• • • • • • • • •	51,6	0,070	202	22.4	64.5	7.1
9 10	Jan. 3/58 Feb.	No samp	le taken	1,660 1,810	32		2	7.0	20	0.3		•••••••		• • • • • • • •	•••••		62.5	6.9
11	Mar. 3	1	1,700	1,660		4.3	2	7.1	20	1		•••••	54.4	0.074	249	24.0	64.1	7,2
12	May 2	26:35	968	1,040	43		1	7.2	25	1					• • • • • • • • • •		. 59.4	6.5
13 14	July 2 Aug. 21*	36:54 84:197	980 431	459 362	66 67	5.7	2 3.5	7.2 6.9	30 15	0.8 0		 	48.0 49.6	0.065	126 57 .2	19.6 19.2	63.4 64.6	7.4 7.1
15	Sept. 1	17:191	243	755	61	4.6	2	(7.4) 7.2	(35)	0			83.6	0.114	54.8	32.4	66.2	7.5
	• At highwa † Discharge	y No. 539 records a) bridge above highw	vay bridge	at Lat,	46° 35' 4	5", Lon	g. 80 ⁰	11'14"									
														9	STATION I	NO. 17 9	STURGEON	RIVER
 16	Jan, 28/48	:20	1,550†	1,590†	33	T		7.1	35	2			48,6	0.066	203	18,2	61.9	7.1
17	Aug, 30/48	:28	1,290	1,420				7.2	80	1			. 55.4	0.075	192	22,2	73.7	11.2
18	July 18/57	40:63	4,310	8,220	72	7,1	2	6,8	30	4	15	8.9	63.2	0.086	734	24.0	66.2	6.9
19	Aug.	No samp	ole taken	2,110			Î	(6.6)										
20 21	Sept. Oct. 1		le taken 2,070	2,040 2,120		7.9	2	7.1	40	0.8			55.6	0.076	311	20.8	61,0	7.0
22 23	Nov. 4 Dec. 2	8:18 8:14	2,250 3,440	5,440 4,220	43 30		22	7.1	50 35	0.4		•					67.4	7.3
	Jan, 6/58 .Feb, 3	20:21 21:37	3,580 3,270	3,310 3,110	32 33	5.3	2	6.9 7.1	25 20	0.8 1			50.4 49.2	0.069	489	20,4 20,0	62.7	6.7
26 27	Mar, 3 Apr. 1	15:36	3,060	3,070	33	4.4	2	7.1	20	I			55.6	0.087	434 460	22.4	63.5 62.1	6.9 6.6
28	May 1	27:36	2,950	2,960	37		3	6.9 6.8	25	1 4							82.5 56.7	7.5 5.9
30	June 2 July 2	3:10 14:40	2,160 2,050	1,840 1,770	56 66	6.3	1 2	7.3 7.2	20 40	1 2			59,2	0.081	346	25.2	67.2	7.9 7.1
31 32	July 30 Aug, 21	21:37 84:197	1,430 825	1,770 994	71 69	4.2	. 5	6.8 7.5	35	0			. 65.6	0.089	145	20.0	66.0 72.5	7.4 8.1
33	Sept. 2	16:190	1,130	1,350	64	3.6	4	(7.4) 7.0	20	0.8	<u> </u>	<u></u>	69.8	0.095	213	24,2	77.6	8.9
	• See also	Water Surv	ev Report l	No. 2														

See also Water Survey Report No. 2
 Discharge records at Crystal Falls plant of the Hydro-Electric Power Commission of Ontario -- Lat. 46°27' 00", Long. 79°51'41"; drainage area, 2,570 square miles.

TABLE II - (Continued)
Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Rasin

waters in the Upper (In parts per million)

	lro (F						Alka	lis											Hard as Ca	ness ACO 3	tuents	un	lex	н	
Magnesium	Total	Dissolved	Manganese	Aluminum	Соррег	Zinc	Sodium	Potassium	Аттопія	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bon ate	Total	Sum of constituents	Per cent sodium	Saturation index	Stability index	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(К)	(NH ₃)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO ₃)	(SiO ₂)	(PO4)	(B)	·						
at POR	T ARTH	IUR (co	onclude	ł)		t		r	[r	1		t	 1			11				<u>-</u> 1			<u> </u>	
3.0 3.1 3.1	0.11 0.09	0.02 0.02 0.02	0.00 0.01 0.00	0.03 0.09 0.07	Trace Trace Trace	0.00	1.2 1.3 1.5	0.5 0.6 0.7	0.0 0.0 0.2	0,0 0,0 0 .0	50.2 51.3 52.1	3.5 3.7 4.6	1,4 1,5 1,8	0.0 0.0 0.0	0.8 0.6 0.4	2.2 2.8 3.1	<0.1	0.00	4.1 3.6 3.5	45.3 45.7 46.2	50.1 52.2 54.4	5.4 5.7 6.4	-1.0 -1.1 -1.1	9.7 9.7 9.7	1 2 3
3.6	0.06	0.01	0.00	0.02	0.05	0.0	1,2	0,4		0.0	49.6	3.7	2,2	0.11	0.9	2.4	0,17	••••	6.3	47.0	52,0	5.2	-1.9	11	4
at TIM/	AGAMI					•									_		_								
2.1		0.00	0.00	0,02	0.00	0.00	1.2	0.7	0.0	0.0	19.1 (24.2)	15.1	1.5	0.0	0,4	1.7		• • • •	13.9 (15.0)	29.6 (34.8)	40.5	7.9	-1.7	11	5
n c ar RI	VER V	LLEY	– Drai	nage ar	ea, 950	square	e miles	I	·		1	<u></u>	I	<u>. </u>	L		J				۱ <u>ــــــــــــــــــــــــــــــــــــ</u>		1	<u>. </u>	
1.9		0.02	0.00	0.00	0.00	0.00	0.7	0,5	0.05	0.0	18.2	13.8	0.6	0.0	0.15				9.1	24.0	33.2	5.8	-2.1	12	6
2.2		0.03	0.00	0.00	0.00	0.03	1.1	0.6	0.1	0.0	16.9	14.5	0.7	0.0	0.3	0.4		.	12.9	26.8	35.4	7.9	-2.1		7 8
2.1 2.0	•••••	0.02	0,00	0.03		0.00	0.7	0.5	0,05	0.0		15.2	0.8		0,2	2.3		••••	13.8	25.9	36.0	5.4	-2.4		9 10
2.0		0.02	0,00	0.05	0.00		0.7	0.4	0.1	0.0	14.6	14.5	0.9	0.0	0.4 0.3	4.7	•••••	0.00	14.2 13.7	26,2	38.5 33.6	7.4 5.6	-2.3		11 12
2.1 2.4		0.02 Trace	0.00	0.00	0.00	0,10	0.8	0.5	0.2 0.1	0.0	18,4	12.8	1.0	0.0	0.5	2.8 2.4			12.0 13.8	27.1 27.6	36.2 35.6	5,9 5,8	-2.0	11	13 14
2.5		0.02	Trace	1		0.05	0.9	0,5	0.05	(0) 0.0	(17.9)	13.0	0,7	0.0	0.3	2.1	Trace	0.05	(9.9) 13.8	(24.6) 29.0	36,7	6,2	-2.1	11	15
above S	STURGE	SON FA	LLS, *	1	 I	•	2.0	0.5		0.0	24.2	14.8	0.0	1	0,8	4.8	1		10.3	30,1	1	1	1	1	16
	0,20						2.0			. 0.0		1			0,0	4.0			10,5	50.1					10
2.7		.0.20		•••••			1.7	0.5		0.0	22.4	13.3	0.0		0.2	2.1		••••	20.6	39.0	• • • • • • •	·····	·····		. 17
2.0		0.26	0.05	0.00	Trace	0.00	0.7	0.4	0,1	0.0	9.9	15.1	3.7	0.0	0.15	2,8			17.3	25,4	37.0	5.4	-2,8	12	18 19
2.0 2.0 1.9 2.4 2.0 2.2 2.4 2.0 2.7		0.06 0.04 0.01 0.04 0.04	0.00 0.00 0.03	0.00 0.00 Trnce 0.04 0.00 0.00 0.02	0.00	0.00 0.00	1.2 1.4 0.8 0.9 0.8 1.1 0.9 1.0 1.0 0.9	0.5 0.4 0.7 0.6 0.6 0.5 0.6 0.4	0.05 0.05 0.1 0.0 0.05 0.1 0.1 0.1 0.2 0.35 0.1 0.05	0.0 0.0 0.0 0.0 0.0	6,1 15,2 13,00 11,8 12,2 12,4 16,8 10,4 18,4 18,2 18,7 20,8 (21,5) 23,2	15.5 15.1 14.8 14.4 13.0 13.8 13.5 12.0 14.1	0.6 1.1 1.2 0.8 0.9 0.8 1.3 0.6 0.5 0.8 0.8 0.8 0.3 0.6	0.0	0.3 1.0 0.4 0.1 0.6 0.6 0.5	3.4 3.5 3.4 3.9 4.4 3.7 2.9 3.0 4.2		.0.15	15.6 15.2 15.2 15.4 14.1 14.8 14.4 13.7 12.7 11.4 14.2 (10.2)	25.3 28.1 25.9 24.9 25.4 24.3 28.6 22.9 28.8 27.6 26.7 31.3 (27.8) 33.3		6.3 6.9 6.4 7.4 7.6 6.8 7.2 6.6 5.2	-2.3 -2.3 -2.4 -2.6 -2.4 -2.4 -2.5 -2.9 -1.9 -2.1 -2.5 -1.7 -2.1	12 12 12 13 11 11 12 11	20 21 22 23 24 25 26 27 28 29 30 31 32 33

4

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

								1114	parts pe	.,								
			Stream d (Secon			međ	ų				Susper matt		dried	on evap at 105 ⁰ lved sol	с.	Loss	Specific	
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO4	Catbon dioxide (calculated)	рН	Hazen)	Turbidity	Dried at 105º C.	Ignited at 550° C.	Р.Р.М.	Tons per acre- foot	Tons per day	oa igni- tion at 550°C.	conduct- ance $K \times 10^6$ at 25° C.	Calcium
		(Days)			(°F.)		(CO ₂)			(Units)								(Ca)
														S	TATION N	0.18 – ST	TURGEON	RIVER*
1	Sept. 22/59	196:210	2,140†	2,230†	61		3	6.9	35	2				• • • • • • •		• • • • • • • • •	69.1	7.0
		l)			(7.1)	I			I					l	
	 About 2½ Discharge 	miles belo records a	w mill, from t Crystal F	n private w alls plant	of the l	lydro-Ele	ectric 1	Power	Commiss	ion of O	ntario, - L	.at. 46°27	" 00", Loi	ng, 79°51	' 41"			
			Water]	<u>Level</u>											STATION	NO. 19	LAKE NIP	ISSING
2	Sept. 23/55	:10	640.917	640.95†				6.3	 	2	Trace		60	0.082				7.2
3	May 6/62	50:50	641.63	641.78 [†]	57	6.2	6	6.7	35	2			61.2	0.083		26.0	66.6	6.0
	•• At Calland † Level in f See also S	eet at pub	lic wharf in 167, page <u>Water Le</u>	66	y above	mean se	a leve	l base	i on Geo	detic Sur	vey of Ca	nada Stat	ions.		STATION	NO. 20	LAKE NIP	ISSING
4	Sept. 22/59	195:210	641.85	642.15	61	<i>.</i>	2	7.3	15 (35)	3	. .						78,3	7.9
	† Level in	feet at No	rth Bay, -	see Statio	n No, 19	9				•								
			Water 1	.evel									ST	ATION N	10, 21 – L	AKE NIPI	SSING (WE	ST ARM)
5	July 18/57	40:57	643.45	643.38 [†]	74	9.0	2	7.3	30 (40)	1			62.4	0,085		32.8	73.2	7.3
	† Level in f * At narrow		th Bay - s	ee Station	No. 19										STATIC	N NO. 22	- FRENCH	I RIVER
6	July 18/57		12,100	12,100	68	6.0	2	7.1	20 (30)	0.3			58.4	0.079	1,893	23,6	67.9	7.0
7 8 9 10 11	Aug, Sept, Oct. I Oct. 30 Dec. 2	No sampl Nn sampl :62 14:19 8:14		5,510 3,730 6,370 11,700 12,100	61 41 36	6.3	2 2 1.5	7.2	20 20 25	1 0 1			106	0.144	1,400	46.0	68.0 70.0	6.9 7.2 7.0
12 13	Jan. 2/58 Feb. 3		12,400	11,500	33	5.0	2	7.3	20 20	0.8			58.8	0.080	1,964	25.2	. 69.3 67.7 . 74.7	7.2
14 15	Mar. 3 Apr. 1	15:36	9,020 4,890	7,650 4,320	34 34	5.6	2	7.3 7.1 7.4	25 30	1			60.0	0.082	1,464	29.2	73.3	7.9
16 17	May 6 Juoe 4	22:30 16:28	2,560	2,310 1,960	47	7.1	2	7.2	25 25	1 0.8			56.0	0.076	299	20.0	70.3	7.2
18 19	July 7 July 30	21:49 86:177	2,080 2,420	2,530 2,530	68 73	4.0	22	7.2	35	0.8 0			55.6	0.076	364	20.0	. 65.1 71.2	7.3
20 21	Aug. 7 Sept. 9	26;42 9:183	2,100 1,820	1,950 1,910	72 64	4.9	22	(7.4) 7.0 7.2	(25) 25 25	0.9 0,7			49.2	0.067	241	24.0	. 70.0	7.1
	* Sampled a	-1		<u> </u>	<u> </u>	•		· .		•	t. 46° 01' 1	14", Lnng.		1	1	2.1.0	1 0/10	L
													STATIO	N NO. 23	- FRENC	H RIVER	(PICKERE)	L RIVER
	r	T	1 1	1	1	1	<u></u>	-	1	1	1		T		r			

22	July 30/58	86:177	2,420 [†]	2,530 [†]	75	7.7	3	6.7 (7.0)	40 (50)	0	 •••••		 	4.8
						-							 	

† Discharge records at French River Station gauge - see Station No. 22
* Sampled at highway No. 69 bridge

STATION NO. 24 - TOMIKO RIVER*

23	Aug. 15/57				67	 3	6.1	25			 		36.3	2.8
	* Sampled fr	m highwa	v No. 11 b	idge								<u> </u>		

See also Station No. 169, page 66

TABLEII - (Continued) Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin (In parts per million)

	Iron (Fe)					Alka	lis								~		-		ness aCO3	ituents	dium	index	ex	
Magnesium	Total	Díssolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of const	Per cent sod	Saturation in	Stability ind	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(к)	(NH3)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO ₃)	(SiO ₂)	(PO4)	(B)				ļ			

below STURGEON FALLS,

										t						· · · · · ·									
2.1	0.26	0,00	0.00	0.00	0.00	0.00	2.2	0.6	0.02	0.0	15.8	14.6	1.0	0.0	0.5	2.9	0.1	[12.9	25.9	38.7	15	-2.7	12	1
					L					·		L	L			L	í	1	L						<u> </u>

at CALLANDER

3.4	0.00	•••••		0.0 0	0,10				0.1	0.0	24.4	10.8	3.6			1.2		 12:0	32.0			-2.6	12	2
3.6	0.20	0,03	0.00	0.00	Trace	0.00	2.1	1.1			18.4	12.3	2,5	0,15	1.8	4.1	< 0.1	 14.9	30.0	42.8	13	-2.7	12	3

· 2,8 0.05 0.00 0.00 0.01 0.02 0.05 2.0 0.7 0.0 0.0 23.5 14.4 1.4 0.0 0.5 4.0 0.06 11.5 30.8 45.4 12		-				 												
	 0.05	0.00	0.00		0.05				3.4	0.0	0.5		 11.5		12	-1.9	11	4

near NOELVILLE

3.4	 0.02	Trace	0.00	Trace	0.00	1.2	0.9	0.2	0.0 (0)	25.1 (23.3)	13.6	1.1	0.0	0.6	1.7	 	11.6 (10.8)	32.2 (29.9)	42.4	7.1	-1.9	11	5

at FRENCH RIVER STATION* - Drainage area, 5,370 square miles

2,3	 0,01	Trace	Trace	Trace	0.02	1.3	0,7	0.05	0.0 (0)	17.6 (18.0)	13.6	1.2	0.0	0.4	1.3			12.5 (9.7)	26.9 (24.5)	36,5	9.2	-2.2	12	6
2.6				· · · · · · ·		1.7	0.7 0.7	0.05 0.1	0.0 0.0	18.0 19.1	15.0	1.3	0.0					12.5	27.9	39.9 39.2	12 11	2.1 2.1		7 8 9 10
2.5 2.4 2.5	 0.03	0.00	0.00		0.00	1.5 1.5	0.6	0.05 0.1 0.0	0.0 0,0 0.0	18.4 19.0 18.3	16.4	1.4 1.5 1.1	0.0	0,2 0,5	1.6 2.1		0.05	12.0 15.0	27.7 27.8 30.0	39.4 37.5 41.7	11 10 9.5		11 11	11 12 13
2.4 2.6 2.6 2.3		 		0.00	0.00	1.5 1.4	0.7 0.8 0.7 0.7	0.1	0.0 0.0 0.0 0.0	18.5 18.5 17.2 17.3	15.9 15.4 14.3 14.8	1.4 1.5 1.1 1.1	0.0		2.7 3.4		 0.00	15.2 14.6	29.6 30.4 28.7	41.8 42.1 39.6	9.0 9.3 9.3		11 12	14 15 16
2.3						1.4		0.15	0.0 0.0	17.5 18.3 17.2	13.7	110	0.0	0.2		h	• • • • • • • • • • • •	12.7	27.7 27.7 28.2 (28.9)	38.9 36.3 39.0	9.6 9.7 12		11 11 11	17 18 19
2.3 2.4	0.04		0,14	0.00	0.05		0,7 0,6		0.0 0.0	16.6 16.5	14.1 14.1	1.0 0.9	0.0	0.4 0.2			0.00		27.2	36.6 37.9	9.8 11	2.3 2.2	12 12	20 21

near FRENCH RIVER

	1.6	1.4	0.7 0		2.6 1.7	0.3	2.9		11.6 (11.2)	18.6 (20.3)	30,2	14	-5.1	12	22
--	-----	-----	-------	--	---------	-----	-----	--	----------------	----------------	------	----	------	----	----

north of NORTH BAY

1.2 0.3 1.6 9.7 11.9 21.4 15 -4.4 15 23	1.2	2	<u> </u>	 	<u> </u>	1	1			10.7	1.2	o	.3	1.6	 	2.1	1	1 /	15	23

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

Residue on evaporation dried at 105°C. (Dissolved solids) Stream discharge Suspended Oxygen consumed by KMnO4 (Second-feet) matter Carbon dioxide (calculated) period Loss Specific conduct-Loss on igni-tion at 550°C. Tons On sampling date No. Date Water Dried Ignited Tons Monthly ance K × 10⁶ per pН Turbidity P.P.M Calcium at 550°C. per day tempof collection at 105°C. Storage] mean acre-foot Colour erature at 25º C. Haze (°F.) (CO, (Units) (Ca) (Days) (Units) STATION NO. 25 - DUCHESNAY CREEK* 1 Oct. 1/59 186:214 841 55 133† 7.6 80 50 162 21.3 Sampled at highway No. 17 bridge
 † Discharge records, one-quarter mile below highway No. 17 bridge.
 ** Total STATION NO. 26 - CREEK, east of RODGERS CREEK 2 Oct. 1/59 186:214 5.1 135 2 13 35.2 2.4 * Total STATION NO. 27 - RODGERS CREEK* 3 Sept. 22/59 195:210 58 5 6.6 (7.0) 100 3 50.5 5.4 . *About 7 miles east of Meadowside at highway No. 17 bridge STATION NO. 28 - LARONDE CREEK* 4 Sept. 22/59 195:210 59 6.5 (6.4) 160 4 3 38.7 4.4 . * Several miles east of Meadowside at highway No. 17 bridge ** Total STATION NO. 29 - LITTLE STURGEON RIVER* 5 Sept. 22/59 195:210 61 5 6.3 (6.0) 160 5 . 40.8 4.0 * Sampled at railway bridge ** Total STATION NO. 30 - VEUVE RIVER* 6 Sept. 22/59 196:210 64 3 7.2 90 6 . 116 12,0 (6.5 * Sampled from shore STATION NO. 31 - VEUVE RIVER* 7 July 21/57 37:60 Low 16.1 12 17 6.8 140 (7.2) (140) 6 11 113 0.154 35.6 113 13.5 * Sampled at highway No. 539 bridge STATION NO. 32 - VEUVE RIVER* 8 Aug. 20/58 84:198 69 10.4 4 7.5 (6.7) 50 4 13 10 I33 0.181 18,8 36.0 I58 (90) * Sampled at highway No. 64 bridge see also Table III STATION NO. 33 - WANAPITEI LAKE (BOWLANDS BAY)* Water Level 9 July 22/57 38:67 69 **.** . l 5.9 0 8.2 20 (7.3) (35) 0.8 52,0 0.071 19.6 69.4 8.5 10 Oct. 3

† Collector's estimate of water level

8:19

11 May 17/58 13:19

* From wharf

Low

7 ft

55

45

5.8

4.9

1

1

7.4 25

25 7.4

0.3

1

67.2

0.091

....

16.4

73.1

75.2

8,9

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

											(112 21	into pe													
	Iron (Fe)						All	kalis										}		dness FaCO3	uents		×		Ī
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of constituents	Per cent sodium	Saturation index	Stability index	No
(Mg)	<u> </u>		(Mn)	(Al)	(Cu)	(Zn)	(Na)	(К)	(NH ₃)	(CO3)	(HCO3)			(F)			(PO4)					ļ			
near N	ORTH I	BAY	Drainag	e area,	37 squ	are mil	es																		-
0.7	3.6	0.21	1.2**	0.00	0.00	0.00	1,4	1.2	0.5	0.0	69.2	25.4	2.1	0.0	0.2	7.7	0.0		0.0	56.2	94.1	5.0	-0.8	8.8	1
														· · · · · ·			·		I			-l	- !	<u> </u>	L
near B	EAUCA	GE																							
1.1	1.1	0.28	0.05*	0.02	0.00	0.00	0.9	0.7	0.1	0.0	1.1	9.5	1,5	0.0	0.3	4.9	0.0		10.9	11.8	22.1	14	-5.9	16	2
near M	EADOW	SIDE															1		4	1	•	·		<u>.</u>	<u> </u>
1.6	1.3	0,67	0.02	0.00	Trace	0.00	1.4	0.9	0.5	0.0	12.3	8.6	1.8	0.0	0.8	7.9	0.09		9.7	19.8	35.2	12	-3.0	13	3
<u> </u>		1]							[L	<u> </u>									5,12		1		Ľ
near M	EADOW	SIDE																							
1.6	1.4	0.47	0.05	0.00	Trace	0.00	1.0	0.4	0.5	0.0	7.7	6.3	1.7	0.0	0.4	4.4	0.11		11.1	17.4	24.5	10	-3.4	13	4
	ļ	<u> </u>	I			<u>}</u>		<u> </u>	1		ļ	<u> </u>							l						Ĺ
at MEA	DOWSI	DE																							
1.6	1.5	0.38	0.05	0.00	0.00	0.00	1,4	0.5	0.5	0:0	6,6	7.1	2.8	0.0	0.5	7.3	0.10		10.9	16.3	28.8	15	-3.7	14	5
	·	·	<u> </u>		<u> </u>	<u> </u>	L		1		L	<u> </u>	l	ļ						I		<u> </u>	<u> </u>	<u> </u>	L
aear H	AGAR																								
4.3	1,4	0.26	0.00	0.00	0.00	0.00	2.8	1.3	0.03	0.0	31.0	21.5	3.3	0.0	1.0	6.4	0.08		22,0	47.4	68.2	11	-1.7	11	6
							L				l														
at WAR	REN																								
4.5		0.43	0.00	0,00	0.00	0.00	1.8	0.9	0.0	0.0	46,4	16.0	1.8	0.0	0.4	5.2	[14.1	52.2	67,4	6,7	-1.9	11	-
																			17.1)2.2	07.4	0.7	-1.9		7
at VER	NER																								
6.8	0.26	0.05	0.00	0.00	0.00	0.00	2.8	0.9	0.1	0.0	74.2	12,8	2.1	0.0	2.0	6.4]	14.0	74.9	89,2	7.4	-0.9	9.4	8
		· (l			(0)	(73.9)			······											
t BOW	LANDS	BAY																							
																	 I	Ī]					
2.0	•••••	0.03	0,00	0.0 0	0.00	0.00	1.0	0.5	0.05	0.0 (0)	16.9 (19)	16.0	0.7	0.0	0.4	4,4			15.5 (16.5)	29.4 (32.4)	37.6	6.7	-1.1	10	9

									(0)	(19)	10.0	0.7	0.0	0.4	4.4	 	(16.5)	29.4 (32.4)	37.6	6.7	-1.1	10	9
2.1	 0.02	0.00	0.00			0.9	0.5	0,5	••••••	18.5	16.0	1.1	0,0	0,2	3.9	 ••••	15.6	30.8	42.8	5.8	-1.8	11	10
2,2	 0.02	0.00	0.00	0.00	0.00	0.9	0.4	0.05	0.0	18,9	15.7	0.4	0.0	0.4	5.0	 0.00	16.3	31.8	43.4	5.7	-1.8	11	11

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

								(<i>III p</i>	arts per									
			Stream di (Second			međ	U				Suspen			on evap at 105° lved soli	с.	Ŧ	0	
₀.	Date nf collection	Storage period	On sampling date	Mnnthly mean	Water temp- erature	Oxygen consumed by KMnO4	Carbon dioxide (calculated)	рН	Colour	Turbidity	Dried at 105º C.	Ignited at 550º C.	P.P.M.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		(Days)			(⁰ F.)		(CO ₂)		(Hazen) (Units)	(Units)								(Ca)
												STAT	ION NO.	3 - WA	NAPITEI	LAKE (BC	WLANDS E	BAY)*
			Water 1	Levél	1													
2	June 21/58 July 17 Aug. 2	20:27 29:46 85:178	7 ft 7 ft 		49 55 60	4.8 4.6	2 1 2	7.1 7.3 7.2	20 25 20 (25)	0 0 0		· · · · · · · · · · · · · · · · · · ·	56.0 76 . 0	0.076 0.103	· · · · · · · · · · · ·	22.0 31.6	72.8 73.5 91.9	8. 8. 10.
5	Aug. 23 Sept. Oct. 3	No sampl		normal	65 58	 5 . 0	1 1	(7.4) 7.4 7.4	20 15	0 0		•••••	72.0	0,098		 16.0	76.0	8. 9.
-+	* From what † Collector's		e of water l	evel.										ST/	TION NO	. 34 - WA	NAPITEI R	IVEF
7	Sept,22/59	196:224	586†	735†	64		2.5	7.1	30	2				<u></u>			83.9	9
	July 22/57 Aug.	28:67 No samp	I,190† le taken	3,560† 757	71	6.1	0	8.2 (7.1)	25 (30)	0.8			57.6	0.078	184	19.6	72.3	8
9 0 1	Sept. Oct. 3	No samp 8:19	le taken [1,320	1,110 1,340	54	5.6	1	7.4	25	0.7	 		49.2	0.067	175	10.0	76.8	9
2345	Nov. 6 Dec. 6 Jan. 3/58 Feb. 10	7:26 7:24 23:24 17:42	1,380 1,360 1,390 1,340	1,790 1,590 1,330 1,340	44 34 32 32	5.2	1 1 1 . 0.9	7.4 7.4 7.4 7.5	25 20 25 25	0.4 0.8 0.3 0.4			60.8	0.083	228	22.4	79.6 79.0 77.4 77.7	999
6 7 8 9	Mar. 7 Apr. 8 May 9 June 5	10:40 17:34 19:27 15:27	1,340 1,250 770 372	1,460 1,070 666 402	32 36 48 58	5.6	. 1 2 . 1 . 1	7.5 7.1 7.3 7.5	25 25 25 25	0.3 3 0 1		· · · · · · · · · ·	62.8	0.085	210	20.4	81.6 75.8 79.2 83.5	9
	July 11 July 31*	27:53 86:177	447 384	463 463	64 70	5.7	2	7.1	30 25	0.7			82.0 68.0	0.112	99.1 69.6	21.6	121	13
20 11	-	15.10	-	-			1	(7,6)		1	}				0,710	20.4	84.7	
0 1 2	Aug. 7 Sept. 5	15:42 18:129	376 370	383 407	71 62		2.5		25 15	1 10 0.8						20.4	84.7 . 78.0 . 77.2	9
0 1 2	Aug. 7	I8:I29 records a	376 370	383 407	62		2.5	(7.6) 7.1 7.3	25 15	10 0.8	<u>]</u>						. 78.0 . 77.2	9
0 1 2 3	Aug. 7 Sept. 5 † Discharge	I8:I29 records a	376 370	383 407	62		2.5	(7.6) 7.1 7.3 see St	25 15 ation No.	10 0.8	<u></u>			ST			. 78.0	9 9 9 RIVEF
0 1 2 3	Aug. 7 Sept. 5 † Discharge • From high July 31/58 † Discharge	I8:129 records a way No. 5 86:177 records a	376 370 at point abo 37 bridge, 384†	383 407 out three m 463†	62 iles sou 69	th of Wa	2.5 2 nup -	(7.6) 7.1 7.3 see St 7.4 (7.1)	25 15 ation No. 25 (35)	10 0.8 34				ST			. 78.0 . 77.2	RIVE
0123	Aug. 7 Sept. 5 † Discharge • From high July 31/58	I8:129 records a way No. 5 86:177 records a	376 370 at point abo 37 bridge, 384†	383 407 out three m 463†	62 iles sou 69	th of Wa	2.5 2 nup -	(7.6) 7.1 7.3 see St 7.4 (7.1)	25 15 ation No. 25 (35)	10 0.8 34	 				ATION NO). 36 – WA	. 78.0 . 77.2	
0 1 2 3	Aug. 7 Sept. 5 † Discharge • From high July 31/58 † Discharge	I8:129 records a way No. 5 86:177 records a	376 370 at point abo 37 bridge, 384†	383 407 out three m 463†	62 iles sou 69	th of Wa	2.5 2 nup -	(7.6) 7.1 7.3 see St 7.4 (7.1)	25 15 ation No. 25 (35)	10 0.8 34	 				ATION NO). 36 – WA	. 78.0 77.2 NAPITEI I . 76.2	
0 1 2 3	Aug. 7 Sept. 5 † Discharge • From high July 31/58 † Discharge • Sampied a	IB:129 records a way No. 5 86:177 records a t highway	376 370 at point abo 37 bridge, 384†	383 407 out three m 463†	62 iles sou 69 iles sou	th of Wa	2.5 2 nup	(7.6) 7.1 7.3 see St 7.4 (7.1) see St 7.8 (7.2)	25 15 ation No. 25 (35) ation No.	10 0.8 34 0 34	4.7				ATION NO). 36 – WA	. 78.0 77.2 NAPITEI I . 76.2 BOUCHER	99 RIVEN 9 LAKI 100
22 23 24	Aug. 7 Sept. 5 † Discharge • From high July 31/58 † Discharge • Sampled a Aug. 18/58	I8:129 records a way No. 5 86:177 records a t highway 85:197	376 370 at point abo 37 bridge, 384†	383 407 out three m 463†	62 iles sou 69 iles sou	th of Wa	2.5 2 nup 1 1 1	(7.6) 7.1 7.3 see St 7.4 (7.1) see St 7.8 (7.2) 7.6	25 15 ation No. 25 (35) ation No. 5	10 0.8 34 0 34 34 3	4.7		617	0.839	ATION NO). 36 - WA 	78,0 77,2 NNAPITEI I . 76,2 BOUCHER 817	999 RIVEH 9 LAKK 1000 113
20 21 22 23 24 25 26	Aug. 7 Sept. 5 † Discharge • From high July 31/58 † Discharge • Sampled a Aug. 18/58	I8:129 records a way No. 5 86:177 records a t highway 85:197	376 370 at point abo 37 bridge, 384†	383 407 out three m 463†	62 iles sou 69 iles sou	th of Wa	2.5 2 1 1 1 2.5	(7.6) 7.1 7.3 see St 7.4 (7.1) see St 7.8 (7.2) 7.6	25 15 ation No. 25 (35) ation No. 5 5	10 0.8 34 0 34 34 3	4.7		617	0.839	ATION NO). 36 - WA 	78,0 77,2 NAPITEI F 76,2 BOUCHER 817 882	

Chemical, Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

	Iron (Fe)						Alk	alis							 	Û				dness CaCO3	constituents	sodium	index	dex	
Total	1 0141	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Вогол	Non- car- bonate	Total	Sum of con	Per cent so	Saturation index	Stability index	1
g)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH3)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO3)	(SiO3)	(PO4)	(B)							
BOWLA	ANDS 1	BAY .	- (concl	luded)																					
3 1 8 6 		0.04 0.00	0.00 0.02	0.00 0.00	0.00 Trace	0.00 0.10	1.2 1.0 1.7 1.8	0.5 0.5 0.7 0.4	0.1 0.1 0.1 0.1	0.0 0.0 0.0 (0) 0.0	18.3 19.1 19.3 (21) 18.2	15.6 14.5 21.4 16.9	0.7 0.9 0 .6 0.9	0.0 0.0	0.3 0.7 1.0 0.5	4.8 5.1 5.1 4.2		0.00	5.9 14.4 21.2 (18) 17.5	30.9 30.1 37.0 (39) 32.4	43.0 42.9 53.1 44.9	7.6 6.6 8.9 11	-2.1 -1.9 -1.9 -1.9	11 11 11 11	
3		0.02	0.00	0.02	Trace	0.05	2.2	0.5	0.1	0.0	18 5	15.9	1.0	0.0	0.3	7.3	0.0		17.2	32.4	47.9	13	-1.8	11	
			Trace	0.00	0.06	0.03	1.5	0.6	0.1	0.0	19.5	21.6	1.5	0.1	0.3	5.7	Trace		18.6	34.6	55.3	8.4	-2.1	11]
am be	.27	0.05		0.00	0.06	0.03	1.5	0.6	0.1	0.0	18.2	21.6	0.2	0.1	0.3	5.7	Trace		18.6 15.6	34.6 30.5	55.3 39.3	8.4 6.5	-2.1	11]
dam be:	.27 delow C	0.05	TON		0.00 0.00 Trace	,	1.0 1.0 1.3 1.6 1.1 1.2 1.3 1.4	0.5 0.6 0.4 0.6 0.5 0.6 0.7	0.05 0.05 0.05 0.1 0.1 0.1	0.0 (0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0	18.2 (20) 17.7 17.1 18.8 18.3 18.3 18.3 18.4 14.1	16.9 18.4 20.4 19.9 17.5 17.7 19.4 20.0	0.2 0.8 0.7 0.9 1.0 0.8 0.8 0.8	0.0	0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.4 0.8	4.1 4.2 4.5 5.8 4.7 5.3 5.0	Trace	0.03	15.6 16.6 18.7 17.3 17.3 17.8 18.5 19.8	30.5 31.1 32.7 32.3 32.8 33.6 31.4	39.3 45.0 47.8 49.7 45.7 46.8 48.5 48.5 47.0	6.5 6.4 7.8 9.5 6.8 7.2 7.5 8.4	-1.1 -1.9 -1.8 -1.8 -1.8 -1.7 -1.7 -2.4	10 11 11 11 11 11 11 11 11	
dam be: 2 1 3 4 4 3 4 7	.27 clow C	0.05 CONIS ⁷ (race 0.04	TON 0.00 0.0 0 0.01	0.00	0.00 0.00 Trace	0.02	1.0 1.3 1.6 1.1 1.2 1.3 1.4 1.1 1.1 1.7 2.5 1.4	0.5 0.6 0.4 0.6 0.5 0.6 0.7 0.6 0.5 0.8 0.6	0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.3 0.05	0.0 (0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	18.2 (20) 17.7 17.1 18.8 18.3 18.4 14.1 16.1 20.8 19.1 19.0 (16)	16.9 18.4 20.4 19.9 17.5 17.7 19.4 20.0 018.2 18.3 34.2 18.0	0.2 0.8 0.7 0.9 1.0 0.8 0.9 0.9 0.6 0.7 1.3	0.0	0.8 0.2 0.2 0.2 0.2 0.6 . 0.4 0.8 0.3 0.8 0.6 0.5	4.1 4.2 4.5 5.8 4.7 5.3 5.0 5.5 5.0 5.5 5.5 4.0]	15.6 16.6 18.7 17.3 17.3 17.8 18.5 19.8 19.2 17.0 32.1 19.7	30.5 31.1 32.7 32.7 32.8 33.6 31.4 32.4 32.4 32.4 34.1 47.8 35.3	39.3 45.0 47.8 49.7 45.7 46.8 48.5 47.0 45.5 49.2 70.9 47.7	6.5 6.4 7.8 9.5 6.8 7.2 7.5 8.4 6.7 9.6 10.0 7.7	-1.1 -1.9 -1.8 -1.8 -1.8 -1.7 -1.7 -2.4 -2.0 -1.6 -1.9 -2.1	10 11 11 11 11 11 12 11 11 11 11 11	
dam be: 2 3 4 3 4 3 4 3 4 3	.27 clow C	0.05 CONIS ⁷ (race 0.04 0.05 0.07	TON 0.00 0.01 0.00	0.00 0.03 0.00 0.06	0.00 0.00 Trace 0.00 0.00	0.02	1.0 1.3 1.6 1.1 1.2 1.3 1.4 1.1 1.1 1.7 2.5	0.5 0.6 0.4 0.6 0.5 0.6 0.7 0.6 0.5 0.5	0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.3	0.0 (0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	18.2 (20) 17.7 17.1 18.8 18.3 18.3 18.4 14.1 16.1 20.8 19.1 19.0	16.9 18.4 20.4 19.9 17.5 17.7 19.4 20.0 18.2 18.3 34.2	0.2 0.8 0.7 0.9 1.0 0.8 0.9 0.9 0.6 0.7 1.3	0.0	0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.4 0.8 0.3 0.8 0.6	4.1 4.2 4.5 5.8 4.7 5.3 5.0 5.5 5.0 4.9 5.5		0.03	15.6 16.6 18.7 17.3 17.8 18.5 19.8 19.2 17.0 32.1 19.7 15.7	30.5 31.1 32.7 32.3 32.8 33.6 31.4 32.4 34.1	39.3 45.0 47.8 49.7 45.7 46.8 48.5 47.0 45.5 49.2 70.9	6.5 6.4 7.8 9.5 6.8 7.5 8.4 6.7 9.6 10.0	-1.1 -1.9 -1.8 -1.8 -1.8 -1.7 -1.7 -2.4 -2.0 -1.6	10 11 11 11 11 11 12 11 11 11	
dam be: 2 3 3 4 6 3 3 4 4	27 1	0.05 CONIS ⁷ (race 0.04 0.05 0.07	TON 0.00 0.01 0.00	0.00 0.03 0.00 0.06	0.00 0.00 Trace 0.00 0.00	0.02	1.0 1.3 1.6 1.1 1.2 1.3 1.4 1.1 1.7 2.5 1.4	0.5 0.6 0.6 0.6 0.5 0.6 0.7 0.6 0.5 0.8 0.6	0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.3 0.05	0.0 (0) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	18.2 (20) 17.7 17.1 18.8 18.3 18.4 14.1 16.1 20.8 19.1 19.0 (16) 20.7	16.9 18.4 20.4 19.9 17.5 17.7 19.4 20.0 18.2 18.3 34.2 18.0 15.6	0.2 0.8 0.7 0.9 1.0 0.8 0.9 0.6 0.7 1.3 0.2	0.0	0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	4.1 4.2 4.5 5.8 4.7 5.3 5.0 4.9 5.5 4.0 4.2		0.03	15.6 16.6 18.7 17.3 17.8 18.5 19.8 19.2 17.0 32.1 19.7 15.7	30.5 31.1 32.7 32.3 32.8 33.6 31.4 32.4 32.4 32.4 34.1 32.4 35.3 32.7	39.3 45.0 47.8 49.7 45.7 46.8 48.5 47.0 45.5 47.0 45.5 47.0 9 47.7 43.5	6.5 6.4 7.8 9.5 6.8 7.2 7.5 8.4 6.7 9.6 10.0 7.7 6.1	-1.1 -1.9 -1.8 -1.8 -1.8 -1.7 -1.7 -2.4 -2.0 -1.6 -1.9 -2.1	10 11 11 11 11 11 12 11 11 11 11 11	

28.0 0.01 0.00 0.05 0.00 0.00 30.0 3.1 0,0 (0) 58.3 (59) 359 8,7 0.2 1.5 564 15 7.8 25 4.2 365 0.0 33.2 0.15 0.02 Nickel - 0.35 ppm 0,00 0.10 3.1 0.06 Trace 29.0 0.05 0,0 63.4 389 10.8 0.05 2.0 4.0 0.15 418 616 13 -0.1 7.8 26 at FALCONBRIDGE

27 5.5 1.6 0.38 0.47 6.9 1.2 0.2 1.5 1.2 1.0 0.0 0:0 142 1.3 0.05 0.0 11 0.01105 105 190 2.2 -7.0 17 Nickel - 3.0 ppm: Mineral acidity as CaCO3 = 36.6 ppm

TABLE II - (Continued)	
------------------------	--

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

								(In	parts pe	er millic	(n)							
				lischarge d-feet)		итед	Ð				Suspe matt		dried	e on evap 1 at 105° 1 ved soli	c.	Ŧ	0	
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consu by KMaO ₄	Carbon dioxide (calculated)	рН	Hazen)	Turbidity	Dried at 105°C.	Ignited at 550 ⁰ C.	P.P.M.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		(Days)			(º F.)		(CO ₂)		(Units)	(Units)			}			·	<u> </u>	(Ca)
							_								STATION	NO, 39 -	MURDOCK	RIVER
1	July 31/58	85:176	•••••		69	7.8	3.5	6.9 (7.0)	20 (30)	0			64.4	0.087		23.6	80,1	7.0
		•	1												STATION	N NO. 40 -	- SPANISH	RIVER
2	Oct. 8/57	3:14	1,480	1,570	63	8,2	2	7.0	50	0.8			51.6	0.070	205	19.2	48.2	5.5
3	Nov. 7 Dec. 7	14:25 6:23	2,080	1,830 2,100	50 40		2	7,1	35 30	1	 	 <i>.</i>					48.1 48.2	5.4
5 6	Jan. 7/58 Feb. 7	23:24	2,040 2,200	1,860 1,880	32	6.6 	2	7.0 7.0	35 40	0.7		 	51.2	0.070	283 	24 , 0	50.5 50.8	5.5
7 8	Mar. 7 Apr. 7	10:40 15:35	2,360 2,620	2,330 2,490	36	7.7	22	6.9 7.1	40 40	0.8		 	49.6	0.067	348	27,6	51.5 53.7	5.7 6.2
9 10	May 7 June 7	21:29 13:25	2,130 2,220	1,910 1,970	45 57		1	7.2	35 25	3 0.8			.		••••		49.8 47.5	5.8 5.0
11 12	July 25 Aug, 8	25:39 14:41	1,850 1,900	2,130 1,670	65 70	7.6	2	7.0	35 25	0			45.2	0.061	22'3	26.8	48.3 48.3	5.5 5.2
13	Sept. 6	17:128	1,870	1,550	66		2	6.9	25	Ő							51.8	5.1
															STATI	ON NO. 41	I – SPANIS	H RIVE
			·1	1	T			r	1	r	T	1						
14	Aug. 15/58 † Discharge * Near cree		t High Fal			5.7 5. 40.	2	7.1 (6.7)	25 (35)	0			56.4	0.077	274	13.2	49.2	5.5
	† Discharge * Near cree	records a	t High Fal bout 5 mile	lls - <i>see</i> St es below T	ation No urbine	. 40.		(6.7)	(35)	1		······	<u> </u>		STATI	ON NO. 42	2 – SPANIS	H RIVER
	† Discharge	records a	t High Fal	lls - see St	ation No		2			0			49.2	0.077		ļ	I	1
15	† Discharge * Near cree	records a	t High Fal bout 5 mile	lls - <i>see</i> St es below T	ation No urbine	. 40.		(6.7)	(35)	1			<u> </u>		STATI	ON NO. 42	2 – SPANIS	H RIVER
15	† Discharge * Near cree July 23/57	records a k mouth a	4,650† 2,870	lls - <i>see</i> St es below T 9,790† 2,450 a - <i>see</i> Stat	ation No wrbine 69 65	9.5	3	(6.7) 6.7 (6.6) 6.6	(35) 55 (65)	0.8			<u> </u>		STATI 617	ON NO. 42 28.8	2 – SPANIS 44.1 . 51.0	6H RIVEI 4.6 5.4
15	† Discharge * Near cree July 23/57 Sept. 23/59 † Discharge * Sampled a	e records a k mouth a k mo	t High Fal bout 5 mile 4,650† 2,870 at Espanol: No, 17 bri	lls - see St s below T 9,790† 2,450 a - see Stat dge	ation No wrbine 69 65	9.5	3	(6.7) (6.6) (6.8)	(35) 55 (65)	0.8			49.2	0.067	STATI 617 STATI	ON NO. 42 28.8	2 – SPANIS 44.1	6H RIVEI 4.6 5.4
15	 † Discharge * Near cree July 23/57 Sept. 23/59 † Discharge * Sampled a Dec. 9/53 	records a k mouth al	t High Fal bout 5 mild 4,650† 2,870 xt Espanol: No. 17 bri 1,880	lls - see St s below T 9,790† 2,450 a - see Stat dge 2,000	ation No wrbine 69 65	9.5	3	(6.7) (6.6) (6.8) (6.9	(35) 55 (65)	0.8			49.2	0.067	STATI 617 STATI 242	ON NO. 42 28.8	2 – SPANIS 44.1 . 51.0	6H RIVEI 4.6 5.4
15 16 17 18	 † Discharge * Near cree July 23/57 Sept. 23/59 † Discharge * Sampled a Dec. 9/53* Mar. 11/55* 	records a k mouth a l l l l l l l l l l l l l l l l l l	tt High Fal bout 5 mild 4,630† 2,870 tt Espanol No. 17 bri 1,880 4,080	Ils - see St 2,450 a - see Statidge 2,000 3,860	ation No wrbine 69 65	9.5	3 5	(6.7) (6.6) (6.6) (6.8) 6.9 6.4	(35) 55 (65) 15	0.8 1.5 3 2	 Trace		49.2	0.067	STATI 617 STATI 242 711	ON NO. 42 28.8	2 – SPANIS 44.1 . 51.0	SH RIVEI 4.6 5.4 SH RIVE
15 16 17 18 19	 † Discharge * Near cree July 23/57 Sept. 23/59 † Discharge * Sampled a Dec. 9/53 	records a k mouth a l l l l l l l l l l l l l l l l l l	tt High Fal bout 5 mild 4,630† 2,870 at Espanol No. 17 bri 1,880 4,080 9,040	lls - see St s below T 9,790† 2,450 a - see Stat dge 2,000	ation No wrbine 69 65	9.5	3	(6.7) (6.6) (6.8) (6.9	(35) 55 (65)	0.8	Trace Trace		49.2	0.067	STATI 617 STATI 242	ON NO. 42 28.8	2 – SPANIS 44.1 . 51.0	6H RIVE
15 16 17 18 19 20 21	 † Discharge * Near cree July 23/57 Sept. 23/59 † Discharge * Sampled a Dec. 9/53 Mar. 11/55 Apr. 12/56 Nov. 3/56 Sept. 17/57 	e records a k mouth al	tt High Fal bout 5 mild 4,630† 2,870 at Espanol No. 17 bri 1,880 4,080 9,040	lls - see Sta ss below T 9,790† 2,450 a - see Stat dge 2,000 3,860 6,800 3,410	ation No wrbine 69 65	9.5 43.	3	(6.7) 6.7 (6.6) 6.6 (6.8) 6.9 6.4 6.7 7.9	(35) 55 (65) 15 40 40 40	0.8 1.5 3 2 2 2	Trace		49.2 48 65 88 60	0.067 0.065 0.088 0.120 0.082	STATI 617 STATI 242 711 2,148 508	ON NO. 42 28.8 ON NO. 42	2 – SPANIS 44.1 51.0 3 – SPANIS	SH RIVEI 4.6 5.4 SH RIVEI 14.4 8.0
15 16 17 18 19 20 21 22	 † Discharge * Near cree July 23/57 Sept. 23/59 † Discharge * Sampled a Dec. 9/53 Mar. 11/55 Apr. 12/56 Nov. 3/56 Sept.17/57 Oct. 17 	tt	tt High Fal bout 5 mild 4,650† 2,870 11,880 4,080 9,040 3,130 2,140 2,400	lls - see Sta s below T 2,450 2,450 3,860 6,800 3,410 2,070 2,050	ation No wrbine 69 65 tioa No,	9.5 43.	3	(6.7) 6.7 (6.6) 6.6 (6.8) 6.4 6.7 7.9 7.0 7.0 7.0	(35) 55 (65) 15 40 40 40 40 40	0.8 1.5 3 2 2 2 0.8 0.9	Trace		49.2 	0.067 0.065 0.088 0.120	STATI 617 STATI 242 711 2,148	ON NO. 42 28.8	2 – SPANIS 44.1 . 51.0 3 – SPANIS 	SH RIVE 4.6 5.4 SH RIVE 14.4 8.0 7.3 6.8
15 16 17 18 19 20 21 22 23 24	 † Discharge * Near cree * Near cree July 23/57 Sept. 23/59 † Discharge * Sampled a Dec. 9/53' Mar. 11/55' Apr. 12/56' Nov. 3/56' Sept. 17/57 Oct. 17 Nov. 19 Dec. 16 	tt t .	At High Fal bout 5 mile 4,650† 2,870 At Espanol: No. 17 bri 1,880 4,080 9,040 3,130 2,140 2,400 7,400 3,230	lls - see St s below T 9,790† 2,450 a - see Stat dge 2,000 3,860 6,800 3,410 2,070 2,050 4,830	ation No wrbine 69 65 tioa No. 72 56 44 34	9.5 43. 8.8 6.1	3	(6.7) 6.7 (6.6) 6.6 (6.8) 6.9 6.4 6.7 7.9 7.0 7.0 7.0 7.0 6.7	(35) 55 (65) 15 40 40 40 40 40 30 35	0.8 1.5 3 2 2 2 2 0.8 0.9 1.5 1	Trace		49.2 48 65 88 60	0.067 0.065 0.088 0.120 0.082	STATI 617 STATI 242 711 2,148 508	ON NO. 42 28.8 ON NO. 42	2 - SPANIS 44.1 . 51.0 3 - SPANIS 	SH RIVE 4.6 5.4 SH RIVE 14.4 8.0 7.3 6.8 11.9 9.6
15 16 17 18 19 20 21 223 24 223 24 225 26	 † Discharge * Near cree * Near cree July 23/57 Sept. 23/59 † Discharge * Sampled a Dec. 9/53 Mar. 11/55 Apr. 12/56 Nov. 3/56 Sept. 17/57 Oct. 17 Nov. 19 Dec. 16 Jan. 15/58 Feb. 12 	tt t records a k mouth al 195:223 records a t highway tt 17:22 8:19 6:20 28:32 28:40 24:40	tt High Fal bout 5 mild 4,630† 2,870 at Espanol No. 17 bri 1,880 4,080 9,040 3,130 2,140 2,140 2,400 3,230 3,490 3,320	Ils - see St 9,790† 2,450 a - see Stat dge 2,000 3,860 6,800 3,410 2,070 2,050 4,880 4,330 3,245	ation No wrbine 69 65 tioa No, 72 56 44 34 32 32	9.5 43. 8.8 6.1	3	(6.7) 6.7 (6.6) 6.6 (6.8) 6.4 6.7 7.9 7.0 7.0 7.0 7.0 7.0 7.4 6.7 6.7 6.7	(35) 55 (65) 15 40 40 40 40 40 40 30 35 30 35	0.8 1.5 3 2 2 0.8 0.9 1.5 1 0.4 0.4	Trace		49.2 48 65 88 60 62.8 82.8	0.067 0.065 0.088 0.120 0.082 0.085 0.113	STATI 617 STATI 242 711 2,148 508 360 723	ON NO. 42 28.8 ON NO. 42	2 - SPANIS 44.1 . 51.0 3 - SPANIS 	SH RIVE 4.6 5.4 SH RIVE 14.4 8.0 7.3 6.8 11.9
15 16 17 18 19 20 21 223 234 225 227 28	 † Discharge * Near cree * Near cree July 23/57 Sept. 23/59 † Discharge * Sampled a Dec. 9/53' Mar. 11/55' Apr. 12/56 Nov. 19 Dec. 16 Jan. 15/58 Feb. 12 Mar. 17 Apr. 15 	tt t records a k mouth al 195:223 records a t highway tt 17:22 8:19 6:20 28:32 28:40	tt High Fal bout 5 mild 4,650† 2,870 tt Espanola No. 17 bri 1,880 4,080 9,040 3,130 2,140 2,400 7,400 3,230 3,490	lls - see Sta s below T 9,790† 2,450 a - see Stat dge 2,000 3,860 6,800 3,410 2,050 4,880 4,840 3,240	ation No wbine 69 65 tioa No. 72 56 44 34 32 32 32 35	9.5 43. 6.1 7.5	3	(6.7) 6.7 (6.6) 6.6 (6.8) 6.9 6.4 6.7 7.9 7.0 7.0 7.0 7.0 7.0 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	(35) 55 (65) 15 40 40 40 40 40 30 35 35 35	0.8 1.5 3 2 2 2 0.8 0.9 1.5 1 0.4 0.3	Trace		49.2 48 65 88 60 62.8	0.067 0.065 0.088 0.120 0.082 0.085 0.113	STATI 617 STATI 2,42 711 2,148 508 360 723 572	ON NO. 42 28.8 	2 - SPANIS 44.1 . 51.0 3 - SPANIS 	SH RIVE 4.6 5.4 SH RIVE 14.4 8.0 7.3 6.8 11.9 9.6 9.2 7.5 7.1
15 16 17 18 19 20 21 222 23 24 225 227 28 29	 † Discharge * Near cree * Near cree July 23/57 Sept. 23/59 † Discharge * Sampled a Dec. 9/53 Mar. 11/55 Apr. 12/56 Nov. 3/56 Sept.17/57 Oct. 17 Nov. 19 Dec. 16 Jan. 15/58 Feb. 12 Mar. 17 	tt t	At High Fal bout 5 mile 4,650† 2,870 At Espanol: No. 17 bri 1,880 4,080 9,040 3,130 2,140 2,400 3,230 3,210 4,270 2,470	lls - see Stat s below T 9,790† 2,450 a - see Stat dge 2,000 3,860 6,800 3,410 2,070 2,070 2,050 4,830 3,240 2,250 3,250 5,180 3,630	ation No wbine 69 65 tioa No. 72 56 44 34 32 32 35 55	9.5 43. 6.1 7.5	3	(6.7) 6.7 (6.6) 6.6 (6.8) 6.9 6.4 6.7 7.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	(35) 55 (65) 15 40 40 40 40 40 40 40 35 35 30 30 30 30	0.8 1.5 2 2 2 0.8 0.9 1.5 1 0.4 0.3 3 0.9	Trace		49.2 48 65 88 60 62.8 82.8 82.8 66.4	0.067 0.065 0.088 0.120 0.082 0.085 0.113 0.090	STATI 617 STATI 242 711 2,148 508 360 723 572	ON NO. 4: 28.8 ON NO. 4: 	2 - SPANIS 44.1 . 51.0 3 - SPANIS 	H RIVE 4.6 5.4 5.4 H RIVE 14.4 8.0 7.3 6.8 11.9 9.6 9.2 7.5 7.1 10.6 6.6
15 16 17 18 19 20 21 223 245 267 28 290 31	 † Discharge * Near cree * Near cree July 23/57 Sept. 23/59 † Discharge * Sampled a Dec. 9/53' Mar. 11/55' Apr. 12/56' Nov. 3/56' Sept. 17/57 Oct. 17 Nov. 19 Dec. 16' Jan. 15/58 Feb. 12' Mar. 17 Apr. 15 May 27 	e records a k mouth al 195:223 e records a t highway t t 17:22 8:19 6:20 28:32 28:40 24:40 24:40 24:45 21:27	tt High Fal bout 5 mild 4,650† 2,870 1,880 4,080 9,040 3,130 2,140 2,400 3,230 3,210 3,220 3,320 3,220	lls - see Sta s below T 9,790† 2,450 a - see Stat dge 2,000 3,860 6,800 3,410 2,070 2,050 3,240 4,380 4,330 3,240 2,650 3,240 2,650 3,240	ation No. 69 65 tioa No. 72 56 44 34 32 35 	9.5 43. 6.1 7.5	3	(6.7) 6.7 (6.6) 6.6 (6.8) 6.9 6.9 6.9 6.9 6.7 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.9 6.9 6.9 6.9 6.9 6.9	(35) 55 (65) 15 40 40 40 40 40 40 40 35 35 35 35 30	0.8 1.5 2 2 2 2 0.8 0.9 1.5 1 0.4 0.3 3	Trace		49.2 48 65 88 60 62.8 82.8	0.067 0.065 0.088 0.120 0.082 0.085 0.113	STATI 617 STATI 2,42 711 2,148 508 360 723 572	ON NO. 42 28.8 ON NO. 42	2 - SPANIS 44.1 . 51.0 3 - SPANIS 	SH RIVEI 4.6 5.4 5.4 6.8 11.9 9.6 9.2 7.5 7.1 10.6 6.6 6.4 7.5
15 16 17 18 19 20 223 224 226 277 280 331 32 33	 † Discharge * Near cree * Near cree July 23/57 Sept. 23/59 † Discharge * Sampled a Dec. 9/53' Mar. 11/55' Apr. 12/56' Nov. 3/56' Sept. 17/57 Oct. 17 Nov. 19 Dec. 16 Jan. 15/58 Feb. 12 Mar. 17 Apr. 15 May 27 June 16 July 16 	tt t	tt High Fal bout 5 mild 4,650† 2,870 tt Espanol No. 17 bri 1,880 4,080 9,040 3,130 2,140 2,400 3,230 3,210 4,270 3,220 3,210 4,270	lls - see Sta s below T 9,790† 2,450 a - see Stat dge 2,000 3,860 6,800 3,410 2,070 2,050 3,410 2,650 3,250 5,180 3,630 2,5180	ation No wbine 69 65 tioa No. 72 56 44 34 32 32 35 55 59 67 69	9.5 43. 6.1 7.5 6.0	3 5 5 3 2 1 3 3 2 2 2 2 2 3	(6.7) 6.7 (6.6) 6.6 (6.8) 6.9 6.4 6.7 7.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	(35) 55 (65) 15 40 40 40 40 40 40 40 30 35 35 35 30 30 30 30 30 30 30 30 30 30	0.8 1.5 2 2 2 2 0.8 0.9 1.5 1 0.4 0.3 3 0.9 0 0 0	Trace		49.2 48 65 88 60 62.8 82.8 66.4 54.8	0.067 0.065 0.088 0.120 0.082 0.085 0.113 0.090 0.075	STATI 617 STATI 242 711 2,148 508 360 723 572 348	ON NO. 42 28.8 	2 - SPANIS 44.1 . 51.0 3 - SPANIS 	H RIVE 4.6 5.4 5.4 5.4 14.4 8.0 7.3 6.8 11.9 9.6 9.2 7.5 7.1 10.6 6.6 6.4 7.5 6.8
15 16 17 18 19 20 12234 222222 2222 222 222 222 222	 † Discharge * Near cree Near cree July 23/57 Sept. 23/59 † Discharge * Sampled a Dec. 9/53' Mar. 11/55' Apr. 12/56' Nov. 3/56' Sept. 17/57 Oct. 17 Nov. 19 Dec. 16 Jan. 15/58 Feb. 12 Mar. 17 Apr. 15 Mar. 17 Apr. 15 May 27 June 16 July 16 Aug. 18 	tt tt	At High Fal bout 5 mile 4,650† 2,870 At Espanol: No. 17 bri 1,880 4,080 9,040 3,130 2,140 2,400 3,230 3,490 3,210 4,270 2,440 2,340 3,220 3,210 4,270 2,340 3,220	lls - see Stat s below T 9,790† 2,450 a - see Stat dge 2,000 3,860 6,800 3,410 2,070 2,050 4,830 3,240 2,050 3,210 3,210 3,51	ation No wrbine 69 65 tioa No. 72 56 44 34 32 35 55 9 9 67	9.5 43. 6.1 7.5 6.0	3 5 5 3 2 1 3 3 2 2 2 2 2 2	(6.7) 6.7 (6.6) 6.6 (6.8) 6.9 6.9 6.4 6.7 7.9 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 9.9 6.9 6.9 6.9 6.9 6.9 7.1	(35) 55 (65) 15 40 40 40 40 40 30 35 35 30 30 30 30	0.8 1.5 2 2 0.8 0.9 1.5 1 0.4 0.3 3 0.9 0 0	Trace		49.2 48 65 88 60 62.8 82.8 82.8 66.4	0.067 0.065 0.088 0.120 0.082 0.085 0.113 0.090	STATI 617 STATI 242 711 2,148 508 360 723 572	ON NO. 4: 28.8 ON NO. 4: 	2 - SPANIS 44.1 . 51.0 3 - SPANIS 	H RIVE 4.6 5.4 5.4 14.4 8.0 7.3 6.8 11.9 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9

[†] Analysis submitted by Alchem Ltd., Burlington, Ont.

TABLE II -- (Continued) Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(ln parts per million)

									_		(In po	irts pe	r mill	ion)											
	Iror (Fe)						Alka	lis											Harda as Ca		constituents	Ea	e X	×	
(a Magnesium	Total	Dissolved	uN Manganese	(Y) Aluminum	Copper	Zinc (Za)	(Na)	(X) Potassium	(ZH ³)	Carbonate	(⁶ OOH) Bicarbonate	() Sulphate	D Chloride	(J Fluoride	N(trate	Silica (colorimetric)	년 D Phosphate	(B) Boron	Non- car- bonate	Total	Sum of consti	Per cent sodium	Saturation index	Stability index	No.
	<u> </u>		(on)	(11)	(Cu)	(2,4)	(114)	1 (10)	(1113/)	(003)	(11003)	(304)	(0)	(1)	(103)	(3102)	11.04)			L]		J
near R 3.4	UTTER	Trace	0.00	0.00	Trace	0.00	2.1	0.8	0.1	0.0	15.8	16.8	3.3	0.0	0.5	1.8			18.4	31.4	43.5	12	-2.5	12	1
5.4		IIace	0.00	0.00	liace	0.00	2.1	0.0	0,1			10.0	5.5	0.0	0.5	1.0			10.4		49.7	12	2.5	12	
at H1G	H FALL	_S – Dr	ainage	area, 2	,560 sq	uare m	iles; 2,	940 in	cluding	; Lake (Jaaping .	Area													
1.3 1.4 1.5 1.4 1.5 1.6 1.4 1.5 1.2 1.5 1.6		0.09	0.00	0.00 0.00 0.01	Trace 0.00 0.00	0.00	0.9 1.3 1.2 1.1 1.2 1.1 1.2 0.9 1.0 0.9 1.0 0.9 1.0	0.4 0.5 0.4 0.5 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4	0.0 0.05 0.05 0.1 0.05 0.0 0.1 0.1 0.1 0.2 0.3 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	12.6 12.7 11.3 11.0 10.5 11.7 14.4 13.5 10.8 12.4 12.2 11.3	9,9 10.4 11.2 11.0 11.9 10.5 9.8 8.8 8.8 9.4 10.6 10.0 10.2	0.8 0.7 0.9 1.0 0.9 0.8 0.9 0.4 0.6 0.7 0.1 0.7	0.0 0.0 0.1	0.2 0.2 0.3 0.2 0.6 0.3 0.3 0.3 0.4 0.4 0.2 0.2 0.4	3.6 3.8 4.0 5.2 5.5 5.8 5.6 5.2 4.4 4.8 4.2 3.5		0.00	8.8 9.6 10.5 11.7 10.8 10.3 9.1 9.7 8.7 9.1 10.0	19.1 19.2 18.9 19.5 20.3 20.4 22.1 20.2 18.6 18.9 19.1 19.3	29.8 30.0 30.2 31.5 32.8 31.9 33.4 30.0 28.0 30.4 28.6 28.5	9.0 12 12 10 11 10 10 8.6 10 9.2 10 9.9	-2.6 -2.5 -2.6 -2.7 -2.6 -2.7 -2.4 -2.3 -2.6 -2.6 -2.7 -2.8	12 12 12 12 12 12 12 12 12 12 12 12 12	2 3 4 5 6 7 8 9 10 11 12 13
helow	TURBIN	JF			[·		l	•	•			•	•	•				•		·	
1.4		0.00	0.00	0.00	0.00	0.00	1.2	0.4	0.1	0.0 (0)	13.0 (13.1)	9.0	0.6	0.0	0.6	3.8		<u> </u>	8,8	19.5	29.0	12	-2.5	12	14
hear M	6eKERR	0.04 0.02	0.00	0.00	Trace	0.00	1.0	0.4	0.15	0.0	8.9	11.1	0.7	0.0	0.8	6.2	0.02		10.5 8.7	17.2 (16.9) 19.6	24.6	11	-3.2 -3.0	13 13	15
	<u> </u>		1		l	I	L	I				1			l	l	<u> </u>	1	1	(19.6)	l <u></u>				L
at ESF	PANOLA	l – Dra	inage a	ea, 4,6	560 squ	are mil	es																		
14	0.6			0.00					0.0	0.0	14.6	22	0			5.2			, 22	34			• • • • • •		17
10	Ttace			0.00	•••••	 			0.1	0.0	12.2	22	4.9			4.2		· · · ·	. 20	30			• • • • • •	•••••	18
4.4	0.3			0.00		 .		•••••	0.4	0.0	24.4	29.7	4.9			. 5.5			. 34	54 32			-2.5 -1.6	12 11	19 20
2.9 1.9	0.4	0.17	Trace	0.00		1	1.6	0.6	4	0.0	19.5 14.5	14.9 15.9	3.6 1.6	0.0	0.0	. 3.6 3.9			. 14.1	26.0	40.1	11	-2.5	12	20
1.7 3.4 2.9 2.7 2.1 2.0 2.9 2.0 1.8 2.1	· · · · · · · · · · · · · · · · · · ·	0.05 0.06 0.04	Trace		Trace	0.05	. 1.5 4.2 3.1 . 2.6 . 2.0	0.5 1.2 0.9 0.9 0.6	0.05 0.05 0.05 0.10 0.15 1.0 0.1 0.25 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	14.1 20.7 10.0 9.1 11.0 13.0 11.1 11.8 11.8 11.8 11.8 14.5 14.0	13.6 32.4 28.6 27.1 20.5 15.8 31.6 14.5 15.3 16.6 12.3	1.3 3.3 2.9 2.3 1.5 1.3 2.8 1.1 0.9 1.3	0.0	0.1 0.6 1.0 0.9 0.6 0.8 3.0 0.4 0.3	3.8 4.2 4.7 5.6 6.6 5.8 5.6 4.5 5.0 3.8			. 12.4 26.7 27.7 26.6 . 18.4 . 15.2 . 29.3 . 15.0 13.7	24.0 43.7 35.9 34.1 27.4 25.9 38.4 25.9 38.4 23.4 27.4 27.4 24.8	36.3 71.5 58.8 55.9 46.9 41.7 67.0 37.0 37.0 37.7 41.3 35.4	12 17 15 14 13 12 18 11 13 13	-2.5 -1.7 -2.8 -1.9 -2.6 -2.6 -2.4 -2.6 -2.7 -2.3 -2.7	12 11 12 12 12 12 12 12 12 12 12	22 23 24 25 26 27 28
		1	1			0.00	1		0.05	0.0	14.0	22.8	2.3	0.0	1.0	5.8	0.0		22.5	34.0	53.6	12	-2.5	12	
3.0		0.07	0.01	0.00	0.00	0.00	2.2	0.8	0.05	0.0	14.0				1										34 35

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

				Chemical	Analy	Ses of	5012			er millio		at Lake		ige Daz				
			Stream d			ımed	le				Suspe matt		Residue dried (Disso	e on evar 1 at 105 ⁰ olved sol	oration C. ids)	Loss	Specific	
ło.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO4	Carbon dioxide (calculated)	PH	Colour	Turbidity	Dried at 105°C.	Ignited at 550 ⁰ C.	P.P.M.	Tons per acre- foot	Tons per day	on igni- tion at 550°C.	ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		(Days)			(° F.)		(CO ₂)		(Hazen) (Units)	(Units)					 			(Ca)
														STAT	fion no.	44 – SP	ANISH RIV	ER*
1	Sept. 30/59	187:215-	2,740†	2,450†	62		5	7.0	25	3							102	10.5
	• At tap in († Discharge	C.P.R. sys records a	stem t Espanols	a • <i>see</i> Stat	ion No.	43.								ST	TATION NO	0.45 – VE	RMILION I	RIVER
2	Aug, 15/58	85:200	450†	342†	70	2.4	2	7.3	10 (35)	1			66.8	0.091	81.1	23.2	94.3	10.1
	* 10 miles E † Discharge	elow Leva records a	ack, Ont. bout 40 mil	es upstrea	m at Lo	me Fall	s; Lat	, 46º 18	9 ¹ 55", L	ong, 81 ⁰ 3	1' 18" -	Drainage	area, 1,57				Onaping Lal	
3	July 5/53	•					3.5	7,0		2			55	0.075			•••••	8,0
4	Aug, 1/58	86:179	715†	342†	75	4.5	2	7.2 (7.4)	20 (35)	0,8			77.2	0.105	149	35.2	88.3	9.9
5	Aug. 3/58 † Discharge		300† bout 10 mil	342† es upstrea	74 m at Lo	4.2	1 s – <i>se</i>	7,3 (6.8) e Stati	20 (40) on No. 4	0.9			114	0,155	92.0	31.2	170	15.:
			1		· · · ·	1		1	······					·r	STAT	TION NO.	18 – JOHN	CREE
6	Aug, 15/58	85:200	•••••	•••••	71	2.5	0,8	7.5 (6.3)	10 (30)	0.8	• • • • • • • • • •	• • • • • • • • •	75.2	0.102		19.2	85.5	8,0
															STATIO	n no. 49 -	- ROBERTS	5 RIVE
7	Aug. 2/58	85:178			81	4.5	2	7.1 (7.3)	20 (35)	0		•••••	60.4	0.082		30.0	61,6	6.7
															STATION	NO, 50 -	ONAPING	RIVEF
8	Aug. 20/58	84:98			. 64	3.4	0.7	7.5	15 (35)	0			47.2	0.064		17.2	63.3	9.7
	* From brid,	ge near Le	vack		·	1	J		1		•	.	·	<u> </u>		,	1,	<u> </u>
9	Aug. 20/58	85:196			. 71	2.1	1.5	6.1 (5.7)	5 (15)	0			69.6	0.095	STATIC	20,8	- MOOSE 1 85.2	8.1
	* Source of	water for)	Fecunis Mi	ne Townsii	te	·	-1	<u>, </u>	<u></u>	- I	1	1	L	1	CTT 4 T			<u> </u>
0	Aug, 20/58	80:199			. 69	3.7	2	7.5 (6.6)	15 (30)	0			132	0.180	51A1	32.0	2 - GILL 1 188	_AKE*
	• At Onapin	g Mine											· · · · · · · · · · · · · · · · · · ·		<u> </u>			·
1	Ацд. 20/58	84:196			.	2.2	1	6.9	5	0			40.0	0.054	STATIO	DN NO. 53	- WINDY I 44.5	.AKE 3.6
		1		<u> </u>				(7.2)		8					1			,

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

																									Ŧ
(gM) Magnesium	Iron (Fe) Lotal	Dissolved	R Manganese	(T) Aluminum	(a)	Zinc Zinc	Alka iipos (Na)	Potassium	ЧN) Аппопіа	Controlate	(⁶ OOH) Bicarbonate	G Sulphate €	👸 Chloride	H Fluoride	SO Nitrate	G Silica O (colorimetric)	년 전 Phosphate	Boro	Hard as C Non- car- bonate	ness aCO3 Total	Sum of constituents	Per cent sodium	Saturation index	Stability index	No.
	ANISH	····· · ···· ·		•																					
2.6	0.50	0,11	0,01	0.00	0.40	0.30	4.8	0.8	0.3	0.0	31.2	16.5	5.3	0.0	0.2	4.2	0.0		10.8	36.4	61.0	21	-1.9	11	1
near L.	ARCHW		Trace	0.00	0.00	0.00	19	0.8	0.1	0.0	25.4	18,1	1.3	0.0	0.3	3.9	1]]	17.1	37.9	52.0	9.6	-1.8	11	2
5.1		0.02	Trace	0.00	0.00	0.00	1.9	0.0	0.1	(0)	(25)	10,1	1	0.0	0.5	5.5			(14)	(34)			110		[
near (2.4 3.0	REIGH 0.5	TON (I Trace		0.00	0.00	0.00	1,5	0.7	0.1 0.1	0.0	24.4 21,6 (25)	24.3 18.6	1	0.0	0,6	4.0			10 19.3 (20)	30 37.0 (40)	50,1	7.9	-1.8	11 11	3 4
below 4.4	KUSK I	AKE Trace	0.00	0.00	Trace	0.05	7,5	1.6	0.1	0.0	13.7	49.6	4.3	0.0	4.0	5,1			44.8	56.0 (55.6)	98.5	22	-1.8	11	5
below 2.2	CARTI	<u> </u>	Ггасе	0.00	0.00	0.00	3.1	0.8	0.1	0.0 (0)	17.1 (18)	16.8	2.5	0.0	1.5	8,1	<u></u>	 	15.0	29.0	51.5	18	-1.8	11	6
near M	ILNET	· ···-			1.	····	1		- <u>r</u>	·····					- <u>r</u>		- 1	-		1		1			1
2.0		0,00	0.00	0.00	0,00	0,00	1,4	0.5	0.1	0.0	15,1	12.8	0.1	0.0	0.6	4.5	<u> </u>		12,5	24.9 (26,8)	36.0	11	-2.3	12	7
near L	EVACK	:																							
0.0		0.05	0.00	0.00	0.00	0.05	1.5	0.5	0.05	0.0	13.7 (14)	13.9	0.6	0.0	0.8	6.0		.	13.0	24,2	39.8	11	-1.8	12	8
near L	EVACK		·		1		<u>.</u>	·'			,		<u>.</u>		<u> </u>		<u> </u>	·	. <u>.</u>	, ,	J	1	4. <u> </u>	L	·
1.5		Trace	0.00	0.25	0.60	0,40	2.0	1.5	0.1	0.0 (0)	1,1 (1,2)	29.8	1.3	0.0	0.3	2.0	·····	.	25.5 (23)	26.4 (24)	47.9	13	-4.4	15	9
near L	EVACK				•																				
2,2		0.01	0.00	0.00	0.00	0.05	15.5	7.3	0.05	0.0	36.9 (29.9)	22.2	19,2	0.0	1.0	4.5	·····		9.7	40.0 (34.2)	103	41	-1.4	10	10
near O	NAPIN	G	<u> </u>						_1		- t - -	. <u>.</u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>				·	<u></u>	. I .,
1.2	·····	0.02	0,00	0.02	0.00	0.20	1.1	0.4	0.05	0.0 (0)	3.4 (3.4)	12.5	0,8	0.0	0.3	3.9	·····		11.1	13.9 (13.9)	25.8	14	-3.4	14	11
							1	· · · · · ·		4	· · · · · · · · · · · · · · · · · · ·				· · · ·				. <u> </u>	<u>.</u>	÷			<u> </u>	,

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

.

								(11)	paris pe	r million	() 							
		oq	Stream di (Second-			sumed	ide				Susp mat	ended ter	dried	e on eva at 105° olved so	Ċ,			
•	ate of lection	Storage period	On sampling date	Monthly mean	Water temp- erature	a 2	Carbon dioxide (calculated)	pH	Colou	Turbidity	Dried at 105°C.	Ignited at 550°C.	Р.Р.М.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C,	
		(Days)		· ·	(°F.)		(CO2)		(Hazen) (Units)	(Units)								(C
																d		<u>.</u>
T.,		1	1	1	1	η <u> </u>	1	1	1			1			STATION	NO. 54 -	WHITSON	
	r. 11/5, g. 20/58		1			1	. 13	4.6		2		• • • • • • • • • • • • • • • • • • • •	82	0.112			•••••••	····
	8. 207 30	64.190	•••••		65	1.0		. 4.4 (4.8)	0 (10)	0	••••••	• • • • • • • • • • • • • • • • • • • •	62.8	0.085	• • • • • • • • •	. 12.0	123	8
† 1 S	Analysis See also	by Alcher Table IV	a Ltd., Burl	lington, O	nt.				-									•
Au	g. 18/58	8 10:197		[Į	5.8	3	7.9	35	0			185	0.252	STATION	NO. 55 - 1 36.4	WHITSON R	IVE 38
										- I			1	ļ		·		·
1		3†	<u> </u>			1	r	r	1	1					STATION	NO. 56 - 1	RAMSAY LA	KE
	r. 4/5: r. 24/54						3.5	6.5 6.6				•••••	68 94	0.092			• • • • • • • • • • • •	<u>.</u>
1 1	y 15†				[[9	7.0		3			94 92	0.128				. 1
Au	g. 18/58	82:197			67	2,1	0.9	7.2	10	0			87.4	0.119		22.6	151	1
1		ļ		Ļ	<u> </u>		I	(7.2)	(25)									l î
Sep	ot. 30/59	1 1 28:32			64	2.6		(4.0) 4.0	(15)	0.8			156	0.212		24.4	261	1
* A † N	t dam lickel (N	Ji) - 4.7 pp	a; Chromiun	- (C-)-0 (.					•	1	L	
		.,	,		, bbm									C ¹	TATION N	0 50 10		
Mar	. 5/53	t					10	47		2.5		· · · · · · · · · · · · · · · · · · ·	Sec. 1		INTION N	О. 58 — MI	EATBIRD L	.AK
1		++110:113			72		10	4.7		2.5	• • • • • • • • •	• • • • • • • • • •	121	0.165	••••••	• • • • • • • • •	•••••	•••
		111 28:32		•••••		26		4.0	0	0		• • • • • • • • • •	384	0.522		44.8	560	3
·			em Ltd., Bi		0	2.6		4.1	0	0	•••••	• • • • • • • • • •	331	0.450		28,8	511	3
- ++	Nickel	(Ni)-21 p	om; Chromitom; Chromit	um (Cr) - T	race										677 A 771 O 1			
		+					12	6.6				1				1 NO. 59 -	KELLEY I	;
Mar	0/53			•••••			28	6.5	•••••	5	• • • • • • • • •	•••••	252	0.343	•••••	•••••	•••••	28
	· 9/53						20	4.3		2		• • • • • • • • • •	235	0.320	• • • • • • • • •	• • • • • • • • • •	•••••	37
Apr	. 12/55	†	•••••				<u> </u>							A / A A				Į 80
Apr Jan	. 12/55 . 1/56	† † _.		•••••			4	6.3	0	4	Trace		500	0.680	•••••			ł
Apr Jan Apr	. 12/55 . 1/56 . 18/56	† † _.		•••••			4		0 0 10	4 3 15	Trace		335	0,456				30
Apr Jan	. 12/55 . 1/56 . 18/56 / 1†	† † _.					4	6.3 3.7	0	3	Trace Trace		-		•••••			30 44 64
Apr Jan Apr May May	. 12/55 . 1/56 . 18/56 / 1† / 8†	† † _.					4	6.3 3.7 4.0 3.9 4.4	0 10	3 15	Trace Trace		335 400	0.456 0.544	••••••		1,029	3
Apr Jan Apr May May Aug	. 12/55 . 1/56 . 18/56 / 1† / 8† s. 1/58	t t t t t 110:113					4	6.3 3.7 4.0 3.9	0 10 20	3 15 2	Trace Trace		335 400 550	0.456 0.544 0.748		82.0	1,029	
Apr Jan Apr May May Aug Aug	. 12/55 . 1/56 . 18/56 / 1† / 8† 3. 1/58 . 1/58 . 1/58 . 1/58 . 1/58	<pre>† † † † † 110:113 • Internatio Alchem L</pre>		Co. Plant ton, Ont.			4	6.3 3.7 4.0 3.9 4.4	0 10 20	3 15 2	Trace Trace		335 400 550	0.456 0.544 0.748		82.0	1,029	34
Apr Jan Apr May May Aug Aug	. 12/55 . 1/56 . 18/56 / 1† / 8† 3. 1/58 . 1/58 . 1/58 . 1/58 . 1/58	<pre>† † † † † 110:113 • Internatio Alchem L</pre>	nal Nickel	Co. Plant ton, Ont.			4	6.3 3.7 4.0 3.9 4.4	0 10 20	3 15 2	Trace Trace		335 400 550	0.456 0.544 0.748		82.0	1,029	3 4 6

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

.

(In parts per million)

Magnesium	Iro (Fe Lotal	n	Manganese	Aluminum	Copper	Zinc	Alk	alis Dotassium Dotassi	Ammonia	Carbonate	Bicarbonate	Sul phate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Hard as C Non- car- bonate		Sum of constituents	Per cent sodium	Saturation index	Stability index	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH3)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO3)	(SiO2)	(PO4)	(B)							

near FROOD (Mine) at SUDBURY

18	0.5			0,2					0.8	0	2.4	39	6.1			5.7		42	44				1
2.6		0,01	0.33	0,13	0.09	0.20	2.1	1.0	0.05	0.0	0.0	37,6	3.0	0.0	0,1	1.2	 	31.9	31,9	56.9	10	 ••••	2

at CHELMSFORD

11.1 0.02 0.00 0.03 0.00 0.05 3.0 0.8 0.15 0.0 133 30.2 2.8 0.1 0.3 12 32.8 142 165 4.4 +0.1 7.7 3	 				1					 · · · · · · · ·							
		1 1	1														1
		20 0 0 8 1	015100	1 1 1 2 2	20 2	201	0.1	0.2	12		220	1/2	160		10.1		
		210 1 010 1	0	/ L x 3 3	20.4	4.0	0.1	0.2	44	 	54.0	142	102	4.4	TU.1	1.1	12
			1														

at SUDBURY

14	0.9		•••••	0.0					0.0	0	12.2	57	2			3.0	 	32	42					4
4.3	1.5		• • • • • •	. 0.0		••••			0,0	0	· 9.8	28.4	3.6			2.3	 	38	46			-2.8	12	5
3.4	0.5		• • • • • •	0.0					0.1	0	12,2	35.2	6.1			1,4	 	34	44			-2.3	12	6
4.3	•••••	Trace	0.00	Trace	0.00	0.00	5.2	1.6	0.05	0.0	9.5	43,1	7.7	0.1	0.3	1.9	 	42.8	50.6	82,1	18	-2,2	12	7

at COPPER CLIFF

3.6		0.00	0.26	1.4	1.3	0.3	1.7	1.7	0.05	0.0	0.0**	64.4	1,5	0.0	1.5	1.6		 29.5	38.5	88,8	5,1	 	8
3.7	0.04	0.04	0.55	3.4	2.4	0.2	3.7	2.2	0.1	0.0	0.0**	93.2	3.1	0.05	0,8	2.4	0,02	 53.9	53.9	131	7.9	 	9

** Mineral acidity as CaCO₃-17.9 ppm *** Mineral Acidity as CaCO₃-4.9 ppm

near COPPER CLIFF

46	14			0.1	0,02				0,1	0	2.4	123	0			3.6	0.4	 84	86			 	10
25.2	•••••	0.09	0.97	0.04	1.0	0.3	12.0	4.5		0.0	0.0*	238	8.6	0,2	1.0	3.7	0.4	 182	182	349	9.8	 	11
16.8	0.02	0.02	0.73	3.9	2,2	0,1	10.2	4.2		0,0	0.0**	211	7.7	0,15	0.8	3.6	0.02	 147	147	293	9.7	 	12

Mineral acidity - 11.5 ppm as CaCO₃
 ** Mineral acidity - 5.3 ppm as CaCO₃

near COPPER CLIFF

13,1	16	ļ		0.0	0.07			l	0.6	0	9.8	150	0			6.4	0.4		118	126			-2.3	12	13
9.7	2.8				••••			•••••	1	0	9.8	118	12.1			54			112	120			4.9	14	14
24.3	0.6	 		0.0	0.3				2.4	0	12.2	304	21,9			11			290	300			-2.2	11	15
23.8	3.0		0.1	0.4	0.4				2.4	0	0**	156	24.2			9.0			190	190			-2.3	11	16
34.0	0.8		Trace	0.3	0.5				2.5	0	0***	203	30.4			8.5		l	250	250					17
24.3	4.1	•••••	Trace	0,5	1.0	• • • • •			4.8	0	0****	257	36.4			13			260	260					18
24.0	0,80	0.08	0.66	0.26	0.60	0,30	60.0	16,4		0.0 (0)	0.0 ^a (4.9)		36.2	0.5	8.0	10	0.6		314	314	676	26			19

Mineral acidity as CaCO₃-6 ppm
 Mineral acidity as CaCO₃-20 ppm
 Mineral acidity as CaCO₃-24 ppn.
 A Mineral acidity as CaCO₃-22 ppm

									(In p	arts per	million,)							
				Stream di (Secono			med	9				Suspermatt		Residue dried (Disso	on evap at 105° (lved soli	oration C. ids)	Loss	Specific	
ío,	Da of colle		Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO4	Carbon dioxide (calculated)	рН	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	Р.Р.М.	Tons per acre- foot	Tons per day	on igni- tion at 550°C.	conduct- ance K × 10 ⁶ at 25 ⁰ C,	Calcium
			(Days)			(° F,)		(C02))	(Hazen) (Units)	(Units)								(Ca)
																STATI	ON NO. 60) - KELLE	EY LAK
1	Sept.	30/59	28:32	l		65	4.5	24	5.3	5	2			672	0.914		50.4	1,040	86,8
	1								-							64T & 4	TON NO 1	1 SIMON	
		16/60	85:200			72	3.7	1	4.6	10	1		1	678	0.922	5171	73.6	51 – SIMON 992	70.
2	Aug,	15/58	85:200			73	5.7		(5.7)					0/0	0.922			,,, <u>,</u>	/0.,
																STAT	TION NO.	52 – CLEA	R LAK
3	Aug.	2/58	85:134				0,8		4.4	0	0.8			52.4	0.071		11.2	91.5	6.
																STA	TION NO.	63 – LON	G LAK
4	Aug.	20/58	84:198				2,6	2	6.8	5	0			68.4	0.093		20.8	108	10.
	I					ļ			(7.2)	(25)	I		1				1		I <u></u>
						·		-1	+							STATION	NO. 64 -	LAKE PA	NACH
5	Aug.	3/58	84:183		• • • • • • • • •	74	3.1	1	7.0	10 (20)	1			59,2	0.081		36,4	74.9	7.
	·				L		·			-1	•		<u> </u>			<u>с</u> т		. 65 – LIL	V T A1
6	Sept.	30/59	188:215		[62		. 4	6.7	90	4	[517		43.2	3
-				ystem in vi		1		<u> </u>	1		1		,			1		1 1912	1
															ST	ATION NO	. 66 - AL	X SABLES	RIVE
7	Aug.	5/58	84:185	224	173	76	2.8	0.9	7.2	15	10			36.0	0.049	21.7	18.0	40.4	3.
	See	also T	able III	1	ļ.,,	I		<u> </u>	(7.0)	(35)		1	ļ		<u> </u>		1		1
	1.			1	1		1	-1	1	1	T	1			1	STATIO	ON NO. 67	- SILVER	LAKE
8	Aug.	3/58	85:186			. 80	3.3	2	8.0 (8,4)	5	5	11	4.4	183	0.249		36.4	296	32.
	* Sam	pled fr	om shore.																
			· [····		·	·		·	<u> </u>		i				STAT	ION NO. 6	8 - ICE L	AKE •
9	Aug,	4/58	84:185			. 75	5.3	2	8.1 (8.5)	10 (15)	0			206	0.280		4.4	335	37.
_	* Sam	pled fr	om shore												I	•			
-															S	TATION N	о. 69 — К	AGAWONG	LAKE
	_					75	3.3	1	8.2	5	0			171	0.232 .		. 37.2	285	34.
0	Aug.	4/58	84:185			17			1(8.5)	1 (8)				L					
0			84:185	•f		17]	(8.5)	(8)	1	,	- L	J.t. 1.	1	<u></u>		· ·	<u> </u>
.0			 	f	ļ	17	<u> </u>	<u> </u>	J(8.5)	(8)	1	,	- L _F		1 ST	L] Э. 70 – К/		RIVEF
.0			om a what	f Level	······ 	17		 	(8.5)	(8)			1		ST	L	р. 70 – Кл	AGAWONG 3	RIVER
111	* Sam July		om a what	Level	 	69	3.2	3	(8.5) 7.8 (7.2)	3	0.3	,		168	ST 0.228	CATION NO	D. 70 - K/ 34.8		RIVER 33.

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

.

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

									·		(In	parts į	per m	illion)									-	
	Iro (Fe						Alk	alis								0				ness aCO ₃	constituents	sodium	ndex	lex	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammoni a	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nítrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of cons	Per cent so	Saturation index	Stability index	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NӉ)	(CO3)	(HCO3)	(SO4)	(CI)	(F)	(NO3)	(SiO ₂)	(PO4)	(B)			1				
at outlet	near C	OPPER	CLIF	F																				;	
25.2	0.03	0.03	0.74	0,65	1,85	0,10	69.0	14.8		0,0	3.0	432	37.9	0.5	6.0	11	0,04	••••	318	320	692	30	-3.8	13	1
Nickel (Ni) - 4.	7 ppm	- (Chromiu	um (Cr)	- 0ррп)																		
near NA	UGHTC)N																							
23.6		0,12	0.65	0.15	0.07	0.30	72.0	13.0	••••	0.0† (0)	0.0† (2.4)	389	43.8	0.4	6.0	8.6	• • • • • •	••••	273	273	628	34			2
† Mineral near SU) ₃) - 12	.4 ppm											·		L				!I			'	
2.0		0.01	0.46	0.18	0.97	0.10	1.0	0.7	0,05	0.0†	o.ot	29.2	0,3	0.0	0.1	3.2			23.9	23.9	44.4	7.1			3
† Mineral	acidity	/ (CaCC	D ₃) 5,	6 ppm																			-		
near SU	DBURY																								
3.3		Trace	0.00	0.00	Trace	0.05	2.2	0.9	0.05	0.0	8,2	32,1	2.5	0.0	1.0	3.4	•••••		32.3	39,0 (33,2)	59.7	11	-2.8	12	4
at LAK	E PANA	ACHE									<u> </u>				L		L								
2.4		0.00	0.01	0.01	0.00	0.10	1.4	0.7	0.05	0,0	6.1	22.4	0.7	0.0	0,6	1,6		••••	. 22.3	27.3 (32,1)	39,9	9.7	-2,7	12	5
near WE	BBWOC			•				1	1	L				L	' I		<u> </u>		I	()-(1)					L
1.0	3.50	1.32	Trace	0.03	0.00	0.40	1.2	0.8	0.3	0.0	13.9	7.3	0,9	0.0	0.8	4.0	0.0		0.5	11.9	27,2	14	-3.0	13	6
				I., ,	1		L	I	·						L				1		1 •- 1			-2	<u> </u>
above N	ASSEY	– Dra	inage a	rea 524	square	miles															_				
1.3		0.02	0.00	0.00	0.00	0.05	1.3	0,4	0.1	0.0	9.5	6.9	0.5	0.0	0.6	6.3			7,0	14.8 (17,1)	24.9	16	-2,6	12	7
near SH	ESHEG	WANIN	g, man	ITOUL	IN ISLA	AND																			
19.3	0.03	Trace	0.00	0,06	Trace	0.05	1.3	0,6	0.1	0.0	175	15,7	1.4	0.0	1.5	7.2			16.8		166	1.7	+0.3	7.4	8
				I	L			<u> </u>	1	[(-	l <u> </u>	(167)					l
near GO	DEBA	V 144N		IN ISI	AND																				
				· · · · · ·	1	0.00	17	0.7	0.1		100	26.0					r - 1				1				·
20,2		Trace	0.00	0.04	0.00	0.00	1.7	0.7	0.1		166 (153)	36.8	3.3	0.0	2.0	4.4		•••••	40.6	177.	189	2.0	+0.4	7.3	9
oear KA	GAWON	ig, ma	NITOU	LIN ISI	AND																				
15.8		0.00	0.00	0.03	0.00	0.00	1.1	0,8	0,1	0.0	146 (135)	26.9	2.6	0,0	1.0	2.4	[30.2	150	157	1.6	+0.4	7,4	10
		5	l, <u> </u>	L	1., .		·····		L			L		L	II		I	<u> </u>	0/	(154)	<u> </u>		l	L	L
at KAG	AWONG	, MANI	TOULI	N ISLA	ND	T		···																	
16.5		0.02	0.00	0.00			0.0	0.7																	_
15.5	•••••	0.02	0.00	0.09		• • • • •	0.9	0.7	•••••	0,0 (0)	145 (149)	26.9	2.8	0.2	0.6	1.6	•••••		12.7 (23.4)		153	1.3	0	7.8	11
ļ			ĺ																						12 13

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

_									F F	er milli							······································	
			Stream d (Secon			med	Ð				Suspe matt		Residue dried (Disso	e on evan 1 at 105 ⁰ olved sol	oration C. ids)	T	0	
0.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO4	Carbon dioxide (calculated)	рН	Colour	Turbidity	Dried at 105º C.	Ignited at 550° C.	P.P.M.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		(Days)			(°F.)		(CO₂)		(Hazen) (Units)	(Units)					ĺ			(Ca)
														:	STATION N	10.70 – P	AGAWONG	RIVER
			Water	Level		1	[[1				1	ľ
1 2	Oct. 7/57 Nov. 7	4:15 6:15	195.75 195.55	<u> </u>	57 44	3.1	2	8.1 8.2	10 5	0.8 0			184	0.250		33.6	283 288	33.7 34.9
34	Dec. Jan. 9/58	No samp 17:18	le taken 197.15		35	4.3	2	8.2	15	0.3			188	0,256		47.8	294	35.8
5 6 7	Feb. 7 Mar. 7 Apr. 7	17:45 10:40 11:35	197.10 196.85 196.5	}	33 33 34	6.3	1 1 1	8.3 8.3 8.3	10 10 10	0 0.4 0.4			168	0.228	· · · · · · · · · · · ·	25,6	300 304 285	36.9 37.1 35.2
8 9	May 7 June 6	21:29 14:26	197.18		47		1.5	8.3	10 5	0.4 0							277 294	33.8
012	July 7 Aug. Sept. 8	21:49 No samp	196.35 le tnken 195.0		63	3.2	2	8.0	5	0.8 0.9	• • • • • • • •		175	0.238		31.6	280	36,0
ż		16:128 18:117	195.3		64 56		2 2	8.0 8.1	10 5	0.9	· · · · · · · · · · · ·						273 277	31.7 31.6
	†Collector's	report of	river level	l in feet.														
		·						r			1				STATION	NO. 71 - 1	MINDEMOY	A LAK
4	Aug. 4/58	84:185			79	2.9	1.5	8.2	5 (10)	0.9		• • • • • • • • •	220	0,299.		67.6	335	38.2
	-														ST ATION	NO 72	MNDRUON	
5	July 23/57	43:84			72	3.0	4.	7.7	0	4	5.0	4.8	207	0,282	STATION	NO. 72 32.8	MINDEMOY 323	r
	1	43:84			, ,	3.0	4.	7.7	0	4	5.0	4.8	207			32.8		37.5
.5	1	43:84			72	3.0	<i>4.</i> 2	7.7 8.1 (8.3)	0	4	5.0	4.8	207			32.8	323	37.5
.6	July 23/57	43:84 85:185			, ,	·	·	8.1	·····	, 1	5.0	4.8	1	0.282		32,8 DN NO. 73	323 MANITO	37.5 U LAK)
.6	July 23/57				71	2.8	2	8.1 (8.3) 8.2	3	0.3	5.0	4.8	164	0.282	STATIC	32.8 DN NO. 73 37.3 38.4	323 - MANITO 269	37.5 U LAK) 32.0 32.1
6	July 23/57 Aug. 4/58				71	2.8	2	8.1 (8.3) 8.2	3	0.3	5.0	4.8	164	0.282	STATIC	32.8 DN NO. 73 37.3 38.4	323 - MANITO 269 266	37.5 U LAK 32.0 32.1 PP LAK
.7	July 23/57 Aug. 4/58	85:185			71	2.8	2	8.1 (8.3) 8.2 (8.5)	3 5 (5)	0.3	5.0	4.8	164	0.282	STATIC	32.8 NN NO. 73 37.3 38.4 ON NO. 7,	323 - MANITO 269 266 4 - DUNLC	37.5 U LAK 32.0 32.1 DP LAK 3.9
.6	July 23/57 Aug. 4/58	85:185			71	2.8	2	8.1 (8.3) 8.2 (8.5)	3 5 (5)	0.3	5.0	4.8	164	0.282	STATIC	32.8 NN NO. 73 37.3 38.4 ON NO. 7,	323 - MANITO 269 266 4 - DUNLC 32.9	37.5 U LAK) 32.0 32.1 DP LAK 3.9
.6	July 23/57 Aug. 4/58 Sept.24/59	85:185			71 73 70	2.8	2	8.1 (8.3) 8.2 (8.5) 6.5 (6.7)	3 5 (5) 0	0.3	5.0	4.8	164	0.282	STATIC STATIC	32.8 NN NO. 73 37.3 38.4 ON NO. 7 STATIO	323 - MANITO 269 266 4 - DUNLC 32.9 N NO. 75 - 1,150	37.5 U LAK 32.0 32.1 DP LAK 3.9 CREE 178
	July 23/57 Aug. 4/58 Sept.24/59	85:185			71 73 70	2.8	2	8.1 (8.3) 8.2 (8.5) 6.5 (6.7)	3 5 (5) 0	0.3	5.0		164	0.282	STATIC STATIC	32.8 NN NO. 73 37.3 38.4 ON NO. 7 STATIO	323 - MANITO 269 266 4 - DUNLC 32.9 N NO. 75 -	37.5 U LAK 32.0 32.1 DP LAK 3.9 CREE 178
.6	July 23/57 Aug. 4/58 Sept.24/59 Sept.29/59 Sept.25/59				71 73 70 . 65	2.8	2 1	8.1 (8.3) 8.2 (8.5) 6.5 (6.7) 5.6	3 5 (5) 0	0.3 0	5.0		164	0.282	STATIC STATIC	32.8 NN NO. 73 37.3 38.4 ON NO. 7 STATIO	323 - MANITO 269 266 4 - DUNLC 32.9 N NO. 75 - 1,150 - QUIRKE	37.5 U LAK 32.0 32.1 DP LAK 3.9 CREE 178 LAKE
.6	July 23/57 Aug. 4/58 Sept.24/59 Sept.29/59				71 73 70 . 65	2.8	2 1	8.1 (8.3) 8.2 (8.5) 6.5 (6.7) 5.6	3 5 (5) 0	0.3 0	5.0		164	0.282	STATIC STATIC STATI	32.8 NN NO. 73 37.3 38.4 ON NO. 7. STATIO	323 - MANITO 269 266 4 - DUNLC 32.9 N NO. 75 - 1,150 - QUIRKE	37.5 U LAK) 32.0 32.1 9P LAK 3.9 CREE: 178 E LAKE 28.9
6 7 8 9	July 23/57 Aug. 4/58 Sept.24/59 Sept.29/59 Sept.25/59				71 73 70 . 65	2.8	2 1	8.1 (8.3) 8.2 (8.5) 6.5 (6.7) 5.6	3 5 (5) 0	0.3 0	5.0		164	0.282	STATIC STATIC STATI	32.8 NN NO. 73 37.3 38.4 ON NO. 7. STATIO	323 - MANITO 269 266 4 - DUNLC 32.9 N NO. 75 - 1,150 - QUIRKE 242	37.5 U LAK 32.0 32.1 P LAK 3.9 CREE 178 S LAKE 28.9
6 7 8 9 9	July 23/57 Aug. 4/58 Sept.24/59 Sept.29/59 Sept.25/59 • From plan <i>See</i> also	85:185 186:197 183:203 185:196 183:203			71 73 70 . 65 . 70	2.8 1.7	2 1	8.1 (8.3) 8.2 (8.5) 6.5 (6.7) 5.6 6.6 (6.4)	3 5 (5) 0 10	0.3 0 0 4	5.0		164	0.282	STATIC STATIC STATI	32.8 NN NO. 73 37.3 38.4 ON NO. 7. STATIO	323 - MANITO 269 266 4 - DUNLC 32.9 N NO. 75 - 1,150 - QUIRKE 242 - QUIRKE	37.5 U LAK 32.0 32.1 32.1 32.1 32.1 32.1 32.1 32.1 32.1
6 7 8 9 0	July 23/57 Aug. 4/58 Sept.24/59 Sept.29/59 Sept.25/59 * From plan See also 7 Sept.29/59	85:185 186:197 183:203 185:196 183:203			71 73 70 . 65 . 70	2.8 1.7	2 1	8.1 (8.3) 8.2 (8.5) 6.5 (6.7) 5.6 6.6 (6.4)	3 5 (5) 0 10	0.3 0 0 4	5.0		164	0.282	STATIC STATIC STATI	32.8 N NO. 73 37.3 38.4 ON NO. 77 STATIO DN NO. 77 	323 - MANITO 269 266 4 - DUNLC 32.9 N NO. 75 - 1,150 - QUIRKE 242 - QUIRKE	37.5 U LAK 32.0 32.1 P LAK 3.9 CREE 178 CREE 178 S LAKE 28.9 33.9

•

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

										_	(In ț	arts p	er mi	llion)											
		on Fe)					Alk	alis											Hardı as Ca		constituents	E	dex	X	
Magnesium	Total	Dissolved	Manganese	Alumínum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of consti	Per cent sodium	Saturation index	Stability index	No
(Mg)			(Mn)	(A1)	(Cu)	(Zn)	(Na)	(к)	(N.Ң.)	(CO3)	(HCO3)	(SO4)	(CI)	(F)	(NO3)	(SiO ₂)	(PO4)	(B)					ļ		
		G. MAN	TOU			naluda	4)					•													
								1					<u> </u>	1	1	Ţ					1 1				
15.6 15 . 6		0.00	0.00	0.04		 	0.9 1.2	0.8 0.9	 0.0	0.0 0.0	I47 152	27.2 27.6	3.4 3.6	0.0	0.3 0.1	3.0 3.6	 		27.7 26,9	148 151	157 162	1.3 1.7	+0.2 +0.4	7.7 7.4	1 2 3
15.8 16.0		0.01	.0.00	0.02	0.00	0.00	0.9 1.2	0.8 0.7	0.0	0,0 0.0	152 155	27.6 28.9	3.3	0.0	0.1	0.8		0.00	29.3 30.7	154 158	160 166	1.2 1.6	+0.4	7.4 7.3	4
16.5 15.3		Trace	0.00		0.00	0.00	1.2	0.8 0.8	0.1	0.0 0.0	158 147	29.1 25.7	3.3 3.1 3.5 2.7	0.0	0.1	2.5 1.8			31.0 29.8	160 151	168 156	1.6 1.4	+0.5	7.3 7.3	6 7
14.8 15.3					. 0.00		0.9	0.7		0.0	144 151	24.8 23.8	2.9		0.4	2.3		0.00	27.0	145 153 154	151 156 160	1.3 1.3 1.5	+0.4 +0.4 +0.2	7.5 7.4 7.6	8 9 10
15.7 15.5		0.00	0.00	0.00	0.00	0.00	1.1 0.9	0.7	0.05	0.0 0.0	151 134	25.7 27.5	3.4 4.4	0,0	0.4	2.7 3.1		0.00	30.9 33.0	143	151	1.3	0.0	8.0	11
16.0							1.0	0.7		0.0	133	29.9	6.6		0.1	3.1			35.2	145	155	1.5	+0.2	7.7	13
near \	WEST H	ЗА У , МА	NITOU	JLIN IS	LAND	·	r	1		·			,		····	······	.								 -
19.7		0.00	0.00	0.04	0.00	0.00	1,4	0.9	0,1	0.0	163.2 (93)	38,8	3.6	0.0	0.8	3.8			42.4 (63)	176 (176)	188	1,7	+0.4	7.4	14
	L	1					·																		
at ou	tlet, M	NITOU	LIN IS	LAND																					
17.3		Trace	0.00	0.04	1		1.1	0.9		0:0	158	35.7	3.4	0.0	1.0	3.6			35.3	165	178	1.4	-0.1	7.9	15
					~	•			<u> </u>						•										
	let, M/	NITOU	— —	1	1	10.00		07			1/0	01.1	1.7			1 10	1	1	24.2	139	148	1.4	+0.3	7.5	16
15.0		Trace	0.00	0.07	Trace	0.00	0.9	0.7	0.0	0.0	140	23.3	3.7	0.0	0.4	3.0			24.3	139	140	1.4	10.5	1.5	
14.6		0.00	0.00	0.04	0.00	0.05	1.1	0.7	0.1	0.0	137	23.2	3.1	0.0	0,6	3.6			27.5	140 (143)	147	1.7	+0.4	7.4	17
near	ELLIO	T LAKE	:																						
0.6	0.04	0.00	0.00	Trace	0.00	0.00	0.8	0.5	0.0	0.0	6.8	6.8	0.2	0.0	0,1	1.5	0.0	T	6.5	12,1	17.8	12	-2.7	12	18
	<u> </u>			ļ	<u> </u>		<u> </u>		l		(0)	(6,1)					1			<u>.</u>	l	L	Į	L	
inflov	v to QL	IRKE L	AK E																						
16.3	0.52	0.07	0.80	0.14	0.00	0.05	27.5	29.5	0.2	0.0	2.2	495	28.2		72	4.4	0.0		505	507	852	9.8	-3.3	12	15
		ANROCI	7 TD AN	JITIM M		LIOT	1 4 1/1							-										_	
	1		1	1	T		1	1.0			1 71	1 77 2	170	100		1 2 2	T	,	70.7	000	1.41	1	-2.6	112	T 20
3.5	0.13	0.17	0,10	1 0.00	Trace	0.05	6.2	3.9	0.0	0.0 (0)	7.1 (6.8)	11.2	7.9	0.0	6.0	3.2			79.7	85.5	141	13	-2.0	12	20
† T	otal																								
at the	CONS	OLIDA	red di	ENISON	MINE,	ELLIC	T LAK	Е																	
3.4	0.25	0.12	0.12	t 0.00	Trace	0.00	6.6	4,6	0.2	0.0	4.4	90.7	8.9	0.1	0.6	2.4	0.0	ļ	94.0	97.6	154	12	-2.9	12	21
† To	otal																								_
near	ALGON	i - NORE	DIC MIN	NE,EL	liot l	AKE																			
0,7	<u> </u>		ļ				1.3	0,4	1	0.0	16.5	7.8		.					6.1	19.6	1		- 2,2	12	22
	•	I	1	1	•	1	1	ı	'	1	•	•	1	1	I	l.	۱.	I	1	I.	1	Į	ł	•	I I

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

			Stream di (Second-			ned	ų				Suspe matt		dried	e on evaj at 105º C olved soli				
	Date of collection	(Days)	On sampling date	Monthly mean	Water temp- erature (⁰ F.)	Oxyg by K	C Carbon dinxide (calculated)	рH	(Units)	(Units)	Dried at 105 ⁰ C.	Ignited at 550°C,	Р.Р.М.	Tons per acre- foot	Tnns per day	Lnss on igni- tion at 550 ⁰ C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C,	e) Calcium
			1,	·	1	1		<u> </u>	··	·			1	1	·			• • • • • •
1	f	<u> </u>		r · · · ·								r			STAT	ION NO. 78	- PECOF	
	Aug. 13/56						4	7.2	5	2	Trace	•••••	35	0.048	•••••		•••••	5.6
	Oct.	105.100				6.5	2	7.1	10	• • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • •				••••	51.9	6.6
3	Sept, 25/59	185:196	••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	70		2.5	6.8 (6.6)	0	I							225	26.6
	† Analysis	by Alchem	Ltd., Burli	ington, O	пı.													
				<u>.</u>									STAT	ION NO.	79 – SER	PENT (KE	NEBEC)	RIVER
۱	Aug. 5/54	11:12			65		2	7.0	10	•••••	•••••		30.8	0.042		12.4	32.1	3.8
5	Aug. 6/58	85:184			76	3.5	2	6.7		1			38.2	0.052	•••••	20.2	44.5	6.4
6	Sept. 29/59	188:216			66		4	6.6		0.8							94.6	10.0
	* Sampled a					_							•			· · · · · · · · · · · · · · · · · · ·		
	See alsn	Station No	5. 170, page	66														
-+		· · ·	ł · · · · · · · · · · · · · · · · · · ·			1	r	7	r			·			STA	TION NO. 8	0 – HORN	E LAK
7	Sept. 29/59	188:216			64		3	7.3	10	4	• • • • • • •					••••••	242	20.6
															STAT	TION NO. 8	l – ELLIC	T LAK
8	Aug. 14/58	86:193	<u> </u>			. 3.4	1.5	7.0		1			81.2	0.110	ST A1	TION NO. 8	98.7	T LAK
									(25)				81.2	0.110	ST A1		98.7	10.2
	Aug. 14/58 Sept. 25/59				67	3.4	1.5 2	7.0 7.0 (6.6)	(25) 5	1 I			81.2	0.110	ST A1			
9		185:196			67			7.0	(25) 5				81.2	0.110	STA1		98.7	10.2
9	Sept. 25/59	185:196			67			7.0	(25) 5				81.2	0.110			98.7 142	10.2 14.4
9	Sept. 25/59	185:196 able IV			67			7.0 (6.6) 7.0	(25) 5				81.2	0.110		22.8	98.7 142	10.2 14.4
9	Sept. 25/59 See also Ti	185:196 Ible IV			<u> </u>		2	7.0 (6.6) 7.0	(25)	I			81.2	0.110		22.8	98.7 142 - Westni	10.2 14.4 ER LAK
9	Sept. 25/59 See also Ti Sept. 25/55	185:196 Ible IV			<u> </u>		2	7.0 (6.6) 7.0	(25) 5	I			81.2	0.110	STATI	22.8 ON NO. 82	98.7 142 - WESTNI 267	10.2 14.4 ER LAK 30.3
9	Sept. 25/55 See also Tr Sept. 25/55 * From Stat	185:196 able IV 185:196 aleigh Mino		 	70	 	2	7.0 (6.6) 7.0 (7.3	(25) 5 0 (35)	2		· · · · · · · · · · · · · · · · · · ·	81.2	0.110	STATI	22.8	98.7 142 - WESTN1 267 3 - STRO	10.2 14.4 ER LAK 30.3
0	Sept. 25/59 See also Ti Sept. 25/55	185:196 able IV 185:196 aleigh Mino			<u> </u>		2	7.0 (6.6) 7.0	(25) 5 0 (35)	I			81.2	0.110	STATI	22.8 ON NO. 82	98.7 142 - WESTNI 267	10.2 14.4 ER LAK 30.3
0	Sept. 25/55 See also Tr Sept. 25/55 * From Stat	185:196 able IV 185:196 aleigh Mino			70	 	2	7.0 (6.6) 7.0 (7.3) 6.3	(25) 5 0 (35)	2			81.2	0.110	STATI	22.8 ON NO. 82	98.7 142 - WESTN1 267 3 - STRO 30.7	10.2 14.4 30.3 UTH L2 2.5
9	Sept. 25/55 See also Tr Sept. 25/55 * From Stat	185:196 bble IV 185:196 hleigh Minn 185:196			70	 	2	7.0 (6.6) 7.0 (7.3) 6.3	(25) 5 (35) 10 (35)	2			81.2	0.110	STATI	22.8 ON NO. 82	98.7 142 - WESTN1 267 3 - STRO 30.7	10.2 14.4 30.3 UTH L2 2.5
9	Sept. 25/55 See also Ti Sept. 25/55 * From Stat Sept. 25/55 Sept. 25/55	185:196 bble IV 185:196 lleigh Minu 185:196			70 . 65 . 64		2	7.0 (6.6) 7.0 (7.3) 6.3 (6.4)	(25) 5 (25) 5 (35) (35) (35) 5	1 2 0.8			81.2	0.110	STATI	22.8 ON NO. 82	98.7 142 - WESTN1 267 3 - STRO 30.7 4 - DEPC	10.2 14.4 ER LAK 30.3 UTH LA 2.5 TT LAK
9	Sept. 25/55 See also Tr Sept. 25/55 * From Star Sept. 25/55 Sept. 25/55 * Sampled	185:196 able IV 185:196 aleigh Minu 185:196 185:196 187:207 at Jake out			70 . 65 . 64		2	7.0 (6.6) 7.0 (7.3 (6.3 (6.4) 6.7	(25) 5 (25) 5 (35) (35) (35) 5	1 2 0.8			81.2	0.110	STATI	22.8 ON NO. 82	98.7 142 - WESTN1 267 3 - STRO 30.7 4 - DEPC	10.2 14.4 ER LAK 30.3 UTH LA 2.5 TT LAK
9	Sept. 25/55 See also Tr Sept. 25/55 * From Star Sept. 25/55 Sept. 25/55 * Sampled	185:196 able IV 185:196 aleigh Minu 185:196 185:196 187:207 at Jake out	plant tap		70 . 65 . 64		2	7.0 (6.6) 7.0 (7.3 (6.3 (6.4) 6.7	(25) 5 (25) 5 (35) (35) (35) 5	1 2 0.8			81.2	0.110	ST ATI	22.8 ON NO. 82	98.7 142 - WESTN1 267 3 - STRO 30.7 44 - DEPC 202	10.2 14.4 ER LAK 30.3 UTH L/ 2.5 T LAK 22.7
9	Sept. 25/55 See also Tr Sept. 25/55 * From Star Sept. 25/55 Sept. 25/55 * Sampled	185:196 185:196 185:196 185:196 185:196 185:196 187:207 at Jake out at Jake out	plant tap let frnm hig T1, page 6		70 . 65 . 64		2	7.0 (6.6) 7.0 (7.3) 6.3 (6.4) 6.7 (6.4)	(25) 5 0 (35) 5 5	1 2 0.8			81.2	0.110	ST ATI	22.8 ON NO. 82	98.7 142 - WESTN1 267 3 - STRO 30.7 44 - DEPC 202	10.2 14.4 30.3 UTH L2 2.5 T LAK 22.7
9	Sept. 25/55 See also Tr Sept. 25/55 * From Star Sept. 25/55 Sept. 25/55 * Sampled See also St	185:196 185:196 185:196 185:196 185:196 185:196 187:207 at Jake out at Jake out	plant tap let frnm hig T1, page 6		70 65 64		2	7.0 (6.6) 7.0 (7.3 (6.4) 6.7 (6.4)	(25) 5 0 (35) 5 5	1 2 0.8 0.4			81.2	0.110	ST ATI	22.8 ON NO. 82	98.7 142 - WESTN1 267 3 - STRO 30.7 4 - DEPC 202 - 85 - RY	10.2 14.4 30.3 UTH LJ 2.5 T LAK 22.7
9 0 1	Sept. 25/55 See also Tr Sept. 25/55 * From Star Sept. 25/55 Sept. 25/55 * Sampled See also St	185:196 185:196 185:196 185:196 185:196 185:196 187:207 at Jake out at Jake out	plant tap let frnm hig T1, page 6		70 65 64		2	7.0 (6.6) 7.0 (7.3) 6.3 (6.4) 6.7 (6.4)	(25) 5 0 (35) 5 5	1 2 0.8 0.4			81.2	0.110	ST ATI	22.8 ON NO. 82	98.7 142 - WESTN1 267 3 - STRO 30.7 4 - DEPC 202 - 85 - RY 48.7	10.2 14.4 30.3 UTH L2 2.5 T LAK 22.7 AN LAI 5.6
9 0 1 3	Sept. 25/55 See also Tr Sept. 25/55 * From Star Sept. 25/55 Sept. 25/55 * Sampled See also St	185:196 able IV 185:196 aleigh Mino 185:196 187:207 at lake out at lake out at lake out 187:196	plant tap let frnm hig T1, page 6		70 65 64		2	7.0 (6.6) 7.0 (7.3) 6.3 (6.4) 6.7 (6.4)	(25) 5 0 (35) 5 5	1 2 0.8 0.4			81.2	0.110	ST ATI	22.8 ON NO. 82	98.7 142 - WESTN1 267 3 - STRO 30.7 4 - DEPC 202 - 85 - RY 48.7	10.2 14.4 30.3 UTH L2 2.5 T LAK 22.7 AN LAI 5.6
9 0 1 3 4 5	Sept. 25/55 See also Tr Sept. 25/55 * From Star Sept. 25/55 Sept. 25/55 * Sampled See also St Sept. 25/55	185:196 able IV 185:196 185:196 185:196 185:196 187:207 at Jake out atinn No. 187:196 187:196	plant tap plant tap clet from hig 71, page 6	2	70 65 64 63		2	7.0 (6.6) 7.0 (7.3) (6.4) 6.7 (6.4) 7.0 (6.2)	(25) 5 (35) 5 5 5 5 0 10 (35)	1 2 0.8 0.4					ST ATI	22.8 ON NO. 82 FION NO. 8 FION NO. 8 FION NO. 8 FATION NO. 8 ION NO. 86	98.7 142 - WESTN1 267 3 - STRO 30.7 4 - DEPC 202 0.85 - RY 48.7 - LAUZC	10.2 14.4 SR LAK 30.3 UTH L/ 2.5 T LAK 22.7 AN LAN 5.6 N LAK

* At mine tap prior to mining † Collector's estimate of stream discharge

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

											(1n [arts p	er mil	lion)											
	Iron (Fe)						Alka	lis								0			Harda as Ca		constituents	dium	ndex	index	
Magnesium	T ota l	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbona te	Bicarbonate	Sulphate	Chl oride	Fluoride	Nitrate	Silica (colorímetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of cons	Per cent sodium	Saturation index	Stability inc	No.
(Mg)			(Mn)	(Al)	(Cu)		(Na)	(K)	(NH3)	(CO3)	(HCO3)	(SO4)	-	(F)	(NO3)		(PO4)								
A	LGOM-				naluda	-1			-																<u></u>
1.0	0.1	NORD		0.0					0.2	0.0	19.5	5.4	2,4			2,2			2	18	f				. 1
1.1		0,02	0.00	0.01	0.00	0.00	0.6	0,3	0.1	0.0	16,1	8.0	0.1		3.2	2.3			7.8	21.0	30.2	\$.7	-2.3	12	2
4.4	0.23	0,00	0.10	0.00	0.00	0,00	5.2	2.6	0.0	0.0	10.2	75.9	6.0	0.0	1,0	3.0	0.0		75.5	83.9	130	11	-2.2	11	3
* toti	al I		1			I		I	۱ <u>.</u>	(0)	(9.2)				1	[l	 			L			<u> </u>	L
	UTLER																								
0.6			0.00				0.6	0.3		0.0	12.3	6.7	0.5	0.0	0.4	1.4			1.9	12.0	20.5	9.5	-2.7	12	4
0.3		Trace	0.00	0.01	0.00	0.05	0.8	0.3	0.1	0.0	7.6	10.1	0.3	0.0	0.6	1.7			11.0	17.2	24.3	8.9	-3.0	13	5
2.0	0.07	Trace	0.00	0.00	0.00	0.00	2.6	1.2	0,1	(0) 0•0	(9.9) 9.5	27.8	3.8	0.0	0.5	2.8	0.0		(11.7) 25.2	(19.8) 33.0	55.4	14	-2.9	12	6
			1		1	[1	<u> </u>									1	1							<u> </u>
	LIOT L			1	1	0.00		1.0				1.0.1					1	1			1.20	25		10	_ _
3.7 † Tota	0.14 1	0.01	0.10	0.0	0.00	0.00	17.6	4.8	0.2	0.0	34.3	38.1	28.5	0.0	2.0	6.1	0.0	••••	37.9	66.0	138	35	-1.4	10	7
at ELI	LIOT L	AKE		.											·	•		1				· .		,	r
1,6		0.03	0,01	0.01	0.07	0.00	3.6	1,1	0.1	0.0 (0)	9.8 (8.9)	24.0	5.0	0.0	1.5	2.1			24.0	32.0	54.1	20	-2.4	11	8
2,4	0.07	0.00	Trace	Trace	i e 0.09	0.10	6,1	1.9	0.0	0.0	11.3 (9.8)	34,6	9.4	0.0	0.8	2.5	0.0		36.0	45.3	77.9	22	-2.2	11	9
				.t	!	<u>+</u>	<u> </u>	۱ <u></u>	I	(()(0)		<u> </u>		ł	1	1	I,	I				L		└
near E	LLIOT	LAKE	:																						
5.8	0.37	0.00	0,10	0.0	0.00	0.00	7.0	3.8	0.0	0.0	14.1	91,7	8.2	0.0	1.5	4.4	0.0		,87,3	98.9	160	13	-1.8	11	10
† total	<u> </u> ;		1		<u> </u>	1	<u> </u>	<u> </u>		ł		l	L		l	l.	1	1		<u> </u>	۰				L
		JIFIG		NITIM	MINE	E1110	OT LAK	F																	
0.8	0.07	0.00	1	10.0	0.00	1	0.8	0.7	0.0	0.0	2.0	7.7	1.0	0.0	0.5	0.9	0,0		7.8	9.4	15.9	14	-4.8	16	11
† total						1		L]		[<u> </u>	!			L	L
	LLIOT	LAKE	:													,								,	_
4.0	0.05	0,00	0.00	0.0	0.00	0.00	6.0	2.9	0.0	0.0 (0)	9,9 (9,8)	65.0	6.4	0.1	2,5	1.6	0.0		64.5	72,6	126	15	-2.4	12	12
	•		1			•		·	<u> </u>			•					<u>.</u>		• • • • • • •						
	1.001	None					-																		
1.1	LGOM-		0.02	1	1	0.00		0.6	0.3	0.0	11.6	7.1	3.5	0.0	0.0	2.0	0.0	Г	9.1	18.6	26.4	8,3	-2.6	1 12	13
		0.01	0.02		0.02	0.00	0.0	0.0	0.5	0.0			5.5	0.0	0.0	2.0	0.0		<u> </u>	10.0	2014	0.5	210	12	
† total at PR	i ONTO I	JR ANI	им мі	ves, n	iear SP	RAGGI	E															_			
1.3		0.08	1	·	•••••		1,1	1		1	13.5	8,3	1		[1.7			3.7	14.8	25.0	9.5			14
0.9 1.1	•••••	0.01 0.01		0.17	0.00		0,8			0.0	8.4 8.3	8.8 8.0	1.0 1.2	0.05	Trace 0.2	2.0			8.0 7.7	14.9 14.5	22.0 22.0	10	-3.1 -3.3		
0.3		•••••		.		0.00	1.0	0.6	0.0	0.0	9.0	7.5	1.5		0.2	1.7	 	•[••••	7.1	14.5	22.5	13	-2.9	13	17

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

									11/1		<i>er m</i>								
				Stream d			ned	ย				Suspe matt		dried	on evap at 105 ⁰ lved sol	с.			
No.		Date of lection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO4	Carbon dioxide (calculated)	рН	Hazen)	Turbidity	Dried at 105º C.	Ignited at 550° C.	P.P.M.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁵ at 25 ⁰ C.	Calcium
			(Days)			(°F.)		(CO ₂)		(Units)							<u> </u>	<u> </u>	(Ca)
																STATION	NO 86 -	LAUZON I	AK 6.*
									1	<u> </u>		1			0.069	31/11/01	· · · · · ·	r	
1	Oct. Nov		6:13		•••••	72 	9.4 	2 19	6.7 5.0	5 5	0 2			50 . 4		•••••	15.2	65.3 95.2	6.7 9.2
		**	101.001					3	6.4	0	0.8							459	38.6
3	<u> </u>	t.29/59		<u></u>	•••••	<u>}· · · · · · · · · · · · · · · · · · · </u>		<u> </u>	0,4		0.0	<u></u>						1	5010
	• Al	t mine ta t mine m	ip prior to ill tap	mining												STATION	I NO. 87 -	- LAUZON	LAKE *
4	Aug	. 6/58	85:184			76	1.7	1	6.8	5	0			58.8	0,080		13.2	69.7	6.7
,		25/50	187:207			67		2	(7.5) 6,8	0	2							96.7	9.3
, 	Sepi	. 25/59	107;207	·····			<u> </u>	1	(6.5)		-								
	* Si	ampled f	rom highw	ay No. 17	bridge										ST	ATION NO). 88 – M/	TINENDA	LAKE*
6	Aug	. 6/58	92:184	·····		73	2,3	0.7	7,1	5	0			44.0	0.060		13.2	35.2	3.5
	• F	rom wha	.1 rf		I		<u> </u>	4	1		1	·	·	L	<u> </u>	l	L		
																CT ANT	N NO 00	– BLIND I	WED
			T	1	1	1	1	1	<u> </u>		1	1		1	Т	1	1	r	1
7	Sep	t.25/59	187:207	h		66		. 2	7.1	5	1							. 51.9	5.6
	See	also St	ation No.	172, page 6	i6											PATION N	0 00 D	URYING LA	VE
	<u> </u>		1	1	l	1	1	T	1	1		1	1	T	1		1	1	1
8	Aug	. 8/58	90:187			65	3.6	3	7.7 (7.8)	25 (50)	2			. 113	0.154		18.8	146	22.8
	* Sa	mpled a	t highway	No. 129 br	idge				-1		· • • • • • • • • • • • • • • • • • • •				SI	TATION N	0.91 – W	ENEBEGON	RIVER
9	Aug	. 8/59	90:187			. 68	5.9	2	7.7	30 (45)	0.8			. 80.8	0.110	}	18.0	98.7	13.8
	• S	ampled a	at bridge o	on road to F	eshu Lake	 e	- I	<u> </u>	<u>[(,,,,)</u>	(4))	<u> </u>		I	L			I	<u>I.</u>	
			·												STA	TION NO.	92 - ROC	KY ISLANI	LAKE
				Wate	t Level †											ļ			
10		10/57	11:18	1,334.7	·····	. 57	8.4	2	7,3	40	0.9			. 42.8	0,058		. 26.4	43.6	6,3
11	1			1,336.4		. 35	8.3	1	7.3	30	0,7		••••••	45.2	0.061		18,8	44.0	5.1
		. 10/58	1	1,302.4	1	. 38	7.5	3	6.9		1		+	. 50.4	0.069	·····	. 21.2	50.5	5.9
13	<u> </u>	/ 16/58		1,320.2	J	. 67		. 2	7.1	40	0		•••••••	. . <u></u>	••••••			45.4	5.0
			at outlet d 's report	of lake leve	el in feet									STATI	on no, 9	93 – Wene	BEGON (MISSISSAGI) RIVER
14	Aug	. 7/58	91:88			. 73	6.7	0.6	8.1	25	0	·····		76.0	0.103		. 36.4	96.2	13.3
	• •		t highway	No. 129 5	idge.	L		<u> </u>	(7.9)	(55)	1		1		1	L	<u> </u>	<u> </u>	
	91		. mguway	4100 127 DI															
				-1	· · · · · · · · · · · · · · · · · · ·	·····					-ı	· · · · · ·	STAT	ON NO. 9	4 – MISS	ISSAGI RI	VER at GI	AND FALL	S DAM
15 16	Oct No		9:14 6:15	2,160† 1,560	1,730† 1,680	58 47	6.4	1 2	7.5	25 35	0.8 0.4			. 52.8	0.072	308	12.8	65.4 57.8	8.2 6.9
			.'	t the Gent	1	,	•		•	•					20221.05		4	1 2000	1

† Discharge records at the George Rayner plant, Ontario Hydro Electric Power Commission; Lat. 46°26' 05", Loog. 83°23' 05". Drainage area 2,700 square miles

•

 TABLE II – (Continued)

 Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

												puito	<i>p o i i</i>		·/										
	Ir (F						Alk	alis											Hardn as Ca		tuents	8	ex	×	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoríde	Nitrate	Silica (colorimetric)	Phosphate	Вогов	Non- car- bonate	Total	Sum of constituents	Per cent sodium	Saturation index	Stability index	1
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(К)	(NH3)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO3)	(SiO ₂)	(PO4)	(B)							
at PRO	ONTO L	JRANIU	M MINE	S, nea	SPRA	GGE - (conclu	ded)																	
1.4 1.9		0.04 . 0.07	0,00 	0.15 0.34	0.00 0.01	0.00 0.00	I.3 1.2	0.7 0.9	0.0 0.0	0.0 0.0	5.2 1.2	20.1 34.0	1.3 1.4	0.05	1.2 0,8	1,8 2.2			18.2 29.8	22.5 30.8	37.4 52.6	10 7.1	-0.5 -5.4	10 16	:
18.2	0.31	0.11	0.071	Trace	0,00	0.00	16.6	4.4	0.0	0.0	5.6	167	26.9	0,1	0.3	2.9	0.0		166	170	278	17	-2.7	12	3
T Tota	il							-							<u></u>								•		
Rear A	1	A (Mills)	<u> </u>		<u> </u>						ı	r		r		r			·					
1,8		Trace	0.00	0,03	0.00	0.05	1.7	0,7	0.05	0.0	5.7	18,7		0.0	0.6	1.6			19.4	24,1 (23,5)	36.4	13	-3.0	13	4
2.3	0.08	0.00	0.00	0.00	0.00	0.00	3.3	1.1	0.0	0.0	7.3 (8.5)	24.9	5,1	0,1	0.3	2,6	0.0	 	26.3	32.3	52.6	17	-2.8	12	5
at outl	et, near	BLINE	RIVE	R																			•		
0.9		Trace	0.00	0.02	0.00	0.00	1,1	0.3	0.1	0.0	6,1 (8,3)	8.3	0.5	0,0	0.4	4.0	ļ		7.4 (7.1)	12.4 (13.9)	22.0	16	-3.0	13	6
at BLI	ND RIV	'ER 0.00	0.00	0.00	0.00	0.00	1.4	0.5	0.0	0.0	15.0	8.1	1	0.1	0.3	1.0		1		1 20 0					
	0114	0.00	0.00	0.00	0.00	0.00	1.4	0.5	0.0	0.0	15.0	0.1	1.1	0.1	0.5	3.0	0.0		7.9	20,2	29.0	13	-2.4	12	7
north	of AUB	REY FA	LLS																						
4.2	0.33	0.02	0.00	0.00	0.00	0.05	1.2	0.6	0.1	0.0	83.1	4.9	0.7	0.0	1.0	8.6			1.0	69,2 (64,2)	85.0	3.4	0.5	8,7	8
aear.	AUBRE	YFAL	LS																						
3.6		0.01	0.00	0.00	0.00	0.00	1.1	0,5	0.2	0,0 (0)	51.6 (50.5)	6.6	0.8	0.0	0.6	5.3			6.9 (10)	49.2 (51.4)	57.7	4.6	-1.0	9.7	9
near A	UBRE	Y FALL	.s				·					•													
1.9		0.02	0.00	0.00	0.00	0.00	0.9	0.5			20.6	<u>-</u> .													
1.4		0.07	0.00	0.00	0.00	0.00	0.9	0.5	0.0	0.0	20,6 14,0	7.4	0.7	0.0	1.0 Trace	3.2		0.00	6.6 7.0	23.5	32.1	7.5	-2.1		10
1.8		0.06	0.00	0,02	0.00	0.00	1.1	0.5	0.1	0.0	16,2	8.0	0.6		0.5	3.8		0.00	8.8	22.1	30.3	8.2 9.4	-2.4		11
1.6	[. .	0.03	0.00	0.00	0.00	0.00	1.1	0.4	0.15	0.0	14.9	7.6	0.6	0.0	0.2	2.6			6.9	19.1	26.4		-2.4	1	13
below	AUBRE	Y FALI	s							-								1	·	-1.	·	•			<u> </u>
		<u> </u>	0.00	0.00	0.00	0.00	1,2	0.4	0.1	0.0	48.3	6,8	1.0	0.0	1.0	5.6	<u> </u>	 I	6.7	46.3	56.3	5.3	-0.6	9.3	14
	I	l	L	1	l	<u>.</u>		L	<u> </u>	I	<u> </u>			ļ	L	1				(49.2)			0.0		
near Tl	HESSAL	.ON																							
	<u> </u>	1	1		·	T	r	т	r	1	·						· · · · · · · · ·	·							

	0.05	0.00	0.00 	0.00	0.00	0.9 1.2	0.5 0.6	0.0 0.05	0.0 0.0	27.1 23.6	7.3 8.0	0.8 0.7	0.0		3.8 3.5	 	6.5 6.0	28.7 25.4	37.1	6.2 9.0	-1.6	11	1
														1 012 1	5.5	 •••••	0.0	22.4	24.9	9.0	-1.9		1.

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

		_	Stream d (Secon			шeđ	le				Suspe matt		dried	on evan at 105 ⁰ lved sol	c.	Loss	Specific	l
	Date of collection	(Days)	On sampling date	Monthly mean	Water temp- eratwre (⁰ F.)	Oxygen consumed by KMnO4	C) Carbon dioxide	рН	범 이 (Hazen) (Units)	(Units)	Dried at 105º C.	Ignited at 550º C.	P.P.M.	Tons per acre- foot	Tons per day	on igni- tion at 550°C.	conduct- ance K × 10 ⁶ at 25 ⁰ C.	C. anialan
															STATION	NO. 94 -	MISSISSAG	I R IV
	Dec. 10/57	30:38	1,730†	1,580†	34		0.6	7.4	30	0.3							60.6	7.
	Jan, 10/58 Feb. 11	20:34 16:41	2,280 2,960	2,390 2,950	33 34	7 . 6	3	7.2	30 35	0.3 0.4			52.0	0.071	320	17.6	64.6 56,1	8.
	Mar. 11 Apr. 8	6:44 14:34	2,960 2,540	2,950 2,600	33 35	7,2	14	7.4	40	0.3 0.4			49.6	0.067	337	21.2	56.8 57.1	6.
5	May 13 June 10	17:23 17:30	2,970 2,050	2,410 1,690	50 48		2	7.2 7.4	40 30	0.4 0							56.5	7.
3	July 8 Aug. 12	20:48 21:41	1,600 1,010	1,370 672	64 74	6.9	1	7.5	30 25	0.7 0.			54.0	0,073	231	18.8	59.8 69.5	7.
	Sept. 9	15:127	711	525	67		32	7.3	20	0.8							70.2	9
	† Discharge	records a	t the Georg	ge Rayner	plant, O	ntario H	ydro E	lectric	Power (Commissi	on, Lat. 4	16° 26' 05'	, Long. 8	3° 23' 05'	. Drainage	e area 2,7(0 square m	iles
-		r .			I			,			· ····		·		STATION	NO. 95	MISSISSAGI	RIV
1	July 25/57	53:82	2,540†	3,890†	69	7.6	2	7.2 (7.1)	35 (65)	1			54.0	0.073	367	18,4	62.3	7.
2	Aug. 8/58	90:187	1,340	672	69	5.4	0.9	7.7	25 (35)	0.8	••••••		62.4	0.085	226	22.4	67.5	8
								(7.1)										
4	Sept. 28/59	190:218	1,600	515	66		4	7.1 (7.9)	25	2							. 77.8	9.
5	May 7/62	45:49	9,490	6,530	45	5.6	4	7.1 (7.9) 6.7	30	6	11	6,4	44.4	0.060	1,127	23.6	. 77 . 8 45.1	
5	May 7/62 † Discharge * Sampled av Aug. 7/58	45:49 records a bridge o 91:180	9,490 It Rayner (n road to D	6,530 Generating ean Lake.	45 Station	1	4	7.1 (7.9) 6.7	30	6	ł		44.4	0.060	J.,	L		4 RIVE
5	May 7/62 † Discharge * Sampled av	45:49 records a bridge o 91:180	9,490 It Rayner (n road to D	6,530 Generating ean Lake.	45 Station	see Ste	4 ition N	7.1 (7.9) 6.7 0. 94,	30 also Stat	6 ion No.	173, page		77.6	0.106	STATIO	ON NO. 97 37.6	45.1 - RAPID F 84.5	4, RIVE 11,
	May 7/62 † Discharge * Sampled av Aug. 7/58	45:49 records a bridge o 91:180	9,490 It Rayner (n road to D	6,530 Generating ean Lake.	45 Station	see Ste	4 ition N	7.1 (7.9) 6.7 0. 94,	30 also Stat	6 ion No.	173, page		77.6	0.106	STATIO	ON NO. 97 37.6	45.1	4, RIVE
5	May 7/62 † Discharge * Sampled au Aug. 7/58 * Sampled n	45:49 records a t bridge o 91:180 ear mouth	9,490 It Rayner (n road to D	6,530 Generating ean Lake.	45 Station 73 Dridge	- see Sta 5,2	4 1.5	7.1 (7.9) 6.7 o. 94, 7.6	30 also Stat 20 5	б іоп No. 0	173, page		77.6 S'	0.106 FATION 0.039	STATIC NO. 98 –	DN NO. 97 37.6 JOBAMMA 10.4	45.1 - RAPID F 84.5 GEESHIG I	4 RIVE 111, AKI 3,
6	May 7/62 † Discharge • Sampled au Aug, 7/58 • Sampled n Aug, 8/59 Oct. 9/57	45:49 records a t bridge o 91:180 ear mouth 90:187 8:13	9,490 tt Rayner (n road to D 	6,530 Generating ean Lake, y No, 129 1	45 Station- 73 pridge 75 57	- see Sta 5,2	4 1.5 2	7.1 (7.9) 6.7 0.94, 7.6 6.7 (7.9)	30 also Stat 20 5 (15) 20	б іоп No. 0	173, page		77.6 S'	0.106 FATION 0.039	STATIC NO. 98 –	DN NO. 97 37.6 JOBAMMA 10.4	45.1 - RAPID F 84.5 GEESHIG L 36.1	4 RIVE 111, AKI 3,
5 6 7	May 7/62 † Discharge * Sampled au Aug. 7/58 * Sampled n Aug. 8/59 Oct. 9/57 Nov. 11 Dec. 9	45:49 records a t bridge o 91:180 ear mouth 90:187 8:13 2:21 4:21	9,490 tt Rayner (n road to D 	6,530 Generating ean Lake. y No. 129 1	45 Station- 73 bridge 75 57 40 31	- see Ste 5.2 2.3	4 1.5 2	7.1 (7.9) 6.7 0.94, 7.6 6.7 (7.9) 7.5 7.2 7.0	30 also Stat 20 5 (15) 20 35 25	6 ion No. 0 0	173, page		77.6 5' 28.4	0.106 FATION 0.039 STA	STATIC NO. 98 – 	DN NO. 97 37.6 JOBAMMA 10.4 99 - LITT	45.1 - RAPID I 84.5 GEESHIG I 36.1 FLE WHITE 61.2 51.5	4 RIVI 11 .AK: 3 . RIV 6 5
5	May 7/62 † Discharge * Sampled av Aug. 7/58 * Sampled n Aug. 8/59 Oct. 9/57 Nov. 11 Dec. 9 Jan. 9/58 Feb.	45:49 records a t bridge o 91:180 ear mouth 90:187 8:13 2:21 4:21 21:35 No samp	9,490 tt Rayner (n road to D at highway 190 600 734 992 le taken	6,530 Generating ean Lake.	45 Station- 73 oridge 75 75	- see Ste 5.2 2.3	4 1.5 2	7.1 (7.9) 6.7 o. 94, 7.6 6.7 (7.9)	30 also Stat 20 5 (15) 20 35	6 ion No. 0 0	173, page		77.6 5' 28.4	0.106 FATION 0.039 STA	STATIC NO. 98 – 	DN NO. 97 37.6 JOBAMMA 10.4 99 - LITT	45.1 - RAPID I 84.5 GEESHIG I 36.1 TLE WHITE 61.2	4 RIVE 11 .AKI 3 : RIV
5 6 7 8 9 0 1 2 3 4	May 7/62 † Discharge * Sampled at * Sampled n Aug. 7/58 * Sampled n Aug. 8/59 Oct. 9/57 Nov. 11 Dec. 9 Jan. 9/58 Feb. Mar. 17 Apr. 10	45:49 records a t bridge o 91:180 ear mouth 90:187 8:13 2:21 4:21 21:35	9,490 tt Rayner (n road to D 	6,530 Generating ean Lake. y No. 129 1 	45 Station- 73 bridge 75 57 40 31	- see Ste 5.2 2.3 4.0 5.3	4 1.5 2 1 1 2 2 4	7.1 (7.9) 6.7 0. 94, 7.6 7.6 7.6 7.0 7.0 7.0 6.9	30 also Stat 20 5 (15) 20 35 25 25 25 15	6 ion No. 0 0 0 0 0 2. 0.9 2. 0.9 2. 0.6 2	173, page		77.6 5' 28.4 56.4 	0.106 IATION 0.039 STA 0.077 0.075	STATK NO. 98 – TION NO. 29.0	DN NO. 97 37.6 JOBAMMA 10.4 99 - LITT 12.8 17.6	45.1 - RAPID I 84.5 GEESHIG I 36.1 TLE WHITE 61.2 51.5 49.2 49.3 59.8	4 RIVE 111 AKI 3 : RIV 6. 5. 5. 6.
5 5 6 7 7 8 9 0 1 2 3 4 5	May 7/62 † Discharge * Sampled au Aug. 7/58 * Sampled n Aug. 8/59 Oct. 9/57 Nov. 11 Dec. 9 Jan. 9/58 Feb. Mar. 17	45:49 records a t bridge o 91:180 ear mouth 90:187 8:13 2:21 4:21 21:35 No samp 17:45 15:40 5:18	9,490 tt Rayner (n road to D 	6,530 Generating ean Lake. y No. 129 1 y No. 129 1 	45 Station- 73 bridge 75 57 40 31 33 35 45	- see Ste 5.2 2.3 4.0 5.3 5.0	4 1.5 2 1 1 2 2 4 2 1,5	7.1 (7.9) 6.7 0. 94, 7.6 7.6 7.6 7.0 7.0 6.9 7.0 7.0 7.1	30 also Stat 20 5 (15) 20 35 25 25 25 15 20 20	6 ion No. 0 0 2. 0.9 0.6 2 2 1	173, page		77.6 5' 28.4 56.4	0.106 FATION 0.039 STA 0.077	STATIC NO. 98 – 	DN NO. 97 37.6 JOBAMMA 10.4 99 - LITT 12.8	45.1 - RAPID I 84.5 GEESHIG I 36.1 TLE WHITE 61.2 51.5 49.2 49.3 . 59.8 46.3 . 45.2	4 RIVE 111 AKU 3 3 5 5 6 5 5 6 5 4
5 6 7 8901234567	May 7/62 † Discharge * Sampled at Aug. 7/58 * Sampled n Aug. 8/59 Oct. 9/57 Nov. 11 Dec. 9 Jan. 9/58 Feb. Mar. 17 May 10 June 9 July 11	45:49 records a t bridge o 91:180 ear mouth 90:187 8:13 2:21 4:21 21:35 No samp 17:45 15:40 5:18 16:23 27:45	9,490 tt Rayner (n road to D 	6,530 Generating ean Lake. 	45 Station- 73 73 75 75 75 57 40 31 33 35 45 61 62	2.3 4.0 5.2 5.3 5.3 5.0 5.0	4 1.5 2 1 1 2 2 4 2 1,5 2 1	7.1 (7.9) 6.7 0. 94, 7.6 7.6 7.6 7.6 7.2 7.0 7.0 7.0 7.0 7.0 7.0 7.1 7.2 7.0 7.0 7.1 7.2 7.0	30 also Stat 20 5 (15) 20 35 25 25 25 25 15 20 20 20 20	6 ion No. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	173, page		77.6 5' 28.4 56.4 55.2 	0.106 FATION 0.039 STA 0.077 0.075 0.064 0.060	STATIC NO. 98 – TION NO. 29.0 147 127 106	DN NO. 97 37.6 JOBAMMA 10.4 99 - LIT 12.8 17.6 10.0 14.8	45.1 - RAPID I 84.5 GEESHIG I 36.1 TLE WHITE 61.2 51.5 49.2 49.3 59.8 46.3 59.8 59.8	4 RIVE 111 AKI 3 RIVE 6 5 5 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6
5 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	May 7/62 † Discharge * Sampled au Aug. 7/58 * Sampled n Aug. 8/59 Oct. 9/57 Nov. 11 Dec. 9 Jan. 9/58 Feb. Mar. 17 Ary. 10 June 9 July 11 Aug. 7 Aug. 11	45:49 records a tridge o 91:180 ear mouth 90:187 8:13 2:21 4:21 21:35 No samp 17:45 15:40 5:18 16:23 27:45 91:183 22:38	9,490 tt Rayner (n road to D 	6,530 Generating ean Lake. y No. 129 1 y No. 129	45 Station 73 bridge 75 57 40 31 33 35 	see Ste 5.2 2.3 4.0 5.3 5.0 3.8 3.4	4 1.5 2 1 1 2 2 4 2 1.5 2 1 0.8 3	7.1 (7.9) 6.7 7.6 7.6 7.6 7.6 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	30 also Stat 20 5 (15) 20 35 25 25 25 15 20 20 20 20 20 15 (25) 15	6 ion No. 0 0 0 2 0.9 0.9 0.9 0.9 0.6 2 2 1 1 0.8 0.8 0	173, page		77.6 5' 28.4 56.4 55.2 46.8	0.106 FATION 0.039 STA 0.077 0.075 0.064	STATIC NO. 98 – TION NO. 29.0 147 127	DN NO. 97 37.6 JOBAMMA 10.4 99 - LITT 12.8 17.6 10.0	45.1 - RAPID I 84.5 GEESHIG I 36.1 TLE WHITE 61.2 51.5 49.2 49.3 - \$9.8 46.3 - \$5.6 59.0 - \$8.8	4 RIVI 111 AK 3 RIVI 65 55 5 65 55 65 55 65 55 66 67 7 6 6 6 7 6 6 6 7 6 6 6 6 7 7 6 6 7 7 6 6 7 7 6 7 7 6 7 7 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7
5 5 5 5 5 7 7 7 7 7 7 7 7 3 3 5 5 5 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	May 7/62 † Discharge * Sampled at * Sampled n Aug. 7/58 * Sampled n Aug. 8/59 Oct. 9/57 Nov. 11 Dec. 9 Jan. 9/58 Feb. Mar. 17 May. 10 June 9 July 11 Aug. 7	45:49 records a bridge o 91:180 ear mouth 90:187 90:187 8:13 2:21 4:21 21:35 No samp 17:45 15:18 16:23 27:45 91:183	9,490 tt Rayner (n road to D 	6,530 Generating ean Lake. 	45 Station 73 bridge 75 57 40 31 33 35 61 62 71	see Ste 5.2 2.3 4.0 5.3 5.0 3.8 3.4	4 1.5 2 1 1 1 2 2 4 2 1,5 2 1 0.8	7.1 (7.9) 6.7 0. 94, 7.6 7.6 7.6 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	30 also Stat 20 5 (15) 20 35 25 25 25 25 25 15 20 20 20 20 20 20 20 20 20 20 20 20 20	6 ion No. 0 0 0 2. 0.9 2. 0.9 0.6 2 2 1 1 0.8 0.8	173, page		77.6 5' 28.4 56.4 55.2 	0.106 FATION 0.039 STA 0.077 0.075 0.064 0.060	STATIC NO. 98 – TION NO. 29.0 147 127 106	DN NO. 97 37.6 JOBAMMA 10.4 99 - LIT 12.8 17.6 10.0 14.8	45.1 - RAPID I 84.5 GEESHIG I 36.1 FLE WHITE 61.2 51.5 49.2 49.3 59.8 46.3 59.8 45.2 59.8 50.6 59.0 59.8 59.8 59.8 59.8 50.6 59.8	4 RIVI 111 .AK: 3 3 : RIV 6 5 5 5 6 5 4 6
	May 7/62 † Discharge * Sampled au Aug. 7/58 * Sampled n Aug. 8/59 Oct. 9/57 Nov. 11 Dec. 9 Jan. 9/58 Feb. Mar. 17 Ary. 10 June 9 July 11 Aug. 7 Aug. 11	45:49 records a tridge o 91:180 ear mouth 90:187 8:13 2:21 4:21 21:35 No samp 17:45 15:40 5:18 16:23 27:45 91:183 22:38	9,490 tt Rayner (n road to D 	6,530 Generating ean Lake. y No. 129 1 y No. 129	45 Station 73 bridge 75 57 40 31 33 35 	see Ste 5.2 2.3 4.0 5.3 5.0 3.8 3.4	4 1.5 2 1 1 2 2 4 2 1.5 2 1 0.8 3	7.1 (7.9) 6.7 7.6 7.6 7.6 7.6 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	30 also Stat 20 5 (15) 20 35 25 25 25 15 20 20 20 20 20 15 (25) 15	6 ion No. 0 0 0 2 0.9 0.9 0.9 0.9 0.6 2 2 1 1 0.8 0.8 0	173, page	66	77.6 5' 28.4 56.4 55.2 46.8 44.0 48.4	0.106 IATION 0.039 STA 0.077 0.075 0.064 0.066 0.066	STATIC NO. 98 – TION NO. 29.0 147 127 106 34.4	DN NO. 97 37.6 JOBAMMA 10.4 99 - LITT 12.8 17.6 10.0 14.8 15.6	45.1 - RAPID I 84.5 GEESHIG I 36.1 TLE WHITE 61.2 51.5 49.2 49.3 - \$9.8 46.3 - \$5.6 59.0 - \$8.8	4 RIVI 111 AK 3 RIVI 6 5 5 5 6 6 6 7 6 6 6 7 6 6 7 6 6 6 7 7 6 6 7 7 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7

* Sampled from wharf at Melwell Lodge

.

,

TABLE II - (Continued) Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

((ln	barts	ber	mil

$ \frac{1}{10} $							Chei	nical	Anary	ses o	i Suri		parts				at Lan	es Dia	unage	Basin						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								A 14	alie		2		_									ents	F	к		
art CRAMD FALLS DAM ses: THESALON - (concluded) 22								Sodium	Potassium		-									Non- car-		Sum of constitu	Per cent sodiur	Saturation inde	Stability index	No,
2.2			LS DA					·		(1113)	(00)	(11003)	(504)	(0.)	,	(1103)	(0.03)	1(1.04)	(2)							. l
1.8 0.07 Tree 0.0 Tree 0.05 0.9 0.6 0.05 0.0 0.23 8.2 0.7 0.3 0.5 4.8 7.9 27.1 37.4 6.5 -2.0 11 11 2.3 0.02 0.00 0.00 1.3 0.4 0.1 0.0 28.6 6.7 0.6 0.0 6.5 5.2	2.0 2.2 1.8 1.9 1.8 1.8 1.9 1.9 2.3		0.09	0.00 0.00	0.00	0.00	0.00	0.9 0.9 1.0 1.2 1.0 0.9 1.0 1.1 1.1	0.4 0.5 0.5 0.4 0.4 0.4 0.5	0.05 0.05 0.1 0.1 0.1 0.05 0.15 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0	26.5 19.1 20.0 20.1 21.2 22.9 25.1 27.9	8.6 8.7 8.4 8.1 7.1 8.9 7.1 8.1	1.0 0.9 0.8 0.8 0.4 0.7 1.0 1.1	0.0	0.3 0.5 0.3 0.2 0.4 0.4 0.4 0.3	5.8 3.9 4.9 4.3 5.1 4.7 5.5 5.1		0.00	8.3 8.4 7.6 7.9 7.5 7.7 6.9 7.8	30.0 24.1 24.0 24.4 24.9 26.5 27.5 30.7	40.8 33.4 34.3 33.6 33.5 36.8 37.7 40.7	6.0 8.1 9.5 7.9 7.2 7.2 7.2 7.8 7.1	-2.0 -1.9 -2.0 -2.1 -2.1 -1.6 -1.6	11 11 11 11 11 11 11 11 11	2 3 4 5 6 7 8 9
2.3 0.02 0.00 0.00 Tree 0.00 1.3 0.4 0.1 0.0 230 0.0 0.6 5.2 7.2 30.7 33.7 8.3 -1.4 11 12 near DE AN LAKE 2.2 2.3 0.04 0.00 Tree 0.00 0.00 1.1 0.6 0.05 0.0 7.7 0.5 0.0 0.6 5.3 6.8 29.8 40.2 7.2 -1.7 11 13 2.3 0.24 0.05 0.01 0.00 0.02 2.0 1.1 0.5 0.0 28.0 7.7 0.5 0.0 6.6 5.3 6.8 29.8 40.2 7.2 -1.7 11 13 1.4 1.8 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.3 0.5 0.1 1.0 6.9 0.4 7.3 40.0 51.0 6.5 -1.2 10 16 16	below G	GRAND	FALLS	DAM																						
2.3 0.02 0.00 0.00 Tree 0.00 1.3 0.4 0.1 0.0 28.6 6.7 0.6 0.0 6.5 5.2 7.2 39.7 8.3 -1.4 11 12 neer DE AN LAKE 2.2 2.3 0.04 0.00 Tree 0.00 0.00 1.1 0.6 0.05 0.0 28.0 7.7 0.5 0.0 0.6 5.3 6.8 29.8 40.2 7.2 -1.7 11 13 2.3 0.24 0.05 0.01 0.00 0.06 0.05 2.0 1.1 0.5 0.0 28.0 7.7 0.5 0.0 0.6 5.3 6.8 29.8 40.2 7.2 -1.7 11 14 1.8 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.3 0.4 0.1 2.6 0.5 0.1 1.1 4.9 0.35 0.0 1.3 1.5 11 14	1,8		0.07	Trace	0.0 0	Trace	0.05	0.9	0,6	0.05		23.4 (23)	8.2	0.7	0.3	0.5	4.8		•••••	7.9 (8.8)	27,1	37.4	6.5	-2,0	11	11
2.2 2.3 0.04 0.00 Trace 0.00 0.01 1.1 0.6 0.05 0.0 28.0 7.7 0.5 0.0 0.6 5.3 6.8 29.8 40.2 7.2 -1.7 11 13 2.3 0.24 0.05 0.01 0.00 0.06 0.5 2.0 1.1 0.5 0.0 29.3 9.3 2.0 0.1 1.0 6.9 0.04 8.2 32.2 32.4 11 -1.9 11 14 1.8 0.33 0.00 0.00 0.00 0.00 0.7 0.4 0.0 12.6 8.0 0.5 0.1 1.1 4.9 0.37 8.5 18.8 28.5 7.3 -3.0 13 15 1.0 0.00 0.00 0.00 0.00 0.00 1.0 0.39.9 6.8 0.6 0.0 7.7 3.3 1.0 1.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	2.3		0,02	0.00	0.00	Trace	0.00	1.3	0.4	0.1			6.7	0.6	0.0	0.6	5.2				30.7	39.7	8.3	-1.4	11	12
2.3 0.24 0.05 0.01 0.00 0.06 0.05 2.0 1.1 0.5 0.0 29.3 9.3 2.0 0.1 1.0 6.9 0.04 8.2 32.2 52.4 11 -1.9 11 14 1.8 0.33 0.03 0.00 0.00 0.02 0.00 0.7 0.4 0.0 12.6 8.0 0.5 0.1 1.1 4.9 0.33 8.5 18.8 28.5 7.3 -3.0 13 15 south of AUBREY FALLS 2.8 0.00 0.00 0.00 0.00 1.3 0.5 0.1 0.0 39.9 6.8 0.6 0.0 7.7 3 7.3 40.0 51.0 6.5 -1.2 10 16 near HESSALON 1.0 0.00 0.00 0.00 0.00 0.00 1.3 0.3 0.5 2.7 7.5 0.6 0.0 1.1 7.8 12.1 18.5 <td>near DB</td> <td>AN LA</td> <td>KE</td> <td></td> <td>T</td> <td></td>	near DB	AN LA	KE											T												
1.8 0.33 0.03 0.00 0.00 0.02 0.00 0.7 0.4 0.0 12.6 8.0 0.5 0.1 1.1 4.9 0.33 8.5 18.8 28.5 7.3 -3.0 13 15 south of AUBREY FALLS 2.8 0.00 0.00 0.00 1.3 0.5 0.1 0.0 39.5 6.8 0.6 0.0 0.7 7.3 7.3 40.0 51.0 6.5 -1.2 10 16 near THESSALON 1.0 0.00 0.00 0.00 0.00 1.1 0.3 0.5 0.2 7.5 0.6 0.0 0.1 6.4 25.5 32.1 18.5 18.9 9.7 14 17 near THESSALON 1.1 0.40 0.00 0.01 1.0 0.5 0.0 0.0 0.1 6.6 0.0 1.1 0.5 1.2 1.2 1.8 19 -3.5 14 17 12	2.2	2.3	0.04	0.00	Trace	0.00	0.00	1.1	0.6	0,05	1		7.7	0,5	0.0	0.6	5.3			6,8	29.8	40,2	7.2	-1.7	11	13
the south of AUBREY FALLS 2.8 7.3 6.5 -1.2 10 anear THESSALON 1.0 7.8 0.0 0.0 0.7 7.3 40.0 51.0 6.5 -1.2 10 16 near THESSALON 1.0 0.00 0.00 0.00 0.0 0.1 9.4 1.1 1.8 11 17 10" -3.5 14 17 near THESSALON 1.7 0.00 0.00 0.1 9.4 1.1 1.8 11 1.8 11 1.8 11 1.8 11 1.8 11 10 1.1 1.0 1.0 0.0 0.1	2.3	0.24	0.05	0.01	0.00	0,06	0.05	2.0	1.1	0.5	0.0	29.3	9.3	2,0	0.1	1.0	6.9	0.04		8.2	32.2	52.4	11	-1.9	11	14
south of AUBREY FALLS 2.8 0.00 0.00 0.00 0.00 1.3 0.5 0.1 0.0 39.9 6.8 0.6 0.0 0.7 7.3 7.3 40.0 51.0 6.5 -1.2 10 16 near THESSALON 1.0 0.00 0.00 0.00 0.00 1.3 0.3 0.05 0.0 5.2 7.5 0.6 0.0 0.9 1.1 7.8 12.1 18.5 19 -3.5 14 17 near BELLINGHAM, Lat 40°23' 38" Long 83° 17" 10" - Drainage area 780 square miles (revised October 1953) 1.7 0.08 0.00 0.00 0.05 1.1 0.5 0.0 15.1 10.0 1.0 1.0 1.1 1.1 1.1 1.1 1.2 1.4 1.2 1.4 1.2 1.4 1.2 1.4 0.5 0.0 0.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.1 1			0.03	0.00	0.00	0.02	0.00	0.7	0.4		0.0	12.6	8,0	0.5	0,1	1.1	4.9	0.30		8.5	18,8	28.5	7.3	-3.0	13	15
near THESSALON 1.0 0.0			REY FA	LLS																						
1.0 0.00 0.00 0.00 0.00 1.3 0.3 0.05 0.0 5.2 7.5 0.6 0.0 0.9 1.1 7.8 12.1 18.5 19 -3.5 14 17 near BELLINGHAM, Lat 46°23' 38", Long 83° 17' 10" - Drainnge area 780 square miles (revised October 1953) 1.7 0.08 0.00 0.01 0.00 0.05 1.1 0.5 0.0 15.1 100 1.0 0.1 6.4 23.5 40.3 8.9 -1.8 11 18 1.4 0.04 0.00 0.05 1.1 0.5 0.0 15.1 10.0 1.0 0.1 6.4 23.5 40.3 8.9 -1.8 11 18 1.4 0.04 0.00 0.00 0.0 13.5 9.8 0.8 0.0 0.1 6.4 23.5 40.3 8.9 -1.8 11 18 1.4 0.04 0.00 0.00 0.01 13.5 9.8 0.8 0.0 0.1	2.8		0.00	0.00	0.00	0.00	0.00	1.3	0.5	0,1	0.0	39.9	6.8	0.6	0.0	0.7	7.3			7.3	40.0	51.0	6.5	-1.2	10	16
near BELLINGHAM, Lat 46°23' 38", Long 83° 17" 10" - Drainage area 780 square miles (revised October 1953) 1.7	near Th	IESSAL	.ON	r	ı	·	r-	1		,	r			ı		<u>, </u>	,	· · · · · · ·	•		,	·····				
1.7 0.08 0.00 0.01 0.00 0.05 1.1 0.5 0.0 0.0 20.8 9.7 0.8 0.0 0.1 9.4 6.4 23.5 40.3 8.9 -1.8 11 18 1.6 1.2 0.4 0.0 0.0 15.1 10.0 1.0 0.0 20.8 9.7 0.8 0.0 0.1 9.4 6.4 23.5 40.3 8.9 -1.8 11 18 1.4 0.04 0.00 0.00 0.0 13.4 10.4 0.9 0.3 5.4 8.5 19.5 32.1 11 -2.6 12 20 1.4 0.00 0.00 0.00 0.01 10.5 8.7 1.1 0.9 6.9 6.9 22.6 37.3 11 -2.4 12 23 1.2 0.00 0.00 0.00 0.00 1.0 1.5 8.1 0.6 <td>1.0</td> <td></td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>1.3</td> <td>0.3</td> <td>0,05</td> <td>0.0</td> <td>5.2</td> <td>7.5</td> <td>0.6</td> <td>0.0</td> <td>0.9</td> <td>1.1</td> <td></td> <td></td> <td>7,8</td> <td>12.1</td> <td>18.5</td> <td>19</td> <td>-3.5</td> <td>14</td> <td>17</td>	1.0		0.00	0.00	0.00	0.00	0.00	1.3	0.3	0,05	0.0	5.2	7.5	0.6	0.0	0.9	1.1			7,8	12.1	18.5	19	-3.5	14	17
1.6	near BE	ELLING	HAM, L	at 46°2	3' 38''	Long 8	3° 17° 10)" - Dr	ainnge	aren 78	0 squa	re miles	(revise	ed Oct	ober 1	953)										
1.6	1.6 1.4							1.6 1.2	0.5	0.0	0.0	15.1 13.4	10.0 10.4	1,0 0,9		0.1	6.0 5.4		•••••	7.9 8.5	20.3	31.2 32.1	14 11	-2.3 -2.6	12 12	19 20 21
1.8	1.2 1.3 1.8 1.3		0.02	0.00	0.00	0.00	0.10	1.0 0.8 1.2 1.1	0.5 0.4 0.5 0.4	0.15 0.1 0.1 0.25	0.0 0.0 0.0 0.0	11.5 11.7 20.7 17.7	8.1 8.7 7.9 8.1	0.6 0.6 0.6 0.7	0.0	0.6 0.4 0.0 0.6	6.0 4.4 5.9 5.0		0.00	8.3 7.7 6.9 4.4	17.7 17.3 23.9 20.3	28.7 27.2 34.7 32.0	11 8.9 9.6 10	-2.7 -2.5 -2.1 -2.1	12 12 11 12	23 24 25 26 27
near IRON BRIDGE 1.0 0.00 0.00 0.03 0.00 0.00 0.6 0.4 0.1 0.0 6.5 6.3 0.4 0.0 1.0 0.7 6.3 11.6 16.7 9.6 -3.1 13 31	1.8						ļ	1.2	0.5	0.1	0.0	21.6	8.8	0.6		0.4	5.6			6.9	24.6	36.4	9.3	-2.3	12	29
	near IR	ON BRI	DGE							•	<u></u>			4			·		•	l		<u> </u>		ı		·
	1,0		0.00	0,0.0	0.03	0.00	0.00	0.6	0.4	0.1			6.3	0,4	0.0	1.0	0.7	·····		6.3	11.6	16.7	9.6	-3.1	13	31

Ľ

L.

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

				********									Residue	e on evap	oration]
			Stream d (Secon		ļ	ımed	de _				Suspe matt			t at 105 ⁶ lved sol		Loss	Specific	
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO ₄	Carbon dioxid (calculated)	pН	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	P.P.M.	Tons per acre- foot	Tons per day	on igni- tion at 550°C.	ance at 25°C.	Calcium
		(Days)			(° F.)		(CO ₂)		(Hazen) (Units)	(Units)								(Ca)
														STA	tion no.	101 – TH	ESSALON I	RIVER*
1	Aug. 14/58	85:193			68	4.1	1	7.7	20 (40)	4	5.9	2.9	83.2	0,113		27.2	97.2	12.1
	* Sampled fr	rom road b	ridge	·	I						ŧ,	·	·	·			·I	
														STA	TION NO.	102 – CA	SKAWAN R	IVER
2	Aug. 13/58	86:194			72	6.3	1	8.3	35 (35)	0			155	0.211		23.6	250	31.9
	I !		!			I	ł	10.02			I	·	L	ł	· · · · · · · · ·	I	d	•
														SI	ration n	0. 103 - 0	GARDEN R	VER*
3	Aug. 12/58	87:190			71	2.9	0.9	7.7	15	0.8	• • • • • • • • •		60.8	0.083		14.4	66.8	8.0
	* Sampled fi	rom h.ighw	ay No. 17	l bridge	L		I	(7.3)	(25)			<u> </u>	L	1	l	L	<u> </u>	I
	-	-												SI	ATION NO	D. 104 – C	OULAIS R	VER
4	Aug. 12/58	87:190			69	3.3	1	7.4	15	2			51.2	0.070		. 9.6	55.4	6.7
		<u> </u>	<u> </u>	<u> </u>		ļ		(6.8)	(30)			<u> </u>	I	I	I	I	J	ļ
	I		r		t		ı.		1				ı——		TATION N	(GOULAIS F	r
5	Aug. 11/58	8;191			75 50	4.9	2	7.3	25	0.8 2	•••••		50.8	0.101	•••••	24.8	63.3 44.0	8.0 4.8
	May 26/62 * Sampled fi	23:26 rom highw	Ay No. 17	bridge	59	6.2	4	6.7	35	2		•••••••	50.0	0.069	<u></u>	1	44.0	4.0
	-	_	-	-										S	ration n	0. 106 -	HARMONY	RIVER*
7	Aug. 11/58	8:191			75	3.4	2	7.4	25	0.8		.	55.6	0.076	J	. 11.2	75.2	9.5
_	* Sampled a	at highway	7 No. 17 bri	idge.	•	·	.	·									-}	·
														STA	tion no.	107 – BA	TCHAWAN.	A RIVE
8	Aug. 11/58	8:191			74	5,1	3	7.2	35	3	11	8.2	56.4	0.077		13.2	61.6	8.3
	* Sampled f	rom highw	ay No. 17	bridge: du	e to org-s	shore wi	nd cou	ld be a	mixture	of lake a	an d river	water,						
								<u> </u>							STATION	NO. 108 -	PANCAKE	RIVER
9	Aug. 11/58	87:191		••••••	71	4.2	1	7.4	20 (40)	4	9.8	6.3	49.2	0,067		. 12.4	52.8	4.5
	* Sampled f	rom highv	vay No. 17	hridge		l	4	·		I	·	<u></u>	•		<u> </u>	4	.	•
														s	TATION N	10. 109 -	MONTREA	l rivei
10 11		11:16 13:27	1,140† 1,240	1,220† 1,070	50 45	11.9	2	7.3	65 60	0.3		[53.2	0.072	163	39.2	53.5 53.9	7.2
12 13	Dec. 12	32:36 16:30	1,260	1,220 1,290	35 34	11.8	0.9	7.6	70 70 70	0.8			55.6	0.076	209	30.8	55.7	7.2
14 15	Feb. 13 Mar. 12	29:39 9:43	1,690	1,280	33 32		0.7	7.5	70 60	0.4 0.8							54.2	7.0 5.6
16 17	Apr. 11 May 14	14:39 16:22	1,580 1,320	1,030 1,200	35	11.9	3	7.1	60 70	2 0,8							61.2 61.2	8.5 8.4
18	July 12	13:26 26:52	1,140 1,300	1,270 1,080 1,150	51 53	8.1	2	7.2	55 65	0 0,6	• • • • • • • • •		53.2	0,072	185	23.2	58.8 59.8	7.9
19 20	Aug. 12	27:47	590				5	6.9	55	0		1					57.8	7.8

† Discharge records at Algona Central and Hudson Bay Railway Bridge near Great Lakes Power Company's plant; Drainage area 1,100 square miles. See also Station No. 174, page 68

.

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

		_									(1	n part	s per	millic	<i>(n)</i>										
	Irc (F						All	alis												lness CaCO3	constituents	ium	dex	ex.	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonat c	Total	Sum of const	Per cent sodium	Saturation index	Stability index	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO3)	(SiO ₂)	(PO4)	(B)							
above ?	THESS.	ALON																							
3.5	0.58	0.02	0.00	0.01	0.00	0,05	1.6	0.7	0.05	0.0 (0)	46.1 (45.4)	8,1	0.6	0.0	0.7	6.5			6.8	44.6	56.6	7.1	-1.0	9.7	1
near M	ILFOR	D HAVE	en, st.	JOSEF	PH ISLA	ND																			
12.4		Trace	0.00	0,02	0.00	0.00	2.4	1.0	0.0	0.0	152	7.5	0.9	0.0	2.0	9.7	:		5.7	131 (128)	143	3.8	+0.5	7.3	2
at GAR	DEN R	IVER	-																						
2.3		0.04	0.00	Trace	Trace	0,05	1.3	0.5	0.05	0.0 (0)	28.9 (29.1)	8.3	0.6	0.0	0.6	7.4			5.7 (7.6)	29.4 (30.6)	43.3	8,6	-1.3	10	3
near Sl	EARCH	MONT																							
1.7		Trace	0.00	0.00	0.00	0.05	1.1	0,4	0.05	0.0 (0)	21.2 (21.4)	6,1	0.4	0.0	1,0	5.7			6.3 (7.0)	23.7 (24.6)	33.6	9.0	1,8	11	. 4
near G	OULAI	S RIVE	R																						
1.6		Trace	0.00	0.00	0.00	0.00	1.4	0.6	0.2	0.0	27.7	6.7	0.5	0.0	1,5	6.4			3.8	26,5	40.3	10	-1.9	11	5
1.2	0.17	0.05	0.00	0.00	0.03	0.00	1,1	1.7	0.2	0.0	11.7	7.6	1.3	0.12	1.9	4.9	<0.1		. 7.0	16.9	29.4	12	-2.0	13	6
near B	ATCH	AWANA														1									
1.8		0,01	0.00	0.02	0.00	0,00	2.2	0.4	0,2	0.0	30,2	5.3	3.6	0.0	1.5	6.8		<u> </u>	6.3	31.1	46.0	13	-1.7	11	7
near B	атсн	AWANA	L																						
1.3	0.06	0,02	0.00	Trace	0,00	0.00	1,2	0.4	0.2	0.0	27,1	6.4	0.5	0.0	0.8	6.1	l		3.9	26,1	38,3	8.9	-1.9	11	8
near B	ATCH	AWANA																							
2.5	0.13	0.07	0.00	Trace	0.00	0.00	1.2	0,3	0.1	0.0 (0)	18.7 (19.0)	5.6	1.3	0.0	0.8	5.3			. 6.2 (7.9)	21.5 (23.5)		11	-2.1	12	9
at MON	TREA	L FALI																							
1.5 1.7 1.8 1.7 1.4 2.0 1.9 1.9 1.8 1.9 1.9		0.05	0.00	0.00			0.6 1,1 0.8 0.6 1.2 0.7 0.8 0.9 0.8 0.8 0.8 0.9 1.0	0.8 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.6 0.6 0.7 0.6	0.0 0.0 0.15 0.1 0.2 0.05 0.1 0.2 0.15 0.1	0.0	21.7 22.3 21.3 20.8 20.1 14.0 23.9 28.1 25.7 25.8 23.3 23.4	6.6 6.4 6.1 8.0 7.7 7.6 7.5 5.8 6.2 6.1 6.6 8,1	1.0 1.0 1.0 0.9 1.2 1.0 0.9 0.6 0.7 0.9 1.3 0.8	0.0 0.0 0.25 	0.1 0.4 1.5 0.2 0.8 0.6 0.6 0.6 0.6 0.6 0.8 0.8 0.8 0.5	2.9 3.0 3.8 0.6 5.1 5.2 5.5 4.4 4.8 5.6 4.9 3.8			. 8.0 . 8.2 . 9.8 5.8 6.4 . 6.4 . 8.2	24.1 25.0 24.6 24.5 19.7 29.4 28.8 27.5 27.6 27.6 27.3 26.8	31.5 32.6 33.4 30.1 35.3 29.4 38.5 36.9 36.2 37.7 36.4 35.8	4.8 9.3 6.9 5.4 6.2 5.8 5.7 6.5	-1.9 -1.8 -1.7 -2.2 -1.8 -2.8 -2.1 -1.8 -1.9 -1.9 -1.9 -2.3 -1.6	11 11 12 11 13 11 11 11 11 11 11	10 11 12 13 14 15 16 17 18 19 20 21
				L	1	1	L		-1						1	1		1			,				-

.

.

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

								(In	parts pe	r million	1)							
			Stream d (Secon			ned					Suspe		Residue dried (Disso	on evap at 105° lved soli	oration C. ids)	-		
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO 4	Carbon dioxide (calculated)	рН	버 이이 (Hazen)	Turbidity	Dried at 105°C.	at	P.P.M.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		(Days)			(°F.)		(CO ₂)		(Units)	(Units)	<u>.</u>						<u> </u>	(Ca)
														STA	TION NO.	110 – MO	NTREAL R	IVER
1	Aug. 11/58	87:191	391†	1,150†	65	9.0	1	7.6 (7.1)	50 (70)	0.8			57.6	0.078	60.4	19.2	60.6	8.0
	† Records a	t Algoma (Central and	l Hudson E	ay Rail	way Brid	lge – s	see Sta	tion No.	109								
														s	TATION N	10. 111 -	UNEGAM I	.AKE *
2	Aug. 7/58	91:188			77	3.6	0.8	7.3 (7.3)	5 (25)	0			38.0	0.052		29.2	34.4	3.8
	* Sampled a	at highway	No. 129 b	ridge											STATION	NO 112	- AGAWA R	IVER*
3	Aug. 11/58	87:184			70	4.2	1.5	7.2 (7.4)	20 (30)	1			45.2	0.061		16.8	46.5	5.2
	* Sampled a	t highway	No. 17 bri	l	J	l	<u> </u>	1(14)	1 (30)	J	l		1	1	l	I	1	<u>I</u> ,
														ST	ATION NO	. 113 – C	oldwatei	R RIVER*
	May 26/62	19:38	[[55	4.4	4	6.3	20	0	[31.6	0.043		18,4	31.1	2.6
	* Sampled f		at highway	7 No, 17 br	1	1		1005	1			<u></u>	1 2-10	1	<u> </u>	1	1	1
												s	TATION N	10. 114 -	- SOUTH E	RANCH E	ALDHEAD	RIVER*
	May 26/62	19:38			58	11.1	4	6.6	40	0	1		40.8	0.056		25.2	35.5	3.4
	* Sampled f	'	at highwa	у No. 17 b	ridge.	l	<u> </u>	-l			I		-l -	1				J
														ST	ATION NC	. 115 0	LD WOMAN	RIVER*
6	May 26/62	19:38			56	5.6	6	6.6	30	0			46.8	0.064		. 27.2	50.2	5.3
	* Sampled				ridge	.		•	- I	1	- <u></u>	· ·		1	I	<i></i>		
	<i>See</i> a150 :	Station No	. 175, page	: 68										STATI	ON NO. 11	6 – MICH	IPICOTEN	RIVER
7	Oct. 12/5		2,040	1,850	53	6.0	0.9	7.8	25	0.3	·····		62.8	0,085	343	29.6	84.4	12.4
8 9 10	Dec. 14	16:23 30:34 3 19:33	2,010 1,530 1,770	2,110 1,720 1,870	36 34 33	7.7	1.5 2 1	7.5 7.3 7.7	25 40 30	0.8		•	<pre></pre>	0.077			. 65.1	8.8
11	Feb. 15	27:44	1,670	1,940	33 34		1	7.7	30 -25	0.3 0.4 0.3		•	. 52.8	0.072	252	16.0	. 86.9 . 89.8	8.7 12.2 13.1
13 14	Apr. 12 May 10	13:38 20:26	2,130	2,580 2,000	46	6.1	2	7.5	25 45	1 0.8		• • • • • • • • •	64.8	0.088	371	17.6	85.0	12.4
15	June 14	26:34 31:50	1,620	1,580	58 62	6.1	2	7.3	40 40	2			52,8	0.072	245	31.2	. 57.6	7.4
17		25:43 12:129	1,210	1,310 1,840	70		4	7.1	25 25	0 0					24)		. 75.2	10.5
	May 26/6	.	1,580	3,670	54	7.0	6	6,8	35	0.4	l		. 53.2	0.072	225	27.6	59.9	7.9
	* At highw See also		bridge san Io, 176, paj		shore r					-						. No. 11-		DIVERS
20	Oct. 12/5	7 11:16	482†	570+	40	67	1,	170	20		r	1	00.4	0.100	1	T	- MAGPIE	1
21 22	Nov. 9 Dec. 14	16:23 30:34	4821 706 606 650	570† 1,080 734 618	49 35 34 33	6.7 7.8	1 2 2 2	7.9 7.6 7.7 7.8	30 25 35 30	0.8 0.9 0.8 0.3			. 80.4 . 85.6	0.109	104	32.4	121 122 109 113	17.9 17.4 16.1 17.3
23 24 25 26	Mar. 15	27:44 6:47 13:38	462 364 650	465 366 1,600	33 34 40	5.7	. 2 . 1 . 2	7.7	30 25 25	15 0.3 0.4			93,2	0.116	149 163	31.6	. 192 . 132 119	28.1 19.4 17.8

At highway No. 17 hridge, northwest of Wawa.
 † Discharge records at township road bridge near mouth of river, one half mile north of village of Michipicoten, Lat 47° 56' 10", Long. 84° 50' 00"

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In	parts	per	million)

														<u></u>					· · · · · · · · · · · ·						F====
-	Iro (F						Alk	alis			ų					tic)			Hard as C Non-	ness aCO3	constituents	sodium	i ndex	index	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	car- bonate	Total	Sum of col	Per cent s	Saturation i ndex	Stability i	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH3)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO3)		(PO4)	(B)				l			
at mou	th at M	ONTRE	AL RIV	/ER																					
1.9	••••	0.02	0.00	0.00	0.00	0.00	0.9	0.7	0.1	0.0 (0)	26. I (26.2)	5.6	0.4	0.0	1.0	4.3			6.4	27.8	35.6	6.3	-1.6	11	1
north o	of AUB	REY FA	ALLS																						
1,1		Trace	0.00	0,00	0.00	0,10	0.7	0,5	0.05	0.0	12.3	4.4	0.3	0.0	1.5	1,4			5.5	14.0	19.5	9,3	-2.5	12	2
near A	\GAWA																								
1.5		0.20	0.00	0.00	0.00	0.00	1.2	0.3	0,1	0.0 (0)	16.6 (16.7)	7.2	0,6	0.0	0.6	4.9			5.5	19.1	29.7	12	-2.3	12	3
north	of AGA	WA																							
I.1	0.05	Trace	0.00	0.00	0.03	0.00	0,7	0.3		0.0	4.9	7.3	0.9	0,06	2.1	4.2	< 0.1		7.1	11.1	21,7	12	-4.0	14	4
north	of AG/	AWA								、						_									
1.4	0.09	0.02	0.00	0.00	0.03	0.00	0.6	0.3		0.0	8.0	6.8	1.1	0.12	1.2	3.3			7.6	14,2	22.2	8,2	-34	13	5
south	of MIC	HIPICO	TEN H	ARBOU	R																				
1.9	0.05	0.02	0.00	0.00	0.05	0.00	0.8	0.5		0.0	13.7	8.5	0.8	0.12	2.5	4.7	< 0.1	[9.8	21.0	31.9	7.4	-3.0	13	6
	H FAL	1	1	T	r	T	1	area 2,	1	1	.es (Revi	1 1	ctober	1951))			1			1				r
2.1 2.0 1.7	· · · · · · · · · · · · · · · · · · ·	. Trace					0.8	0.5	0.0	0.0	40.5 29.6 21.8	6.8 6.3 6.1	0.9 0.8 0.9	0.0	0.2	3.1 4.5 4.8		·	6.4 5.9 6.3	39.6 30.2 24.2	46.7 38.4 32.6	3.6 5.2 6.5	-0.9 -1.5 -2.0	9.6 11 11	8 9
2.0 2.6 2.2 2.5		0.04	0.00				1.0	0.5 0.5 0.6 0.5	0.05 0.0 0.1 0.1	0.0 0.0 0.0 0.0	28.9 40.1 41.2 40.0	8.1 8.0 9.1 8.1	0.7 0.9 0.6 0.6	0,0	0.2	6.0 4.3 4.3 5.1			6.2 8.2 7.9 8.4	29.9 41.1 41.7 41.2	42.7 49.6 51.6 50.0	6.8 4.9 4.4 4.5	-1.5 -1.1 -1.1 -1.4	11 9.9 9.9 10	10 11 12
1.5 1.8						:	0.8	0.5	0.I 0.1	0.0	20.4 24.5	5.5	0.4 0.3		0.3	4.7 4.3		0.00		22.6 25.9	30.3 34.8	7.0	-2.0	11 11	13 14 15 16
1.7 2.2 2.6		. 0.01	0.00	0.00	0.00	0.00	0.8	0.5 0.5 0.6	0.4 0.1 0.0	0.0 0.0 0,0	28.5 33.6 38.8	6.3 6.1 7.2	0.8 1.2 1.0	0.0 	1.0 0.4 0.5	4.9 3.4 4.5		0.00	5.5 7.6 8.3	28.9 35.2 40.1	38,9 40,8 48,4	5.6 5.2 5.5	-1.8 -1.8 -1.2	11 11 10	16 17 18
1,9	0.08	0.02	0.00	0.00	0.02	0.00	0.7	0.5		0.0	23.4	7.5	0.9	0.12	2.0	3.9	<0.1		8.3	27.5	37.0	5.1	-2.3	11	19
near l	MICHIF	ICOTE	N HAR	BOUR																					
3.3 3.8		. Trace			0.00	0.00	0.9	0.7	0,0 0.05	0.0 0.0	56,3 45,7	12.6 21.1	0.7 0.8	0.0	0.8	4.0 3.8			. 12.0 . 21,5	58.2 59.0	68.6 71.5 61.6	2.9 3.2 3.2	-0.5 +1,0	8.9 9.6	20 21
3.0 3.0 4.0 3.7	•••••	0.02	0.00	0.00	0.00	0.00	0.8	0.5 0.6 1.1 0.7	0.05 0.05 0.05 0.05	0.0 0.0 0.0 0.0	48.9 53.9 60.6 59.9 53.4	1110	100	0.0	. 0.3	4.2 7.0 5.4		0.00	12.4 11.3 36.9	59.0 52.5 55.5 86.6	69.2	4.0	-0.9 -0.9 -0.6	8.9 9.6 9.5 9.6 8.9 8.9 9.5	22 23 24
3.1	ļ	0.04	0.00	0.01	0.00	0.00	0.9	0.7	0.05	0.0	53.4	14.8	0.7	0.05	0.7	5.7		1	. 14.5 . 13.4	63.6 57.2	104 75.3 70.2	3.6	-0.5 -0.9	8.9 9.5	25

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

				•				(In	parts per	r millio	n)		-					
			Stream d (Secon			med	U				Suspe matt		dried	e on evar 1 at 105° olved sol	с.			
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO ₄	Carbon dioxide (calculated)	рН	범 아이 O (Hazen)	Turbidity	Dried at 105º C.	Ignited at 550º C.	P.P.M.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		(Days)			(° F.)		(CO ³)		(Units)	(Units)						1	<u> </u>	(Ca)
															STATION	NO. 117 -	MAGPIE F	IVER*
	May 15/58	15:21	1,210	I,480	45		2	7.6	40	0.8							87.7	13.0
234	June 14 July 14 Aug. 13	26:34 31:50 26:45	1,360 1,330 520	1,300 1,180 530 786	58 66 70	6.3	2 2 2 1	7.5 7.5 7.6 7.9	40 35 25 25	0.9 0 0 0			 74.4	0,101	266	30.0	96.5 100 117 118	13.9 14.6 17.2 17.4
5 6	Sept. 13 May 26/62	12:129	784 1,820e	2,710	57	7.3	4	7.1	35	0			48.8	0.066	238e	2.4	82.2	11.5
0	* At highwa	·	<u> </u>		· ··	1 7.5	4	1 /.1	57	0			40,0	0.000	2.J0-	2,7	02.2	1
	t' Discharge estimated See also S	records a	t township	road brid		mouth of	rive <i>t</i> ,	one ha	alf mile n	orth of v	/illage of	Michipico	ten, Lat. 4				CATFISH C	DEEKŧ
	14		<u> </u>	<u> </u>								1				1		
7	May 26/62 * Sampled fr	• • • • • • • • • • • • • • • • • • • •	at highway	No. 17 br	. 55 idae		9.	6.8	55	0	••••	1				4	61.8	8.9
	Sampred I	iom shore	at ingnway	NO. 17 DI	luge									S	tation n	10:119 - 1	KABENUNG	G LAKE
8	May 26/62	20;38			. 57	13.0	.6	6.4	80	0			48.4	0.066		26.4	38.9	4.2
														071.4	NON NO	120 0011		DURD
 9	May 26/62	20.22	1	1	60	r	6	1		0		T	1	5171		120 - 500		
	* Sampled a		No. 17 bz	idge	. 50	•••••	0	7.1	35	10	•••••••	<u> </u>		<u></u>	••••••	· · · · · · · · · · · · · · · · · · ·	78.5	10.3
												· · · · · ·			STATION	I NO. 121 ·	- DEPEW (REEK*
10	May 26/62				. 52.5	6,1	5.	7.3	25	0	••••••		80.8	0.110		20.0	112	16,2
	* Sampled a	it highway	No. 17 br	idge										STA	rion no.	122 – WES	T WHITE I	NIVER*
 11	May 25/62	21:39	1		. 57	8.7	3.5	7.4	40	0			77.2	0.105	1	27.2	97.6	13.3
	See also St	ation No.							L	<u> </u>	<u></u>	<u> </u>	L					(2010
	* Sampled a	t highway	No. 17 bra	dge		ı —			· · · · · ·	·			, <u> </u>		STATIO	N NO. 123	- WHITE	RIVER*
12 13	Nov. 16/57 Dec. 15	9:44 25:33	724† 611	697† 674	35 33	7.4	2	7.8 7.8	25 30	0.9			91.2	0.124	178	23.6	136 124	20.7
14 15	Jan. 19/58 Feb.	No samp		437 287	33		5	7.4	30	0.4							133	19.9
16	Mar. 15 Apr. 15	6:24 21:27	224 820	230	35 35	6.1	2	7.8	25 30	0.3			106	0.144	63.9	36.0	151 121	23.4 18.4
18 19	May 23 June 15	13:20 10:23	1,060 2,490	1,580	51 59	10.5	2	7.6	35 50	0.9			81,6	0.111	547	29.2	109 106	16.4 16,1
20 21	July 25 Aug. 23	25:39			. 71 . 65		3	7.8	40 20	0							123 147	19.1 22.2
22	Sept. 17	13:180	<u>}</u>	•••••••	. 57	10.8	1	7.9	45	0.8			83.6	0,114		25.2	119	17,8
	† Discharge * From brid	e records a ge on priv	t the Cana ate highwa	dian Paci y, ¾ mile	fic Rail east of]	way Stat Regan	ion at :	Bertrai	nd, Lat. 4	18°42' 0	0", Loag,	85°35'00	". Drain:	age area	928 squar	e miles,		
 ??	Non 25/62	24.27	6 600+		T				<u> </u>	1	·	<u> </u>	<u> </u>	T	1	10N NO. 1	24 – WHIT	E LÄKE
23	May 25/62 * Sampled a	t highway	5,520† No. 17 brie	4,950† dge		8.6	5	7.4	35	0		<u>+ · · · · · · · · · · · · · · · · · · ·</u>	108	0.147	1,607	34.8	139	21.3
	† Discharge	records b	elow White 179, page	Lake dam	1 									ST	ATION N	0.125 - W	АВІКОВА	CREEK
24	May 25/62	31:33			. 57		5	7.3	55	0							102	15.6
	* Sampled a	at highway	No. 17 bri	idge								-		.				!
		<u> </u>	1	1	1			<u> </u>	·	ı——			ı	r	STATIO	N NO. 126	- CEDAR	CREEK

25 May 25/62 20:24 Hight 57 13.7 10 7.0 80 0 96.4 0.131 56.4 109 16.0 † Collector's estimate of river level or discharge * Sampled at highway No. 17 bridge

.

•

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

.

.

Iron (Fe) Alkalis E E E E E E E E E E E E E E E E E E E	
Magnessium Hotal Dissolved Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Aluminum Potasi Copper	No.
$(Mg) \qquad (Mn) (A1) (Cu) (Zn) (Nn) (K) (NH_3) (CO_3) (HCO_3) (SO_4) (C1) (F) (NO_3) (SIO_2) (PO_4) (B)$	
near MICHIPICOTEN HARBOUR - (concluded)	
3.0 \dots 1.4 57.7 65.2 3.2 -0.9	1 .9 2 .7 3 .4 4 .9 5
2.9 0.04 0.02 0.00 0.00 0.00 0.00 0.6 0.5 0.0 34.1 10.4 0.6 0.18 0.4 3.2 <0.1 12.4 40.4 47.1 3.1 -1.8 10	
north of WAWA	
1.6 0.10 0.03 0.00 0.00 0.00 0.00 0.6 0.7 0.0 19.6 9.5 1.4 0.17 0.3 1.8 0.161 12.7 28.8 34.8 4.2 -3.1 12	7
† Total	
north of WAWA	
1.8 0.19 0.03 0.00 0.00 0.03 0.00 0.6 0.4 0.0 9.2 7.4 0.8 0.2 0.6 1.9 <0.1 10.1 17.7 22.8 6.7 -3.4 12	8
southeast of WHITE RIVER	
3.4 0.15 0.01 0.00 0.00 0.00 0.00 0.8 0.3 0.0 38.2 6.8 0.9 0.11 0.2 2.5 0.14t 8.3 39.6 44.2 4.2 -1.7 11	9
southeast of WHITE RIVER	
3.8 0.02 Trace 0.00 0.00 0.00 0.00 0.00 0.6 0.4 0.0 61.8 5.4 0.5 0.12 0.0 3.1 <0.1 5.5 56.2 60.7 2.3 -2.1	.7 10
northwest of WHITE RIVER.	
3.9 0.07 0.03 Trace 0.00 0.03 0.00 0.7 0.4 0.0 51.8 6.2 1.4 0.18 Trace 3.2 <0.1 6.6 49.1 54.8 3.0 -1.0 5	4 11
near REGAN	
5.3 0.0	8 12 0 13
4.4 0.02 0.00 0.02 0.00 0.00 1.0 0.5 0.1 0.0 85.9 6.8 1.0 0.0 0.8 6.5 6.0 76.5 86.8 2.7 -0.4 8	4 14 15 6 16
3.5 0.8 0.4 0.01 0.0 62.8 5.4 0.6 0.1 3.7 4.6 56.1 61.8 3.0 -0.8 5.4 0.6 0.1 3.7 0.8 0.4 0.1 0.8 0.4 0.01 0.0 62.8 5.4 0.6 0.1 3.7 0.8 0.4 0.1 0.8 0.4 0.01 0.0 62.8 5.4 0.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.	1 17 2 18
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 19 0 20
	.9 21 .9 22
at NARROWS near REGAN	
5.3 0.03 0.02 0.00 0.00 0.02 0.00 0.6 0.5 0.1 0.0 82.6 5.8 1.0 0.18 0.4 3.4 <0.1 7.2 75.0 78.9 1.7 -0.8 5	0 23
west of REGAN	
4.1 0.06 0.03 0.00 0.00 0.00 0.00 0.6 0.5 0.0 58.6 6.2 1.1 0.17 0.2 2.9 0.12 7.8 55.9 60.4 2.3 -1.2 5	7 24
west of REGAN	
4.4 0.06 0.03 0.00 0.00 0.02 0.00 0.6 0.5 0.0 59.1 5.5 1.4 0.18 0.8 2.9 <0.1 9.5 58.0 61.5 2.2 -1.5 10	25

•

		g	Stream d (Second			sumed	ide)				Susp mat	ended tter		on evapo at 105º C "ed solic		.	Specific	
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO 4	Carbon dioxide (calculated)	pН	Colour	Turbidity	Dried at 105º C.	Ignited at 550 ⁰ C.	Р.Р.М.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
	1	(Days)			(° F.)	L	(CO ₂)		(Hazen) (Units)	(Units)								(Ca)
															STAT	ION NO. 1	27 - WOWU	N LAKE
1	Aug. 15/59	31:54		• • • • • • • • • •	63	13.7	4	7.6 (8.0)	55 (200)	0.4 (3)			148	0.201		24.4	223	29.9
		·						1	4						STAT	TON NO.	128 – BLAC	K RIVER*
2	Aug. 5/5	7 92:105			69	11.4	5	7.6 (7.4)	50 (80)	3			147	0.200		44.4	219	34.2
3	May 25/6	2 22:25	High†		55	13.4	4	7.5	80	25	84	80	120	0.163		42.0	152	24.1
	* Sampled a † Collector			dge, <i>See</i> a	lso Stati	on No. 1	80, pa	ge 68							STAT	ON NO. 1	29 – BLAC	CRIVER*
			1		1	(r	1	r		· · · ·	-	1	1		1	·	
4 5 6 7 8 9 10 11 12 13 14 15	Nov. 1/5 Dec. 1 Jan. 3/5 Feb. 1 Mar. 1 Apr. 1 May 1 June 2 July 2 Aug. 1 Sept. 2 Oct. 2	12:29	3 ft belo Normal High	low normal w normal	40 47 37 35 36 39 46 53 60 67 54 47	12.1 11.3 14.0 12.9	2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8.0 7.7 8.1 7.8 7.9 7.6 7.7 7.9 7.6 7.7 7.9 7.6 7.7	60 75 60 45 45 40 80 90 110 80 100 90	4 2 2 0.9 3 12 9 30 11 16 1	5.6 	1.9 35 22	137 153 113 135	0.186 0.208 0.154 0.184		27.2 75.2 51.6 37.6	207 160 189 215 225 243 136 139 148 189 152 176	32.4 25.6 29.3 34.2 36.0 38.6 22.0 21.7 25.4 30.9 24.1 28.0

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

* Frnm powerbouse tap † Collector's estimate of river level or discharge

16 Aug.	5/57	92:105		 68	9.9	3	7.9 (7.8)	40	9	.19	8.7	141	0.192		37.6	210	32.2
17 Aug. 1	5/59	31:67	• • • • • • • • • •	 65	15.5	3	7.9 (7.5)	80	17 (50)	33	27	127	0.173	l 	35.2	178	29.2

* Sampled at No. 17 highway bridge. See also Station No. 181, page 68

19 D 20 J 21 F 22 M 23 A 24 M 25 J 26 J 27 A 28 S	Nov. Dec. an, Feb. Mar. May une uly Aug. Sept. Dct.	11/57 1 3/58 1 1 1 2 2 1 2 2 1 2 2	12:59 12:29 14:24 17:23 16:46 17:35 22:27 16:30 26:40 19:30 21:132 14:117	Medium† Normal Normal Normal Normal Normal I ft below normal 4 ft below normal Narmal High Below normal	40 34 34 36 35 52 58 65 53 51	10.7 9.7 14.0 	2 3 2 2 4 1.5 2 2 2 3 3 2	8.0 7.8 8.1 7.8 8.2 7.9 8.0 8.0 7.8 7.8 8.0	55 65 50 35 40 40 100 80 180 80 220 65	6 5 4 3 15 50 20 300 14 27 15	6.9 100 398 15	3.1 87 392 15	163 144 134	0.222 0.196 0.182		46.0	217 184 207 234 243 252 149 165 155 196 190 202	34.7 31.1 32.8 37.4 38.9 41.5 26.0 27.2 28.0 31.3 31.7 32.7
--	---	---	--	---	--	-------------------------	--	---	---	---	-------------------------	------------------------	-------------------	-------------------------	--	------	--	--

* From townsite pumphouse tap † Collector's estimate of river level or discharge,

											STATI	ON NO. 1	32 – LITT	LE PIC RI	VER *
y 25/62	21:39	 51	13.0	3	7.7	70	60	158	153	130	0.177		33.2	157	26.5

* Sampled at highway No. 17 bridge

<u> </u>		 			·····										
31 Aug. 15/59 33:67		 59	10.0	4	7.3	35	6	70	62	94.8	0.129	}	29.6	114	17.1
	· · · · · ·	-			(7.8)	(140)	(30)								

* Sampled from shore

30 May

Residue on evaporation dried at 105º C. (Dissolwed solids)

STATION NO. 130 - PIC RIVER*

STATION NO. 131 - PIC RIVER*

STATION NO. 133 - RIPPLE LAKE*

TABLE II – (Continued)
Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

					<u> </u>			-				-												n=	
	Irc (F		4				Alk	_			ej.					tric)	U			Iness CaCO ₃	constituents	sodium	n index	index	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	car- bonate	Total	Sum of co	Per cent	Saturation index	Stability index	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH3)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO ₃)	(SiO ₂)	(PO4)	(B)						<u> </u>	<u> </u>
at MAN	IITOUW	ADGE																							
5.7	0.10	0.07	0.00	0.00	Trace	0.00	7.5	1.0	0.2	0.0	94.5 (97,6)	32,1	3.5	0,0	1.5	3,0	0.04		20.5 (20)	98.0 (100)	131	14	-0.6	8.8	1
	۱ <u>.</u>			1	I	I	L				()7.0)	<u> </u>	1			I	<u> </u>			(100)	<u> </u>		I		I
	HERON	BAYS		1	1 .	Γ			-	r							r	·			r –		[]		
6.5		0.02	0.00	0.00	0.00	0.05	1.1	0.8	0.1	0.0	132	4.9	1.0	0.0	0.5	5.4		••••	3.6	112 (113)	120	2,1	-0.3	8,2	2
4.0	0.74	0.05	0,00	0.00	0.05	0.00	2.3	0.7	0.3	0.0	79.7	10.5	1.0	0.24	1.0	3.2	<0.1		11,1	76,6	86.4	6,1	-0.7	8.9	3
near H	ERON I	BAY S	DUTH					·		T		·	·	· ·		ı	·	· · ·	<u>-</u> .					r	
7.0 5.1		0,04	0.00	0.00	Trace	0.00	1.4 0.9	0.6	0.1	0.0	130 94.6	5.3 6.6		0.0	0.2	5.3 5.1			3.1	110 84.8	117 92.0	2.7	+0.1 -0.5	7.8	4
6.6 7,4 7,9		0.10	0.00		0.00	0.00	1.0 1.0 1.2	0.6 0.7 0.7	0.0	0.0	115 131 142	5.0 6.9 6.6		0.0	0.3 0.3 0.2	5.7 5.9 6.9		0.00	5.9 8.4 6.0	100 116 122	106 122 130	2.1 1.8 2.1	+0,1 +0,2 0,0	7.9 7.7 7.8	6 7 8
8.0 3.8	0,19	0.12	0.00	0,00	0.00	0.00	1.2	0.7	0.1	0.0	149	5.8 8.6	1.5	0.0	0.8	6.7 4.9		0.06	7.0	129 70.5	137	2.0	+0.1	7.7	9 10
4.0 4.2							1.3	0.5	0.05	0.0	80.5 88.9	5.3 6,9	0.9	 	1.2 0.3	3.6 3.9			4.6	70,6 80.6	78.1	3.8 3.6	-0.5 -0.2	8.7 8.3	11 12
5.7 5.3 5.7	0.84	0.05	0.00	0.00	0.0 0	0,00	1.2 0.3 1.2	0.6	0.15 0.05 0.1	0.0	117 87.8 99.1	5.6 5.4 4.0	0.9	0.0 	0.3	7,1 4.2 4.7		0.00	4.3 9.9 12.0	101 81.9 92.3	110 84.9 94.3	2.5 2.1 2.7	-0.4 -0.5 -0.1	8.4 8.7 8.1	13 14 15
	·	•		1	·	4	·	·		L	L.,	1	·	•	<u> </u>	I	·	I	·		<u> </u>	·	·	L	<u> </u>
	HERON	BAY		ł					0.00	1			1				1	<u> </u>							<u> </u>
6.2		0,02	0.00	0.00	0.00	0,20	1.3	0,8	0,05	0.0	126	4.8	0.9	0.0	0,5	4.9		••••	2.8	106 (104)	114	2.6	0.0	7.9	16
5.9	0,73	0.07	0.00	0.00	Trace	0.00	0.9	0.5	0,2	0.0 (0)	111 (110)	3.2	1.1	0.0	0.3	5.3		· · · · ·	6.2	97.1	101	2.0	-0.2	8.3	17
	·											<u> </u>	1	I				1	L	I	·!			J	<u></u>
near H	ERON	BAY SC	OUTH																						
6,9 5,2		0.05	0.00	0.00	0.00	0.00	1.4 1.7	0.8	0.0	0.0	137 116	6.4		0.0	0.2	5.6			2.7	115	125	2.6	+0,1	7.8	18
6.9 8,0		0.01	0.00	0.00	0.00	0.00	1.0	0.7	0.0	0.0	128 146	7.1 4.7 5.7	1.3	0.0	0.2	5.9 5.6 6.6		0.05	4.1 5.2 6.3	99.0 110 126	110 116 134	3.6 1.9 2.3	-0.2 +0.1 +0.2	8.2 7.9 7.7	19 20 21 22
8.1 7.7 3.7							1.4 1.4	0.9	0,1 0,0	0.0	152 158	5.5 7.1	1.0		0.3	6.7 6.4			6.1 6.1	130 135	138 145	2.3	0.0 +0.4	7.8 7.4	22 23 24
4.4	1.1	0.08	0.00	0.00	0.00	0.00	0.7	0.7		0.0	87.4 99.5	8.4	0.8	0.0	0.4	4.5 4.2		0.00	8.4 4.4	80.1 86.0	88.3 91.6	1.8 2.2	-0.3 -0.1	8.5 8.2	25
4.0 6.5 6.1	3.8 0.93	0.05	0.00	0.00	0.00	0.00	0.8 0.9 1.0	0.9 0.7 0.6	0.15	0.0	95.6 120 113			0.0	0.3 0.3 0.5	4.3 6.2 6.1			7.9 6.0 11.3		93.6 110 109		-0.0 -0.1 -0.2	8.0	26 27
6.9				<u> </u>		1	1.1	0.6		0.0	119		0.7		0.3	5.9			12.4	110	112	2.0 2.1	+0,1	8.2 7.8	28
west	of MAR.	ATHON																							
4.7	2.0	0.10	0.0 0	0.00	0.00	0.00	0,8	0.7		0.0	91.3	7.3	0.5	0.18	1.5	3.8	<0.1		10,5	85.4	93.0	2.0	-0.4	8.5	30
												·	-			·	• • • •	•	·			•			
west	of MAR	ATHON	_																						
3.3	2,7	0.04	0.00	0.00	Trace	0.00	1.5	0.4	0.3	0.0	55.1	10.4	2.4	0.0	0.4	2.8			11.0	56.2	65.5	5.4	-1.2	9.7	31
<u>.</u>		I	L	_L	L	1.	L	1	L	(0)	(48)	L		1	L	L	L		(19)	(59)	L	I	L		

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

.

(In parts per million)

			Stream d (Secon			med	ې و				Susper matt			on evap at 105 ⁰ lved soli	с.	Ŧ		
٥.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO4	Carbon dioxid (calculated)	рH	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	P.P.M.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁵ at 25 ⁰ C.	Calcium
ł		(Days)			(°F.)		(CO,)		(Hazen) (Units)	(Units)								(Ca)
_1				L		L1		I		·					STATION	NO, 134 -	- PRAIRIE	RIVER
1	Aug. 15/59	33:54			59	10.7	1	8.1 (8.0)	50 (90)	3 (3)			120	0.163	••••••	28,0	177	29.9
	* Sampled a	t highway	No. 17 br	idge										ST	ATION NO	. 135 Bl	LACK FOX	LAKE
2	Aug. 15/59	33:54	•••••		59	5,6	5	7.4 (7.1)	15 (40)	2 (2)			104	0.141		24.0	159	25.7
	* Sampled a	t hüghway	/ No. 17 br	idge				•	·	·T					STATION	N NO. 136	- STEELE	RIVEI
					61	14.7	2	7.7	55	0			80,8	0,110		20,8	107	16.5
3	Aug. 14/59 * Sampled a	31:55 t hjighway	/ No. 17 br	idge	1	<u> </u>	L	(7.5)	(120)	(2)		<u> </u>	<u> </u>		1	<u> </u>	Į	.
_				idge r Level		I	 	(7.5)	(120)	(2)		<u> </u>	1	ST.	ATION NO). 137 – <i>2</i>	IAGUASABO	N RIVE
4	* Sampled a Aúg. 5/57	t highway 92:109	Wate		67		1	7.9 (7.7)	. 35	0	•••••			ST.	ATION NO	. 137 – 4	AGUASABO	N RIVE
4 567890 11 12 13	* Sampled a Aug. 5/57 Sept. Oct. 16 Nov. 19 Dec. 13 Jan. 20/58 Feb. 17 Mar. 17 Apr. 16 May 16 June 16	92:109 No sam 9:20 14:20 31:35 23:35 25:47 17:45 20:34 20:27 24:32	Wate ble taken 600.1 † 900.0 898.9 899.4 599.7 599.7 599.6 599.4 599.6			9.7 8.1 8.6		7.9		<u> </u>			78.4	ST.	ATION NO	32.8 71.2 32.0		18.6
4 567890	* Sampled a Aŭg. 5/57 Sept. Oct. 16 Nov. 19 Dec. 13 Jan. 20/58 Feb. 17 Mar. 17 Apr. 16 May 16	92:109 No sam 9:20 14:20 31:35 23:35 25:47 17:45 20:34 20:27 24:32	Wate 600.1 † 900.0 899.4 599.7 599.6 599.6 599.6 599.6 599.9 001e taken 599.9		67 52 37 35 33 32 33 35 46	9.7 	I 2 2 2 1 2 2 2 1 2 2 2	7.9 (7.7) 7.8 7.7 7.8 7.8 8.0 7.8 8.0 7.8 7.8 7.8	35 40 40 35 40 35 40 35 30 45	0 0.8 0.9 0.8 0.8 0 0 0 0.4 0.4 0.8			111	0.107 0.151 0.124	ATION NO	32.8 71.2 32.0	122 122 121 123 133 134 139 135 87.2	18.6 19.0 18.9 19.0 20.7 21.1 21.8 21.1 13.3 17.1 19.8 20.9
4 567890 112345 1617	* Sampled a Aug. 5/57 Sept. Oct. 16 Nov. 19 Dec. 13 Jan. 20/58 Feb. 17 Mar. 17 Apr. 16 May 16 July Aug. 18 Sept. 15	92:109 No samı 9:20 14:20 31:35 23:35 25:47 17:45 20:34 20:27 24:32 No samı 21:148 10:127 12:103	Wate 600.1 † 900.0 899.4 599.7 599.6 599.6 599.6 599.6 599.9 001e taken 599.9		67 52 37 35 33 33 33 54 54 55	9.7 8.1 8.6		7.9 (7.7) 7.8 7.7 7.8 8.0 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.6 7.9 7.5 7.5	35 40 40 35 40 35 30 45 45 45 40 40 40 20	0.8 0.9 0.8 0.4 0 0.4 0.8 0.8 0.8 0 0 0			91,6 98.4	0.107 0.151 0.124 0.134		32.8 71.2 32.0 22.8	122 122 121 123 133. 134 139 135 87.2 111 126. 128.	18.6 19.0 18.9 19.0 20.7 21.1 21.8 21.1 13.3 17.1 19.8 20.9 19.8
4 567890 1123145 16718	* Sampled a Aug. 5/57 Sept. Oct. 16 Nov. 19 Dec. 13 Jan. 20/58 Feb. 17 Mar. 17 Apr. 16 May 16 July Aug. 18 Sept. 15 Oct. 22/58	92:109 No sami 9:20 14:20 31:35 23:35 25:47 17:45 20:34 20:34 20:27 24:32 No sam 21:148 10:127 12:103 33:54	Wated 600.1 4 900.0 899.4 599.7 599.6 599.6 599.6 599.6 600.4 600.4 17 bridge	r Level	67 52 37 33 33 33 35 46 55 54 65 65 61	9.7 8.1 8.6	1 2 2 2 1 2 2 2 1 1 2 2 2 1 1 4 2 2 2 1	7.9 (7.7) 7.8 7.7 7.8 8.0 7.8 7.8 7.8 7.8 7.8 7.6 7.9 7.5 7.8 7.8 8.0	35 40 40 35 40 35 30 45 45 45 40 40 40 20	0.8 0.9 0.4 0 0.4 0.8 0.4 0.4 0.8 0.8 0 0 0			91.6 98.4	0.107 0.151 0.124 0.134		32.8 71.2 32.0 22.8 28.0	122 121 123 133 134 135 87.2 111 126. 126.	18.6 19.0 18.9 19.0 20.7 21.1 21.8 21.1 13.3 17.1 19.8 20.9 19.8 44.6
4 567890 1123145 16718	* Sampled a Aug. 5/57 Sept. Oct. 16 Nov. 19 Dec. 13 Jan. 20/58 Feb. 17 Mar. 17 Apr. 16 May 16 July Aug. 18 Sept. 15 Oct. 22/58 Aug. 15/59*	92:109 No sami 9:20 14:20 31:35 23:35 25:47 17:45 20:34 20:34 20:27 24:32 No sam 21:148 10:127 12:103 33:54	Wated 600.1 4 900.0 899.4 599.7 599.6 599.6 599.6 599.6 600.4 600.4 17 bridge	r Level	67 52 37 33 33 33 35 46 55 54 65 65 61	9.7 8.1 8.6	1 2 2 2 1 2 2 2 1 1 2 2 2 1 1 4 2 2 2 1	7.9 (7.7) 7.8 7.7 7.8 8.0 7.8 7.8 7.8 7.8 7.8 7.6 7.9 7.5 7.8 7.8 8.0	35 40 40 35 40 35 30 45 40 40 40 40 40 (65)	0.8 0.9 0.4 0 0.4 0.8 0.4 0.4 0.8 0.8 0 0 0			91.6 98.4	0.107 0.151 0.124 0.134		32.8 71.2 32.0 22.8 28.0	122 121 123 133. 134 135 87.2 111 126. 126. 126. 289	18.0 19,0 18,3 20,- 21,- 13,2 11,1 21,1 13,- 17,- 19,- 19,- 19,- 19,- 19,- 19,- 19,- 19

STATION NO. 139 - PAYS PLAT RIVER

											31	ATION NO	. 159 – P7	115 PLAI	RIVER
21 Aug. 14/59 3		•••••	64 9.	8 3	7.1	50	0.8			35.6	0.048		I0.8	42.6	5.6
22 May 25/62	24:27 Med. high		49 11.	0 3	6.8	80	0				•••••			33.3	3.5
												STATION	NO 140 -	GRAVEL	DIVED
												STATION	NO. 140 -	GRAVEL	RIVER
23 May 25/62 2	.1:39		50 11.	8 3	7.3	80	12	48	45	72.4	0.098		32.4	75.6	11.6

TABLE II - (Continued) Chemical Analyses of Surface Waters in the Upper Great Lakes Brainage Basin (ln parts per million)

					_						(In pa	urts pe	r mil	lion)											
<u> </u>	Iros (Fe)						Alk	alis											Hardı as Cı		tituents	dium	adex	lex	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Amnonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Вогол	Non- car- · bonate	Total	Sum of constituents	Per cent sodium	Saturation index	Stability index	No.
(Mg)			(Ma)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO3)	(SiO ₂)	(PO4)	(B)							<u> </u>
east of	JACKI	FISH	·									.													
5.3	0.38	0.08	0.00	0.00	0.00	0.00	1.1	0.6	0.2	0.0	105	8.0	0.9	0.0	0.4	5.9	0.0		· 10,3	96.4	104	2.4	+0.1	7.9	1
east of	JACKI	FISH				i					,				·		,	•	·		· · · · ·				
3.3	0.36	0.02	0.00	0.00	0.00	0.00	1.6	0.4	0.1	0.0	80.3	9.5	3.0	0.0	0.8	4.5	0,0		11.8	77.7 (70)	88.4	4.3	-0.8	9.0	2
east of	JACK	FISH						, r					1					, •	· · · · · ·						
3.4	0.09	0.07	0.00	0.00	0.00	0.00	0.7	0,7	0.1	0.0 (0)	60.8 (61)	7.3	0.6	0.0	0.6	4.5	0.0	····	5.3	55.2	64.3	2.6	-0.9	9.5	3
at TEF	RACE	BAY			1				 		<u> </u>	1			[!		[1		P		 I
3.6							0.9	0,6	0.0	0.0	69.2	5.3	1.0	••••	0.2	4,6	 		4.4	61.2	68.9	3.1	-0.4	8.7	4
3.9 3.7 4.1 4.2 3.9 4.2 2.9 3.3	0.03	0.04	0.00	0.00 0.00 Trace	0.0 0 Trace 0.00	0.05	0.8 0.9 0.7 0.7 0.8 0.8 0.7 0.7 0.7	0.7 0.6 0.6 0.6 0.7 0.6 0.7 0.5 0.5	0.0 0.0 0.05 0.05 0.05 0.1 0.05 0.15 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	70.8 69.0 70.8 75.6 77.2 79.6 77.3 46.6 62.8	5.4 5.8 5.0 5.7 6.0 5.0 4.7 4.8 5.3	1.1 1.5 1.0 1.3 0.8 1.0 1.1 0.6	0.0	0.2 0.2 0.4 0.6 0.6 0.5 0.4 0.5	4.0 3.6 3.8 3.6 4.2 4.5 4.0 3.8 3.7	· · · · · · · · · · · · · · · · · · ·	0.00	5.3 5.8 6.2 6.9 6.6 5.1 6.5 6.9 4.7	63.4 62.4 64.3 68.9 69.9 70.4 69.9 45.1 56.2	70.0 69.3 69.3 74.5 76.8 77.4 74.9 50.4 62.7	2.6 3.0 2.3 2.1 2.4 2.4 2.1 3.2 2.6	-0.6 -0.7 -0.6 -0.3 -0.4 -0.5 -1.0 -0.5	9.0 9.1 9.0 8.6 8.6 8.8 9.6 8.9	11 12
3.9 3.3 4.0	 	0.01	0.00	0.00	0.00	0.00	1.2 1.4 0.8	0.6 0.6 0.7	0.1 0.0 0.0	0.0 0.0 0.0	73.7 75.2 71.6	6.2 5.6 3.8	1.1 1.0 0.8	0.0	0.5 0.5 0.7	6.6 6.4 4.0		0.00	4.9 4.0 7.2	65.4 65.7 65.9	76.2 76.7 69.8	3.8 4.4 2.5	-0.9 -0.5 -0.6	9.3 8.8 9.0	13 14 15 16 17 18
6.7	0.19	0.02	0.00		0.00	0.00	6.8	1.5	0.1	0.0	171	10.1	2.6		0.8	7.5	0.0		0.0	139 (140)	165	9.5	+0.4	7.2	
near S	CHREI	3ER	L	I	J	I	<u>l,</u>	<u></u>	F	I	_1	.		I	1 <u>.</u>	d	4	J	ı	ı <u> </u>	<u></u>	L	1	<u> </u>	<u></u>
0.6	0.12	0.02	0.0	0.00	0.00	0.00	1.1	0,3	0.2	0.0	10.1	7.2	1.1	0.0	0,1	1.8	0.0	·	4.4	12.7 (15)	21.3	15	-3.1	13	20
west n	f ROSS	PORT		·····	J		•	,		4		L	•		· · · · ·	J. ,	L	I	4 	·····	. <u></u>	L	<u>.</u>	· · · · ·	<u></u>
1.2		0.11	0,00	0.00	1		1	0.5	0.3	0,0	17.7	6.1		0.0	0.4	3.7	0.0	ļ	4.4	18.9	28.0	7.1	-2.4		21
1.7	0.10	0.03	0.00	0.03	0.02	0.00	0.5	0.5	0,2	0.0	11.0	7,1	0.9	0.24	0.6	3.7	<0.1	•••••	6.7	15.7	24.3	6.1	-3.1	12	22

west of CAVERS

•

.

٠

								· · · · ·	 															
									 							I	1		1		1	1.1		1
2.6	0.42	0.07	0.00	0.00	0.00	0.00	0.5	0,4	 0.0	38.3	5.6	0.8	0.21	0.3	3.2	<0.1		8.2	39.6	44.6	2.6	-1.5	10	, 23
			·						 															

•

•

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

	0. 14	•	C.	on evap at 105° lved soli	dried		Suspe matt				e	Пed			Stream di (Second			
Calcium	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Loss on igni- tion at 550°C.	Tons per day	Tons per acre- foot	P.P.M.	Ignit ed at 550º C.	Dried at 105ºC.	Turbidity	Colour	pН	Carbon di oxide (calculated)	Oxygen consumed by KMnO4	Water temp- erature	Monthly mean	On sampling date	Storage period	Date of collection	ο.
(Ca)							<u>-</u>	(Units)	(Hazen) (Units)		(CO2)		(° F.)			(Days)		
RIVE	E GRAVEL	– LITTL	N NO. 141	STATIO														
10,2	73.9	16,4		0.078	57.6			2 (2) 2	30 (80)	7.2 (7.0)	4	7.6	61			31:55	Aug. 14/59	1
4.0	36.6	· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	•••••				2	80	6.4	14		50			32:33	May 25/62	2
RIVE	- CYPRES	NO. 142 ·	STATION															
9.2	69.4	17.6		0.076	55,6			0.4	50	7.1	4	10,1	59	ļ		31:55	Aug. 14/59	3
2.5	25,9				. <u>.</u>			(1) 0.8	(120) 90	(7.4) 6.6	2.5	14.3	50		fast	24:27	May 25/62	4
RIVE	JACKPINI	NO. 143 -	STATION 1	5										dge	No, 17 bri	t highway	* Sampled a	
••••	136								35	7.6			61		Very low•	33:39	Aug. 15/59	5
4.3	38.8							0	100	6,8	6		52	.	High**	32:33	May 25/62	6
I RIVE	- JACKFIS	NO. 144 -	STATION						r	1		<u>.</u>		ı a sample			* River so l * Collector's	•
26,0	182	NO. 144 - 31.6	STATION	0.163	120		·····	1. (7)		7.7 (7.9)	3.5	12.5	scharge 66	n a sample vel sæ d di:	of river le	ow difficu estimate 31:55	* Collector's Aug. 14/59	7
,	<u> </u>	r	STATION	· · · ·	120		[3.5 5.	12.5 18.5	scharge	n a sample vel sæ d dis	of river le	ow difficu estimate 31:55 23:26	* Collector's Aug. 14/59 May 25/62	7
26.0 12.8	182	31.6		0.163			······	(7)	(90)	(7.9)	Į.		scharge 66	n a sample vel sæ d dis	of river le	ow difficu estimate 31:55 23:26	* Collector's Aug. 14/59	7
26.0 12.8 RIVEI	182 83.0 KE (OGOKI	31.6		0.163	STAT		······	(7) Turbid	(90) 120	(7.9) 7.2	5.	18.5	66 49	n a sample vel sæd dis idge	of river le 	ow difficu estimate 31:55 23:26 t highway	* Collector's Aug. 14/59 May 25/62 & Sampled a	78
26.0 12.8	182 83.0	31.6		0.163				(7)	(90)	(7.9)	Į.		scharge 66	n a sample vel sæd dis idge	of river le High No. 17 bri Water Lev 1,072.67† 1,070.44	ow difficu estimate 31:55 23:26 t highway 13:25 10:11	* Collector's Aug. 14/59 May 25/62 * Sampled a July 17/59 Aug. 24	7 8 90
26.0 12.8 RIVE	182 83.0 KE (OGOKI	31.6		0.163	STAT			(7) Turbid	(90) 120 40	(7.9) 7.2 7.3	5.	9.5	66 49 50	n a sample vel sæd dis idge	of river le High No. 17 bri <u>Water Lev</u> 1,072.67†	ow difficu estimate 31:55 23:26 t highway 13:25 10:11 No samp	* Collector's Aug. 14/59 May 25/62 & Sampled a July 17/59	7 8 901
26.0 12.8 RIVEI 7.6 7.5	182 83.0 KE (OGOKI 52.3 51.8	31.6		0.163	STAT			(7) Turbid 0.8 0.8 2	(90) 120 40 45 35	(7.9) 7.2 7.3 7.4 7.2	5. 2 2 3	9.5 12.1	50 50 50 50	n a sample vel and dis dige	of river le 	ow difficu estimate 31:55 23:26 t highway 13:25 10:11 No samp 18:140	* Collector's Aug. 14/59 May 25/62 * Sampled a July 17/59 Aug. 24 Sept.	7 8 901
26.0 12.8 RIVE 7.6 7.5 9.8	182 83.0 KE (OGOKI 52.3 51.8	31.6 JIKIT LAI	145 MO	0.163	STAT			(7) Turbid 0.8 0.8 2	(90) 120 40 45 35	(7.9) 7.2 7.3 7.4 7.2	5. 2 2 3	9.5 12.1	50 50 50 50	n a sample vel and dis dige	of river le 	ow difficu estimate 31:55 23:26 t highway 13:25 10:11 No samp 18:140	* Collector's Aug. 14/59 May 25/62 * Sampled a July 17/59 Aug. 24 Sept. Oct. 15	7 8 90
26.0 12.8 RIVEI 7.6 7.5 9.8 C LAK	182 83.0 SE (OGOKI 52.3 51.8 64.3 - MOJIKT 46.9	31.6 JIKIT LAI	145 MO	0.163	STAT			(7) Turbid 0,8 0,8 2 m	(90) 120 40 45 35 ada Datu 45	(7.9) 7.2 7.3 7.4 7.2 of Can	5. 2 2 3 Survey f	9.5 12.1 odetic 5	66 49 50 62 50 d on Ge	n a sample vel and dis idge //el level base	of river le High No. 17 bri Water Lev 1,072.67† 1,070.44 le taken [1,065.28 mean sea Water L 1,071.0 f	ow difficu estimate 31:55 23:26 t highway 13:25 10:11 No samp 18:140 eet above 13:25	* Collector's Aug. 14/59 May 25/62 * Sampled a July 17/59 Aug. 24 Sept. Oct. 15 † Level in f July 17/59	900 12 3
26.0 12.8 RIVEF 7.6 7.5 9.8	182 83.0 (GGOKI 52.3 51.8 64.3 - MOJIKI 46.9 50.9	31.6 JIKIT LAI 31.2	145 MO	0.163	STA1			(7) Turbid 0.8 0.8 2 m	(90) 120 40 45 35 ada Datu 45 55	(7.9) 7.2 7.3 7.4 7.2 af Can	5. 2 2 3 3 5urvey f	9.5 12.1 odetic 5	50 50 62 50 62 50 62 50 61	n a sample vel and dis idge //el level base	of river le High No. 17 bri Water Lev 1,072.67† 1,070.44 le taken [1,069.28 mean sea Water L 1,071.0 † 1,067.0 le taken	ow difficu estimate 31:55 23:26 t highway 13:25 10:11 No samg 18:140 eet above 13:25 13:14 No samg	 Collector's Aug. 14/59 May 25/62 Sampled a July 17/59 Aug. 24 Sept. Oct. 15 † Level in f July 17/59 Aug. 21 Sept. 	7 8 9012 345
26.0 12.8 RIVEF 7.6 7.5 9.8 C LAK 6.7 7.6 8.7	182 83.0 52.3 51.8 64.3 - MOJIKT 46.9 50.9 56.5	31.6 JIKIT LAI 31.2 	145 - MO	0.163 	STA1			(7) Turbid 0.8 0.8 2 m 2 0.8 3	(90) 120 40 45 35 ada Datu 45 55 45	(7.9) 7.2 7.3 7.4 7.2 7.2 7.2 7.2 7.2 7.3	5. 2 2 3 3 3 3 2 2.5 2	9.5 12.1 odetic 5	66 49 50 62 50 d on Ge	n a sample vel and dis idge //el level base	of river le High No. 17 bri Water Lev 1,072.67† 1,070.44 ble taken 1,069.28 mean sea Water L 1,071.0 f 1,070.0 log.20 log	ow difficu estimate 31:55 23:26 t highway 13:25 10:11 No sam; 18:140 eet above 13:25 13:14 No sam; 19:41	 Collector's Aug. 14/59 May 25/62 Sampled a July 17/59 Aug. 24 Sept. Oct. 15 † Level in f July 17/59 Aug. 21 Sept. Oct. 14 	7 8 9012 3456
26.0 12.8 RIVEF 7.6 7.5 9.8	182 83.0 (GGOKI 52.3 51.8 64.3 - MOJIKI 46.9 50.9	31.6 JIKIT LAI 31.2	145 MO	0.163	STA1			(7) Turbid 0.8 0.8 2 m	(90) 120 40 45 35 ada Datu 45 55 45	(7.9) 7.2 7.3 7.4 7.2 af Can	5. 2 2 3 3 5urvey f	9.5 12.1 odetic 5	66 49 50 62 50 d on Ge	n a sample vel and dis 	of river le 	ow difficu estimate 31:55 23:26 t highway 13:25 10:11 No samg 18:140 eet above 13:25 13:14 No samg 19:41 30:51	 Collector's Aug. 14/59 May 25/62 Sampled a July 17/59 Aug. 24 Sept. Oct. 15 † Level in f July 17/59 Aug. 21 Sept. Oct. 14 Aug. 20/61 	7 8 9012 3456
26.0 12.8 RIVEI 7.6 7.5 9.8 5 LAK 6.7 7.6 8.7 8.5	182 83.0 52.3 51.8 64.3 - MOJIKT 46.9 50.9 56.5	31.6 JIKIT LAI 31.2 N NO. 146 33.6	145 - MO	0.163 	STA1			(7) Turbid 0.8 0.8 2 m 2 0.8 3	(90) 120 40 45 35 ada Datu 45 55 45	(7.9) 7.2 7.3 7.4 7.2 7.2 7.2 7.2 7.2 7.3	5. 2 2 3 3 3 3 2 2.5 2	9.5 12.1 odetic 5	66 49 50 62 50 d on Ge	n a sample vel and dis 	of river le 	ow difficu estimate 31:55 23:26 t highway 13:25 10:11 No samg 18:140 eet above 13:25 13:14 No samg 19:41 30:51	 Collector's Aug. 14/59 May 25/62 Sampled a July 17/59 Aug. 24 Sept. Oct. 15 † Level in f July 17/59 Aug. 21 Sept. Oct. 14 	7 8 9012 3456

† Level in feet above mean sea level based on Geodetic Survey of Canada Datum

						 -			STATIC	N NO. 14	⁸ – NIPIGO	N RIVER
19 Aug.	/29*	Monthly composite - year minimum	 	8.1		 	 106	0.144		51.0		27.8
20 Feb.	/30*	Monthly composite - year maximum	 • • • • • •	7.6		 	 110	0.150		50.0		32.1

* Data supplied by Ontario Hydro Electric Power Commission

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

Iron (Fe) Iron (Fe) <t< th=""><th>11</th></t<>	11
no. n	11 13 11
Ag) (Mn) (A1) (Cu) (Zn) (Na) (K) (NH ₃) (CO ₃) (HCO ₃) (SO ₄) (F) (NO ₃) (SiO ₂) (PO ₄) (B) rest of CAVERS 2.3 0.20 0.05 0.00 0.00 Trace 0.00 1.3 0.5 0.1 0.0 37.1 6.6 1.0 0.0 0.1 4.7 0.0 4.5 34.9 45.0 7.3 -1.7 1.7 0.21 0.05 0.00 0.02 0.00 0.7 0.3 0.0 10.4 6.8 1.3 0.22 0.2 4.6 <0.1	13
Prest of CAVERS 2.3 0.20 0.05 0.00 0.00 Trace 0.00 1.3 0.5 0.1 0.0 37.1 6.6 1.0 0.0 0.1 4.7 0.0 4.5 34.9 45.0 7.3 -1.7 1.7 0.21 0.05 0.00 0.02 0.00 0.7 0.3 0.0 10.4 6.8 1.3 0.22 0.2 4.6 <0.1	13
2.3 0.20 0.05 0.00 0.00 Trace 0.00 1.3 0.5 0.1 0.0 37.1 6.6 1.0 0.0 0.1 4.7 0.0 4.5 34.9 45.0 7.3 -1.7 1.7 0.21 0.05 0.00 0.02 0.00 0.07 0.3 0.0 10.4 6.8 1.3 0.22 0.2 4.6 <0.1	13
1.7 0.21 0.05 0.00 0.02 0.00 0.07 0.3 0.0 10.4 6.8 1.3 0.22 0.2 4.6 <0.1	13
	11
2.5 0.42 0.10 0.00 0.00 0.00 0.05 1.0 0.4 0.2 0.0 33.5 6.0 0.9 0.0 0.4 3.9 5.7 33.2 41.0 6.0 -2.0	
1.4 0.20 0.06 0.00 0.05 0.03 0.00 0.5 0.4 0.2 0.0 6.0 7.0 0.8 0.21 0.6 3.6 0.17† 7.3 12.2 16.1 7.6 -3.6	14
Total	
ar NIPIGON	
0.02 13.6 64.9	<u></u>
1.9 0.13 0.10 0.00 Trace 0.00 0.00 0.6 0.4 0.0 13.4 6.4 0.9 0.22 1.0 3.3 0.12 ⁺⁺ 7.5 18.5 25.8 6.4 -2.6	
t Total	
4.4 0.60 0.13 0.00 0.00 0.03 0.00 0.8 0.5 0.1 00 (110) 48.9 8.6 1.4 0.33 0.8 3.7 0.14t 9.9 50.0 57.7 3.3 -1.5 t Total	10
	<u> </u>
1.6 0.16 0.09 0.00 0.04 0.00 0.00 0.9 0.4 0.1 0.0 27.3 2.1 1.5 0.0 0.2 3.3 0.04 3.1 25.5 31.2 6.8 -1.7	11 11
1.6 0.12 0.6 0.5 0.2 0.0 28.0 2.1 0.8 0.0 2.2 2.3 25.3 29.2 4.8 -1.6	1 1
1.9 0.33 0.03 0.00 0.00 0.00 0.00 0.00 0.	11
	-11
	,,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11 11 11
1.8 0.21 0.02 0.00 0.00 0.00 0.00 0.00 0.8 0.4 0.1 0.0 28.3 2.3 0.6 0.0 0.6 4.0 5.9 29.1 33.1 5.5 -1.7	11
1.9 0.16 0.00 0.00 0.00 0.00 0.00 1.4 0.5 0.2 0.0 33.3 1.6 0.6 0.16 0.4 6.8 <0.1 1.7 29.0 38.3 9.3 -1.7	11
t ORIENT BAY	
	TT
3.9 0.10 0.02 0.00 0.01 0.00 0.00 1.5 0.7 0.0 0.0 86.7 3.8 1.6 0.0 0.3 7.8 3.1 74.2 85.6 4.2 -0.3	8,4
	<u> </u>
t CAMERON FALLS	

1.2	 	. 3.0	0.8		0.0	68.0	0	0	[]	 2.5	 	18.6	74.4	 			19
3.6	 	1.5	0.8	 !	2.0	75.0	9.6	0		 4.5	 	30.2	95.1	 	∤ ∙ ∙ • • • •	•••••	20

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

									-									
			Stream d (Secon			ned					Susper		dried	e on evap l at 105° olved sol	c.			
0,	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO4	Carbon dioxide (calculated)	рН	Colour	Turbidity	Dried at 105º C.	Ignited at 550°C.	Р.Р.М.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		(Days)	İ		(º F.)		(CO2)		(Hazen) (Units)	(Units)								(Ca)
																10 1/0	Magon	
	r	1		<u> </u>			11				· · · ·				STATION	NO. 148 ~	NIPIGON I	CIVER
1	Aug. /29 to June /30	Yearly	l average [•••••		7.8			•••••		113	0.154	· • · · · · · · · · ·	53.5		29.1
2	Aug. 3/57	94:111	12,500†	11,460†	63	•••••	2	7.8 (7.8)	15 (40)	1		•••••	• • • • • • • • •	· · · · <i>· · ·</i>	• • • • • • • • • •	• • • • • • • • •	153	23.9
345	Sept. Oct. 22 Nov. 18	No samp 3:41 7:21	le taken 12,200 11,000	12,200 11,780 13,580	51 41	4.8		8.0 8.1	15 10	0.3 0.9			104	0.141	3,406	26.4	148 149	23.9 24.2
í	Dec. 20 Jan. 22/58	24:28 21:33	14,100 17,800	13,010 13,550	34 32	3.5	0.9	8.3 8.1	15 15	0.8 0.4			103	0.140	3,909	26.0	150 152	24.4 24.9
3	Feb. 20 Mar. 17	18:20 4:45	14,800	13,720 11,660	32 32	4.4		8.2 8.1	15 10	0.3				0.151	3,289	27.6	164 154	24.8
0	Apr. 17 May 21	19:25 15:22	9,570 12,600	9,480 11,240	35 42		0.9	8.2 8.1	15 15	0.4							153 149	24.6
23	June 18 July 18	22:30 28:38	14,200 16,200	12,150 13,640	48 55	5.6	0.7	8.3 7.7	20 15	3	9.3	1.6	105	0.143	4,021	24,4	148 147	24.1 24.0
45	Aug. 27 Sept.	27:131	14,200 le taken	14,580 12,720	59		2	7.9	10	ō			• • • • • • • • •				145	23.7
6	Oct. 6/58		10,300	12,480	52	3.5	1	8.0	10	0			98.8	0.134	2,733	19.2	148	23.8
7 8	Aug. 16/59 May 25/62	31:33	7,040†	11,700†	57 48	4.7	2	7.8 7.8	10 (10) 35	0.8 (2) 3.			92 . 8	0.126	1,756 	25.2	152 . 159	24.0 23.9
	* From town		- n/ n															
			it Pile Por	tage plant,	see Sta	ation No	. 148.					57		150	etur ceol	NAMEN		RIVE
9	Aug. 14/59	26:40		tage plant,	see Sta	10,6	4	7.3	40 (65)	0.8 (1)		ST/	ATION NO 78.0	0.150 -	STURGEO	N (NAME) 22.8	98.0	1
- 9 -	r	26:40		tage plant,	1	·	1					ST2	1	1		22.8	1	14.3
_	r	 		tage plant,	1	·	1				 	ST/	1	1		22.8	98.0	14.3
_	Aug. 14/59	 		tage plant,	61	10,6	4	(7.0)	(65)	(1)	 	ST2	78.0	0.106	STATION	22.8 NO. 151 29.6	98.0 - ROLLANI	14.3 D LAK 34.6
	Aug. 14/59	33:53		tage plant,	61	10,6	4	(7.0)	(65) 10 (10) 50	(1)		ST/	78.0	0.106	STATION	22.8 NO. 151 29.6	98.0 - ROLLANI 206	14.3 D LAK 34.6
0	Aug. 14/59 Aug. 16/59	33:53		tage plant,	61	7.3	4 I	8.2	(65) 10 (10) 50	(1) 0.8 (1) 0.8	 	ST/	78.0	0.106 0.182 ST	STATION ATION NO	22.8 NO. 151 29.6 0. 152 - B 31.2	98.0 - ROLLANI 206 	14.3 D LAK 34.6 ER RIV 30.0
	Aug. 14/59 Aug. 16/59	33:53		tage plant,	61	7.3	4 I	8.2 8.2 8.2 (8.0)	(65) 10 (10) 50	(1) 0.8 (1) 0.8		ST/	78.0	0.106 0.182 ST	STATION ATION NC	22.8 NO. 151 29.6 0. 152 - B 31.2	98.0 - ROLLANI 206 LACKWATH 180	14.3 D LAK 34.6 ER RIV 30.0 RD LA
	Aug. 14/59 Aug. 16/59 Aug. 14/59	33:53		tage plant,	61 63 61	10,6 7,3 11.0	4 I 1	8.2 8.2 8.2 (8.0)	(65) 10 (10) 50 (50)	(1) 0.8 (1) 0.8 (<1) 6	15	 	78.0	0.106 0.182 ST 0.178 0.184	STATION ATION NC STATIOI	22.8 NO. 151 29.6 0. 152 - B 31.2 N NO. 153 40.0	98.0 - ROLLANI 206 - LACKWATH 180 - LEONAF	14.3 D LAK 34.6 ER RIV 30.0 RD LAI 25.2
	Aug. 14/59 Aug. 16/59 Aug. 14/59	33:53 26:40 26:68	 	tage plant,	61 63 61	10,6 7,3 11.0	4 I 1	8.2 8.2 8.2 (8.0)	(65) 10 (10) 50 (50) 25 (50)	(1) 0.8 (1) 0.8 (<1) 6		 	78.0	0.106 0.182 ST 0.178 0.184	STATION ATION NC STATIOI	22.8 NO. 151 29.6 0. 152 - B 31.2 N NO. 153 40.0	98.0 - ROLLANI 206 LACKWATH 180 - LEONAR 201	14.3 D LAK 34.6 ER RIV 30.0 RD LAI 25.2
2	Aug. 14/59 Aug. 16/59 Aug. 14/59 Aug. 14/59	33:53 26:40 26:68 95:104			61 63 61 66	10,6 7,3 11.0 10,9	4 I 6	(7.0) 8.2 8.2 (8.0) 7.4 (8.1)	(65) 10 (10) 50 (50) 25 (50) 50	(1) 0.8 (1) 0.8 (< 1) 6 (25)	15	 	78.0 134 131 135	0.106 0.182 ST 0.178 0.184 STATIO	STATION ATION NC STATIOI	22.8 NO. 151 29.6 31.2 N NO. 153 40.0 - BLACK	98.0 - ROLLAN 206 - ROLLAN 206 - LACKWATH 180 - LEONAH 201 - STURGEO	14.3 D LAK 34.6 ER RIV 30.0 RD LAI 25.2 N RIV
2	Aug. 14/59 Aug. 16/59 Aug. 14/59 Aug. 14/59 Aug. 14/59	33:53 26:40 26:68 95:104 tt highway			61 63 61 66	10,6 7,3 11.0 10,9	4 I 6	(7.0) 8.2 8.2 (8.0) 7.4 (8.1)	(65) 10 (10) 50 (50) 25 (50) 50	(1) 0.8 (1) 0.8 (< 1) 6 (25)		 	78.0 134 131 135	0.106 0.182 ST 0.178 0.184 STATIO	STATION ATION NC STATION N NO, 154	22.8 NO. 151 29.6 0. 152 - E 31.2 N NO. 153 40.0 - BL ACK 30.0	98.0 - ROLLAN 206 - ROLLAN 206 - LACKWATH 180 - LEONAH 201 - STURGEO	14.3 D LAK 34.6 34.6 30.0 30.0 25.2 N RIV 15.2

Sampled at highway No. 17 bridge
 † Collector's estimate of river level or discharge

.

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

_											(In	parts	per m	illio	n)										
	Ir (F						Alk	alis												lness CaCO3	tuents	un	le x	X	_
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Amnonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- cnr- bonate	Total	Sum of constituents	Per cent sodium	Saturation inde x	Stability index	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH3)	(CO3)	(HCO3)	(SO4)	(CI)	(F)	(NO3)	(SiO ₂)	(PO4)	(B)			[
at CA	MERO	N FALI	LS (con	cluded)	,									·				·						
3.2							2.1	1.7	 •• • • • •	17.0	36.0	2.4	0		{ 	4.8			18.0	85.9					1
3.8							2,4	0,8	0.0	0.0 (0)	90.8 (92)	3.5	2,1		0.5	5.3			0.8	75.3 (74)	87.0	6.4	-0.3	8.4	2
3.9 3.7 3.9 3.6 3.9 3.6 3.6 3.6 3.4 3.8	0.51	0.03 0.01 0.00 0.02	Trac.	0.00	0.00	0.00	1.5 1.7 1.3 1.2 1.2 1.4 1.2 1.3 1.3 1.3 1.3	0.6 0.5 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.5 0.6	0.0 0.0 0.05 0.05 0.1 0.1 0.05 0.05 0.05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	88.3 89.7 90.9 92.4 90.6 90.3 88.5 88.7 89.8 85.5	3.4 2.9 3.4 4.1 3.0 2.9 2.7 2.9 3.0 3.3 4.6	2.7 1.6 2.0 1.6 1.2 1.3 1.4 1.3 1.0 1.4 1.7	0.0	0.1 0.2 0.3 0.1 0.4 0.3 0.3 0.2 0.2 0.2 0.2	4.6 4.7 5.4 5.2 4.8 6.0 5.3 5.1 7.1 6.7		0,00	2.1 2.6 3.3	75.7 75.6 76.9 77.8 77.9 76.9 77.4 74.9 74.9 74.9 73.9 74.8	84.1 83.7 85.6 86.3 85.4 85.7 84.6 82.7 83.7 83.7 82.9 84.7	4.1 4.6 3.5 3.1 3.2 3.8 3.6 3.6 3.6 3.7 3.6	-0.2 -0.1 +0.1 -0.1 0 +0.1 +0.1 +0.1 -0.4 -0.3	8.4 8.3 8.1 8.3 8.2 8.1 8.0 8.1 8.1 8.5 8.5	3 4 5 6 7 8 9 10 11 12 13 14
4.0		Trace	0.00	0.02	0.00	0.00	1,8	0.5	0.1	0.0	88.5	2.3	1.5	0.0	0.2	6.4	0.0		3.2	75.8	84.1	4.9	-0.2	8.4	15 16
3.9 5.0 † To		0.01	0.0 0			0.00 0.00	1.5 2.0	0.6 0.6	0.0 0.2	0.0 0.0	90.6 92.5	6.2 5.2		0.0 0.17	0.4	5.5 3.9	0.0 0.2 †		1.6 4.5	75.9 80.4	88.0 88.5	4.1 5.1	-0.4 -0.4	8,6 8,6	17
3.2	0.13	0.03	0.00	0.08	0.00	0.00	0,7	0.6	0,1	0.0	53.8	4.0	0,8	0.0	0.0	3.4			4.7	48.8	53.6	3.0	-1.3	9.9	19
	۱ <u> </u>		L	 _	1		·	L	L	•		I	I		L	I	I	I	1	<u>. </u>	I	I	1		<u> </u>
6.0	JELL	T · - ·	0.00	0.00	0.00	0.00	1,3	0.7	0,1	0.0	129	8.9	1.8	0.0	0.4	7.0	0.0		5.3	111	124	2.5	+0.4	7.4	20
					l								l			L	<u> </u>								
								1				 -		F		r	<u> </u>			r	<u> </u>		·····		T
5.1	0.10	0,04	0.00	0.00	0.00	0.00	1.0	0.8	0.1	0.0 (0)	109 (112)	4.6	1.0	0.0	0.1	5.4			6.8	95.8	101	2.2	+0.2	7.8	21
acar	BEAR	DMORE		.	.		·									.									
6.5	0,20	0.03	0.00	0.00	Trace	0,00	5.0	1.4	0.0	0.0 (0)	96.9 (101)	6.9	9.6	0.0	3.0	7.3	•••••		10.1	89.6	113	11	-0.7	8.8	22
near	EVER	ARD																			,				
4.9		0.06	0.00	0.00	0.00	0.05	11.5	0.8	0.1	0.0	66.9	7.1	15.7	0.0	0.4	8.4	ļ		3,2	58.1	97.2	30	-1.0	9.5	23
	I	.1'		J	1	l	·		·	1	·	. <u></u> 1		·	L	<u> </u>	l	L	<u></u>	<u></u>	I		·(ا ــــــ
near	HURK	ETT	r	r	ı — —	 ,	r	. ···-	r						y -7	·····	······	r		·		··	,ı		
7.6	0.27	0.05	0.00	0.00	0,01	0.00	0.9	0.6	0.1	0.0	81.2	6,7	1.3	0.21	0.5	5.2	0.27†		7.4	74.0	80.7	1.7	-0.6	8.9	24

† Total

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

.

(In parts per million)

								11	n paris j									
			Stream di (Secon			ned	U				Susper		Residue dried (Disso	on evap at 105 ⁰ (lved soli	C.	•	G t f i a	
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO ₄	Carbon dioxide (calculated)	рН	Colour	Turbidity	Dried at 105º C.	Ignited at 550° C.	Р.Р.М.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		1			(0 -)	0			(Hazen) (Units)									(Ca)
		(Days)		1	(°F.)		(CO ₂)		(onits)	(ouns)								
										1					TATION N	10.156 -	CURRENT	RIVER
1	Oct. 17/57	8:19			47	9.7	2	7.5	65	3	4.8	1.3	58.8	0.080		35.6	83.5	10.3
2	Dec, 19	29:39			33	!	2	7,6	70	0.8						••••	80,2	9,6
3	Feb, 19/58	22:48			35	10.7	3	7.4	70	0.2			68.8	0.094		41.2	79.3	9.3
4	Apr. 18	18:24	High		39		1	7.4	70	1					••••••	•••••	51.1	5.5
5	June 19	22:29			63	12.8	2	7.3	70	0.8			66.4	0.090		43.2	50,7	5.8
_6	Aug. 19	24:125		•••••	65	<u></u>	8	6.9	55	0						••••••	74.5	9.3
															STATION	NO. 157 -	- LOCH LO	MOND
7	Sept. 7/5	-:34					5	7.0	35	3			56,8	0.077		19.6	56.8	5.8
8	Mar. 11/5						0.4	7.7		3			56	0.076				5.6
9	June 17/5	st					3	7.1		2			60	0.082				6.0
10	June 8/6						4	7.0	15								51.8	4.9
11	May 24/6	2* 32:34			50		7	6.7	25		l	ļ]			<i>.</i>	53.7	6.2
12	July 31/5	Table III ,	J			13.0	3	7.2	60	0.9		·····	. 68.8	0.094	STAT	TION NO. 39.2	158 – DOG 63.0	LAKE 6.9
	<u> </u>		!	I		1	I	1(112)		1		<u>.</u>	1	•	I	ļ		<u> </u>
	T	1	1	1	1	<u>۱</u>	1	1		<u>т. </u>	1	·		T	1 NO. 15	9 – KAMII	NISTIKWIA	T
13	Aug. 2/5	7 95:102	1,530	1,310	·····		2.5	7.3 (7.3)	50 (80)	2	• • • • • • • • •		•			•••••	. 63.1	7.8
														STATI	ON NO. 16	0 - KAMII	NISTIKWIA	RIVER
14	Oct. 17/5	7 7:18	1,530†	1,360†	50	12.8	1	7.6	70	2	1		. 72.0	0.098	297	42.0	66.3	8.7
15 16	Nov. 18	15:21	1,640 ple taken	1,550	50 36		2	7.6	90	5						42.0	. 78.7	10.6
17 18	Jan. 17/5 Feb. 18		1,410	1,530	33	10.0	2	7.5	55 70	1 0.3			. 74.4	0.101	282	39.2	71.1	9.9 8.7
19	Mar. 18	7:44	1,400	1,470	33	1	. 0.8	7.8	50	0.8		1					. 73.4	9.0
20 21	May 20	18:32 16:23	1,770	1,420 1,110	46 54	19.3	2	7.4	110	7			. 96.4	0.131	459	50.0	68.0 . 79.8	8.5
22 23	June 18 July 18	22:30 28:46	1,060 1,540	1,420 1,610	61 66	11.9	. 2	7.5	120 90	4	3.2	2.5	78.4	0.107	326	30.8	66.4	10.0
24	Aug. 18	21:45	1,700	1,670	4		. 5	7.2	75	2	5.2	2.5				20.0	. 68.0	9.0
25	-	7:124	1,230	1,370	56		. 1	7.7	90	2		+	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	• [• • • • • • • •	. 68.8	8.9
26			2,270	2,070	57		. 8	7.0	90	5	<u>}</u>	· · · · · · ·		••••••			. 93.5	11.5
	† Discharg <i>See</i> also	e records a Station No			NO. 17A	. at Kam	inistik	wia, L	at. 48°31	' 58", L	ong. 89°3	5' 39" - Di	ainage are		• • • •			
	1	- 1 00 +		1	T	1	1.		1	1	1.	1	1	1	TION NO. 1	1	BANDOWAN	1
27	Aug. 2/5	7 90:104	<u> </u>	· · · · · · · · · · · · · · · · · · ·	. 80	7.2	4	7.0		5	16	4.5	53.6	0.073		. 23.2	56.2	7.0
														STAT	TON NO.	162 – SHE	BANDOWAI	I RIVER*
28	Aug. 2/5	7 90:104	489†	315†	80	9.2	1	7.5	50	1	T	1	. 59.6	0.081	78.4	25.6	64.5	8.2
	Sept,		ple taken	339				(7.7										
	• T	. I	-	,	1 1 fee - 1	، د ماند ماند ا	 No. 17	ر مەلمە	1	1	•	•	'	,	•	•	•	

Kocally known as Matawin River; sampled from highway No. 17 bridge.
 Discharge data for Aug. 2/57 recorded at Glenwater; remaining data recorded at highway No. 17 bridge near Sunshine.

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

											(puns		1											
	Iroi (Fe						Alke	lis								6			Hard as C	ness aCO ₃	constituents	шi	dex	ð	
(a Magnesium	Total	Dissolved	ur Manganese	(Y) Alumínum	Copper	bN Zinc	(Na Najum	A Potassium	(⁷ H ⁷ Mmonia	O Carbonate	COOH) Bicarbouate	Sulphate	Chloride	Huoride	Nitrate	Silica O (colorimetric)	0 Phosphate	Boron B	Non- car- bonate	Total	Sum of const	Per cent sodium	Saturation index	Stability index	No.
at POR	T APT		(((1)))	((0.)	<u>,</u>	(11)	()		(003)	(110-3)	1004,		<u><u><u> </u></u></u>								.		·	
3.5		0.25	0.01	0.00	0.00	0.00	1.0	0.7	0.0	0.0	43.3	4.1	1.3	0.75	0.1	5.5			4.6	40.1	48.9	5.0	-1.3	10	1
3.3		•••••					1.2	0.6	0.1	0.0	38.5	6.0	1.0		0.4	7.8		0.00	5.9	37.5	49.0	6.3	-1.3	10	2
3.5		0.17	Trace	0.00	0.00	0.00	1.0	0.7	0,15	0.0	37.7	6.2	1.3	0.0	0.8	7.8			6.7	37.6	49.5	5.3	-1.5	10	3
2.4		•••••	.	•••••	i		0.8	0.5	0.2	0.0	23.3	4.6	0.8		0.9	6.8		0.00	4.5	23.6	33.8	6.7	-1.9	11	4
2.4		0.11	0.00	0.00	0.00	0.00	0.9	0.5	0.1 0.1	0.0	23.8 37.2	5.1	0.4	0.0	0.3	5.5			4.8 6.3	24.3 36.8	32.3 44.1	7.2 5.5	-2.0 -2.1	11 11	5 6
3.3	•••••		1			·····	1.0	0.6	0.1	0.0	37.4	5.0	0.7		0.3	5.6		. 0.00	0.5	50.0	44.1		-2.1		
at FOF	T WIL	LIAM	1]				1				r		ı	1								
1.9		0.16			• • • • • •		2.9	0.4		0.0	29.2	5.9	0	0.20		4.2			0	22.3	35.9	22	-2.3	12	7
2.4 1.2	0.1 0.2	• • • • •		0.00 0.00			•••••		0.0	0	19.5 30.5	6.8 8.1	0 0		•••••	4.9			8 0	24 20			-1.7 -2.1	11 11	8 9
2.7]				1.0	0.6	0.1	0.0	20.8		0.9	0.06					6.4	23.5		[10
2,5	0.01	0.01	0.00	0.00	0.30	Trace	0.9	0.5		0.0	21.2	7.1	0.9	0.11	0.1	3.7			8.4	25.8	29.2	6.8	-2.6	12	11
at dam 2.5	, north	of K/	1	0.00	0.00	0.00	1.4	1.1	0.15	0.0	27.7	4.1	1.6	0.0	1.2	6.1	·····		4.8	27.5	38.9	9.3	-2.0	11	12
at KAR		IK WIA		·		·	,		L	I				1	•	·	· · · · ·	L		·	J	!	<u>ا</u> ا		
2.4							1.3	0.8	0.0	0.0	31.7	4.9	0.9		0.2	6.0		 	3.3	29.3	39.9	8.5	-1.7	11	13
at KAI	ABEK	A FAI	LLS																	<u></u>		<u>.</u>			
2.6 3.2		0.06	0.00	0.00	0.00	0.00	1.0	0.7 0.9	0.1	0.0	33.8 40.8	4.9 5.2	1.2 1.9	0.0	0.7	6.7 8.1		<u> </u>	4.7 6.1	32.4 39.6	40.7	6.I 7.0	-1.4 -1.3	10 10	14 15
2.7 2.5 2.2 2.8 2.8	0.89	0.09	0.00	0.00	Trace 0.00		1.1 1.4 1.1 1.2 1.4 1.1 1.0 1.2	0.6 0.7 0.8 0.8 0.6 0.6 0.7 0.7	0.1 0.15 0.1 0.2 0.1 0.15 0.2 0.1 0.15	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	35.8 31.9 32.4 29.3 43.2 37.5 34.4 33.5 34.6	6.7 5.2 4.9 3.9 6.0 3.7 3.6 3.4	1.2 1.1 0.8 1.2 1.1 1.0 0.9 1.2 1.2		1.0 0.8 0.8 0.3 0.3 0.7 0.6 0.5	7.3 7.3 7.1 8.5 5.3 5.8 7.2 6.6 7.1	· · · · · · · · · · · · · · · · · · ·	• • • • • •	6.4 5.8 4.9 8.7 3.1 4.4 4.2 6.1 5.3	35.8 32.0 31.5 32.7 38.5 35.2 32.4 33.6 33.7	48.3 43.4 41.9 43.1 47.4 46.1 42.7 41.9 42.8	6.1 8.4 6.9 6.6 6.2 7.8 6.7 5.9 7.0	-1.5 -1.4 -1.2 -1.6 -1.3 -1.4 -1.6 -1.8 -1.2		16 17 18 19 20 21 22 23 24 25
4.2	0.37	0.11	0.00	0.00	0.00	0,00	1.5	0.8	<u></u>	0.0	41.3	8.5	2.2	0.25	1.0	4.7	0.12		12.1	46.0	55.2	6.5	-1.8	11	26
near M	ABELL																								
1.8	1	.0.20	0.00	0.00	0.00	0.00	1.1	0.6	0.05	0.0	25.5	4.4	0.9	0.0	0.4	5.2			4.0	24.9 (27.9)	34.2	8.4	-2.2	11	27
	·	<u> </u>	.l	I	I	L	<u> </u>	<u>-</u>	<u> </u>	_	1	1	I	1	I	1		L	(4.6)	(27.9)	L	[<u> </u>
2,2	AMINIS	1	T	0.00	Trace	0.05	1.2	0.7	0.05	0.0 (0)	33.4	3.9	0.9	0.0	0.4	5.5			2.1	29.5	39.7	7.8	-1.5	11	28
	I	1	1)	I	I	Į		I	(O)	(33.7)		ļ		ļ	ļ	1	1	(2.3)	(29.9)		ļ			29

			Stream d (Secon			beđ	41				Suspe matt		dried	on evap at 105 ⁰ lved sol	c.			
ło.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consumed by KMnO ₄	Carbon dioxide (calculated)	рН	년 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	Turbidity	Dried at 105°C.	Ignited at 550°C.	Р.Р.М.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		(Days)			(°F.)		(CO ₂)			(Units)								(Ca)
														STATIC	N NO. 16	2 – SHEBA	NDOWAN I	RIVER*
1	Oct. 19/57 Nov. 21	12:44 12:18	180† 370	213† 361	41 37	18.4	3	7.6 7.3	100 150	4			56.0	0.076	32.1	21.2	115 90.8	15.6
3	Dec. 20	28:38	557	548	39	10.0	4 2	7.5	150 60	4			81.2	0.110	121	39.6	90.8 80.4	12.3
4	Jan. 23/58	20:32	539	562	37		9	7.0	40	7							133	10.7
5	Feb. 22	16:18	485	484	35		4	7.2	35	3					• • • • • • • • •		120	9.6
6	Mar. 20	20:27 33:42	409	451	38 45	7.3	5 1.5	7.1	30 120	2	•••••	· · · · · · · · ·	77.2	0.105	85.0	27.6	82.7 61.2	10.7
8	Apr. 25 May 23	33:42 13:20	1,030	1,090	45 51		2.5	7.5	120	3 5	• • • • • • • • •	• • • • • • • • • •	• • • • • • • • •	• • • • • • •	• • • • • • • • • •		82.8	8.3
9	June 21	25:33	516	770	62		5.	7.0	100	2	•••••••		73.6	0.100	102	37.2	68.5	9.1
ó	July 26	25:54	570	996	74		3	7.3	75	2					102	57.2	72.0	10.5
ī	Aug. 26	30:147	195	287e	64		4	7.3	60	Ō							87.6	11.9
12	Oct. 1	14:122	384	469	50	17.8	2	7.6	90	4	·····	• • • • • • • •	104	0,141	107	50.8	98.7	14.3
	Locally k † Discharge e estimated	e data for	Matawin Ri Aug, 2/57	ver; sampl recorded a	ed from at Glenw	highway ater; rer	No. 1 naining	7 bridg g data	ge. recorded	at highv	ray No. 17	/ bridge n	ear Sunshi	ne,				
															STATION	NO. 163 -	PIGEON I	RIVER
3	July 31/57	72:83	155	293	75	5.7	3.5	7.3 (7.8)	25	4			62.8	0.085	26.1	16.4	90.1	11.3

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

	Nov. Dec.		12:47 24:32	178 101	165 105	36 35	14.9	2 2	7.6 7.5	80 50	9	12.	3.2	89.2	0.121	42.6	39,6	92,1 94,6	11.2 11.4
16	Jan. Feb.	19/58	24:36 24:50	95 81	91 89	34	4.0	3	7.4	30 25	5							98.0	11.4
18	Mar,	19	15:43	90	93	37	4.0	3	7.4	25	ŝ	6.1	1.9	83.2	0.113	18.1	26.8	99.1 99.9	11.6 11.5
	Apr. May	21 17	18:29 13:19	471 178	422 222	48 60	•••••	1.5	7.2	110 85	7	1		79.6	0.108	38.1		58.2 76.8	6.6 8.9
21	June		23:31	94	130	57		1 1	7.7	70	4							86,5	10.5
22 23	July Aug.		23:41 24:33	76 73	78 65	68 67	3.7	3	7.4	50 20	2	1 .		1 /0 A	0.092	13.3	26.0	92.8 89.9	11.2 10.8
24	Oct.	15	7:110	186	206	48	ļ		7.5	140	5							89.3	11.2

* Lat. 48°00' 42", Long. 89°36' 40" - Drainage area 600 square miles; sampled at Middle Falls.

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million)

												i parts	201 11												
]	Iror (Fe)						Alk	lis											Hard as Ca		ruents	E S	ex	ж	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbunate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorímetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of constituents	Per cent sodium	Saturation index	Stability index	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH3)	(CO3)	(HCO3)	(SO₄)	(Cl)	(F)	(NO3)	(SiO ₂)	(PO4)	(B)							
near l	KAMI N	NISTIK	WIA (c	onclud	ed) • D	raiaage	area - I	,080 s	quare n	niles															
4.6 3.9 2.5 2.8 2.5 2.6 2.4 2.3 3.3 3.3 3.5	2.7	0.30 0.14 0.08 0.10 0.12	0.00 0.00 0.00	0.00	Trace 0.00 0.00 Trace	0.00 0.00 0.00	2.1 1.7 1.2 7.7 1.9 1.4 1.0 1.3 1.1 1.3 1.1 1.3 1.4	1.1 0.8 0.7 4.2 1.2 0.8 0.6 0.7 0.6 0.7 0.6 0.7 0.8	0.I 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	65.0 45.2 41.1 51.7 37.7 38.4 25.5 40.2 35.2 38.9 46.1 50.6	5.8 5.6 4.9 4.8 5.3 6.2 5.4 5.9 5.0 4.5 5.7 4.6	2.5 2.7 1.3 9.6 2.1 1.3 1.4 1.3 1.0 0.7 1.0 1.0	0.0	0.2 0.2 0.1 Trace 0.8 0.6 0.2 1.5 0.4 0.5 0.5	8.4 9.9 7.4 6.6 8.0 7.2 7.2 4.6 4.9 6.2 5.6 6.9	0,0	0.10	4.5 9.6 4.0 0.0 3.3 5.9 7.4 6.7 4.5 3.8 5.5 8.6	57.8 46.7 37.7 38.2 34.2 37.4 30.6 39.7 33.4 35.7 43.3 50.1	72.7 59.5 49.7 71.9 49.3 50.1 39.4 47.9 43.2 45.6 52.8 57.5	7.1 7.1 6.3 28 10 7.3 6.5 6.5 6.5 7.2 6.5 4.8	-0.9 -1.5 -1.3 -1.8 -1.7 -1.8 -1.7 -1.8 -1.6 -1.4 -1.9 -1.6 -1.4 -1.9 -1.6 -1.4	9.4 10 11 11 11 11 11 10 11 10 9.6	1 2 3 4 5 6 7 8 9 10 11 12
neâr l	PIGEO	N RIV	ER							,		·····			· I		. <u> </u>								
3.1	•••••	0.04	0.00	0.03	0.00	0.00	1,5	0.5	0.05	0.0	44.0	6.9	1.8	0.0	0.8	6.8	•••••		4.8	40.9	54.5	7.2	-1.5	10	13
3.8 3.7 3.8 3.7 3.8 2.5 3.3 3.4 3.7 3.6	0.37	0.13 0.10 0.07 0.02	0.00	0.02 0.00	0.00 0.00 0.00	 	2.2 1.7 1.8 1.9 1.4 1.7 2.0 1.7 1.6	0.8 0.6 0.6 0.6 0.5 0.6 0.5 0.5 0.5	0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.05	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	41.4 43.6 47.1 46.9 46.3 23.3 33.3 42.9 46.8 44.2	10.2 8.3 7.6 8.4 7.9 6.9 7.1 7.2 7.6 6.2	2.9 2.1 1.8 1.6 1.1 1.3 1.3 1.5 1.6	0.0 0.0 0.0 	0.4 0.2 0.6 0.5 0.8 0.2 0.2 0.2 0.2	7.4 7.8 7.9 9.5 7.9 7.1 3.9 4.5 4.0 5.0		0.00	9.6 7.9 6.5 5.7 6.3 7.6 8.5 5.0 4.8 5.5	43.6 43.7 45.1 44.2 44.3 26.7 35.8 40.2 43.2 41.8	59.4 57.3 58.7 61.3 58.6 38.4 43.5 50.7 53.2 51.5	9.6 7.7 7.9 7.9 8.3 10 9.2 9.6 7.8 7.6	-1.2 -1.3 -1.4 -1.1 -1.4 -2.0 -1.6 -1.1 -1.3 -1.5	10 10 9.9 10 11 11 9.9 10 10	14 15 16 17 18 19 20 21 22 23
4.1						•••••	1,8	0.6	0.1	0.0	41.7	6.4	1,9		0.6	7.1		0,00	10.6	44.8	54.2	7.9	+1.3	10	24

•

.

Į

•

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

									-							
		C.	on evapo at 105° (ved solid	dried		Suspe matt					bed		ischarge -feet)	Stream d (Second		
ance at 25°C,		Tons per day	Tons per acre- foot	P.P.M.	Ignited at 550°C.	Dried at 105 ⁰ C.	Turbi	Hazen)		Carbon dioxide (calculated)	Oxygen consumed by KMnO4	Water temp- erature	Monthly meao	On sampling date	Storage period	Date of collection
(Ca)		l	1		<u> </u>		(Units)	(Units)	<u> </u>	(CO ₂)	I	(°F.)		·	(Days)	
ORTH CHANN	IAN BAY,	ON (GEORG	KE HURO	164 – LAI	TION NO. 1	STAT			r	<u>+</u> 1		1 i		. <u> </u>		
100				- ((Water		
123 14.1		•••••	0.101	74.4			2	5	7.5 (8.1)	2	4.2	71	576.92†	576.91†	31:60	June 8/63
IMAGAMI RIVI	10. 165 -	STATION 1		graphic So	dian Hydroj	on (Canad	Thessal	(1955) at	IGLD (red to i	int; refer	ther Po	level at Fa	bove mean	in feet ab	† Elevation
52.4 4.5	14.0		0.054	40.0	· • • • • • • • • • • • • • • • • • • •		0.5	20	6.6 (7.0)	3	8.7	73			22:54	June 5/63
MARTEN RIVI	NO. 166	STATION									4		Lodge	s Riverside	nt Martel's	* Sampled a
62.6 6.3		·····	••••••				0.5	25	7.0 (7.2)	2	9.4	72			22:54	June 5/63
AKE NIPISSING	IO. 19) – 1	STATION N	10. 167 (TATION N	ST								idge	y No. 64 br	at highway	* Sampled a
73.1 6.6	20.8		0.073	54.0	0.9	1.6	3	25	7.0 (7.3)	3	9.0	66	642.15	642.10†	21:55	June 4/63
- SOUTH RIVE	N NO. 168	STATIO	I	tions.	Canada Stat	urvey of C	odetic Si	ed on Ger		sea lev	re mean s	ay abov	in North B			* At Callan † Level in
40.1 3.4			· · · · · · ·			 	1	30	6.3 (6.3)	5	11.3	72	134†	185†	23:37	June 4/63
TOMIKO RIVER	NO. 24) -	(STATION				- Lat. 45º	Сотралу	Electric	River I	South]	elow the	iately b	idge ver immed	y No. 11 br at South Ri	at highway e records :	* Sampled a † Discharge
41.8 2.9							0.9	20	6.0 (6.4)	4	9.5	71			22:54	June 5/63
VEBEC) RIVE	PENT (KE	79) – SERF	ION NO.	70 (STATI	ION NO. 17	STATI	·	· .	<u> </u>	.1	4	4	bridge	way No. 11	from high	* Sampled f
	26.6	1	<u> </u>											1	1 10 00	June 24/63
283 34.8	36.4		0.264	194	·····		1	5	6.6	1	2.4	74			50:80	June 24/05
283 34.8	30,4	[0.264	194			1	5	6.6 (6.6)	1	2.4	74	idge	y No. 17 br		* Sampled a
DEPOT LAK		I (STATIO	<u>ا</u>		[]		1	5		1	2.4	74	idge	y No. 17 br		
		I (STATIO	<u>ا</u>				0.5	5		1	2.4	<u>}</u>	idge	1	at highway	
DEPOT LAK	N NO. 84)		NO. 171	STATION			1	I	6.7	1	2.7	74			at highway	* Sampled a
DEPOT LAK	N NO. 84)		NO. 171	STATION			1	5	6.7	1	2.7	74			50:73	* Sampled a June 24/63
DEPOT LAK) 292 29.5	N NO. 84)	(STATION	NO. 171 NO. 172	STATION			0.5	5	(6.6) 6.7 (7.1) 6.8	2.5	2.7	74 108 brid			50:73	 Sampled a June 24/63 Sample at

† Discharge records at Rayner Generating Station - see Station No. 94, page 46
 * Sampled at bridge on road to Dean Lake

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

										3 01 3		n parts				ureat		Diai	nage Ba	.50					
Magnesium	Iros (Fe		Manganese	Aluminum	Copper	Zinc	Alka	Potassium	Ammonía	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Hardn as Ca Non- car- bonate		Sum of constituents	Per cent sodium	Saturation index	Stability index	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO ₃)	(SiO ₂)	(PO4)	(B)		ļ	l				
at BLI	ND RI	VER										,		I			I	·				1			
4.5		0.00	0.00	0.01	0.00	0.00	2.2	0.7	0.I	0.0	46.4	15.2	2,1	0.08	1.7	2.7	<0.1		15.8	53.9	66.1	8,1	-1.2	9.9	1
near F	IELD																								
2.2		Trace	0.00	0.02	Trace	<0.05	0.8	0.5	<0.1	0.0	7.7	14.2	0.8	0.07	1.I	1.7	< 0.1		14.3	20.6	29.7	7,6	-3.3	13	2
			. <u></u>	1	L		J		L	l		I	1	1	I			1		!	t	L	!	1	
at MA	RTEN	RIVER			1																·	,i			
2.3	0.08		0,00		<u> </u>	0.00	1.1	0.6	0.5	0.0	12.7	15.0	0.1	0.09	0.3	1.6			14.6	25.0	33.6	8.5	-2.5	12	3
at CAL	.LAND	ER																							
2.7	0.14	0.00	0.00	0.04	Trace	0.00	2.0	0.9	0.0	0.0	18.2	14.2	1,1	0.09	0.4	1.0	[12.9	27.8	38.9	13	-2.4	12	4
near S	и ОПТН	RIVER			L		1		L	<u>.</u>	<u> </u>	·	•	4	L	L	L	•		4	1				
1.5	0.32	0.02	ī — — — — — — — — — — — — — — — — — — —	ļ	ļ	0.00	1.0	0.6	<0.1	0.0	6.0	9.9	0.2	0.08	0.4	2.6	[. .	9.6	14.5	22.6	13	3.8	14	5
	1	L		1	L	L	1	l	1	I	Į	I	ł	I	<u>.</u>	1	L	J	L	I	_	L			
north	of NOF	TH.B.	AY					<u> </u>																	
1.3	0.12	ļ	0.03	·}		0.00	1.5	0.5	0.1	0.0	2.3	12.3	0.8	0.09	0.3	2.0	·····	· · · · ·	10.8	12.7	22.8	20	-4.6	15	6
* Tot near C		R																							
4.6	[0,00	0.1	Trace	0.10	6.0	4.5	0.0	0.0	3.3	98.5	5.9	0.14	13	2.1	Trace		103	106	172	10	-2.9	12	7
	<u>.</u>	1	L	I	- I	·	-!	1	J	<u></u>	.i	1	<u>.</u>	<u>.</u>	<u> </u>	1	L	<u>.</u>	L		·				L
near E	LLIO	LAK	E								. <u>.</u>			- j	_		·		}	- i	·r	<u>. </u>		,	····-
7.0		·····	ļ			0,02	7.5	5,8	0.0	0.0	7.7	98.5	8.3	0.17	12	0.3			97.2	103	173	13	-2.4	11	8
at BL	r	1		1	τ	1	τ	1.0.0			1		1	1.0.0	1	1		1	<u> </u>	1 240	1 20 2	107		<u></u>	
2.4		. Trace	0.00	0.0	Trace	0.10	1,1	0.3	0.0	0.0	20.5	8.7	0.2	0.07	0.3	0,2	<0.1		. 8.1	24.9	29.3	8.7	-2.5	<u> </u>	9
near D	EAN I	AKE			-				· · · · · · ·	·	.														
2.6		. 0.02	0.00	0.0	Trace	0.10	0.9	0.4	0.1	0.0	23.5	8.7	0.2	0.09	0.3	4.3	< 0,1		7.8	27.1	35.7	6.6	-2.3	11	10

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

(In parts per million

		_	Stream di (Second-			hed	<u>م</u>				Susp mat	ended ter	dried	e on eva l at 105 ⁰ lved soli	Ċ,			
lo.	Date of collection	(Days)	On sampling date	Monthly mean	Water temp- erature (⁰ F.)	Oxygen consumed by KMnO4	C Carbon dioxide (calculated)	рН	Hazen)	(Units)	Dried at 105ºC.	Ignited at 550 ⁰ C.	р.р.м.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	(Ca)
	1		L	I	· _ ·					<u></u> ,	L	STAT			TION NO.	109) - M		
1	June 23/63	57:58	652†	1,033†	57	8,2	14	6.4	40	2							53.3	6.4
	† Discharge	records a	at Algoma C	Central and	d Hudson	Bay Rai	lway b	idge,	see Stati	on No, 1	09, page	48	 		<u> </u>	1	l	
		·							<u></u>		1	STATIO	N NO. 175	(STATI	ON NO, 11	5) – OLD	WOMAN R	VER *
2	June 23/63	51:58			63	7.5	5	6.6 (7.1)	35	2		·····			h		41,8	5.0
	* Sampled at	highway	No. 17 brid	ge				·,						STAT	TION NO, 1	76 – MIC	HIPICOTE	RIVER
3	June 23/63	40:58	2,395†	2,631†	60	9.9	6	6.9 (7.7)	50	2	•••••		66.4	0.090	427	31.6	81.9	11.2
	† Discharge	records a	at High Fall	s, see St	ation No.	116, pag	se 50	10.07	L	l		<u></u>	L.,	I	1	1	1	<u> </u>
	* Sampled a	it bridge o	n Michipico	oren Harbo	our road							ST	ATION N	5. 177 (S	TATION N	10. 117) -	MAGPIE I	IVER *
4	June 22/63	41:59	1,520†	1,670†	62	9.4	1	7.6	50	4	6.2	3.3	68.0	0.092	277	34.0	81.7	11.1
												0 - 4 -		170 /87	ATTON NO	1001	DOT WIN	
5	June 22/63	41:62	7,780†	5,860†	60	11.3	6	7.1	55	1	•••••					· 122) w	EST WHIT	13.0
5	June 22/63 • Sampled a † Discharge	t highway	No. 17 brid	dge				(7.7)			uthwest o					[88.7	1
5	* Sampled a	t highway	No. 17 brid	dge				(7.7)			uthwest o		tation, La			. 85 ⁰ 44' 3	88.7	13.0
5	* Sampled a	t highway tecords i	No. 17 brid	dge				(7.7) CPR b	ridge, 5 r		uthwest o		tation, La		26", Long	. 85 ⁰ 44' 3	88.7	13.0
	* Sampled a † Discharge June 22/63 * Sampled a	t highway tecords a 38:47	7,780†	dge White Lak 5,860†	ce, about 62	3 miles 1	below ((7.7) CPR b 7.9 (8.3)	ridge, 5 r 45	niles so 0.7		of Mobert S	tation, La STATIO . 96.8	nt. 48°39' N NO. 17 0.132	26", Long 79 (STATIC		88.7 2" 24) – WHIT 138	13.0 E LAKE
	• Sampled a † Discharge	t highway tecords a 38:47	7,780†	dge White Lak 5,860†	ce, about 62	3 miles 1	below ((7.7) CPR b 7.9 (8.3)	ridge, 5 r 45	niles so 0.7		of Mobert S	tation, La STATIO . %.8	nt. 48°39' N NO. 17 0.132	26", Long 79 (STATIC	. 85 ⁰ 44' 3 DN NO. 12 34.0	88.7 2" 4) - WHIT 138 2"	13.0 E LAKE* 20.1
	* Sampled a † Discharge June 22/63 * Sampled a † Discharge	38:47	7,780†	dge White Lak 5,860†	ce, about 62	3 miles 1	below ((7.7) CPR b 7.9 (8.3)	45 45 ridge, 5 r	niles so 0.7		of Mobert S	tation, La STATIO . %.8	nt. 48°39' N NO. 17 0.132	26", Long 79 (STATIC	. 85 ⁰ 44' 3 DN NO. 12 34.0	88.7 2" 4) - WHIT 138 2"	13.0 E LAKE* 20.1
6	* Sampled a † Discharge June 22/63 * Sampled a † Discharge	38:47 thighway thighway thighway secords a 38:51	7 No. 17 brid at outlet of 7,780† 7 No. 17 brid at outlet of	dge White Lab 5,860† dge White Lab	62 ce, about	3 miles 10.5 3 miles	2 below ((7.7) CPR b 7.9 (8.3) CPR b 7.7	45 45 ridge, 5 r	niles so 0.7 niles so	uthwest o	of Mobert S	tation, La STATIO . %.8 itation, La STATIO		26", Long 79 (STATIC		88.7 2" 24) – WHIT 138 2" 8) –BLAC	13.0 E LAKE ⁴ 20.1 K RIVER
6	Sampled a T Discharge June 22/63 Sampled a T Discharge June 22/63	38:47 thighway thighway thighway secords a 38:51	7 No. 17 brid at outlet of 7,780† 7 No. 17 brid at outlet of	dge White Lab 5,860† dge White Lab	62 ce, about	3 miles 10.5 3 miles	2 below ((7.7) CPR b 7.9 (8.3) CPR b 7.7	45 45 ridge, 5 r	niles so 0.7 niles so	uthwest o	of Mobert S	tation, Ls STATIO . 96.8 station, Ls STATIO 126	n NO. 17 0.132 nt. 48°39' 0.132 nt. 48°39' N NO. 18 0.171	26", Long 79 (STATIC	:. 85 ⁰ 44' 3 ON NO. 12 34.0 :. 85 ⁰ 44' 3: :N NO. 12 61.8	88.7 2" 44) - WHIT 138 2" 8) -BLAC 146	13.0 E LAKE* 20.1 K RIVER 22.5
6	Sampled a T Discharge June 22/63 Sampled a T Discharge June 22/63	38:47 thighway thighway thighway secords a 38:51	7 No. 17 brid at outlet of 7,780† 7 No. 17 brid at outlet of	dge White Lab 5,860† dge White Lab	62 ce, about	3 miles 10.5 3 miles	2 below ((7.7) CPR b 7.9 (8.3) CPR b 7.7	ridge, 5 r 45 ridge, 5 r 80	niles so 0.7 niles so	uthwest o	of Mobert S	tation, Ls STATIO . 96.8 station, Ls STATIO 126	n NO. 17 0.132 nt. 48°39' 0.132 nt. 48°39' N NO. 18 0.171	26", Long 79 (STATIC	:. 85 ⁰ 44' 3 ON NO. 12 34.0 :. 85 ⁰ 44' 3: :N NO. 12 61.8	88.7 2" 44) - WHIT 138 2" 8) -BLAC 146	13.0 E LAKE* 20.1 K RIVER 22.5
6	Sampled a T Discharge June 22/63 Sampled a T Discharge June 22/63 Sampled a	38:47 38:47 thighway tecords a 38:51 thighway 38:51	7 No. 17 brid at outlet of 7,780† 7 No. 17 brid 0 000 17 brid 7 No. 17 brid	dge White Lak 5,860t dge White Lak dge	62 62 56	3 miles 10.5 3 miles 16.1	2 below ((7.7) CPR b (8.3) CPR b 7.7 (8.2) 7.9	ridge, 5 r 45 ridge, 5 r 80	0.7 niles so 14		of Mobert S of Mobert S 31 140	tation, La STATIO . 96.8 itation, La STATIO 126 STAT 137	I	26", Long 79 (STATIC	 	88.7 2" 4) - WHIT 138 2" 8) -BLAC 146 130) - PIC 177	13.0 E LAKE ⁴ 20.1 K RIVER 22.5 C RIVER [•] 27.9
6	 Sampled a Discharged June 22/63 Sampled a June 22/63 Sampled a June 22/63 Sampled a 	38:47 38:47 thighway cecords i 38:51 thighway 38:51 thighway	7 No. 17 brid at outlet of 7,780† 7 No. 17 brid 0 000 17 brid 7 No. 17 brid	dge White Lak 5,860t dge White Lak dge	62 62 56	3 miles 10.5 3 miles 16.1	2 below ((7.7) CPR b (8.3) CPR b 7.7 (8.2) 7.9	ridge, 5 r 45 ridge, 5 r 80	0.7 niles so 14		of Mobert S of Mobert S 31 140	tation, La STATIO . 96.8 itation, La STATIO 126 STAT 137	I	26", Long 79 (STATIC 26", Long 80 (STATIC 181 (STATIC	 	88.7 2" 4) - WHIT 138 2" 8) -BLAC 146 130) - PIC 177	13.0 E LAKE ⁴ 20.1 K RIVER 22.5 C RIVER [•] 27.9
6	 Sampled at † Discharget June 22/63 Sampled at † Discharget June 22/63 Sampled at June 22/63 Sampled at Sampled at 	38:51 38:51 38:52	7 No. 17 brid at outlet of 7,780† 7 No. 17 brid at outlet of 7 No. 17 brid 7 No. 17 brid 12,900†	dge White Lak S,860t dge White Lak dge dge dge	ce, about 62 ce, about 56 56 56	3 miles 10.5 3 miles 16.1 13.1 17.4	2 2 2.5 2 2 9	(7.7) 7.9 (8.3) 7.7 (8.2) 7.9 (8.1) 7.9 (8.1)	ridge, 5 r 45 ridge, 5 r 80 80	0.7 0.7 14 110		of Mobert S of Mobert S 31 140	tation, La STATIO . 96.8 itation, La STATIO 126 STAT 137	I	26", Long 79 (STATIC 26", Long 80 (STATIC 181 (STATIC	 	88.7 2" 4) - WHIT 138 2" 8) -BLAC 130) - PIC 130) - PIC 177 AMINISTIK	13.0 E LAKE* 20.1 K RIVER 22.5 RIVER* 27.9 WIA FAI
6	 Sampled a † Discharget June 22/63 Sampled a † Discharget June 22/63 Sampled a June 22/63 Sampled a June 21/63 	38:51 38:51 38:52	7 No. 17 brid at outlet of 7,780† 7 No. 17 brid at outlet of 7 No. 17 brid 7 No. 17 brid 12,900†	dge White Lak S,860t dge White Lak dge dge dge	ce, about 62 ce, about 56 56 56	3 miles 10.5 3 miles 16.1 13.1 17.4	2 2 2.5 2 2 9	(7.7) 7.9 (8.3) 7.7 (8.2) 7.9 (8.1) 7.9 (8.1)	ridge, 5 r 45 ridge, 5 r 80 80	0.7 0.7 14 110		of Mobert S of Mobert S 31 140 STAT	tation, Ls STATIO . 96.8 itation, Ls STATIO 126 STAT 137	I	26", Long 79 (STATIC 26", Long 80 (STATIC 181 (STATIC	85 ⁰ 44' 3 ON NO. 12 34.0 85 ⁰ 44' 3: DN NO. 12 61.8 (10N NO. 58.8 . 160) K	88.7 2" 4) - WHIT 138 2" 8) -BLAC 130) - PIC 177 AMINISTIK 58.2	13.0 E LAKE 20.1 K RIVER 22.5 RIVER* 27.9 WIA FAI 8.6

* Sampled at highway No. 17 bridge

TABLE II - (Concluded)

Chemical Analyses of Surface Waters in the Upper Great Lakes Drainage Basin

													· ···	<u> </u>											
	Iron (Fe						Alka	lis								~			Hardn as Ca		ítuents	ium	dex	×	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarhonate	Sul phate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Phosphate	Boron	Non- car- bonate	Total	Sum of constituents	Per cent sodium	Saturation index	Stability index	No.
(Mg)		-	(Mn)	(Al)		(Zn)	(Na)				(HCO3)		1		(NO3)		(PO4)								
at MON	TREAL	. FAL	LS	<u> </u>	<u> </u>			<u> </u>				, <u> </u>		<u> </u>			<u>. </u>			<u>.</u>	<u></u>				
2.2		0.02	••••		÷	0.2	0.6	0.5	0.1	0.0	21.1	6.9	0.5	0.09	1.1	4.7			7.9	25.2	32.9	4.8	-2.9	12	1
south o	f MICH	IPICO	TEN H	IARBO	UR	·	<u>L.</u>				<u> </u>	·	<u>. </u>	J	' -		.	!	L	I	J		L	L	
1.4		0.01		[·····			0.7	0.4	0.1	0.0	11.7	9.2	0.2	0.12	0.4	4.3			8.7	18.3	27.5	7.5	-3.0	13	2
near MI	CHIPIC	OTEN	I HARI	BOUR		<i>I</i>	<u>.</u>			L	·	· · · ·			·		<u> </u>	•	L			•			<u> </u>
2.6		0.0I	0.00	0.02	0.00	0.00	0.6	0.4	0.1	0.0	29.5	13.4	0.5	0.14	0.4	3.2	<0.1	1	14.5	38.7	46.6	3.2	-3.0	12	3
	!	l	I	L	·	l	·	1	L	L	<u> </u>	! <u></u>	ــــــ	<u>1</u>	t <u></u> 1	<u>_</u>	<u>-</u>	<u>. </u>	L	<u> </u>	<u> </u>	{	L	I	<u> </u>
near MI	СНІРІС	OTEN	N HARI	BOUR				•																	
2.8		0.00	0.00	0.04	·····		0.8	0.5	0.0	0.0	28.6	13.6	0.5	0.16	0.6	3.3	<0.1		15.8	39.3	47.2	4.2	-1.4	10	4
northwe	st of W	HITE	RIVER									ı	ı 	,) 1		.	.						,	,
3.2						0.05	0.7	0.3	0.1	0.0	46,4	5.2	0.7		0.2	3.4	[_	·····	7.6	45.7	49.6	3.2	-1.5	10	5
at NAR	ROWS 1	ieat R	EGAN																						
5.4		0.02	0.00	0.0	Trace	0.00	0.6	0.4	0.0	0.0	80.0	5.4	0.2	0.14	0.8	3.7	<0.1		6.9	72.5	76.1	1.8	-0.4	8.7	6
above I	HERON	BAY	SOUTH																						
4.7	0.89	0.03	0.00		0.00	0.00	1.3	0.4	0.0	0.0	77.5	9.6	0.8	0.19	0.3	3.1	<0.1		11.8	75.4	81.1	3.6	-0.5	8.7	7
above I	IFRON	BAY	SOUTH		L			I		<u></u>	L	•		I	•·		1	•		·	1	I	•	·	I
6.3	2.4			t	0.00	0.00	0.7	0.6	0.0	0.0	104	7.6	0.6	0.13	0.5	5.7	<0.1		9.8	95.5	101	1.5	-0.1	8.1	8
l	ļ I		L	[I		I	L		·	l	<u></u>	1	L	[]		<u>ا</u> ـــــ	<u> </u>	l	L <u></u>	<u>t</u>	L	I	<u> </u>	<u> </u>
at KAK	ABEKA	FAL	LS					 _				, ——						, <u> </u>						····	
2.0		0.04	0.00				0.8	0.5	0.0	0.0	27.3	5.8	0.7	0.12	0.5	6.5	<u> </u>		7.5	29.9	39.0	5.4	-2.4	11	9
neat K/	MINIST	LIKMI'	A																						
1.3							1.0	0.5	0.0	0.0	22.7	6.5	0.2		1.4	5.9			7.7	26.3	36.4	7.5	-2.3	11	10

DESCRIPTION OF MUNICIPAL WATER SYSTEMS

In The Upper Great Lakes Drainage Basin in Canada

	ONTARIO		
Municipality	BL	IND RIVER - (Town)	
Year(s)	1958	1961	1963
Population served: In municipality Outside municipality	2,700 (3,733 ^a) 0	4,027 (4,093 ^b) 0	3,700 (3,894)††
Total	2,700	4,027†	3,700
Date(s) of survey	August 6, 1958; October 13, 1961	; June 8, 1963	
Ownership	Municipally owned and operated .		
Source of supply Treatment	In 1958 two wells, 68 ft deep in t In 1958 and 1961 no treatment wit In 1963 temporary chlorination w	th well water pumped direc	ct to standpipe and system
Storage capacity (thousand gallons)	Elev. tank		500
Consumption (average in mgd)	1958	1961	1963
Concerniption (2000) 2000, 2000, 2000	0.156 (Max. 0.39) Capacity of system - 0.468	0.35	0.27
Industrial use	A dairy and the C.P. Ry.; a lumb	er company has its own su	аррју
Remarks	 † Includes West Pronto subdivis †† Total population * Consideration being given in 1 The third well is owned by the 	961 to an emergency supt	bly of treated river water. Commission.
Municipality	C0	PPER CLIFF - (Town)	
Yeat(s)	1958	1961	1962-63
Population served: In municipality Outside municipality	4,050 (3,801 ^a) 0	3,750 (3,600 ^b)	3,789
Total	4,050	3,750	3,789
Date(s) of survey	August 1, 1958; April 15: ,1960; N	November 30, 1961; June 2	.5, 1963
Ownership	Owned and operated by Internatic	onal Nickel Co. of Canada	Ltd. (INCO)
Source of supply	In 1958 and 1961 Meatbird Lake supply.* Since 1962 Vermilion I	with Lady Macdonald Lake River only.	e as a supplementary
Treatment	In 1958 and 1961 water was pump Lady Macdonald Lake was used system by gravity. In 1962 and elev. tank and system.	l with chlorination as an a	uxiliary supply entering
Storage capacity (thousand gallons) Consumption (average in mgd)	Elev. cank <u>1958</u>	1961	250 <u>1963</u>
	1958 Public - Industrial -	0.84 (Max.)	No record
	Total 1.5	-	1.5
Industrial use	Capacity of town system - 0.84 None in 1962-63. Prior to use of Copper Cliff smelter and refiner Clarabelle Lake and Lady Macd auxiliary supply. The refinery mgd), Kelly Lake for processing	ry. The smelter used abou lonald Lake by gravity wit used Meatbird Lake for do	it 1.8 mgd of chlorinated h Meatbird Lake as an
Remarks	* The INCO iron ore plant near (River water with auxiliary supp Lake chlorinated - total use, 1. clarified, filtered and softened	Copper Cliff in 1961 used ly from two gravel wells (8 mgd (max. 2.4). Boiler f	15 ft deep) and Meatbird eed water is further

^a Population according to the Tenth Census of Canada, 1956 ^b Population according to the Eleventh Census of Canada, 1961

ONTARIO

In The Upper Great Lakes Drainage Basin in Canada

CAPRI	E OL - (Town)		CHELMSFORD - (Town) CONISTON - (Town)				 /n)
1958 - 59	1961	1963	1958	1963	1958	1961	1963
2,550 (2,394 ^a) 0	3,000 (3,003 ^b)	2,978	2,400 (2,142ª) (2,559 ^b) 30*	2,530 30*	2,300 (2,478 ^a 25 estd *		
2,550	3,000 estd	2,978	2,430	2,560 estd	2,325 estd	2,500 estd	2,850
July 22, 1958; S	eptember 2, 195	<u> </u>	August 18, 1958; Septembe			; November 30,	
Municipally own			Municipally owned and ope		June 6, 196 Plant owned a national Nic	3. and operated by kel Co. of Cana ribution system	the Inter- da Ltd.,
Four wells, 45 f No treatment; we direct to reserv		ped	Whitson River in town In 1958 water pumped to a settling tank, sodium hyp chlorine (30 lb/mg) and a mg) added, filtered (1) to and repumped to tanks an 1963 chlorine used, two f post-chlorinated.	circular ochlorite or llum (225 lb/ clear well d system. In	Chlorinated ri	ver below town iver water is pu em; INCO also elter.	mped by
Reservoir		214	In 1958, elev. tank (town) Elev. tank (C.P. Ry.) In 1963, Elev. tank (town)	19	Elev. tank (IN No storage in	NCO) town	130
1958-59]	1961	1958-59	1963	-	1958 1961	1963
0.20 (Max. 0 Capacity of well	ls - 0.72	0.375	0.145 Capacity of system - 0.288	0.135 estd		0.3 - 1.8 -	0.1 2.4
Capacity of syst	em - 0.35				Total Capacity - 0.	2.1 2.4	2.5
Canadian Nation	al Railways		In 1958 C.P. Ry. (3,700 gp has its own supply. In 19		No industrial of the Intern	use in town but ational Nickel (uses most of th	Co. of Canada
			* In Balfour Township ** System installed in 194	9	* In Neelon a	nd Garson Tow	nships.
CREIGHT	ON (MINES)- ('	Town)*		ELLIOT	' LAKE		
1958	1961	1963	(Unincorporated comm 1958-59	unity in the Ir 1961	nprovement Dis	trict of Elliot I 1963	.ake)
- (1,792 ^a)	1,650 (1,727 ^b 0) 1,692† 0	- (1,018 ^a) [,] -	8,99) (9,950)*)	9,000	
1,675 estd	1,650	1,692	12,000	8,99)	9,000	
August 1, 1958; June 25, 1963.		·	August 14, 1958; Septembe 24, 1963.				
Owned and opera Nickel Co. of C	ated by the Inter Canada Ltd.	national	Municipally owned and ope	rated	• • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • •
In 1958 and 1961 Vermilion Rive supplementary River only.	l Meatbird Lake er, 6 miles dista supply; in 1963	nt, as	Elliot Lake, nearby			•••••	•••••
Since 1962 rive with chlorination with overflow g	on to tank and s r water only is p on to tank and s oing to Meatbird	ystem. pumped ystem Lake.	Water is pumped with chlor system. Chlorine demand	increases ma	ukedly at times	5.	
Elev. tank 1958	1961	1963	Elev. tank 1959	1960 -	•61	1963	335
No data	1.2** N	lo record	0.75	1.5 (N	(ax. 2.0)	<u>1963</u> 1.2 (Ma	ĸ. 1.7)
The Creighton M water for domes centrator used, chlorinated Ver	ine plant uses t tic purposes; th in 1961, 4 mgd of milion River wa	le con-	None, except a soft drink	bottling plant			
* Incorporated a ** Capacity of s		1958	* Community population. T about 1960-61; in recent tion in the Improvement D Much of this population li page 111). Total Improvement 1963-10,000	years only 4 d istrict decrea ved in trailers	of 10 mines are sed from 35,000 s and townsites	e still working a 0 in 1959 to 10, 5 at mines, (see	ind the popul: 000 in 1963; Table IV,

DESCRIPTION OF MUNICIPAL WATER SYSTEMS In The Upper Great Lakes Drainage Basin in Canada

ONTARIO

Municipality Year(s)		SPANOLA - (Town)* 1961	1963
Population served: In municipality Outside municipality	3,500 (4,381 ^a) 0	4,950 (5,353 ^b) 0	5,200 (5,360)† 0
Total	3,500	4,950	5,200
Date(s) of survey	August 6, 1958; October, 1961	; June 7, 1963	
	In 1958 and 1961 jointly owne		
Ownership	operated by the latter, the sy operated by town.	rstem by the town. In 1963	owned by O.W.R.C. and
Source of supply	Up to Nov. 1962 Spanish Rive	r nearby, thereafter, Lake A	psey, 2 miles distant
Treatment	Prior to Nov. 1962 river water mg) and pumped to tanks and with chlorination (12 lb/mg)	system. Since then Lake A	
Storage capacity (thousand gallons)	Up to Nov. 1962 elev. tanks (In 1963 elev. tank		
Consumption (average in mgd)	1958	1961	1963
	Public 0.28 Industrial 17**	0.45 25 25.45	0.50 (Max. 0.90)
	Total 17.28	25.45	0.50
Industrial use	In 1963, no industri al users. company plant supplying tre:	The K.V.P. Co. has its own ated Spanish River water.	n system, i.e. the
Remarks	 Incorporated a town in Mar half the town which they sup the two sections of town bec plant until the new water sys Nov. 1962. Total town population Also use 17.3 mgd of untre 	plied with water from their j ame one and the company su stem from Lake Apsey was p	plant. After incorporation
Municipality		FORT WILLIAM - (City))
Year(s)	1953	1958-59	1962-63
Population served: In municipality Outside municipality	35,000 (39,464 ^a) 0	42,200 (45,124 ^b) 0	46,200 100
Total	35,000	42,200	46,300
Date(s) of survey Ownership Source of supply	August 6, 1953; August, 1959 Municipally owned and operat Loch Lomond, 5 miles distan	; June 21, 1963 ed	
Treatment	No treatment; lake water flow tunnel to reservoir and syste 1963.		
Storage capacity (thousand gallons) Consumption (average in mgd)	1953	<u>1958 - 59</u> 8	1962 - 63
Industrial use	7 (Max. 11) In 1953, industrial use by C.1 plant, dairies, a pulp and pa per cent of total consumptio foundry and producer of edib	N. Rys., C.P. Ry., meat pack per plant and small industrien. In 1962-63 the above as	es was estimated at 33
Remarks			

a Population according to the Tenth Census of Canada, 1956. b Population according to the Eleventh Census of Canada, 1961.

ONTARIO

In The Upper Great Lakes Drainage Basin in Canada

FALCONBRIDGE-(Townsite)* FERRIS WEST - (Township)* 1958 1961 1963 1958 1961 1963 (1,138^b) 1,100 (1,273a) 1,450 (3,966^a)† (5,048^b)† 5,500 (5,729)† 0 0 0 3,900 1,100 1,200 estd 4,700 5,500 1,450 August 18, 1958; 1961; September 23, July 1958; 1961^{††}; June 5, 1963 1963 Privately owned and operated by Falcon-Municipally owned and operated bridge Nickel Mines Ltd. Up to August 1962 three wells 70, 70 Trout Lake, purchased from City of North Bay and 83 feet deep on shore of Boucher Lake in plant area; in 1963 one well, 187 ft deep, in Townsite. Up to August 1962 the mixed well waters were pumped (37 psi) with chlorination (2 lb/mg) to tanks and to plant and town-See North Bay site systems. In 1963 new well water taken off line prior to the new elevated tank (0.25 mg capacity) and chlorinated for townsite system (65 psi). The older well system is connected to the new system with a back check valve. In 1958 two elev. tanks 42, 42 None In 1961 and 1963 three elev tanks 42, 42 and 250 1961 1963 1958 1958 1961 1962-63 Public 0.158 0.265 0.3136 Industrial 3.0 3.0 5.1 Manufacture of diamond cutting tools, and boats; much of the water supplies a Both systems are used in Eastern Mine and Falconbridge Mine and plant. The waters are used for cooling, boiler feed, large tourist area. smelter-cooling and all domestic purposes. Between $\frac{1}{2}$ and $\frac{2}{3}$ of the new well water pumped is used in the mine and plant. *New well water is softer than older Mostly in Upper Great Lakes drainage basin but served by water from Ottawa well water but it is said to be gradually River drainage basin. Total township population; may rise in summer to 12,000 (1963). Data from annual directory, Municipal Utilities Magazine, F eb. 1962. West Ferris community population - 2,070^a, 3,014^b. becoming harder. tŧ GARSON **GATEWAY*** (Unincorporated community in United Townships of Neelon and Garson)* (Unincorporated community in Widdifield Township) 1958-59 1961 1963 (1,933^a)† (12,131)†† (3,786^b)†(5,286)†† 3,759 (5,345) # 0 No data No data 3,759 August 2, 1958; November 30, 1961; June 7 and September 23, 1963 ... Owned and operated by United Townships Included in Up to June, 1963, one deep well, 90 ft deep in community; a second well (No. 2), nearer Sudbury and said to be of the same quality went into use. Widdifield Township; No treatment; water is pumped to elev. tank and system. Elev. tank 1962-63 0.225 (Max. 0.34) None * Total Townships population was 12,849 prior to amalgamation, of about one-half of the area, and all but 4,791 of the population to Sudbury, on Jan. 1, 1960. * Mostly in Upper Great Lakes drainage basin but served by water from

73

Total united Townships population: Garson Township in 1956-5,663; in 1961-5,041

Ottawa River drainage basin

Total community population

††

In The Upper G	Great Lakes	Drainage	Basin	in Canada
----------------	-------------	----------	-------	-----------

	ONTARIO			
Municipality		KOI	RAH TOWNSH	IP*
Year(s)	1958	1958	1961	1963
Population served: In municipality Outside municipality	250 (731 ^a) (716 ^b)	6,000 (7,258ª)) 7 ,100 (10,338 	b) 9,300(10,260)
Total	250	6,000 estd	7,100 estd	9,300 estd
Date(s) of survey	August 4, 1958	October 13, 19 1963	61; July 4 and	September 25,
Ownership	Municipally owned and operated	Distribution sy Korah Towns		nd operated by
Source of supply	Springs in town and Lake Huron (Georgian Bay)	St. Marv's Riv	-	wells, pur-
Treatment	Spring water feeds by gravity into 5 cisterns and to parts of system; lake water is pumped with chlorination (sodium hypochlorite) to the remainder of the system.	No treatment b also pumped h	y township but by township.	water is
Storage capacity (thousand gallons) Consumption (average in mgd)	5 cisterns about 30 total No data	No data; inclusion sumption. Th	ded in Sault St ne wells supply in the Townsh	e Marie con- 7 people
Industrial use	No major user; boats are supplied at wharf with drinking water.	No major user		
Remarks		Awenge.	t of the Towns hip population	-
Municipality	MANITO (Unincorporated community i	UWADGE n the Improveme	ent District of I	Manitouwadee)
Year(s)	1	1961	1963	inninge (nuge)
Population served: In municipality Outside municipality	- (879ª)†	- (2,006 ^b)†	-	
Total	2,200	2,400	2,600 es	rd
Date(s) of survey Ownership Source of supply	August 15 and 24, 1959; 1963 ++	 • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	••••••
Treatment	No treatment; well water is pumped direc	ct to system	•••••••••••••	•••••••••••••••••••••••••••••••••••••••
Storage capacity (thousand gallons). Consumption (average in mgd)	None			
	0.065 (Max. 0.098)		-	<u>1963</u>
Industrial use	0.005 (Max. 0.098) None	0.12		0.155††
Remarks	* System installed in 1959 † Total population of the Improvement Di †† Municipal Utilities Directory, 1963			

a Population according to the Tenth Census of Canada, 1956. b Population according to the Eleventh Census of Canada, 1961.

In The Upper Great Lakes Drainage Basin in Canada

ONTARIO

	ONTA.				
LEVACK - (Town)	LITTLE CUR	RENT - (Town)	LIVI	ELY - (To	wn)
1958 1961	1958	1961	<u>1959</u>	1961	1963
3,130 (2,929 ^a) 3,110 (3,178 ^b) 0 0	- (1,514 ^a) -	- (1,527 ^b) -	2,900 (2,840 ^a) 0	3,211 ^b 0	3,200 (3,256)
3,130 3,110	1,600	1,600 estd	2,900 estd	3,211	3,200
August 20, 1958; April 13, 1960; November 30, 1961	July 24, 1957; Aug	gust 5, 1958; 1961†	November 30, 19	061; June 2	5, 1963
Owned and operated by the International Nickel Co. of Canada Ltd.	Municipally owned	and operated	Owned and opera Nickel Co. of (Canada Ltd	•
Two wells,* 70 ft deep, with Clear Lake as an auxiliary supply.	Lake Huron (Georg	gian Bay) nearby	Meatbird Lake*		
In 1958, no treatment; in 1961, chlorina- tion, polyphosphate, and soda ash treat ment at pumps. Water is pumped with treatment from lake and gravel wells alongside the Onaping River to tank and systems.		ped with chlorina- stem.	Water is pumped then treated wi ash prior to en	th polypho	sphate and sod
Elev. tank (at Levack Mine) 158 <u>1961</u>	None 1958	<u>1961-63</u>	Elev. tank 1961	<u>19</u>	
0.25 (Max. 0.50) Capacity of system - 1.0	0.20	0.25-0.30	0.25 estd Capacity o	l Nor fsystem -	
The Levack mill is supplied with chlo- rinated water. In 1961 the Levack con centrator used one well (1.8 mgd max.) with chlorination, with the town water as an auxiliary supply. * An additional well had been drilled bu was not being used in August, 1958.	t * The chlorine del in the summer.	zing plant mand is much higher l directory, Municipal le.	 None * In 1963 Meatb overflow from t Vermilion Rive and Creighton † Total populati 	ird Lake re the line sup tr water to Mines.	ceives the oplying
MAR (Unincorporated community in th	ATHON Improvement Distr	ict of Marathon)		MASSEY-	(Town)
		<u>1962-63</u>	1958	1962 - (53
2,400 (2,404 ^a)† 2,5 0	500 (2,568 ^b)† 0	2,550 0	1,176 (1,068ª) 1,250 (0	(1,324 ^b)
2,400 2,5	500	2,550 estd	1,176	1,250	estd
August 5, 1957; September 3, 1959; Jun In 1957, privately owned and operated; Two wells, 75 ft deep; also, in 1959 tw a company system is an emergency su No treatment; water is pumped to reserv	in 1959 municipally o undeveloped wells oply.	owned and operated . Lake Superior via	August 5, 1958; Municipally own Aux Sables Riv In 1958 no treat gravity direct 1962 water flo house where it tion to system	ned and ope er, about 1 ment, wate to system. ws by grav. t is pumped	erated mile distant r flowing by Since Sept.
Reservoir			None 1958		62 - 63
0.4 0.45 Capacity of system (1959)-0.864	(Max. 0.5)	0.425	Unknown		00 gpd (estd)
In 1957 about 33 per cent of the pumpag for domestic and laboratory purposes.	e was used by the p	ulp and paper company	None	• • • • • • • • • • • •	
† Total district population in 1956-2,4	15; in 1961-2,568		System in opera	ation since	about 1922.

In The Upper Great Lakes Drainage Basin in Canada

	ine opper ore	ONTARIO	ange Duom			
Municipality	M	CKIM TOWNS	HIP*	MICHIPICO	TEN TOWNSH	IIP
Year(s) Population served: In municipality Outside municipality	- (17,461	<u>1959</u> a) - lon Township	<u>1963</u>	<u>1958</u> - (3,086 ^a)† -	<u>1961</u> - (4,440 ^b)† -	<u>1963</u> - (4,500)† -
Total		20,753†	0*		3,500*	4,200 estd
Date(s) of survey		8; June 6, 196	3	October 23, 196	1; June 23, 196	53
Ownership	Prior to amalg tem owned by from City of	;amation distri y township; wa Sudbury.	bution sys- ter purchased	Privately owned Ore Properties Ltd.	l and operated Division, Algo	
Source of supply	Ramsay Lake Sudbury	, treated-purch	ased from	Wawa Lake	••••••	
Treatment	-			the system.	-	
Storage capacity (thousand gallons) . Consumption (average in mgd)	Included in S	ıdb ury con sumj	otion	None <u>1958</u> No data	1961	
Industrial use		• • • • • • • • • • • • • •		None; the nearb another source	y mine is supple.	lied from
Remarks	City of Sudb	nship amalgam ury, Jan. 1, 19 ation prior to a	60.	* In the unincor Wawa (Jamesto which was in † Total townshi	own) - total pop 1956-2,749; in	ulation of
Municipality			NORTI	H BAY* - (City)		
Year(s)		1957		1961]	.963
Population served: In municipality Outside municipality		- (21,020ª)		22,700 (23,781 ^b)	23 14	,266 (,000**
Total	1	30,000**				,266
Date(s) of survey Ownership	July 19, 1957 Municipally o	, 1961†; June wned and oper	5, 1963 ated	• • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
Source of supply Treatment	Lake water fr	om 400 ft in la dium silicofluo	ke is pumped	with chlorination) to reservoir and	(17 lb/mg 196	3) and fluorida-
Storage capacity (thousand gallons) Consumption (average in mgd)	In 1957, one o In 1961, one o	open reservoir : open reservoir : 1957	and elev. tank	1961		4,400, 300
Consumption (average in mgd)	2.	$\frac{1937}{1937}$ 7 (Max. 3.7)††		2.6††	3.5 (Ma	<u>22</u> x. 4.75)†† . = 2.486
Industrial use	Main industri fabricating p	al users are th blant (0.1 mgd)	e railroads - C	C.N. Rys; C.P. R	y.; O.N. Ry., a	nd an asbestos
Remarks	Ottawa Rive ** Includes p † Data from	er drainage bas opulations ser	in ved in Ferris ' v. Municipal I	rainage basin bu West and Widdifid Utilities Magazin	eld Townships	ater from the

a Population according to the Tenth Census of Canada 1956. b Population according to the Eleventh Census of Canada, 1961.

In The Upper Great Lakes Drainage Basin in Canada

•

ONTARIO

NEELON	N TOWNSHIP*		(Uni		IPIGON nity in Nipigon Town	ship)	
1958	1963		<u>1957</u>		959	<u>1963</u>	
- (8,087 McKim Tow		245 ^b)†	1,700 (1,7 0	17 ^a)† 2,	000 (2,105 ^b)† 0	2,100† 0	
15,000**	0		1,700		000	2,100 estd	
<u> </u>		61;					
 August 1, 1958; October 13, 1961; June 7, 1963 In 1958 distribution system owned by the Townships of Neelon and Garson. After amalgamation with the City of Sudbury (1960) system owned and operated by the United Township of Neelon-Garson. In 1958 Lake Ramsay, treated, pur- chased from Sudbury and three wells, 90 feet deep. In 1962-63 deep wells in the community of Garson. See Sudbury and Garson None - See Sudbury and Garson Included in Sudbury and Garson con- sumption In 1963, none * Neelon Township remaining after amalgamation with City of Sudbury, Jan. 1, 1960, became part of the United Townships of Neelon and 			Municipally owned and operated Lake Helen (Nipigon River) nearby Water is pumped with chlorination to plant, rapid sand-filtered, post-chlorinated and repumped to reservoirs and system. Two concrete ground reservoirs on hill				
Total Meelon	Townshippopul	ation in					
1956 and after * Includes mo McKim Towns (Unincorporat	r amalgamation i sstly people serv ship prior to ama DNAPING* ted community (] provement Distri	in 1960 red in Igamation. Cownsite) ct)		PORT	ARTHUR - (City)		
1956 and after * Includes mo McKim Towns O (Unincorporat in the Imp	r amalgamation i sstly people serv ship prior to ama DNAPING* ted community (] provement Distri	in 1960 red in lgamation. Fownsite)	<u>1953</u>	PORT 1957	ARTHUR - (City) <u>1959</u>	1963	
1956 and after * Includes mo McKim Towns O (Unincorporat in the Imp 958	r amalgamation i sstly people serv ship prior to ama DNAPING* ted community (] provement Distri	in 1960 red in Igamation. Cownsite) ct)			1959		
1956 and after * Includes mo McKim Towns (Unincorporat in the Imp 958 966 (804 ^a) 0	r amalgamation is stly people serv ship prior to ama DNAPING* ted community (7 provement Distri <u>1961</u> 1,000 (1,106 ^b)	n 1960 red in Igamation. (ownsite) ct) 1962 - 63 1,180	<u>1953</u> 31,360	<u>1957</u> 36,000 (38,136ª)	<u>1959</u>) 42,580 (45,276	6 ^b) 46,000	
1956 and after * Includes mo McKim Towns (Unincorporat in the Imp 958 966 (804 ^a) 0 0 0 0 0 0 0 0 0 0 0 0 0	r amalgamation is stly people serv ship prior to ama DNAPING* ted community (7) provement Distri <u>1961</u> 1,000 (1,106 ^b) 0	in 1960 red in Igamation. Cownsite) ct) 1962 - 63 1,180 0 1,180 0 1,180 0 1,180 0 1,180 0	$\frac{1953}{31,360}$ $\frac{0}{31,360}$ August 6, 1953; Au Municipally owned Lake Superior (Thu Water from 2,400 ft	1957 36,000 (38,136 ^a) <u>0</u> 36,000 agust 2, 1957; Augu and operated by a 1 under Bay) out in lake feeds t	$\frac{1959}{42,580} (45,270) \\ \frac{0}{42,580} \\ \text{st, 1959; June 21, 19} \\ \text{Public Utilities Common sump well with s} \\ \mathbf{x} = \frac{1959}{1000} \\ \mathbf{x} = \frac{195}{1000} \\ \mathbf{x} = \frac{195}{1000} \\ \mathbf{x} = \frac{195}{1000} \\ $	6 ^b) 46,000 250 estd 46,250 963 mission	
1956 and after * Includes mo McKim Towns (Unincorporation in the Imp 258 066 (804 ^a) 0 0 0 0 0 0 0 0 0 0 0 0 0	r amalgamation is stly people serv ship prior to ama DNAPING* ted community (7) provement Distri <u>1961</u> 1,000 (1,106 ^b) 0 <u>1,000</u> 58; September 23 ed and operated I Nickel Mines Lu out 75 ft deep	in 1960 red in Igamation. (ownsite) ct) <u>1962 - 63</u> <u>1,180</u> <u>0</u> <u>1,180</u> , 1963 by td. 	1953 31,360 0 31,360 August 6, 1953; Au Municipally owned Lake Superior (Thu Water from 2,400 ft pumped with chlor Two covered concr	1957 36,000 (38,136 ^a) 0 36,000 agust 2, 1957; Augu and operated by a l ander Bay) out in lake feeds t tination (6 lb/mg) to ete reservoirs	$\frac{1959}{42,580}$ $\frac{42,580}{42,580}$ $\frac{42,580}{42,580}$ $\frac{42,580}{50}$ $\frac{1959}{100}$ $\frac{1100}{100}$ $\frac{1100}{100}$ $\frac{1000}{100}$ 100	6 ^b) 46,000 <u>250</u> estd <u>46,250</u> 963 mission ccreening from which it is tem.* 	
1956 and after * Includes mo McKim Towns (Unincorporat in the Imp 958 966 (804 ^a) 0 966 August 20, 195 Privately owne Falconbridge Two wells, abo to treatment; system Elev. tank (at	r amalgamation is stly people serv ship prior to ama DNAPING* ted community (7 provement Distri <u>1961</u> 1,000 (1,106 ^b) <u>0</u> 1,000 58; September 23 ed and operated I Nickel Mines Lu out 75 ft deep water pumped to	in 1960 red in Igamation. (ownsite) ct) <u>1962 - 63</u> <u>1,180</u> <u>0</u> <u>1,180</u> , 1963 by td. 	1953 31,360 0 31,360 August 6, 1953; Au Municipally owned Lake Superior (Thu Water from 2,400 ft pumped with chlor Two covered concr Standpipe	<u>1957</u> <u>36,000 (38,136^a)</u> <u>0</u> <u>36,000</u> agust 2, 1957; Augu and operated by a l under Bay) out in lake feeds t tination (6 lb/mg) to	$\frac{1959}{42,580} (45,270)$ $\frac{42,580}{42,580}$ (st, 1959; June 21, 1959; June 21	6 ^b) 46,000 <u>250</u> estd <u>46,250</u> 963 mission ccreening from which it is tem.* 	
1956 and after * Includes mo McKim Towns (Unincorporat in the Imp 958 966 (804 ^a) 0 966 August 20, 195 Privately owner Falconbridge Two wells, about 10 treatment; system Elev. tank (at 1958 Public -	r amalgamation is stly people serv ship prior to ama DNAPING* ted community (7) provement District <u>1961</u> 1,000 (1,106 ^b) <u>0</u> <u>1,000</u> 58; September 23 ed and operated I Nickel Mines Lu out 75 ft deep water pumped to mine)	in 1960 red in Igamation. Cownsite) ct) 1962-63 1,180 <u>0</u> 1,180 1,180 by td. 	1953 31,360 0 31,360 August 6, 1953; Au Municipally owned Lake Superior (Thu Water from 2,400 ft pumped with chlor Two covered concr Standpipe 1953	1957 36,000 (38,136 ^a) 0 36,000 agust 2, 1957; Augu and operated by a 1 ander Bay) out in lake feeds t rination (6 lb/mg) to rete reservoirs 1957	<u>1959</u> 42,580 (45,270 <u>42,580</u> st, 1959; June 21, 19 Public Utilities Common o a sump well with so o reservoirs and syst <u>1959</u>	6 ^b) 46,000 <u>250</u> estd <u>46,250</u> 963 mission ccreening from which it is term.* 	
* Includes mo McKim Towns (Unincorporat in the Imp 958 966 (804 ^a) 966 August 20, 195 Privately owne Falconbridge Falconbridge Two wells, abo No treatment; system Elev. tank (at 1958 Public - industrial - Total 0.35 Dnaping and H and Ona ping most process treated and tr for cooling, b	r amalgamation is stly people serv ship prior to ama DNAPING* ted community (7) provement Distri <u>1961</u> 1,000 (1,106 ^b) <u>0</u> 1,000 58; September 23 ed and operated I Nickel Mines Lu out 75 ft deep water pumped to <u>1959-60</u> 0.124 estd 0.276 0.400 ardy Mine use G River respective water. They us eated Onaping w oiler make-up, a ply (about 400 s	in 1960 red in Igamation. (ownsite) ct) 1962-63 <u>1,180</u> <u>1,180</u> <u>1,180</u> <u>1,180</u> <u>1963</u> by td. 50 <u>1962-63</u> <u>-</u> 0.500 ill Lake ly for e un- rell water nd drink-	1953 31,360 0 31,360 August 6, 1953; Au Municipally owned Lake Superior (Thu Water from 2,400 ft pumped with chlor Two covered concrest Standpipe 1953 3.7 (Max. 5.5) C.P. Ry., C.N. Ry	<u>1957</u> <u>36,000 (38,136a)</u> <u>0</u> <u>36,000</u> ngust 2, 1957; Augu and operated by a 1 under Bay) out in lake feeds t trination (6 lb/mg) to the reservoirs <u>1957</u> 4.4 (Max. 6.6)	$\frac{1959}{42,580} (45,270) \\ \frac{0}{42,580} \\ \text{st, 1959; June 21, 15} \\ \text{Public Utilities Common syst} \\ \text{o a sump well with s or reservoirs and syst} \\ \frac{1959}{4.1} \\ \end{array}$	6 ^b) <u>46,000</u> <u>250</u> estd <u>46,250</u> 963 mission ccreening from which it is eem.* 	

In The Upper Great Lakes Drainage Basin in Canada

ONTARIO

Municipality	POWAS	SSAN - (Town)	(Unincorporate	ED ROCK† ed community in istrict of Red Ro	
Year(s)	1958	1963		1961	1963
Population served: In municipality	1,000 (935 ^a)	1,025 (1,064 ^b)		1,500 (1,316 ^b)*	1,600*
Outside municipality					100
Total		1,025 estd	1,600	1,650 estd	1,700
Date(s) of survey Ownership	August 21, 1958; J Municipally owned	une 4, 1963 and operated	August 14, 195 Owned and open District of Re	9; 1961; June 21 rated by the Imp d Rock.	, 1963 covement
Source of supply	Genesee Creek, 1 r	nile east of town	Nipigon Bay (L	ake Superior)	
Treatment	gravity to plant w alum (210 lb/mg) lb/mg). After 2 hr sure-filtered (anth addition (210 lb/n tank and system. aid is used to imp	s from behind dam by here it is treated with and chlorinated (20-60 retention, it is pres- rafilt) with soda ash ng) for pH correction to At times a coagulant rove coagulation.	(1.2 lb/mg) to	oumped with chlo elev. tank and s	system.
Storage capacity (thousand gallons)	Elev. tank		Elev. tank		100
Consumption (average in mgd)		1963	1959	1962-63	
Industrial use	0.040 Plant capacity - 0. None; a farming co	0.080 (Max. 0.10) 30 mmunity	Capacity of sys	ent of pumpage i	
Remarks	Plant started opera	tion in November, 1955	1,652; in 1961 2,400. † Red Rock is	t populations; in - 1,861; in 1962 the townsite for ical Co. newspri	-63- Dominion
Municipality	SOUTH RIV	ER - (Village)	STURG	EON FALLS -	(Town)
Year(s)		1963	1957	1958	1963
Population served: In municipality Outside municipality	- (995ª) -	1,033 (1,044 ^b)	6,000 (5,874 ^a) 0	 6,200 (6,288 ^b) 0	6,300 700*
Total	975 estd	1,075	6,000	6,200	7,000
Date(s) of survey	June 4, 1963;			August 21, 1958	; June 6,
Ownership	Municipally owned	and operated	1963	ned and operated	
Source of supply	Springs, north of to	wn	Sturgeon River,	above town	
Treatment	Spring water flows basin and is pump tank and system.	by gravity to sump ed with chlorination to	Water is pumpe and chlorinati and system.	d with pressure- on (8 lb/mg) to e	filtration (3) elevated tank
Storage capacity (thousand gallons)	Elev. tank		Elev. tank		125
Consumption (average in mgd)	1962	2 - 63	1957	1958 19	962-63
	0.055 (N	fax. 0.075)	0.60 Capacity of sys	0.68 0.65 stem - 0.80	(Max.0.80)
Industrial use	One lumber compan for boiler feed.	y uses a small amount	No major user; plant use the	the paper box ar water for drinkin	nd hardwood g purposes
	1		only.		
Remarks			† System insta * In Springer T	lled in 1921 ownship	

a Population according to the Tenth Census of Canada, 1956. ^b Population according to the Eleventh Census of Canada, 1961.

In The Upper Great Lakes Drainage Basin in Canada

ONTARIO

	SAUL	STE MARIE - (City)			SCHREIBE orporated com hreiber Towns	munity in
1951	1958	1961	1963	1959	<u>1961</u>	<u>1963</u>
-	39,950 (37,329 11,050†	^a) 42,500 (43,088 16,00 0 †	b) 44,170 19,400† estd	1,900 (2,050 0	a) 2,100 (2	,230 ^b) 2,200 0
33,000	51,000	58,500 estd	63,570	1,900 estd	2,100	2,200
October 25, Municipally	1951; August 12, 195 owned and operated	8; July 4, 1963 by a Public Utilities Comm and 5 artesian wells in St	nission	System from Ry.; commu	959; June 22, lake to tank o nity owns dist	1963 wned by C.P. tribution system.
the city.	aver (Lake Superior)	and y arcount world in or	cerron, now a part of			
system wit Well water	h chlorine (3.6 lb/mg flows by gravity to r	plant by gravity and is pur) and ammonium sulphate eservoir and is then pump by areas of Korah Townsh	(1.2 lb/mg) treatment. ed with chlorination to			ystem with chlor- c or is pumped.
Underground In 1963, add	l reservoir (Steelton v litional underground r	vells)		None. owned	by community	
	51	<u>1958</u> <u>1963</u>	_	1959	-	963
3.0 (1	/ells-0.65) 5.0	(Max. 5.5)* 7.1 (We	lls - 1.5)	0.2 esta	l (0.25 estd
estimated drinking at was suppli † Parts of 1	at 14 per cent of pum ad river water for boil ed to about 14,080 p Carentorus and Korah mgd from wells		es well water for	water.	ENTORUS T	OWNSHID
19:		1961	1962 - 63	1958	1961	1963
)† 10,100 (15,200
	700 (46,482ª) .000*	-	81,000 0	0	- (11,55/-	0
	700	79,281 (80,120 ^b)†	81,000	5,050 estd	8,900 estd	10,100
August 1, 1	 958; October 13, 1963	; June 6, 1963	·····	August 12, 1	958; July 4 a	nd September 25,
					perated by Ta Utilities Con	arentorus Town-
Ramsay Lal supply.	ce near town; two arts	esian wells are available	as an emergency	-		ed from Sault Ste
fluoridatio Two wells Neelon and	n (sodium silica fluor are pumped with no f l Garson Townships.	n lake with chlorination (ide, 11.5 lb/mg) to elev.t reatment to a very small p	anks and system. part of former	See Sault St	e Marie	
Two elev. t Two elev. t 19:	anks and stamdpipe (1963)5	500 & 1,000 00, 1,000 & 1,500 1963	None in town	-	• • • • • • • • • • • • • • • •
		4.5 (Max. 7.1) 5				
		ng/mth) 1958, are the mai				
† In 1960 M	cKim and Heelon Toy	using 150 mg per year onship areas amalgamated Neelon and Garson Town			water reaches	ation township from

DESCRIPTION OF MUNICIPAL WATER SUPPLIES

In The Upper Great Lakes Drainage Basin in Canada

ONTARIO

Municipality	(Unincorpo	TERRAC prated community in	E BAY the Township of Terra	ce Bay)
Year(s)	1957	1	.961	1962-63
Population served: In municipality Outside municipality	- (1,	567 ^a)† 1	,901 ^b †	1,928 0
Total	1,789	1	,901	1,928
Date(s) of survey Ownership	August 5, 1957; 1961; J Municipally owned and Co. Ltd.	operated; water purc	chased from Kimberly-C	lark Pulp and Paper
Source of supply Treatment	Lake Superior, nearby . Lake water enters sum and paper mill at rate to town system with cl	p well from 1,700 fe of 18,000 gpm. A p	et out in lake and is p	umped to the pulp
Storage capacity (thousand gallons). Consumption (average in mgd)	None	<u>1961</u>	<u>1963</u>	
	Public Industrial	- No record	No record	
Industrial use	Total Capacity of town syster The paper mill uses the † Total Improvement Di in 1961-2,013. The Im	large percentage o		nship population
Municipality	WAWA (James (Unincorporated co Michipicoten To	mmunity in	WHITE RI (Unincorporated	VER community in the rict of White River)
Year(s)	<u>1958</u> <u>1961</u>		<u>1963</u>	
Population served: In municipality Outside municipality		040 ^b) - (4,500)† - (67	2 ^a) (836 ^b)
Total		4.000 estd	1,000	
Date(s) of survey Ownership			June 22, and Septen Owned and operated Pacific Railway	nber 25, 1963 by the Canadian
Source of supply Treatment	See Michipicoten	Township	Lake Tukanee(Tutn Water flows by grav with chlorination e	
Storage capacity (thousand gallons). Consumption (average in mgd)				
Industrial use Remarks	† Total population in I	'ownship	None, except C.P.R	

a Population according to the Tenth Census of Canada, 1956. b Population according to the Eleventh Census of Canada, 1961.

DESCRIPTION OF MUNICIPAL WATER SUPPLIES

In The Upper Great Lakes Drainage Basin in Canada

ONTARIO

THESSALON	- (Town)	VERNER - ()	Police Village)	WARREN (Unincorporated community in the Township of Dunnet)
1958	1963	1958	1962-63	<u>1962 - 63</u>
1,700 (1,716 ^a) 200*	1,720 (1,720 ^b) 100*	800 (877 ^a) 0	925 (965 ^b)† 10	450 (500) [†] (569ª) (557 ^b) 0 [.]
1,900	1,820	800	935	450
August 8, 1958; 1961†; Municipally owned and		Owned and operat of Caldwell*	June 6, 1963 ed by the Township	June 6, 1963 Owned and operated by Township of Dunnet
Lake Huron (Georgian) Lake water is pumped lake with chlorination system.	from 85 feet out in	Water is pumped	llage with pressure-filtration (sodium hypochlorite) em.	
None 1958 1961	<u>1962-63</u>	Elev. tank 1958	32,750 gals 1963	Elev. tank
0.72 0.45 (est	d) 0.45	0.06 Capacity - 0.216	0.05 (Max. 0.06)	28,000 gpd (Max. 30,000 gpd)
A dairy and the C.P. R use this water. A ver using the water in 190 * In Thessalon Townsl † Data from annual dir Utilities magazine	ieer mill also was 53. hip	•		No major industrial user * This system was installed in 1961. † Population of village
	WIDDIFIEI	D TOWNSHIP		
1958	1961		1963	
7,500 (7,603 ^a) 0	8,575 0	(12,063)	8,500 (13,000)* 0	
7,500 estd	8,575	estd	8,500	
June 5, 1963 Owned and operated by				
Trout Lake treated; pu	uchased from City <i>See</i> North Bay	of North Bay, direc	ct from city reservoir.	
None			•••••	
	<u>1961</u> 0.315	$\frac{1962}{0.410}$		
None * Includes population	•••••			

TABLE III

Chemical Analyses of Municipal Water Supplies Upper Great Lakes Drainage Basin in Canada ONTARIO (In parts per million)

	Municipality		BLINI	O RIVER	
	Source(s)		We	ells	
			Raw and fi	nished water	
	Sampling point ,		At to	wn tap	
12345678901123456789012234567890123345678	Date of sampling Storage period (days)	Trace 0.05 0.02 0.00 0.2 4.4 2.2 0.05 0.0 177 10.8 4.8 0.0	$\begin{array}{c} \text{Sept. 25/59} \\ 193:221 \\ 20.4 \\ 24.4 \\ \end{array}$	May 7/62 37:57 11.4 23.7 8 7.5 15 334 44.1 11.1 0.01 0.0 9.0 2.0 9.0 2.0 0.0 167 11.1 14.8 0.14 5.5 11 137 18.7 156	June 8/63 25:61 12.8 25.2 5.6 6 7.6 (7.9) 15 0.7
9 0 1 2	Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature	186 5.5 +0.6 7.0	205 8.6 +0.5 7.2	193 11 -0.1 7.7	178 7.1 0.1 7.8

Remarks

TABLE III

Chemical Analyses of Municipal Water Supplies Upper Great Lakes Drainage Basin in Canada ONTARIO (In parts per million)

	REOL	CHELMSFORD			CONISTON		
Wells		Whitson River			Wanapitei River		
Raw and fi	nished water	Raw water*	Finished	water	Raw w	vater*	
At to	own tap	From river at intake	At plant after filter	At town tap	At dam al	bove plant	
June 22/58 38:67	Aug. 2/58 85:184	Aug. 18/58 10:197	Aug. 18/58 10:197	Sept. 23/63 22:28	July 11/58 27:53	July 31/58 86:177	
16.5	15.9		****	13.9	17.8	21.1	
22.5	26.9 (16.6)	24.6	24.6	25.0	26.1	24.8 (22.2)	
3.3	2.7	5.8	5.3		5.7	5.4	
0.9	4	3	3	3.5	2	2	
8.1	7.3 (6.8)	7.9	7.8	7.6	7.1	7.1 (7.6)	
20	40*	35	30	15	30	25	
11	9	0	0.8		0.7		
4.2				••••••••••••••••••			
2.3			••••••	••••••••			
106	116	185	178	<u>}</u>	82.0	68.0	
18.8	20.0	36.4	40.0		21.6	20.4	
152 21.1	146 18.7	282	283 38.9	291 36.8	121	84.7	
4.4	4.9	38.5 11.1	10.9	10.7	13.9 3.2	9.7 2.7	
4.4	0.93	11.1	10.9	0.01	5+2	2.1	
0.60	0.58	0.02	0.02		0.07	0,02	
				0.00			
0.05	0.00	0.00	0.00		0.00	0.00	
0.00	0.00	0.03	0.03	[Trace	0.0	
0.85	0.00	0.00	0.00		0.00	Trace	
	0.0	0.05	0.05	•••••	0.0	0.1	
1.9	1.9	3.0	3.0	3.3	2.5	1.4	
0.6	0.6	0.8	0.7	0.7	0.8	0.6	
0.0 0.0	0.1 0.0	0.15	0.05		0.3	0.05	
65,8	55.6	0.0 133	0.0 130	0.0 93.1	0.0	0.0	
19.3	18.0	30.2	30.8	51.1	19.1 34.2	19.0	
2.6	3.3	2.8	5.6	8.8	0.7	18.0 1.3	
0.0	0.0	0,1	0.1	0,17	0.0	0.0	
		•••					
0.15	0.3	0.3	0,3	0.2	0.6	0.5	
15	16	12	10	7.8	5.5	4.0	
54.0 (52)	45.6	109	107	76.4	15.7	15.6	
16.7 (7.8) 70.7 (60)	21.2	32.8	35.2	59.6	32.1	19.7	
84.0	66.8	142	142	136	47.8	35.3	
5.3	91.8 5.6	165 4.4	165	165	70.9	47.7	
-0.3	-1.1	4.4 +0.1	4.3 0.0	5.0	10 -1.9	7.7	
8.7	9.5	7.7	7.8	8.4	11	11	
				0.14		**	
I	* Due _{to} colloidal iron	* See also Tabl	le II, page 36	!	*See also Statio	on No.35 , page 30	

Chemical Analyses of Municipal Water Supplies

Upper Great Lakes Drainage Basin in Canada

ONTARIO (In parts per million)

	Municipality		CONISTON (concl'd)		COPPER CLIFF
No.	Source(s)		Wanapitei River		Wells
		Raw water	Finishe	d water	Raw and finished water
	Sampling point	At dam above plant	At town tap	At C.N.Rys. Station tap	At iron recovery plant, INCO
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21 22 23 24 25 22 24 25 25 24 25 25 25 25 25 25 25 25 25 25	Aluminum (Al) Copper (Cu) Zinc (Zn) Sodium (Na). Potassium (K).	Sept. 9/58 18:129 16.7 22.6 2 7.3 15 0.8 	68.8 23.2 84.5 7.5 3.9 0.7	June 6/63 22:53 14.4 25.0 6.6 1.5 6.7 (6.4) 30 2 175 17.0 5.3 0.93 0.53 0.12 0.12 0.12 0.06 0.00 4.5 1.0	354 82.0 512 55.1 26.6
2) 26 27 28 29 30 31 32 33 34 35 37 38 34 35 37 89 40 41 42	Ammonium (NH ₄) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulphate (SO ₄) Chloride (Cl) Fluoride (F)	0.4 0.0 19.1 17.3 1.2 0.3 4.5 15.7 17.3 33.0 45.7 6.1 -1.9 11	0.1 0.0 16.1 18.4 3.8	$\begin{array}{c} 1.0\\ 0.01\\ 0.0\\ 4.5\\ 64.6\\ 2.3\\ 0.14\\ < 0.1\\ \end{array}$	3.0 0.0 155 117 13.2 0.0 16 $127 (127)$ $120 (119)$ $247 (246)$ 319 8.0 $+0.1$ 7.6

Remarks

Chemical Analyses of Municipal Water Supplies

Upper Great Lakes Drainage Basin in Canada

ONTARIO

(In parts per million)

,		COPPER CLIFF (cond	21'd)		CREIGHTON MINE	
Meatbird Lake	Lady Macdonald Lake	Lakes	Verm	ilion River	Vermilion River	
	Raw and finished water		Raw water	Finished water	Raw water	
At lake	At dam on lake	At town tap	At highway No. 17 bridge	At town hall tap	At intake at river	
Aug. 1/58 110:113 21.9 22.2 4.0 (4.1) 0 0 384 44.8 560 31.5 25.2 0.09 0.97 0.04 1.0 0.3 12.0 4.5 0.0 0.0 238 8.6 0.2 0.0 182 182 349 9.8	Aug. 1/58 86:179 26.7 27.1 0.9 4.1 (4.0) 0.5 1 111 31.6 184 9.5 3.6 0.00 0.26 1.4 1.3 0.3 1.7 1.7 0.05 0.0 0.0 64.4 1.5 0.0 1.5 1.6 0.0 38.5 38.8 5.1 	Sept. 23/59 194:222 19.3 24.6 (19.0) 4.3 (4.6) 5 4 407 27.0 17.4 0.06 0.00 1.0 0.92 0.70 2.7 0.2 7.1 3.6 0.0 165 6.4 0.2 138 138 138 233 9.0	June 7/63 25:52 20.0 27.1 7.8 2.5 7.1 (8.5) 15 5 0.9 0.6 62.8 17.6 94.1 9.4 3.7 0.63 Trace 0.00 0.00 0.01 0.02 0.02 1.60 0.6 0.05 0.0 19.1 22.9 0.4 0.1 \leq 0.1 	$\begin{array}{c} June 25/63 \\ 48:65 \\ 15.6 \\ 25.1 \\ 5.8 \\ 1 \\ 7.6 \\ (7.5) \\ 20 \\ 1 \\ \hline 7.6 \\ (7.5) \\ 20 \\ 1 \\ \hline 7.6 \\ (7.5) \\ 20 \\ 1 \\ \hline 7.6 \\ (7.5) \\ 20 \\ 1 \\ \hline 7.6 \\ (7.5) \\ 20 \\ 1 \\ \hline 7.6 \\ (7.5) \\ 20 \\ 1 \\ \hline 7.6 \\ (7.5) \\ 20 \\ 1 \\ \hline 7.6 \\ (7.5) \\ 20 \\ 1 \\ \hline 7.6 \\ (7.5) \\ 20 \\ 0.0 \\$	Aug. 1/58 86:179 23.9 27.2 (27.3) 4.5 2 7.2 (7.4) 20 (35) 0.8 	
Acidity as ppm CaCO ₃ - 11.5 Ni - 21.1 ppm Cr - Trace	Acidity as ppm CaCO 3- 17.9	Acidity as ppm CaCO3-2.6				

Chemical Analyses of Municipal Water Supplies

Upper Great Lakes Drainage Basin in Canada ONTARIO (In parts per million)

	Municipality	CREIGHTON N	AINE (concl'd)	ELLIOT	LAKE	
No.		Vermilior	River	Ellio	t Lake	
		Raw wa	ter	Raw and f	inished water	
	Sampling point	At bridge hwy. 544	At bridge hwy, 17	At tow	n tap	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 15 16 17 7 8 9 20 21 22 23 24 25 22 23 24 25 24 25 26 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 21 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	Date of sampling Storage period (days) Sampling temperature, °C. Test temperature, °C. Oxygen consumed by KMnO ₄ Carbon dioxide (CO ₂) (calculated) pH Colour Turbidity Suspended matter, dried at 105°C. Suspended matter, ignited at 550°C. Residue on evaporation, dried at 105°C. Ignition loss at 550°C. Specific conductance, micromhos at 25°C. Calcium (Ca) Magnesium (Mg) Iton (Fe) Total Dissolved Manganese (Mn) Total Dissolved Aluminum (Al) Copper (Cu) Zinc (Zn) Sodium (Na) Potassium (Kg)	66.8 23.2 94.3 10.1 3.1 0.02 Trace 0.00 0.00 0.00 0.00 1.9	June 7/63 25:52 20.0 27.1 7.8 2.5 7.1 15 5 0.9 0.6 62.8 17.6 94.1 9.4 3.7 0.63 Trace 0.00 0.00 0.00 0.01 0.02 0.02 1.6 0.6	Aug. 14/58 86:193 	Sept. 25/59 85:196 19.0 26.6 2 7.0 5 1 142 14.4 2.4 0.07 0.00 Trace Trace 0.09 0.10 6.1 1.9	
2 5 6 7 2 6 7 2 9 0 3 1 2 3 3 3 3 3 3 3 5 6 7 8 9 0 4 1 4 2 4 4 1 4 2 5 6 7 8 9 0 1 3 3 3 3 5 5 6 7 8 9 0 3 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Ammonium (NH4) Carbonate (CO3) Bicarbonate (HCO3) Sulphate (SO4) Chloride (Cl) Fluoride (F) Phosphate (PO4) Total Dissolved Nitrate (NO3) Silica (SiO2), colorimetric Carbonate hardness as CaCO3 Non-carbonate hardness as CaCO3 Non-carbonate hardness as CaCO3 Total hardness as CaCO3 Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature	0.1 0.0 25.4 18.1 1.3 0.0 0.3 3.9 20.8 (20.5) 17.1 (13.7) 37.9 (34.2) 52.0 9.6 -1.8	0.05 0.05 0.0 19.1 22.9 0.4 0.10 0.1 0.8 3.9 15.7 23.2 38.9 52.8 8.1 -2.1 11	$\begin{array}{c} 0.1\\ 0.1\\ 0.0\\ 9.8\\ 24.0\\ 5.0\\ 0.0\\ \end{array}$	0.0 0.0 11.3 34.6 9.4 0.0 0.8 2.5 9.3 36.0 45.3 77.9 22 -2.2 11	

Remarks

.

Chemical Analyses of Municipal Water Supplies Upper Great Lakes Drainage Basin in Canada ONTARIO

(In parts per million)

	KE (concl'd)		ESPA	NOLA		ļ	
Elliot Lak	e	Spanish River					
Raw water	Finished water	Raw	water*	Fin	ished water		
At lake	At town tap	At K.V.P. Co. I	.td's plant intake	A	t town tap		
June 24/63 49:52 23.3 24.5 3.0 8 5.4 (6.6) 10 1 196 18.5 3.7 6.6 3.0 0.0 1.1 55.1 9.0	June 24/63 49:66 13.9 25.3 4.8 5 5.2 5 1 194 18.3 4.2 0.30 0.10 0.30 0.30 0.30 0.30 0.30 0.30	Sept. 17/57 17:22 22.2 22.2 8.8 3 7.0 40 0.8 	Aug. 18/58 21:35 20.6 21.4 	July 24/57 44:83 21.7 22.0 7 4 7.0 40 1 	Aug. 6/58 85:184 22.7 (23.5) 25.5 5.2 2 7.0 (7.0) 25 (35) 0 57.6 24.4 77.4 6.0 3.2 0.00 0.00 Trace 0.10 2.0 0.6 0.15 0.0 11.5 16.5 3.2		
12 1.6 0.9 60.4	0.1 <0.1 12.5 1.2 0.4 62.7	0.0 0.0 3.9 11.9 14.1	0.4 3.5 11.5 13.3	0.3 0.3 4.3 20.4 18.3	0.0 0.3 3.8 9.4 (13) 18.7 (17)		
61.3 110 18 ~4.8 15	63.1 110 18 -5.3 16	26.0 40.1 41.5 -2.5 12	24.8 35.4 12 -2.7 12	38.7 53.1 7.1 -2.0 11	28.1 (30) 41.3 13 -2.6 12		

Chemical Analyses of Municipal Water Supplies

Upper Great Lakes Drainage Basin in Canada

ONTARIO (In parts per million)

	Municipality	ESPANO	LA (concl'd)	FALCONBRI	DGE (Townsite)
No.	Source(s)	Lak	e Apsey	Well I	No. 1*
•••		Raw water	Finished water	Raw w	rater
	Sampling point	At pumphouse	At town tap	At pu	mp
1 2 3 4	Date of sampling Storage period (days) Sampling temperature, ⁰ C. Test temperature, ⁰ C.	June 7/63 25:52 22.2 27.4	June 7/63 25:55 12.8 27.5	Aug. 18/58 85:197 8.9 23.9 (10.2)	Sept. 23/59 35:39 10.4 25.1 (16.0)
5 6 7 8 9	Oxygen consumed by KMnO ₄ Carbon dioxide (CO ₂) (calculated) pH Colour . Turbidity .	5.5 2 7.2 (7.5) 10 2	5.3 3 7.0 (7.2) 10 9	2 8.0 (6.8) 0 (5) 0	2 8.0 (6.6) 0 0
9 10 11 12 13	Suspended matter, dried at 105°C, Suspended matter, ignited at 550°C, Residue on evaporation, dried at 105°C, Ignition loss at 550°C,		2 	358 61.6	730 62 . 0
14 15 16 17	Specific conductance, micromhos at 25 ⁰ C Calcium (Ca) Magnesium (Mg) Iron (Fe) Total		76.7 7.6 2.5 2.2	505 63.1 16.8	985 140 35.1 0.02
18 19 20 21	Dissolved Manganese (Mn) Total Dissolved Aluminum (Al)		0.01 0.06 0.01 0.05	0.02	Trace 0.00 0.06
22 23 24 25 26	Copper (Cu) Zinc (Zn) Sodium (Na) Potassium (K) Ammonium (NH ₄)	0.00 1.8 0.7 0.04	0.00 0.01 1.9 1.7 0.01	0.00 0.00 13.0 1.6	0.04 0.05 30.6 2.5
27 28 29 30	Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulphate (SO ₄) Chloride (Cl)	0.0 18.9 15.2 2.4	0.0 17.6 13.6 2.4	0.0 101 159 5.0	0.0 138 409 9.5
31 32 33 34	Fluoride (F) Phosphate (PO ₄) Total Dissolved Nitrate (NO ₄)	0.2	<0.06 <0.1 0.6	0.10 2.0	0.03 0.03
35 36 37 38	Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃ Total hardness as CaCO ₄	5.3 15.5 14.3 29.8	5.9 14.4 15.0 29.4	13 83.1 (80) 144 (155) 227 (235)	15 113 379 492
39 40 41 42	Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature	45.1 11 -2.0 11	44.0 12 -2.3 12	323 11 +0.3 7.4	716 12 +0.7 6.6
	Remarks			* Wells No. 1 and 2 are side by side	Ni - 0.0 ppm

Chemical Analyses of Municipal Water Supplies Upper Great Lakes Drainage Basin in Canada ONTARIO (Inparts per million)

	FALCON	BRIDGE (Townsite	e) (concl'd)		FERRIS WEST (TOWNSHIP)	FORT WILLIAM	
Well No. 2*	Wel	1 No. 3**	Mixe	d wells	Trout Lake	Loch Lomond	
Raw water	aw water Raw water		Raw an	d finished water		Raw and finished water	
At pump	At	pump	At plant tap	At service station tap		At city tap	
Sept. 23/59 35:39 11.1 25.0 (16.5)	Aug. 18/58 85:197 13.9 23.9 (12.3)	Sept. 23/59 35:39 16.6 25.3 (19.4)	Aug. 18/58 82:200 12.0 23.9 (12.6)	Sept. 23/63 22:28 12.5 25.3		Aug. 6/53 12:365 14.4 22.0 (15)	
2 8.1 (7.3) 0 0.4	2 8.2 (6.9) 5 (8) 0	3 7.9 (6.7) 0 15 35	1.5 8.2 (6.9) 0 (20) 0	4 7.6 0 0		5 7.0 (6.3) 30 (30) 2.5 (2.5)	
909 78.0 .188 175 42.2 Frace Trace	940 72.0 1,184 170 42.1 0.01	31 1,240 172 1,456 195 50.0 Trace 0.00	948 104 1,178 167 39.9 Trace	618 81.4 22.3 Trace		47.6 20.8 50.7 (50) 5.6 3.0 0.15	
0.02 0.06 0.11 0.10 34.5 4.5	Trace 0.06 0.00 0.00 40.0 3.8	0.00 0.08 Trace 0.10 75.0 3.6	0.02 0.08 0.00 0.10 39.0 3.8	0.00 0.002 0.035 13.5 1.6	See North Bay Ont.	1.2 0.7	
0.0 161 503 12.8 0.15	0.0 159 523 10.2 0.2	0.0 167 662 12.4 0.15	0.0 165 509 9.8 0.2	0.0 92.0 222 7.7 0.32		0.0 26.3 6.2 0.6 0.0	,
0.02 6.0 16 132 478 610 876 11 +1.0 6.1	2.0 18 130 (133) 468 (456) 598 (589) 887 13 +1.0 6.2	0.07 6.0 22 137 556 693 1,110 19 +0.8 6.3	1.5 17 135 (128) 445 (445) 580 (573) 868 13 +1.0 6.2	5.3 12 75.5 219.5 295 403 9.0 -0.1 7.8		0.6 5.9 21.6 (18) 4.7 (8.6) 26.3 (26.6) 36.4 8.8 -2.3 12	
li – 0.35 ppm Wells No. 1 & 2 e side by side	** Well developed in 1955-56	Ni - 0.4 ppm			Community in the Upper Great Lakes drainage basin but Trout Lake is in the Ottawa River drainage basin,	s	

Chemical Analyses of Municipal Water Supplies Upper Great Lakes Drainage Basin in Canada ONTARIO (In parts per million)

ł	Source(s)		Loch	Lomond	
٩o			Raw and finis	shed water	
	Sampling point		At cit	ty tap	*
1	Date of sampling Storage period (days) Sampling temperature, ⁰ C	Apr. 27/55†	Feb. 29/56†	March /57†	Aug. 1/57 91:105
51	Sampling temperature, ⁰ C.				14.9
4	Test temperature, ⁰ C				25.0
5	Oxygen consumed by KMnO ₄				5.6
5	Carbon dioxide (CO ₂) (calculated)	3	3.5	3	3
7	рН	6.7	7.1	7.6	7.0
B	Colour		15	25	20
9	Turbidity		2	2	0
0	Suspended matter, dried at 105°C	Trace	Trace	Trace	
1	Suspended matter, ignited at 550° C				
2	Residue on evaporation, dried at 105° C	36	42	58	43.6
3	Ignition loss at 550°C		••••••••••	•••••	19.2
4	Specific conductance, micromhos at 25°C.				50.6
5	Calcium (Ca)		6.4	5.6	5.0
5	Magnesium (Mg)	1.9	2.9	2.4	2.3
7	Iron (Fe) Total Dissolved	0.0	0.0	V.5 .	, · · · · · · · · · · · · · · · · · · ·
8	Manganese (Mn) Total	••••••••••••••••	••••••••••••••••••••••	••••••	0.05
	Dissolved				0.00
1	Aluminum (Al)	0.0			0.00
2	Aluminum (Al) Copper (Cu)	040	0.0		0.0
3	Zinc (Zn)			••••••	
4	Sodium (Na)				1.0
5	Potassium (K)				0.4
5	Ammonium (NH ₄)	0.1	0.1	0.1	0.05
7	Carbonate (CO ₃)		0.0	0.0	0,0
8	Bicarbonate (HCO ₃)	24.4	21.9	24.4	20.4
9	Sulphate (SO ₄)	4.1	4.1	1.4	6.3
0	Chloride (Cl)	6.1	2.4	2.4	0,8
1	Fluoride (F)				0.0
2	Phosphate (PO4) Total	· · · · · · · · · · · · · · · · · · ·			
3	Dissolved		• • • • • • • • • • • • • • • • • • • •	· • · <i>• • • •</i> • • • • • • • • • • • • • • •	
4	Nitrate (NO ₃)				0.4
5	Silica (SiO ₂), colorimetric		3.7	4.4	4.2
6	Carbonate hardness as CaCO ₃	20 2	18	20	16.7
7	Non-carbonate hardness as CaCO ₃	222	10 18	4	5.2
3	Total hardness as CaCO ₃ Sum of constituents		19	24	21.9
3	Per cent sodium		• • • • • • • • • • • • • • • • • • • •		30.6 8.7
1	Saturation index at test temperature	-2.6	-2.2	-1.7	8./ -2.4
	Stability index at test temperature	12	.12	11	12
+	Remarks	† Analyses supplied	by Alchem Ltd., Burl	ington, Ont.	

Chemical Analyses of Municipal Water Supplies Upper Great Lakes Drainage Basin in Canada

ONTARIO (In parts per million)

	FORT WILLIAM (concl'd)		GARSON	<u></u>		
	Loch Lomond		Well				
	Raw and finished water		R	aw and finished water			
	At city tap			At town tap			
June 8/61 6 23.4 3.5 7.0 15 51.8 4.9 2.7 1.0 0.6 0.1 0.0 20.8 0.9 0.06	May 24/62 32:34 10.0 24.3 7 6.7 25 0 53.7 6.2 2.5 0.01 0.01 0.00 0.00 0.30 Trace 0.9 0.5 0.0 21.2 7,1 0.9 0.11 0.1	June 21/63 33:52 8.3 24.8 8.8 3 7.0 20 0.9 	Aug. 2/58 86:178 18.6 27.1 (19.3) 0.8 8.2 (7.2) 5 0 194 88.8 238 30.7 8.7 0.00 0.01 Trace 0.04 0.2 3.1 0.6 0.05 0.0 88.0 32.7 5.4 0.0	Oct. 1/59 187:214 12.0 24.4 2.5 7.8 0 0 0 251 23.5 6.2 0.03 Trace 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 92.0 35.0 8.1 0.0 0.0	June 7/63 25:52 8.9 27.2 1.8 2 7.8 (7.9) 5 0.3 	1 2 3 4 5 6 7 8 9 12 14 15 16 17 12 12 12 12 12 12	
17.1 6.4 23.5	0.1 3.7 17.4 8.4 25.8 29.2 6.8 -2.6 12	0.2 3.2 16.6 7.3 23.9 29.8 7.4 -2.4 12	4.0 12 72.2 (81) 40.2 (35) 112 (116) 141 5.6 +0.2 7.8	3.0 16 75.5 8.8 84.3 142 9.0 -0.3 8.4	7.7 13 78.6 51.2 130 7.2 -0.2 8.2	3 3 3 3 3 3 3 3 3 4 4 4 4	

Note: A second well put into operation in 1963 is said to be of the same quality as the above older well.

Chemical Analyses of Municipal Water Supplies

Upper Great Lakes Drainage Basin in Canada

ONTARIO (In parts per million)

	Municipality	GATEWAY		GORE BAY			
vо.	Source(s)	Trout Lake	Georgian Bay (Lake Huron) and spring				
"]	Î	•••••••••••••••	Spring and Geor	gian Bay	Georgian Bay		
				Raw and finished wate			
	Sampling point		At town tap	At town tap	From bay at wharf		
12	Date of sampling Storage period (days)		Aug. 4/58 84:185	July 24/57 42:83	Aug. 4/58 84:185		
3	Sampling temperature, ⁰ C Test temperature, ⁰ C.		17.8 25.8 (22.8)	15.5 24.4	22.1 25.7 (23.7)		
5	Oxygen consumed by KMnO ₄		2.1	2.2	1.5		
5	Carbon dioxide (CO ₂) (calculated)		1	9	1.5		
8	pH Colour		8,1 (8,2) 5 (8)	7.6 (7.4) 5	7.9		
9	Turbidity		0	0.4	5 (10) 0.8		
0	Suspended matter, dried at 105°C.			•••••			
1	Suspended matter, ignited at 550° C Residue on evaporation, dried at 105° C		129	291			
3	Ignition loss at 550° C.		32.8	59.6	98.0 21.6		
4	Specific conductance, micromhos at 25°C		227	491	160		
5	Calcium (Ca)		27.7	60.5	20.7		
6 7	Magnesium (Mg) Iron (Fe) Total		8.4 Trace	20.1	5.6		
в	Dissolved		11400	0.03	0.00		
2	Manganese (Mn) Total						
0	Dissolved Aluminum (Al)		0.00 0.02	Trace 0.06	0.00 0.02		
2	Copper (Cu)	See	0.33	0.00	Trace		
3	Zinc (Zn)	North Bay	0.3	0.5	0.0		
4 5	Sodium (Na) Potassium (K)		3.9 0.7	9.0 1.0	2.4		
6	Ammonium (NH ₄)		0.05	0.0	0.6 0.1		
7	Carbonate (CO ₃)		0.0	0.0	0.0		
8	Bicarbonate (HCO ₃)		105	226	75.5		
0	Sulphate (SO ₄) Chloride (Cl)		13.9 8.3	26.2	11.4		
ĭ	Fluoride (F)		0.0	25.5 0.0	3.3 0.0		
2	Phosphate (PO ₄) Total			••••	•••••		
3	Dissolved Nitrate (NO3)		••••••	••••••••••			
	Silica (SiO ₂), colorimetric		2.5 4.7	10 9.6	1.0 6.1		
6	Carbonate hardness as CaCO ₃		86.5 (88.9)	185	61.9 (62.6)		
7	Non-carbonate hardness as CaCO ₃		21.3	48.2	12.8 (14.4)		
3	Total hardness as CaCO ₃ Sum of constituents		108	234	74.7 (77.0)		
51	Per cent sodium		124	274 7.7	88.2 6.5		
L	Saturation index at test temperature		0,0	+0.2	-0.4		
2	Stability index at test temperature		8.1	7.2	8.7		
+	Remarks	Community in the Upper Great Lakes drainage basin but					
		Trout Lake is in the Ottawa River drainage basin.					

.

Chemical Analyses of Municipal Water Supplies Upper Great Lakes Drainage Basin in Canada ONTARIO (In parts per million)

LEV	ACK	LIT	TLE CURRENT	LIVELY	
Wells		Georgia	n Bay (Lake Huron)	Meatbird Lake	
Raw water	Finished water	Raw	and finished water	Raw and finished water	
At pump	At house tap	At town tap	At plant tap	At town tap	
Aug. 20/58 84:196	Aug. 20/58 84:196	July 24/57 44:83	Aug. 5/58 84:185	Sept. 30/59 {214	
8.5 23.9 (11.6)	23.9 (16.6)	21.8	20.6 25.7 (22.5)	24.7	
		277		1	
				6.6	
				5	
1	v	V.0	v	4 ⁴	
160	150	108	1 111	}	
238	234	178	179	494	
22.6	22.8	22.0	22.1	40.6	
9.1	8.9	6.5	6.6	15.2	
	• • • • • • • • • • • • • • • • • • • •		0.03	0.00	
0.2	0.02	0.03		0.00	
		••••••••••••••••••		1.0	
				0.98	
				0.24	
				0.82	
			2 2	0.07	
12				19.8 4.4	
			0.8	4.4	
			0.0	0.0	
				3.5	
				203	
				8.6	
0.0	0.0	0.2	0.0	0.2	
		••••••	•	0.0	
0.3	0.3	0.8	0.8	0.4	
15	14	3.1	5.2	3.4	
		67.5	68.2 (69.7)	2.9	
	66.3 (62.5)		14.1 (14.8)	161	
				164	
				299	
			7.9	20	
-0.9 9.6	-1.6 10	-0.6 8.9	0.0 8.2	-2.9	
		0.7	i 8.7	12	
	Weil Raw water At pump Aug. 20/58 84:196 8.5 23.9 (11.6) 0.8 7.8 (6.6) 0 (5) 0 160 32.8 238 22.6 9.1 0.2 0.00 0.05 0.00 0.55 1.2 0.05 0.00 34.4 67.1 6.0 0.0 34.4 67.1 6.0 0.0	Wells Raw water Finished water At pump At house tap Aug. 20/58 Aug. 20/58 84:196 84:196 8.5 23.9 (11.6) $23.9 (11.6)$ 23.9 (16.6) 0.8 4 7.8 (6.6) 7.1 (6.7) 0 (5) 0 0.8 4 7.8 (6.6) 7.1 (6.7) 0 (5) 0 0.00 0.00 0.238 234 22.6 22.8 9.1 8.9 0.2 0.02 0.00 0.00 0.05 0.03 0.00 0.02 0.00 0.02 0.00 0.02 0.01 0.02 0.02 0.03 0.03 0.04 0.05 0.05 0.06 0.05 0.07 0.00 0.08 0.03 0.09 0.00 0.00 <	Wells Georgia Raw water Finished water Raw At pump At house tap At town tap Aug. 20/58 Aug. 20/58 July 24/57 84:196 84:196 44:83 8.5	Weils Georgian Bay (Lake Huron) Raw water Finished water Raw and finished water At pump At house tap At town tap At plant tap Aug. 20/58 Aug. 20/58 July 24/57 Aug. 5/58 84:196 84:196 13.9 20.6 23.9 (11.6) 23.9 (16.6) 21.8 23.9 (11.6) 22.0 1.7 0.8 4 3 0.8 7.8 (6.6) 7.1 (6.7) 7.7 0 (5) 0 10 10 0 0 0.8 0 0 160 150 108 111 32.8 48.0 27.2 42.4 238 234 178 179 22.6 22.8 22.0 22.1 9.1 8.9 6.5 6.6 0.00 0.02 0.03 0.03 0.05 0.03 0.05 0.03 0.05	

Chemical Analyses of Municipal Water Supplies

Upper Great Lakes Drainage Basin in Canada

ONTARIO (In parts per million)

	Municipality	LIVELY (concl'd)	MANITOUWADGE	MAR	ATHON
No.	Source(s)	Meatbird Lake	Two wells	Tw	o wells
		Raw and finished water	Raw and finished water	Raw and f	inished water
<u></u>	Sampling point	At town tap	At townsite tap	At to	wnsite taps
1 .2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 7 8 9 20 21	Date of sampling Storage period (days). Sampling temperature, ⁰ C. Test temperature, ⁰ C. Oxygen consumed by KMnO ₄ . Carbon dioxide (CO ₂) (calculated)		Aug. 15/59 31:54 16.0 20.5 3.1 3 8.2 0 0 267 38.8 447 72.0 15.8 0.07 0.04 0.00 0.02	Aug. 5/57 92:105 8.2 23.4 2.1 2 8.1 (7.6) 0 0 172 26.8 291 46.3 8.4 0.00 0.00 0.06	Aug. $15/59$ 31:54 14.0 21.0 2.2 8.2 (8.2) 0 (5) 0 (< 1)
21 22 23 24 25 26 27 28 29 30 31 32 29 30 31 32 33 34 35 36 37 8 39 40 41 42	Aluminum (Al) Copper (Cu) Zinc (Zn) Sodium (Na) Potassium (K) Ammonium (NH ₄) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulphate (SO ₄) Chloride (Cl) Phosphate (PO ₄) Total Dissolved Nitrate (NO ₃) Silica (SiO ₂), colorimettic Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃ Total hardness as CaCO ₃ Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature	$\begin{array}{c} 2.1 \\ \hline 0.10 \\ 14.5 \\ 3.1 \\ 0.0 \\ 0.0 \\ 7.1 \\ 165 \\ 6.3 \\ 0.2 \\ 8.9 \\ \hline 0.4 \\ 2.8 \\ 5.8 \\ 127 \\ 133 \\ 249 \\ 17 \\ -3.1 \\ 12 \\ \end{array}$	$\begin{array}{c} 0.02 \\ 1.4 \\ 0.3 \\ 1.5 \\ 1.1 \\ 0.0 \\ 273 \\ 14.5 \\ 6.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.0 \\ 0.1 \\ 224 \\ 21.0 \\ 245 \\ 262 \\ 1.3 \\ +0.9 \\ 6.4 \\ 0$	$\begin{array}{c} 0.00\\ 0.00\\ 0.3\\ 1.6\\ 1.1\\ 0.0\\ 0.0\\ 172\\ 10.7\\ 3.1\\ 0.0\\ \end{array}$	$\begin{array}{c} 0.0\\ 0.26\\ 0.1\\ 1.5\\ 1.1\\ 0.0\\ 0.0\\ 174\\ 11.7\\ 3.4\\ 0.0\\ \end{array}$ $\begin{array}{c} 0.0\\ 3.0\\ 9.6\\ 142\\ (140)\\ 13.2\\ (20)\\ 155\\ (160)\\ 173\\ 2.0\\ +0.5\\ 7.2\\ \end{array}$

Remarks

Chemical Analyses of Municipal Water Supplies Upper Great Lakes Drainage Basin in Canada ONTARIO (In parts per million)

		MASSEY		MCKIM TOWNSHIP	MICHIPICOTEN TOWNSHIP	
Two wells		Aux Sables River		Ramsay Lake	Wawa Lake	N
Raw and finished water	Raw and finished water	Raw water	Finished water		Raw water	
At service station tap	At intake	At hwy.No. 17 bridge	At town tap		At lake	
June 22/63 32:45 11.7 24.4 1.3 3 7.9 5 0.8 	Aug. 5/58 84:185 24.3 25.8 (23.8) 2.8 0.9 7.2 (7.0) 15 (35) 10 	June 8/63 24:51 21.1 27.5 4.9 2 6.9 20 1 	June 8/63 24:54 18.9 27.7 5.2 4 6.4 (6.7) 20 0.7 	See Sudbury	$\begin{array}{c} \text{Oct. } 24/61\\ 23:33\\ & & \\ 24.0\\ 2.4\\ 3\\ & 7.4\\ 5\\ 0.4\\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$	$\begin{array}{c}1\\1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\1\\1\\5\\6\\7\\1\\1\\1\\1\\2\\2\\1\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2$
161 173 2.0 +0.3 7.3	14.8 (17.1) 24.9 16 -2.6 12	14.5 26.1 13 	15.3 24.6 12 3.7 14		67.3 2.9 -1.3 10	3 4 4 4

Chemical Analyses of Municipal Water Supplies

Upper Great Lakes Drainage Basin in Canada

ONTARIO (In parts per million)

	Municipality	MICI	HIPICOTEN TOWNS	SHIP (concl'd)	NEELON TOWNSHIP	NIPIGON
io.	Source(s)		Wawa Lake		Ramsay Lake and wells	Lake Helen (Nipigon River)
			Finished water			Raw water
	Sampling point		At town tap			
123456789011234567890122345678901233456	Date of sampling	Oct. 24/61 23:33 23:9 2.2 3 7.4 5 0 	May 26/62 30:32 24.3 7.6 0 0 128 17.0 3.7 0.03 0.01 0.00 0.00 0.00 0.03 0.03 0.03	June 23/63 31:34 11.7 24.6 2.8 3 7.3 (7.6) 5 0.7 133 17.2 4.6 0.05 Trace 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 1.0 0.6 0.05 1.0 0.6 0.05 1.0 0.0 39.1 25.7 1.6 0.07 <0.1 1.1 1.7 32.1	See Garson and Sudbury	Aug. 19/59 32:53 14 24.6 4.7 2 7.0 10 0.8
37 38 39 40 41 42	Non-carbonate hardness as CaCO ₃ Total hardness as CaCO ₃ Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature	26.0 56.3 66.2 2.9 -1.3 10	27.5 57.8 69.8 2.5 0.8 9.2	29.8 61.9 72.8 3.4 -1.3 9.9		1.6 75.9 88.0 4.1 -0.4 8.6

Chemical Analyses of Municipal Water Supplies Upper Great Lakes Drainage Basin in Canada ONTARIO (In parts per million)

	NIPIGO	DN (concl'd)			NORTH BAY		
	Lake Helen	(Nipigon River)			Trout Lake		No
Raw water		Finished water		Raw water	Finishe	ed water	
At hwy.17 bridge	At town tap	At town tap	At town tap		At plant intake		
June 21/63	Aug. 6/57	Aug. 14/59	May 25/62	June 5/63	July 18/57	Aug. 18/59	1
39:46	91:104	26:55	31:33	22:44	5:5	7:13	2
12.2	20.5	16.0	8.9	16.7	17.2	18.0	3
24.9	23.2	27.0	24.2	24.6	25.1	27.2	4
5.1	5.2	5.0		5.2	6.4	4.8	5
3.5	0.8	1	2.5	2	2	3	6
7.6 (8.3)	8.3	8.1 (8.1)	7.8	6.9 (7.4)	6.8	6.6	7
20	10	10 (10)	· -	10	10	10	8
2	Ŏ	0.8 (<1)	35 3	0.7	0.9	0.6	9
••	, i i i i i i i i i i i i i i i i i i i	010 ((1)	,	0.7	0.9	0.0	10
					• • • • • • • • • • • • • • • • • •		11
106	111	99.2		49.6	48.4	48.0	
23.6	28.0	17.6		18.8	20,4	27.6	1
177	169	157	159	58.5	53.7	55.1	
22.0	24.0	24.5	23.9	4.4	4.8	5.0	1
4.7	3.8	3.9	5.0	2.1	1.5	1.6	
0.13	5.0	0.06	0.14	0.07	1.)		
0.00	Trace	0.00	0.03	0.07		0.05	17
0.00	Indee	0.01	0.00	0.00	0.03	0.04	18
0.00	0.00	0.00	0.00	0.02	 0 00	0.01	
0.01	0.09	0.00			0.00	0.01	20
Trace	Trace	Trace	0.00	0.03	0.11	0.09	2
0.00	0.2		0.00		0.07	0.16	22
		0.3	0.00	< 0.05	0.05	0.05	2
1.4	5.2	2.0	2.0	1.9	1.5	1.7	24
0.0	0.6	0.7	0.6	1.0	1.0	1.2	2:
0.0	0.05	0.0	••••••	0.01	0.05	0.0	26
	0.0	0.0	0.0	. 0.0	0.0	0.0	2
85.9	98.5	92.4	92.5	9.8	9.1	8.2	28
5.0	3.8	3.7	5.2	11.4	11.1	8.8	29
	3.4	1.5	1.9	1.9	3.1	3.9	30
0,07	0.0	0.0	0.17	0.07	0.0	0.0	31
	• • • • • • • • • • • • • • • • • • • •	•••••	0.19	< 0.1			32
< 0.1		0.0	•••••••	••••••	• • • • • • • • • • • • • • • • • • • •		33
0.8	0.1	0.4	0.1	0.8	0.6	3.0	34
3.5	5.2	5.4	3.9	2.4	3.0	2.0	35
70.5	75.5	75.8	75.9	8.0	7.5	6.7	30
3.7	0.0	1.4	4.5	11.6	10.6	12.4	37
74.2	75.5	77.2	80.4	19.6	18.1	19.1	38
•••••	94.9	87.9	88.5	30.8	31.4	21.6	39
•••••	13	5.2	5.1	17	14	15	40
-0.6	+0.2	0.0	-0,4	-2.9	-3.0	-3.2	41
8.8	7.9	8.1	8.6	13	13	13	42
	}						43
	L		I				L

Community in the Upper Great Lakes drainage basin but Trout Lake is in the Ottawa River drainage basin.

Chemical Analyses of Municipal Water Supplies

Upper Great Lakes Drainage Basin in Canada

ONTARIO

(In parts per million)

	Municipality	NORTH BAY (concl'd)	ONAPING	PORT	ARTHUR
No.	Source(s)	Trout Lake	Well	Thunder Ba	y (Lake Superior)
		Finished_water	Raw and finished water	Raw v	vater*
	Sampling point	At pumphouse tap	At house tap	At p	1mp
$\begin{array}{c}1&2&3&4&5&6&7\\&8&9&0&1&1&2\\&1&1&1&2&1&2&2&2&2&2&2\\&2&2&2&2&2$	Date of sampling	47.2 22.0 64.3 4.6 2.7 0.11 0.00 0.03 0.01 0.02 2.2 1.0 0.05	Aug. 20/58 84:199 11.7 22.3 (11.9) 6 6 6.9 (6.9) 0 (5) 0 142 14.2 14.2 5.0 0.02 0.02 0.02 0.03 0.1 2.7 0.8 0.05 0.03 0.1 2.7 0.8 0.05 0.0 30.8 17.5 11.2 0.0	Aug. 5/53 12:365 14.4 22.0 (16.0) 3 7.5 (6.5) 5 (15) 3 (5) 102 (90) 13.0 4.4 2.6 0.8 0.0 59.4 4.5 1.5 0.0	99.1 13.5 2.9
32 334 356 37 39 40 41 42	Phosphate (PO ₄) Total	< 0.1 1.0 2.9 7.3 12.7 20.0 34.2 18 -3.0 12	3.0 13 25.3 (25) 15.7 (18) 41.0 (43) 83.2 9.4 -2.0 11	1.2 5.8 48.6 1.9 50.5 63.0 9.9 -1.1 9.7	1.3 2.9 43.5 2.1 45.6 53.6 5.7 -1.2 9.9
	Pamaeka			*Sac also Station Me	14

Remarks

*See also Station No. 14, page 22

Chemical Analyses of Municipal Water Supplies Upper Great Lakes Drainage Basin in Canada

ONTARIO

(In parts per million)

		Thunder Bay	(Lake Superior)		
Raw w	ater		Finished w	vater	
At pur	ap				
Aug. 7/59 11:19 13.3 26.1 2.5 2.5 7.5 10 0.8 	June 21/63 33:41 7.8 24.6 3.0 3 7.4 5 0.9 94.5 12.2 3.5 1.3 0.4 0.0 59.2 4.8 0.7 0.8 2.3 40.6 4.2 44.8 50.4	2 7.5 0 2 Trace 68 14.4 4.4 0.1 0.0 0.0 0.6 	2 7.7 5 2 Trace 64 14.4 2.4 Trace 0.0 Trace 0.1 0.0 61.0 0 3.6	2 7.8 3 2 Trace 68 	3 7.4 8 2 Trace 82 0.0 0.1 Trace 0.0 56,1 0 4.9
6.4 -1.1 9.7	5.9 -1.3 10	-1.1 9.7	-0.9 9.5	-0.8 9.4	-1.8 9.8

† Analysis supplied by Alchem Ltd., Burlington, Ont.

Chemical Analyses of Municipal Water Supplies

Upper Great Lakes Drainage Basin in Canada

ONTARIO

(In parts per million)

	Municipality	Р	ORT ARTHUR (concl'	d)	POWASSAN
No.		Th	under Bay (Lake Super	rior)	Genesee Creek
			Finished water		Raw water
	Sampling point	At town tap	At town tap	At plant tap	
1	Date of sampling	Aug. 2/57	May 25/62	June 21/63	Aug. 21/58
2	Storage period (days)	90:104	31:33	33:52	
3	Sampling tempreature, ⁰ C	14.2	8.8	7.8	
4	Sampling tempreature, ⁰ C Test temperature, ⁰ C	25.0	24.2	24.8	22.2
5	Oxygen consumed by KMnO ₄	2.8		3.6	6.3
6	Carbon dioxide (CO ₂) (calculated)	1	14	6.5	1
7	pH	7.8 (6.8)	6.8	7.1	7.3
8	Colour	5	5	5	40
9	Turbidity	0.4	ó	0.5	7
10	Suspended matter, dried at 105° C.				13
11	Suspended matter, ignited at 550°C				11
12	Residue on evaporation, dried at 105°C				57.2
13	Ignition loss at 550°C.	15.2			22.0
14	Specific conductance, micromhos at 25°C	97.7	95.0	94.8	57.9
15	Calcium (Ca)	12.8	12.9	12.2	4.8
16	Magnesium (Mg)	3.1	3.6	3.4	2.3
17	Iron (Fe) Total		0.06	0.05	0.52
18	Dissolved		0.01	0.00	0.21
19	Manganese (Mn) Total		0.00		0.00
2ó	Dissolved		0.00	0.00	0.00
21	Aluminum (Al)		0.02	0.01	0.0
22	Copper (Cu)	0.02	0.05	0.00	0.0
23	Zinc (Zn)		0.00	0.00	0.0
24	Sodium (Na)	2.6	1.2	1.1	
25	Potassium (K)		0.4	0.4	2.0 0.9
26	Ammonium (NH ₄)	0.0		0.0	0.15
27	Carbonate (CO ₃)	0.0	0.0	0.0	0.0
28	Bicarbonate (HCO ₃)	52.5	49.6	49.4	18.0
29	Sulphate (SO ₄)	3.7	3.7	4.2	7.7
30	Chloride (Cl)	2.5	2.2	1.8	1.1
31	Fluoride (F)	0.0	0.11	0.02	0.0
32	Phosphate (PO ₄) Total		0.17	< 0.1	.
33	Dissolved				1
34	Nitrate (NO ₃)		0.9	0.2	1.5
35	Silica (SiO ₂), colorimetric	5.1	2.4	2.0	9.0
36	Carbonate hardness as CaCO ₃		40.7	40.5	14.8
37	Non-carbonate hardness as CaCO ₃	1.6 (4)	6.3	4.1	6.6
38	Total hardness as CaCO ₃	44.7 (46)	47.0	44.6	21.4
39	Sum of constituents	52.3	52.0	50.4	38.4
40	Per cent sodium	11	5.2	5.1	16
41	Saturation index at test temperature	-0.8	-1.9	-1.6	-2.2
42	Stability index at test temperature		11	10	12
		4	ł		

Remarks

Chemical Analyses of Municipal Water Supplies

Upper Great Lakes Drainage Basin in Canada

ONTARIO (In parts per million)

ee Creek Finishe 21/58 :97 .4 .2 (21.7) .6 .4 (7.5) (30) 	ed water At plant tap June 4/63 21:37 20.6 23.7 7.5 2 7.5 (7.3) 20 0.5 	N: Raw water At hwy. No. 17 bridge June 21/63 39:43 	ipigon Bay (Lake Super Raw and finished water Aug. 14/59 26:46 15 27.0 4.9 2 7.9 10 2 7.9 10 2 	Finished water At pumphouse tap June 21/63 33:46
wn tap 21/58 :97 .4 .2 (21.7) .6 .4 (7.5) (30) .8 .2 .5 .7	At plant tap June 4/63 21:37 20.6 23.7 7.5 2 7.5 (7.3) 20 0.5 	At hwy. No. 17 bridge June 21/63 39:43 24.7 6.5 4 7.5 25 3 145 22.9	finished water Aug. 14/59 26:46 15 27.0 4.9 2 7.9 10 2 101 30.4 151 23.7	At pumphouse tap June 21/63 33:46
21/58 :97 .4 .2 (21.7) .6 .4 (7.5) (30) .8 .2 .5 .5 .7	June 4/63 21:37 20.6 23.7 7.5 2 7.5 (7.3) 20 0.5 	No. 17 bridge June 21/63 39:43 24.7 6.5 4 7.5 25 3 145 22.9	26:46 15 27.0 4.9 2 7.9 10 2 101 30.4 151 23.7	June 21/63 33:46
.97 .4 .2 (21.7) .6 .4 (7.5) (30) .8 .2 .5 .5 .5 .7	21:37 20.6 23.7 7.5 2 7.5 (7.3) 20 0.5 	39:43 24.7 6.5 4 7.5 25 3 145 22.9	26:46 15 27.0 4.9 2 7.9 10 2 101 30.4 151 23.7	33:46 24.7 8.2 4 7.5 30 2
.4 .2 (21.7) .6 .4 (7.5) (30) .8 .2 .5 .5 .7	20.6 23.7 7.5 2 7.5 (7.3) 20 0.5 	24.7 6.5 4 7.5 25 3	15 27.0 4.9 2 7.9 10 2 101 30.4 151 23.7	24.7 8.2 4 7.5 30 2
.2 (21.7) .6 .4 (7.5) (30) .8 .2 .5 .5 .7	23.7 7.5 2 7.5 (7.3) 20 0.5 	6.5 4 7.5 25 3 145 22.9	4.9 2 7.9 10 2 101 30.4 151 23.7	8.2 4 7.5 30 2
.4 (7.5) (30) .8 .2 .5 .5 .7	2 7.5 (7.3) 20 0.5 	4 7.5 25 3 	2 7.9 10 2 101 30.4 151 23.7	4 7.5 30 2
.4 (7.5) (30) .8 .2 .5 .5 .7	7.5 (7.3) 20 0.5 	7.5 25 3 145 22.9	7.9 10 2 101 30.4 151 23.7	7.5 30 2
(30) .8 .2 .5 .5 .7	20 0.5 	25 3 145 22.9	10 2 101 30.4 151 23.7	30 2
.8 .2 .5 .7	0.5 	3 145 22.9	2 101 30.4 151 23.7	2
.2 .5 .5 .7	84.0 19.2 124.5 3.7 2.2	 145 22.9	30.4 151 23.7	147
.2 .5 .5 .7	19.2 124.5 3.7 2.2	 145 22.9	30.4 151 23.7	147
.2 .5 .5 .7	19.2 124.5 3.7 2.2	 145 22.9	30.4 151 23.7	147
.5 .5 .7	124.5 3.7 2.2	22.9	151 23.7	
.5 .7	3.7 2.2	22.9	23.7	
.7	2.2	4.2		22.1
	0.14		3.7	4.7
08			0.34	0.26
	0.04		0.02	Trace
	. 0.00		· · · · · · · · · · · · · · · · · · ·	0.00
.02	0.00		Trace	0.00
				0.00
.5	0,00		0,1	0.05
.0	16.6	1.2	1.5	1.4
.8	0.7	0.5		0.6
				0.0
		· · · ·		0.0
				6.0
.6	2.7	1.1	2,6	1.5
.0	0.10		0.0	0.08
	.0.1		• • • • • • • • • • • • • • • • • • • •	0,1
	0 2	0.8		0.8
	2.5			3.8
.6 (23)	18.4	69.1	68.2	67.6
.6 (2)	0.0	5.5	6.1	7.0
				74.6
				81.6
.8		-0.7	-0.2	-0.7
	11	8.9	8.3	8.9
	.0 .8 .05 .0 .3 .0 .6 .1 .6 (23) .6 (2) .2 (25) .9 .8	0.05 0.02 0.5 0.000 0.00 16.6 0.00 0.00 0.05 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.100 0.00 0.100 0.010 0.100 0.10 0.110 0.10 0.100 0.2 11 0.25 18.4 0.6 0.2 0.1 0.25 0.6 0.2 0.1 0.25 0.6 0.00 0.2 0.00 0.2 0.00 0.2 0.00 0.2 0.00 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Chemical Analyses of Municipal Water Supplies

Upper Great Lakes Drainage Basin in Canada

ONTARIO (In parts per million)

	Municipality		SAU	ULT STE. MARIE				
ŀ			St. Mary's R	iver (Lake Superio	r) and wells			
No	Source(s)		Wells*	1	St. Mary's River	(Lake Superior)†		
		Raw and finished water						
ľ	Sampling point		At pump house		At plant tap	At town tap		
1	·Date of sampling	Oct. 25/51	Aug. 12/58	Sept. 25/63	Oct. 25/51	Aug. 12/58		
2	Storage period (days)	9:33	87:195	20:26	9:25	87:195		
3	Sampling temperature, ⁰ C	7.2	9.4	7.2	9.4	18.8		
4	Test temperature, ⁰ C.	22	25.6 (14.3)	25.0	22.0	25.7 (18.8)		
5	Oxygen consumed by KMnO ₄	[· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••••	0.8		
6	Carbon dioxide (CO ₂) (calculated)	2	1	1	1	0.8		
7	pH Colour	7.6 0	7.8 (7.4)	7.8	7.8	8.0 (6.6-7.		
	Turbidity	0.5	5 (5) 0	0 0	0 1	3 (5) 0		
9	Suspended matter, dried at 105 ^o C	0.7	U	U	1	U		
11	Suspended matter, ignited at 550°C		•••••	•••••	•••••••			
12	Residue on evaporation, dried at 105°C	80.6	88.8		55.2	59.2		
13	Ignition loss at 550°C.	12.4	10.0		8.6	4.8		
14	Specific conductance, micromhos at 25°C	119	122.5	119	93.1	94.0		
15	Calcium (Ca)	15.3	15.4	14.2	13.8	12.7		
16	Magnesium (Mg)	3.4	3.5	3.8	2.8	3.2		
17	Iron (Fe) Total			0.00				
18	Dissolved	0.02	0.0		0.02	Trace		
19	Manganese (Mn) Total			0.00				
20	Dissolved		Trace			0.00		
21	Aluminum (A1)		Trace			0.04		
22	Copper (Cu)		0.0			0.02		
23	Zinc (Zn)		0.0			0.05		
24	Sodium (Na)	2.6	2.8	2.5	1.3	1.1		
25	Potassium (K)	0.5	0.8	0.7	0.3	0.5		
26	Ammonium (NH ₄) Carbonate (CO ₃)	0.0	0.05			0.1		
27 28	Bicarbonate (HCO_3)		0.0	0.0	0.0	0.0		
29	Sulphate (SO_4)	52.9 8.0	55.2 8.1	52.9 8.0	50.3	50.7		
30	Chloride (Cl)	3.0	2.0	1.1	2.6	2.6		
31	Fluoride (F)	0.05	0.0	0.10	2.5 0.0	1.3 0.0		
32	Phosphate (PO ₄) Total		0.0	0.10	0.0	0.0		
33	Dissolved]				
34	Nitrate (NO ₁)	4.0	2.0	2.9	1.2	1.0		
35	Silica (SiO ₂), colorimetric	15	15	13	2.6	3.8		
36	Carbonate hardness as CaCO ₃	43.4	45.3 (42.5)	43.4	41.2	41.6 (41)		
37	Non-carbonate hardness as CaCO ₃	8.8	7.5 (13.0)	7.8	4.7	3.2 (6)		
38	Total hardness as CaCO ₃	52.2	52.8 (55.5)	51.2	45.9	44.8 (47)		
39	Sum of constituents	77.5	76.8	72.7	52.0	51.4		
40	Per cent sodium	9.7	10	9.5	5.7	5.0		
41	Saturation index at test temperature Stability index at test temperature	-1.0	-0.7	-0.8	-0.9	-0.7		
42	Stability index at test temperature	9.6	9.2	9.4	9.6	9.4		
_	Remarks	* Supply suburban	district of ts of Korah	I		† See also Station		

Chemical Analyses of Municipal Water Supplies Upper Great Lakes Drainage Basin in Canada ONTARIO

(In parts per million)

SA	ULT STE. MARIE (cond	:1'd)	SCHRE	IBER	SOUTH RIVER*	
	t, Mary's River (Lake Superio t, Mary's River (Lake Su		Cook's	Lake	Springs	
<u> </u>	Raw and finished water	<u> </u>	Raw and fini	ished water	Raw and finished water	No.
	At town tap	·	At town	tap	At town tap	1
	1			•b		_
Sept. 26/59 192:220 16.1 24.9 (16.1) 2 7.7 (6.9) 5 2 	May 26/62 30:32 8.3 24.4 7.6 0 2 7.6 0 2 93.3 12.2 3.1 0.04 0.01 0.00 0.00 0.01 0.00 1.1 0.5 0.0 48.5 3.6 2.0 0.08	June 8/63 25:54 11.7 24.7 2.0 4 7.3 5 0.3 	Aug. 15/59 33:54 18.0 24.8 4.4 2 7.3 (7.1) 10 (10) 0.8 (<1) 	May 25/62 24:47 13.0 23.2 2.9 2.5 7.2 15 0 	June 4/63 21:37 12.8 23.6 5.0 9 6.3 (6.15) 0 1 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Trace 0.4	0.16 1.4	< 0.1 	0.0 0.1	0.15 0.3	<0.1 18	32 33 34
6.7 43.6 (40) 0.9 (5) 44.8 (45) 65.0 7.5 -1.1 9.7	2.1 39.8 3.6 43.4 50.1 5.1 -1.1 9.8	2.1 39.6 4.5 44.1 48.4 5.1 -1.4 10	4.3 23.2 5.0 28.2 38.1 5.7 -1.7 11	2.5 19.5 10.5 30.0 35.3 3.4 -1.9 11	11 8.5 60.2 68.7 253 60 -2.9 12	35 36 37 38 39 40 41 42
	I	······	L		* <i>See</i> also index, page	

Chemical Analyses of Municipal Water Supplies Upper Great Lakes Drainage Basin in Canada ONTARIO (In parts per million)

	Municipality		STUR	GEON FALLS			
No.	Sources(s)	Sturgeon River					
			Raw water*		Finished water		
	Sampling point		At intake well		At plant tap		
1	Date of sampling	July 18/57	Aug. 21/58	June 6/63	Aug. 21/58		
2	Storage period (days) Sampling temperature, ^o C	40:63	84:197	22:43	84:197		
3	Test temperature, ^o C.	22.2	20.3	18.9	20.3		
4		24.5 7.1	22.3 4.2	25.5	22.3 (20.5)		
5	Oxygen consumed by KMnO ₄ Carbon dioxide (CO ₂), (calculated)	2	4.2	8.3 2	3.9 2		
7	pH \dots	6.8 (6.6)	7.5	7.0 (6.9)	7.2 (7.1)		
8	Colour	30	15	25	15 (20)		
9	Turbidity	50 4	0	5	0		
10	Suspended matter, dried at 105°C	4 14.8	U		v		
ŭ	Suspended matter, ignited at 550°C.	8.9			•••••		
2	Residue on evaporation, dried at 105°C	63.2	65.6		48.0		
13	Ignition loss at 550°C.	24.0	20.0		17.2		
4	Specific conductance, micromhos at 25°C	66.2	72.5	65.4	72.5		
5	Calcium (Ca)	6.9	8.1	6.2	8.1		
16	Magnesium (Mg)	2.0	2.7	1.4	2.5		
.7	Iron (Fe) Total			. 0.23			
18	Dissolved	0.26	0.02	0.01	0.02		
19	Manganese (Mn) Total			. 0.40			
20	Dissolved	0.05	0.00	0.00	0.00		
21	Aluminum (Al)	0.0	0.0	0.02	0.0		
22	Copper (Cu)	Trace	0.00		0.00		
23	Zinc (Zn)	0.0	0.0	0.0	0.0		
24	Sodium (Na)	0.7	0.8	0.8	0.8		
25	Potassium (K)	0.4	0.4	0.4	0.4		
26 27	Ammonium (NH ₄)	0.1	0.1	0.01	0.1		
28	Carbonate (CO3) Bicarbonate (HCO3)	0.0	0.0 20.8	0.0	0.0		
29	Sulphate (SO_4)	9.9 15.1	14.1	12.4 18.0	19.1		
io	Chloride (Cl)	3.7	0.3	0.3	13.8 1.5		
31	Fluoride (F)	0.0	0.0	0.1	0.0		
32	Phosphate (PO4) Total			<0.1	0.0		
33	Dissolved						
34	Nitrate (NO ₃)	0.15	0.5	0.2	0.6		
35	Silica (SiO ₂), colorimetric	2.8	4.2	2.6	3.2		
6	Carbonate hardness as CaCO ₃	17.3	17.1	10.2	15.7 (15.6)		
37	Non-carbonate hardness as CaCO ₃	8.1	14.2	16.7	14.8		
38	Total hardness as CaCO ₃	25.4	31.3	26.9	30.5		
39	Sum of constituents	37.0	41.4	36.2	40.3		
10	Per cent sodium	5.4	5.2	6.0	5.3		
41	Saturation index at test temperature	-2.8	-1.7	-2.5	-2.1		
42	Stability index at test temperature	12	11	12	11		
	Remarks	* See also Station N	Vo. 17, page 24				

Chemical Analyses of Municipal Water Supplies Upper Great Lakes Drainage Basin in Canada ONTARIO (In parts per million)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	fURGEON FALLS (concl'd)	SUDBURY							
At plant tap At intake well At intake well At intake well At house tap June 6/63 Aug. 1/58 June 6/63 July 22/57 Aug. 1/58 Sept. 2 18.9 19.2 12.2 44:67 B4:175 196.2 22:43 82:197 12.2 3.6 3.2 3.2 2 0.9 4 6 3 6.8 (6.4) 7.0 2 0.9 4 6 3 6.8 (6.4) 7.0 1 0 1 0.8 0 10 (15) 15 10 (25) 15 10 104	Sturgeon River Ramsay Lake								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Finished water	Raw water		Finished water					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	At plant tap	At intake well	At intake well	At house tap					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						Sept. 22/59 196:224			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18.9	19.2	12.2			15.5 24.4 (18.5)			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.2 2	2.1	4		3		1		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	25	10 (25)	15	10	10 (15)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		87.4 22.6	• • • • • • • • • • • • • • • • • • • •						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						165 1 4. 8			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		4.3	5.1	3.9	4.5	4.5 0.48			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			•••••••			0.12 0.60			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Trace		0,0	0,02	0.60 0.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.0		0.05	0.3	0.11 0.03			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.4	1.6	1.6	1.4	1.5	6.3 1.6			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0	0.0	0.0	0.0	0.0	0.0			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	18.0	43.1	45.8	40.3	41.9	40.2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1		15.4			1.2			
3.01.90.52.21.94.8.37.89.86.29.0 (14)13.19.142.849.541.041.9 (48)41.		D 2		 Д 5	Δ2	0,05 0.2	1		
19.1 42.8 49.5 41.0 41.9 (48) 41.	3.0	1.9	0.5	2.2	1.9	4.5 13.3 (15)			
	19.1	42.8	49.5	41.0	41.9 (48)	41.9			
	37.1	82.1	98.7	78.0		55.2 94.5			
	-2.7	-2.2	-2.5	-3.2	-2.5	-2.1			

Chemical Analyses of Municipal Water Supplies

Upper Great Lakes Drainage Basin in Canada ONTARIO (In parts per million)

	Municipality	· · · · · · · · · · · · · · · · · · ·		TARENTORUS TOWNSHIP St. Mary's River	TERRACE BAY Lake Superior
No.	Source(s)				
					Raw water
	Sampling point	At house tap	At plant tap		At paper mill pumphouse
$\begin{array}{c}1\\2&3&4\\5&6&7\\8&9\\10&1&1\\1&1&1&1\\1&1&1&1&1\\1&1&1&1&1&1\\1&1&1&1&1&1\\1&1&1&1&1&1&1\\1&1&1&1&1&1&1&1\\1&1&1&1&1&1&1\\1&1&1&1&1&1&1\\1&1&1&1&1&1&1\\1&1&1&1&1&1&1\\1$	Date of sampling	23.8 4 6.7 10 	June 6/63 22:23 12.2 24.8 4.0 5 6.5 (6.95) 10 0.3 196 14.9 5.4 0.07 0.02 0.07 Trace 0.07 <0.05 9.1 2.5 0.0 0.00 8.9 46.3 17.2 0.77 <0.1 0.4 0.6 7.3 52.0 59.3 102 24 -2.9 12 *	See Sault Ste, Marie	June 22/63 38:45 3.9 24.8 1.3 3 7.4 (7.8) 5 0.5

106

TABLE III - (Continued)

Chemical Analyses of Municipal Water Supplies

Upper Great Lakes Drainage Basin in Canada

ONTARIO

(In parts per million)

TERR	ACE BAY (concl'd)		THESSALON		VERNER	
Lake Superior*		La	Lake Huron (Georgian Bay)			
Finished water		Raw water *	Raw water * Raw and finished water		Raw water	
At town tap	At town tap	From wharf	At pumphouse	At town tap	From river below intake	
May 25/62	June 22/63	June 24/63	Aug. 8/58	June 24/63	Aug. 20/58	
24:27	32:45	49:52	90:187	49:66	84:198	ļ
5.0	6,1	11.7	17.0	10.0	20.3	
23.0	24.6	24.7	23.4	26.2	22.3	
0.6	1.9	1.5	1.6	1.1	10.4	1
2	3	10	1	4	4	
7.6	7.5 (8.2)	7,1 (8.2)	8.0	7.5	7.5 (6.7)	
5	5	5	0	5	50 (90)	
0			0			
U	0.3	0,9	U	1	4	
	• • • • • • • • • • • • • • • • • • • •				12.8	1
• • • • • • • • • • • • • •	•••••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••••••••••••	10.2	
• • • • • • • • • • • • • •	•••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •	93.6	94.8	133	
• • • • • • • • • • • • • • •			18,8	40.8	36.0	
87.3	108	164	154	165	158	
12.6	12.2	20.7	20.1	21.0	18.8	
3.3	3.6	6.8	5.5	6.4	6.8	
0.02	0.02			0.08	0.26	
0.00	0.00		Trace	Trace	0.05	
0.00	0.00	J		0.00		
0.00	0.00		0.00	0.00	0.00	ł
0.01	Ttace		0.03	0,02	0.0	
0.05	Trace		0.00	0.01	0.00	
0.00	0.00		0.0	0.40	0.0	
1,1	1.2	2.1	2.1	2.1	2.8	
0.5		. 0.6	0.5	0.8	0.9	
	0.0		0.1	0.1	0.1	
0.0	0.0	0.0	0.0	0.0	0.0	
50.1	50.0	77.5	74.0	77.3	74.2	
3.3	4.2	12.1	8.5	10.8	12.8	
1.6		. 4.0	3.4	4.0	2.1	
0.15	0.04		0.0	0.10	0.0	
0.27	<0.1			. <0.1		
0.9	1.3	0.1	1.0	0.6	2.0	
2.2	2.3	2.4	3.3	2.0	6.4	
41.1	41.0	63.6	60.7 (63.6)	63.4	60.9 (60.6)	
4.9	4.4	16.0	12.1 (9.2)	15.4	14.0 (5.8)	L
45.0	45.4	79.6	72.8 (72.9)	78.8	74.9 (66.4)	L
50.6		87.0	80.9	85.8	89.2	
5.0	4.9	5.4	5.8	5.4	7.4	1
-1.1	-1.2	-1.2	-0.3	-0.7	-0.9	1
9.8	9.9	9.5	8.6	8.9	9.4	
		* See also Station No			· · · · · · · · · · · · · · · · · · ·	╀

TABLE III - (Concluded)

Chemical Analyses of Municipal Water Supplies

Upper Great Lakes Drainage Basin in Canada

ONTARIO (In parts per million)

	Municipality		VERNER		WARREN		
No	Source(s)		Veuve River				
		Raw water	Finishe	d water	Raw and finïshed wat <i>e</i> r		
	Sampling point	At pumphouse	At house	e tap	At house tap		
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 27	Date of sampling	8 6.7 (7.2) 40 13 109.5 10.3 5.0 0.61 0.01 0.04 0.00 0.02 <0.05 1.8 0.8 0.02 0.0 0.0	115 40.8 166 18.8 7.4 0.21 Trace 0.0 Trace 2.0 4.0 0.9 0.1 0.0	June 6/63 22:43 10.6 25.5 11.3 2 7.2 (7.0) 40 6 116.5 9.7 5.8 0.39 0.04 0.39 0.04 0.39 0.04 0.03 0.02 0.06 0.50 1.7 0.8 0.2 0.0 2.2	June 6/63 22:53 8.9 25.3 1.7 5.5 7.8 (7.6) 0 294 67.2 474 57.9 20.0 0.02 0.00 0.02 0.00 0.00 0.00 0.		
28 29 30 31 32	Bicarbonate (HCO ₃) Sulphate (SO ₄) Chloride (Cl) Fluoride (F) Phosphate (PO ₄) Total	27.3 0.2 0.15	77.8 13.9 4.4 0.0	23.3 26.8 2.4 0.15 < 0.1	21.4 28.6 16.3 0.10 <0.1		
33 34 35 36 37 38 39 40 41 42	Dissolved Nitrate (NO ₃) Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃ Total hardness as CaCO ₃ Total hardness as CaCO ₃ Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature	0.6 2.4 19.3	0.9 6.3 63.8 13.5 77.3 97.1 9.6 -0.7 9.1	0.4 2.4 19,1 29.0 48.1 61.8 7.0 -1.9 11	18 15 176 51.3 227 272 7.0 +0.4 7.0		

Remarks

TABLE III - (Concluded)

Chemical Analyses of Municipal Water Supplies

Upper Great Lakes Drainage Basin in Canada

ONTARIO

WAWA	WHITE RIVER	WIDDIFIELD TOWNSHIP*	
	Lake Tukanee (Lake Tutney)	Trout Lake	No
	Raw and finished water		
	At Service Station tap prior to chlorination		
See Michipicoten Township	June 22/63 41:59 11.7 24.7 6.1 1 7.7 25 0.9 	See North Bay	$ \begin{array}{c} 1\\2\\3\\4\\5\\6\\7\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\19\\20\\21\\22\\23\\24\\25\\26\\27\\28\\29\\30\\31\\32\\48\\29\\30\\31\\32\\33\\34\\4\\35\\36\\37\\38\\39\\40\\41\\42\end{array} $
		* Community in the Upper Great Lakes drainage basin but Trout Lake is in the Ottawa River drainage basin.	

Some Small Community Supplies in the Upper Great Lakes Drainage Basin in Canada

COMMUNITY	.	ALGOM NORDIC MINE*	
	Townsite	Trail	er Camp
	1959 1963**	1959	1963**
Total Population Served	125 100 estd	750†	0
Ownership	. In 1959, Algom Uranium Min	es Ltd.; in 1963, Rio Tinto Min	ing Co. of Canada Ltd.
Source	. Ryan Lake	Pecors Lake (v	ia ¢anal)
Treatment	. Chlorination	Chlorination in 1959; in	1963, no system
Storage capacity (thousand gal)	. None	None	•
Industrial use	. None	Lake water also used in m	ine and mill
Sampling point	. At dining hall tap	Chlorinated - at bunkhouse tap,	Untreated - at open canal
Date of sampling		Sept. 25/59	Sept. 24/63
2 Storage period (days)	. 187:196	185:196	22:27
Sampling temperature, ⁰ C.	17.5	20.5 26.7	12.5 25.7
4 Test temperature, °C	. 20.8	20.7	L
6 Carbon dioxide (CO ₂), calculated		3	0.8
7 pH	7.0 (6.1)	6.8 (6.6)	6.1
3 Colour		0	5
Turbidity	. 0.8	1	0
Residue on evaporation, dried at 105°C.			
Ignition loss at 550°C.		22 5	788
Specific conductance, micromhos at 25 ^o C. Calcium (Ca)		26.6	112
Magnesium (Mg)		4.4	16.8
Iron (Fe) Total		0.23	0.08
Dissolved		0.00	
Manganese (Mn)		0.10	0.49
Dissolved	. 0.01	0.00	
Aluminum (Al)		0.0	
Copper (Cu)		0.00	0.00
Zinc (Zn)		0.00	0.08
Sodium (Na)		5.2	14.2
A Potassium (K)		2.6	15.7
(Ammonia (NH ₃) (Carbonate (CO ₃)	0.0	1 0.0	0.0
6 Bicarbonate (HCO ₃)	11.6	10.2	1.1
7 Sulphate (SO ₄)		75.9	330
Chloride (Cl)		6.0	16.6
Fluoride (F)	0.0	0.0	0.50
Phosphate (PO ₄) Total			• • • • • • • • • • • • • • • • • • • •
Dissolved	0.0	0.0	12
2 Nitrate (NO_3)	0.0	1.0	33
3 Silica (SiO ₂), colorimetric		3.0	3.3
4 Carbonate hardness as CaCO ₃		8.4 (7.5) 75.5	347
5 Non-carbonate hardness as CaCO ₃ 6 Total hardness as CaCO ₃		83.9	348
 6 Total hardness as CaCO₃ 7 Sum of constituents 		130	540
8 Per cent sodium		11	7.8
9 Saturation index at test temperature		-2.2	-3.3
0 Stability index at test temperature		11	13
Remarks		hent District, about 3½ miles fro	

* In Elliot Lake Improvement District, about 3½ miles from the community of Elliot Lake
** Mine still operating but no trailer camp or bunkhouses.
† Population includes 250 in bunkhouses

^a Population according to the Tenth Census of Canada, 1956. ^b Population according to the Eleventh Census of Canada, 1961.

ALGOM QUIRKE MINE* Ouirke Townsite, Trailer Camp	CAN. MET MINE*	CONSOLIDATED DENISON MINE*	FECUNIS MINE*
and Campsite	Townsite and Trailer Camp	Townsite	Hillcrest Townsite
1959 1963	<u>1959</u> <u>1963</u>	1959 1963	<u>1959</u> <u>1963</u>
1,120 (138 ^a) (290 ^b) 100 estd†	No data 0†	800 estd (606 ^a)(145 ^b) 125 estd	50 estd† 0††
In 1959, Algom Utanium Mines Ltd.; in 1963, Rio Tinto Mining Co. of Canada Ltd.	In 1959, Canadian Metallurgical Explorations Ltd.†	In 1959, Consolidated Denison Mines Ltd.; in 1963, Denison Mines Ltd.	Falconbridge Nickel Mines Ltd.
Dunlop (Long) Lake, nearby	Quirke Lake, nearby	Quirke Lake, nearby	Moose Lake, nearby
Chlorination	In 1959, chlorination	Chlorination	Chlorination and ammonia addition
Standpipe	No data	Elev. tank - 80 (estd)	Elev. tank - 80 (estd)
In 1959, about 2.35 mgd used in mine and mill	Lake water also used in 1959 in mine and mill	Lake water also used in mine and mill	Lake water also used in mine and mill
At highway No. 108 bridge		At mine office tap	At mine tap
Sept. 24/59 186:197 16.7 26.8 (21.2) 		Sept, 29/59 183:203 19.8 26.8 	Aug. 20/58 1 85:196 2 21.7 3 22.3 (22.9) 4 2.1 5 1.5 6 6.1 (5.7) 7 5 (15) 8
0 32.9 3.9 0.6 0.04 0.00	See	2 281 33.9 3.4 0.25 0.12 0.12	0 69.6 20.8 85.2 8.1 1.5 Trace
0.00 Trace 0.00 0.8 0.5 0.0 0.0 6.8 6.8 6.8 0.2 0.0	See Consolidated Denison Mine and Stanrock Mine (This Table)	0.12 0.04 0.0 Trace 0.0 6.6 4.6 0.2 0.0 4.4 90.7 8.9 0.15	0.25 0.0 0.6 0.4 2.0 1.5 0.1 0.0 1.1 29.8 1.3 0.0
0.0 0.1 1.5 5.6 (5) 6.5 12.1 17.8 12 -2.7 12		$ \begin{array}{r} 0.0\\ 0.6\\ 2.4\\ 3.6\\ 94.0\\ 97.6\\ 154\\ 12\\ -2.9\\ 12\\ \end{array} $	$\begin{array}{c} 0.3\\ 2.0\\ 0.9 (1.0)\\ 25.5\\ 26.4\\ 47.9\\ 13\\ -4.4\\ 15 \end{array}$
In Elliot Lake Improvement bistrict, about 10 miles north f the community of Elliot Lake Townsite and staffhouse opulation only; includes imployees of other operating nines and of the newly-opened ontario Reformatory.	• In Elliot Lake Improvement District, north of the community of Elliot Lake. † This mine was sold to Con- solidated Denison Mines Ltd. about 1960 - 1961; in 1963 it was not operating and some mine and mill equipment had been sold and was being dismantled.	* In the Elliot Lake Improve- ment District, north of the community of Elliot Lake	 near Onaping, Ont. Hillcrest Campsite (12 homes) was used during development; in 1963 this camp was not operating. About 200 persons, including development staff at mine but none llve at the mine site.

Some Small Community Supplies in the Upper Great Lakes Drainage Basin in Canada

COM	MUNITY	FROO	D MINES*	GARSON MINE*		
		Townsite at Fro	ood -Stohie Mines	Townsite		
<u> </u>		1958 - 59	1961	1961 1963		
Total	population served		90† (200 ^h)			
		96† (124 ^a)	901 (2004)			
Owne	rship	International Nickel	Company of Canada Ltd.	International Nickel Comp of Canada Ltd.		
Sourc	:e	Whi	tson Lake	Well, 90 ft deep, north of townsite		
Treat	tment	Cp	Chlorination			
Stora	ge capacity (thousand gal)	Elev.	Elev. wooden tank - 5.5			
Indus	strial use	Lake water also	used in the mine	Well water also used in th mine for domestic purpose		
Samp	ling point	At staffhouse tap	At lake	At townsite tap		
Date	of compline	Aug. 20/58	June 25/63	Sept. 23/63		
	of sampling ge period (days)	84:198	49:65	22:28		
Same	ling temperature, ⁰ C.	18.0	23.9	15.3		
Teet	temperature, ⁰ C.	22.0 (19.5)	23.9	25.4		
	gen consumed by KMnO ₄	1.0	0.5	4,1-3		
Carh	on dioxide (CO ₂), (calculated)		7	2		
	on around (CO_2) , (carculated)	4.4 (4.8)	4.2 (4.3)	7.9		
	ur	0 (10)	0	0		
	idity	0 (10)	3	ŏ		
Peci	due on evaporation, dried at 105°C	62.8	74.4	· · · · · · · · · · · · · · · · · · ·		
Igni+	ion loss at 550° C	12.0	12.4			
Space	ific conductance, micromhos at 25°C.	123	12.4	293		
	ium (Ca)	8,5	8.8	35.0		
	nesium (Mg)	2,6	3.5	10.8		
	(Fe) Total		J.,	0.00		
101	Dissolved					
Mana	ganese (Mn) Total					
Mang	Dissolved	0,33		0.00		
Alum	ninum (Al)		0.40			
	per (Cu)		0.08	0.00		
	(Zn)	0.02	0.05	0.01		
	um (Na)	2.1	3.4	5.7		
	ssium (K)	1.0	1.3	0.6		
	onia (NH ₃)	0.05	0.1			
	onate (CO ₃)	0.0**	0.0***	0.0		
	rhonate (HCO ₃)	0.0	0.0	92.2		
Sulpl	hate (SO ₄)	37.6	41.0	45.9		
	ride (Cl)	3.0	5.4	11.9		
Fluo	ride (F)	0.0	0.18	0.12		
Phos	sphate (PO4) Total		< 0.1			
	Dissolved	••••••	4			
Nitra	ate (NO ₃)	0.1	0.4	2.7		
Silic	a (SiO ₂), colorimetric	1.2	0.7	13		
Carh	onate hardness as CaCO3	0.0	0.0	75.6		
Non-	carhonate hardness as CaCO3	31.9	36.3	56.4		
Tota	l hardness as CaCO3	31.9	36.3	132		
Sum	of constituents	56.9	65.1	171		
	cent sodium	10	14	8.6		
	ration index at test temperature		6.3	-0.1		
Stahi	ility index at test temperature		. 17	8.1		
Remarks		 Frood Mines town was am Sudhury, January 1, 1960. † Staffhouse or townsite po ** Acidity 5.4 ppm as CaCC *** Acidity 7.0 ppm as CaCC 	* Adjoins community of Garson in Neelon - Garson Township - <i>see</i> Tahle III			

a Population according to the Tenth Census of Canada, 1956. h Population according to the Eleventh Census of Canada, 1961.

	HERON BAY SOUTH* Townsite		HIGH FALLS Townsite
	1957 196	53	1963
1	 50† (190ª) 175†	(167 ^b)	30*
	Ontario Paper Co. Ltd.		The Great Lakes Power Co. Ltd.
	Pic River, nearby		A creek, nearby
Coagulation (Infilco), filtra	ation, chlorination (alum, lime and act	ivated silica).	None; gravity flow to system
C	lear well - 22 Pressure	tank - 3	None
Treated water is also used	l for heating and cooling in the plant		None
Raw water Finished water			A
At highway No. 17 bridge	At townsite pump	At townsite tap	At townsite tap
June 22/63 38:51 13.3 24.6 13.1 2 7.9 (8.1) 8 110 137	July 2/58 26:40 14.4 26.3 2 8 180 300	June 22/63 32:45 12.8 24.6 8.4 1 8.1 (8.5) 20 0.9	June 23/63 50:58 11.1 25.5 11.6 0.9 7.6 (7.6) 50 2
58.8 177 27.9 6.3 2.4 0.06 0.00 0.08 0.00 0.00 0.00 0.7	155 28.0 4.0 3.8 	271 43.3 6.2 0.03 0.00 0.00 1.2 0.00 0.00 3.0	63.8 9.4 1.8 0.28 0.07 0.01 0.01 0.00 0.50 0.30 0.6
0.6 0.0 105 7.6 0.6 0.13 <0.1	0.9 0.0 95.6 6.9 1.4	0.6 0.0 95.2 55.1 1.0 0.18 <0.1	0.3 0.0 0.0 22.2 11.6 0.4 0.17 <0.1
0.5 5.7 85.7 9.8 95.5 102 1.5 -0.1 8.1	0.3 4.3 78.4 7.9 86.3 93.6 2.0 0.0 8.0	0.8 1.2 78.1 55.6 134 160 4.4 +0.2 7.7	0.4 8.4 18.2 12.8 31.0 44.1 3.9 -1.5 11

Some Small Community Supplies in the Upper Great Lakes Drainage Basin in Canada

* Community near Marathon, Ont. † Estimated; increases at times to about 300 when bunkhouses are filled.

96900—8

* 7 homes only supplied

Some Small Community Supplies in the Upper Great Lakes Drainage Basin in Canada

COMMUNITY	. LACN Townsite	LAWSON QUARRY Townsite	
		Trailer Camp	Townshe
Total population served	. 1959 1963	<u>1959</u> <u>1963</u>	
	147† 0**	794†† 0**	
Ownership	. Northspan Uranium Mines Lu	d.	
Source	Sheriff Lake and the McCabe Crotch Lake system	- Serpent River via creek, Pecors Lake, creek, canal, Westner and Dumbell Lakes	
Treatment	. Chlorination	Chlorination	
Storage capacity (thousand gal)	. None	In 1959 elev. tank at mine - 60	
Industrial use	. No data	In 1959, 4.5 mgd, lake water used in mine and mill	
Sampling point			
Date of sampling Storage period (days) Sampling temperature, ⁰ C. Test temperature, ⁰ C. Carbon dioxide (CO ₂), calculated pH. Colour Turbidity Residue on evaporation dried at 105 ^o C. Specific conductance, micromhos at 25 ^o C. Calcium (Ca). Magnesium (Mg) Iron (Fe) Total. Dissolved. Manganese (Mn) Copper (Cu). Zinc (Zn). Sodium (Na). Potassium (K). Ammonia (NH ₃). Carbonate (HCO ₃). Sulphate (SO ₄). Chloride (Cl). Fluoride (F). Phosphate (PO ₄) Total. Dissolved. Nitrate (NO ₃). Silica (SiO ₂), colorimetric. Carbonate hardness as CaCO ₃ . Non-carbonate hardness as CaCO ₃ . Sum of constituents. Per cent sodium . Statuation index at test temperature . Stability index at test temperature .	No data (assumed similar to nearby lakes <i>see</i> Milliken Mine)	See Pecots Lake (Algom Nordic Mine Trailer Camp, this table)	See Willisville, this table
Remarks	 In Elliot Lake Improvement and Elliot Lake community; Nordic Mine Includes some trailers Includes 431 persons in ** Mine and townsite closed 		

^a Population according to the Tenth Census of Canada, 1956. ^b Population according to the Eleventh Census of Canada, 1961.

Some Small Con	nmunity Supplies i	n the	Upper	Great Lakes	Drainage	Basin in Can	ada
----------------	--------------------	-------	-------	--------------------	----------	--------------	-----

	Community supplies in t	he Upper Great Lakes Draina	ge Basin in Canada
LONG VACK MINE Campsite	MICHIPICOTEN HARBOUR	MIL LIKEN MINE*	MOOSE LAKE LODGE
<u> </u>	Unincorporated Community	Townsite and Trailer Camp	Campsite
1958 - 59 1963	1963	<u>1959</u> <u>1963</u>	<u>1959</u> <u>1963</u>
120 0*	120 (136 ^a) (159 ^b)	800 estd (32 ^a) 375 estd (700 ^b)	very few 12 estd
Falconbridge Nickel Mines Ltd	Algoma Central Railway (A.C. Ry.)	In 1959, Milliken Uranium Mines Ltd.; in 1963, Rio Algom Mines Ltd.	Falconbridge Nickel Mines Ltd.
Small beaver ponds (creek)	Small lake, north of com- munity	Dumbell Lake (Pecors and Westner Lakes system)	Moose Lake
Occasional chlorination	None; gravity flow to system	Chlorination	Chlorination
No data	None	Elev. tank - 60 estd	None
Cooling of compressors at the mine	Cooling purposes by A.C. Ry.	Lake water also used in mine and plant	None
At creek (from ponds)	At tap	At townsite tap	
Aug. 20/58 84:196 25.6 24.0 (26.3) 3.6 0 5.3 20 4 38.8 27.2 40.5 2.9 1.1 0.68 0.41 0.02 0.03 Trace 0.00 1.1 0.3 0.1 0.0 0.0 1.1 0.3 0.1 0.0 0.0 1.1 0.3 0.1 0.0 1.1 0.0 0.0 1.1 0.0 0.0	June 23/63 40:58 11.1 24.6 15.1 4 7.0 (7.6) 60 0.9 68.0 12.4 71.8 10.4 2.2 0.24 0.04 0.00 0.00 0.00 0.00 0.	Sept. 25/63 21:27 17.8 24.6 	See Fecunis Mine, this table
17 * The mine and campsite were not operating in 1963	11	 14 * In the Improvement District of Elliot Lake, about 2 miles from the community of Elliot Lake. ** In June, 1963 mine was still operating with about 73 trailers and 23 homes occupied. 	Area almost closed in 1963

Some Small Community Supplies in the Upper Great Lakes Drainage Basin in Canada

	COMMUNITY	MURRAY Townsi		N	ORANDA Town	TOWNSITE* site
	Total population served	<u>1960 - 61</u> 50 estd	<u>1963</u> 50 estd	<u>19</u> 210	estd	<u>1963</u> No data†
	Ownership	International N of Canada Ltd.		In 1958, Noranda Min		
	Source	Pump Lake, 40 east of mine	0 ft south-		₩e	.11
Ī	Treatment	Chlorina	tion		No	one
	Storage capacity (thousand gal)	Concrete tank	(1961) - 160	Elev, tar	nk - 150 es	std
	Industrial use	Lake also used water in the mi			No	one
	Sampling point	At townsit	e tap		At town	site tap
1 2 3 4 5 6 7 8 9 0112345678901123456789012222222222223333333333333333333333333	Date of sampling	0.09 0.02 2.1 2.0 0.0 3.7 42.8 1.4 0.16		Aug. 15/58 85:192 15.3 25.1 (18 	4))) 	Sept. 30/59 187:215 14.0 24.6 2.5 7.5 0 0 205 20.3 6.2 0.02 Trace < 0.05 0.02 0.01 7.6 1.7 0.3 0.0 52.8 20.1 18.9 0.1 0.0 3.0 19 43.3 32.3 75.6 124 17

Remarks

* Near Cutler, Ontario † Decreasing operation at Elliot Lake area mines has decreased the townsite population.

a Population according to the Tenth Census of Canada, 1956. b Population according to the Eleventh Census of Canada, 1961.

		1

Some Small Community Supplies in the Upper Great Lakes Drainage Basin in Canada

	PANEL MINE* Townsite	Trailer	Camp No. 2	PRONTC Towns	
196	50 1963	1960	1963	1959	1963
400 (42 ^a)		440	0	90	90
1960, Northspan Uraniu	m Mines Ltd.; in 1963, Rio Tinto Min	l	Ltd.	In 1959, Pronto Ltd.; in 1963, 1 Co. of Canada 1	Rio Tinto Mining
	Quirke Lake	Well 96	ft deep	Lake I	Huron
	Chlorination	L		Chlori	nation
	None			None	2
ake water (about 3.5 mgd) also used in 1960 in mill and mine	Non	e	None	
	At lake shore			From lake near	Blind River
See also Consolidated Denison Mine	$\begin{array}{c} June 24/63 \\ 49:66 \\ 18.9 \\ 24.4 \\ 0.9 \\ \end{array}$ $\begin{array}{c} 5.4 (6.1) \\ 0 \\ 0.3 \\ 246 \\ 53.6 \\ 344 \\ 43.1 \\ 5.7 \\ \end{array}$ $\begin{array}{c} 0.00 \\ 0.00 \\ \end{array}$ $\begin{array}{c} 0.20 \\ \end{array}$ $\begin{array}{c} 0.00 \\ 0.05 \\ 5.8 \\ 6.1 \\ > 0.5 \\ 0.0 \\ 0.0 \\ 121 \\ 5.6 \\ 0.23 \\ < 0.1 \\ \end{array}$	No dat	tێ a	5 2 74. 32. 123 14. 4. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	60 7 1 2 5 (8.1) 4 8 1 5
In Elliot Lake Improveme Townsite 80; campsite 3	22 2.5 0.0 131 212 8.3 	on shore of Quirke	2 Lake.	38. 15. 53. 66 8. -1. 9 * In 1963 know Copper Mine	.7 .1 .8 .9 .1 .1

.

Some Small Community Supplies in the Upper Great Lakes Drainage Basin in Canada

	COMMUNITY		PRONTO MINE* Townsite and Trailer Ca	mp ***
	Total population served		estd 125 e	
	Ownership	In 1959, Pronto Uranium Mir	nes Ltd.; in 1963, Rio Tinto	Mining Co. of Canada Ltd.
	Source		Lake Lauzon	
	Treatment		Chlorination	
	Storage capacity (thousand gal)		Elev. tank - 180	
	Industrial use		Used as drinking water in m	ine and mill
	Sampling point	At highway No. 17	At mill tap	At highway No. 17
1 2	Date of sampling Storage period ((days)	Sept. 25/59 197:207	Sept. 29/59 183:203	Aug. 6/58 85:104 24.5
3 4 5	Storage period ((days) Sampling temperature, ^o C. Test temperature, ^o C.	19.4 26.8	26.8	24.5 25.2 1.7
5 6 7 8 9	Oxygen consumed by KMnO ₄ Carbon dioxide (CO ₂), calculated pH Colour Turbidity	2 6.8 (6.5-6.8) 0 2	3 6.4 (6.1 - 6.5) 0 0.8	1, 6.8 (7.5) 5 (15) 0
10 11 12	Residue on evaporation, dried at 105 ⁰ C Ignition loss at 550 ⁰ C Specific conductance, micromhos at 25 ⁰ C Calcium (Ca)			58.8 13.2 69.7 6.7
13 14 15 16	Magnesium (Mg) Iron (Fe) Total Dissolved	2.3 0.08 0.00	18.2 0.31 0.11	1.8 Trace
17 18 19 20	Manganese (Mn) Total Dissolved Aluminum (Al) Copper (Cu)	0.00 0.00 0.00	0.07 0.05 Trace 0.00	0.00 0.03 0.00
21 22 23	Zinc (Zn) Sodium (Na) Potassium (K)	0.00 3.3 1.1	0.00 16.6 4.4	0.05 1.7 0.6
24 25 26 27	Ammonia (NH ₃) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulphate (SO ₄)	0.0 0.0 7.3 24.9	0.0 0.0 5.6 167	0.05 0.0 5.7 18.7
28 29 30	Chloride (Cl) Fluoride (F) Phosphate (PO4) Total	5.1 0.1	26.9 0.1	1.8 0.0
31 32 33 34 35	Dissolved Nitrate (NO ₃) Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃	0.0 0.3 2.6 6.0 (7) 26.3	0.0 0.3 2.9 4.6 166	0.6 1.6 4.7 (7.1) 19.4 (16.4)
36 37 38 39	Total hardness as CaCO ₃ Sum of constituents Per cent sodium	32.3 52.6 17 -2.8	171 278 17 -2.7	24.1 (23.5) 36.4 13 -3.0
40	Stability index at test temperature	12	12	13

Remarks

* In 1963 known as the Pater-Copper Mine
*** Near mine, north of Spragge - a townsite, trailer camp and a bunkhouse area
† In 1963, townsite and a few people in bunkhouses and 3 to 4 houses nearby.

a Population according to the Tenth Census of Canada, 1956. b Population according to the Eleventh Census of Canada, 1961

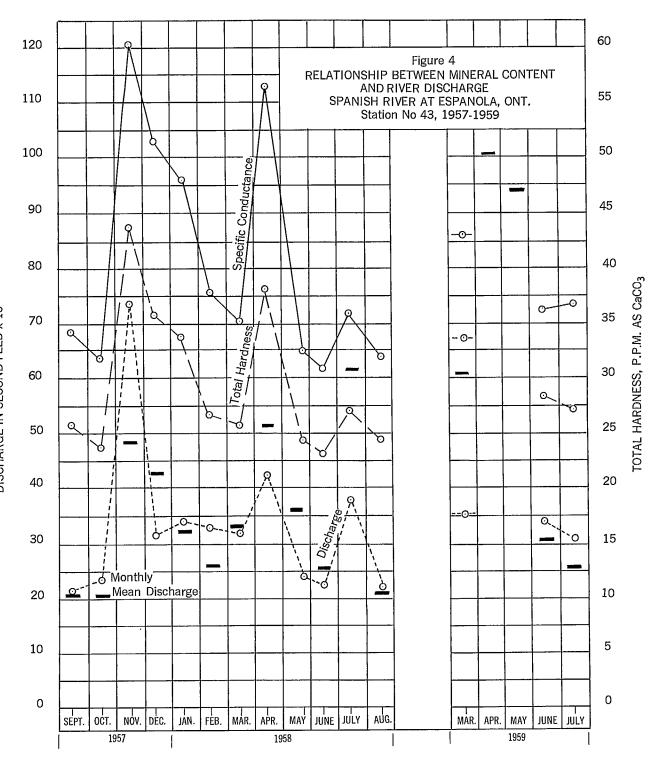
RCAF STATION Town		Uni	SPANISH* incorporated Community			
190	53	1957	1963			
2,5	00	150 (789	^a) 125 estd (1,536 ^b)			
Department of National	Defence	In 1957, C.P. Ry.; in 1963, privately owned by E. Mitchell*				
Four Mile L	ake	SI	panish River, nearby			
Chlorination and pH	adjustment (lime)		hlorination in 1963			
Elev. tank	- 200		lev. tank - 60			
None			None (1963)			
		······································	1 I			
Raw water	Finished water At tap	At store tap	At house tap			
June 26/63	June 26/63	Cent 20/50				
50:55	47:64	Sept. 30/59 187:215	June 8/63 25:51			
22.8	16.1	16.5	11.7			
24.7	25.5	24.7	25.6			
3.9	4.0		7.3			
4	4	5	5			
6.2	6.5 (8.5)	7.0	7.0 (6.9)			
10 2	10 1	25 3	30			
	·····		4			
41.6	56.5	102	127			
3.0	4.1	10.5	11.7			
1.4	2.6	2.6	3.8			
	0.19	0.50	0.50			
0.01	0.03	0.11	.			
	0.00	< 0.05	0.00			
*****	0.00	0.01				
•••••	0.00	0.00				
• • • • • • • • • • • • • • • • • • • •	0.02	0.39				
	0.05	0.30	0.50			
0.9	0.9	4.8	5.8			
0.8	0.9	0.8	1.0			
0.0	0.05	0.3	0.2			
0.0 3.9	0.0	0.0	0.0			
12.4	7.2	31.2	32.2			
0.5	11.7 2.4	16.5	21.7			
0.09	0.13	5.3 0 .0	5.9 0.10			
	< 0.1	••••	0110			
		0.0				
Trace	Trace	0.2	0.9			
1.2	1.0	4.2	5.0			
3.2	5.9	25.6	26.4			
10.2	15.0	10.8	18.5			
13.4	20.9	36.4	44.9			
22.2	27.3	61.0	71.7			
12	8.1	21	21			
-4.1	-3.4	-1.9	-1.9			
14	13	11	11			
* Permanent married quarters an		* ent.:				
refmanent married quarters an	d 12 trailers at Station	* This system not normall	y used for drinking water.			
	1					
	-					

Some Small Community Supplies in the Upper Great Lakes Drainage Basin in Canada

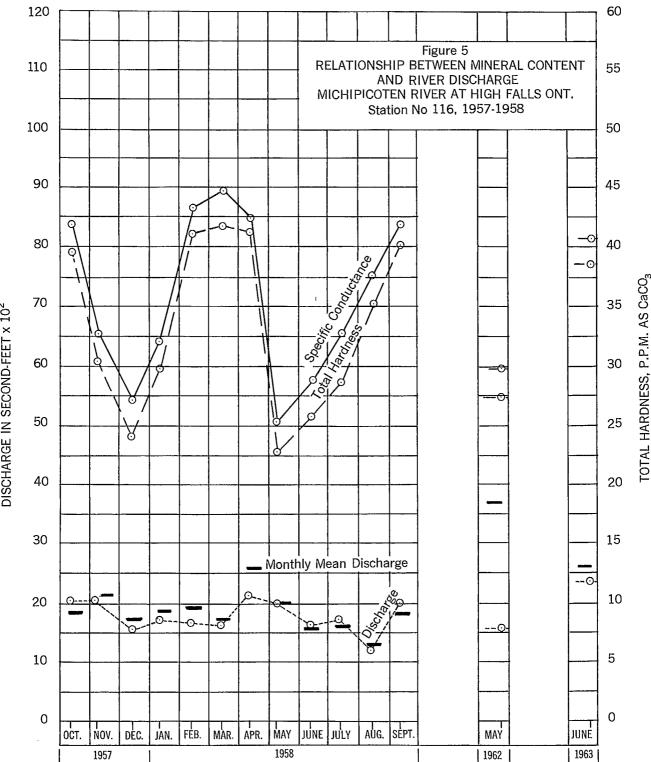
Some Small Community Supplies in the Upper Great Lakes Drainage Basin in Canada

			n	1- <u>1</u>
COMMUNITY	STANLEIGH MINE* Townsite and Trailer Camp			STRATHCONA MINE* Campsite
Total population served	1959 1963	1959	1963	1959 - 1963
	1,010(24 ^a)(125 ^b) 10 estd	700† (908 ^b)	425 estd††	No data but very small
Ownership	In 1959, Stanleigh Ura- nium Mines Ltd.; in 1960, Rio Tinto Mining Co. of Canada Ltd.***	Stanrock Uranium M	dines Ltd.	Falconbridge Nickel Mines Ltd.
Source	Dumbell Lake via Pecors and Westner Lakes and creeks	Quirke Lake, n	earby	Small lake near mine site
Treatment	Chlorination	Chlorination	1	Chlorination
Storage capacity (thousand gal)	Elev, tank - 60			None
Industrial use	In 1959 lake water also used in mine and mill	Lake water also us mill	ed in mine and	Lake also used for cooling mine compres- sors and drilling
Sampling point	At laboratory tap	At laboratory tap	At gatehouse tap	At lake
Storage period (days) Sampling temperature, ^o C Test temperature, ^o C Oxygen consumed by KMnO ₄	185:196 21.5 26.6			Aug. 20/58 85:196 20.9 22.4 (22.5) 2.1
pH Colour	7.0 (7.3) 0 (40)	6.6 (6.0-6. 0	4) 5.0 0	4.5 (5.1) 0 (25) 0
Residue on evaporation, dried at 105°C Ignition loss at 550°C			363	242 30.0 352
Calcium (Ca) Magnesium (Mg) Iron (Fe) Total	30.3 5.8 0.37	28.9 3.5 0.17	44.1 6.0 0.16	30.6 8.4
Manganese (Mn) Total	0.10	0.13 0.10 0.02	0.20	0.03
Aluminum (Al)	0.00 0.00 0.00	0.0 Trace 0.05	0.01 0.16	0.35 0.05 0.5
Potassium (K) Ammonia (NH ₃)	3.8 0.0	3.9 0.0	6,5	11.0 1.8 0.3 0.0 (0.0)
Bicarbonate (HCO ₃) Sulphate (SO ₄) Chloride (Cl)	14,1 91.7 8.2	7.1 77.2 7.9	2.7** 126 7.2	8.3** 138 5.2
Phosphate (PO ₄) Total			0.20	0.0
Nitrate (NO ₃) Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃	1.5 4.4 11.6	6.0 3.2 5.8 (5.6)	23 2.6 0.0	1.5 7.4 0.0 111
Total hardness as CaCO3 Sum of constituents Per cent sodium	98.9 160 13	85.5 141 13	135 222 8.0	111 (113) 207 16
		-2.6 12	-4.8 15	-5.5 16
Remarks	since 1961; laboratory ar offices only being oper-	Elliot Lake, abou the community of * Acidity as Cat † Includes staffic t In June, 1963, in d 80 trailers and 25 occupied.	t 4 miles from Elliot Lake CO ₃ puse population about 103 trailers Sept. 1963 about	* Mine is still being developed ** Acidity as CaCO3
	Total population served	Townsite and Trailer CampTotal population served195919631,010(24%)(125%) 10 estdIn 1959, Stanleigh Ura- nium Mines Ltd.; in 1960, Rio Tiato Mining Co. of Canada Ltd.****SourceDubbell Lake via Pecors and Westner Lakes and creeksTreatmentChlorinationStorage capacity (thousand gal)Elev, tank - 60Industrial useIn 1959 lake water also used in mine and millStorage period (days)185:196Storage period (days)185:196Storage period (days)26:60Oxygen consumed by KMGQ, Carbon dioxide (CO), calculated2 2.66Orgen consumed by KMGQ30:3 3.7 0.600Manganese (Ma) Total0.00Manganese (Ma) Total0.00Manganese (Ma) Total0.00Manganese (Ma) Total0.00Orgent (CO)0.00Jissolved0.00Jissolved0.00Jissolved0.00Jissolved0.00Jissolved0.00Jissolved0.00Jissolved0.00Jissolved0.00Jissolved0.00Jissolved0.00Jissolved0.00Jissolved0.00Jissolved0.00Jissolved1.5Stica (SiO), colorimetric1.4Subalte (SO)1.5Jistiften takes as a CaCO98.9Jissolved0.00Jissolved0.00Jissolved0.00Jissolved0.00 <tr< td=""><td>Towasite and Tailer CampTowasite and Tri Towasite and Tri<br< td=""><td>Towasite and Trailer Comp Towasite and Trailer Camp Total population served 1959 1963 I.010249/(125^b) 10 ead 7001 (908^b) 425 eadT1 Ownership In 1959, Stanleich Uta- nium Mines Ltd. in 1960. Stancock Uranium Mines Ltd. Source Lakes and creats Quicke Lake, nearby Teatment Chlorination Chlorination Storage capacity (thousand gal) Elev. task - 60 The reservoirs - 200 total (case 65,5 for file protection only) Industrial use In 1939 lake water also and in mine and mil Lake water also used in mine and mine and mile and mile Sampling point At laboratory tap At laboratory tap At laboratory tap At gatehouse tap Test temperature, °C 26.6 26.6 24.7 3.5 Oxorage creatured by KMGO, Carbon dioxide (CO), calculated 7.0 3.6 6.6.0-6.4 5.0 Pate of asangling, concreation, dried at 10% C. 25.3 3.5 6.0 0.0 At laboratory tap 3.6 6.0.0-6.4 5.0 0.1 0.4 0.5 Sampling connerused by KMGO, Carbon dioxid (CO), calculated 7</td></br<></td></tr<>	Towasite and Tailer CampTowasite and Tri Towasite and Tri <br< td=""><td>Towasite and Trailer Comp Towasite and Trailer Camp Total population served 1959 1963 I.010249/(125^b) 10 ead 7001 (908^b) 425 eadT1 Ownership In 1959, Stanleich Uta- nium Mines Ltd. in 1960. Stancock Uranium Mines Ltd. Source Lakes and creats Quicke Lake, nearby Teatment Chlorination Chlorination Storage capacity (thousand gal) Elev. task - 60 The reservoirs - 200 total (case 65,5 for file protection only) Industrial use In 1939 lake water also and in mine and mil Lake water also used in mine and mine and mile and mile Sampling point At laboratory tap At laboratory tap At laboratory tap At gatehouse tap Test temperature, °C 26.6 26.6 24.7 3.5 Oxorage creatured by KMGO, Carbon dioxide (CO), calculated 7.0 3.6 6.6.0-6.4 5.0 Pate of asangling, concreation, dried at 10% C. 25.3 3.5 6.0 0.0 At laboratory tap 3.6 6.0.0-6.4 5.0 0.1 0.4 0.5 Sampling connerused by KMGO, Carbon dioxid (CO), calculated 7</td></br<>	Towasite and Trailer Comp Towasite and Trailer Camp Total population served 1959 1963 I.010249/(125 ^b) 10 ead 7001 (908 ^b) 425 eadT1 Ownership In 1959, Stanleich Uta- nium Mines Ltd. in 1960. Stancock Uranium Mines Ltd. Source Lakes and creats Quicke Lake, nearby Teatment Chlorination Chlorination Storage capacity (thousand gal) Elev. task - 60 The reservoirs - 200 total (case 65,5 for file protection only) Industrial use In 1939 lake water also and in mine and mil Lake water also used in mine and mine and mile and mile Sampling point At laboratory tap At laboratory tap At laboratory tap At gatehouse tap Test temperature, °C 26.6 26.6 24.7 3.5 Oxorage creatured by KMGO, Carbon dioxide (CO), calculated 7.0 3.6 6.6.0-6.4 5.0 Pate of asangling, concreation, dried at 10% C. 25.3 3.5 6.0 0.0 At laboratory tap 3.6 6.0.0-6.4 5.0 0.1 0.4 0.5 Sampling connerused by KMGO, Carbon dioxid (CO), calculated 7

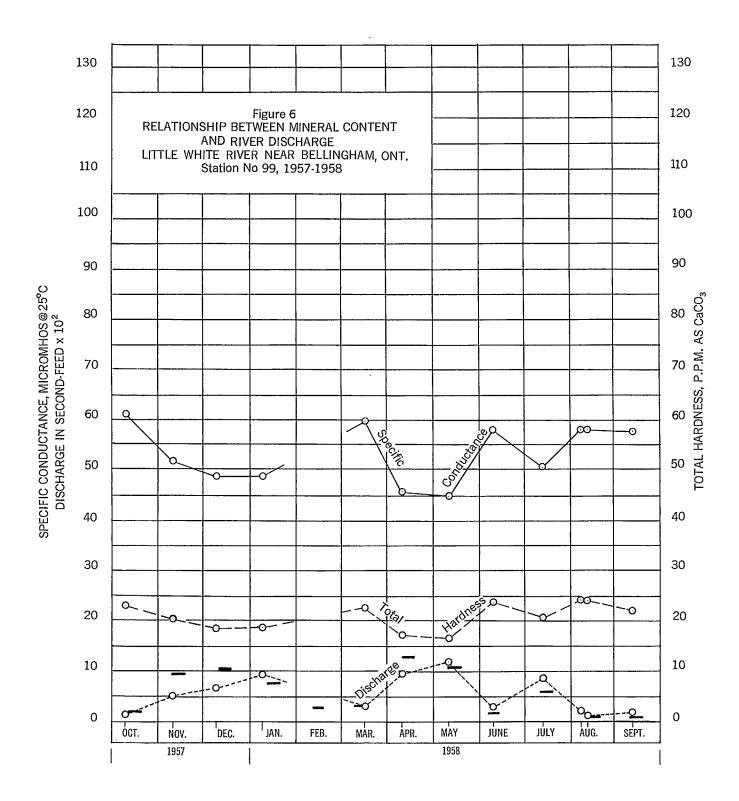
^a Population according to Tenth Census of Canada, 1956. ^b Population according to Eleventh Census of Canada, 1961


TIMA(Unincorpor	GAMI eated Community		WILLISVILLE* Townsite				
1963			1963				
75 (1,000	†) (761ª) (473 ^b)	125 estd ⁺ (127 ^a) (115 ^b)					
Ontario North	land Railway (O.N. Ry)*	International Nickel Company of Canada Ltd.					
Lake Timagami, nearby			Frood Lake, nearby				
Chlor	ination		Chlorination	······			
Elev, ta	ink • 25		Wooden tank - 15 este	d.			
O.N. Ry. also use	this water supply	About 12,000 gpd use	d for heating and cooling in	1960			
At lake	At tap	Raw w	ater At outlet - Whitefish River	Finished water At housetap			
June 5/63 22:44 21.1 24.7 6.3 3 7.1 (7.6) 5 3 61.6 25.2 83.4 8.8 2.5 0.03 0.00 0.01	June 5/63 22:44 21.1 24.6 6.5 3 7.0 (7.0) 5 2 60.4 21.6 84.5 8.6 2.6 0.07 Trace 0.02	June 7/63 25:52 22.2 28.0 4.6 2 6.7 (7.3) 5 0.9 	Sept. 13/63 22:28 16.4 24.5 3 6.6 5 0 70.3 6.4 2.6 0.00 0.00	June 7/63 25:52 18.9 27.8 3.7 1.5 6.9 (7.1) 10 3 48.0 12.8 75.2 6.4 2.4 0.12 0.01 0.00			
$\begin{array}{c} 0.01 \\ 0.03 \\ \hline \\ 0.00 \\ 2.1 \\ 0.4 \\ 0.05 \\ 0.0 \\ 19.7 \\ 15.5 \\ 2.6 \\ 0.06 \\ \leqslant 0.1 \end{array}$	0.01 0.03 0.00 2.1 0.4 0.0 17.6 15.7 3.5 0.06 <0.1	0.00 1.2 0.7 0.0 0.0 6.7 21.1 0.2 0.07	0.00 1.2 0.7 0.0 7.4 21.1 0.7 0.10	$\begin{array}{c} 0.00\\ Trace\\ 0.03\\ 0.05\\ 1.4\\ 1.8\\ 0.04\\ 0.0\\ 7.3\\ 20.6\\ 2.0\\ 0.07\\ < 0.1\end{array}$			
0.6 1.2 16.2 16.0 32.2 43.6 12 -2.1 11	0.1 1.1 14.4 17.9 32.3 42.9 12 -2.3 12	0.2 0.8 5.5 20.1 25.6 36.3 9.0 -3.0 13	0.1 0.3 6.1 20.5 26.6 36.9 8.7 -3.1 13	0.2 1.1 6.0 20.0 26.0 39.6 9.7 -2.8 13			

Some Small Community Supplies in the Upper Great Lakes Drainage Basin in Canada


† Total population which increases in summer due to tourist business
* System installed in 1925

* Townsite for Lawson Quarry † In 1963 quarry was not working full time and some houses in the townsite were vacant.


SPECIFIC CONDUCTANCE, MICROMHOS@25°C DISCHARGE IN SECOND-FEED × 10²

122

SPECIFIC CONDUCTANCE, MICROMHOS @ 25° C DISCHARGE IN SECOND-FEET × 10²

DISCUSSION

In terms of area, the drainage basin covered by this report represents about 16 per cent of Ontario and 1.8 per cent of Canada. As defined in this report (*see* page 12) the basin lies within Northern Ontario and, except for several islands in Georgian Bay and a small part of the nearby mainland, it lies within the Canadian Shield physiographic region.

Table I shows the relationship between area and 1956 and 1961 populations of this basin and other drainage basins of Eastern Canada. The Upper Great Lakes Basin is about 17.6 per cent of the total area of the Great Lakes-St. Lawrence River drainage basin in Canada (383,000 square miles). Within this basin in 1956 dwelt 5.9 per cent of the Ontario population: 1961 it increased to 6.2 per cent. This represents about 3.3 and 3.5 per cent of the population of the total Great Lakes-St. Lawrence River system in 1956 and 1961, respectively. Table I shows a 22 per cent increase in the basin population from 1956 to 1961. During the same period Ontario's and Canada's population increased by 15.3 and 13.4 per cent, respectively.

The chemical quality of the larger and more industrially important rivers of the basin is reported in detail in Table II. Since geological and climatic conditions are essentially uniform throughout the basin it is believed that most surface waters not studied in this survey are generally similar in quality to nearby waters dealt with in Table II. Some differences in chemical quality of surface waters in some watersheds are shown in Table II but these differences are, in most cases, readily related to local geological and/or climatic conditions, or to human activities such as industrial contamination, agriculture, regulation of discharge, etc. These differences are, however, insignificant in so far as over-all quality and end use of the water are concerned.

No attempt is made in this report to discuss in detail the data of Table II. It is recognized that statistical studies, at least of some of the data, might be advantageous, not only in determining mean or median quality but, possibly, in extrapolating quality to other periods of time and season. Lack of discharge records at many sampling points, the influence of regulating dams at other points, and the fact that this study was necessarily carried out over several years and was not designed for statistical evaluation, hinders such treatment.

Table II also shows that major surface waters of this basin are generally very soft to soft waters when classified as follows:

Classification		Total Hardness as CaCO ₃ (in parts per million)
Very soft	_	up to and including 30
Soft		up to 60
Medium hard	_	61 to 120
Hard	-	121 to 180
Very hard	-	greater than 180

Within the basin a few surface waters are in the medium hard to hard category; these are mostly on St. Joseph and Manitoulin islands and the adjacent mainland, which are in the St. Lawrence Lowlands physiographic region. A number of other waters from mining and industrial areas also are hard and correspondingly higher in mineral content, evidently because of industrial waste contamination.

The mineral content of surface waters of the basin is mostly carbonate hardness, i.e. the bicarbonates of calcium and magnesium. These waters are correspondingly very low in alkalis, sulphates and chlorides; they have markedly negative saturation indices, stability indices of 11 or greater and, being usually saturated with oxygen, are therefore quite corrosive. Total mineral content of uncontaminated waters is seldom above 100 ppm and is generally in the range of 50 to 75 ppm or lower. This quality is typical of waters of the Canadian Shield where between 80 to 98 per cent of the dissolved mineral content (as equivalents per million) is alkaline earth salts. Surface Waters rising and flowing through the Canadian Shield are seldom turbid, but are often highly coloured.

Water Survey Report No. 3¹ showed the increase in variation in hardness and mineral content as the waters of the Great Lakes-St. Lawrence River system flowed to the sea. This report shows in more detail the increase in these parameters within the Upper Great Lakes portion of this system; for most purposes these increases are not significant.

¹ Dept. Mines and Technical Surveys, Mines Branch. Upper St. Lawrence River-Central Great Lakes Drainage Basin. Water Survey Report No. 3, Mines Branch Report No. 837, Ottawa, 1954.

Lake Superior water has a mineral content (ppm) and total hardness (ppm as $CaCO_3$) of about 55 and 45, respectively; the St. Mary's River shows little change in quality from Lake Superior water. However, Lake Huron (Georgian Bay) in the vicinity of Manitoulin and St. Joseph islands is considerably more mineralized and harder, rising at times to 110 ppm total dissolved minerals and 100 ppm as $CaCO_3$ total hardness. Lake Huron at Parry Sound does not show this same increase in mineral content but is still a somewhat harder and more mineralized water than that of Lake Superior. The more mineralized water of Georgian Bay is no doubt due to non-mixing of drainage from more mineralized islands and nearby mainland areas, notably the limestone regions of Manitoulin Island and St. Joseph Island. Rivers from this region markedly influence the quality of water of the north channel of Georgian Bay, south of Thessalon, Ont.

The quality of other tributary drainage into the main lake-river system varies, but seldom significantly. Drainage from the French River-Lake Nipissing basin is somewhat more highly coloured than some other small tributary basins, rising to 40 Hazen units. It is very soft, with low mineral content. A number of small creeks and the Veuve River are noticeably higher in hardness, mineral content and turbidity, no doubt because of industrial and/or agricultural activities in these basins. Some of the creeks are highly coloured-up to 150 Hazen units.

The Wanapitei River basin, except for obviously contaminated portions, has waters similar in quality to the French River system.

The large Spanish River system is also a coloured, soft water (about 30 ppm as CaCO₃); some small tributaries are evidently contaminated by mining activities in the Sudbury region of the basin.

As already mentioned, rivers of the Manitoulin and St. Joseph islands are different in quality to the usual mainland Canadian Shield waters. Although they are low in colour and in non-carbonate hardness they are much harder, with mineral contents rising to 175 ppm.

Rivers and lakes in the Elliot Lake area of the basin (Serpent River system) are naturally very soft and coloured, many having only about 20 ppm as CaCO₃ hardness, which hardness is the principal mineralization. The effect of mining activities in this watershed is illustrated by the increased mineralization, especially non-carbonate hardness, of some lake waters over the period of this report.

The Mississagi River system, as well as most tributary rivers entering Lake Superior and St. Mary's River as far north as the Magpie River, are typical waters of the forested uplands areas of the Canadian Shield with total mineral content ranging around 35 to 40 ppm.

Rivers entering Lake Superior north and west of and including the Magpie River show some increase in mineral content and hardness; this is particularly evident in Black and Pic rivers. These rivers are also more highly coloured. Tributary rivers of this portion of the basin are, for the most part, still typical of Shield waters in that they are primarily relatively clear, coloured, non-carbonate waters. Except for a few rivers or lakes, such as Mojikit Lake, Little Gravel River, Walker Lake, all studied surface waters entering the system from the north are of this general character, i.e. somewhat more mineralized than those entering south of the Magpie River.

Figures 4, 5 and 6 are included in this report to illustrate the seasonal change in major constituents of some basin rivers. Similar graphs can be prepared from Table II for other rivers which were sampled on a monthly basis. However, most rivers of any size in this basin are controlled, at least at one point, by dams, either for hydro-electric development or other industrial purpose and, as a result, variations in chemical quality with discharge are not readily apparent.

Figure 4 shows the relationship between discharge, total hardness and total mineralization in the Spanish River at Espanola over about a two-year period. Dams control river flow on this river upstream at High Falls and Turbine and at Espanola. The water discharging at the Espanola dam during late 1957 and 1958 shows increased mineral content with increased discharge. Total hardness and total mineral content (specific conductance) follow almost identical curves. Greatest discharge occurred in late 1957, the spring run-off or discharge in April being not quite so great. However, water quality, in so far as mineral content and hardness are concerned, was about the same at both periods. In July, 1958 a major increase in discharge did not show nearly as great an increase in mineralization and hardness. Since discharge in this river is controlled by reservoirs or dams, power demands, etc. it is difficult to relate quality and discharge. In contrast to most rivers of the basin, increased mineralization follows increased discharge. Control dams and resulting reservoirs level out changes in quality; the water released at Espanola varied during 1957-1958 from 24 to 44 ppm as CaCO₃ total hardness and from about 62 to 120 micromhos specific conductance. These variations are, however, insignificant for most end uses of the water.

Figure 5 shows a similarly parallel relationship between specific conductance (mineral content) and total hardness in the Michipicoten River at High Falls where a hydro-electric dam again controls discharge. However, despite such control, when discharge is relatively constant mineralization decreased rapidly instead of increasing during the late part of 1957, rising to a high in February, March and April, 1958. With the spring run-off, when some increase in discharge was evident, a low-mineral water was discharged. Mineralization rose steadily from a low in May until September even though changes in discharge occurred. Mineralization is again mainly due to hardness salts and even when the most mineralized water occurred it still had only about 42 ppm hardness as CaCO₃.

Figure 6 is a similar graph of water quality and discharge in a small river-Little White River near Bellingham-a tributary of the Mississagi River system. No control of discharge is known on this stream and it is seen that the expected increase in mineralization with decrease in discharge occurs. Discharge again rose rapidly in December 1957 and then decreased rapidly to a low value until the spring break-up in March, 1958. Peak run-off occurred in early May. In July 1958 there was a major increase in discharge with a return to low discharge in mid-August. This river does not have a high discharge; it ranges only from 200 to 1,200 cfs, so that a heavy rainfall or flash flood in the small watershed will markedly influence the discharge curve. Specific conductance (mineral content) and total hardness of this river water again follow parallel curves. The variation in these parameters over the 1957-58 period is relatively minor in comparison to the change in discharge e.g. a more than three-fold increase in run-off (from 340 to 1,200 cfs) results in only a decrease of conductance of 15 (from 60 to 45 micromhos) and in hardness of about 6 (from 23 to 17 ppm as CaCO₃). Such changes in water quality are insignificant for most industrial and domestic uses.

Table II further shows that most rivers tributary to the Great Lakes in this basin are essentially of the same character with regard to mineral content and hardness. They are generally highly coloured, and relatively free from turbidity except possibly for a few days during the spring run-off.

Within this basin there has been in recent years an increase in the population served by organized systems, excluding those systems serving very small mines and campsites. In 1961 about 87 per cent of the basin population was so served. Since the total number of communities served has not increased since about 1959 this population growth has been largely in the established urban areas, a pattern common to most of Canada during this period. In 1963, twenty-nine of the thirty-eight water supply systems in the basin were owned by the municipalities, the remainder being either privately owned or jointly owned by municipal and private interests.

During the period 1959-63 about 94 per cent of the population served with water used surface water alone or mixed with some ground water (Table V). Only 16 per cent of the population served received untreated water in 1963, a decrease from 19 per cent so served in 1959. In 1961 and 1963 about the same population used waters after chlorination only, as used waters with treatment additional to chlorination, but the number of systems employing such additional treatment was only about one-half the number using chlorination alone, i.e. the large centres and systems normally employed treatment additional to chlorination. Such additional treatment is usually to remove colour and, for short periods, turbidity. Some also treat the water to reduce corrosion of the system. Organic colour is not considered detrimental except for esthetic reasons, but its removal is usually demanded in larger systems. Such removal also improves bacteriological control of larger supplies using surface sources.

Year			Number and population served by							
	Cities	Towns	Villages	Townships	Improvement Districts	Unincorporated Communities	Small Town-† sites, mine campsites, etc.	Totals	Municipally** owned systems	Municipally owned: water purchased systems
	5	13	0	11	5	3	35	37	20	8
1959-60	2,044*	347		488	188	37	106	3,105	2,460	436
	5	14	0	11	4	2		36	20	7
1961	2,339	405		434	166	23		3,367	2,775	358
	5	14	0	11	5	2	22	37	22	7
1963	2,550	410		488	169	26	51	3,643	3,045	404

TABLE V Municipal Systems, Treatment and Population Served, 1959, 1961 and 1963

Lower figure is population to nearest hundred
Not included in totals and statistics of Tables V and VI. All are private - or government - owned systems.
Includes those operated by a Public Utilities Commission.

TABLE VI Municipal Water Hardness, 1959, 1961 and 1963

Year		f communities and ion in hundreds se				nd estimated pop ters classed as	Percentage of population served residing in		
Ital .	Cities Towns and Villages	Townships, Improvement Districts, etc.	Small Townsites† and Campsites	Soft (0 - 60)	Medium hard (61 - 120)	Hard (121 - 180)	Very hard (over 180)	Cities, Towns and Villages	Townships, Improvement Districts, etc.
1959-60	18	19	35	22	8	5	2	77.0	23.0
.,,,,	2,391*	713	106†	2,779	147	146	33		
1961	19	17		19	9	6	2	81.5	18.5
1901	2,745	620		2,964	170	197	36		
1963	19	18	22	20	9	5	3	81.3	18.7
2705	2,960	683	51	3,266	174	158	45		

	d population ed by		es and estimate hundreds serv		Number of water sources and estimated popula- tion, served with water treated as follows			Percentage of population served using		
Privately owned systems	Jointly owned systems	Ground water	Surface water	Mixed water	No Treatment	Chlorinated	Additional Treatment	Surface and mixed waters	Untreated water	
8	1	8	22	2	9	15	8	94.5	19.1	
174	35	169	2,423	513	592	1,274	1,239		60.1	
8	1	8	21	3	7	16	9	93.8	18.1	
185	50	210	1,777	1,380	609	1,369	1,389		58.7	
8	1	9	21	3	7	18	8	94.0	16.4	
194	101	218	1,977	1,448	598	1,532	1,512		58.5	

TABLE VMunicipal Systems, Treatment and Population Served, 1959, 1961 and 1963

TABLE VIMunicipal Water Hardness, 1959, 1961 and 1963

.

Perc	entage of popu water classe		d with	Weighted hardness (ppm CaCO ₃) of municipal waters						
Soft	Medium hard	Hard	Very bard	Cities, Towns and Villages	Townships, Improvement Districts, etc.	Small Townsites Campsites	Ground waters G	Surface waters S	Mixed waters M	Total basins
89.5	4.7	4.7	1.1	S - 45 G - 105 M - 45	S - 45 G - 205 M- 45	57	156	45	45	51
88.0	5.0	5.9	1.1	S - 38 G - 108 M- 55	S - 44 G- 154 M- 45	-	132	39	54	51
89.7	4.8	4.3	1.2	S - 37 G-107 M- 55	S - 44 G - 177 M - 45	34	145	38	53	51

Only eight to nine of the larger municipal or organized systems use ground waters alone. Tables III and VI show that ground waters, at least in parts of the basin, are not especially high in minerals nor abnormally high in iron and/or manganese.

Also, within this basin are a number of very small communities, campsites, and mine townsites, having some form of a central or organized water supply. In 1959, thirty-five such systems were noted serving about 10,600 people. By 1963, when uranium mining in the basin had almost ceased, many such systems were not operating or had been dismantled; at that time the twenty-two remaining systems served about 5,100 people. Table IV, which gives some data on these small supplies, shows that in 1963, twenty of the twenty-two systems used surface water, and eighteen of these treated the water, but by chlorination only.

Most of the population of the basin receive soft waters since most organized systems use surface waters which are usually very soft to soft in character. About 90 per cent of those served, receive water having total hardness less than 61 ppm as CaCO₃. Only about 6 per cent use hard or very hard water (121 ppm as CaCO₃ or greater). Table VI shows that in 1961 and 1963 about 81 per cent of those served with water lived in cities, towns and villages; the remaining 19 per cent lived in townships, improvement districts and unincorporated communities.

The weighted average hardness of all waters supplied by organized system in the basin is 51 ppm as CaCO₃. The weighted average hardness of ground waters supplied by systems varies from 132 to 156 and the surface and mixed waters between 38 and 54 depending on the year of study. It will be noted that since the larger urban centres use mostly surface water these have weighted hardness below 45 ppm as CaCO₃. Even ground water supplied to cities, towns and villages has a weighted average hardness below 120 ppm. Harder ground waters are supplied in some townships, improvement districts and unincorporated communities.

The small campsites and mine townsites are also supplied mostly with soft water, the average weighted hardness as ppm CaCO₃, of these supplies studied being 57 in 1959-60 and 34 in 1963.

SUMMARY

Surface waters of the Upper Great Lakes basin, a part of the Great Lakes-St. Lawrence River system, are for the most part very soft to soft (below 60 ppm as CaCO, hardness); surface waters in a few areas are in the medium-hard to hard range.

Waters of the main St. Lawrence River system in this portion of the basin are quite constant in chemical quality, even softer than many tributary streams, but there is a definite increase in mineralization in parts of the Georgian Bay region of Lake Huron.

Most tributary rivers show little significant change in chemical quality, including turbidity, with season or river discharge. Many rivers are, however, highly coloured. Tributary rivers generally show decreased mineral content with increased discharge, except for some rivers whose discharge is controlled by dams, power development, etc. when the opposite relationship has been noted.

The good quality of these surface waters is evident from the large proportion used in organized systems without any treatment other than chlorination. Additional treatment is usually for colour removal.

Over 93 per cent of the basin population is served by organized system; this high percentage is due to the rough terrain and lack of agriculture, etc. with resultant concentration of population along the main lake-river system and at centres of mining, lumbering etc.

The main problems arising in the industrial and municipal use of surface waters in this basin are organic matter (colour), corrosivity and, occasionally, turbidity. The problem of economically treating these very soft waters to reduce corrosion when very large volumes are used in major industries is still not completely solved. Since the industries in the area use very large quantities of water, e.g. the pulp and paper, and steel and mining industries, the need to reduce contamination is very important. The increase in mining and associated industries in the basin demands that careful control of large volumes of industrial waste waters be maintained. This is especially true when tourism is a major industry and access now is possible to much of the area including the upper reaches of rivers. The Canadian Shield, especially this forested basin, is noted for fishing, hunting, and other recreational sports. Careless contamination of the numerous small streams and lakes vital to the tourist industry would have a serious effect on the economic growth of the region.

APPENDIX A

Surface Water Sampling Locations

STATION		PAGE
112	Agawa River near Agawa	50
137	Agausabon River at Terrace Bay	56
66	Aux Sables River above Massey	38
114	Baldhead River, South Branch, north of Agawa	50
10	Batchawana Bay (Lake Superior) near Batchawana	20
107	Batchawana River near Batchawana	48
135	Black Fox Lake east of Jackfish	56
128,180	Black River above Heron Bay South	54,68
129	Black River near Heron Bay South	54
154	Black Sturgeon River near Everard	
152	Blackwater River at Beardmore	60
89,172	Blind River at Blind River	44,66
37	Boucher Lake at Falconbridge	30
100	Big Basswood (Wakwekobi) Lake near Iron Bridge	46
90	Burying Lake near Aubrey Falls	44
102	Caskawan River near Milford Haven, St. Joseph Island	48
118	Catfish Creek north of Wawa	52
126	Cedar Creek west of Regan	52
62	Clear Lake near Sudbury	38
113	Coldwater River north of Agawa	50
26	Creek, east of Rodgers Creek, near Beaucage	28
75	Creek, inflow to Quirke Lake	40
156	Current River at Port Arthur	62
142	Cypress River near Nipigon	58
121	Depew Creek southeast of White River	52
84,171	Depot Lake near Elliot Lake	42,66
158	Dog Lake at dam, north of Kaministikwia	62
25	Duchesnay Creek near North Bay	28
74	Dunlop Lake near Elliot Lake	40
81	Elliot Lake at Elliot Lake	42
22	French River at French River Station	26
23	French River (Pickeral River) near French River	26
103	Garden River at Garden River	48
	Georgian Bay - see Lake Huron	18
52	Gill Lake near Levack	34
104	Goulais River near Searchmont	48
105	Goulais River near Goulais River	48
140	Gravel River west of Cavers	56
106	Harmony River near Batchawana	48
	Helen Lake - see Nipigon River	60
80	Horne Lake at Elliot Lake	42
	Huron, Lake - see Lake Huron	18
68	Ice Lake near Gore Bay, Manitoulin Island	38

APPENDIX A

Surface Water Sampling Locations

STATION		PAGE
1.44	Jackfish River near Nipigon	58
143	Jackpine River near Nipigon	58
98	Jobammageeshig Lake near Thessalon	46
48	John Creek below Cartier	34
119	Kabenung Lake, north of Wawa	52
159	Kaministikwia River at Kaministikwia	62
160,182	Kaministikwia River at Kakabeka Falls	62,68
69	Kagawong Lake near Kagawong, Manitounlin Island	38
70	Kagawong River at Kagawong, Manitoulin Island	38
59	Kelley Lake near Copper Cliff	36
60	Kelley Lake at outlet near Copper Cliff	38
	Kennebec River - see Serpent River	42,66
57	Lady MacDonald Lake at Copper Cliff	36
6	Lake Huron (Georgian Bay - North Channel) at Algoma	20
164	Lake Huron (Georgian Bay - North Channel) at Blind River	66
8	Lake Huron (Georgian Bay - St. Joseph Channel) near Desbarats	20
4	Lake Huron (Georgian Bay - North Channel) at Gore Bay, Manitoulin Island	1,8
3	Lake Huron (Georgian Bay - North Channel) at Little Current, Manitoulin Island	1 <u>8</u>
5	Lake Huron (Georgian Bay - North Channel) at Meldrum Bay, Manitoulin Island	18
1	Lake Huron (Georgian Bay) at Parry Sound	18
2	Lake Huron (Georgian Bay) at South Baymouth, Manitoulin Island	18
7	Lake Huron (Georgian Bay - North Channel) at Thessalon	20
147	Lake Nipigon at Orient Bay	58
20	Lake Nipissing at Beaucage Point	26
19,167	Lake Nipissing at Callander	26,66
21	Lake Nipissing (West Arm) near Noelville	26
64	Lake Panache at Lake Panache	38
10	Lake Superior (Batachawana Bay) near Batchawana	20
11	Lake Superior at Marathon	22
1 <u>4</u>	Lake Superior (Thunder Bay) at Port Arthur	22
13	Lake Superior (Nipigon Bay) at Red Rock	22
12	Lake Superior near Rossport	22
15	Lake Timagami at Timagami	24
28	Laronde Creek near Meadowside	28
87	Lauzon Lake near Algoma (Mills)	44
86	Lauzon Lake at Pronto Uranium Mines, near Spragge	42
153	Leonard Lake near Beardmore	60
65	Lily Lake near Webbwood	38
141	Little Gravel River west of Cavers	58
132	Little Pic River west of Marathon	54
29	Little Sturgeon River at Meadowside	28
99	Little White River near Bellingham	46
157	Loch Lomond at Fort William	62
63	Long Lake near Sudbury	38
117,177	Magpie River near Michipicoten Harbour	50,68
73	Manitou Lake at outlet, Manitoulin Island	40
166	Marten River at Marten River	66
88	Matinenda Lake at outlet near Blind River	44

APPENDIX A Surface Water Sampling Locations

STATION		Page
58	Meatbird Lake near Copper Cliff	36
116	Michipicoten River at High Falls	50
176	Michipicoten River near Michipicoten Harbour	68
72	Mindemoya Lake at outlet, Manitoulin Island	40
71	Mindemoya Lake near West Bay, Manitoulin Island	40
93	Mississagi (Wenebegon) River below Aubrey Falls	44
94	Mississagi River at Grand Falls Dam near Thessalon	44
95	Mississagi River below Grand Falls Dam	46
96,173	Mississagi River near Dean Lake	46,66
146	Mojikit Lake at Summit Dam	58
145	Mojikit Lake (Ogoki River) at Waboose Dam	58
110	Montreal River at mouth at Montreal River	50
109,174	Montreal River at Montreal Falls	48,68
51	Moose Lake near Levack	34
39	Murdoch River near Rutter	32
	Namewaminikan River - <i>see</i> Sturgeon River near Geraldton	60
	Nipigon Bay - see Lake Superior at Red Rock	22
-	Nipigon Lake - see Lake Nipigon at Orient Bay	58
1 <u>4</u> 8	Nipigon River at Cameron Falls	58
149	Nipigon River (Helen Lake) near Nipigon	60
	Nipissing Lake - see Lake Nipissing	26
	Ogoki River (Mojikit Lake) at Summit Dam - <i>see</i> Mojikit Lake at Summit Dam Ogoki River (Mojikit Lake) at Waboose Dam - <i>see</i> Mojikit Lake (Ogoki River) at	58
	Waboose Dam	58
115,175	Old Woman River south of Michipicoten Harbour	50,68
50	Onaping River near Levack	34
	Panache Lake -see Lake Panache	38
108	Pancake River near Batchawana	48
139	Pays Plat River west of Rossport	56
78	Pecors Lake near Algom-Nordic Mine, Elliot Lake	40
130,181	Pic River above Heron Bay South	54,68
131	Pic River near Heron Bay South	54
	Pickerel River - see French River near French River	26
163	Pigeon River near Pigeon River	64
134	Prairie River east of Jackfish	56
77	Quirke Lake at the Consolidated Denison Mine, Elliot Lake	40
76	Quirke Lake near the Stanrock Uranium Mine, Elliot Lake	40
56	Ramsay Lake at Sudbury	36
97	Rapid River south of Aubrey Falls	46
38	Red Pine Lake at Falconbridge	30
133	Ripple Lake west of Marathon	54
49	Roberts River near Milnet	34
92	Rocky Island Lake near Aubrey Falls	44
27	Rodgers Creek near Meadowside	28
151	Rolland Lake near Jellicoe	60
85	Ryan Lake near Algom-Nordic Mine, Elliot Lake	42
9	St. Mary's River at Sault Ste Marie	20

APPENDIX A

Surface Water Sampling Locations

79,170Serpent (Kennebec) River near Cutler161Shebandowan Lake near Mabella162,183Shebandowan River near Kaministikwia67Silver Lake near Sheshagwaning, Manitoulin Island61Simon Lake near Naughton114South Branch, Baldhead River north of Agawa168South River near South River120South White River southeast of White River43Spanish River at Espanola40Spanish River at High Falls		42, 62 62, 38 38 50 66 52 32 32
162,183Shebandowan River near Kaministikwia67Silver Lake near Sheshagwaning, Manitoulin Island61Simon Lake near Naughton114South Branch, Baldhead River north of Agawa168South River near South River120South White River southeast of White River43Spanish River at Espanola		62, 38 38 50 66 52 32 32
67Silver Lake near Sheshagwaning, Manitoulin Island61Simon Lake near Naughton114South Branch, Baldhead River north of Agawa168South River near South River120South White River southeast of White River43Spanish River at Espanola		38 38 50 66 52 32 32
61Simon Lake near Naughton114South Branch, Baldhead River north of Agawa168South River near South River120South White River southeast of White River43Spanish River at Espanola		38 50 66 52 32 32
61Simon Lake near Naughton114South Branch, Baldhead River north of Agawa168South River near South River120South White River southeast of White River43Spanish River at Espanola		50 66 52 32 32
168South River near South River120South White River southeast of White River43Spanish River at Espanola	· · · · · · · · · · · · · · · · · · ·	66 52 32 32
120South White River southeast of White River43Spanish River at Espanola		52 32 32
43 Spanish River at Espanola		32 32
		32
40 Spanish River at High Falls		
42 Spanish River near McKerrow		32
44 Spanish River near Spanish		34
41 Spanish River below Turbine		32
136 Steele River, east of Jackfish		56
83 Strouth Lake near the Stanleigh Uranium Mine, Elliot Lake		42
17 Sturgeon River above Sturgeon Falls		24
18 Sturgeon River below Sturgeon Falls		26
150 Sturgeon (Namewaminikan) River near Geraldton		60
Superior, Lake - see Lake Superior		22
101 Thessalon River above Thessalon		48
Timagami Lake - see Lake Timagami		24
16 Timagami River near River Valley		24
165 Timagami River near Field		66
24,169 Tomiko River north of North Bay		26,
111 Unegam Lake north of Aubrey Falls		50
46 Vermilon River near Creighton (Mines)		34
47 Vermilon River below Kusk Lake		34
45 Vermilon River near Larchwood		34
30 Veuve River near Hagar		28
32 Veuve River at Verner		28
31 Veuve River at Warren	• • • • • • • • • • • • • • • • • • • •	28
125 Wabikoba Creek west of Regan		52
100 Wakwekobi (Big Basswood) Lake near Iron Bridge		46
138Walker Lake near Schreiber		56
33 Wanapitei Lake (Bowlands Bay) at Bowlands Bay		28
35 Wanapitei River at dam below Coniston		30
36 Wanapitei River near Wanup		30
34 Wanapitei River at Wanapitei		30
93 Wenebegon (Mississagi) River below Aubrey Falls		44
91 Wenebegon River near Aubrey Falls		44
82 Westner Lake near Elliot Lake		42
122,178 West White River northwest of White River		52,
124,179 White Lake at Narrows near Regan	••••••	52,
123 White River near Regan		52
54 Whitson Lake near Frood (Mine) at Sudbury		36
55 Whitson River at Chelmsford		36
53 Windy Lake near Onaping		34
155 Wolf River near Hurkett		60
127 Wowun Lake at Manitouwadge		54

APPENDIX B Index to Data and Analyses - by Municipality

••••

	DATA	Analysi
Blind River	70	82
Capreol	71	83
Chelmsford	71	83
Coniston	71	83
Copper Cliff	70	84
Creighton (Mines)	71	85
Elliot Lake	71	86
Espanola	72	87
	72	07
Falconbridge	73	88
Ferris West Township †	73	89
Fort William	72	89
Garson	73	91
Garson Township - See Neelon Township and Garson	73,77	91,96
Gateway - See Widdifield Townshipt	73,76	92,97
Gore Bay	74	92
Jamestown - See Wawa and Michipicoten Township	80,76	109,95
Korah Township	74,79	93,102
Levack	75	93
Little Current	75	93
Lively	75	93
	74	94
Manitouwadge		
Marathon	75	94
Massey	75	95
McKim Township	76	95
Michipicoten Township	76	95
Neelon Township	77	96
Nipigon	77	96
North Bay†	76	97
Onaping	77	98
Port Arthur	77	98
Powassan ^{††}	78	100
rowassan	70	200
	78	101
Red Rock		
	79	102
Sault Ste Marie	79 79	102 103
Sault Ste Marie Schreiber	-	
Red Rock Sault Ste Marie Schreiber South River†† Sturgeon Falls	79	103

† Municipality in the Upper Great Lakes drainage basin but using water from the Ottawa River drainage basin.
 † Municipality not classed within the Upper Great Lakes drainage basin but adjacent thereto, and included in this report to bring the data up to date. See also Water Survey Report No. 3.

APPENDIX B

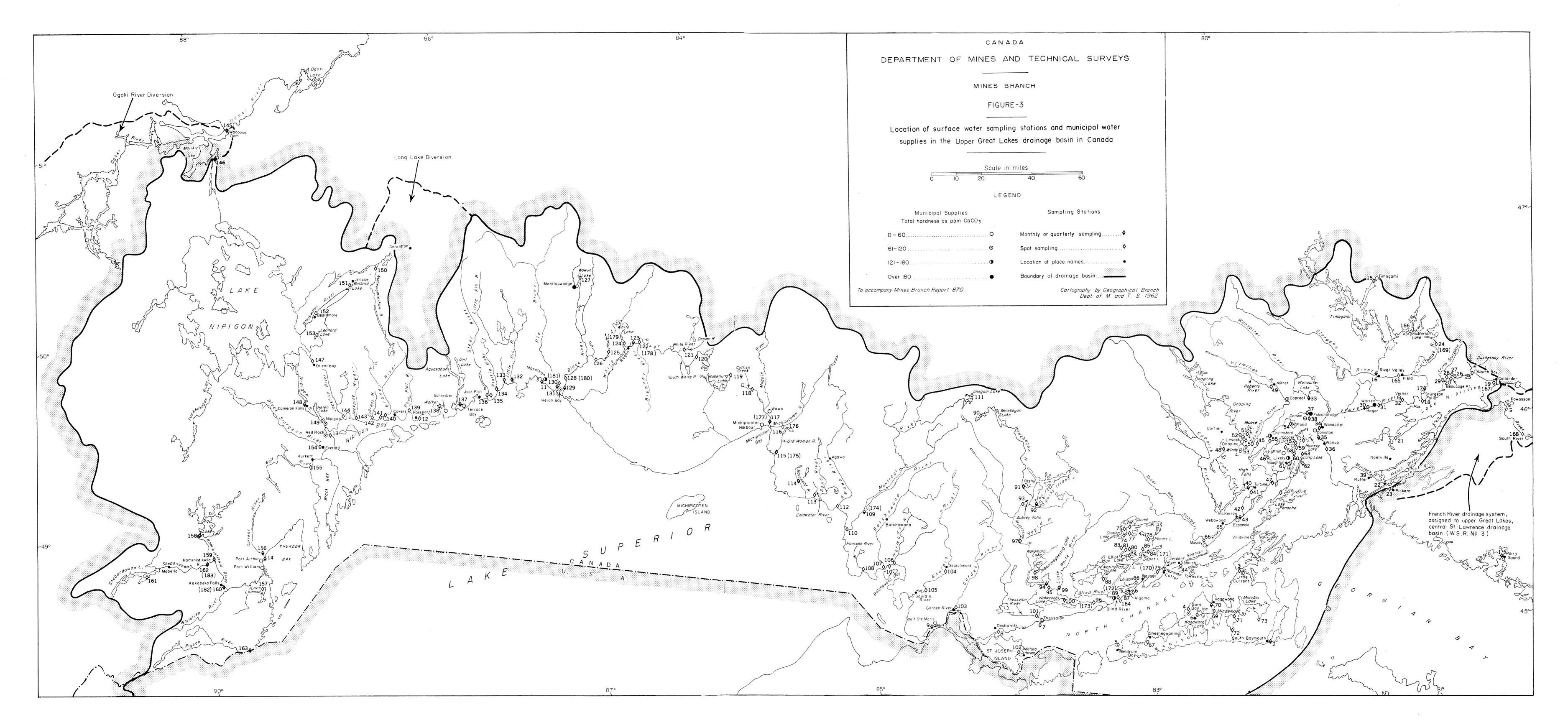
Index to Data and Analyses - by Municipality

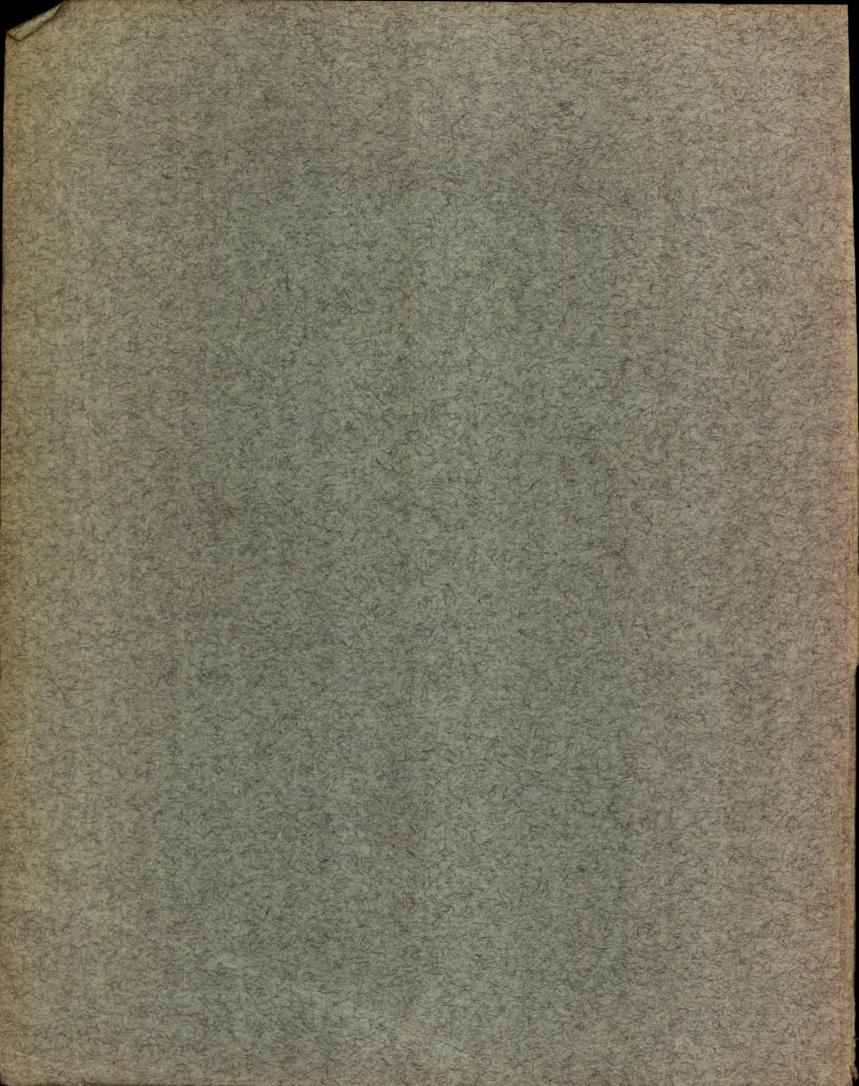
	Data	Analysis
Tarentorus Township	79	106
Terrace Bay		106
Thes salon	81	107
Verner	81	107
Warren	81	108
Wawa - See also Michipicoten Township		109,95
White River	80	109
Widdifield Township [†]		109,97

† Municipality in the Upper Great Lakes drainage basin but using water from the Ottawa River drainage basin.

APPENDIX C

Index to Data and Analyses - by Small Communities and Townsites


	PAGE
Algom Nordic Mine	110 111
Can. Met Mine	111 111
Denison - See Consolidated Denison Mine	111
Fecunis Mine	111 112
Garson Mine	112
Heron Bay South High Falls Hillcrest Camp - See Fecunis Mine	113 113 111
Lacnor Mine Lawson Quarry - <i>See</i> Willisville Longvack Mine	114 114,121 115
Michipicoten Harbour Milliken Mine Moose Lake Lodge Murray Mine	115 115 115 116
Noranda Townsite Nordic - See Algom Nordic Mine Northspan Uranium Mine - See Panel	116 110 117
Panel Mine Pater Copper Mine - <i>See</i> Pronto Mine Pronto Mine	117 117 117
RCAF Station (North Bay)	119
Spanish Stanleigh Mine Stanrock Mine Strathcona Mine	119 120 120 120
Timagami	121
Willisville	121


١

622(21(06) 870, pt.14, c.2 C212

Cahada mines branch monograph 870, part 14, industrial water resources, 1965, c. 2.

LOWE-MARTIN COL-67-4026

