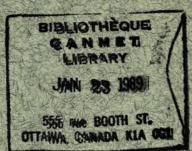
SER 622 (21) C212T

CANADA DEPARTMENT OF MINES AND TECHNICAL SURVEYS


MINES BRANCH INDUSTRIAL MINERALS DIVISION

INDUSTRIAL WATER RESOURCES OF CANADA

WATER SURVEY REPORT No. 12

WATER QUALITY AT SOME CANADIAN MILITARY
ESTABLISHMENTS, 1956-57

BY J. F. J. THOMAS

CANADA DEPARTMENT OF MINES AND TECHNICAL SURVEYS

MINES BRANCH INDUSTRIAL MINERALS DIVISION

INDUSTRIAL WATER RESOURCES OF CANADA

WATER SURVEY REPORT No. 12

WATER QUALITY AT SOME CANADIAN MILITARY ESTABLISHMENTS, 1956-57

BY
J. F. J. THOMAS

Price: \$1.25 Mines Br. No. 865

CONTENTS

	FAGE
Introduction	3
Survey procedure	3
Analytical procedure	4
Discussion:-	
Water hardness and quality	109
Problems of use, corrosion and scaling	110
Summary	118
Appendix A-List of Army water supplies studied	119
Appendix B-Questionnaire on water supplies	123
Appendix C-List of published water survey reports	125
TABLES	
I-Description of some Army waterworks systems	6
II-Chemical analyses of water quality at Canadian Army establishments, 1956-57	28
Addendum to Table II—Water Quality Data—1958	99
III-Army water supplies:-summary of source, treatment and water hardness	110
IV—Army water supplies:—classification as to corrosivity	112
V-Results of questionnaires on corrosivity	114
VI_General category of water at U.S. Army camps and posts	116

•			
•			
			,

WATER QUALITY AT SOME CANADIAN MILITARY ESTABLISHMENTS, 1956-58

The quality of waters supplied to military establishments including small isolated stations as well as larger training centres is most important to their efficient operation in peace and war. Besides meeting the health standards of the Department of Health and National Welfare these waters must be suitable for a variety of domestic and industrial uses such as cooking, laundering, steam heating, vehicle washing, etc. They also must often meet special requirements in shops, hospitals, and laboratories.

Waters of poor chemical and physical quality may seriously affect the well-being of camp personnel because of irritating problems of taste, discolouration, and/or hardness. Serious corrosion and/or scaling problems cause costly equipment breakdowns and replacements resulting in inefficient operation of the camp or establishment.

For several years the Industrial Waters Section, Mines Branch, Department of Mines and Technical Surveys, has assisted the Maintenance Division, Directorate of Works, Department of National Defence (Army) on problems of water use and treatment. Early in 1956, at the request of the Department of National Defence (Army), a general survey was undertaken of the chemical quality of waters supplied to a large number of Army establishments in Canada. The data from this survey will assist future studies on problems of water use and treatment, including the suitability and economics of new treatment methods to improve the quality at certain camps.

The results of this survey are published as the 12th report in a series of Water Survey Reports covering water quality in various areas of Canada. Previous reports in this series seldom included information on water quality at military establishments so this report does supplement to a considerable extent the knowledge on water quality in Canada. Since many Army establishments are supplied from municipal systems, additional information on these waters may be obtained by reference to pertinent Water Survey Reports.

So that adequate consideration may be given to problems of treatment and use, information on the general operation of most of the water systems is outlined in Table I. These data for the most part originate from questionnaires completed by personnel at each camp or establishment. Most of the data were checked and some additional information was supplied by personnel of the Utilities Section of the Directorate of Works at Ottawa.

Table II tabulates the chemical analyses of most of the waters studied in this survey. Included are a number of calculated values such as per cent sodium, and saturation and stability indices, which assist in assessing the suitability of a water, especially its corrosivity.

Tables III, IV and V summarize further the data of Tables I and II and also the information obtained from the completed questionnaires on plant operation.

For obvious reasons certain data including accurate figures on population are not reported. Also, this report does not by any means include all Army establishments in Canada; only those locations indicated by the Directorate of Works were studied at this time.

The assistance of Army and civilian personnel of the various establishments, and particularly personnel of the Utilities Section at Ottawa, in facilitating the carrying out of this survey and in preparing this report, is gratefully acknowledged.

SURVEY PROCEDURE

In order to ascertain within a limited time and without excessive laboratory work any major seasonal variations occurring in water quality at the several camps a program of quarterly sampling was begun early in 1956.

Sample containers together with a questionnaire on the operation of the camp water works system were forwarded to the several Army Commands or Camps with a request that samples of the raw and finished (treated) water from each supply be collected and shipped to the laboratory at Ottawa. Samples were to be collected first during the spring run-off, then about four months later (summer water supply) and finally four months thereafter (winter water supply). It was considered that these three samples should give satisfactory information on water quality at periods of high, low and normal water level or flow. A copy of the questionnaire forwarded to each camp appears in Appendix B.

Certain establishments, especially those in the far north, were unable to begin sampling in the spring of 1956 so spring run-off samples from these locations were not obtained until 1957. At a number of other locations samples were not always received when requested, hence the lack of complete information on all supplies Fortunately, many of these waters were reserve, or auxiliary supplies, or ground water supplies which showed little seasonal change.

When the initial survey was completed at most locations with the winter sample in late 1956 or early 1957, the Directorate of Works requested a continuing survey of water quality at 15 of the 98 establishments already studied. This continuing survey was begun with the 1957 spring run-off sample and some 40 samples were collected and analysed from these 15 camps. These results are also included in this report. The next samples in this continuing survey will be collected in the summer of 1958, again in the winter of 1959, then in the spring of 1960, and so on.

Water samples were collected in the usual 2-liter glass bottles except those from far northern areas where, because of problems of freezing and/or breakage polyethylene bottles were used. Samples were collected in the same manner as in other surveys (see previous Water Survey Reports), being collected from taps, pumps, reservoirs or direct from the rivers and lakes.

ANALYTICAL PROCEDURE

The same analytical procedures used in the previous survey studies on waters were employed in this study; these are reported in Water Survey Report No. 1 and in subsequent reports of the series especially Report No. 10 and in subsequent reports of the series especially Report No. 10 and Priefly most of the methods used are those standardized by the American Public Health Association or the American Society for Testing Materials and However, research on analytical methods and techniques is continually under way in the Industrial Waters Section's laboratories so that new procedures are often in use prior to publication in either of the above texts.

Sufficient analytical tests were carried out on all waters so that the experimental error could be calculated by accepted methods (see Water Survey Report No. 1). Trace elements were also determined in many waters; with waters low in total dissolved solids it was necessary to include determinations of heavy metals and other normally minor elements if satisfactory experimental accuracy was to be achieved. The amounts of copper, iron and zinc found in many of the supplies are relatively high; this is usually believed due to attack by the waters on galvanized iron, iron and copper piping, tanks or pump parts. Despite the request that taps and pumps be wellflushed prior to sample collection it is probable that adequate flushing was not always carried out. It is therefore necessary to consider a number of factors such as water source and sampling location when interpreting these values for iron, copper and zinc.

To assist in the interpretation and usefulness of the analytical data a number of other values were calculated, some of which are reported in Table II. These values,--per cent sodium, saturation index, stability index, sum of constituents, and carbon dioxide--have been discussed in other Water Survey Reports of this series. Sum of constituents is the sum of all the elements including silica determined by the analysis, assuming any bicarbonate ion present as an equivalent amount of carbonate ion. It is therefore another measure of the total dissolved solids and shows a close relationship with the residue on ignition at 550°C. and the specific conductance. Consequently, it is another check on the accuracy of the analytical work.

Carbon dioxide is calculated using basic equilibria from the pH and alkalinity determinations. The free carbon dioxide present is measured at the temperature and pH of the analysis. The water, especially as drawn from a well, may therefore contain a quite different amount of carbon dioxide because of different temperature, pressure, pH and alkalinity. Some well waters may be very high in free carbon dioxide, which accelerates corrosion of both iron and copper.

Per cent sodium is the per cent of sodium cation in relation to the total cations calcium, magnesium, sodium, potassium, iron, copper, zinc, etc. It is of major importance in assessing the value of a water for irrigation. It

¹ Industrial Water Resources of Canada, Department of Mines and Technical Surveys, Ottawa. Water Survey Report No. 1: Scope, Procedure and Interpretation of Survey Studies, Mines Branch Report No. 833, 1952.

² Industrial Water Resources of Canada, Department of Mines and Technical Surveys, Ottawa. Water Survey Report No. 10: Nelson River Drainage Basin in Canada, Mines Branch Report No. 861 (in press)

³ Standard Methods for the Examination of Water, Sewage and Industrial Wastes, 10th Edition, 1955. American Public Health Association, Inc., 1790. Broadway, New York 19, N.Y.

⁴Manual on Industrial Water, A.S.T.M. Special Technical Publication No. 148A, 1954. American Society for Testing Materials, 1916 Race St., Philadelphia 3, Pa.

also quickly classifies those waters high in sodium salts, which waters are usually more corrosive under normal operating conditions.

Saturation index and stability index are values used to measure or indicate the corrosive or scale-forming tendency of a water. Both are based on the relative saturation of the water with calcium carbonate. The Langelier saturation index is defined as pH-pHs where pH is the measured pH and pHs is the pH at the same temperature when the water is saturated with calcium carbonate. It is evident that if a water has a pH greatly in excess of the pH of saturation (pHs) it is oversaturated with calcium carbonate and scale may deposit. The stability index is defined as 2pHs-pH where the terms pHs and pH have the same meaning as in saturation index. This stability index is said to show a closer relationship to actual results in practice.

TABLE I

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

NEWFOUNDLAND

ST. JOHN'S
No data
. Municipally owned and operated
Petty Harbour, Long Pond and Windsor Lake - supplied by city of St. John's
See City of St. John's Water Survey Report No. 11
See Water Survey Report No. 11

NOVA SCOTIA

CAMP OR ESTABLISHMENT	ALDERSHOT MILITARY CAMP NEAR KENTVILLE	CAMP DEBERT, DEBERT
Approximate population served, 1955-56	1,000 - 1,500	850* (varies)
Ownership	Dept. of National Defence and Municipality of Kentville	Dept. of National Defence
Source of supply	Magee Lake, treated - Kentville municipal supply: Deep well at Camp as standby supply*	Three deep wells, No. 1, 2 & 12**; R.C.A.F. system as standby.
Treatment	Magee Lake is treated by Municipality by coagulation (alum, lime), settling, rapid-sand filtration, lime stabilization and chlorination. No treatment of well water.	No treatment; water is pumped to reservoirs, tanks and system.
Storage capacity (thousand gallons)	Elev. tank62.5	Concrete underground 100 "ground, (R.C.A.F.) 70 2 elev. tanks (wood) 25 each 1 elev. tank (steel, R.C.A.F.) 25
Consumption (average in m.g.d.)	0.080 - domestic 0.040 - other 0.120 - (Max. 0.142)	0.03 Pump capacity0.648
Uses other than domestic	One third of total pumpage is used for heating, fire-fighting, washing vehicles, etc.	2% of pumpage used for fire protection, etc.
Remarks:	* Municipality normally supplies 100% of water used: well is a standby fire-fighting supply.	* about ½ during working hours ** In late 1957 a new well, No. 3 was also being used.

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

HALIFAX & ENVIRONS

	HALIFAX & ENVIRONS	
CAMP OR ESTABLISHMENT	BEDFORD RIFLE RANGE	ELKINS BARRACKS
Approx. population served, 1955-56	No data - varies widely	100 to 200
Ownership	Dept. of National Defence	Dept. of National Defence
Source of supply	Shallow well. Sackville River as standby for fire protection.	Brook at Cowbay dam
Treatment	No treatment	Water is pumped with chlorination (sodium hypochlorite) to reservoirs and system.
Storage capacitythousand gallons)	Elev. tank (domestic supply) - 13	Reservoir142
Consumptionaverage in m.g.d.)	No data	0.023
Uses other than domestic	No data	Heating (boilers)
Remarks:		
	HALIFAX & ENVIRONS (Cont'd)	ı
CAMP OR ESTABLISHMENT	GARRISON BARRACKS, WINDSOR PARK	HAMMOND PLAINS
Approx. population served, 1955-56	2000	No data
Ownership	Municipally owned and operated	Dept. of National Defence
Source of supply	Lakes, treated - supplied by city of Halifax	Well
Treatment	No treatment by Camp - see Halifax (Water Survey Report No. 11)	No treatment; pumped to system.
Storage capacity(thousand gallons)	None at Barracks	No data
Consumption	0.23 (Max. 0.245) (Min. 0.220)	No data
Uses other than domestic	Heating (steam boilers)	No data
Remarks:		
	HALIFAX & ENVIRONS (Cont'd)	
CAMP OR ESTABLISHMENT	McNAB'S ISLAND	WALLACE HILL
Approx. population served, 1955-56	About 50	No data
Ownership	Dept. of National Defence	Dept. of National Defence
Source of supply	Well	₩ell
Treatment	Water is pumped with chlorination (sodium hypochlorite) to reservoir and system.	No treatment; pumped to system.
Storage capacity(thousand gallons)	Reservoir 40	No data
Consumption	Not known	No data
	Heating (hot water furnaces)	No data
Uses other than domestic		

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

	HALIFAX & ENVIRONS (Concl'd)	SYDNEY AREA
CAMP OR ESTABLISHMENT	YORK REDOUBT	JOHNSTOWN
Approx. population served, 1955-56	No data	Less than 25
Ownership	Dept. of National Defence	Dept. of National Defence
Source of supply	West Pine Island and East Pine Island Lakes.*	Well, 305 ft. deep
Treatment	Pumped with chlorination to system.	No treatment; pumped to system
Storage capacity(thousand gallons)	No data	None
Consumption(average in m.g.d.)	No data	100 g.p.d. Capacity 12,000 g.p.d.
Uses other than domestic	No data	Two small hot water furnaces
Remarks:	* In late 1956 source changed from West Pine Island Lake to East Pine Island Lake.	
FRE	NEW BRUNSWICK DERICTON AREA (Concl'd)	
CAMP OR ESTABLISHMENT	CAMP GAGETOWN	McGIVNEY
Approx. population served, 1955-56	1,800 - 2,000	225
Ownership	Dept. of National Defence	Dept. of National Defence
Source of supply	Two deep wells near junction of Saint John and Oromocto Rivers*	Two wells, 400 & 380 feet deep
Treatment	Water to be chlorinated and treated with Calgon*	No treatment; pumped to reservoirs and system.
Storage capacity (thousand gallons)	Elev. tank 750	Elev. tank (wood) 10 Concrete ground reservoir 10
Consumption	Plant capacity 3 m.g.d.	Not known
Uses other than domestic	Heating (boilers), cooling	About 5% for fire-fighting, etc
Remarks:	* Oromocto River is a standby supply. In 1958 plant to use this river or Saint John River water was being planned.	

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

SYDNEY AREA (Concl'd)	<u> </u>	NEW BRUNSWICK -	FREDERICTON AREA
PETRIE POINT	HANWELL ROAD		MARYLAND HILL
Less than 25	Less than 10		Less than 10
Dept. of National Defence	Dept. of National Defence		Dept. of National Defence
Well, 250 ft. deep	Deep well		Deep well.
No treatment; pumped direct to system .	No treatment; pump	ed direct to system.	No treatment; pumped direct to system.
None	None		None
200 g.p.d. Capacity 18,000 g.p.d. One small hot water furnace	40 g.p.d. Capacity4,800 g.p.d. None		40 g.p.d. Capacity4,800 g.p.d. None
	NE₩ BRUN	NSWICK (Cont'd)	
MONCTON	SAINT	JOHN	ST. GEORGE AREA
GARRISON BARRACKS	BARRACK GREEN	ī	PENNFIELD
100 - 300	500		125 - 150
Municipally owned and operated	Municipally owned	and operated	Dept. of National Defence
Surface run-off and wells supplied by city of Moncton.	Lakes, supplied by city of Saint John.		Well
See Moncton - Water Survey Report No. 11	See Saint John - Water Survey Report No. 11		No treatment; pumped to tanks and system.
None at establishment	None at establishment		Steel pressure tank 0.50 Elev. tank (wood) 50 (fire-fighting only)
1,600 g.p.d.	20,000 g.p.d.		7,000 g.p.d.
10% is used in the Central Heating Plant	About 25% used in hot water boilers and low pressure steam plant.		5% for heating (boilers)
NEW NEW	BRUNSWICK - ST	C. GEORGE AREA (Concl'd)
CAMP OR ESTABLISHMENT		CAMP UTOPIA	
Approx. population served, 1955-56		350	
Ownership		Dept. of National Defence	
Source of supply		Well or spring	
Treatment		No treatment; pumped to tank and system.	
Storage capacity (thousand gallons)		Tank (wood)	50
Consumption (average in m.g.d.)		·	17,000 g.p.d.
Uses other than domestic		5% for heating (boilers)	
Remarks:			

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

QUEBEC

	near ste, thérèse	MONTREAL AREA
CAMP OR ESTABLISHMENT	CAMP BOUCHARD	LONGUE POINTE
Approx. population served, 1955-56	600	1,600
Ownership	Dept. of National Defence	Municipally owned and operated
Source of supply	Three deep wells in Camp	St. Lawrence River, treated-supplied by city of Montreal
Treatment	Waters pumped to aerating* tank and tower, chlorinated and repumped to reservoirs and system.	River water is filtered, chlorinated and pumped to systems by city of Montreal*.
Storage capacity(thousand gallons)	Reservoir1,000 Elev. tank 100	No data
Consumption(average in m.g.d.)	0.08 domestic) Plant	No data
Uses other than domestic	30% of pumpage is used for heating, fire-fighting, etc.	Heating, etc
Remarks:	* Water contains H ₂ S	* See also Water Survey Report Nos. 3 & 13
CAMP OR ESTABLISHMENT	QUEBEC & ENVIRONS (Concl'd) CAMP VALCARTIER, VALCARTIER	ONTARIO BARRIEFIELD MILITARY CAMP,
		BARRIEFIELD
Approx. population served, 1955-56	3,000	6,000 - 7,000
Ownership	Dept. of National Defence	Dept. of National Defence and city of Kingston
Source of supply	Three wells, Nos. 1, 3 & 5	In 1956 St. Lawrence River; in 1957 St. Lawrence River via city of Kingston
Treatment	No treatment; pumped to system and reservoirs.	In 1956 river water pressure-filtered (diatomaceous-earth filters), chlorine
		and chlorine dioxide treated and pumped to reservoirs & system. In 1957 water purchased from city of Kingston - St. Lawrence river water, chlorinated*
Storage capacity(thousand gallons)	Two reservoirs 258 & 250	and chlorine dioxide treated and pumped to reservoirs & system. In 1957 water purchased from city of Kingston - St.
Storage capacity	Two reservoirs 258 & 250 0.75 Plant capacity - 0.787	and chlorine dioxide treated and pumped to reservoirs & system. In 1957 water purchased from city of Kingston - St. Lawrence river water, chlorinated*
(thousand gallons) Consumption	0.75	and chlorine dioxide treated and pumped to reservoirs & system. In 1957 water purchased from city of Kingston - St. Lawrence river water, chlorinated* Two elev. tanks52 each 0.86 - domestic0.37 - other

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

	QUEBEC			
MONTREAL AREA (Concl'd)	QUEBEC & ENVIRONS			
ST. BRUNO CAMP	CITADEL, QUEBEC CITY	P.M.Q. AREA, STE. FOY		
50 - 200 (summer)	550	1,100		
Dept. of National Defence	Municipally owned and operated	Municipally owned and operated		
Well, 55 feet deep	St. Charles River (Lake)-supplied by city of Quebec	Wells - supplied by municipality of Ste. Foy		
No treatment; pumped to reservoir and system.	No treatment by establishment - See Quebec - Water Survey Report No. 13.	See Ste. Foy; Water Survey Report No. 13		
Elev. tank (wood)20	None at establishment	None at establishment		
Not Known Capacity23,000 g.p.d.	0.065 - domestic 0.002 - other 0.067	0.040 (Max-0.053)		
None, - a summer camp	4% for heating (boilers)	None		
ONTARIO CAMP BORDEN & ENVIRONS				
BLACKDOWN PARK CAMP	CAMP BORDEN	COBOURG		
400 (summer)	11,000 - 12,000	1,200 - 1,400		
Dept. of National Defence	Dept. of National Defence	Municipally owned and operated		
Unnamed creek, nearby	Three deep wells in 1956. In 1957 two additional deep wells	Lake Ontario, treated - supplied by town of Cobourg.		
Creek water is pumped through a diatomaceous-earth filter with chlorination to reservoir and system.	Water pumped with chlorination to tanks and system.	See Cobourg - Water Survey Report No. 3		

Pressure reservoir --- 3,400 gal.

Two elev. tanks ---- 85 each

1956
0.8
1957
1.3

Capacity - 2.2 Heating, refrigerant cooling, vehiclewashing, etc. Underground reservoir ---- 150

0.090 - 0.120

15 - 20% is used for heating, air conditioning, etc.

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

ONTARIO (Cont'd)

CAMP OR ESTABLISHMENT	CAMP HAGERSVILLE, HAGERSVILLE	CAMP IPPERWASH, IPPERWASH
Approx. population served, 1955-56	425	400 - 2,600 (summer)
Ownership	Dept. of National Defence	. Dept. of National Defence
Source of supply	Lake Erie; drilled wells as standby supply	Lake Huron
Treatment	Lake water is pumped with chlor- ination to tanks and system. Well water is not treated.	Lake water is pumped with chlorination to reservoir and system.
Storage capacity (thousand gallons)	1 tank (wood) 106 1 tank (steel)209	Concrete reservoir150
Consumption	0.11 Plant capacity0.216	0.075 (Max 0.243) (Min 0.053) Plant capacity 0.432
Uses other than domestic	75% of total used for heating, vehicle-washing, fire-protection, swimming pool, etc.	5% of total pumpage for heating, etc
Remarks:		

ONTARIO (Cont'd)

LONDON & ENVIRONS (Concl'd)

CAMP OR ESTABLISHMENT	WOLSELEY BARRACKS	MEAFORD RANGE, MEAFORD
Approx. population served, 1955-56	2,000	200
Ownership	Municipally owned and operated	Dept. of National Defence
Source of supply	Wells - supplied by city of London	Lake Huron (Georgian Bay) and standby wells
Treatment	See London - Water Survey Report No. 3. *	Lake water is pumped with chlorination to standpipe and then flows to reservoir and system.
Storage capacity(thousand gallons)	None at Barracks	Standpipe 40 Concrete ground reservoir 35
Consumption(average in m.g.d.)	0.158 (Max 0.180) (Min 0.115)	0.03 (Max 0.059) (Min 0.018) Plant capacity - 0.115)
Uses other than domestic	12% for boiler feed, cooling, vehicle- washing, etc.	Boiler feed, refrigerant cooling
Remarks:	* Zeolite softeners are used on hot water in Barracks Messes.	

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

ONTARIO (Cont'd)

LONDON & ENVIRONS

		the state of the s
LAKEVIEW	LEITRIM STATION, LEITRIM	CEDAR SPRINGS RIFLE RANGE
500	150	125
Municipally owned and operated	Dept, of National Defence	Dept. of National Defence
Lake Ontario, treated - supplied by Toronto Township.	Deep well, and shallow well	Well
See Toronto Township - Water Survey Report No. 3	No treatment; pumped to tanks and system.	No treatment; pumped to tank and system.
None at establishment	None, except two small 100 gal pressure tanks	Elev. tank 2.5
0.025 (Max 0.030) (Min 0.020)	Not known	1,250 g.p.d. (Max 2,000 g.p.d.)
10% for heating, fire-fighting, lawn watering, etc.	50% of water used for boiler feed, air conditioning, washing, etc.	None
ORLEANS & E	ONTARIO (Cont'd)	
ORLEANS STATION, ORLEANS	V.E. PROVING ESTABLISHMENT, MONTREAL RD.	OSHAWA STATION, OSHAWA
Less than 25	200	50 to 100
Dept. of National Defence	Dept. of National Defence	Dept. of National Defence and municipally owned and operated
Deep well and artesian well; a new well, 16 feet deep *	Deep well and municipal supply of the city of Ottawa *	Lake Ontario, treated - supplied by Public Utilities Commission, Oshawa. Deep well at Station is a standby supply.
No treatment; deep well water pumped to tank and system. Artesian well water brought by can for drinking.	Deep well is pumped to tank and system for general use. Ottawa city water for drinking purposes is hauled by truck from R.C.A.F. Station, Rockcliffe.	No treatment of well water. Lake water is treated and supplied by Oshawa P.U.C. *
Tank300 gal	Steel tank 10	None at Station
75 g.p.d. (Max 100 g.p.d.) (Min 50 g.p.d.) Plant capacity_1,000 g.p.d.)	3,500 g.p.d. (Max4,500 g.p.d.) (Min1,000 g.p.d.) Capacity 43,200 g.p.d.	Not known
100% of deep well water used for other than domestic purposes	Well water is 100% used.	Boiler feed, vehicle-washing, cooling, etc.
* This well to be used for drinking water Deep well not used because of high H ₂ S content.	* A new well drilled in 1957 may replace Ottawa city water for domestic use.	* See also Water Survey Report No. 3.

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

ONTARIO (Cont'd)

OTTAWA & ENVIRONS	
HEADQUARTERS ESTABLISHMENTS	CONNAUGHT RIFLE RANGES
	200 - 5,000
Municipally owned and operated	Dept. of National Defence
Ottawa River, treated - supplied by city of Ottawa	Six wells, average depth 100 ft
Coagulated, filtered, lime-stabilized and chlorinated by city of Ottawa-See also Water Survey Report No. 2	No treatment; pumped to tanks and system.
	Two tanks
	(Max0.057) 0.021 (Min0.006)
	60% of pumpage is used for watering the grounds, fire-protection, etc.
MANITOBA ,	
CLEAR LAKE CAMP	FORT CHURCHILL
400 (summer)	2,000 - 2,500 *
Dept. of National Defence	Dept. of National Defence
Clear Lake	Lake Isabelle
Water is pumped with chlorination. A filter plant is planned for the summer of 1958.	Water is pumped with chlorination to a solids contact reactor, lime, alum & soda added for softening, & H ₂ SO ₄ added to clear well for stabilization. Water then pumped through pressure filters (4) to tank and system**
One 5	Elev. tank50 Three ground reservoirs _ 100, 100 & 250
25,000 g.p.d.	1956 0.270 (Max0.405) 1957 Plant capacity -0.504
None	15% used for boiler feed, cooling, etc
	* Also supplies National Harbours Board ** Activated silica also added at solids contact reactor. During spring run-off activated carbon also added; CuSO ₄ is added to lake in summer and fall.
	Municipally owned and operated Ottawa River, treated - supplied by city of Ottawa Coagulated, filtered, lime-stabilized and chlorinated by city of Ottawa- See also Water Survey Report No. 2 MANITOBA MANITOBA CLEAR LAKE CAMP 400 (summer) Dept. of National Defence

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

ONTARIO (Cont'd)

PICTON & ENVIRONS

storage tank and then pumped to system, of Picton*- See also Water Survey Report No. 3 Three elev. tanks50 each			
Dept. of National Defence	CAMP PETAWAWA	PICTON	POINT PETRIE
Lake Ontario (Bay of Quinte) - supplied by town of Picton * Supplied by to	5,700 - 6,800	2,100	500 - 1,200
supplied by town of Picton * River water is chlorinated, mixed, with spring water which is collected in a storage tank and then pumped to system. Three elev. tanks	Dept. of National Defence	Municipally owned and operated	Dept. of National Defence
spring water which is collected in a storage tank and then pumped to system. Three elev. tanks			Lake Ontario
1956	spring water which is collected in a	treated with chlorine dioxide by town of Picton*- See also Water Survey	Lake water is pumped with chlorination (calcium hypochlorite) to tank and system
O.8 (Min0.3) Plant capacity	Three elev, tanks50 each	Open ground reservoir750	Elev. tank (open)15
* Additional pumps and distribution system at camp. **MANITOBA (Cont'd) WINNIPEG & ENVIRONS **FORT OSBORNE BARRACKS	1956 (Max2.5 1957 0.8 (Min0.3	1955 1956 0.175 0.262 Plant capacity0.360	0.030 - 0.060
MANITOBA (Cont'd) WINNIPEG & ENVIRONS FORT OSBORNE BARRACKS 3,000 Municipally owned and operated	60% including construction	* Additional pumps and distribution	None
WINNIPEG & ENVIRONS FORT OSBORNE BARRACKS 3,000 Municipally owned and operated			
Municipally owned and operated			
Municipally owned and operated Shoal Lake - supplied by Greater Winnipeg Water District See Winnipeg Water Survey Report No. 10. Well water pumped to washroom only; Winnipeg city water is delivered by truck for drinking use. Well water pumped to washroom only; Winnipeg city water is delivered by truck for drinking use. Tank	FORT OSBORNE BARRACKS	FORT WHYTE STATION	CAMP SHILO, SHILO
Well and city of Winnipeg municipal supply Well and city of Winnipeg municipal supply Well water pumped to washroom only; Winnipeg city water is delivered by truck for drinking use. None at Barracks. Tank	3,000	Less than 10	3,300 - 3,500
Supply See Winnipeg Water Survey Report No. 10. Well water pumped to washroom only; Winnipeg city water is delivered by truck for drinking use. Tank	Municipally owned and operated	Dept. of National Defence	Dept. of National Defence
Winnipeg city water is delivered by truck for drinking use. Tank			Six deep wells, 4 normally being used.
Not known		Winnipeg city water is delivered by	used, are zeolite-softened, mixed and
Not known	None at Barracks.	Tank 680 pai.	Two elev. tanks 50 eac
is used for washing, cooling, etc. heating, etc. * All drinking water is municipal		50 g.p.d domestic * 100 " - other	1956 0.47 1.2
All drinking water is manicipal	20% for heating, washing, etc		1 . .
$_{ m I}$			

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

	SASKATCHEWAN	
CAMP OR ESTABLISHMENT	CAMP DUNDURN, DUNDURN	GRENFELL
Approx. population served 1955-56	1,200 (varies)	Varies widely
Ownership	Dept. of National Defence	Dept. of National Defence
Source of supply	Two wells, 63' deep	Well, near Armoury
Treatment	In 1956 no treatment. In near future to be aerated (pressure), zeolitesoftened and pumped with chlorination to system.	No treatment; pumped direct to system
Storage capacity(thousand gallons)	Elev. tank 50 Underground reservoir 85	None, except 200 gal, pressure tank.
Consumption(average in m.g.d.)	0.247 (Max 0.285) (Min 0.216) Plant capacity 0.432	No record
Uses other than domestic	About 6% used for heating, swimming pool, etc.	Very small, a hot water heating system.
Remarks		
	ALBERTA	
		CALGARY & ENVIRONS
CAMP OR ESTABLISHMENT	BANFF CADET CAMP, BANFF	CURRIE BARRACKS
Approx. population served, 1955-56	400 (summer)	3,600
Ownership	Dept. of National Defence	Municipally owned and operated

CAMP OR ESTABLISHMENT	BANFF CADET CAMP, BANFF	CURRIE BARRACKS
Approx. population served, 1955-56	400 (summer)	3,600
Ownership	Dept. of National Defence	Municipally owned and operated
Source of supply	Spring on Cascade Mountain	Elbow River, treated - supplied by city of Calgary
Treatment	No treatment; water flows by gravity to system.	See Calgary - Water Survey Report No. 7.
Storage capacity (thousand gallons)	One reservoir under construction50	None at Barracks
Consumption(average in m.g.d.)	No record	Not known
Uses other than domestic	25% of total use is for lawns, fire- fighting, etc.	No data
Remarks:		

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

SASKATCHEWAN (Concl'd)
REGINA

LLOYDMINSTER REGINA		REGINA	
Varies-usually less than 10		450	
Municipally owned and operated		Owned and operate	d by city of Regina and by D.N.D.
Three wells*- supplied by Lloydminster		Municipal supply fr	om Regina and one well on D.N.D. property
See Lloydminster, Water Survey Report No. 7			Survey Report No. 10 Well on D.N.D. propect for other than domestic use.
None at establishment			125 and reservoir125
No data	***************	2:	(Max 40,000 g.p.d.) 7,500 g.p.d.*(Min 15,000 g.p.d.)
No data	*************		nunicipal water for boilers and vehicle- ell for fire-fighting, lawns, etc.
* Two wells, mixed, are normally used		* 90% from Regina City.	
ALBERTA (Con		•	
CALGARY & ENVIRONS (Concl'd)	EDMONTON & EI		NVIRONS
SARCEE CAMP	GRIESBACH BARRACKS		BISSELL STATION
50	2,000		5
Dept. of National Defence	Municipally owned and operated		Dept. of National Defence
Two wells, 200 ft. deep, one at Tank Hangar and one at caretaker's resi- dence	North Saskatchewan River, treated- from city of Edmonton		Well
No treatment; pumped direct to system.	Treatment by city of Edmonton - See Water Survey Report No. 7		Well water is zeolite-softened and pumped to small system.
None	None at Barracks		None, except 250 gal. pressure tank
Not known	0.045 (Max 0.052)		12 g.p.d. (Max 20 g.p.d.)
None	60% used for Central Heating Plant, etc.		Heating.

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

ALBERTA (Cont'd)

EDMONTON & ENVIRONS (Cont'd)

	EDMONTON & ENVIRONS (Cont d)	
CAMP OR ESTABLISHMENT	WINTERBURN RIFLE RANGE	FORT CHIPEWYAN
Approx. population served, 1955-56	Varies widely	Less than 15
Ownership	Dept. of National Defence	Dept. of National Defence
Source of supply	Well	Four wells, each supplying a building; 4 small systems
Treatment	No treatment; pumped to system	No treatment; pumped direct to each system.
Storage capacity	None	None
Consumption	None at survey date	50 g.p.d. (Max75 g.p.d.) (Min25 g.p.d.)
Uses other than domestic	None	None
Remarks:		
CAMP OR ESTABLISHMENT	BRITISH COLUMBIA CAMP CHILLIWACK, CHILLIWACK	COURTENAY
Approx. population served, 1955-56	3,500	50 - 350 (summer)
Ownership	Dept. of National Defence	Dept. of National Defence
Source of supply	Vedder River and well at Wet Bridging Area*.	Springs
Treatment	Vedder River water is chlorinated and pumped to system. Well at Wet Bridging Area is pumped with hypo-chlorination to tank and system.	Spring water flows into open reservoir and then with hypo-chlorination by gravity to tank and system.
Storage capacity (thousand gallons)	Concrete reservoir (Vedder River)-250 One elev. tank (wood) at Wet Bridging Area	Open reservoir 16
Consumption	0.300** (Max0.540) Plant capacity0.6	600 g.p.d. (Max 1,000 g.p.d.)
Uses other than domestic	40% for Central Heating Plant, lawn sprinkling, fire-fighting, etc.	None; - a summer camp
Remarks:	* Present well serves caretaker & occasional work party. A new well is being drilled and a pressure tank will replace old wooden tank. ** Vedder River water	••••••
	ļ	

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

ALBERTA (Concl'd)

McMURRAY	STRATHMORE HALL, STRATHMORE	CAMP WAINWRIGHT, WAINWRIGHT
15 - 25	70 (varies)	1,050 - 4,250
Dept. of National Defence	Dept. of National Defence	Dept. of National Defence
Clearwater River and wells	Drilled well	Battle River and Betty Lake; two standby wells
No treatment. A privately-owned tanker delivers river water to cisterns in buildings. Well waters may be pumped to systems also.	No treatment; pumped direct to system. A water softener was installed in 1957.	Betty Lake, & Battle River waters are mixed, lime-softened, coagulated (alum), recarbonated, rapid sand-filtered (2), chlorinated and pumped to reservoirs and system.
5 cement cisterns 1,000 gal. each	None, except pressure tank - 250 gal.	One underground reservoir—— 1,000 One elev. tank 250
1956 1957 600 g.p.d. 250 g.p.d. Capacity20,000 g.p.d.	100 g.p.d. (Max175 g.p.d.) (Min 25 g.p.d.)	0.225 (Max0.300) Plant capacity - 3.6
None	A very small amount is used in the heating plant.	30% for heating, washing, etc.
		* Activated carbon used at times. Calcium chloride is also added along with lime.
	BRITISH COLUMBIA (Cont'd)	
	FORT NELSON & ENVIRONS	
FORT NELSON - MILE 295 ALASKA HIGHWAY	MAINTENANCE CAMP - MILE 392 ALASKA HIGHWAY	MAINTENANCE CAMP - MILE 456 ALASKA HIGHWAY
About 235 (varies)	28	35
Dept. of National Defence	Dept. of National Defence	Dept. of National Defence
Well	Summit Lake	Well in camp
Pumped with heating and iron removal (aeration) to solids contact unit, with lime, alum and calcium hypochlorite addition, thence to clear well and elev. tank and system. Activated silica used in 1958.	No treatment; pumped direct to system.	No tr eatment; pumped direct to system.
Clear well1,000 Elev. tank 30	None, except pressure tank - 250 gal,	None, except a 500 gale pressure tank.
30,000 g.p.d. (Max 70,000 g.p.d.)	950 g.p.d. (Max 1,100 g.p.d.)	1,150 g.p.d. (Max 1,300 g.p.d.)
Central heating plant*	None	None
See special report IR 58-215, Dec. 1958. *Zeolite softened		

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

BRITISH COLUMBIA (Cont'd)

FORT NELSON & ENVIRONS (Concl'd)

	FORT NELSON & ENVIRONS (Conci-	d)
CAMP OR ESTABLISHMENT	MAINTENANCE CAMP - MILE 546 ALASKA HIGHWAY	MAINTENANCE CAMP - WATSON LAKE, MILE 635 - ALASKA HIGHWAY
Approx. population served, 1955-56	Less than 50	Less than 35
Ownership	Dept. of National Defence	Dept. of National Defence
Source of supply	Gravel well alongside Coal River	Deep well; water seeps into pipe (10") through gravel.
Treatment	No treatment; pumped direct to system.	No treatment; pumped direct to system.
Storage capacity (thousand gallons)	None, except 500 gal. pressure tank	None, except 500 gal. pressure tank.
Consumption	No data	No data
Uses other than domestic	None	None
Remarks		
	BRITISH COLUMBIA (Cont'	d)
CAMP OR ESTABLISHMENT	CAMP NANAIMO, NANAIMO	RAYLEIGH
Approx. population served, 1955-56	1,300	50
Ownership	Municipally owned and operated	Dept. of National Defence
Source of supply	South Fork Nanaimo River- supplied by city of Nanaimo	Artesian well, shallow well and North Thompson River
Treatment	See Nanaimo - Water Survey Report No.5. Water is also pumped at the camp.	Artesian well flows into tank and to waste it is pumped with chlorination to system. Shallow well is an alternative domestic supply.*
Storage capacity (thousand gallons)	Two tanks (wood)250 each	Tank (wood) 28
Consumption	No data	2,400 g.p.d. (Max 3,200 g.p.d.)
Uses other than domestic	Heating at camp, at Indian Hospital and at Nanaimo High School	10% of water pumped is used for heating and fire-protection (river water).
Remarks:		* River water is pumped and used only for heating. There is a separate system and mains for fire-protection.

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

BRITISH COLUMBIA (Cont'd)

KAMLOOPS	BOUNDARY BAY,		LADNER	
Less than 10			650	
Dept. of National Defence		Owned and operate	d by Delta Municipality	
South Thompson River		Municipal water fro	om Delta Municipality	
Water is pumped with chlorination to to by gravity to system.	ank, and then flows	See Ladner - Water chlorinated at cam	Survey Report No. 6. Municipal water is	
Elev. tank (wood)	20	Cement reservoir	300	
800 g.p.d domestic 2,000 g.p.d other 2,800 g.p.d total Plant capacity - 0.72 m.g.d.			65 (Max 0.090) tt capacity 2.3	
50% used for heating and lost by leaks	age	12% used for boile	r feed and cooling.	
	BRITISH	COLUMBIA (Cont	'd)	
			VICTORIA AND ENVIRONS	
JERICHO BEACH, VANCOUVER	CAMP VERNON, VERNON		ALBERT HEAD	
1,000	1501,400		About 10	
Municipally owned and operated	Municipally owned and operated		Municipally owned and operated by Greater Victoria Water Board	
Supplied by city of Vancouver.	Mixed creeks, treated - supplied by city of Vernon		Sooke & Goldstream Lakes - supplied by Victoria	
See Vancouver - Water Survey Report No. 6	See Vernon, - Water Survey Report No. 6; additional pumping by camp.		See Greater Victoria Water Board - Water Survey Report No. 5	
None at establishment	Concrete reservoir 125		None at establishment	
0.115	0.007 to 0.285		No data	
3% used for heating in the Central Heating Plant.	None		None	

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

BRITISH COLUMBIA (Cont'd)

VICTORIA & ENVIRONS (Cont'd)

CAMP OR ESTABLISHMENT	GORDON HEAD	MARY HILL
Approx. population served, 1955-56	500	Less than 10
Ownership	Municipally owned and operated by Greater Victoria Water Board	Municipally owned and operated by Greater Victoria Water Board
Source of supply	Lakes - supplied by Victoria	Lakes - supplied by Victoria
Treatment	See Greater Victoria Water Board - Water Survey Report No. 5	See Greater Victoria Water Board - Water Survey Report No. 5
Storage capacity (thousand gallons)	None at establishment	None at establishment
Consumption (average in m.g.d.)	17,500 g.p.d. (Max 20,000 g.p.d.)	No data
Uses other than domestic	About 12% for hot water heating	None
Remarks:		
	YUKON TERRITORY	<u>'</u>
CAMP OR ESTABLISHMENT	MAINTENANCE CAMP - MILE 733 ALASKA HIGHWAY	MAINTENANCE CAMP - MILE 830 ALASKA HIGHWAY
Approx. population served, 1955-56	Less than 50	Less than 50
Ownership	Dept. of National Defence	Dept. of National Defence
Source of supply	Swift River - seepage from river to sump well alongside.	Brooks Creek
Treatment	No treatment; pumped direct to system.	No treatment; pumped direct to system.
Storage capacity (thousand gallons)	None, except 500 gal. pressure tank.	None, except 200 gal. pressure tank.
Consumption	No data	No data
Uses other than domestic	None	None
Remarks:		
		<u> </u>

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

BRITISH COLUMBIA (Concl'd)

VICTORIA & ENVIRONS (Concl'd)

Nuncipally owned and operated by Greater Victoria Water Board Lakes- supplied by Victoria
Vell, 196 feet deep See Greater Victoria Water Board - Water Survey Report No. 5 None at establishment
No treatment; pumped to reservoir and system.
Report No. 5 None at establishment
No data, but very little used 10% for boiler feed
YUKON TERRITORY (Cont'd) MAINTENANCE CAMP - MILE 1016 ALASKA HIGHWAY About 60
YUKON TERRITORY (Cont'd) MAINTENANCE CAMP - MILE 1016 ALASKA HIGHWAY About 60
YUKON TERRITORY (Cont'd) MAINTENANCE CAMP - MILE 1016 ALASKA HIGHWAY About 60
MAINTENANCE CAMP - MILE 1016 ALASKA HIGHWAY About 60
ALASKA HIGHWAY About 60
Dept. of National Defence
Shallow well on bank of Desadeash River Well, 90 feet deep - below permafrost Well, 60 feet deep Water is pumped with chlorination to Water is pumped with chlorination to
River Water is pumped with chlorination to Water is pumped with chlorination to
· · · · · · · · · · · · · · · · · · ·
Pressure tank 800 gal. Tank (steel)1,000 gal. Tank (wood)20
No data
None

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

YUKON TERRITORY (Cont'd)

CAMP OR ESTABLISHMENT		MAYO	
Approx. population served, 1955-56		Less than 20	
Ownership		Dept. of National I	Defence
Source of supply		4 shallow wells No	os. 1, 2, 3A & 3B
Treatment		Each water is zeol 3B are also filtere	ite - softened in each building. Wells 3A & d through charcoal.
Storage capacity (thousand gallons)		None, except smal	l pressure tanks
Consumption			100 g.p.d.
Uses other than domestic		None	
Remarks:			
CAMP OR ESTABLISHMENT	NORTH WE	EST TERRITORIES	FORT GOOD HOPE
	AKLAVIK		FORT GOOD HOPE
Approx. population served, 1955-56	Less than 15		Less than 10
Ownership	Aklavik Water Works		Dept. of National Defence
Source of supply	A small lake; Peel Channel, Mackenzie River*		Mackenzie River
Treatment	Lake water treated by the Municipality. This water is taken from standpipe by gravity in surface hose to Station. In winte, water hauled by barrel from Peel Channel.**		No treatment; pumped direct to cisterns in buildings. Water is boiled before domestic use.
Storage capacity (thousand gallons)	Three small tanks 1,000 gal. each		Three cisterns 1,800, 1,200 & 1,200 gal.
Consumption	75 g.p.d.		75 g.p.d.
Uses other than domestic	None		None
Remarks:	* A new system be New Aklavik, using water. ** Ice water normal	eing installed for Mackenzie River Ily used for drinking.	•••••

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

YUKON TERRITORY (Concl'd) WHITEHORSE & ENVIRONS

CAMP TAKHINI, WHITEHORSE	,	MAINTENANCE CAMP - MILE 75 HAINES ROAD					
6,000		Less than 15					
Dept. of National Defence		Dept. of National Defence					
McIntyre Creek, nearby		Mule Creek - a smal	l mountain stream				
Water is pumped with chlorination to res	ervoirs and system.	Water is pumped wit	h chlorination to system.				
Two steel reservoirs 250 total		Pressure tank	500 gal.				
1.0 (Max 2.0) (Min 0.8) Plant capacity - 3.0		No data					
50% used for heating and running to was	te in winter	None					
		TERRITORIES (Co					
FORT NORMAN	FORT PROVIDENC	E	FORT RELIANCE				
Less than 10	5 - 10	•	Less than 10				
Dept. of National Defence	Dept. of National D	efence	Dept. of National Defence				
Mackenzie River	Mackenzie River		McLeod Bay (Great Slave Lake)				
No treatment; pumped direct to system.	No treatment; pump buildings. Ice used is boiled in fall and domestic use.	in winter. Water	No treatment; pumped to cistern in building.				
Steel cisterns 1,500 gal.	Two steel tanks	- 1,500 gal each	One cistern 1,400 gal.				
200 g.p.d. Plant capacity 4,500 g.p.d.	150	g.p.d.	150 g.p.d.				
Cooling water for diesel plant	None	• • • • • • • • • • • • • • • • • • • •	None				

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

NORTHWEST TERRITORIES (Cont'd)

CAMP OR ESTABLISHMENT	FORT RESOLUTION
Approx. population served, 1955-56	Less than 15
Ownership	Dept. of National Defence
Source of supply	Great Slave Lake
Treatment	No treatment; pumped to tanks in buildings. Ice is used for drinking water.
Storage capacity (thousand gallons)	Tankseach 1,500 gal.
Consumption (average in m.g.d.)	300 g.p.d.
Uses other than domestic	None
Remarks:	

DESCRIPTION OF SOME ARMY WATERWORKS SYSTEMS

NORTHWEST TERRITORIES (Concl'd)

FORT SIMPSON	HAY RIVER STATION, HAY RIVER
Less than 30	500
Dept. of National Defence	Dept. of National Defence
Mackenzie (Snye) River*	Great Slave Lake
No treatment; water or ice hauled to cisterns in each building. Ice water used for drinking.	Water hauled by tank truck to cisterns in building with hypochlorite treatment.
Cisterns2,000 gal. each.	Cisterns1,200 gal.
570 g.p.d.	2,000 g.p.d.
None	None
* At junction of Liard and Mackenzie Rivers.	

TABLE II

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

No. No.		PROVINCE	(2)	NEWEOI				NT/	NA CCO	rt A		
Camp or Establishment Camp										L1A		
No. Potty Harbour Long Ponty Harbour Long Ponty Harbour Long Ponty Harbour Long Ponty Harbour Englished Water Finished Water	-			ST. J	OHN'S							
No. Petry Harbour Long Pond Petry Harbour Long Pond Pinished Water Pinished W		Camp or Establishment					Aldershot Military Camp					
No. Petry Harbour Long Pond Petry Harbour Long Pond Pinished Water Pinished W		Source(s)	L	Lakes - Municipal Supply								
No. Finished Water Finished Finished		• •		*	1		Mage	e Lake- tre	ated. Mun	icipal		
No. Finished Water Finished Water	1				1	I		Supply from	n Kentville	*		
Sampling Point	NO.					Lake						
Date of sampling	21.51			Finished '	Water			Finis	hed Water			
Storage period (days)		Sampling Point	At Tap		At Tap			At Ca	тр Тар			
Storage period (days)	,	Day of any line	D== 6/56	A== 20/50	J E/E/	4 20/50	1 20/5/	1 1/10/		/- /		
Sampling temperature, \(^{9}C. \)			•		1		,			l		
Test temperature, °C. 23.0 26.7 24.6 26.7 21.2 23.8 25.6 23.6	į	• • •	1	-		1/:30	•					
5 Caypen consumed by KMnO ₄ - 5.3 6 3.7 - 8 10 14 6 Carbon dioxide (CO ₂),(calculated) 1.3 1.4 1.8 0.5 1.0 1.9 1.7 2.9 7 pH 6.2 6.1 6.2 6.6 7.4 (7.0) 6.8 6.9 6.7 8 Colour 30 25 10 10 15 (30) 5 10 40 9 Turbidity 30 8 0.7 0.3 0 3 0 1 10 Suspended matter, grited at 105°C. - - - - - - 1.3 - - - 1.3 - - 1.0 4 8.0 8.4 14.4 15.2 12.4 16.8 8.2.4 13.3 -	- 1		1			26.7	i	-	1			
6 Carbon dioxide (CO₂) (calculated) 1.3 1.4 1.8 0.5 1.0 1.9 1.7 2.9 7 pH 6.2 6.1 6.2 6.6 7.4 (7.0) 6.8 6.9 6.7 8 Colour 30 25 10 10 15 (30) 5 10 40 9 Turbidity 3 0.8 0.7 0.3 0 3 0 1 10 Suspended matter, dried at 105°C. -			!	1	1		21.2	l		!		
PH				_	ļ	-	-		ļ.			
Residue on evaporation, dried at 105°C. - - - - - - - - -	}		_		1	1	ă .	1		1		
Turbidity		-	;		į	1		l	1 1	ŀ		
Suspended matter, dried at 105°C. - - - - - - 3.4 - - - 1.2 Suspended matter, ignited at 550°C. - - - - - 3.4 - - - 3.4 - - - 1.2 Residue on evaporation, dried at 105°C. - 28.4 34.0 27.6 53.2 57.6 34.8 52.4 13 Ignition loss at 550°C. - 10.4 8.0 8.4 14.4 15.2 12.4 16.8 15.2 12.4 16.8 14.4 15.2 12.4 16.8 15.2 12.2 12.4 16.8 15.2 12.2 12.4 12.2 12.4 12.2 12.4 12.2 12.4 12.2 12.4 12.2 12.4 12.3 12.4 12.				1	1	ł	1	1		1		
11 Suspended matter, ignited at 550°C. - - - - 3.4 - -		•	1	0.8	0.7	0.3	U	_	0	1		
Residue on evaporation, dried at 105°C. - 28.4 34.0 27.6 53.2 57.6 34.8 52.4		-		-	_	-	-		-	-		
13		-			-	1	-		-	-		
14 Specific conductance, micromhos at 25°C. 34.42 32.8 36.44 35.7 60.7 74.13 72.50 67.03 15 Calcium (Ca) 0.8 0.6 0.9 0.5 7.0 7.8 7.3 4.2 16 Magnesium (Mg) 0.5 0.5 0.5 0.5 0.7 1.2 1.2 1.2 2.1 17 Iron (Fe) Total - 0.02 0.02				ł	1	1	li -	1		1		
Calcium (Ca)			i	1		1	11		ł	1		
16	-	•		1	-		ll i	1	1	ł .		
Iron (Fe) Total		, ,	i	ļ.	i		li	ł	1	f		
Dissolved			0.5	0.5	0.5	0.7	1.2	1.2	1.2	2.1		
Manganese (Mn)		, ,	-		-		-	-	-	-		
Aluminum (Al)			1	1	1	1	!]	1		1		
Copper (Cu)			1	į.	ł	1	11	1	ł	1		
Zinc (Zn) 0.0 0		, .	1	í		Į.	11		1	1 .		
23 Sodium (Na) 3.8 3.8 4.3 4.3 2.9 2.8 2.9 3.5 24 Potassium (K) 0.5 0.4 0.3 0.3 0.4 0.5 0.4 0.5 25 Ammonium (NH ₄) 0.2 0.1 0.2 0.05 - 0.1 0.1 0.0 26 Carbonate (CO ₃) 0.0 0.2 1.0 0.75 0.3 0.8 0.1 1.6 0.2 0.0 1.2 2.4 0.6 0.0 0.0				1	1		0.0	1	1	1		
24 Potassium (K) 0.5 0.4 0.3 0.3 0.4 0.5 0.4 0.5 25 Ammonium (NH4) 0.2 0.1 0.2 0.05 - 0.1 0.1 0.0 26 Carbonate (CO3) 0.0 1.4.6 12.3 12.3 12.3 12.3 12.3 12.3 1.3 1.4.7 7.4 8.4 8.7 8.8 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 12.3 1			1	1		l .	-	1		1		
Ammonium (NH ₄) 0.2 0.1 0.2 0.05 - 0.1 0.1 0.1 0.0 Carbonate (CO ₃) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.			1	1	1	i	1	I	7	3.5		
26 Carbonate (CO ₃) 0.0 14.6 12.3			l	ł	i	1	0.4	1		0.5		
27 Bicarbônate (HCO ₃) 1.5 1.2 1.8 1.3 14.7 7.4 8.4 8.7 28 Sulphate (SO ₄) 2.5 2.9 2.7 3.8 14.0 16.0 14.6 12.3 29 Chloride (Cl) 6.5 6.5 6.5 7.1 6.9 2.9 4.4 4.8 4.7 30 Fluoride (F) 0.0 0.0 0.0 0.0 0.25 1.0 0.75 0.3 31 Nitrate (NO ₃) 0.8 0.1 1.6 0.2 0.0 1.2 2.4 0.6 32 Silica (SiO ₂) ₇ colorimetric 1.3 0.8 1.6 1.2 2.2 3.8 3.9 3.8 33 Carbonate hardness as CaCO ₃ 1.2 1.0 1.5 1.1 12.1 6.1 6.9 7.2 34 Non-carbonate hardness as CaCO ₃ 2.9 2.6 4.4 3.0 10.7 18.3 16.3 11.9 35 Total hardness as CaCO ₃ 4.1 3.6 5.9 4.1 22.8 (23.4) 24.4		l '	1	1			1!	0.1	0.1	0.0		
28 Sulphate (SO ₄) 2.5 2.9 2.7 3.8 14.0 16.0 14.6 12.3 29 Chloride (CI) 6.5 6.5 7.1 6.9 2.9 4.4 4.8 4.7 30 Fluoride (F) 0.0 0.0 0.0 0.0 0.25 1.0 0.75 0.3 31 Nitrate (NO ₃) 0.8 0.1 1.6 0.2 0.0 1.2 2.4 0.6 32 Silica (SiO ₂), colorimetric 1.3 0.8 1.6 1.2 2.2 3.8 3.9 3.8 33 Carbonate hardness as CaCO ₃ 1.2 1.0 1.5 1.1 12.1 6.1 6.9 7.2 34 Non-carbonate hardness as CaCO ₃ 2.9 2.6 4.4 3.0 10.7 18.3 16.3 11.9 35 Total hardness as CaCO ₃ 4.1 3.6 5.9 4.1 22.8 (23.4) 24.4 23.2 19.1 36 Sum of constituents 17.4 16.2 19.9 18.6 38.7 43.1 42.8 <td></td> <td>1</td> <td>i</td> <td>ł</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>0.0</td>		1	i	ł		1				0.0		
Chloride (Cl) 6.5 6.5 7.1 6.9 2.9 4.4 4.8 4.7 30 Fluoride (F) 0.0 0.0 0.0 0.0 0.0 0.25 1.0 0.75 0.3 Nitrate (NO ₃) 0.8 0.1 1.6 0.2 0.0 1.2 2.4 0.6 Silica (SiO ₂), colorimetric 1.3 0.8 1.6 1.2 2.2 3.8 3.9 3.8 Carbonate hardness as CaCO ₃ 1.2 1.0 1.5 1.1 12.1 6.1 6.9 7.2 Non-carbonate hardness as CaCO ₃ 2.9 2.6 4.4 3.0 10.7 18.3 16.3 11.9 Total hardness as CaCO ₃ 4.1 3.6 5.9 4.1 22.8 (23.4) 24.4 23.2 19.1 Sum of constituents 17.4 16.2 19.9 18.6 38.7 43.1 42.8 37.4 Per cent sodium 58.0 67.0 59.2 66.7 19.8 17.7 19.6 25.0 Saturation index at test temperature 5.1 -5.2 -4.9 -4.6 -2.2 -2.9 -2.7 -3.2 Stability index at test temperature 16.4 16.5 16.0 15.8 11.8 12.6 12.3 13.1					4	l	11	1	1	8.7		
30 Fluoride (F) 0.0 0.0 0.0 0.0 0.25 1.0 0.75 0.3 31 Nitrate (NO3) 0.8 0.1 1.6 0.2 0.0 1.2 2.4 0.6 32 Silica (SiO2), colorimetric 1.3 0.8 1.6 1.2 2.2 3.8 3.9 3.8 33 Carbonate hardness as CaCO3 1.2 1.0 1.5 1.1 12.1 6.1 6.9 7.2 34 Non-carbonate hardness as CaCO3 2.9 2.6 4.4 3.0 10.7 18.3 16.3 11.9 35 Total hardness as CaCO3 4.1 3.6 5.9 4.1 22.8 (23.4) 24.4 23.2 19.1 36 Sum of constituents 17.4 16.2 19.9 18.6 38.7 43.1 42.8 37.4 37 Per cent sodium 58.0 67.0 59.2 66.7 19.8 17.7 19.6 25.0 38 Saturation index at test temperature -5.1 -5.2 -4.9 -4.6 -2.2 -2.9		1		1	1		11	1		ī		
31 Nitrate (NO ₃) 0.8 0.1 1.6 0.2 0.0 1.2 2.4 0.6 32 Silica (SiO ₂), colorimetric 1.3 0.8 1.6 1.2 2.2 3.8 3.9 3.8 33 Carbonate hardness as CaCO ₃ 1.2 1.0 1.5 1.1 12.1 6.1 6.9 7.2 34 Non-carbonate hardness as CaCO ₃ 2.9 2.6 4.4 3.0 10.7 18.3 16.3 11.9 35 Total hardness as CaCO ₃ 4.1 3.6 5.9 4.1 22.8 (23.4) 24.4 23.2 19.1 36 Sum of constituents 17.4 16.2 19.9 18.6 38.7 43.1 42.8 37.4 37 Per cent sodium 58.0 67.0 59.2 66.7 19.8 17.7 19.6 25.0 38 Saturation index at test temperature -5.1 -5.2 -4.9 -4.6 -2.2 -2.9 -2.7 -3.2 39 Stability index at test temperature 16.4 16.5 16.0 15.8<		1	1	1	1	1	II	1	ł			
32 Silica (SiO ₂), colorimetric 1.3 0.8 1.6 1.2 2.2 3.8 3.9 3.8 33 Carbonate hardness as CaCO ₃ 1.2 1.0 1.5 1.1 12.1 6.1 6.9 7.2 34 Non-carbonate hardness as CaCO ₃ 2.9 2.6 4.4 3.0 10.7 18.3 16.3 11.9 35 Total hardness as CaCO ₃ 4.1 3.6 5.9 4.1 22.8 (23.4) 24.4 23.2 19.1 36 Sum of constituents 17.4 16.2 19.9 18.6 38.7 43.1 42.8 37.4 37 Per cent sodium 58.0 67.0 59.2 66.7 19.8 17.7 19.6 25.0 38 Saturation index at test temperature -5.1 -5.2 -4.9 -4.6 -2.2 -2.9 -2.7 -3.2 39 Stability index at test temperature 16.4 16.5 16.0 15.8 11.8 12.6 12.3 13.1	-	•	j	Į.	1	1	11	1	1	1		
33 Carbonate hardness as CaCO ₃ 1.2 1.0 1.5 1.1 12.1 6.1 6.9 7.2 34 Non-carbonate hardness as CaCO ₃ 2.9 2.6 4.4 3.0 10.7 18.3 16.3 11.9 35 Total hardness as CaCO ₃ 4.1 3.6 5.9 4.1 22.8 (23.4) 24.4 23.2 19.1 36 Sum of constituents 17.4 16.2 19.9 18.6 38.7 43.1 42.8 37.4 37 Per cent sodium 58.0 67.0 59.2 66.7 19.8 17.7 19.6 25.0 38 Saturation index at test temperature -5.1 -5.2 -4.9 -4.6 -2.2 -2.9 -2.7 -3.2 39 Stability index at test temperature 16.4 16.5 16.0 15.8 11.8 12.6 12.3 13.1	_		1		· ·		11		1	1		
34 Non-carbonate hardness as CaCO ₃ 2.9 2.6 4.4 3.0 10.7 18.3 16.3 11.9 35 Total hardness as CaCO ₃ 4.1 3.6 5.9 4.1 22.8 (23.4) 24.4 23.2 19.1 36 Sum of constituents 17.4 16.2 19.9 18.6 38.7 43.1 42.8 37.4 37 Per cent sodium 58.0 67.0 59.2 66.7 19.8 17.7 19.6 25.0 38 Saturation index at test temperature -5.1 -5.2 -4.9 -4.6 -2.2 -2.9 -2.7 -3.2 39 Stability index at test temperature 16.4 16.5 16.0 15.8 11.8 12.6 12.3 13.1			1	1	1		13	<u>l</u>	4			
35 Total hardness as CaCO ₃ 4.1 3.6 5.9 4.1 22.8 (23.4) 24.4 23.2 19.1 36 Sum of constituents 17.4 16.2 19.9 18.6 38.7 43.1 42.8 37.4 37 Per cent sodium 58.0 67.0 59.2 66.7 19.8 17.7 19.6 25.0 38 Saturation index at test temperature -5.1 -5.2 -4.9 -4.6 -2.2 -2.9 -2.7 -3.2 39 Stability index at test temperature 16.4 16.5 16.0 15.8 11.8 12.6 12.3 13.1		(l .	_	1	E	11	1	1	1		
36 Sum of constituents 17.4 16.2 19.9 18.6 38.7 43.1 42.8 37.4 37 Per cent sodium 58.0 67.0 59.2 66.7 19.8 17.7 19.6 25.0 38 Saturation index at test temperature -5.1 -5.2 -4.9 -4.6 -2.2 -2.9 -2.7 -3.2 39 Stability index at test temperature 16.4 16.5 16.0 15.8 11.8 12.6 12.3 13.1	_		1	ł	1		13	!	1	1		
37 Per cent sodium 58.0 67.0 59.2 66.7 19.8 17.7 19.6 25.0 38 Saturation index at test temperature -5.1 -5.2 -4.9 -4.6 -2.2 -2.9 -2.7 -3.2 39 Stability index at test temperature 16.4 16.5 16.0 15.8 11.8 12.6 12.3 13.1	-	1	1		1	Į.	li .	1		i		
38 Saturation index at test temperature5.1 -5.2 -4.9 -4.6 -2.2 -2.9 -2.7 -3.2 -3.2 Stability index at test temperature 16.4 16.5 16.0 15.8 11.8 12.6 12.3 13.1	-		1	{		1	II.			1		
39 Stability index at test temperature 16.4 16.5 16.0 15.8 11.8 12.6 12.3 13.1	-	1				1	il .		1			
	-	1	l		į.	1	D .	i	1			
Remarks: * See Water Survey Report No. 11)	Stability index at test temperature	10,4	10.)	10.0	15.8	11.8	12.6	12.3	13.1		
See water our cy Report No. 11		Remarks:					* See Wat	er Survey F	leport No	11		
		Temaras,					Jee wat	er om ses t	cepott NO.	11		
		1		<u>, </u>			1					

TABLE II CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

NEAR KEI	NTVILLE	(Concl'd)					DEBERT						
	 	mp (Concl'd)	-		(Camp Debert						
			-		Deep Wells†								
Dec	ep Well	ł			<u>-</u>							1	
			Well	No. 1	i	Well No. 2 Well No. 12			Well No. 12				
Raw an	d Finished	Water			······································	Raw and	Finished Wa	ter					
At 3	Pump		At P	ump			At Pump			At Pump		ļ	
16/56	A 0/56	Dec 13/56	Apr. 10/56	Ang. 29/56	[an. 29/57	Apr. 19/56	Aug. 29/56	Tan.29/57	Apr.19/56	Aug. 29/56	Jan. 28/57	1	
56:85	7:12	42:167	57:82	41:55	42:135		41:55	42:135	57:82	41:55	43:136	2	
7.2	8.9	7.2		-	3.9	-	-	3.9	-	-	-	3	
22.9	25.4	21.6	24.0	2 0. 6	25.5	23.8	20.6	25.4	24.0	2 0. 8	25.4	4	
7	8	_	9	-	2	7	-	-	8	-	-	5	
0.0	0.0	0.0	1.4	1.5	1.9	1.8	1.8	1.5	0.9	1.1	1.0	6	
8.8	8.8	8.6	8.0	7.9	7.8	7.7	7.6	7.9	8.0	8.0	8.0	7	
0	0	5	0	5	0	0	5	5	0	5	5	8	
2	4	2	0	0	0	0	2	0	9	15	0	9	
-	8.9	-	-	-	-	-	-	-	16.3	-	-	10	
-	4.3	-	-	_	-	-	-	-	9.1	-	-	11	
94.8	97.6	95.2	119	_	117	87.2	-	106	84.8	-	95.6	12	
18.8	20.8	18.8	13.6	-	27.2	14.0	-	18.8	13.2	-	24.8	13	
135.4	142.4	133.3	190.7	149.1	154.3	135.3	118.4	165.2	116.8	123.1	125.9	14	
3.9	4.9	4.2	33.2	26.2	26.6	22.9	19.4	27.0	15.2	15.7	15.8	15	
0.4	0.1	0.1	0.6	0.3	0.3	0.4	0.7	1.1	2.4	2.6	2.6	16	
-	-	-	-	-	-	-	-	-	-	-	-	17	
0. 10	0.03	Trace	0. 0 2	-	0.0	Trace	-	Trace	0.06	-	Trace	18	
0.0	0.0	0.0	0 .0	-	0.0	0.0	-	0.0	0.0	-	0.0	19	
Trace	0.08	0.14	0.13	-	0.39	0.10	-	0.16	Trace	-	0.24	20	
0.0	0. 0	0.0	0.0	-	Trace	0.0	-	0.0	0.0	-	0.0	21	
0.0	0.0	0.0	0.0	-	0.02	0.4		0.0	0.0	-	0.0	22	
21.0	22.0	24.0	3.7	2.7	3.2	2.0	2.0	2.1	4.0	4.6	4.7	23	
2.4	2.7	2.3	1.0	0.8	0.8	0.8	0.7	0.7	0.9	1.0	1.0	24	
0.0	0.0	0.1	0.1	0.1	0.0	0.1	0.1	0.0	0.1	0.1	0.0	25	
3.6	3.6	1.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26	
49.4	54.6	55.1	89.7	70.2	77.9	56.8	45.1	74.2	57.2	64.0	66.6	27	
3.3	3.3	3.9	13.2	8.9	7.9	8.5	10.7	7.8	3.8	4.2	2.5 3.6	28	
6.5	6.8	6.9	2.9	3.8	3.2	4.9	4.9	4.7	3.1	3.2	0.0	29	
0.2	0.0	0.0	0.0	-	0.0	0.1	-	0.0	0.1 0.8	1.2	0.6	30	
0.8	4.0	4.0	3.2	1.6	0.8	0.8	1.6	1.2 9.5	13	14	15	32	
11	8.8	12	7.4	7.7	7.9	6.3	5.5	6 0 .9	46.9	49.9	50.1	33	
11.4	12.6	10.9	73.6	57.6	63.9	46.6	37.0 14.3	11.0	0.9	0.0	0.0	34	
0.0	0.0	0.0	11.7	9.0	3.1 67.0	12.2 58.8	51.3	71.9	47.8	49.9	50.1	35	
11.4	12.6	10.9	85.3	66.6 86.6	89.4	74.8	67.7	90.1	71.2	78.3	78.6	36	
76.4	83.2	87.1	110	8.0	9.0	6.7	7.7	5.8	15.1	16.4	16.2	37	
75.7	74.2	77.8	8.4	-0.4	-0.4	-0.7	-1.0	-0.3	-0.6	0.0	-0.4	38	
-0.4 9.6	- 0. 2 9.2	- 0. 5	0.0 8.0	8.7	8.6	9.1	9.6	8.5	9.2	8.0	8.8	39	
7.0	1	-	+	_		† New	Well No. 3	is near					
1			\		ļ		l No. 2		}	Į.	1	-	

68664-31/2

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

NOVA SCOTIA (Cont'd)

		HALIFAX & ENVIRONS								
	Camp or Establishment	Bedf	ord Rifle Range	Elkins Bar	racks					
	Source (s)	s	hallow Well	Brook at Cowbay Dam						
NO.	·	Raw	and Finished	Water	Raw and F	inished Water				
•	Sampling Point	At N.S.R	.A. Hut Tap	At	Pump					
1	Date of sampling	Apr.20/56	Aug.8/56	Dec.4/56	Apr.18/56	Aug.6/56				
2	Storage period (days)	55:81	28:49	49:169	57:83	25:30				
3	Sampling temperature, °C	-	-	-	1.1	12.8				
4	Test temperature, °C	26.0	24.2	26.1	27.0	21.6				
5	Oxygen consumed by KMnO ₄	8	9	10	12	-				
6	Carbon dioxide (CO ₂) (calculated)	4.0	5	3.9	7.0	4.1				
7	pH	7.0	6.8	6.7	5.4	6.3				
8	Colour	0	5	5	30	20				
9	Turbidity	4	3	0	5	1				
10	Suspended matter dried at 105°C	2.1	-	-	3.5	-				
11	Suspended matter ignited at 550°C	1.0	-	-	2.9	-				
12	Residue on evaporation, dried at 105°C.	56.8	-	41.6	39.6	-				
13	Ignition loss at 550°C	8.8	-	9.6	13.2	-				
14	Specific conductance, micromhos at 25°C	85.80	54.94	60.16	48.07	51.57				
15	Calcium (Ca)	8.5	5.8	4.4	2.6	3.0				
16	Magnesium (Mg)	0.4	0.3	0.8	0.6	0.7				
17	Iron (Fe) Total	_	-	-	-	_				
18	Dissolved	Trace	-	0.0	0.04	0.08				
19	Manganese (Mn)	0.0	_	Trace	0.01	-				
20	Aluminum (Al)	0.03	-	0.25	0.05	_				
21	Copper (Cu)	0.0	0.03	0.0	0.0	-				
22	Zinc (Zn)	0.0	0.5	0.0	0.0	-				
23	Sodium (Na)	5.1	2.4	3.7	3.7	4.3				
24	Potassium (K)	3.7	0.5	1.0	0.8	0.7				
25	Ammonium (NH ₄)	0.1	0.1	0.1	0.1	0.3				
26	Carbonate (CO ₃)	0.0	0.0	0.0	0.0	0.0				
27	Bicarbonate (HCO ₃)	26.6	18.9	12.9	1.1	4.8				
28	Sulphate (SO ₄)	7.1	3.8	7.6	7.5	6.6				
29	Chloride (Cl)	4.9	2.6	3.1	6.9	6.9				
30	Fluoride (F)	0.1	_	0.0	0.2	_				
31	Nitrate (NO ₃)	4.0	0.6	1.2	1.2	0.8				
32	Silica (SiO ₂), colorimetric	5.8	4.3	4.2	2.0	1.2				
33	Carbonate hardness as CaCO ₃	21.8	15.5	10.6	0.9	3.9				
34	Non-carbonate hardness as CaCO ₃	1.1	0.2	3.7	8.1	6.5				
35	Total hardness as CaCo ₃	22.9	15.7	14.3	9.0	10.4				
36	Sum of constituents	52.7	29.8	32.7	26.1	26.9				
37	Per cent sodium	28.3	23.3	31.8	43.1	45.0				
38	Saturation index at test temperature	-2.1	-2.6	-2.9	-5.5	-4.0				
39	Stability index at test temperature	11.2	12.0	12.5	16.4	14.3				
	Remarks:				High level	Medium hig level				

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

NOVA SCOTIA (Cont'd)

lkins Barracks			Garrison	Barracks, Winds	or Park					
Brook at	Halifax Mu	ın icipal Supply		nain Lakes and/o		Treated*.				
Cowbay Dam										
Raw and Fin- ished Water			· · · · · · · · · · · · · · · · · · ·	Finished Water				N		
At Pump	At City Tap At Tap, C.H.P., Windsor Park									
Dec.12/56	Aug.27/54	July 18/55	Nov. 1955	Jan.10/56	Apr.10/56	May 10/56	July 3/56	1		
47:168	20:34	16:22	-	16:23	16:23	6:15	10:14	2		
-0.6	18.9	16.7	-	6.7	9.4	11.1	-	3		
23.4	20.9 (21.5)	29.0	24.0	22.5	23.4	23.0	23.4	4		
17	6	11	-	_	_	5	6	5		
8.4	1.5	1.7	1.3	1.4	2.0	2.4	l o 1	6		
5.5	6.9 (7.6)	6.7	7.1	6.9	6.8	6.7	7.9	7		
60	8	20	30	30	35	20	30	8		
0	0	2	_	0	0	0.2	0	9		
_	_ '	_	_		_	0.2	_	10		
	_	_	_		_		_	11		
50.0	35.8	42.8	_		42.4	48.8	48.0	12		
24.8	13.8	16.0	_		17.6	17.6	17.6	13		
			62.12	51.10		1	k	14		
62.74	45.31	49.9	62.13	51.19	52.44	42.99	56.2	15		
3.3	3.5	3.5	4.3	4.3	5.1	4.1	6.1	16		
0.9	0.5	0.6	0.9	0.5	0.4	0.3	0.5	17		
_	•		-	-	_	-	-	18		
0.04	0.09	0.42	0.67	-	0.29	0.24	0.07	19		
0.0	0.02	0.06	0.02	-	0.02	0.04	0.02	20		
0.16	0.03	0.06	0.0	-	0.07	0.28	0.31	21		
0.0	0.06	0.03	Trace	-	-	Trace	0.0	22		
0.0	-	-	-	-	-	0.1	. 0.3	l .		
5.5	3.4	2.8	3.4	3.2	3.2	2.7	3.3	23		
0.7	0.3	0.4	0.4	0.4	0.4	0.3	0.4	24		
0.2	0.0	0.2	0.0	0.0	0.1	0.0	0.1	25		
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26		
1.6	7.1	4.3	10.4	6.6	8.0	7.2	11.1	27		
9.8	5.0	5.3	2.8	3.6	4.6	3.6	2.8	28		
9.7	6.7	7.6	7.2	7.3	6.5	6.4	7.4	29		
0.0	0.1	0.0	0.0	-	<u> </u>	0.0	0.9	30		
0.2	Trace	0.4	0.8	0.8	1.2	1.2	2.8	31		
3.1	2.0	1.8	2.4	2.7	2.8	1.9	4.8	32		
1.3	5.8	3.5	8.5	5.4	6.6	5.9	9.1	33		
10.6	5.0	9.4	5.9	7.4	7.8	5.6	8.2	34		
11.9	10.8	12.9	14.4	12.8	14.4	11.5	17.3	35		
34.4	25.1	25.3	28.0	26.0	28.6	24.5	34.9	36		
45.5	39.9	32.0	31.4	34.3	30.6	29.7	26.8	37		
-5.3	-3.2	-3.4	-2.7	-3.1	-3.0	-3.3	-1.7	38		
10.6	13.3	13.5	12.5	13.1	12.8	13.3	11.3	39		
10.0	*J•J	1 × J+J	14.7	1,,1	1	1	****			
	* See also W.S.R	. No. 11						1		
			Normal flow	Flood	Normal level	Spring floods	Medium flow			

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

NOVA SCOTIA (Cont'd)

		HALIFAX & ENVIRONS (Cont'd)							
	Camp or Establishment	Hamm	ond Plains	McNab's Island Well					
	Source(s)	w	ell						
NO.		Raw and Fin	ished Water	Raw	and Finished W	ater			
	Sampling Point	At Stat	tion Tap		At Tap				
1	Date of sampling	Apr.20/56	Dec.4/56	Apr.17/56	Aug.6/56	Dec.12/56			
2	Storage period (days)	55:81	49:169	59:84	25:30	47:168			
3	Sampling temperature, ⁰ C	-	-	2.2	8.9	0.0			
4	Test temperature, °C	25.8	25.8	24.0	21.6	23.6			
5	Oxygen consumed by KMnO4	7	9	10	-	-			
6	Carbon dioxide (CO2) (calculated)	1.2	1.0	18	22	10			
7	рН	8.2	8.3	5.2	5.8	5.7			
8	Colour	0	5	0	0	5			
9	Turbidity	3	0	0.3	0	0			
10	Suspended matter, dried at 105° C	2.2	_	_	_	_			
11	Suspended matter ignited at 550°C	1.3	_	_	_	_			
12	Residue on evaporation, dried at 105° C	144	145	48.0	_	60.4			
13	Ignition loss at 550°C	7.2	14.8	13.6	_	18.4			
14	Specific conductance, micromhos at 25°C.	233.2	233.5	65.58	111.1	95.84			
15	Calcium (Ca)	21.1	21.4	2.1	5.0	4.0			
16	Magnesium (Mg)	3.4	2.7	1.2	2.1	1.6			
17	Iron (Fe) Total	J.4	2.7	1.2	2.1	1.6			
18	Dissolved	0.02	0.0	0.04	0.06				
19	Manganese (Mn)	0.02	Trace	0.04	0.06	0.0			
20	_ ·	0.01			-	0.15			
20	Aluminum (Al)	0.06	0.37	0.31	-	0.13			
	Copper (Cu)		Trace	0.0	-	0.0			
22	Zinc (Zn)	0.3	0.1	0.1	-	0.0			
23	Sodium (Na)	24.0	24.0	6.3	10.9	9.1			
24	Potassium (K)	1.5	1.5	0.4	0.5	0.4			
25	Ammonium (NH ₄)	0.1	0.0	0.1	0.0	0.05			
26	Carbonate (CO ₃)	0.0	0.0.	0.0	0.0	0.0			
27	Bicarbonate (HCO ₃)	120	124	1.8	7.7	3.2			
28	Sulphate (SO ₄)	14.6	14.7	9.6	13.7	12.7			
29	Chloride (Cl)	4.4	3.1	9.6	16.7	15.4			
30	Fluoride (F)	1.0	1.0	0.1	-	0.0			
31	Nitrate (NO ₃)	2.4	0.4	2.4	1.6	0.2			
32	Silica (SiO ₂), colorimetric	10	11	3.5	7.7	6.4			
33	Carbonate hardness as CaCO ₃	66.0	64.5	1.5	6.3	2.6			
34	Non-carbonate hardness as CaCO ₃	0.0	0.0	8.7	14.8	14.0			
35	Total hardness as CaCO ₃	66.0	64.5	10.2	21.1	16.6			
36	Sum of constituents	142	142	36.5	61.7	51.7			
37	Per cent sodium	42.8	43.2	52.1	52.0	52.1			
38	Saturation index at test temperature	4 0.1	+0.2	-5.6	-4.1	-4.7			
39	Stability index at test temperature	8.0	7.9	16.4	14.0	15.1			
	Remarks:	<u> </u>				+			

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)
NOVA SCOTIA (Cont'd)

Raw and Finished Water At Pump At Station Tap Apr.20/56 Aug.8/56 Dec.4/56 Apr.24/56 Aug.8/56 Aug.8/56 Dec.5/56 S5:881 43:56 S2:169 51:77 43:63 28:49 48:168 Aug.8/56 Aug.8			oubt	York Redo			llace Hill	Wal
Island Lake Island Lake Raw and Finished Water At Pump At Station Tap At Station Tap Apr.20/56 Aug.8/56 52:169 51:77 43:63 28:49 48:168 - 25.9 22.6 22.1 26.0 22.6 24.2 25.8 7 9 10 13 16 12 17 17 4.3 3 5.8 1.8 8.0 3.5 10 30 30 30 30 30 30 30		Pine	East	ne	West Pi			
Raw and Finished Water	ļ	l Lake	Island	ıke	Island La		Well	
At Pump At Station Tap At Station Tap Apr.20/56 Aug.8/56 Dec.4/56 Apr.24/56 Aug.8/56 Dec.5/56 55:81 43:56 52:169 51:77 43:63 28:49 48:168 - - - - - - - - 25.9 22.6 22.1 26.0 22.6 24.2 25.8 7 9 10 13 16 12 17 4.3 5.8 1.8 8.0 3.5 10 30 7,3 7.2 7.7 5.1 6.8 4.9 4.5 40 25 35 9 0 0 0 0 6.4 - 3.3 2.7 - - - - 5.5 - 1.7 0.9 - - - - 84.8 - 102 36.0 64.0 - 41.2 - 9.2	- ,					er	v and Finished Wat	Rav
Apr.20/56 Aug.8/56 Dec.4/56 Apr.24/56 Aug.8/56 Aug.8/56 Dec.5/56 55:81 43:56 52:169 51:77 43:63 28:49 48:168 - <th>- :</th> <th>ation Tab</th> <th></th> <th></th> <th>At Station</th> <th></th> <th></th> <th></th>	- :	ation Tab			At Station			
55:81 43:56 52:169 51:77 43:63 28:49 48:168 25.9 22.6 22.1 26.0 22.6 24.2 25.8 7 9 10 13 16 12 17 4.3 5.8 1.8 8.0 3.5 10 30 7.3 7.2 7.7 5.1 6.8 4.9 4.5 0 10 5 40 85 20 50 40 25 35 9 0 0 0 6.4 - 3.3 2.7 - - - - 5.5 - 1.7 0.9 - - - - - 5.5 - 1.7 0.9 -	+	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			1		
25.9 22.6 22.1 26.0 22.6 24.2 25.8 7 9 10 13 16 12 17 4.3 5.8 1.8 8.0 3.5 10 30 7.3 7.2 7.7 5.1 6.8 4.9 4.5 0 10 5 40 85 20 50 40 25 35 9 0 0 0 6.4 - 3.3 2.7 - - - 5.5 - 1.7 0.9 - - - - 5.5 - 1.7 0.9 - - - - - 5.5 - 1.7 0.9 -		1	_			1		
25.9 22.6 22.1 26.0 22.6 24.2 25.8 7 9 10 13 16 12 17 4.3 5.8 1.8 8.0 3.5 10 30 7.3 7.2 7.7 5.1 6.8 4.9 4.5 0 10 5 40 85 20 50 0 40 25 35 9 0 0 0 0 5.5 - 1.7 0.9 - - - - 5.5 - 1.7 0.9 - - - - 5.5 - 11.7 0.9 - - - - - 84.8 - 102 36.0 64.0 - 41.2 18.8 121.2 118.7 112.9 40.45 65.52 40.84 68.92 11.5 0.14 11.8 1.6 6.9 <td></td> <td>I .</td> <td>1</td> <td>43:63</td> <td>51:77</td> <td>52:169</td> <td>43:56</td> <td>55:81</td>		I .	1	43:63	51:77	52:169	43:56	55:81
7 9 10 13 16 12 17 4.3 5.8 1.8 8.0 3.5 10 30 7,3 7.2 7.7 5.1 6.8 4.9 4.5 0 10 5 40 85 20 50 40 25 35 9 0 0 0 6.4 - 3.3 2.7 - - - 5.5 - 1.7 0.9 - - - - 84.8 - 102 36.0 64.0 - 41.2 - 18.8 18.8 - 11.2 11.2 11.8 18.8 68.92 11.1 1.2 13.3 3.3 3.3 3.5 0.3 0.4 0.1 0.7 - - - - 18.8 68.92 11.1 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.2 1.1 1.2 </td <td></td> <td></td> <td>i</td> <td>•</td> <td><u>-</u></td> <td></td> <td>-</td> <td>1</td>			i	•	<u>-</u>		-	1
4.3 5.8 1.8 8.0 3.5 10 30 7.3 7.2 7.7 5.1 6.8 4.9 4.5 0 10 5 40 85 20 50 40 25 35 9 0 0 0 6.4 - 3.3 2.7 - - - 5.5 - 1.7 0.9 - - - 5.5 - 1.7 0.9 - - - 84.8 - 102 36.0 64.0 - 41.2 9.2 - 14.4 10.4 28.0 - 18.8 121.2 118.7 122.9 40.45 65.52 40.84 68.92 11.5 11.4 11.8 1.6 6.9 1.1 1.2 11.5 0.45 0.19 0.09 0.42 - 0.05 0.10 0.10 0.02	ļ					1		1
7.3 7.2 7.7 5.1 6.8 4.9 4.5 0 10 5 40 85 20 50 40 25 35 9 0 0 0 6.4 - 3.3 2.7 - - - 5.5 - 1.7 0.9 - - - - 84.8 - 102 36.0 64.0 - 41.2 9.2 - 14.4 110.4 28.0 - 18.8 121.2 118.7 122.9 40.45 65.52 40.84 68.92 11.5 11.4 11.8 1.6 6.9 1.1 1.2 3.3 3.3 3.5 0.3 0.4 0.1 0.7 - 2.5 - - - - - 0.05 0.10 0.4 0.10 0.09 0.42 - 0.05 0.10		,				i	•	
0 10 5 40 85 20 50 40 25 35 9 0 0 0 6.4 - 3.3 2.7 - - - 5.5 - 1.7 0.9 - - - 84.8 - 102 36.0 64.0 - 41.2 9.2 - 14.4 10.4 28.0 - 18.8 121.2 118.7 122.9 40.45 65.52 40.84 68.92 11.5 11.4 11.8 1.6 6.9 1.1 1.2 3.3 3.3 3.5 0.3 0.4 0.1 0.7 - 2.5 - - - - 0.05 0.10 - 0.10 0.02 - - 0.05 0.10 - 0.10 0.09 0.42 - 0.5 0.0 Trace 0.0	İ		1					
40 25 35 9 0 0 0 6.4 - 3.3 2.7 - - - 5.5 - 1.7 0.9 - - - 84.8 - 102 36.0 64.0 - 41.2 9.2 - 14.4 10.4 28.0 - 18.8 121.2 118.7 122.9 40.45 65.52 40.84 68.92 11.5 11.4 11.8 1.6 6.9 1.1 1.2 3.3 3.3 3.5 0.3 0.4 0.1 0.7 - 2.5 - - - - 0.0 0.7 1.5 0.45 0.19 0.09 0.42 - 0.05 0.10 - 0.10 0.02 - - 0.02 0.0 Trace 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<	{	1	1			1		;
6.4 - 3.3 2.7 - </td <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>		1				1		
5.5 - 1.7 0.9 - - - 41.2 9.2 - 14.4 10.4 28.0 - 18.8 121.2 118.7 122.9 40.45 65.52 40.84 68.92 11.5 11.4 11.8 1.6 6.9 1.1 1.2 3.3 3.3 3.5 0.3 0.4 0.1 0.7 - 2.5 - - - - - - 1.5 0.45 0.19 0.09 0.42 - 0.05 0.10 - 0.10 0.02 - - 0.02 0.0 - 0.10 0.19 - - 0.05 0.0 Trace 0.0 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0	0	0		ł	25	ľ
84.8 - 102 36.0 64.0 - 41.2 9.2 - 14.4 10.4 28.0 - 18.8 121.2 118.7 122.9 40.45 65.52 40.84 68.92 11.5 11.4 11.8 1.6 6.9 1.1 1.2 3.3 3.3 3.5 0.3 0.4 0.1 0.7 - 2.5 - - - - - 0.0 0.10 0.45 0.19 0.09 0.42 - 0.05 0.10 - 0.10 0.02 - - 0.05 0.10 - 0.10 0.02 - - 0.05 0.0 Trace 0.0 0.0 0.0 0.0 Trace 0.4 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.4 1.0 0.3 0.0 0.0 0.0 0.0 <td< td=""><td>1</td><td>-</td><td>-</td><td>•</td><td></td><td></td><td>-</td><td></td></td<>	1	-	-	•			-	
9.2 - 14.4 10.4 28.0 - 18.8 121.2 118.7 122.9 40.45 65.52 40.84 68.92 11.5 11.4 11.8 1.6 6.9 1.1 1.2 3.3 3.3 3.5 0.3 0.4 0.1 0.7 - 2.5 - - - - - - 1.5 0.45 0.19 0.09 0.42 - 0.05 0.10 - 0.10 0.02 - - 0.02 0.0 - 0.10 0.19 - - 0.02 0.0 Trace 0.0 0.0 0.0 0.0 Trace 0.4 1.0 0.3 0.0 0.02 0.01 0.0 6.7 6.9 7.0 3.5 4.6 3.9 5.5 1.2 1.2 1.2 0.5 0.3 0.2 0.4 0.1		i	-	-	l .		-	I
121.2 118.7 122.9 40.45 65.52 40.84 68.92 11.5 11.4 11.8 1.6 6.9 1.1 1.2 3.3 3.3 3.5 0.3 0.4 0.1 0.7 - 2.5 - - - - 0.05 0.10 - 0.10 0.02 - - 0.02 0.0 - 0.10 0.02 - - 0.02 0.0 - 0.10 0.19 - - 0.02 0.0 - 0.10 0.19 - - 0.02 0.0 Trace 0.0			-		l e	1	-)
11.5 11.4 11.8 1.6 6.9 1.1 1.2 3.3 3.3 3.5 0.3 0.4 0.1 0.7 - 2.5 - - - - - - 1.5 0.45 0.19 0.09 0.42 - 0.05 0.10 - 0.10 0.02 - - 0.02 0.0 - 0.10 0.19 - - 0.02 0.0 - 0.10 0.19 - - 0.02 0.0 Trace 0.0			-			i e	-	1
3.3 3.3 3.5 0.3 0.4 0.1 0.7 1.5 0.45 0.19 0.09 0.42 - 0.05 0.10 - 0.10 0.02 - - 0.02 0.0 - 0.10 0.019 - - 0.5 0.0 Trace 0.0 0.0 0.0 0.0 Trace 0.4 1.0 0.3 0.0 0.02 0.01 0.0 6.7 6.9 7.0 3.5 4.6 3.9 5.5 1.2 1.2 1.2 0.5 0.3 0.2 0.4 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 57.4 59.5 59.6 0.5 15.1 0.5 0 4.5 4.7 5.4 5.4 5.4 4.7 7.8 4.8 4.2 3.8 5.4 8.5 5.5 8.6 0.2 - <	1				ì	122.9	118.7	
- 2.5 - - - - - - 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.00 0.00 0.02 - - 0.02 0.02 0.00<		1			1.6	11.8	11.4	11.5
1.5 0.45 0.19 0.09 0.42 - 0.05 0.10 - 0.10 0.02 - - 0.02 0.0 - 0.10 0.19 - - 0.5 0.0 Trace 0.0 0.0 0.0 0.0 Trace 0.4 1.0 0.3 0.0 0.02 0.01 0.0 6.7 6.9 7.0 3.5 4.6 3.9 5.5 1.2 1.2 1.2 0.5 0.3 0.2 0.4 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 57.4 59.5 59.6 0.5 15.1 0.5 0 0 0.0 <t< td=""><td></td><td>0.7</td><td>0.1</td><td>0.4</td><td>0.3</td><td>3.5</td><td>3.3</td><td>3.3</td></t<>		0.7	0.1	0.4	0.3	3.5	3.3	3.3
0.10 - 0.10 0.02 - - 0.02 0.0 - 0.10 0.19 - - 0.5 0.0 Trace 0.0 0.0 0.0 0.0 Trace 0.4 1.0 0.3 0.0 0.02 0.01 0.0 6.7 6.9 7.0 3.5 4.6 3.9 5.5 1.2 1.2 1.2 0.5 0.3 0.2 0.4 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.4 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 57.4 59.5 59.6 0.5 15.1 0.5 0 0.0 4.5 4.7 5.4 5.4 5.4 4.7 7.8 4.8 4.8 4.2 3.8 5.4 8.5 <td>ļ</td> <td></td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td>	ļ		-		-	-		-
0.0 - 0.10 0.19 - - 0.5 0.0 Trace 0.0 0.0 0.0 0.0 Trace 0.4 1.0 0.3 0.0 0.02 0.01 0.0 6.7 6.9 7.0 3.5 4.6 3.9 5.5 1.2 1.2 1.2 0.5 0.3 0.2 0.4 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.4 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 57.4 59.5 59.6 0.5 15.1 0.5 0 0 0.0	- 1	1	-	0.42	0.09	0.19	0.45	1.5
0.0 Trace 0.0 0.0 0.0 0.0 Trace 0.4 1.0 0.3 0.0 0.02 0.01 0.0 6.7 6.9 7.0 3.5 4.6 3.9 5.5 1.2 1.2 1.2 0.5 0.3 0.2 0.4 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 57.4 59.5 59.6 0.5 15.1 0.5 0 4.5 4.7 5.4 5.4 5.4 4.7 7.8 4.8 4.2 3.8 5.4 8.5 5.5 8.6 0.2 - 0.13 0.2 0.0 - 0.0 0.0 2.4 0.4 0.6 4.0 0.6 0.4 0.2 0.2 18 19 23 2.5 1.1 0.2 4.2		i	-	-	0.02	0.10	-	0.10
0.4 1,0 0.3 0.0 0.02 0.01 0.0 6.7 6.9 7.0 3.5 4.6 3.9 5.5 1.2 1.2 1.2 0.5 0.3 0.2 0.4 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 57.4 59.5 59.6 0.5 15.1 0.5 0 4.5 4.7 5.4 5.4 5.4 4.7 7.8 4.8 4.2 3.8 5.4 8.5 5.5 8.6 0.2 - 0.13 0.2 0.0 - 0.0 0.0 2.4 0.4 0.6 4.0 0.6 0.4 0.2 0.2 18 19 23 2.5 1.1 0.2 4.2 42.3 42.0 43.8 0.4 12.4 0.4 0.0			-	-	0.19		-	0.0
6.7 6.9 7.0 3.5 4.6 3.9 5.5 1.2 1.2 1.2 0.5 0.3 0.2 0.4 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 57.4 59.5 59.6 0.5 15.1 0.5 0 4.5 4.7 5.4 5.4 4.7 7.8 6 4.8 4.2 3.8 5.4 8.5 5.5 8.6 0.2 - 0.13 0.2 0.0 - 0.0 2.4 0.4 0.6 4.0 0.6 0.4 0.2 18 19 23 2.5 1.1 0.2 4.2 42.3 42.0 43.8 0.4 12.4 0.4 0.0 0.0 0.0 0.0 4.8 6.5 2.8 5.9 42.3 42.0 43.8 5.2 18.9 3.2 5.9 82.8 81.7 86.9		1		0.0	0.0	0.0	Trace	0.0
1.2 1.2 1.2 0.5 0.3 0.2 0.4 0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 57.4 59.5 59.6 0.5 15.1 0.5 0 4.5 4.7 5.4 5.4 5.4 4.7 7.8 4.8 4.2 3.8 5.4 8.5 5.5 8.6 0.2 - 0.13 0.2 0.0 - 0.0 0.0 2.4 0.4 0.6 4.0 0.6 0.4 0.2 0.0 2.4 0.4 0.6 4.0 0.6 0.4 0.2 0.0 0.2 0.0 0.2 4.2 0.4 0.2 4.2 0.4 0.2 4.2 0.4 0.2 4.2 0.4 0.2 4.2 0.4 0.2 4.2 0.4 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.		l .	0.01		0.0	0.3	1.0	0.4
0.1 0.1 0.0 0.2 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0 57.4 59.5 59.6 0.5 15.1 0.5 0 4.5 4.7 5.4 5.4 4.7 7.8 4.8 4.8 4.2 3.8 5.4 8.5 5.5 8.6 0.2 - 0.13 0.2 0.0 - 0.0 2.4 0.4 0.6 4.0 0.6 0.4 0.2 18 19 23 2.5 1.1 0.2 4.2 42.3 42.0 43.8 0.4 12.4 0.4 0.0 0.0 0.0 0.0 4.8 6.5 2.8 5.9 42.3 42.0 43.8 5.2 18.9 3.2 5.9 82.8 81.7 86.9 23.9 35.7 16.3 29.4 23.8 24.6 24.5 49.8 33.0 71.3 54.8 -1.4 -1.5	-		3.9	4.6	3.5	7.0	6.9	6.7
0.0 0.0 0.0 0.0 0.0 0.0 57.4 59.5 59.6 0.5 15.1 0.5 0 4.5 4.7 5.4 5.4 5.4 4.7 7.8 4.8 4.2 3.8 5.4 8.5 5.5 8.6 0.2 - 0.13 0.2 0.0 - 0.0 0.0 2.4 0.4 0.6 4.0 0.6 0.4 0.2 0.0 0.0 0.0 0.2 0.0 0.4 0.2 0.2 0.0 0.4 0.2 0.0 0.4 0.2 0.0 <		0.4	0.2	0.3	0.5	1.2	1.2	1.2
57.4 59.5 59.6 0.5 15.1 0.5 0 4.5 4.7 5.4 5.4 5.4 4.7 7.8 4.8 4.2 3.8 5.4 8.5 5.5 8.6 0.2 - 0.13 0.2 0.0 - 0.0 2.4 0.4 0.6 4.0 0.6 0.4 0.2 18 19 23 2.5 1.1 0.2 4.2 42.3 42.0 43.8 0.4 12.4 0.4 0.0 0.0 0.0 0.0 4.8 6.5 2.8 5.9 42.3 42.0 43.8 5.2 18.9 3.2 5.9 42.3 42.0 43.8 5.2 18.9 3.2 5.9 82.8 81.7 86.9 23.9 35.7 16.3 29.4 23.8 24.6 24.5 49.8 33.0 71.3 54.8 -1.4	ļ	1		l)	1	0.1	0.1
4.5 4.7 5.4 5.4 5.4 4.7 7.8 4.8 4.2 3.8 5.4 8.5 5.5 8.6 0.2 - 0.13 0.2 0.0 - 0.0 2.4 0.4 0.6 4.0 0.6 0.4 0.2 18 19 23 2.5 1.1 0.2 4.2 42.3 42.0 43.8 0.4 12.4 0.4 0.0 0.0 0.0 0.0 4.8 6.5 2.8 5.9 42.3 42.0 43.8 5.2 18.9 3.2 5.9 82.8 81.7 86.9 23.9 35.7 16.3 29.4 23.8 24.6 24.5 49.8 33.0 71.3 54.8 -1.4 -1.5 -1.0 -6.0 -2.7 -6.4 -6.7		0.0	0.0	0.0	0.0	0.0	0.0	0.0
4.8 4.2 3.8 5.4 8.5 5.5 8.6 0.2 - 0.13 0.2 0.0 - 0.0 0.0 2.4 0.4 0.6 4.0 0.6 0.4 0.2<		t			0.5	59.6	59 .5	57.4
0.2 - 0.13 0.2 0.0 - 0.0 2.4 0.4 0.6 4.0 0.6 0.4 0.2 18 19 23 2.5 1.1 0.2 4.2 42.3 42.0 43.8 0.4 12.4 0.4 0.0 0.0 0.0 0.0 4.8 6.5 2.8 5.9 42.3 42.0 43.8 5.2 18.9 3.2 5.9 82.8 81.7 86.9 23.9 35.7 16.3 29.4 23.8 24.6 24.5 49.8 33.0 71.3 \$4.8 -1.4 -1.5 -1.0 -6.0 -2.7 -6.4 -6.7	ĺ		į.	!		1		
2.4 0.4 0.6 4.0 0.6 0.4 0.2 18 19 23 2.5 1.1 0.2 4.2 42.3 42.0 43.8 0.4 12.4 0.4 0.0 0.0 0.0 0.0 4.8 6.5 2.8 5.9 42.3 42.0 43.8 5.2 18.9 3.2 5.9 82.8 81.7 86.9 23.9 35.7 16.3 29.4 23.8 24.6 24.5 49.8 33.0 71.3 54.8 -1.4 -1.5 -1.0 -6.0 -2.7 -6.4 -6.7		1	5.5	1			4.2	
18 19 23 2.5 1.1 0.2 4.2 42.3 42.0 43.8 0.4 12.4 0.4 0.0 0.0 0.0 0.0 4.8 6.5 2.8 5.9 42.3 42.0 43.8 5.2 18.9 3.2 5.9 82.8 81.7 86.9 23.9 35.7 16.3 29.4 23.8 24.6 24.5 49.8 33.0 71.3 54.8 -1.4 -1.5 -1.0 -6.0 -2.7 -6.4 -6.7		l .						0.2
42.3 42.0 43.8 0.4 12.4 0.4 0.0 0.0 0.0 0.0 4.8 6.5 2.8 5.9 42.3 42.0 43.8 5.2 18.9 3.2 5.9 82.8 81.7 86.9 23.9 35.7 16.3 29.4 23.8 24.6 24.5 49.8 33.0 71.3 54.8 -1.4 -1.5 -1.0 -6.0 -2.7 -6.4 -6.7			1	l .	1	1	!	2.4
0.0 0.0 0.0 4.8 6.5 2.8 5.9 42.3 42.0 43.8 5.2 18.9 3.2 5.9 82.8 81.7 86.9 23.9 35.7 16.3 29.4 23.8 24.6 24.5 49.8 33.0 71.3 54.8 -1.4 -1.5 -1.0 -6.0 -2.7 -6.4 -6.7		•	1	i				18
42.3 42.0 43.8 5.2 18.9 3.2 5.9 82.8 81.7 86.9 23.9 35.7 16.3 29.4 23.8 24.6 24.5 49.8 33.0 71.3 54.8 -1.4 -1.5 -1.0 -6.0 -2.7 -6.4 -6.7		j .	1			1		
82.8 81.7 86.9 23.9 35.7 16.3 29.4 23.8 24.6 24.5 49.8 33.0 71.3 54.8 -1.4 -1.5 -1.0 -6.0 -2.7 -6.4 -6.7		I	1					0.0
23.8 24.6 24.5 49.8 33.0 71.3 54.8 -1.4 -1.5 -1.0 -6.0 -2.7 -6.4 -6.7		1	1				i e	42.3
-1.4 -1.5 -1.0 -6.0 -2.7 -6.4 -6.7			1	1		86.9		82.8
						24.5	24.6	23.8
		l	1	l .		-1.0	-1.5	-1.4
10.0 10.2 9.7 17.1 12.2 17.7 17.9	İ	17.9	17.7	12.2	17.1	9.7	10.2	10.0

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

NOVA SCOTIA (Concl'd)

			SYDNEY	and ENVIRONS	
	Camp or Establishment	Jo	hnstown	Petrie	Point
	Source(s)	De	eep Well	Deep	Well
NO.			Raw and F	inished Water	
	Sampling Point	At Tap i	n Bldg. No. 4.	At Tap is	Bldg. No. 4.
1	Date of sampling	May 16/56	Oct. 19/56	May 16/56	Oct. 19/56
2	Storage period (days)	41:77	14:23	41:77	14:23
3	Sampling temperature, °C	5.6	12.2	8.9	10.0
4	Test temperature, °C	23.8	21.8	23.8	21.8
5	Oxygen consumed by KMnO ₄	8	_	9	_
6	Carbon dioxide (CO2) (calculated)	2.4	3.9	3.1	6.5
7	pH	8.1	7.9	8.0	7.7
8	Colour	0	20	0	20
9	Turbidity	20	-	4	6
10	Suspended matter, dried at 1050 C	4.6	_	3.7	-
11	Suspended matter, ignited at 550°C	2.0	_	2.4	_
12	Residue on evaporation, dried at 105°C	226	-	328	_
13	Ignition loss at 550°C	95.2	_	42.0	_
14	Specific conductance, micromhos at 25°C	372.3	380.3	445.7	412.7
15	Calcium (Ca)	62.8	63.2	58.1	46.9
16	Magnesium (Mg)	3.3	3.6	10.3	8.6
17	Iron (Fe) Total	•	-		_
18	Dissolved	0.05	_	0.01	_
19	Manganese (Mn)	0.04	_	0.0	_
20	Aluminum (Al)	0.07	_	0.11	_
21	Copper (Cu)	0.0	_	0.0	
22	Zinc (Zn)	0.05	_	0.0	_
23	Sodium (Na)	10.3	11.1	20.0	26.4
24	Potassium (K)	1.2	1.1	3.3	4.4
25	Ammonium (NH ₄)	0,0	0.05	0.0	0.2
26	Carbonate (CO ₃)	0.0	0.0	0.0	0.0
27	Bicarbonate (HCO ₃)	190	200	184	218
28	Sulphate (SO ₄)	17.6	16.8	46.5	16.1
29	Chloride (Cl)	13.8	13.5	21.9	14.8
30	Fluoride (F)	0.15	19.9	1	14.0
31	Nitrate (NO ₃)	2.4	0.4	1.6	1.6
32	Silica (SiO ₂), colorimetric	7.6	13		1.6
33	Carbonate hardness as CaCO ₃	156	164	11	9.1
34	Non-carbonate hardness as CaCO ₃	14.7		151	152
35	Total hardness as CaCO ₃		8.1	36.3	0.0
36	Sum of constituents	170	172	187	152
37	Per cent sodium	213 11.5	221	264	236
38		+0.6	12.2	18.5	26.6
39	Saturation index at test temperature	6.9	+0.4	+0.5 7.0	+0.1 7.5
	Remarks:				

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)
NEW BRUNSWICK

7		Maryland Hill			Hanwell Road	
7		Deep Well			Deep Well	
]]	:r	Raw and Finished Wate			w and Finished Water	Rav
		At Pump			At Tap	
	Jan. 23/57 65:141	Sept. 10/56 42:50	Apr. 30/56 50:88	Jan. 23/57 65:141	Sept. 10/56 36:43	Apr. 30/56 50:88
	•	-	-	-	24.9	- 22.9
}	26.0	24.3	22.9	26.0		8
	3	-	9	3	-	
j	11	8.5	8.0	2.5	1.8	2.1 8.0
j	7.1	7.4	7.2	7.9	8.0	0
ĺ	5	0	0	0	5	
	30	75	4	0	5	0
1	-	-	1.8	-	-	-
1	-	-	0.7	-	-	1.45
1	98.8	-	115	180	-	145
1	19.2	-	24.8	28.8	-	21.4
1	145.9	246.1	175.8	234.8	236.2	233.4
1	16.8	35.0	22.8	30.0	30.0	31.7
1	3.6	6.2	4.9	3.0	2.6	2.4
1	•	-	1.0	•	-	-
1	0.0	0.03	0.17	0.0	-	0.01
1	0.33	-	0.02	0.07	0.06	0.08
2	0.0	-	-	0.18	•	0.0
2	0.0	0.0	0.0	0.0	-	0.0
2	8.0	2.0	1.0	0.05	0.3	0.6
2	3.7	5.4	4.1	16.6	17.5	16.5
2	0.6	0.8	0.6	0.5	0.6	0.6
2	0.0	0.1	0.0	0.0	0.0	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0
2	83.7	151	78.0	137	137	132
2	6.4	5.9	17.4	13.7	14.3	13.2
2	1.1	2.4	2.5	0.6	1.5	0.9
3	0.0	-	0.0	0.1	-	0.0
3	0.0	0.8	5.2	0.2	0.4	2.8
3	6.9	12	8.0	12	11	11
3	56.7	113	64.0	87.2	86.3	89.0
3	0.0	0.0	13.0	0.0	0.0	0.0
3	56.7	113	77.0	87.2	86.3	89.0
3	88.7	145	105	145	146	145
3	10.3	9.0	10.1	28.8	30.3	28.3
3	-1.2	-0.4	-1.1	0.0	+0.1	0.0
3	9.5	8.2	9.4	7.9	7.8	8.0

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

NEW BRUNSWICK (Cont'd)

			CAN	MP GAGETOW	'N	
C	amp or Establishment		Deep Well	s and Oromocto	River*	
So	ource (s)		Well No. 1		Well No. 2 or	Mixed Wells
NO.			Raw and	Finished Wate	r	
Sa	ampling Point		At Pump		At Pump o Central Hea	or at Tap, ating Plant
1 D	ate of sampling	Oct.1/55	June 3/57	Feb. 1957	Oct. 29/55	Nov. 29/55
2 St	torage period (days)	-	16:36		-	8:16
3 Si	ampling temperature, °C	-	-		-	4.4
4 T	est temperature, °C	24.0	27.5		23.0	23.8
5 0	xygen consumed by KMnO4	2	3		9.5	6
6 C	arbon dioxide (CO ₂), (calculated)	2.9	1.7		4.8	1.5
7	рН	8.0	8.2	7.7	7.8	8.3
8	Colour	15	0		25	0
9	Turbidity	-	5		-	2
	uspended matter, dried at 105 °C	-	0.0	}		-
	uspended matter, ignited at 550 °C	-	0.0		_	
	esidue on evaporation, dried at 105 °C	-	557		_	410
	gnition loss at 550°C.	-	9.2		_	18.0
, -	pecific conductance, micromhos at 25 °C	741.3	1054	1150	735.8	751,4
15	Calcium (Ca)	38.0	51.7	1 22,00	37.0	37.6
16	Magnesium (Mg)	2.9	4.9		3.3	3.3
	Iron (Fe) Total	-	4.7		J.,	
17	Dissolved	0.0	0.0		0.01	0.0
18	The state of the s	2.0	0.0		2.0	0.0
19	Manganese (Mn)	0.1	0.0		0.07	0.0
20	Aluminum (Al)		i		Trace	i
21	Copper (Cu)	0.0	0.0		Irace	0.0
22	Zinc (Zn)	0.0	0.0		-	0.0
23	Sodium (Na)	116	157	153	116	111
24	Potassium (K)	1.2	1.0		1.3	0.8
25	Ammonium (NH ₄)	0.0	0.0		0.2	0.0
26	Carbonate (CO ₃)	0.0	0.0		0.0	0.0
27	Bicarbonate (HCO ₃)	202	200		203	199
28	Sulphate (SO ₄)	27.5	27.7	j	24.5	25.0
29	Chloride (Cl)	116	213	252	116	114
30	Fluoride (F)	0.67	0.4		0.67	0.6
31	Nitrate (NO ₃)	8.0	0.6		1.2	0.2
32	Silica (SiO ₂), colorimetric	7.4	7.5	1	7.8	6.8
33 C	Carbonate hardness as CaCO ₃	107	149		106	107
34 N	Ion-carbonate hardness as CaCO ₃	0.0	0.0		0.0	0.0
35 T	otal hardness as CaCO₃	107	149	181	106	107
36 S	um of constituents	412	562		410	397
- 1	Per cent sodium	692	69.4		69.3	69.0
I .	aturation index at test temperature	+0.3	+0.7		+0.1	+0.6
	tability index at test temperature	7.4	6.8		7.6	7.1
F	Remarks:				* See also W.: No. 11	S.R.

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

NEW BRUNSWICK (Cont'd)

			oncl'd)	omocto River* (Co	Deep Wells and Oro		
	Oromocto River*			Wells (Concl'd)	Well No.2 or Mixed	·	
NO	Raw Water		er (Cont'd)	and Finished Wat	Raw		
	From River.			eating Plant.	or atTap, Central H	At Pump o	
1	June 3/57	Feb. 1957	Dec. 11/56	Oct. 10/56	May 25/56	Feb. 27/56	Dec. 6/55
2	16:36	-	3:7	13:15	4:17	3:9	3:9
3	-	-	-	-	-	_	8.9
4	27.5	24.0	23.0	24.6	23.4	24.6	21.8
5	12	-	-	9	4	_	2
6	3.9	1.8	1.5	1.4	1.9	1.3	1.3
7	6.8	8.2	8.3	8.3	8.2	8.4	8.4
8	65	0	-	10	5	10	5
9	20	-	-	_	_		-
10	16.0	-	-	-	_ }	-	•
11	9.5	` <u>-</u>	•	-	_	_	_
12	46.4	-	-	471	436		406
13	21.2	-	-	11.2	23.6	_	12.0
14	45.9	969.3	867.6	855.1	760.3	777.5	744.9
15	4.8	52.3	_	43.8	40.3	39.9	37.9
16	1.2	4.1	_	3.1	3.0	2.8	3.0
17	0.34		-	-	J.0	2.6	5. 0
18	0.19	_	_	0.03	0.02	_	0.01
19	0.0	_	_	0.0	0.0		0.01
20	0.01	_	_	0.04	0.09	_	0.22
21	0.0	_	_	0.0	0.0	_	0.0
22	0.0	_	<u>-</u>	0.05	0.0	_	0.0
23	1.6	152	134	137	117	_	111
24	0.4		1.4	1.0	0.9	_	0.8
25	0.15	_	-	0.0	0.0	_	0.0
26	0.0	0.0	0.0	0.0	0.0	3.8	2.6
27	16.9	204	202	201	194	192	2.6 192
28	3.4		-	34.1	26.3		
29	2.0	208	154	153	124	121	25.3
30	0.0	_	-	0.6	1.6	121	112 0.6
3:	0.8	_	_	0.8	2.4		0.8
32	2.3	_	_	6.5	6.5	9.9	0.8 7.0
3	13.9	147	128	122	113	111	7.0 107
34	3.0	0.0	0.0	0.0	0.0	0.0	
3:	16.9	147	128	122	113		0.0
3	25.3	516	389	1	1	111	107
3	16.0	69 .0	99.5	479	418	-	396
31	-2.6	+0.6	77.7	70.7	68.9	_	69.0
3	12.0	6.0		+0.7 6.9	+0.5 7.2		+0.6
+-	12.0	1 3.0		0.9	1.2	<u> </u>	7.2
	* See also W.S.R. No. 11				*Standby supply		

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

NEW BRUNSWICK (Cont'd)

					Mc GIVNE	Y			
	Camp or Establishment								
	Source(s)			D	eep Wells				
			PMQ A	rea Well		Ad	ministratio	оп Агеа We	11
NO.				Raw an	d Finishe	d Water			
1,0.	Sampling Point				At Pumps				
	Date of sampling	Apr. 24/56	Sept.18/56	Jan. 29/57	Apr.11/57	Apr. 24/50	Sept.18/56	Jan.29/57	Apr.11/5
2	Storage period (days)	56:94	34:37	42:129	20:96	51:94	34:37	42:129	20:96
	Sampling temperature, °C	5.0	5.0	-	5.0	5.0	5.6	5.6	4.4
3		i -							
4	Test temperature, °C	22.9	24.1	25.4	23.9	23.0	24.4	25.4	23.9
5	Oxygen consumed by KMnO ₄	8.8	-	1.4	2.4	8.5	-	1.3	3.0
6	Carbon dioxide (CO ₂), (calculated)	4.6	3.0	3.9	2.4	5.8	1.3	4.8	12
7	рН	7.3	7.5	7.4	7.6	6.5	7.7	7.1	6.6
8	Colour	0	0	0	0	0	5	5	30
9	Turbidity	0	0	. 0	5	0	2	0	5
10	Suspended matter, dried at 105 °C	-	-	-	1.0	-	-	-	1.0
11	Suspended matter, ignited at 550 °C	-	-	-	0.0	-	-	-	0.0
12	Residue on evaporation, dried at 105°C	81.6	-	108.	88.4	50.0	-	90.4	80.0
13	Ignition loss at 550°C	11.2	-	20.0	28.0	22.4	-	20.0	25.2
14	Specific conductance, micromhos at 25°C.	115.0	121.9	124.3	117.4	61.09*	113.5	111.9	93.75
15	Calcium (Ca)	18.4	18.5	19.7	18.0	5.0 *	16.4	15.2	13.4
16	Magnesium (Mg)	1.3	0.9	1.1	1.5	1.7	1.4	1.2	1.5
17	Iron (Fe) Total	-	_	-	-	-	-	-	-
18	Dissolved	Trace	_	Trace	0.0	0.02	-	0.0	0.0
19	Manganese (Mn)	0.01	_	0.02	0.03	0.04	-	0.01	Trace
20	Aluminum (Al)	0.03	_	0.11	0.02	0.06	-	0.04	0.07
21	Copper (Cu)	Trace	Trace	Trace	0.05	0.0	Trace	0.0	0.04
22	Zjnc (Zn)	0.0	0.0	0.0	0.0	0.2	0.05	0.05	0.08
23	Sodium (Na)	2.9	4.1	3.4	3.0	2.8	3.0	3.0	2.9
24	Potassium (K)	0.5	0.5	0.4	0.4	0.7	0.5	0.4	0.5
25	Ammonium (NH ₄)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.05
		0.0	0.0	1	0.0	0.0	0.0	0.0	0.0
26	Carbonate (CO ₃)			0.0	1	l			l .
27	Bicarbonate (HCO ₃)	54.9	58.4	61.4	57.5	10.8*	40.7	39.4	32.1
28	Sulphate (SO ₄)	8.0	9.5	8.8	8.4	4.0	10.5	9.8	6.9
29	Chloride (Cl)	1.1	2.0	1.6	2.1	6.7	6.0	4.1	7.7
30	Fluoride (F)	0.0	-	0.1	0.0	0.0	0.0	0.1	0.0
31	Nitrate (NO ₃)	4.0	Trace	0.2	0.2	8.0	2.4	1.2	3.0
32	Silica (SiO ₂), colorimetric	11	11	14	11	7.1	16	9.4	8.5
33	Carbonate hardness as CaCO ₃	45.0	47.9	50.4	47.2	8.9*	33.4	32.3	26.3
34	Non-carbonate hardness as CaCO ₃	6.3	2.0	3.3	3.9	10.6	13.3	10.6	13.3
35	Total harness as CaCO ₃	51.3	49.9	53.7	51.1	19.5 *	46.7	42.9	39.6
36	Sum of constituents	74.4	75.5	79.2	72.9	41.4*	6.2	64.0	60.7
37	Per cent sodium	10.8	15.0	11.9	11.2	22.4	12.1	13.0	13.3
38	Saturation index at test temperature	-1.2	-1.0	-1.0	-0.9	-3.2	-1.0	-1.7	-2.2
39	Stability index at test temperature	9.7	9.5	9.4	9.4	12.9	9.7	10.5	11.0
	Remarks:				}	* May have lost some CaCO ₃ on storage.			

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

NEW BRUNSWICK (Concl'd)

		1	RGE AREA	AINT GEOI	Sz			JOHN	SAINT		MONCTON	
	pia	Camp Uto		d	Pennfiel		n	rack Gree	Ваг	acks	arrison Barra	G
	nø	Vell or Sprin	7		Well		al Supply	n Municip	Saint Joh	ply - Sur-	unicipal Sup	Moncton M
		en or opin	•		Well			Lakes *		Wells	Run-off and	face 1
NC	i Water	nd Finished	Raw as	d Water	nd Finishe	Raw as	ater	inished W	F	d Water	and Finishe	Raw
		At Pump		oort	ımpat Airp	At Pu	At Central Heating Plant Tap	n Taps	At Tow		From McLaughlin Reservoir	From Irishtown Reservoir
1	Dec.10/56	Aug.20/56	Арг.24/56	Dec.10/56	Aug.20/56	Apr.24/56	Mar.14/57	Aug.13/54	Aug.13/54	Dec.5/56	Aug.17/54	Aug.17/54
2	46:168	24:35	55:77	46:163	24:35	55:90	26:99	12:169	12:169	48:168	16:176	16:176
3	4.4	-	7.2	5.6	6.7	6.7	5.0	18.9	22.1	5.6	14.1	17.8
4	21.6	22.8	23.8	22.2	23.0	23.6	24.1	22.2	22.7	26.3	22.3	22.3
5	-	-	7.7	9.6	- 1	7.5	5.8	-	-	16	-	-
6	5.2	3.4	8.1	1.0	1.8	0.9	2.5	0.4	0.5	4.5	3.3	3.4
7	6.7	6.8	6.4	8.2	7.9	8.2	6.8	7.3	7.7	6.9	6.9	6.8
8	5	5	0	5	0	O	15	15	20	40	60	70
9	0	0	0	0	0	0	2	1	1	12	3	2.5
10	-	-	-	-	-	-	_	-	_	7.6	-	•
11	-	-	-	-	-	-	_	-	_	4.6	_	_
12	<u>-</u> [-	41.6	68.0	-	110.4	46.8	28.8	30.4	60.4	53.2	48.4
13	-	-	10.0	14.4	-	23.6	24.0	16.8	18.0	22.0	26.4	28.0
14	61.78	51.44	49.61	174.7	182.1	182.0	44.32	31.9	42.9	69.27	45.4	31.9
15	5.2	4.7	4.9	25.9	26.3	26.5	4.0	1.5	4.2	7.5	4.7	2.9
16	0.7	1.0	0.6	2.7	2.5	2.8	1.0	0.7	0.7	1.4	0.9	0.6
17	-	_	_	_	_	_	_	-	-			-
18	0.0	_	0.03	0.01	<u> </u>	Тгасе	0.0	Trace	0.2	1	i	0.26
19	0.01	ļ <u>.</u>	0.0	0.0	_	0.0	0.0	0.01	0.2	0.19	0.23	0.36
20	0.16		0.01	0.38	_	0.02	0.31	0.01	0.01	Į.	0.0	0.0
21	Trace	_	0.0	0.0	_	0.02	0.0	0.08		0.43	0.03	0.0
22	0.3	_	0.0	0.0	_	0.0	0.0	ì	0.2	Trace	0.0	0.04
23	3.8	2.7	2,6	5.5	6.5	6.2	1	-	-	0.0	-	0.0
24	1.4	0.6	0.6	Ì	-		2.3	2.3	1.9	3.1	2.0	1.7
25			ŀ	0.8	0.9	1.0	0.3	0.2	0.3	0.8	0.8	0.4
20	0.5	0.1	0.1	0.0	0.1	0.1	0.0	-	-	0.1	-	-
27	h .	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ì	16.8	14.0	12.9	93.0	91.4	90.2	10.1	3.8	12.9	23.3	16.5	13.2
28	3.9	3.3	2.4	6.9	8.3	7.1	5.8	1.6	2.9	7.4	4.3	1.5
29	5.2	4.2	4.3	5.5	5.3	4.5	4.3	5.4	4.0	3.6	2.0	1.4
30	0.0	-	0.15	0.1	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0
3.	4.0	1.6	0.8	0.8	2.4	3.2	0.5	0.2	0.4	0.8	1.2	0.6
32	12	10	10	13	19	13	2.4	2.0	1.8	2.4	2.1	0.9
3:	13.8	11.5	10.6	75.7	75.0	74.0	8.3	3.1	10.6	19.1	13.5	9.7
3.	2.1	4.3	4.1	0.0	0.9	3.6	5.8	3.5	2.8	5.4	1.9	0.0
3:	15.9	15.8	14.7	75.7	75.9	77.6	14.1	6,6	13.4	24.5	15.4	9.7
30	45.1	35.2	32.8	107	116	10.9	26.1	16.0	23.2	39.2	26.4	16.9
3	28.8	26.1	26.7	13.2	15.5	14.5	23.4	40.0	21.4	19.1	20.4	25.3
3	-2.9	-2.8	-3.2	0.0	-0.3	+0.1	-3.0	-3.4	-1.9	-2.2	-2.7	-3.1
3	12.5	12.4	12.8	8.2	8.5	8.0	12.8	14.1	11.5	11.3	12.3	13.0
	High level							R.No. 11	* See W.S.	1	W.S.R. No. 1	Con also V

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

	PROVINCE	QUEBEC	3.71	ZAD GWR WIEDNO	
	Camp or Establishment		NJ	EAR STE. THERESI	<u> </u>
	Source(s)			Camp Bouchard	
	Source(s)			Deep Wells	
				Well No.1	
NO.				Raw Water	
	Sampling Point		At Tap	or Pump, Bldg. No.	43
1	Date of sampling	Apr.18/56	Aug.23/56	Jan.23/57	Apr.8/57
2	Storage period (days)	54:83	49:54	43:135	4:81
3	Sampling temperature, °C	7.2	8.9	7.8	7.8
4	Test temperature, °C	23.0	24.6	24.2	22.7
5	Oxygen consumed by KMnO4	11	12	4.8	_
6	Carbon dioxide (CO2), (calculated)	2.6	1.6	2.2	2.2
7	рН	8.3	8.5	8.4	8.4
8	Colour	30	30	30	30
9	Turbidity	0.3	5	0	5.
10	Suspended matter, dried at 105 °C	-	5.0	-	1.4
11	Suspended matter ignited at 550°C	-	1.3	-	1.4
12	Residue on evaporation, dried at 105°C	387	384	393	410
13	Ignition loss at 550°C	47.2	39.2	98.6	87.6
14	Specific conductance, micromhos at 25°C	613.4	650.9	618.0	624.5
15	Calcium (Ca)	6.4	6.4	8.0	6.1
16	Magnesium (Mg)	7.3	7.6	6.7	8.0
17	Iron (Fe), Total	-		-	-
18	Dissolved	0.02	Trace	Тгасе	Trace
19	Manganese (Mn)	0.0	0.0	0.0	0.0
20	Aluminum (Al)	0.03	-	0.0	0.0
21	Copper (Cu)	0.0	0.0	0.0	0.0
22	Zinc (Zn)	0.0	0.3	0.0	0.0
23	Sodium (Na)	126	128	126	124
24	Potassium (K)	8.8	9.3	9.0	9.3
25	Ammonium (NH ₄)	0.1	0.1	0.0	0.25
26	Carbonate (CO ₃)	0.0	7.2	4.7	2.5
27	Bicarbonate (HCO3)	334	327	332	343
28	Sulphate (SO ₄)	7.1	7.1	6.9	7.8
29	Chloride (Cl)	29.4	29.8	28.6	29.9
30	Fluoride (F)	1.0	1.0	1.2	0.1
31	Nitrate (NO ₃)	1.6	3.2	1.2	0.4
32	Silica (SiO ₂), colorimetric	10	11	11	10
33	Carbonate hardness as CaCO ₃	46.0	47.2	47.5	48.1
34	Non-carbonate hardness as CaCO ₃	0.0	0.0	0.0	0.0
35	Total hardness as CaCO ₃	46.0	47.2	47.5	48.1
36	Sum of constituents	363	372	339	367
37	Per cent sodium	82.7	82.5	82.3	81.6
38	Saturation index at test temperature	0.0	+0.3	+0.3	+0.1
39	Stability index at test temperature	8.3	7.9	7.8	8.2
	Remarks:				-

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

			(In par	rts per million,)				
			(QUEBEC (Cont	'd)				
			NEAR :	STE. THERESE	(Concl'd)				
			Cam	p Bouchard (Co	oncl'd)				
-1			De	eep Wells		7.7.7			
	Well No. 2		Well 1	T- 4		Mixed	Wells		
· · · · · · · · · · · · · · · · · · ·	Raw Water		Raw V			Finishe	ed Water		NO.
At T	ap or Pump, Bl	dg. No. 40	1	np, Bldg. No.42			, Bldg. No. 39		
Aug.23/56	Jan.23/57	Apr.8/57	Aug.23/56	Apr.8/57	Apr.13/56	Aug.23/56	Jan.23/57	Apr.8/57	1
64:68	7:135	4:81	49:54	4:81	-	64:68	7:135	4:81	2
8.9	7.8	7.8		8.3	10.0	10.6	8.9	8.3	3
23.7	21.9	22.5	24.6	22.5	24.0	23.7	22.0	22.41	4
15	-		8.9	-	11	14	_	6.2	5
2.2	3.5	2.8	1.6	2.7	1.7	2.8	5.4	2.3	6
8.4	8.3	8.3	8.4	8.2	8.5	8.3	8.0	8.4	7
40	40	20	10	10	40	40	40	30	8
0.3	1	4	5	4	0.8	a	0	3	9
-	-	3.9	6.5	4.8	-	_	-	-	10
_	-	0.0	3.1	0.0	-	-	-	-	11
566	506	689	254	260	445	443	428	434	12
42.0	12,0	74.4	19.2	32.8	40.8	40.8	52.4	50.8	13
970.2	796.3	1132	414.2	414.6	716.6	735.8	719.4	688.4	14
9.8	8.0	8.7	62.5	60.5	7.5	8.2	8.2	6.0	15
11.5	9.8	10.9	8.9	9.6	8.3	8.7	8.2	9.0	16
0.1	-	-	-	-	-	-	-	-	17
-	Trace	Trace	0.08	0.02	0.14	Trace	0.0	0.02	18
0.0	0.0	0.0	0.0	0.14	0.0	0.0	0.0	0.13	19
0.08	0.0	0.12	0.09	0.04	Trace	0.05	0.0	0.0	20
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21
0.0	0.0	0.0	0.05	0.0	0.05	0.0	0.05	0.0	22
195	156	220	12.8	12.2	146	150	145	135	23
12.0	10.6	12.6	3.0	3.0	9.8	10.0	9.7	9.7	24
0.1	-	0.25	0.0	0.05	0.2	0.0	-	0.15	25
4.0	0.0	0.0	4.0	0.0	12.0	0.0	0.0	2.8	26
377	391	385	238	246	330	370	364	356	27
22.2	11.8	35.8	20.1	21.1	8.9	11.4	9.8	8.3	28
106	58.9	150	2.3	1.7	48.6	51.2	48.2	42.0	29
1.4	1.2	2.0	0.0	0.13	1.0	0.8	1.2	1.0	30
0.4	1.2	1.6	0.8	0.6	1.6	2.0	0.0	0.8	31
9.7	11	8.1	16	14	9.3	10	11	9.8	32
71.7	60.3	65.5	193	190	52.8	56.2	54.2	52.0	33
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	34
71.7	60.3	65.5	193	190	52.8	56.2	54.2	52.0	35
553	461	640	248	244	396	435	420	400	36
82.5	82,1	85.1	12.4	12.0	84.0	82.5	82.5	81.8	37
+0.4	+0.2	+0.2	+1.0	+0.8	+0.4	+0.2 7.9	-0.1 8.2	+0.1 8.2	38 39
7.6	7.9	7.9	6.4	6.6	7.7	1.9	0.2	0.2	1 39

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

	Remarks:	† Analysis by	Alchem	See also W.S.F	No. 12	1
39	Stability index at test temperature	8.4	7.9	11.9	12.0	15.3
38	Saturation index at test temperature	- 0.5	+0.1	-2.3	-2.5	-4.6
37	Per cent sodium	-	14.0	21.5	18.1	14.0
36	Sum of constituents	-	154	30.6	35.8	15.2
35	Total hardness as CaCO ₃	115	121	16.0	15.8	7.6
34	Non-carbonate hardness as CaCO ₃	25.0	32.5	2.2	1.6	4.5
33	Carbonate hardness as CaCO ₃	90.0	88.4	13.8	14.2	3.1
32	Silica (SiO ₂) colorimetric	1.8	2.4	5.0	11	4.7
31	Nitrate (NO ₃)	-	0.2	1.0	1.2	1.2
30	Fluoride (F)	-	0.05	0.0	Trace	-
29	Chloride (Cl)	24.3	21.5	1.7	1.4	1.0
28	Sulphate (SO ₄)	20.3	22.8	5.5	5.0	3.1
27	Bicarbonate (HCO ₃)	110	108	16.8	17.3	3.8
26	Carbonate (CO ₃)	0.0	0.0	0.0	0.0	0.0
25	Ammonium (NH ₄)	0.2	0.0	-	-	0.05
24	Potassium (K)	-	1.3	0.6	0.6	0.3
23	Sodium (Na)	-	9.2	2.3	1.8	0.6
22	Zinc (Zn)	-	0.05	-	-	-
21	Copper (Cu)	-	0.0	0.04	0.01	-
20	Aluminum (Al)	0.0	0.10	0.17	0.09	_
19	Manganese (Mn)	- 1	0.0	0.01	0.02	-
18	Dissolved	- 1	0.04	0.26	0.33	-
17	Iron (Fe) Total	0.4	-	-	-	-
16	Magnesium (Mg)	7.3	7.8	1.1	1.1	1.0
15	Calcium (Ca)	34.0	35.6	4.6	4.5	1.4
14	Specific conductance, micromhos at 25°C	-	290•2	49.9	47.4	23.8
13	Ignition loss at 550°C	- 1	30.8	21.6	13.2	•
12	Residue on evaporation, dried at 105°C	180	182	56.4	41.6	-
11	Suspended matter, ignited at 550°C	-	-	-	- [.
10	Suspended matter, dried at 105°C	Trace	-	-	-	-
9	Turbidity	2	2	0.2	0.8	7
8	Colour	15	10	20	25	25
7	рН	7.4	8.1	7.3	7.0	6.1
6	Carbon dioxide (CO2),(calculated)	7.0	1.4	1.4	2.7	5.1
5	Oxygen consumed by KMnO ₄	-	3	3.0	3.9	-
4	Test temperature, °C	-	24.6	22.8	25.4	22.4
3	Sampling temperature, °C	-	-	6.7 *	3.3	5.6
2	Storage period (days)	-	-	-	18:33	13:22
1	Date of sampling	Aug.15/56†	Jan,1958	Feb.8-28/55	Mar.26/55	Apr.27/55
	Sampling Point	At Ta	ps	At Tap, Cen	tral Heating Pl	ant,Citadel
10.		Finished	Water		Finished Wate	
	Source (s)	Montreal Munic St. Lawrence			icipal Supply - Charles River	
	Camp or Establishment	Longue F	laine a		, Quebec City	
		MONIKE	AL AREA	QUEDEC '	CITY and ENV.	ENONS

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

	NO	ST. BRU			Concl'd)	ENVIRONS (C CITY and	QUEBE		
	ap	t. Bruno Can	S		a, Ste. Foy,	PMQ Are	y (Goncl'd)	, Quebec City	Citadel	
		Wells			. Foy Municip Supply - Wells			ipal Supply - Charles River (Concl'd)	St. C	
NC	iter	Finished Wa	Raw and		nished Water	Raw and Fig	oncl'd)	shed Water (C	Finis	
	At Caretaker's Residence	Pump	At F	. At Tap, Pierre Martin St.	an Lebarge St	At Tap, Je		itadel Tap	At C	
1	Dec.28/56	Dec.28/56	July 16/56	Apr.2/57	Apr.2/57	Feb.5/57	Jan.16/57	Aug.23/56	Apr. 18/56	May 25/55
2	31:152	31:152	8:24	7:80	7:80	51:126	12:139	19:22	54:77	12:33
] 3	7.2	4.4	7.2	-	-	-	4.4	17.8	4.4	14.4
4	23.6	23.8	23.8	23.6	24.4	25.6	23.7	20.0	24.0	25.1
!	-	-	9.9	- }	2.9	1.4	11	- [12	-
0	2.2	1.3	1.2	2.5	2.5	1.9	3.2	3.6	2.5	2.7
	8.6	8.7	8.7	8.1	8.1	8.2	6.9	6.6	6.6	6.5
;	40	120	15	5	10	5	20	30	30	40
1	0	17	25	3.	10	0	1	4	15	6
1	-	9.4	24	2.8	13.1	-	-	-	11.4	-
1	-	5.2	15	0.7	7.9	-	-	-	9.5	-
1	470	388	380	242	260	250	68.4	-	49.6	-
1	36.4	31.2	23.2	87.2	32.4	33.6	37.2	-	25.6	-
1	762.0	620.5	605.9	382.2	380.0	384.1	49.62	39.02	35.70	28.1
1	6.9	4.2	3.7	62.7	61.8	61.0	4.9	4.6	3.5	3.2
1	5.5	0.3	0.1	5.3	5.9	6.7	1.0	0.3	0.7	0.4
1	-	2.5	0.37	_	_	-	-	-	-	-
1	0.02	-	0.08	0.01	Trace	0.0	0.28	-	0.27	-
1	0.0	0.0	0.0	0.0	0.0	0 02	0.01	-	0.0	-
2	0.19	0.0	0.73	0.26	0.51	0.37	0.22	_	0.0	-
2	0.0	Trace	0.02	0.0	0.0	Trace	Trace	-	0.0	-
2	0.0	0.02	0.0	0.0	0.0	0.0	0.05	-	0.05	-
2	177	152	146	8.7	8.8	9.3	2.2	1.4	1.1	0.9
2	7.0	3.1	3.0	1.3	1.3	1.3	0.6	0.5	0.9	0.5
2	-	-	0.1	0.0	0.0	0.0	0.2	0.1	0.2	0.2
1 2	13.9	15.4	14.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0
12	489	387	366	199	198	203	16.5	8.4	6.1	5.4
2	2.2	2.0	0.4	27.4	27.7	29.9	5.3	6.0	5.6	3.0
2	0.7	1.8	2.4	7.1	7.2	6.4	2.4	2.4	2.1	1.5
3	0.0	0.0	0.3	0.0	0.0	0.0	0.0	-	0.0	_
3	1.6	0.4	8.0	0.2	0.4	0.2	1.6	2.4	2.8	1.2
3	12	9.1	11	9.9	9.1	11	10	6.7	5.6	4.6
3	39.8	11.7	9.6	163	162	167	13.5	6.9	5.0	4.4
1 2	0.0	0.0	0.0	14.8	16.4	13.0	2.8	5.8	6.6	5.2
:	39.8	11.7	9.6	178	178	180	16.3	12.7	11.6	9.6
:	467	380	370	221	220	226	37.3	28.4	25.6	17.9
3	88.5	94.3	94.6	9.4	9.5	9.9	19.7	18.6	14.8	16.0
	+0.6	+0.4	+0.3	+0.7	+0.6	+0.8	-2.6	-3.3	-3.5	-3.7
1 1	7.4	7.9	8.1	6.7	6.9	6.6	12.1	13.2	13.6	13.9

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

			VALCAR	TIER, QUEBEC	
	Camp or Establishment		Camp	Valcartier	
	Source (s)		Ľ	eep Wells	
			1	Well No.1	
NO.			Raw a	nd Finished Water	
	Sampling Point			At Pump	
		M 1/5/	6 . 11/56		
1	Date of sampling	May 1/56	Sep t.11/56	Jan.22/57	Apr.24/57
2	Storage period (days)	49:83	35:42	8: 142	5:83
3	Sampling temperature, °C	7.2	8.3	7.2	7.2
4	Test temperature, °C	23.0	24.8	22.1	23.3
5	Oxygen consumed by KMnO ₄	8.3		-	2.2
6	Carbon dioxide (CO ₂) (calculated)	2.6	2.6	2.2	2,2
7	рН	6.9	6.9	7.0	7.0
8	Colour	0	5	5	0
9	Turbidity	0	0	0	3
10	Suspended matter, dried at 105°C	-	-	-	-
11	Suspended matter, ignited at 550°C	-	-	-	-
12	Residue on evaporation, dried at 105°C	37.2	-	65.6	42.4
13	Ignition loss at 550°C	. 14.8	-	17.6	15.2
14	Specific conductance, micromhos at 25°C	36.58	36.29	37.91	39.26
15	Calcium (Ca)	3.9	2.8	3.1	3.5
16	Magnesium (Mg)	0.7	1.3	1.2	1.1
17	Iron (Fe) Total	-	-	-	-
18	Dissolved	Тгасе	-	0.0	10.0
19	Manganese (Mn)	0.0	-	0.0	0.0
20	Aluminum (Al)	0.03	-	0.2	0.0
21	Copper (Cu)	0.0	-	0.0	Trace
22	Zinc (Zn)	0.05	-	0.05	0.02
23	Sodium (Na)	1.6	1.6	1.8	1.5
24	Potassium (K)	0.4	0.5	0.5	0.5
25	Ammonium (NH ₄)	0.0	0.0	0.0	0.0
26	Carbonate (CO ₃)	0.0	0.0	0.0	0.0
27	Bicarbonate (HCO ₃)	13.3	12.9	14.3	14.1
28	Sulphate (\$0 ₄)	2.8	3.4	2.9	2.7
29	Chloride (Cl)	0.2	0.9	1.1	0.9
30	Fluoride (F)	0.0	-	0.0	0.0
31	Nitrate (NO ₃)	4.0	2.0	1.6	2.5
32	Silica (SiO ₂), colorimetric	15	15	15	14
33	Carbonate hardness as CaCO3	10.9	10.6	11.7	11.6
34	Non-carbonate hardness as CaCO ₃	1.7	1.7	1.0	1.7
35	Total hardness as CaCO ₃	12.6	12.3	12.7	13.3
36	Sum of constituents	35.2	33.6	34.3	33.7
37	Per cent sodium	20.7	21.2	21.3	18.9
38	Saturation index at test temperature	-2.8	-2.4	-2.8	-2.7
39	Stability index at test temperature	12.5	11.7	12.6	12.4
	Remarks:				

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

_				ARTIER, QUEBE Camp Valcartier (C			
			one d)	Deep Wells			
_	 5	Well No.5		2007	No.3	Well	
N			er	and Finished Wate			
1		At Pump			ump	At P	
	Jan22/57 8:142	Sept.11/56 41:44	May 1/56 49:87	Apr.24/57	Jan.22/57 8:142	Sep t.11/56	May 1/56
1	0.142	7.2	7.2	5:83 7.2	1	41:44	49:83
	22.2	24.4	23.0	23.2	7.2	7.2	7.2
- (22.2	24.4	8.7	23.2	22,2	24.2	23.0
	4.8	2.5	ì		-	-	8.2
	6.6	6.8	1.3	5.2	6.6	2.5	3.7
		0.8	7.1	6.6	6.5	6.9	6.7
- 1	5 0	i l	0	0	- 5	5	0
	U	0	0	4	0	0	0
1	-	-	-	0.5	-	-	-
1	-	-	-	0.0	-	-	-
1	57.2	-	38.8	49.2	64.0	-	42.4
1	18.8	-	13.6	18.4	23.6	-	14.8
1	31.91	38.90	37.42	41.70	41.30	37.52	41.19
1	3.1	3.1	3.6	3.5	3.9	3.4	4.1
1	0.6	0.8	0.7	1.1	0.9	0.8	0.8
1	-	i -	<u>-</u>	-	-	-	-
1	0.02	-	0.01	0.0	Trace	-	0.02
1	0.01	-	0.04	0.0	0.01	-	0.01
2	0.19		0.0	0.0	0.07	-	0.04
2	0.0	Trace	0.0	0.0	0.0	Trace	0.0
2	0.05	0.05	0.0	0.0	0. 05	0.0	0.0
2	1.8	1.4	1.7	1.7	2.1	1.6	1.6
2	0.7	0.7	0.8	. 0.8	0.8	0.8	0.8
2	0.0	0.05	0.0	0.0	0. 0	0.05	0.0
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	11.2	9.9	9.6	13.3	12.7	12.1	11.6
2	2.9	3.9	2.8	3.8	3.9	3.8	2.8
2	0.7	1.2	0.8	1.0	1.1	0.8	0.5
3	0 .0	0.0	0.0	0.0	0.0	-	0.0
3	2.4	3.2	8.0	2.5	3.2	3.2	6.8
2	12	11	11	12	13	13	13
3	9.2	8.1	7.9	1 0. 9	10.4	9.9	9.5
3	1.0	2.9	4.0	2.4	3.0	1.9	4.0
3	10.2	11.0	11.9	13.3	13.4	11.8	13.5
3	30.0	30.3	33.8	32.8	35.1	33.3	36.3
1 3	24.2	20.3	22.2	20.6	23.4	21.4	19. 0
3	-3.3	-3.1	- 2.8	-3.2	-3.3	-2.9	- 3.1
3	13.2	13.0	12.7	13.0	13.1	12,7	12.9

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

			VAL	CARTIER, (C	ont'd)	
	Camp or Establishment		Camp V	alcartier, (Cont	: ' d)	
	Source(s)	Well No.5		Mixe	ed Wells	
NO.			Raw an	d Finished Wat	er	
	Sampling Point	At Pump	At Blo	lg. No. 5 (Central Heating Plant) Tap		
1	Date of sampling	Apr.24/57	Feb.10/55	Mar.16/55	Apr.18/55	May 16/5
2	Storage period (days)	5:83	19:35	15:43	15:18	16:24
3	Sampling temperature, °C	7.2	7.8	7.2	-	-
4	Test temperature, °C	23.2	21.6	2 5. 1	24.3	22.6
5	Oxygen consumed by KMnO4	2.0	1.3	-	-	1.1
6	Carbon dioxide (CO2) (calculated)	3.9	1.8	1.8	1.1	1.8
7	рН	6.6	7.1	7.1	7.3	7.1
8	Colour	0	5	5	0	0
9	Turbidity	3	0	0	0	0
10	Suspended matter, dried at 105°C	0.8	_	_	_	_
11	Suspended matter ignited at 550°C	0.0	<u>-</u>	-	-	i -
12	Residue on evaporation, dried at 105°C	43.2	43.6	_	_	46.0
13	Ignition loss at 550°C	15.2	21.0	_	_	11.6
14	Specific conductance, micromhos at 25°C	31.60	38.9	38.8	38.3	39.2
15	Calcium (Ca)	2.8	3.2	3.4	3.8	3.8
16	Magnesium (Mg)	0.7	1.1	1.0	0.8	1.0
17	Iron (Fe) Total	-			0.0	_
18	Dissolved	0.0	0.01	_		0.0
19	Manganese (Mn)	0.01	Trace	_		0.0
20	Aluminum (Al)	0.0	0.35	_	1 _	0.42
21	Copper (Cu)	0.01	0.0	_		0.0
22	Zinc (Zn)	0.0	_	_		-
23	Sodium (Na)	1.4	1.9	1.4	1.4	1.4
24	Potassium (K)	0.7	0.5	0.5	0.5	1
25	Ammonium (NH ₄)	0.0	0.5	0.5	0.5	0.5
26	Carbonate (CO ₃)		0.0	0.0	0.0	
27	Bicarbonate (HCO ₃)	0.0 10.0	14.7	_	15.6	0.0
28	Sulphate (SO ₄)		3.7	15.2	1	13.4
29	Chloride (Cl)	3.1 0.5	0.8	2.8	1.8	3.1
				0.0	0.4	1.7
30	Fluoride (F)	0.0	0.0	-	-	0.05
31	Nitrate (NO ₃)	3.0	2.4	2.0	1.2	3.2
32	Silica (SiO ₂), colorimetric	11	10	17	18	14
33	Carbonate hardness as CaCO ₃	8.2	12.1	12.5	12.8	10.6
34	Non-carbonate hardness as CaCO ₃	1.7	0.4	0.1	0.0	2.6
35	Total hardness as CaCO ₃	9.9	12.5	12.6	12.8	13.2
37	Sum of constituents	27.8	31.3	35.6	35.4	36.1
37	Per cent sodium	22.0	21.5	18.7	18.5	15.5
38	Saturation index at test temperature	-3.4	-2.7	-2.6	-2.3	-2.7
39 	Stability index at test temperature	13.4	12.5	12.3	11.9	12.5
	Remarks:	-				

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

			'd)	Valcartier, (Concl	Camp		
-				Mixed Wells	Camp		
-				v and Finished Wate	Por		
NO		t. Dil. T. so		and Finished wat		5 /C 1 IV	A. DII. N
╁		in Bldg. L 59			1	o. 5 (Central Heatin	
1	Apr.24/57	Jan. 22/57	Sept.11/56	May 1/56	Apr.3/56	Jan.4/56	Aug.1/55
2	5:83	8:142	41:44	49:83	20:28	13:14	14:29
3	9.4	8.3	14.4	7.2	7.2	6.7	-
4	23.2	22.0	24.4	23.0	23.2	24.1	27.5
5	1.9	•	-	8.3	·	-	-
6	2.3	3.6	1.9	1.8	3.3	2.1	1.0
7	7.2	6.8	7.1	7.3	6.8	7.0	7.5
8	0	5	5	0	0	5	10
9	4	0 [0	0	0	0	0
10	1.0	-	-	-	-	-	-
11	0.0	-	-	-	-	-	•
12	50.0	64.0	-	44.0	-	-	-
13	14.0	32.0	-	18.0	-	-	•
14	54.36	42.48	43.34	51.96	37.41	36.50	49.7
15	3.8	4.1	3.8	4.8	3.6	3.5	3.9
16	2.4	0.7	0.9	1.2	0.9	0.9	1.0
17	-	•	-	-	-	-	-
18	0.0	0.01	•	0.02	-	-	-
19	0.01	0.0	-	0.0	-	•	-
20	0.42	0.08	-	-	-	•	-
21	Trace	0.0	Trace	0.0	-	-	-
22	0.8	1.5	0.5	1.0	-	-	-
23	1.5	1.7	1.6	1.8	1.4	1.5	1.8
24	0.7	0.6	0.6	0.6	0.4	0.5	0.6
25	0.0	0.0	0.0	0.1	0.0	0.3	0.0
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27	23.5	15.7	16.2	22.4	14.5	13.4	20.0
28	3.8	3.4	3.4	2.8	3.6	2.8	2.9
29	1.2	1.0	0.8	0.3	0.4	0.6	0.2
30	0.0	0.0	0.0	0.0	-	-	-
31	2.5	2.4	3.2	4.0	3.2	4.0	0.8
32	11	14	14	13	14	14	14
33	19.3	12.9	13.2	16.9	11.9	11.0	13.8
34	0.1	0.2	0.0	0.0	0.8	1.4	0.0
35	19.4	13.1	13.2	16.9	12.7	12.4	13.8
36	40.0	36.8	37.0	39.9	34.4	34.5	34.7
37	12.0	18.2	19.1	16.7	18.8	20.0	21.1
38	-2.3	-2.9	-2.5	-2.0	-2.9	-2.7	-2.0
39	11.8	12.6	12.1	11.3	12.6	12.4	11.5

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

ONTARIO

}				BARRIEI	FIELD, ONT		
	Camp or Establishment			Camp	Barriefield		
ĺ	Source(s)						
			C+ T	awrongo Di	war (Laka Or	rasia)	
			St. 1	_awrence Ki	ver (Lake Or	itario)	
}							· · · · · · · · · · · · · · · · · · ·
NO.			Raw Water †	·		Finished Wa	ter
	Sampling Point	At	Vimy Pumph	ouse	At \	Vimy Pumpho	use
1	Date of sampling	Apr.24/56	Aug.16/56	Dec.4/56	Apr.24/56	Aug.16/56	Dec.4/56
2	Storage period (days)	51:77	15:20	34:39	51:77	15:20	34:39
3	Sampling temperature, °C	5.0	16.1	1.1	5.0	16.1	1.1
4	Test temperature, °C	25.8	21.4	22.2	25.6	21.5	22.3
5	Oxygen consumed by KMnO ₄	8.0	-	11	. 7.9	-	10
6	Carbon dioxide (CO2), calculated	1.4	1.5	1.2	1.1	1.5	1.3
7	рН	8.1	8.1	8.2	8.2	8.1	8.2
8	Colour	0	0	5	0	5	10
9	Turbidity	5	0	0	5) o	0
10	Suspended matter, dried at 105°C	3.1	-	-	1.9	-	-
11	Suspended matter, ignited at 550°C	1.6	-	-	1.6	-	-
12	Residue on evaporation, dried at 105°C	189	-	187	192	<u> -</u>	190
13	Ignition loss at 550°C	40.4	-	32.4	30.4	-	37.2
14	Specific conductance, micromhos at 25°C	289.7	298	305.7	293.7	295.9	304.1
15	Calcium (Ca)	37.9	39.3	39.3	38.5	39.8	39.1
16	Magnesium (Mg)	6.9	6.8	7.6	7.0	6.5	7.5
17	Iron (Fe) Total	-	-	-	-	-	-
18	Dissolved	0.03	0.01	Trace	0.03	0.01	Trace
19	Manganese (Mn)	0.0	<u>'</u>	0.0	0.0	-	0.0
20	Aluminum (Al)	0.0	-	0.03	0.03	-	0.03
21	Copper (Cu)	0.0	-	Trace	0.0	-	Trace
22	Zinc (Zn)	0.0	-	0.0	0.0	<u>-</u>	0.0
23	Sodium (Na)	8.5	9.2	9.0	8.6	9.2	9.3
24	Potassium (K)	1.4	1.2	1.3	1.3	1.2	1.4
25	Ammonium (NH ₄)	0.1	0.1	0.2	0.1	0.1	0.2
26	Carbonate (CO ₃)	0	0	0	0	0	0
27	Bicarbonate (HCO ₃)	112	112	117	112	112	115
28	Sulphate (SO ₄)	22.2	23.6	24.4	22.3	23.1	23.7
29	Chloride (Cl)	19.2	20.2	21.8	19.9	22,6	22.6
30	Fluoride (F)	0.2	-	0.0	0.15	2.4	0.0
31	Nitrate (NO ₃)	3.2	2.4	0.6	8.0	2.4	0.6
32	Silica (SiO ₂), colorimetric	1.7	0.8	1.7	1.8	1.6	2.2
33 34	Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃	92.0 30.9	91.6	95.9	92.0	91.8	94.5
34 25	Total hardness as CaCO ₃	123	34.4 126	33.4 129	32.8 125	126	33.9 128
35 36	Sum of constituents	157	160	163	163	162	163
36 27	Per cent sodium	12.9	13.6	12.9	12.9	13.6	13.4
37 30	Saturation index at test temperature	+0.2	+0.2	+0.3	+0.3	+0.1	+0.3
38 39	Stability index at test temperature	7.7	7.7	7.6	7.6	7.9	7.6
	btability index at test temperature	/•/	'''		ļ	ļ	
	Remarks:	t See also V	V.S.R. No. 3				
					<u> </u>	<u> </u>	

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

	ENVIRONS	IP BORDEN and	CAM		T. (Concl'd)	RRIEFIELD, ON	BA	
7	Camp	Blackdown Park			(Concl'd)	amp Barriefield	C	
		Small Creek		Kingston Municipal Supply - St. Lawrence River Water, Treated.	itario)	e River (Lake Or	St. Lawrence	
NO.	ater	and Finished W	Raw	Finished Water	'd)	ed Water (Concl	Finish	
		At Pump		At Town Tap		ating Plant Tap		At R.C.E.
1	Dec.19/56	Aug.20/56	Apr.17/56	Sept.6/57	Feb.1/56	May 11/55	Apr.11/55	Feb.11/55
2	36:159	44:57	52:78	6:7	12:19	19:29	20:25	13:26
3	7.2	11.7	4.4	22.2	2.2	8.3	4.4	2.8
4	21.4	24.2	23.6	24.6	26.0	24.0	24.4	20.9
5	_	11	12	2	_	3.4	_	2.5
6	2,2	1.6	1.9	2.6	1.2	1.5	3.6	2.4
7	8.3	8.3	8.2	7.8	8.2	8.1	7.7	7.9
8	30	10	30	0	10	5	5	10
9	0.9	0.8	o	1 1	1	3	1	0
10	•	-	_	_	_	_	•	_
11	_	_	_	_	_	_	_	_
12	295	_	205	205	_	191	_	185
13	70.8	_	26.4	48.0	_	51.2	_	38.4
14	417.6	389.2	318.2	308.4	301.0	292.4	299.6	313.1
15	75.0	69.3	58.0	37.8	38.5	39.6	39.0	38.3
16	8.6	7.3	5.9	8.2	8.5	6.3	6.5	7.5
17	•	-			6.7	-	0.5	
18	0.0	_	0.04	0.05	_	0.0	_	-
19	0.0	_	0.04	0.01	_	0.0	-	0.0
20	0.16	_	0.03	0.01	-	1	-	0.0
21	0.0	0.0	0.0	0.0	_	0.0	-	0.07
i	0.0	0.0	0.0	0.0	_	0.0	-	0.0
22	2.7	2.5	2.0	· ·			-	-
23	1.0	1.0	1.1	1	9.2	6.9	7.3	8.4
24	0.1	ì	1	1.2	1.3	1.3	1.2	1.2
25	0.0	0.1	0.0	0.0	0.0	-	-	-
26		0.0	0.0	0.0	0.0	0.0	0.0	0.0
27	251	222	184	100	114	112	113	115
28	22.3	25.5	19.5	30.7	24.4	21.4	22.8	23.9
29	2.3	3.0	1.9	22.6	22.1	18.0	19.5	20.4
30	0.0	-	0.0	0.0		0.05	-	0.2
31	0.8	0.8	1.2	0.3	1.6	1.2	1.2	8.0
32	14	10	6.0	0.7	1.7	5.2	2.3	1.0
33	206	182	151	82.1	93.2	92.2	92.7	93.9
34	16.5	20.6	18.0	45.9	37.8	32.5	34.1	32.5
35	223	203	169	128	131	125	127	126
36	250	229	187	160	163	155	156	158
37	2.5	2.6	2.5	13.0	13.1	10.6	11.0	12.5
38	+1.0	+1.0	+0.7	-0.1	+0.4	+0.2	-0.4	-0.1
39	6.3	6.3	6.8	8.0	7.4	7.7	8.5	8.1
ļ		Low flow	Flow is slightly above normal					

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

			CAMP BO	RDEN and E	NVIRONS (C	ont'd)	
	Camp or Establishment			Camp I	Borden	•	-
	Source(s)			Dee	Wells		
			Well No. 1		,	Well No. 2	
NO.			Raw	and Finishe	d Water		
	Sampling Point		At Pump			At Pump	
1	Date of sampling	Aug.20/56	Dec.19/56	Apr.4/57	Aug.20/56	Dec.19/56	Apr.4/57
2	Storage period (days)	31:44	36:159	5:79	31:57	36:159	7:78
3	Sampling temperature, °C	11.1	12.8	10.0	11.1	12.2	10.0
4	Test temperature, °C	22.5	21.6	24.8	22.8	21.6	24.7
5	Oxygen consumed by KMnO ₄	8.9	_	_	9.5	_	-
6	Carbon dioxide (CO ₂), (calculated)	1.3	1.4	4.5	1.2	1.5	3.7
7	pH	8.4	8.3	7.9	8.5	8.4	8.0
8	Colour	5	5	10	0	5	5
9	Turbidity	2	Ó	3	2	5	4
10	Suspended matter dried at 105°C	_	_	8.6	_	_	5.3
11	Suspended matter, ignited at 550°C	_	_	4.3	_	[_	1.6
12	Residue on evaporation, dried at 105°C	_	200	294	253	[302
13	Ignition loss at 550°C.		50.8	89.2	41.2	-	63.0
14	Specific conductance, micromhos at 25°C	394.6	275.0	377.5	455.7	446	-
15	Calcium (Ca)	48.1	l '			f I	467.3
16	Magnesium (Mg)		17.5	44.6	59.4	58.6	59.0
	Iron (Fe) Total	14.8	11.2	15.0	14.9	14.6	16.5
17	Dissolved	0.27	-	-	0.62	_	•
18	Manganese (Mn)	0.34	0.0	Trace	0.03	0.05	0.09
19	Aluminum (Al)	-	0.0	0.0	0.0	Trace	0.01
20	Copper (Cu)	-	0.11	0.32	0.13	0.19	0.36
21		Trace	0.0	0.0	0.0	0.0	0.0
22	Zinc (Zn)	0.0	0.05	0.0	0.0	0.0	0.0
23	Sodium (Na)	11.1	26.5	12.2	12.2	10.5	11.3
24	Potassium (K)	1.6	1.5	1.4	1.6	1.5	1.5
25	Ammonium (NH ₄)	0.1	0.1	0.0	0.1	0.0	0.0
26	Carbonate (CO ₃)	5.8	0.0	0.0	7.4	2.5	0.0
27	Bicarbonate (HCO ₃)	210	172	211	216	228	238
28	Sulphate (SO ₄)	.6.7	1.0	6.9	8.7	9.1	10.0
29	Chloride (Cl)	13.5	7.1	14.1	28.5	26.2	30.9
30	Fluoride (F)	-	0.0	0.0	0.0	0.0	0.0
31	Nitrate (NO ₃)	0.4	0.8	0.4	0.4	0.2	0.2
32	Silica (SiO ₂), colorimetric	17	18	16	17	17	15
33	Carbonate hardness as CaCO ₃	181	89.7	173	189	191	195
34	Non-carbonate hardness as CaCO ₃	0.0	0.0	0.0	20.2	16.3	20.2
35	Total hardness as CaCO ₃	181	89.7	173	209	207	215
36	Sum of constituents	222	167	220	256	252	262
37	Per cent sodium	11.7	38.3	13.1	11.1	9.8	10.1
38	Saturation index at test temperature	+0.9	+0.2	+0.4	+1.1	+0.9	+0.6
39	Stability index at test temperature	6.6	7.9	7.1	6.3	6.6	6.8
	Remarks:) 				

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)
ONTARIO (Cont'd)

		RG	COBOU			ncl'd)	NVIRONS (Con	SORDEN and E	CAMP I
							en	Camp Bord	
		*					s	Deep Wells	
		io, Treated.	/ - Lake Ontar	Municipal Supply	Cobourg 1			Well No.3	
NC			Water	Finished				aw and Finish	R
			Heating Plant	ap In Central	At :			At Pump	
1	May 29/57	May 17/56	Apr.25/55	Mar.30/55	Feb.9/55	Apr.4/57	Dec.19/56	July 20/56	Apr.17/56
2	13:54	41:76	15:23	16:29	20:28	7:78	36:161	44:57	55:78
3	-	12.2	4.4	15.6	4.4	10.0	12.8	11.1	8.9
4	23.4	24.4	22.3	23.0	21.6	24.4	21.5	24.2	22.4
5	2.6	7.5	-	-	2.6	-	-	8.9	7.2
6	2.4	1.5	2.4	8.0	1.9	3.7	1.8	1.6	2.9
7	7.9	8.1	7.9	7.4	8.0	8.0	8.3	8.3	8.1
8	0	o	0	0	5	5	5	5	0
9	5	5	6	1	O	5	1	2	3
10	_	5.1	-	-	-	8.1	-	-	-
11	-	1.7	-	-	-	6.4	-	-	-
12	177	216	- }	-	198	216	207	198	197
13	53.2	102	-	-	44.0	33.6	40.4	19.6	20.0
14	310.9	307.0	313.6	313.1	316.0	360.2	350.4	356.2	352.0
15	39.6	39.0	40.0	40.1	39.8	50.5	48.2	50.1	50.9
16	8.1	8.3	7.4	7.5	7.8	14.1	12.9	13.2	12.8
17		- 1	-	-	-	<u> </u>	j -	0.33	_
18	0.0	0.02	-	_	Trace	0.13	0.0	0.03	0.04
19	0.0	0.0	-	-	0.0	0.0	Trace	0.01	0.0
20	0.09	0.09	-	-	0.11	0.47	0.16	0.07	0.03
21	0.0	0.0	-	-	Trace	0.0	0.0	0.0	0.0
22	0.0	0.0	-	-	 	0.0	0.0	0.0	0.0
23	9.4	9.1	8.2	8.6	9.0	4.8	7.5	6.0	6.0
24	1.2	1.3	1.3	1.3	1.2	1.3	1.2	1.4	1.4
25	0.0	0.1	0.05	_	-	0.0	0.0	0.0	0.0
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27	120	115	118	122	120	235	228	230	220
28	26.3	24.4	21.3	24.2	26.9	7.4	6.9	6.4	6.1
29	22.6	21.5	21.4	20.9	22.1	1.5	1.6	2.4	2.0
30	0.0	0.0	-	-	0.05	0.0	0.0	0.0	0.0
31	0.8	3.2	1.6	1.0	1.0	0.15	0.2	0.4	0.8
32	1.1	1.9	0.5	0.6	0.8	16	15	17	17
33	98.3	94.0	96.5	99.8	98.6	184	173	180	180
34	33.8	37.4	33.7	31.1	32.8	0.0	0.0	0.0	0.0
35	132	131	130	131	131	184	173	180	180
36	169	165	160	164	169	213	206	210	206
37	13.2	12.9	11.9	12.4	12.8	5.3	8.5	6.8	6.7
38	0.0	+0.2	0.0	-0.5	+0.1	+0.6	+0.7	+0.8	+0.6
39	7.9	7.7	7.9	8.4	7.8	6.8	6.9	6.7	6.9
1				S.R. No. 3	*				

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

Į.				HAGERSVII	LE	
	Camp or Establishment	·		Camp Hagersv	ille	
	Source (s)			Lake Erie		
NO.		Raw Water		Finished Wate	r	
ĺ	Sampling Point	At Pump	At Taj	or From Tank	in Bldg. 21	
1	Date of sampling	Apr.2/56	Apr.3/56	Oct.11/56	Feb.11/57	Apr.10/57
2	Storage period (days)	84:121	84:120	28:89	56:122	7:79
3	Sampling temperature, °C	7.2	10.0	17.8	11.7	12.8
4	Test temperature, °C	23.4	23.8	25.2	24.1	23.8
5	Oxygen consumed by KMnO4	7.9	8.6		3.6	3.4
6	Carbon dioxide (CO ₂) (calculated)	1.9	1.5	1.9	1.6	3.0
7	pH	8.1	8.1	8.0	8.1	7.8
8	Colour	0	10	10	5	15
9	Turbidity	25	40	5	4	40
10	Suspended matter, dried at 105°C	19.8	24.8	-	-	18.4
11	Suspended matter, ignited at 550°C	17.4	22.8	} - }	-	6.3
12	Residue on evaporation, dried at 105°C.	199	242	_	-	226.4
13	Ignition loss at 550°C.	51.6	92.0	_	-	54.4
14	Specific conductance, micromhos at 25°C.	296.5	291.5	303.1	316.4	314.2
15	Calcium (Ca)	39.2	38.8	39.7	39.3	40.9
16	Magnesium (Mg)	7.1	7.2	7.7	8.1	8.0
17	Iron (Fe) Total	_	-	_	•	-
18	Dissolved	0.01	0.04		0.0	0.02
19	Manganese (Mn)	0.0	0.0	- 1	0.0	Trace
20	Aluminum (Al)	0.10	0.08	_	0.44	0.07
21	Copper (Cu)	0.0	0.0	Trace	Trace	Trace
22	Zinc (Zn)	0.0	0.0	0.05	0.4	0.2
23	Sodium (Na)	7.9	7.7	9.1	8.5	8.0
24	Potassium (K)	1.2	1.4	1.3	1.2	1.3
25	Ammonium (NH ₄)	0.1	0.1	0.0	0.0	0.0
26	Carbonate (CO ₃)	0.0	0.0	0.0	0.0	0.0
27	Bicarbonate (HCO ₃)	119	115	120	123	118
28	Sulphate (SO ₄)	16.7	22.1	21.8	22.5	24.9
26 29	Chloride (Cl)	19.1	19.9	22.9	23.5	22.5
	· ·	0.1	0.05	22.9	0.1	0.0
30	Fluoride (F)	1	_	- 1	i	
31	Nitrate (NO ₃)	1.2	0.4	0.4	0.4	0.8
32	Silica (SiO ₂), colorimetric	1.1	2.4	00.7	2.7	1.6
33	Carbonate hardness as CaCO ₃	97.6	94.4	98.7	101	96.8
34	Non-carbonate hardness as CaCO ₃	29.4	32.0	32.0	30.7	38.1
35	Total hardness as CaCO ₃	127	126	131	131	135
36 	Sum of constituents	152	157	-	168	167
37	Per cent sodium	11.7	11.5	13.1	12.0	11.2
38	Saturation index at test temperature	+0.2	+0.2	+0.2	+0.3	+0.1
39	Stability index at test temperature	7.7	7.7	7.6	7.5	8.0
	Remarks:	See also W.S.R. No. 3				

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

		IPPERWASH		Concl'd)	HAGERSVILLE (C	
		Camp Ipperwash			Camp Hagersville	
		Lake Huron			Wells (Standby Supply)	
1	er	Raw and Finished Wat]	er	Raw and Finished Wat	
,		At Tap in Bld	At Intake Pump		At Pump	
	Dec.3/56	Aug.27/56	Apr.10/56	Apr.10/57†	Feb.11/57†	Oct.12/56
1	50:170	42:62	58:78	7:79	56:122	27:103
	6.7	18.9	4.3	10.0		15.6
}	26.3	24.2	22.2	23.8	24.0	25.1
ŀ	10	9.5	7.5	2.9	_	_
	0.9	0.9	1.4	4.2	2.2	15
	8.2	8.2	8.1	8.0	8.3	7.3
	5	15	5	10	5	10
	3	20	35	40	20	30
1	-	_	43.2	28.6	26.1	58.0
	_		39.7	13.7	17.4	48.1
1	127	_	136	563	586	1198
1	21.6	_	21.2	67.2	56.0	93.6
1	196.3	210.3	213.4	807.6	824.6	1459
	27.0	28.6	29.9	85.4	89.0	208
	6.2	6.1	6.6	28.3	27.4	64.3
1	-	-	- 0.0	20.7	27.4	04.5
1	0.0	_	0.02	0.10	0.06	0.04
1	0.0	_	0.02	0.0	0.0	0.0
2	0.05		0.05	0.14	0.60	0.28
2	0.0	0.0	0.0	0.0	0.0	0.0
2	0.0	0.02	0.0	0.0	0.0	0.1
2	3.9	2.9	2.7	49.6	47.6	43.1
	0.8	1.0	1.0	2.3	2.2	4.6
	0.1	0.0	0.0	0.2	0.05	4.0
2	0.0	0.0	0.0	0.0	0.0	0.0
2	97.3	97.0	101	274	271	208
2	12.3	14.0	14.3	210	213	667
2	5.3	7.6	4.6	3.6	3.4	9.3
		7.0	1)	
3	0.0 0.8	1.2	0.0	0.4 1.6	0.53	1.6
2	6.5	1.2	8.0 4.1	6.2	0.6	0.4
3		3.2	<i>i</i>	224	7.1	10
3	79.8 13.1	79.6 16.8	83.2	105	223 112	171
	92.9	96.4	18.5		1	613
3			102	329 522	335	784
ι	111	112	121	522	525	1112
3	8.2	6.1	5.4	24.4	23.3	10.6
	+0.2 7.8	+0.1 8.0	0.0 8.1	+0.8 6.4	+1.1	+0.3 6.7
+	1.0	0.0		0.4		0.7
İ			Normal lake level		† No.3 well	

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

				L	AKEVIEW			
	Camp or Establishment							
	Source (s)	Toronto	Township a	and Lakevio	ew Municipa	al Supply -	Lake Ontar	io, Treated
NO.				Fin	ished Water			
	Sampling Point				Central Hea			· · · · · · · · · · · · · · · · · · ·
1	Date of sampling	Mar.18/55	Apr.28/55	Feb.2/56	Mar.8/56	Apr.4/56	May 5/56	June 4/5
2	Storage period (days)		19:27	25:32	8:26	15:21	11:20	29:64
3	Sampling temperature, °C		-	11.1	-	_	6.7	11.1
4	Test temperature, °C		22.1	22.4	22.1	22.4	23.0	23.3
5	Oxygen consumed by KMnO ₄		-	-	3.2	-	_	4.0
6	Carbon dioxide (CO ₂), (calculated)	4.9	4.0	1.2	2.6	1.8	4.1	1.2
7	рН	7.6	7.8	8.2	7.7	8.0	7,6	8.2
8	Colour	5	5	5	0	5	0	5
9	Turbidity	_	3	0.3	0	3	0	1
10	Suspended matter, dried at 105°C		_		_	-	_	<u>-</u>
11	Suspended matter ignited at 550°C	-	_	_	-	_	_	_
12	Residue on evaporation, dried at 105°C	199	_	· [_	<u>-</u>	_	210
13	Ignition loss at 550°C	38.4	_	· [_	_	_	46.0
14	Specific conductance, micromhos at 25°C	_	337.1	312.8	326.1	309.9	328.8	311.6
15	Calcium (Ca)		42.9	40.3	41.3	40.1	42.9	39.9
16	Magnesium (Mg)	8.2	8.3	7.7	7.6	7.4	7.5	8.6
17	Iron (Fe) Total			'-'	-		/./	0.0
18	Dissolved	Trace	_	_	_	_	-	0.01
19	Manganese (Mn)	Trace	_	_	_	_	_	0.01
20	Aluminum (Al)	0.15	_	_ [_	_	_	0.15
20 21	Copper (Cu)	Trace	_		Trace]	_	
21 22	Zinc (Zn)	-	-	-	0.0	<u> </u>	_	0.0
22 23	Sodium (Na)		0.2	07		0.5	0.1	0.0
	Potassium (K)	8.3 1.4	9.3 1.7	9.7	9.6	9.5	9.1	9.3
24 25	Ammonium (NH ₄)	-	· ·	1.3	1.6	1.4	1.5	1.3
26 26	Carbonate (CO ₃)	0.0	0.0	0.0	0.0		0.0	0.05
		·	-	0.0	0.0	0.0	0.0	0.0
27	Bicarbonate (HCO ₃)	119	131	114	78.0	113	102	116
28	Sulphate (SO ₄)	35.0	24.7	25.4	55.7	25.2	42.8	24.2
29 20	Chloride (Cl)	19.1	20.8	21.8	23.6	23.9	21.2	22.4
30	Fluoride (F)	0.1	1.6	-	- -	-	-	0.0
31	Nitrate (NO ₃)	1.2	1.6	2.4	1.2	2.0	4.0	4.0
32	Silica (SiO ₂), colorimetric	1.2	1.5	2.5	1.3	1.1	1.4	2.0
33	Carbonate hardness as CaCO ₃	98.0	107.4	93.8	64.0	92.6	84.0	95.2
34	Non-carbonate hardness as CaCO ₃	41.0	31.3	38.4	70.3	37.9	53.9	39.7
35	Total hardness as CaCO ₃	139	139	132	134	131	138	135
36	Sum of constituents	176	175	168	180	166	181	169
37	Per cent sodium	11.3	12.5	13.6	13.3	13.5	12.4	12.8
38	Saturation index at test temperature	-0.2	0.0	+0.3	-0.4	+0.1	-0.3	+0.3
39	Stability index at test temperature	8.0	7.8	7.6	8.5	7.8	8.2	7.6
	Remarks:	See also	W.S.R. No. 3	,				

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)
ONTARIO (Cont'd)

	LA	KEVIEW (Co	acl'd)				LEITRIM				
	· - · <u>-</u> · · · · · · · · · · · · · · · · · · ·						Leitrim Stat	ion			
	Township and						Wells				
Supp	oly - Lake On	tario, Treate	d (Concl'd)i 	Shallov	w Well	Deep (Goth	Well Farm)		Deep Well		
	Finishe	ed Water			Ra	w and Finis	hed Water				NO.
At Ta	p in Central	Heating Plan	ıt	At P	ump	At :	Pump		At Pump		
Oct.9/56	Nov.1/56	Jan.22/57	Apr.24/57	Apr.10/56	Dec.4/56	Aug.29/56	June 14/57	Aug.28/56	Dec.4/56	Mar.7/58	1
7:14	28:57	13:21	7:83	56:65	23:77	15:26	6:7	14:27	43:77	3:5	2
10.0	11.1	-	-	6.7	10.0	10.0	12.8	14.4	10.0	15.5	3
24.9	23.6	24.8	23.9	21.8	22.5	22.8	27.4	22.6	17.0	22.9	4
_	-	_	3.4	7.4	- 1	-	2.6		-	-	5
1.2	1.5	~	2.5	5.2	1.9	2.7	1.5	3.6	1.6	4.0	6
8.2	8.1	8.0	7.9	8.0	8.3	7.8	8.0	8.2	8.6	8.2	7
5	10	-	0	5	5	0	5	0	0	-	8
4	0	-	6	1	- 1	4	80 *	1	-	Clear	9
-	-	-	0.7	-	-	-	79.8	-	-	-	10
-	-	-	0.0	-	-	-	75.6	-	-	-	11
-	-	-	210	510	-	-	258	-	-	-	12
_	-	-	82.8	60.0	-	-	44.4	-	-	-	13
308.3	309.7	316.4	320.4	745.7	508.9†	359.1	355.3	662.7	611.8	792.3	14
39.5	39.4	-	41.3	94.6	45.5†	49.2	45.9	65.6	35.6	-	15
7.5	7.7	_	8.2	30.2	27.1	8.4	9.1	16.2	19.5	-	16
-	_	-	-	_	-	_	4.1	-	-	! -	17
-	-	-	0.04	0.05	Trace	-	0.17	_	0.02	-	18
-	-	-	0.0	-	0.0	_	0.02	-	0.02	-	19
-	-	-	0.11	-	0.16	-	0.06	~	0.49	_	20
-	-	_	0.04	0.0	Trace	-	0.0	-	0.0	<u>-</u>	21
_	_	-	0.0	0.3	0.05	-	0.0	-	0.3	i -	22
9.7	10.3	9.4	9.4	22.2	21.2	7.4	9.5	57.0	77.0	70.5	23
1.3	1.3	1.3	1.4	4.5	4.0	2.0	2.1	3.8	4.4	3.9	24
0.1	0.05	0.0	0.0	-	-	0.2	0.0	0.2	0.0	-	25
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13.3	0.0	26
118	114	122	121	334	242†	101	104	370	346	404	27
24.5	26.1	24.9	24.4	120	71.4 †	79.6	79.6	49.2	22.3	41.7	28
23.0	23.1	22.5	22.1	3.1	3.2	8.1	7.7	8.3	10.8	13.0	29
-	-	-	0.0	0.20	0.1	<u>-</u>	0.07	-	1.2	-	30
1,2	0.8	0.8	1.2	2.4	1.2	Trace	0.0	0.4	4.0	0.0	31
1.5	1.6	2.7	0.9	22	22	11	17	22	15	21	32
96.8	93.8	99.7	99.2	274	198	83.1	85.3	230	169	231	33
32.6	36.2	36.3	37.8	86.2	26.6	74.2	66.6	0.0	0.0	0	34
129	130	136	137	360	225†	157	152	230	169	231	35
166	167	-	169	465	316†	216	222	405	375	-	36
13.9	14.5	12.9	12.8	11.6	16.6	9.1	11.7	34.5	48.5	39.4	37
+0.3	+0.2	_	+0.1	+0.9	+0.7	~0.1	+0.2	+1.0	+1.1	-	38
7.6	7.7		7.7	6.2	6.9	8.0	7.6	6.2	6.4	<u> </u>	39
					rage; note lecrease in	* Mostly priron oxide		H ₂ S Present			

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

			LO	NDON and EN	VIRONS	
	Camp or Establishment	Cedar	Springs Rifle R	ange	Wolsely Barra	cks, London
	Source (s)		Well		London Munic	ipal Supply Treated
٧O.		Raw	and Finished W	ater	Finishe	d Water
	Sampling Point		At Pump	At Central Heating Plant Tap.		
1	Date of sampling	Apr.5/56	Aug.12/56	Dec.5/56	Feb.8/55	Mar.23/5
2	Storage period (days)	57:67	41:54	51:173	13:31	14:36
3	Sampling temperature, °C	8.9	13.9	7.8	10.0	15.6
4	Test temperature, °C	24.2	22.5	22.0	22.3	25.3
5	Oxygen consumed by KMnO ₄	-	9.9	_	2.1	-
6	Carbon dioxide (CO ₂), (calculated)	1.6	1.6	2.3	2.6	5.8
7	рН	8.5	8.4	8.3	8.2	7.8
8	Colour	0	0	5	10	5
9	Turbidity	3	3	1	0	0
10	Suspended matter dried at 105°C	-	_	-	_	_
11	Suspended matter, ignited at 550°C	-	_	_	_	_
12	Residue on evaporation, dried at 105°C	-	_	808	322	_
13	Ignition loss at 550°C	-	_	52.4	43.2	-
14	Specific conductance, micromhos at 25°C.	1737	1488	1484	544.3	484.8
15	Calcium (Ca)	25.8	29.4	30.0	76.7	72.8
16	Magnesium (Mg)	10.5	10.8	10.1	22.1	16.0
17	Iron (Fe) Total	-	_	_	_	_
18	Dissolved	0.01	0.04	Trace	0.0	_
19	Manganese (Mn)	0.0		0.0	0.1	-
20	Aluminum (Al)	0.09	_	0.05	0.02	_
21	Copper (Cu)	0.0	0.0	0.0	0.06	_
22	Zinc (Zn)	0.0	0.03	0.02	-	_
23	Sodium (Na)	272	280	268	4.9	4.1
24	Potassium (K)	3.9	3.8	4.0	2.0	1.7
25	Ammonium (NH ₄)	0.5	0.5	0.0	-	
26	Carbonate (CO ₃)	7.2	6.7	0.0	0.0	0.0
27	Bicarbonate (HCO ₃)	293	313	329	251	240
28	Sulphate (SO ₄)	0.5	20.5	4.9	61.3	49.5
29	Chloride (Cl)	304	311	312	6.2	6.2
30	Fluoride (F)	1.6	-	1.0	0.2	-
31	Nitrate (NO ₃)	1.6	0.4	0.8	6.4	5.6
32	Silica (SiO ₂) colorimetric	9.6	9.7	11	4.0	5.8
33	Carbonate hardness as CaCO ₃	108	118	116	206	197
34	Non-carbonate hardness as CaCO ₃	0.0	0.0	0,0	68.2	50.6
35	Total hardness as CaCO ₃	108	118	116	274	247
36	Sum of constituents	781	827	804	306	280
37	Per cent sodium	84.0	83.3	82.7	3.7	3.4
38	Saturation index at test temperature	+0.8	+0.8	+0.7	+0.9	+0.5
39	Stability index at test temperature	6.9	6.8	6.9	6.4	6.8
	Remarks:				See also W.S.	<u> </u>

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

		MEAFORD			cl'd)	ENVIRONS (Con	LONDON and E	I	
		Rifle Range			ncl'd)	ks, London (Co	Volsely Barrac	Ų	
		eorgian Bay Lake Huron)				oal Supply - eated(Concl'd)	ondon Municip	I	
NO	Vater	and Finished W	Raw			Vater	Finished V		
		At Pumps				ting Plant	At Central Heat Tap	F	
1	Dec.18/56	Aug.21/56	Apr.17/56	Apr.2/58	Dec.6/56	Feb.29/56	Feb.7/56	July 14/55	May 4/55
2	37:160	43:56	52:78	12:20	50:172	6:20	20:27	11:26	15:28
3	7.2	20.0	3.3	10.0	12.2	7.8	-	- '	21.1
4	21.6	24.1	23.6	26.7	22.0	22.0	22.3	26.9	22.9
5	-	9.2	7.7	3.0	9.7	3.8	-	10	-
6	0.9	Trace	1.8	3.1	3.1	3.1	1.9	1.6	3.8
7	8.2	8.3	7.9	8.1	8.1	8.1	8.3	8.4	8.0
8	5	5	5	5	5	5	5	5	5
9	2	0	0.8	0.4	1	0	0	0	0
10	-	- '	-	-	_	-	_	- 1	-
11	-	-	_	_	_	_	_	_	_
12	145	-	126	336	318	_	_	291	
13	51.2	-	44.0	52.4	47.2	_	-	38.8	_
14	180.5	182.5	181.0	532.7	548.1	547.7	548.8	471.6	475.9
15	24.4	23.9	24.2	80.8	70.0	82.3	80.2	73.3	71.9
16	6.0	6.3	6.0	18.2	22.2	17.5	19.2	14.8	15.3
17	_	}	-	_			-	_	-
18	0.0	_	0.03	0.02	0.0		_	0.04	-
19	0.0	_	0.0	0.01	0.01	_	-	0.04	-
20	0.24		0.07	0.02	0.01	_	-		-
21	0.0	0.0	0.07	0.37	Trace	HI-L	-	0.40	-
22	0.0	0.0		i	(High	-	0.8	-
23	!		0.05	0.1	0.0	0.05	-	-	-
24	2.3	2.3	2.3	4.9	12.3	6.5	5.8	3.3	3.6
25	0.8	0.7	0.9	1.8	1.6	1.9	2.0	1.5	1.9
1	0.1	0.0	0.0	-	0.0	0.1	0.0	0.0	0.0
26	0.0	0.0	0.0	0.0	0,0	0.0	0.0	4.8	0.0
27	90.7	90.7	86.8	261	256	244	242	239	238
28	13.2	12.5	12.2	54.8	75.0	65.8	68.0	38.0	43.4
29	3.9	4.2	4.7	8.4	6.4	9.4	8.6	5.4	4.8
30	0.0	-	0.0	0.0	0.5	-	-	0.05	-
31	0.8	0.4	0.6	4.0	3.2	6.0	12	12	6.0
32	3.9	2.8	2.8	5.2	13	6.3	5.9	8.1	5.4
33	74.4	74.4	71.2	214	210	200	199	204	195
34	11.2	11.1	13.9	62.3	56.0	77.3	80.5	39.6	47.5
35	85.6	85.5	85.1	276	266	277	279	244	243
36	100	97.5	97.4	307	330	316	321	285	270
37	5.4	5.5	5.5	3.7	9.1	4.8	4.3	2.8	3.1
38	0.0	+0.1	-0.3	+0.9	+0.7	+0.8	+1.0	+1.2	+0.7
	8.2	8.1	8.5	6.3	6.7	6.5	6.3	6.0	6.6

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

	C Partition			Orleans AREA		Establishman
	Camp or Establishment		Army Station,	Orleans	V.E. Proving 1 Montre	al Road
	Source(s)		Deep V	Well *	Dee	p Wells *
					Well, Bldg.	No. 26
NO.		Raw a	and Finished Wat	er	Raw and Fin	ished Water
	Sampling Point	At	Station Tap		At 7	Гар
1	Date of sampling	Apr.10/56	Aug.26/56	Dec.4/56	Apr.10/56	Aug.28/56
2	Storage period (days)	56:65	16:19	43:77	56:65	14:17
3	Sampling temperature, °C	10.0	15.6	15.6	5.6	10.0
4	Test temperature, °C	21.8	20.8	19.2	21.9	20.1
5	Oxygen consumed by KMnO ₄	21	-	· <u>-</u>	13	<u>.</u>
6	Carbon dioxide (CO ₂), (calculated)	5.0	3.0	2.0	7.0	2.0
7	pH	8.4	8.4	8.9	8.0	8.3
•	Colour	70	140	110	20	20
8	Turbidity	10	25	0	35 †	25 †
9	•	i,	2)	U	30.0	2)
10	Suspended matter, dried at 105°C	4.9	-	-	12.0	_
11	Suspended matter ignited at 550°C	2.1	-	-	•	-
12	Residue on evaporation, dried at 105°C	2368	-	-	5069	-
13	Ignition loss at 550°C	150	-	-	226	-
14	Specific conductance, micromhos at 25°C	3944	3919	3945	8506	9015
15	Calcium (Ca)	16.4	15.9	14.1	71.1	68.5
16	Magnesium (Mg)	24.0	25.0	26.8	88.3	97.5
17	Iron (Fe) Total	-	-	-	9.5	Very High
18	Dissolved	0.16	0.15	0.03	0.05	0.05
19	Manganese (Mn)	0.0	-	0.0	Trace	-
20	Aluminum (Al)	0.59	-	0.37	0.37	-
21	Copper (Cu)	. Trace	-	0.0	Trace	-
22	Zinc (Zn)	0.4	-	0.5	0.0	-
23	Sodium (Na)	850	856.0	865	1670	1830
24	Potassium (K)	22.0	19.0	17.4	36.0	42.0
25	Ammonium (NH _A)	_	_	_	_	-
26	Carbonate (CO ₃)	31.4	19.9	118	0.0	0.0
27	Bicarbonate (HCO ₃)	1060	1105	917	604	620
28	Sulphate (SO ₄)	104	105	113	394	369
29	Chloride (Cl)	682	723	713	2345	2583
	Fluoride (F)	1.0	1 /25	0.75	2.0	
30 31	Nitrate (NO ₃)	4.0	5.0	1.6	32	_
	• • • • • • • • • • • • • • • • • • • •	17			12	12
32	Silica (SiO ₂), colorimetric	140	17	15	496	13 509
33	Carbonate hardness as CaCO ₃	1	143	145	44.7	
34	Non-carbonate hardness as CaCO ₃	0.0	0.0	0.0	541	63.0 572
35	Total hardness as CaCO ₃	140	143	145	i	.
36	Sum of constituents	2275	2330	2338	5013	5309
37	Per cent sodium	91.6	91.7	91.7	86.0	86.4
38	Saturation index at test temperature	+1.0	+0.9	+1.4	+0.9	+1.1
39	Stability index at test temperature	6.4	6.6	6.1	6,2	6.1
	Remarks:	*Not used for	drinking		† Iron oxides	mostly

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

ONTT	ADIO	10 2 1	
UNI	AKILI	(Cont'd)	

		∧₩A	OSH		cl'd)	EANS AREA (Con	ORLE	
		Station	Army		;	ng Establishment Iontreal Road		
		cipal Supply - rio, Treated			Ottawa Municipal Supply- Ottawa River, Treated	Deep Wells * Test Hole Well No.1	dg. No. 26 (Concl'd)	Well, Bl
NO.		d Water	Finishe		Finished Water		ished Water	Raw and Fin
	en Tap	At Kitch	At Tap P.M.Q. No. 9	At Tap Boiler Room	At No. 1 Hangar Rockcliffe Airport **	At Well	Гар	At '
1	Apr.3/57	Nov.26/56	Apr.3/57	Nov.26/56	Apr.17/56	Sept.16/56	Mar.7/58	Dec.4/56
2	6:86	42:80	6:86	42:80	51:58	2:10	3:5	34:39
3	-	-	-	-	15.5	-	10.0	10.0
4	23.2	22.3	23.1	22.2	22.2	20.5	23.0	22.4
5	3.2	11	2.4	11	-	-	-	-
6	2.9	1.9	4.7	2.9	0.8	19	8.5	1.0
7	7.8	8.0	7.6	7.8	7.8	7.4	8.0	8.7
8	10	5	20	5	0	5	-	20
9	5	0	5	0	7 †	_	Ì	-
10	2.6	-	2.9	-	4.9 †	-	-	-
11	0.7	-	1.0	-	2.1 †	-	-	-
12	270	194	236	185	-	-	-	-
13	86.0	35.6	89.2	12.8	-	-	-	-
14	314.6	318.7	317.3	317.4	113.4	858.3	9624	8390
15	38.5	40.7	38.7	41.3	15.2	103	-	69.7
16	8.1	7.5	8.4	7.1	2.0	40.2	-	89.2
17	-	-	-	-	1.0 †	-	High	_
18	0.06	0.12	0.18	0.13	0.13	0.01	-	0.01
19	0.02	0.02	0.02	0.0	0.01	0.04	-	0.01
20	0.02	0.79	0.05	0.17	0.06	-	-	0.58
21	Trace	Trace	Trace	Trace	-	-	-	Trace
22	1.4	2.0	3.0	0.5	-	-	-	1.0
23	9.5	9.8	9.7	9.6	1.6	16.7	1920	1660
24	1.3	1.3	1.3	1.3	0.7	7.7	41.8	45.0
25	0.0	0.1	0.0	0.1	-	-	-	0.0
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	49.4
27	110	112	113	111	29.4	327	659	532
28	28.4	30.8	29.9	30.5	21.7	123	396	390
29	22.5	22.1	22.5	22.0	2.0	32.4	2747	2303
30	0.1	1.1	0.1	1.1	0.10	-	-	1.6
31	0.9	1.2	0.6	1.2	1.6	4.8	Trace	4.0
32	2.7	2.8	3.0	2.0	2.8	9.4	13	11
33	90.6	91.6	92.5	91.1	24.1	269	540	519
34	38.8	40.8	38.6	41.1	22.1	154	101	22.1
35	129	132	131	132	46.2	423	641	541
36	168	175	173	172	65.6	499	-	4885
37	13.4	13.4	13.3	13.3	6.8	7.7	85.8	85.7
38	-0.1	+0.1	-0.3	-0.1	-1.1	+0.3	-	+1.6
39	8.0	7.8	8.2	8.0	10.0	6.8	-	5.5
					** Drinking water			
					From tank			
					used to trans-			
					port water to V.E.P.E.			

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

					LENTERON	<u> </u>	
				OTTAWA and			
	Camp or Establishment	НН	eadquarters	· · · · · · · · · · · · · · · · · · ·	Conna	ught Rifle R	ange
	Source (s)	Ottawa Munic R	ipal Supply - iver, Treated			Wells	· · · · · · · · · · · · · · · · · · ·
					Shallow V Bl	Well, Target : dg. No. 83	Shed,
NO.		Finis	shed Water		Raw ar	nd Finished V	Vater
	Sampling Point	At Tap, 1	Mines Branch	, 40 Lydia St.	-	At Tap	
1	Date of sampling	Sept.24/46	Sept.26/57	Nov. 25 - Dec. 6/57*	Apr.11/56	Aug.28/56	Dec.4/56
2	Storage period (days)	-	8:12	Dec. 6/5/*	51:64	14:17	34:77
3	Sampling temperature, °C	_	72.0	_	5.6	10.0	10.0
4	Test temperature, °C	Room	21.8	21.2	23.9	20.1	22.6
5	Oxygen consumed by KMnO ₄	_	5		-		
6	Carbon dioxide (CO ₂) (calculated)	_	1.3	1.1	1.3	2.5	1.3
7	pH	8.8	7.6	7.6	8.5	8.2	8.5
8	Colour	_	10	5	0	5	5
9	Turbidity		0.3	Clear	40	4	'
	Suspended matter, dried at 105°C	_	0.5		31.3	4	-
10		_	_	-	-	-	-
11	Suspended matter, ignited at 550°C	_	-	-	22.2	-	-
12	Residue on evaporation, dried at 105°C	-	70.3	76.4	287	-	-
13	Ignition loss at 550°C	-	19.6	14.8	98.4		-
14	Specific conductance, micromhos at 25°C	-	107.0	111.2	462.1	476.8	471.8
15	Calcium (Ca)	19.0	14.2	15.0	47.4	46.6	48.5
16	Magnesium (Mg)	3.5	2.2	2.3	19.0	20.1	19.5
17	Iron (Fe) Total	0.05	-	-	-	-	-
18	Dissol ve d	-	0.08	Trace	0.10	-	0.4
19	Manganese (Mn)	-	0.0	0.0	Trace	-	Trace
20	Aluminum (Al)	0.14	0.15	0.14	0.17	-	0.11
21	Copper (Cu)	-	Trace	} -	0.0	-	Trace
22	Zinc (Zn)	_	0.0	-	0.4	_	0.2
23	Sodium (Na)	2.0	1.1	1.4	21.2	22.8	22.3
24	Potassium (K)	2.9	0.7	0.8	5.7	6.0	6.2
25	Ammonium (NH ₄)	-	0.0	0.0	0.0	0.1	-
26	Carbonate (CO ₃)	8.4	0.0	0.0	7.2	0.0	10.9
27	Bicarbonate (HCO ₃)	41.4	24.5	24.5	232	257.0	229
28	Sulphate (SO ₄)	29.6	23.5	25.2	29.1	31.2	35.3
29	Chloride (Cl)	1.3	3.0	2.6	9.4	10.3	10.0
30	Fluoride (F)	,	0.0	0.15	1.5		0.5
31	Nitrate (NO ₃)	0.56	0.4	0.3	3.2	1.6	1.2
32	Silica (SiO ₂), colorimetric	1.0 (Gravimetric)	3.8	4.1	10	11	12
33	Carbonate hardness as CaCO ₃	34.0	20.1	20.1	196	199	201
34	Non-carbonate hardness as CaCO ₃	27.9	24.4	26.8	0.0	0.0	0.0
35	Total hardness as CaCO ₃	61.9	44.5	46.9	196	199	201
36	Sum of constituents	-	61.2	64.1	268	276	280
37	Per cent sodium	9.2	4.9	5.9	18.4	19.3	18.7
	Saturation index at test temperature	+0.27	-1.4	-1.4	+1.0	+0.8	
38 39	Stability index at test temperature	-	10.4	10.4	6.5	6.6	+1.0 9.5
	orability index at test temperature		1			0.0	7.7
	Remarks:	See also Und V.E.P.E.	ler	* Composite of 10 daily samples			

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

1				l)	e (Concl'd	nt Rifle Rang	Connaugl				
						Wells					
	oad Well	Carp Ro	East Side Well	le Well	West Sid		D.A.D. Bldg	Well at	1	at Bldg. No.	Well a
NO					ter	Finished Wa	Raw and	ı			
	louse	At Tap Kidd H	At Tap In Bldg.No.26	At Tap In Bldg. No.86		At Tap		ence	At Tap In aker's Reside	Careta	
1	Sept. 28/56	- 1	Aug. 28/56	Aug.28/56	May 1/56	Dec.4/56	Apr.28/56	Apr.11/56	Dec.4/56	Aug.28/56	Apr.11/56
2	16:57	51:61	59:85	14:27	48:83	43:77	14:27	55:64	43:77	14:27	55:64
3	10.0	5.6	10.0	10.0	10.0	12.8	15.6	10.0	12.8	15.6	10.0
4	22.8	24.0	23.5	20.0	23.4	19.2	20.0	21.8	19.4	20.0	21.8
5	-	-	11	-	7.2	-		7.3	-	_	3.8
6	3.5	1.4	6.5	2.7	1.8	0.9	2.6	2.7	1.4	2.4	4.5
7	8.0	8.4	7.8	8.2	8.3	8.7	8.2	8.2	8.6	8.3	8.0
8	10	0	20	5	0	0	5	0	0	5	5
9	30 †	20 †	0.3	5	0	-	3	8	_	2	2
10	-	-	-	-	-	_	_	2.5	-	-	
11	-	-	-	-	_	-	_	1.1	_	_	_
12	-	-	391	-	278.6	-	-	317	_	_	340
13	-	-	28.0	-	74.8	_		57.2	1 _	_	47.2
14	478.5	454.4	616.0	500.9	459.1	492.1	508.5	507.8	557.2	579.0	
15	68.5	65.0	75.1	67.4	64.5	62.2	65.4	63.8	52.1	1	563.8
10	15.2	15.3	26.3	17.9	15.6	24.6	22,0	l .	1	54.5	52.0
17	High	>6 †	0.30	-	15.0	24.0	22.0	22.9	32.3	30.2	29.8
18	-	0.03	0.50	<u>-</u>	0.02	Trace	-	- 0.07		-	-
19	_	Trace	0,02		0.02	0.02	-	0.07	0.8	-	0.08
20	_	0.19	0.48	-	0.08	1	-	0.02	0.0	-	Trace
2	_	0.0	Trace	-		0.16	-		0.19	-	-
í			***	-	0.0	0.0	-	0.0	0.0	-	0.0
22	1	0.3	0.05	-	0.0	0.25	-	0.3	0.15	-	0.3
2	6.6	6.1	15.8	10.8	8.6	9.7	9.2	8.9	22.3	21.6	21.6
24	4.0	3.7	2.7	2.1	2.0	3.5	3.4	3.4	6.3	6.4	6.0
2:	0.1	0.1	0.1	0.1		0.0	0.1	-	0.05	0.1	-
20	0.0	3.6	0.0	0.0	0.0	6.7	0.0	0.0	14.9	0.0	0.0
2	247	219	288	264	241	260	271	266	281	309	292
2	37.8	36.2	72.9	37.1	33.8	38.8	43.5	41.4	47.8	47.9	47.0
2	7.4	6.1	12.9	10.8	7.6	8.4	8.2	9.6	10.7	10.0	10.4
3	-	0.1	0.25	-	0.15	0.1	-	0.30	0.5	-	1.0
3	8.0	12	0.8	0.4	2.4	0.8	0.6	3.2	1.2	0.8	2.4
3	15	15	8.9	11	10	12	11	11	14	13	12
3	203	186	236	217	198	224	222.4	218	255.4	253	240
3	30.6	39.1	59.2	25.2	27.5	31.8	31.2	35.3	7.4	6.9	12.5
3	233	225	295	242	225	256	254	253	263	260	252
3	284	271	358	287	264	295	297	296	341	337	327
3	5.7	5.4	10.2	8.8	7.6	7.4	7.2	6.8	15.1	14.8	15.2
3	+0.6	+1.0	+0.5	+0.8	+0.9	+1.3	+0.8	+0.8	+1.2	+0.9	+0.6
3	6.8	6.4	6.8	6.6	6.5	6.1	9.0	6.6	6.2	9.2	6.8
	les mostly	Iron oxid									

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

	PROVINCE	ONTARIO (Cont dy				
				NEAR P	ETAWAWA		
	Camp or Establishment			Camp	Petawawa		
	Source (s)			Ottawa Ri	iver and Spri	ng	
		0	ttawa River '	k		Spring	
NO.		I	Raw Water			Raw Water	
	Sampling Point	At I	ntake Pump		A	t Storage Tan	k
1	Date of sampling	Aug.8/56	Jan.31/57	May 15/57	Aug.8/56	Jan.31/57	May 15/5
2	Storage period (days)	23:49	56:133	19:37	20:49	56:133	19:37
3	Sampling temperature, °C	24.4	0.6	3.3	14.4	5.6	1.7
4	Test temperature, °C	21.6	25.6	23.5	23.0	25.5	23.3
5	Oxygen consumed by KMnO ₄	18	11	11.2	9.3	0.9	2.0
6	Carbon dioxide (CO ₂), (calculated)	3.0	1.9	2.8	0	1.6	3.0
7	pH	7.0	7.2	6.9	8.7	7.4	7.1
8	Colour	30	45	40	10	0	0
9	Turbidity	0.3	3	8	0.2	0	4
10	Suspended matter, dried at 105°C	-	_	6.6	_	_	_ ·
11	Suspended matter ignited at 550°C	_	_	0.0	_	_	_
12	Residue on evaporation, dried at 105°C	_	81.2	66.0	_	159	132
13	Ignition loss at 550°C	_	44.0	37.2	_	78.8	66.0
14	Specific conductance, micromhos at 25°C.	61.83	67.21	50.80	134.9	186.8	158.6
15	Calcium (Ca)	7.2	6.9	5.5	13.9	12.9	11.9
16	Magnesium (Mg)	1.8	2.4	1.5	1.7	8.6	6.5
17	Iron (Fe) Total	-	2.4	1.5	1.7	8.0	0.5
-	Dissolved	_	0.05	0.08	0.19		0.0
18			0.05	ł		0.0	
19	Manganese (Mn)	-	0.0	0.0	Trace	0.0	0.0
20	Aluminum (Al)	-	0.06	0.01	0.08	0.17	0.02
21	Copper (Cu)	0.0	Trace	0.0	0.0	0.0	0.0
22	Zinc (Zn)	0.0	0.0	0.0	0.0	0.0	0.0
23	Sodium (Na)	1.2	1.8	1.4	7.4	5.3	4.8
24	Potassium (K)	0.6	0.7	0.7	4.3	1.4	1.2
25	Ammonium (NH ₄)	0.1	0.1	0.05	0.1	0.0	0.0
26	Carbonate (CO ₃)	0.0	0.0	0.0	2.9	0.0	0.0
27	Bicarbonate (HCO ₃)	18.9	21.3	13.8	46.8	27.1	23.8
28	Sulphate (SO ₄)	9.4	11.3	10.3	6.8	20.1	18.0
29	Chloride (Cl)	0.8	1.4	0.8	5.8	19.5	16.0
30	Fluoride (F)	-	0.0	0.0		0.0	0.0
31	Nitrate (NO ₃)	0.6	0.6	0.6	4.0	12.0	8.0
32	Silica (SiO ₂), colorimetric	4.1	5.2	8.0	12	15	14
33	Carbonate hardness as CaCO ₃	15.5	17.5	11.3	41.7	22.2	19.5
22	Non-carbonate hardness as CaCO ₃	9.9	9.6	8.6	0.0	45.4	36.4
34							
	Total hardness as CaCO ₃	25.4	27.1	19.9	41.7	67.6	55.9
3 4		25.4 34.7	27.1 41.0	19.9 35.8	41.7 81.9	67.6 108	55.9 92.6
34 35	Total hardness as CaCO ₃			ì			1

11.2

* See also W.S.R. No.2

12.1

8.7

10.4

10.9

11.8

39

Remarks:

Stability index at test temperature

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

			EAR PETAWAWA				\dashv
		·	Camp Petawawa (C				_
			wa River and Sprin				_
		Mixed Sup	ply. (Ottawa River	and Spring)			
			Finished Water				_ \
At Ta	p in Bldg. C5			At Ta	p C.H. Plant, Bldg	. P 49	
ug.9/56	Jan.31/57	May 15/57	Feb.9/55	Apr.25/55	May 12/55	May 4/56	
22:48	56:133	19:37	12:28	8:11	5:23	14:21	ł
17.8 *	-	35.0	4.4	-	-	5.6	
21.6	25.5	23.5	22.3	24.4	21.8	2 2. 9	-
-	7.8	9.2	6.2	-	-	14	
4.6	3.1	3.0	5.0	3.4	3.4	5.8	
6.8	7.0	7.0	6.8	6.8	6.7	6.6	
30	35	35	35	30	30	40	}
0	0.9	12	0.3	4	3	1	
-	-	5.3	-	-	-	-	1
-	-	0.6	-	•	-	-	1
-	94.4	75.2	7 9.2	-	-	77.6	
-	37.6	30.4	31.6	•	-	28.0	1
75.73	96.60	78.87	93.8	99.3	82.6	60.70	
8,1	8.6	7.2	8.3	8.0	7.2	7. 1 .	
2.3	3.7	2.8	3.2	3.6	2.8	1.3	
-] _ }	-	-	-	.	
_	0.09	0.13	0.18	_	-	0.09	
-	0.0	0.0	0.1	-	-	0.0	
•	0.02	0.0	0.07	_	_	0.0	
0.0	Trace	0.0	0.07	-	_	0.0	
0.05	0.0	0.07	•	<u>-</u>	-	0.0	
1.6	2.5	2.4	2.2	2.2	2.1	1.4	
0.7	0.9	0.8	0.9	0.9	0.8	0.7	
•	0.05	0.05	_	-	-	0.1	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	
17.9	20.6	18.3	20.2	13.3	10.2	14.0	
10.9	14.7	12.0	10.6	11.4	10.4	11.1	
3.7	6.0	4.8	6.3	7.7	6.9	1.2	
•	0.0	0.0	0.4	-	-	0.0	
1.6	2,4	2.0	3.6	8.0	3.2	2.4	
5.0	8.1	6.6	5.9	8.4	8.2	4.5	
14.7	16.9	15.0	15.6	10.9	8.4	11.5	
15.0	19.8	14.5	17.3	23.9	17.0	11.6	
29.7	36.7	29.5	33.9	34.8	25.4	23.1	
42.4	57.2	47.9	51.8	56.8	46.6	36.7	
10.2	12.4	14.4	11.8	11.8	14.7	11.2	
- 2.5	-2.2	-2.3	-2.5	- 2.6	-2.9	-2.9	
11.8	11.4	11.6	11.8	13.0	12.5	12.4	

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

		PICT	ON and ENVIRONS	
	Camp or Establishment		Camp Picton	
	Source (s)	Picton Municipa	al Supply -Lake Ontario (Bay of Quinte), Treated
NO.			Finished Water	
	Sampling Point		At Tap, C.H. Plant	
1	Date of sampling	Feb.14/55	Mar.28/55	Apr.25/55
2	Storage period (days)	13:23	18:31	15:23
3	Sampling temperature, °C	-	-	-
4	Test temperature, °C	21.6	22.5	22.3
5	Oxygen consumed by KMnO4	7.4	-	-
6	Carbon dioxide (CO ₂) ₂ (calculated)	2.6	5.4	4.1
7	рН	7.9	7.5	7.6
8	Colour	30 ·	15	15
9	Turbidity	3	3	6
10	Suspended matter, dried at 105°C	•	-	-
11	Suspended matter, ignited at 550°C	-	-	-
12	Residue on evaporation, dried at 105°C	174	-	_
13	Ignition loss at 550°C	36.0	-	-
14	Specific conductance, micromhos at 25°C .	261.6	256.6	232.4
15	Calcium (Ca)	43.5	41.1	36.5
16	Magnesium (Mg)	4.3	3.9	3.9
17	Iron (Fe) Total	-	-	_
18	Dissolved	0.07	-	-
19	Manganese (Mn)	0.0	-	_
20	Aluminum (Al)	0.33	-	-
21	Copper (Cu)	Trace	-	•
22	Zinc (Zu)	-	-	-
23	Sodium (Na)	2.6	2.4	2.1
24	Potassium (K)	1.2	1.3	1.2
25	Ammonium (NH ₄)	-	-	0.15
26	Carbonate (CO ₃)	0.0	0.0	0.0
27	Bicarbonate (HCO ₃)	129	105	99.6
28	Sulphate (SO ₄)	21.2	29.3	21.3
29	Chloride (Cl)	5.3	4.4	5.1
30	Fluoride (F)	0.4	-	-
31	Nitrate (NO3)	0.8	1.4	1.6
32	Silica (SiO ₂), colorimetric	2.2	4.8	3.8
33	Carbouate hardness as CaCO3	106	86.2	81.7
34	Nou-carbonate hardness as CaCO ₃	20.2	32.4	25.4
35	Total hardness as CaCO ₃	126	119	107
36	Sum of constituents	146	140	125
37	Per cent sodium	4.0	4.2	4.0
38	Saturation index at test temperature	+0.1	-0.4	-0.4
39	Stability index at test temperature	7.7	8.3	8.4
	Remarks:			

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

_		'd`	d ENVIRONS (Concl	PICTON as		
		Point Petrie		cl'd)	Camp Picton (Con	
		Lake Ontario	-		cipal Supply - Lake (of Quinte), Treated	
		v and Finished Water	Rav		Finished Water	
		At Area Tap	,	rvoir	or Direct from Reser	At Pumphouse Tap
	Feb.6/57	Oct.17/56	May 16/56	Feb. 6/57	Oct.17/56	May 16/56
	51:126	12:20	42:77	50:127	12:25	42:77
	-	-	6.1	•	-	12.2
	25.5	24.4	24.6	25.5	24.4	24.3
	2.1	-	7.8	3.8		11
Ì	2.1	0.5	1.5	1.9	2.9	3.3
	7.9	8.5	8.1	8.0	7.8	7.7
	5	10	10	10	10	20
1	0	0	4	0	0.3	5
1	-	-	2.5	_	-	4.0
1	-	-	1.1	•		1.8
1	201	_	209	175		147
1	64.0	-	106	50.8	_	67.2
1	313.3	293.3	298.1	264.2	262.2	215.6
	38.0	35.4	39.7	40.2	38.5	36.5
	8.8	8.4	7.1	6.0	5.2	3.3
	-			-		ر.ر
	0.0	_	. 0.01	0.0	_	0.05
	0.0	_	0.0	0.0	_	0.0
	0.2	_	0.09	0.30	_	0.43
	Trace	_	0.0	Trace	-	0.0
	0.0	_	0.0	0.0	-	
	9.6	9.3	8.7		-	0.0
	1.5	1.2	ı	4.1	5.1	2.2
	0.0	0.1	1.2 0.1	. 1.2	1.3	1.3
	0.0	2.3	0.0	0.0	0.1	0.1
	115	108		0.0	0.0	0.0
	30.0	23.7	113 23.0	131	112	100
				19.1	22.1	17.6
	21.5 0.05	21.6	20.2	7.3	11.5	5.8
		-	0.0	0.1	-	0.0
	1.6	0.4	2.4	1.2	1.2	1.2
	2.7	1.5	1.5	1.2	1.7	2.4
	94.1	92.0	93.0	97.2	92.0	82.0
	36.8	30.9	35.2	17.8	25.4	22.6
	131	123	128	125	117	105
	171	157	160	145	142	120
	13.5	14.0	12.7	6.5	8.5	4.2
	0.0	+0.6	+0,2	+0.2	-0.1	-0.3
	7.9	7.3	7.7	7 . 6	8.0	8.3

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

	PROVINCE	MANITOBA			
		Near CLEAR LAKE	I	FORT CHURCHILL	
	Camp or Establishment	Clear Lake Camp			
	Source(s)	Clear Lake		Lake Isabelle	
NO.		Raw and Finished		Raw Water	
	Sampling Point	From Lake Near	At Sucti	on Well At Plant	
	Date of sampling	Wasagaming)	14/57) N 07/77
1		July 3/53	May 29/56 †	Mar. 14/57	Nov.27/57
2	Storage period (days)	7:381 15.6	31:49	26:99	8:19
-	Test temperature, °C	1	1.7	0.6	3.3
4		22.3	22.3	25.0	24.9
5	Oxygen consumed by KMnO ₄	1.6	6.3	-	-
6 7	Carbon dioxide (CO ₂) (calculated)	1.6 8.4	12	9.5	2.0
8	Colour	10	7.2 20	7.8	8.1
	i	1		20	10
9 10	Turbidity	5	2	4	0.4
	Suspended matter dried at 105°C Suspended matter ignited at 550°C	15.5	-	12.4	-
11	Residue on evaporation, dried at 105°C	10.1	-	6.8	-
12 13	Ignition loss at 550°C.	273	196	667	263
14	Specific conductance, micromhos at 25°C.	48.2 425.2	41.6	120	45.2
14 15	Calcium (Ca)	1	311.7	1101	435.4
15 16		34.5	27.2	112	42.2
10 17	Magnesium (Mg)	30.7	8.0	27.4	11.3
•	, ,	0.28	-	-	
18	Dissolved	0.03	0.01	0.01	Trace
19 20	Manganese (Mn)	-	0.0	0.0	0.0
20 21	Aluminum (Al)	-	0.0	0.38	0.07
21 22	Copper (Cu)	-	0.0	Trace	0.0
22 23	Zinc (Zn)	11.6	0.0	0.05	0.0
_	Sodium (Na)	11.6	25.2	77.4	28.6
24	Potassium (K)	5.4	2.5	5.0	1.9
25 26	Ammonium (NH ₄)	2.6	0.05	0.05	0.05
	Carbonate (CO ₃)	3.6	0.0	0.0	0.0
27 28	·	230	114	414	162
20 29	Sulphate (SO ₄)	43.9	12.0	27.9	9.2
		2.5	34.4	146	55.1
30 21	Fluoride (F) Nitrate (NO ₃)	0.1	0.2	0.0	0.0
31 32		1.2	8.0	3.0	0.1
33	Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃	22	2.0	4.1	0.7
34	Non-carbonate hardness as CaCO ₃	194	93.6	340.6	133
35	Total hardness as CaCO ₃	212	7.2	52.3	19.1
36	Sum of constituents	1	101	392	152
37	Per sodium	269	176	607	229
38	Saturation index at test temperature	10.3	34.5	29.6	28.7
39	Stability index at test temperature	+0.7 7.0	-0.9 9.0	+0.9 6.0	+0.4 7.3
	Remarks:		Heavy run-off	Low level	

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

MANITOBA (Cont'd)

				OBA (Gozt c)		FORT CHURCHILL (Concl'd)			
		NS	and ENVIRO	WINNIPE		Concl'd)	CHURCHILL (FORT	
	hyte	Fort W		rt Osbo rne	Fo				
	Well *	Winnipeg Muni- cipal Supply- Shoal Lake	hoal Lake*	icipal Supply - S	Winnipeg Mun		ake Isabelle	L	
N	ned Water	Raw and Finish	Water	Raw and Finished Water			Finished Wate		
		Tap At Fort Osborne Barracks				ant	lear Well At Pl	At C	
	Aug.8/56		Feb.27/58	July 27/55	Apr.25/55	Nov.27/57	Mar.14/57	May 29/56	
:	16:21		14:20	•	8:11	8:19	26:99	31:49	
	-		-	-	9.4	14.4	13.3	13.3	
	21.7		24.6	26.8	24.4	24.9	23.8	22.3	
	10	See	-	ļ	-	-	-	4.8	
	16	Fort	3.2			0.2	0	1.3	
	7.3	Osborne	8.0	7.9	8.0	8.2	8.9	7.6	
	0		5	5	5	5	5	10	
	5.0		-	Trace	0.9	0.4	2	0.3	
10	15.9		-			-	-	-	
1	11.6		-			-	-	-	
13	4734		-	112		208	404	272	
1	365		-	26.8		32.8	53.6	80.8	
1.	6609		209	171	178.5	333.4	686.1	351.5	
1:	312		29.3	24.1	24.0	21.9	17.3	17.9	
10	204		7.5	5.8	6.5	5.6	9.0	11.7	
1	-		-	ļ		-	-	-	
11	0.09		0.02	0.04		0.01	0.02	Trace	
19	0.02		-	0.0		0.0	0.0	0.0	
20	1.5		_	0.08		1.7	0.41	0.15	
2	0.0		-	0.02		-	Trace	0.0	
2	0.5		-	0.0		0.0	0.0	0.0	
2	892		2.3	1.4	1.4	30.1	94.4	27.6	
24	28.8		1.5	1.4	1.3	1.8	5.2	2.5	
2:	•		0.0	0.3		0.05	0.5	0.0	
20	0.0		0.0	0.0	0.0	0.0	3.8	0.0	
2	264		123	101	105	35.7	20.5	30.7	
21	1246		5.0	3.4	2.6	38.4	58.8	74.7	
2	1495		1.6	1.5	1.1	57.0	149	36.4	
30	0.0		-	0.0	-	0.0	0.2	0.2	
3	3.0	1	1.0	0.6	0.8	0.1	0.1	4.8	
3:	12.4		4.0	2.6	2.5	1.8	6.5	3.4	
3	216	1	101	83.0	86.5	29.3	23.2	25.2	
3.	1401		3.4	1.0	0.0	48.4	57.0	67.6	
3:	1617		104	84.0	86.5	77.7	80.2	92.8	
30	4325		113	90.9	92.2	176	355	195	
3	53.8		4.5	3.4	3.3	42.8	69.4	38.3	
31	+0.5		+0.1	-0.2	-0.1	-0.6	0.0	-1.2	
3!	6.3		7.8	8.3	8.2	9.0	8.9	10.0	
		* Not used as drinking water-			* Yee Also W.S.! High water in				

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

So So So So So So So So So So So So So S	camp or Establishment cource (s) ampling Point ate of sampling	Raw	No. 1, 45' I Water Pump Dec.3/56	V Deep Finish	p Shilo 'ells ned Water	 	2 43'Deep	
NO. Sa 1 Da 2 St. 3 Sa 4 Te 5 Oa 6 Ca 7 8 9 10 Su 11 Su 12 Re 13 Ig: 14 Sp 15 16 17 18 19 20 21 22 23 24	ampling Point ate of sampling	At Apr.16/56 52:79	Water Pump	Je e p Finish	ed Water	 	2 43'Deep	
Sa 1 Da 2 St. 3 Sa 4 Te 5 Oz 6 Ca 7 8 9 10 Su 11 Su 12 Re 13 Ig: 14 Sp 15 16 17 18 19 20 21 22 23 24	ate of sampling	At Apr.16/56 52:79	Water Pump	Finish		 	2 43'Deep	
Sa 1 Da 2 St. 3 Sa 4 Te 5 Oz 6 Ca 7 8 9 10 Su 11 Su 12 Re 13 Ig: 14 Sp 15 16 17 18 19 20 21 22 23 24	ate of sampling	At Apr. 16/56 52:79	Pump			Raw		
1 Da 2 St. 3 Sa 4 Te 5 Oz 6 Ca 7 8 9 10 Su 11 Su 12 Re 13 Ig: 14 Sp 15 16 17 18 19 20 21 22 23 24	ate of sampling	Apr.16/56 52:79		At		Raw Water		
2 Sta Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa	corage period (days)	52:79	Dec.3/56		At Tap		At Pump	
2 Sta Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa Sa	corage period (days)	52:79		Aug. 17/56	Apr.5/57	Apr. 16/56	Aug.17/5	
3 Sa 4 Te 5 Oz 6 Cz 7 8 9 10 Su 11 Su 12 Re 13 Ig: 14 Sp 15 16 17 18 19 20 21 22 23 24	est temperature, °C	- 1	49:91	19:19	4:77	52:73	19:19	
4 Te 5 Oz 6 Cz 7 8 9 10 Su 11 Su 12 Re 13 Ig 14 Sp 15 16 17 18 19 20 21 22 23 24	est temperature, °Cxygen consumed by KMnO4arbon dioxide (CO ₂), (calculated)	· · · · · · · · · · · · · · · · · · ·	6.7	6.7	5.6	6.7	6.7	
5 O2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	xygen consumed by KMnO4arbon dioxide (CO2), (calculated)	22.0	27.0	24.1	25.0	22.0	24.2	
6 Ca 7 8 9 10 Su 11 Su 12 Re 13 Ig: 14 Sp 15 16 17 18 19 20 21 22 23 24	arbon dioxide (CO2), (calculated)	7.2			-	7.1		
7 8 9 9 10 Su 11 Su 12 Re 13 Ig: 14 Sp 15 16 17 18 19 20 21 22 23 24		1.9	5.3	5.0	5.1	2.3	5.2	
8 9 Su 11 Su 12 Re 13 Ig: 15 16 17 18 19 20 12 12 22 23 324	pH	8.3	7.9	8.0	8.0	8.2	7.9	
9 Su Su Su Su Su Su Su S	Colour	0	5	10	5	5	5	
10 Su 11 Su 12 Re 13 Igs 14 Sp 15 16 17 18 19 20 21 22 23	Turbidity	0.2	4	0	3	2	2	
11 Su Re 13 Ig: Sp 15 16 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19	,	0.2	4	"	2	2	2	
12 Re 13 Ig: 14 Sp 15 16 17 18 19 20 21 22 23	uspended matter, dried at 105°C					ļ	ļ	
13 Igs 14 Sp 15 16 17 18 19 20 21 22 23	uspended matter, ignited at 550°C	25.4	300		2.40	220	į.	
Sp 1.5 1.5 1.6 1.7 1.8 1.9 1.9 1.0 1.1 1.2 1.2 2.2 2.3 3.4	esidue on evaporation, dried at 105°C	254	288		348	220	İ	
25 26 27 28 29 20 21 22 23 24	gnition loss at 550°C.	21.6	20.0		66.0	7.2	(***	
1.66 1.77 1.88 1.99 1.90 1.11 1.22 1.23	pecific conductance, micromhos at 25°C	389.9	431.9	524.5	542.8	406.5	473.8	
17 18 19 20 21 22 23	Calcium (Ca)	63.6	72.2	15.7	22.5	62.5	75.6	
18 19 20 21 22 22 23	Magnesium (Mg)	12.8	13.4	4.7	8.0	14.1	15.2	
19 20 21 22 22 23	Iron (Fe) Total	-	-	0.18	•	-	0.50	
20 21 22 23 24	Dissolved	Trace	0, 32	0.14	0.0	0.08	0.24	
21 22 23 24	Manganese (Mn)	0.04	0.26	-	Trace	0.01	-	
22 23 24	Aluminum (Al)	0.13	0.05	-	0.21	0.09	-	
23 24	Copper (Cu)	0.01	0.0	-	0.0	0.0	-	
24	Zinc (Zn)	0.3	0.05	-	0.2	0.0	-	
	Sodium (Na)	1.7	1.4	105	94.5	2.1	2.3	
25	Potassium (K)	1.4	1.2	1.1	1.7	1.3	1.2	
	Ammon ium (NH ₄)	0.0	0.2	0.1	0.0	0.0	0.1	
6	Carbonate (CO ₃)	0.0	0.0	0.0	0.0	0.0	0.0	
7	Bicarbonate (HCO3)	239	271	318	335	228	280	
8	Sulphate (SO4)	13.6	18.5	18.4	20.1	21.9	19.8	
9	Chloride (Cl)	2.7	1.4	4.5	4.7	1.0	5.0	
0	Fluoride (F)	0.1	0.0	- 1	0.0	0.6	_	
1	Nitrate (NO ₃)	0.6	2.0	4.0	2.4	8.0	3.2	
32	Silica (SiO ₂), colorimetric	24	25	25	25	25	25	
	arbonate hardness as CaCO ₃	196	222	58.5	89.0	187	229	
- 1	on-carbonate hardness as CaCO ₃	14.9	13.1	0.0	0.0	26.9	21.8	
	otal hardness as CaCO ₃	211	235	58.5	89.0	214	251	
	um of constituents	239	270	335	345	249	289	
- 1	er cent sodium	1.7	1.3	79.1	68.9	2.1	1.9	
I .	or come acatam	+0.9	+0.7	+0.1	+0.3	+0.8	+0.7	
9 St	aturation index at test temperature	6.5	6.5	7.8	7.4	6.6	6.5	

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

MANITOBA (Cont'd)

				SHILO (Cont	d)				
				Camp Shilo (Co	ont'd)				
				Wells					
Well No. 2	43' Deep		Well No. 3, 42	Deep		₩e]	ll No. 4, 42' De	eep	
	Water		Raw	Water			Raw Water		NO.
	Pump		At 1	Pump			At Pump		
Dec.3/56	Apr.5/57	Apr.16/57	Aug.17/56	Dec.3/56	Apr.5/57	Aug.17/56	Dec.3/56	Apr.5/56	1
49:91	7:77	52:79	19:19	49:91	7:77	19:40	49:95	7:77	2
6.7	5.6	6.7	6.7	6.7	5.6	6.7	6.7	5.6	3
26.8	24.0	22.0	24.2	26.8	22.5	24.2	26.8	22,6	4
20.0	24.0	7.3		-	-	9.5	-	-	5
3.8	4.9	3.5	7.0	5.3	6.2	5.0	2.6	7.1	6
8.1	8.0	8.1	7.9	8.0	8.0	8.0	8.2	7.9	7
5	5	5	5	5	5	5	5 .	10	8
2	4	25 *	30 *	25 *	15 *	10 *	15	15 *	9
4	2.8	-	"	5.6	-	-	3.9	3.6	10
	1.1	_	1	2.8	_	<u>-</u>	1.8	1.4	11
329	346	234		336	241	-	300	365	12
36.4	146	26.8		30.8	82.8	-	48.8	110	13
498.6	516.1	424.9	540.1	542.8	552.2	543.0	457.3	546.7	14
80.8	82.7	62.9	86.8	91.0	91.8	87.2	68.9	88.7	15
	15.9	17.2	18.9	17.4	17.6	17.0	16.5	16.9	16
15.5	13.9	High	2.0	-	-	0.87	-	-	17
0.12	0.25	2.7	0.04	0.48	0.09	-	0.28	0.27	18
0.12	0.29	0.0	0.04	0.03	0.0	0.04	Trace	0.35	19
0.10	0.05	0.25	_	0.0	0.43	0.40	0.0	0.35	20
Trace	Trace	0.0	_	0.0	0.0	0.0	0.0	0.0	21
0.1	0.1	0.0		0.05	0.0	0.0	0.05	0.0	22
	3.0	1.7	1.8	1.7	1.9	3.7	4.1	3.8	23
3.4 1.4	1.3	1.6	1.5	1.5	1.6	1.7	1.9	1.8	24
0.1	0.0	0.0	0.1	0.1	0.0	0.1	0.1	0.05	25
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26
304	307	270	351	355	372	334	277	346	27
23.0	23.0	7.3	11.3	16.3	7. 4	17.0	19.0	18.4	28
4.2	4.0	1.0	1.0	0.6	0.5	4.1	3.9	3.6	29
0.0	0.0	0.2	-	0.0	0.0	_	0.0	0.0	30
2.4	2.0	2.5	2.0	0.4	0.2	0.8	0.8	1.0	31
26	24	26	25	27	31	24	27	25	32
26 249.7	252	222	288	291	301	274	228	284	33
15.6	20.1	6.1	6.2	7.5	0.0	13.7	12.2	7.1	34
265	272	228	294	299	301	288	240	291	35
	308	256	321	331	336	321	279	331	36
307	3	1.5	1.3	1.2	1.3	2.7	3.5	2.7	37
2.7	2.3 +0.8	+0.7	+0.8	+1.0	+0.9	+0.9	+1.0	+0.8	38
+1.0 6.1	8.8	6.7	6.3	6.0	6.2	6.2	6.2	6.3	39
	+	+							
	1	* Colloidal i	ron			1	1		}

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

MANITOBA (Cont'd)

				SI	HILO (Cont	' d)		
	Camp or Establishment			Camp	Shilo (Cont	: ' d)		
	Source (s)				Wells			
		Dispos	al Plant W	ell No. 5, 10	3' Deep	1		
NO.			Raw	V ater	About 16' Deep Raw Water At Pump Apr.5/57 Aug.8/56 Dec.3/56 Apr.5/57 Apr.5/57 Aug.8/56 Dec.3/56 Apr.5/56 Apr.5/56			
	Sampling Point		At	Pump			At Pump	···
1	Date of sampling	Apr.16/56	Aug.17/56	Dec.3/56	Apr.5/57	Aug.8/56	Dec.3/56	Apr.5/57
2	Storage period (days)	52:79	19:28	49:95	4:77	19:40	49:95	4:77
3	Sampling temperature, °C	8.9	8.9	8.9	6,7	7.8		7.8
4	Test temperature, °C	22.2	24.2	26.6		1		24.4
5	Oxygen consumed by KMnO ₄	6.8			-	Į.		
6	Carbon dioxide (CO ₂) (calculated)	1.7	2.6	1.3	4.2	1	1.8	3.4
7	pH	8.3	8.1	8.4		ŀ		8.0
8	Colour	0.5	5	5	-		_	
9	Turbidity	0.2	ó	Ó		1	,	
10	Suspended matter, dried at 105°C	-	•				•	5.1
11	Suspended matter, ignited at 550°C.	_						4.1
12	Residue on evaporation, dried at 105°C	229		237	228	-	260	Į.
13	Ignition loss at 550°C	24.4		25.6			ļ	25.6
14	Specific conductance, micromhos at 25°C.	350.8	358.9	351.9		332.4	-	1
15	Calcium (Ca)	56.0	55.7	55.8	i		1 -	1
16	Magnesium (Mg)	11.2	12.1	11.7		1	1	
17	Iron (Fe) Total	-		12.7	12.7		11.,	12.2
18	Dissolved	0.0	0.15	0.0	0.01	0.04	0.0	0.0
19	Manganese (Mn)	0.04	-	0.04			1	0.0
20	Aluminum (Al)	0.22	0.34	0.04	1	ľ	i	0.03
21	Copper (Cu)	0.0	-	0.0			l.] -
22	Zinc (Zn)	0.0	_	0.1				ı
23	Sodium (Na)	0.9	1.0	1.1		1	ì	1
24	Potassium (K)	0.9	0.9	1.0		1	1	
25	Ammonium (NH ₄)	0.0	0.9	0.1	-	i .	Į.	
26	Carbonate (CO ₃)	0.0	0.0	2.5		1	ŀ	
27	Bicarbonate (HCO ₃)	210	215	210			1	
28	Sulphate (SO ₄)	12.5	12.7	12.8		1	1	
29	Chloride (Cl)	1.1	0.4	0.7				
30	Fluoride (F)	0.0	0.4	0.0	0.4	0.0	0.0	l .
31	Nitrate (NO ₃)	4.0	4.0	3.6	i	9.0	_	0.0
32	Silica (SiO ₂), colorimetric	25	23	23	3.2 21	8.0	16 24	8.0
33	Carbonate hardness as CaCO ₃	172	177	176.5	177	160	187	21 180
34	Non-carbonate hardness as CaCO ₃	13.8	12.2	10.8	10.7	F	Į.	
			4	1		14.2	19.8	9.6
35	Total hardness as CaCO ₃	186	189	187	188	174	207	190
36	Sum of constituents	215	216	213	213	200	240	216
37	Per cent sodium	1.0	1.1	1.2	1.0	1.2	1.2	0.8
38 39	Saturation index at test temperature Stability index at test temperature	+0.8 6.7	+0.6 6.9	+1.0 6.4	+0.4 7.1	+0.6	+1.0 6.3	+0.6 6.8
						1		0.0
	Remarks:					l		

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

				MANI	TOBA (Co	ncl'd)					
				SI	IILO (Conc	l'd)					
				Cam	p Shilo (Co	acl'd)					
					Wells						
				Mixed Wells	, - General	Camp Supply					
				Finish	ed (Softene	d) Water					NO.
		At Centra	l Heating P	lant Tap				At Ca	тар Тар		
Feb.11/55	Mar.14/55	Apr.15/55	May 18/55	Sept.21/55	Feb.1/56	Aug.10/56	Apr.10/56	Aug.17/56	Dec.3/56	May 5/57	1
14:34	8:23	10:13	12:40	6:14	12:19	14:19	52:73	14:19	49:95	4:77	2
11.1	3.3	8.3	7.2	4.4	12.8	7.8	6.7	8.9	7.8	-	3
20.9	20.6	24.2	23.8	22.5	25.9	21.7	22.2	21.4	26.6	24.4	4
2.1	_	_	2.4	-	-	-	7.9	-	-	-	5
8.1	8.0	4.4	5.1	8.0	2.0	3.2	2.7	5.0	2.1	11	6
7.8	7.8	8.0	8.0	7.8	8.4	8.2	8.3	8.0	8.4	7.7	7
10	3	5	0	5	5	5	0	5	5	5	8
0	0	2	0	0	0	0.3	0	0	0	2	9
-	}			ĺ			}				10
-	1		1	l				\		1	11
338			350		341		357		337	347	12
51.2			77.6	ļ	36.0	1	26.4		40.0	123	13
531.2	551	556.0	552.2	589.7	536.9	547.2	551.9	546.5	543.9	536.3	14
17.4	14.1	14.3	27.1	16.3	28.0	29.6	15.5	23.8	21.2	17.3	15
3.6	2,9	3.0	9.3	3.1	8.8	7.9	5.1	7.8	6.3	5.7	16
-				1		-			-	-	17
Trace			0.04		Trace	-	0.04	0.04	0.0	0.01	18
_			0.0	1	0.03	-	0.04	-	0.02	0.0	19
0.02	}		0.19	1	0.05	} -	0.11	-	0.0	0.57	20
Trace			0.0		Trace	Trace	0.0	-	0.0	0.0	21
-	ļ		-	1	0.0	0.0	0.1	-	0.0	0.2	22
103	114	115	82.0	120	84.8	88.0	110	94.0	99.8	102	23
1.9	1.0	1.0	3.6	1.2	1.2	2.2	1.7	1.9	1.7	1.3	24
-	-	-	0.0	0	0.0	0.0	0.0	-	0.1	0.0	25
0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0	0.0	2.5	0.0	26
315	333	333	331	341	320	319	332	333	332	330	27
18.8	17.4	19.7	18.3	18.3	18.4	18.2	17.5	17.5	18.5	20.3	28
2.7	3.3	3.2	2.9	12.7	3.0	6.5	8.0	5.1	4.7	4.0	29
0.0	-	-	0.0	-	0.0	-	0.0	-	0.0	0.0	30
2.0	1.0	0.8	0.8	0.8	1.6	1.2	5.4	4.0	0.6	1.6	31
13	20	29	27	24	25	-	25	26	26	25	32
58.2	47.1	48.0	106	53.4	106	106	59.6	91.5	78.8	66.6	33
0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	34
58.2	47.1	48.0	106	53.4	106	106	59.6	91.5	78.8	66.6	35
317	338	351	334	364	335	-	352	344	345	341	36
78.7	83.7	83.6	61.5	82.5	63.1	63.7	79.3	68.5	72.7	75.6	37
-0.1	-0.2	+0.3	+0.4	0.0	+0.8	+0.6	+0.4	+0.3	+0.7	-0.1	38
8.0	8.2	7.4	7.2	7.8	6.8	7.0	7.5	7.4	7.0	7.9	39
						1	1	1	,	ı	1

Li - 0.0

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

	PROVINCE				SASKA	TCHEWA	LN	,	
				.,	NUC	IDURN			
	Camp or Establishment				Camp	Dundurn			
	Source (s)				Two Wells				
ļ			North	Well		West Well			
NO.				Raw	and Finis	hed Water	:		
	Sampling Point		At Pump	·			At	Pump	
1	Date of sampling	May 11/56	Sept.28/56	Jan.17/57	Apr.15/57	May 11/56	Sept.28/56	an. 17/57	Apr.15/5
2	Storage period (days)	42:77	18:25	42:132	8:99	42:77	23:27	42:132	8:98
3	Sampling temperature, °C	6.1	7.2	-	4.4	6.1	6.7	6.7	5.6
4	Test temperature, °C	23.8	24.5	23.8	25.8	23.8	24.0	23.8	25.8
5	Oxygen consumed by KMnO4	8.5	-	-	4.0	7.9	-	-	2.6
6	Carbon dioxide (CO ₂), (calculated)	4.0	12	4.9	1.9	2.6	3.2	3.2	4.5
7	рН	8.3	7.8	8.2	7.7	8.3	8.2	8.2	8.1
8	Colour	10	10	10	20	0	5	5	5
9	Turbidity	40 *	60 *	50 *	55 +	20 *	40 *	15 *	30 *
10	Suspended matter, dried at 105°C	12.4	-	16.4	12.8	2,5	-	7.2	
11	Suspended matter ignited at 550°C	7.6	-	11.0	7.5	1.1	-	2,2	
12	Residue on evaporation, dried at 105°C	722	- :	609	614	366	-	407	385
13	Ignition loss at 550°C	108	- 1	91.6	92.4	39.6	-	44.8	88.8
14	Specific conductance, micromhos at 25°C.	1082	946.1	951.7	992.4	609.1	658.3	658.0	659.8
15	Calcium (Ca)	87.3	92.4	91.6	87.9	97.9	101	102	100
16	Magnesium (Mg)	41.4	48.4	47.6	44.8	21.7	23.2	21.7	24.9
17	Iron (Fe) Total	4.4	Very High		2.2	-	High		
18	Dissolved	0.1		0.78	-	0.86	-	0.46	0.71
19	Manganese (Mn)	0.04		0.29	0.04	0.08	-	Trace	0.01
20	Aluminum (Al)	0.27		0.0	0.0	0.0		0.30	0.0
21	Copper (Cu)	0.0	1	0.0	0.0	0.0	Trace	0.0	0.0
22	Zinc (Zn)	0.0	40.0	0.0	0.0	0.0	0.1	0.0	0.0
23	Sodium (Na)	104	48.0	49.3	71.8	6.2	6.7	6.7 2.3	6.5
24	Potassium (K)	6.1 0.0	4.6	4.8	5.5	2.4	2.4	2.5	2.4
25	Ammonium (NH ₄)	1	0.0	0.0 0.0	0.0	0.0	0.1	0.0	0.0
26	Carbonate (CO ₃)	0.0 534	493	506	506	332	347	341	352
27 28	Sulphate (SO ₄)	158	124	127	154	64.9	77.2	80.5	84.3
29	Chloride (Cl)		6.4	5.1	6.4	2.0	2.9	2.3	2.8
30	Fluoride (F)	0.13	-	0.0	0.0	0.08		0.0	0.0
31	Nitrate (NO ₃)	6.0	1.6	1.4	2.0	4.0	0.4	0.4	0.4
32	Silica (SiO ₂), colorimetric ······	21	20	22	22	17	17	21	16
33	Carbonate hardness as CaCO ₃	388	404	415	404	272	284.3	280	289
34	Non-carbonate hardness as CaCO ₃	0.0	25.5	8.9	0.0	61.1	63.3	63.3	63.3
35	Total hardness as CaCO,	388	430	424	404	333	348	343	352
36	Sum of constituents	695	589	600	640	380	402	405	412
37	Per cent sodium	36.2	19.3	19.9	27.4	3.8	4.0	4.0	3.8
38	Saturation index at test temperature	+1.4	+0.9	+1.2	+0.8	+1.2	+1.2	+1.1	+1.1
39	Stability index at test temperature	5.5	6.0	5.7	6.1	5.9	5.8	6.0	5.9
	Remarks:					*Iron oxi	oxides		

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

SASKATCHEWAN (Concl'd	l)
----------------	---------	----

 				1)	AN (Concl'	CATCHEW	SASI		··		
<u> </u> 		GINA	REC			DMINSTER	LLO		L	GRENFEL	
	s and	upply - Well	Municipal S	Regina		Velis *					
		ound Lake *	Buffalo Pe		Mixed Well	Well No.4	Well No.2	Well No.1		Well	
2		d Water	Finishe		Finished Water		Raw Water		Water	nd Finished	Raw a
	At D.N.D. Tap				At Arm- oury Tap	s	t Well Pump	A		At Tap	
	Mar.18/58 7:13	Feb.25/58 16:22	Dec.18/56 41:162	Oct.26/56†	July 12/57 13: 18	July 12/57 13:18	July 12/57 13:18	July 12/57 13:18	Jan.29/57 42:135	Sept.26/56 32:40	May 1/56 52:87
3 4	24.0	24.0	10.0 23.6		25.1	- 25.2	- 25.2	- 25.2	12.2 25.4	25.4	7.2 23.8
5	6.8	- 5.0	11 9.0		3.3 10	2.5 7.0	2.8 9.0	3.4 10	5.2 Slight	- Trace	10 15
7 8	8.0	8.1 7	7.9 10	8.1 20	7.8	8.0 5	7.9	7.8	8.3	8.4	7.7
9	-	, <u> </u>	2	2 2 Trace	3	0.9	5 4 12.2	5 7	10	5 3	5 2
11 12	-	<u>-</u>	024	-	6.8	-	9.1	9.7 8.3			
13	-	-	924 135	1000	1409 134	1188 148	1409 126	472 170	2528 536		1886 391
14	1432 137	1388 122	1363 141	128.0	2023 103	1729 99 .8	2045 103	2077 109	2628 350	2580 326	2155 236
16 17	69.0	61.6	74.8	68. 0 1.2	51.1	55.4	49.5 0.56	50.4	188	188	168
18	-	0.08	0.0	-	0.34	0.04	0.12	0.13	Trace	0.01	0.02
19 20	_	-	0.0 0.45	-	0.04	0.04 0.21	0.06 0.18	0.06 0.41	0.47 0.50	0.96	0.31 0.91
21	-	-	0.0	0.0	Slight	0.0	0.0	Slight	0.04	0.04	0.06
22	•	-	0.0	=		0.01	0.05		2.0	1.5	0.7
23	91.0	105	63.0		303	240	310	310	55.0	52.8	56.0
24	9.5	10.8	7.4		5.1	5.1	5.1	5.0	6.5	7.8	7.1
25	0.0	0.0	0.0	0.3	-	-	-	-	-		-
27	505	467	505	0.0 439	0.0 546	0.0	0.0	0.0	0.0	17.0	0.0
28	384	36 5	377	365	584	442	562 578	518 632	560 1140	505	563
29	25.1	32.4	11.4	24.3	62.2	42.0	67.2	60.8	47.3	1105 45.8	800 37.5
30	-	-	0.0		0.0	0.0	0.0	0.0	0.2	42.8	0.2
31	2.0	1.5	0.6	_	6.0	0.8	2.8	6.0	64	48.0	40
32	23	20	25	23	14	14	15	15	26	23	23
33	414	383	414	360	448	477	460	425	460	443	462
34	211	175	245	240	19.3	0.2	0.0	54.1	1185	1141	816
35	625	558	659	600	467	477	460	479	1645	1584	1278
30	989	948	949	1 -	1398	1186	1407	1444	2156	2064	1647
3	23.7	28.4	16.9	-	58.1	51.8	59.0	58.0	6.5	6.7	8.6
31	+1.2	+1.2	+1.2	Į.	+0.9	+1.1	+1.1	+0.9	+1.8	+1.9	+1.1
39	5.6	5.7	5.5		6.0	5.8	5.7	6.0	4.7	4.6	5.5
	gton, Ont.) Ltd. Burling		* See also W † Analysis			.S.R. No. 7	*See also W			

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

ALBERTA

			BANFF		CALGA	ARY and ENVI	RONS
	Camp or Establishment	(Cadet Camp		Curri	e Barracks	
	Source(s)	Spring on	Cascade Mo	untain	Calgary Mu	micipal Supply	- Elbow
	·					iver, Treated	
No.		Ray	v and Finish	ned Water	F	inished Water	
	Sampling Point		At Sprin	 g	At	Barracks Tap	
1	Date of sampling	June 5/56	Nov.1/56	May 27/57	May 9/56	Sept.25/56	Jan.22/5
2	Storage period (days)	28:63	10:56	11:56	47:84	30:35	44:142
3	Sampling temperature, °C	4.4	3.9	4.4	5.6	8.9	3.3
4	Test temperature, °C	23.6	20.2	21.4	23.3	21.2	24.0
5	Oxygen consumed by KMnO ₄	5.1		2.6	8.0		0.9
6	Carbon dioxide (CO ₂) (calculated)	1,6	1.8	-	1.6	1.4	1.1
7	рН	8.0	8.1	8.1	8.2	8.3	8.3
8	Colour	5	5	0	0	5	0
9	Turbidity	0.3	0	6	6	3	0
ソ 1 0	Suspended matter, dried at 105°C.	- 0.5	"_		2.7	,	
i.1	Suspended matter, ignited at 105 C	_	· -	· -	{	-	<u> </u>
12	Residue on evaporation, dried at 105°C.		-	116	1.7	_	200
	-	108 10.0	_	116	238	_	200
13	Ignition loss at 550°C.		276.2	32.0	24.0	3/0/	26.0
14	Specific conductance, micromhos at 25°C.	187.2	376.2	179.6	372.5	348.6	340.6
15	Calcium (Ca)	26.0	54.8	24.7	52.7	50.3	41.3
16	Magnesium (Mg)	9.2	14.3	7.8	14.2	13.3	15.9
17	Iron (Fe) Total	-	-	-	-	-	-
18	Dissolved	Trace	-	0.0	0.05	-	0.01
19	Manganese (Mn)	Trace	<u> </u>	0.0	0.0	-	0.0
20	Aluminum (Al)	0.0	-	0.06	0.12	-	0.25
21	Copper (Cu)	0.0	-	0.0	0.0	-	0.0
22	Zinc (Zn)	0.0	-	0.0	0.05	-	0.0
23	Sodium (Na)	0.3	1.1	0.4	2.8	1.9	2.5
24	Potassium (K)	0.3	0.5	0.3	1.0	0.7	0.7
25	Ammonium (NH ₄)	0.05	-	0.0	0.0	0.0	0.0
26	Carbonate (CO ₃)	0.0	0.0	0.0	0.0	0.0	0.0
27	Bicarbonate (HCO ₃)	101	151	98.9	162	175	143
28	Sulphate (SO ₄)	11.3	71.8	13.4	56.4	41.5	57.3
29	Chloride (Cl)	0.3	0.5	0.6	1.5	0.6	0.5
30	Fluoride (F)	0.05	-	0.2	0.2	-	0.15
31	Nitrate (NO ₃)	1.2	1.2	0.4	1.6	0.4	0.2
32	Silica (SiO ₂), colorimetric	3.2	6.9	2.9	4.9	5.7	5.8
33	Carbonate hardness as CaCO ₃	83.3	124	81.1	133	144	117
34	Non-carbonate hardness as CaCO ₃	19.7	72.0	12.6	57.3	36.3	51.4
35	Total hardness as CaCO ₃	103	196	93.7	190	180	168
36	Sum of constituents	102	225	99.5	215	201	195
37	Per cent sodium	0.6	1.2	9.1	3.1	2.2	3.1
38	Saturation index at test temperature	-0.1	+0.4	-0.1	+0.6	+0.6	+0.5
39	Stability index at test temperature	8.2	7.3	8.3	7.0	7.1	7.3
	Remarks:				* See also	W.S.R. No. 7	

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

ALBERTA (Concl'd)

! }		and ENVIRONS	EDMONTON a	j	cl'd)	NVIRONS (Con	LGARY and E	CA	
]		h Barracks	Griesbac			P	Sarcee Cam		
	hewan	- North Saskato	icipal Supply	Edmonton Mun		s	Deep Well		
			River, * Ti		ker's	Deep at Careta Residence			Well, 250' Tank Ha
NO.		V ater	Finished			er	d Finished Wat	Raw and	
<u> </u>			ар	At C.H.P. Ta		At Tap		Tap	At
1	Apr.18/56†	Jan.25/56 †	Apr.1/55	Feb.18/55	Jan.22/57	Sept.24/56	May 9/56	Sept.24/56	May 9/56
2	5:5	5:5	19:27	21:33	8:136	31:36	47:49	31:36	47:84
3	_	-	15.6	15.6	4.4	7.8	7.3	5.6	8.9
4	-	-	24.7	20.5	22.0	21.2	23.3	21.2	23.4
5	-	-	-	2.0	-	- 1	7.9	_	7.5
6	<u> </u>	-	-	0.0	1.8	1.4	1.9	1.5	1,2
7	9.1	9.8	7.3	9.0	8.2	8.3	8.2	8.3	8.5
8	15	0	5	10	5	5	0	0	0
9	2	2	ó	0	0.9	7	8	12	12
10	Trace	Trace	ŭ		•	'_	2.6	12	1.7
111	11	Trace		_	_		1.0	_	1.0
L	200	250		144	052	· -		-	681
12	200_	250		37.6	853 26.8	_	835	-	26.0
13		_	252.2	1		1077	30.0	1050	
14	20.0	20.0	252.2	236.5	1267	1277	1243	1059	1032
15	32.8	32.0	19.9	12.7	19.2	19.6	17.1	17.8	18.2
16	1.5	7.8	3.6	5.0	3.9	5.0	3.5	4.7	3.9
17	0.2	0.4			-	-	-	-	-
18	-	-	•	Trace	0.01	-	0.08	-	0.08
19	-	-	-	0.0	0.01	- 1	0.04	-	0.02
20	1.9	0.0	•	0.07	0.0	-	0.02	- [0.05
21	-	-	-	0.03	0.0	- !	0.0	- 1	0.0
22	-	-	-	- 1	0.1	-	0.4	-	0.05
23	-	-	18.6	21.3	253	257	252	220	210
24	-	-	3.2	1.0	2.4	2.4	2.1	2.2	2.3
25	0.7	0.2	-	-	-	0.0	0.1	0.0	0.1
26	9.6	19.2	0.0	3.0	0.0	0.0	0.0	0.0	6.0
27	31.7	2.4	24.5	19.5	187	187	190	273	253
28	60.8	94.6	78.5	74.1	432	453	414	289	292
29	7.3	6.1	3.7	2.2	3.6	4.4	4.2	3.6	3.8
30	-	-	-	0.0	0.8	-	0.5	-	0.4
31	-	-	0.6	0.4	2.4	0.4	10	0.4	3.2
32	3.7	5.3	7.6	3.4	7.6	0.7	6,1	7.9	8.7
33	42	34	20.1	21.1	63.9	69.5	57.1	63.7	61.4
34	40	46	44.4	31.8	0.0	0.0	0.0	0.0	0.0
35	82	80	64.5	52.9	63.9	69.5	57.1	63.7	61.4
36		_	148	133	817	842	804	680	673
37	_	_	140	45.9	91.2	88.5	89.9	87.8	. 87 . 6
38	+0.8	+1.3	-1.5	-0.1	+0.1	+0.2	+0.1	+0.3	+0.6
39	7.5	7.2	10.3	9.2	8.0	7.9	8.0	7.7	7.3
12			Alchem Ltd	† Analyses by					7.5

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

		ALBERTA (Cont	EDMONTO	N and ENVIRONS (C	ont'd\
					ont a)
	Camp or Establishment		Gri	esbach Barracks s	
	Source (s)	Edmonton Mun	icipal Supply - Nor	th Saskatchewan Ri	ver,* Treated
NO.			Finish	ed Water	
	Sampling Point	At Firehall Tap		At C.H. Plant Tap	
1	Date of sampling	May 4/56	June 25/56†	Sept. 24/56	Oct.31/56
2	Storage period (days)	49:84	4:4	31:36	6:6
3	Sampling temperature, °C	5.6	•	11.1	-
4	Test temperature, °C	24.0	-	21.2	-
5	Oxygen consumed by KMnO4	-	-	- 1	-
6	Carbon dioxide (CO ₂) (calculated)	0.8	0	0	0
7	рН	7.9	9.2	9.2	9.5
8	Colour	0	15	5	12
9	Turbidity	3	2	4	2
10	Suspended matter, dried at 105°C	3.8	Trace		Trace
11	Suspended matter, ignited at 550°C	1.3	-	-	-
12	Residue on evaporation, dried at 105°C	124	140	-	200
13	Ignition loss at 550°C	15.2	-	-	-
14	Specific conductance, micromhos at 25°C.	200.9	-	153.8	-
15	Calcium (Ca)	25.3	21.6	12.8	23.2
16	Magnesium (Mg)	3.7	4.4	7.6	2.9
17	Iron (Fe) Total	-	0.0	-	0.0
18	Dissolved	0.05	-	-	-
19	Manganese (Mn)	0.01	_	_	-
20	Aluminum (Al)	0.0	0.1	_	Trace
21	Copper (Cu)	0.0	_	-	-
22	Zinc (Zn)	0.0	-	-	-
23	Sodium (Na)	6.7	-	2.7	-
24	Potassium (K)	1.8	-	0.7	-
25	Ammonium (NH ₄)	0.1	0.4	0.1	0.4
26	Carbonate (CO ₃)	. 0.0	12	5.6	24.0
27	Bicarbonate (HCO ₃)	42.4	9.7	23.6	0.0
28	Sulphate (SO ₄)	51.2	39.2	38.3	60.8
29	Chloride (Cl)	3.1	3.6	1.6	3.6
30	Fluoride (F)	0.15	-	-	-
31	Nitrate (NO ₃)	3.2	-	0.8	-
32	Silica (SiO ₂) colorimetric	5.0	3.6	6.0	6.6
33	Carbonate hardness as CaCO ₃	34.8	28.0	28.8	40.0
34	Non-carbonate hardness as CaCO ₃	43.5	44.0	34.4	30.0
35	Total hardness as CaCO,	78.3	72.0	63.2	70.0
36	Sum of constituents	121	-	86.1	_
37	Per cent sodium	15.3	-	8.4	-
38	Saturation index at test temperature	-0.6	+0.6	+0.3	+1.0
39	Stability index at test temperature	9.1	8.0	8.6	7.5
	Remarks:	† Analyses by Alch	em Ltd., Burlingto	on, Ont.	

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

ALBERTA (Cont'd)

		burn Rifle Range	Winter		issell Station	В	acks (Concl'd)	Griesbach Barra
		Well			Well			Edmonton Munic North Saskatche Treated (
N		nd Finished Water	Raw as		Finished Water		ned Water	Finish
		At Pump			At Station Tap		ant Tap	At C.H. Pl
1	Jan.22/57	Sept.24/56	May 4/56	Jan.22/57	Sept.24/56	May 4/56	Apr.2/57	Jan.22/57
2	44:142	31:36	49:84	44:142	35:43	49:84	9:13	44:142
3	5.6	4.4	4.4	10.0	10.0	12.8	-	3.3
4	24.4	21.2	23.8	24.2	24.6	23.8	25.4	24.4
5	4.2	-	10	3.8	-	9.9	-	1.1
6	6.0	5.0	10.0	4.2	1.1	7.0	0	Trace
7	8.0	8.1	7.8	8.4	8.9	8.2	8.8	8.7
8	15	10	10	5	20	5	5	0
9	15 *	35 *	85 *	6	3	4	4	0
10	21.7	-	34.9	12.6	-	11.1	1.2	-
11	12.1	-	28.1	6.2	- [2.8	0.0	-
12	503	-	562	746	-	713	194	194
13	45.6	-	47.2	51.2	-]	37.6	33.6	29.4
14	724.2	1137	838.4	1130	1161	1116	252.6	262.6
15	114	223	131	1.9	0.0	0.0	24.3	16.9
16	26.7	22.0	37.0	0.0	0.0	0.0	4.8	8.6
17	-	High	9.4	-	-	-	- 1	-
18	0.09	0.1	0.25	0.05	-	0.06	0.0	0.05
19	0.0	0.1	0.52	0.0	- (0.0	0.0	0.0
20	0.46	-	0.0	0.32	-	0.0	0.33	0.38
2	0.0	_	0.0	0.0	-	0.0	Slight	0.0
22	0.25	-	0.1	0.05	-	0.0	0.0	0.0
2	8.4	12.3	10.0	306	310	292	13.8	20.1
24	2.0	2.7	2.2	0.8	2.6	0.8	3.7	1.0
2:	0.0	-	0.1	0.05	0.5	0.0	0.1	0.0
20	0.0	0.0	0.0	19.6	49.4	0.0	2.9	1.8
2	404	461	417	737	677	748	31.8	40.0
28	79.9	292	130	1.0	1.8	1.0	76.2	81.8
2	1.0	0.9	0.8	11.0	14.3	10.4	4.3	1.8
30	0.4	-	0.7	2.0	_	1.8	0.0	0.15
3	0.4	0.8	2.4	0.4	0.4	3.6	1.2	0.2
3	18	19	15	10	9.1	8.3	4.6	6.2
3	332	379	342	4.7	0.0	0.0	30.9	35.8
3.	63.3	269	137	0.0	0.0	0.0	49.5	41.7
3	395	648	479	4.7	0.0	0.0	80.4	77.5
30	451	800	533	706	721	687	152	159
3	4.4	3.9	4.3	99.1	99.5	99.8	25.6	35.0
3	+1.1	+1.4	+0.9	0.0	+0.2	-0.5	+0.3	0.0
3	5.8	5.3	6.0	8.4	9.5	9.2	8.2	8.7
		• 1 -						
		nostly	* Iron oxides n					

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

ALBERTA (Cont'd)

		FORT CHIPEWAYAN					
	Camp or Establishment						
;	Source (s)	·	Wells				
		₩.	ell No. 1			Well No. 2	<u> </u>
NO.			R	law and Fini	shed Water		
	Sampling Point	At Pump	, PMQ No. 9) T	At P	ump, PMQ No	. 2
1	Date of sampling	Aug.17/56	Dec.13/56	May 15/57	Aug.17/56	Dec.13/56	May 15/57
2	Storage period (days)	34:60	29:48	35:68	34:53	29:48	35:68
3	Sampling temperature, °C	7.2	4.4	-	7.2	4.4	-
4	Test temperature, °C	23.6	21.0	27.4	22.4	20.6	27.4
5	Oxygen consumed by KMnO4	19	-	-	16	-	9.7
6	Carbon dioxide (CO ₂), (calculated)	11	14	15	11	26	9
7	рН	6.9	6.9	6.7	7.5	7.3	7.5
8	Colour	-	120	55	20	40	25
9	Turbidity	12	20	17	13	5	6
10	Suspended matter, dried at 105°C	6.6	-	0.3	12.2	-	4.4
11	Suspended matter, ignited at 550°C	3.1	ļ -	0.0	2.4	-	0.8
12	Residue on evaporation, dried at 105°C	142	-	108	326	-	286
13	Ignition loss at 550°C	56.4	-	46.0	110	-	82.8
14	Specific conductance, micromhos at 25°C	171.3	167.9	130.4	473.4	571.3	436.1
15	Calcium (Ca)	16.2	15.6	12.8	42.8	54.2	39.0
16	Magnesium (Mg)	6.9	5.8	4.7	25.6	32.0	23.2
17	Iron (Fe) Total	1.4	-	-	-	-	-
18	Dissolved	1.1	1.7	1.1	0.15	0.51	0.26
19	Manganese (Mn)	0.02	-	Trace	0.04	-	0.04
20	Aluminum (Al)	-	_	0.01	_	-	0.06
21	Copper (Cu)	0.0	_	Trace	Trace	-	0.03
22	Zinc (Zn)	> 1	_	0.2	>1	-	0.3
23	Sodium (Na)	3.4	2.8	2.4	12.0	14.8	9.6
24	Potassium (K)	5.2	5.5	5.2	4.6	5.5	4.8
25	Ammonium (NH ₄)	0.1	-	0.1	0.2	0.2	0.05
26	Carbonate (CO ₃)	0.0	0.0	0.0	0.0	0.0	0.0
27	Bicarbonate (HCO ₃)	59.2	69.2	51.6	214	317	200
28	Sulphate (SO ₄)	8.0	7.6	7.1	13.1	11.4	10.6
29	Chloride (Cl)	7.2	6.4	5.1	16.6	14.9	8.9
30	Fluoride (F)	_		0.0	0.0	- +	0.0
31	Nitrate (NO ₃)	24	7.2	6.0	48 †	24	48
32	Silica (SiO2) colorimetric	7.5	7.8	7.3	12	14	12
33	Carbonate hardness as CaCO ₃	48.6	56.8	42.3	176	260	164
34	Non-carbonate hardness as CaCO ₃	20.2	6.0	9.0	36.5	7.2	28.8
35	Total hardness as CaCO ₃	68.8	62.8	51.3	212	267	193
36	Sum of constituents	110	94.5	72.2	282	327	255
37	Per cent sodium	8.6	7.7	7.9	10.5	10.5	9.4
38	Saturation index at test temperature	-1.7	-1.6	-1.9	-0.1	-0.1	0.0
39	Stability index at test temperature	10.3	10.1	10.5	7.7	7.5	7.5
	Remarks:	† Note high	ner nitrates s		1		

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)
ALBERTA (Cont'd)

		STRATHMORE			McMURRAY		(Concl'd)	CHIPEWAYAN	FORT
		Drill Hall						Wells	
		₩ell			rwater River	Clea		Wells Well No. 3	
NC	ter	nd Finished Wa	Raw a	er	d Finished Wat	Raw an	Vater	and Finished V	····
		At Tap			At PMQ's Tap			Pump, PMQ No.	
1	Jan.29/57*	Sept.6/56	May 2/56	July 15/57	Dec.19/56	June 11/56	May 15/57	Dec.13/56	Aug.17/56
2	42:29	33:40	51:86	25:43	23:29	28:59	35:68	29:48	34:60
3	15.6	17.8	18.9	12.8	15.0	16.7	•	4.4	7.2
4	25.5	20.6	23.9	26.5	21.0	23.3	27.4	20.0	22.5
5	2.0	2010	8.3	15	_	14	13	-	19
6	2.6	11	4.4	2.4	1.8	1.8	12	24	12
7	8.5	7.8	8.2	7.9	8.0	7.9	7.0	6.6	6,9
8	5	5	0	100	60	70	40	60	-
9	ó	12	5	13	"_	10	8	2	30
10		'	6.5	5.8	_	2.8	0.8		8.9
11	_	_ [2.0	4.8	_	1.7	0.0	_	5.2
12	893	_	867	170	_	166	168	_	122
13	48.0] _	44.0	41.2	_	43.2	69.6		38.8
14	1382	1320	1310	223.0	307.5	238.6	203.3	154.7	147.7
15	2.4	37.9	33.4	25.5	22.6	19.3	22.2	14.8	13.8
16	0.2	8.4		7.2	7.1	5.6	6.0	5.1	5.1
ı	0.2	0.4	9.2	0.23	7.1	J.0 -	-	J. 1	2.5
17	-	-	0.17		_		0.16	_	1.7
18	0.0	_	0.17	0.0	-	0.15	0.16	-	
19	0.02	-	0.26	0.0	-	0.0	0.16	-	0.02
20	0.08	-	0.22	0.0	-		0.06	-	-
21	0.07	-	0.31	0.0	-	0.0	Trace	-	0.0
22	0.1	07.4	0.05	0.6	-	1.0	0.3	-	>1
23	330	274	260	12.0	28.5	22.0	4.1	3.6	3.7
24	2.4	1.6	1.6	2.0	1.9	1.7	6.9	6.7	6.8
25	0.05	0.1	0.0	0.1	0.1	0.3	0.1	0.1	0.1
26	7.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27	510	523	507	118	107	91.4	76.3	56.6	55.7
28	284	269	254	17.0	10.5	8.2	8.0	7.2	6.6
29	2.7	3.2	2.8	6.5	36.6	27.0	6.5	5.0	5.2
30	0.2	0.0	0.0	0.0		0.0	0.0	† †	- †
31	3.2	2.4	8.0	0.6	1.2	4.0	24	16	24
32	12	11	9.1	5.0	12	6.7	9.0	9.4	8.2
33	6.8	129	121	93.2	85.6	70.8	62.6	46.4	47.2
34	0.0	0.0	0.0	0.0	0.0	0.0	17.5	11.5	8.2
35	6.8	129	121	93.2	85.6	70.8	80.1	57.9	55.4
36	888	865	829	135	173	141	125	95.7	105
37	98.5	82.0	81.8	21.2	41.3	38.8	9.0	10.5	10.5
38	0.0	+0.4	+0.8	+0.1	-0.2	-0.4	-1.0	-2.1	-1.8
39	8.5	7.0	6.6	8.1	8.4	8.7	9.4	10.8	10.5
	ned	pparently softe	*Sample a						

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

ALBERTA (Cont'd)

				WAINV	VRIGHT		
	Camp or Establishment			Camp W	ainwright		
	Source(s)		Battle Ri	ver, Betty L	ake and Star	dby Wells *	
		,	Battle Ri	ver	<u> </u>	Betty	Lake
NO.			Raw	Water	· · · · · · · · · · · · · · · · · · ·	Ra	w Water
	Sampling Point		At Plant Int	ake		At Plant	Intake
1	Date of sampling	May 22/56	Oct.22/56	Feb.6/57	May 1/57	May 11/55	May 22/56
2	Storage period (days)	38:77	11:67	47:70	13:16	8:29	38:77
3	Sampling temperature, °C	15.8	7.2	2.8	13.0	5.27	15.9
4	Test temperature, °C	24.4	21.8	24.3	24.1	22.9	22.0
5	Oxygen consumed by KMnO ₄	11	-	5.1.	13	11	10
6	Carbon dioxide (CO ₂), (calculated)	6.2	1.7	2.8	6.0	1.3	2.1
7	рН	7.7	8.5	8.5	7.7	8.7	8.5
8	Colour	50	40	25		20	20
9	Turbidity	100	25	2	269	0.4	0
10	Suspended matter, dried at 105°C.	299			197	0.4	\
11	Suspended matter, ignited at 550°C	273			165		_
12	Residue on evaporation, dried at 105°C	284		879	279	425	422
13	Ignition loss at 550°C.	46.8	_	69.2	55.6	145	128
14	Specific conductance, micromhos at 25°C.	416.1	729		1	658.0	649.9
15	Calcium (Ca)	40.1	61.5	1433 48.1	403.5	26.1	24.6
	Magnesium (Mg)	12.2		i .	1	1	46.6
16		1	24.5	25.4	12.0	44.3	40.0
17	Iron (Fe) Total	4.5	_	-	-	77	7
18	Dissolved	0.03	_	0.0	0.0	Trace	Trace
19	Manganese (Mn)	0.0	· -	0.0	0.0	0.0	0.0
20	Aluminum (Al)	0.04	-	0.08	0.02	0.14	0.27
21	Copper (Cu)	0.0	-	0.0	Slight	0.0	0.0
22	Zinc (Zn)	0.0	-	0.0	0.0	-	0.0
23	Sodium (Na)	27.0	69.3	267	33.5	52.0	53.0
24	Potassium (K)	7.3	5.7	7.0	8.6	10.6	10.0
25	Ammonium (NH ₄)	0.0	_	0.1	0.0	0.0	11.0
26	Carbonate (CO ₃)	0.0	9.1	32.3	0.0	22.7	11.8
27	Bicarbonate (HCO ₃)	190	367	705	192	357	389
28	Sulphate (SO ₄)	53.1	83.2	166	50.1	34.7	25.9
29	Chloride (Cl)	2.7	7.2	2.8	4.1	5.7	6.0
30	Fluoride (F)	0.0	-	0.3	0.0	0.15	0.0
31	Nitrate (NO ₃)	3.2	1.6	4.8	2.4	0.4	2.8
32	Silica (SiO ₂), colorimetric	7.2	14	18	7.2	1.6	2.9
33	Carbonate hardness as CaCO ₃	150	254	225	131	247	253
34	Non-carbonate hardness as CaCO ₃	0.0	0.0	0.0	0.0	0.0	0.0
35	Total hardness as CaCO ₃	150	254	225	131	247	253
36	Sum of constituents	247	457	919	245	374	376
37	Per cent sodium	26.9	36.6	71.2	33.9	30.2	30.1
38	Saturation index at test temperature	+0.1	+1.2	+1.4	-0.1	+1.1	+0.9
39	Stability index at test temperature	7.5	6.1	5.7	7.9	6.5	6.7
	Remarks:						

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

ALBERTA (Concl'd)

)	GHT (Concl'd	WAINWRI				
İ					wright (Concl					
Ì					te and Standby		Battle Riv			
	Wells *				ke - Camp Sup				y Lake	Bet
NO	Finished Water				inished Water	F			w Water	
	Town Tap				n Bldg. 184	At Tap	-		ant Intake	
1	Oct.11/51	May 1/57	Feb.6/57	Oct.20/56	May 22/56	July28/55	May 11/55	May 1/57	Feb.6/57	Oct.22/56
2	11:30	13:16	47:70	11:20	36:77	6:18	8:29	13:16	47:70	11:67
3	9.4	-	8.9	12.0	11.1	-	-	13.0	3.0	7.0
4	22.6	24.1	24.3	21.8	24.4	29.4	23.0	24.1	24.0	21.8
5	-	7.9	5.7	-	11	-	5.8	12	12	-
6	4.0	0.0	-	0.0	0.0	0	0	1.6	2.2	0
7	8.4 (8.5)	9.2	9.1	9.8	10.0	10.2	9.4	8.6	8.6	9.3
8	2 (15)	0	5	10	10	5	5	25	3 5	30
9	0.6 (Clear)	4	0	5	4	_	0	15	0	7
10	-	-	_	-	3.1	-	-	8.4	ļ -	_
11	-	-	_	-	1.7	_	ļ <u>-</u>	2.8	-	-
12	936	369	290	-	325	_	272	397	562	_
13	31.0	96.0	36.0	-	37.6	-	44.8	119	188	-
14	1411	568.2	512.0	427.6	522.5	428.9	450.0	610.0	869.2	573.7
15	5.2	7.9	10.6	8.9	15.6	4.5	4.6	19.0	20.0	13.8
16	1.4	12.2	5.6	8.8	6.6	7.3	3.7	47.4	70.5	48.8
17	-	-	_	-	-	-	-	-	-	
18	0.07	0.0	0.0	-	0.0	0.0	0.03	0.0	0.0	-
19	-	0.0	0.0	-	0.0	-	0.0	0.0	-	-
20	-	0.03	0.05	_	0.0	0.02	0.07	0.05	0.24	-
21	-	Slight	0.0	_	0.0	0.0	0.0	0.0	_	-
22	-	0.0	0.0	-	0.0	_	-	0.0	-	-
23	340	74.3	72.5	53.0	60.0	59.6	69.4	48.0	74.8	53.8
24	7.0	14.9	14.4	10.0	14.0	11.6	12.8	9.9	15.0	10.1
25	-	0.15	0.4	0.1	0.3	0.1	Trace	0.0	-	-
26	5.5 (21.6)	13.6	12,4	23.3	25.2 †	60.0	22.9	19.6	24.7	69.5
27	667(616)	76.9	46.9	31.3	0.0	30.0	70.0	373	539	268
28	199	36.0	33.9	25.5	32.4	58.0	83.7	18.9	28.0	20.4
29	4.8 (6.0)	91.7	90.6	68.4	99.5	2.0	7.7	6.0	10.0	5.5
30	0.2	0.0	0.05	-	0.1	0.15	0.15	0.0	0.0	-
31	0.5	0.6	0.2	0.8	0.2	0.0	0.6	1.2	3.2	1.2
32	11	4.8	21	5.7	17	6.9	6.2	4.8	4.3	4.2
33	18.7	69.9	49.5	58.4	45.4	41.3	26.7	242	340	234
34	0.0	0.0	0.0	0.0	20.7	0.0	0.0	0.0	0.0	0.0
35	18.7	69.9	49.5	58.4	66.1	41.3	26.7	242	340	234
36	900	294	285	220	271	239	246	358	516	359
37	96.4	64.3	69.5	61.8	60.6	69.8	77.6	29.0	33.7	32.2
38	+0.3	+0.5	+0.4	+1.0	+1.4	+1.6	+0.6	+0.9	+1.1	+1.4
39	7.8	8.2	8.3	7.8	7.2	7.0	8.2	6.8	6.4	6.5
	* Municipal water				† OH = 1.2					

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

	PROVINCE	BRITISH CO	DLUMBIA							
				C	HILLIWACK					
	Camp or Establishment			Cam	p Chilliwacl	ζ				
	Source(s)	Vedder River and Well								
			Well at Wet Bridging Area		ver at Area	Vedder Rive				
NO.			Raw and	Finished Wa	ter	Raw and Fin	ished Wate			
	Sampling Point	At	Гар	At Well		At Tap Central He	Central ating Plan			
1	Date of sampling	Apr.25/56	Aug.27/56	Mar.1/57	Apr.9/57	Feb.16-17/55	May 1/55			
2	Storage period (days)	1	17:36	39:112	8:38	13:21	18:47			
3	Sampling temperature, °C	1	15.6	8.9	8.9	4.4 - 10.0	4.4			
4	Test temperature, °C	23.5	23,3	24.0	24.1	21.6	22.0			
5	Oxygen consumed by KMnO4		•	3.5	-	1.8	1.5			
6	Carbon dioxide (CO ₂) (calculated)	2.3	5.1	1.8	1.8	3.1	2.0			
7	pH	7.9	7.5	7.6	7.7	7.4	7.6			
8	Colour	0		10	15	10	5			
9	Turbidity	2	15	7	10	0	0			
0	Suspended matter, dried at 105°C	-	-	8.4	-	_				
1	Suspended matter, ignited at 550°C	-	_	7.6	_					
2	Residue on evaporation, dried at 105°C	138	_	92.0	-	57.6	63.6			
3	Ignition loss at 550°C	30.0	_	29.2	_	14.4	29.6			
4	Specific conductance, micromhos at 25°C	201.2	195.3	91.01	107.9	107.2	106.8			
5	Calcium (Ca)	30.6	29.7	13.2	16.3	16.1	16.0			
6	Magnesium (Mg)	5.0	5.2	1.9	2.2	1.4	1.5			
7	Iron (Fe) Total		High	*./		-	-			
8	Dissolved	0.15		0.27	1 -	0.02	Trace			
9	Manganese (Mn)	0.25	_	0.0		Trace	0.0			
0	Aluminum (Al)	0.17	_	0.07		0.28	0.0			
1	Copper (Cu)	0.0	_	0.0		0.11	0.21			
2	Zinc (Zn)	1.0	_	0.0]	-	-			
3	Sodium (Na)	2.5	1.8	1.7	1.8	1.2	1.3			
4	Potassium (K)	0.9	0.9	0.8	0.8	0.6	0.7			
5	Ammonium (NH ₄)	0.1	0.0	0.0	0.05	- 0.0	0.7			
6	Carbonate (CO ₃)		0.0	0.0	0.0	0.0	0.0			
7	Bicarbonate (HCO ₃)		108	43.5	56.0	46.7	47.8			
, 8	Sulphate (SO ₄)	0.4	19	8.6	6.8	10.5				
9	Chloride (Cl)	6.0	6.3	0.9	0.7	1.0	9.6 1.2			
0	Fluoride (F)	0.0	- -	0.9	"-	0.05	0.0			
1	Nitrate (NO ₃)	0.6	0.2	1.5	1.2	0.4	0.6			
2	Silica (SiO ₂), colorimetric	20	18	9.6	9.2	4.2	6.6			
3	Carbonate hardness as CaCO ₃	96.0	88.2	35.7	45.9	38.3	39.2			
4	Non-carbonate hardness as CaCO ₃)	0.9	7.4	5.0	3.8	7.6	6.9			
5	Total hardness as CaCO ₃	96.9	95.6	40.7	49.7	45.9	46.1			
6	Sum of constituents	125	11/	60.1	66.6	59.8	61.4			
7	Per cent sodium	5.1	4.1	8.0	7.1	5.1	5.5			
8	Saturation index at test temperature	-0.1	-0.6	-1.1	-0.8	-1.2	-1.0			
9	Stability index at test temperature	8.1	8.7	9.8	9.3	9.8	9.6			
	Remarks:			River rising	River low					

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

İ	URTENAY	C0			'd)	IWACK (Concl'	CHILL		
					l'd)	illiwack (Conc	Camp Cl		
	Courtenay Municipal Supply -Brown's River	Spring				er and Well er River	Vedder Riv		
NO	nished Water	Raw and Fi				nished Water	Raw and Fi		
	Town Tap	At Tap	1016	Tap in Bldg.	Λt	t	l Heating Plan	At Tap, Centra	
1	Aug. 16/49	Apr.24/57	Apr.9/57	Mar.1/57	Aug.27/56	Apr.25/56	Aug.7/56	Feb.13/56	Nov.29/55
2	-:63	15:83	8:38	52:110	43:56	54: 89	17:22	14:21	15:36
3	14.5	2.8	4.4	8.9	15.6	10.0	-	10.0	10.0
4	22.0	26.0	24.0	25.6	20.8	23.5	21.6	22.2	24.4
5	-	2.8	-	2.7	-	7.8	8.2	-	1.9
6	- (1.0)	4.2	2.1	2.7	1.6	2.0	3.4	1.2	1.3
7	7.4 (7.7)	7.3	7.5	7.4	7.6	7.5	7.2	7.9	7.7
8	5(7)	5	0	5	10	0	0	5	0
9	0.2	0.8	5	0	0	0	0	0	0
10	-					-	-		
11	-		ļ			-	-	1	
12	33.0	93.6		68.8		_	-		56.4
13	6.4	27.6		14.3		_	-		20.0
14	46.4	119.1	86.61	90.43	77,06	90.13	70.89	113.3	85.26
15	6.0	11,3	12.9	13.6	11.7	13.5	11.0	17.8	13.1
16	1.2	4.5	1.4	1.6	1.2	1.4	0.8	1.6	1.2
17	-	_		-		-	-	1	_
18	0.03	0.07		0.04		0.03	-		
19	-	0.0	į	0.0		0.0	<u>-</u>		0.02
20	_	0.01	1	0.23		0.0	-	}	0.23
21	_	Trace		Trace		0.0	0.0		0.04
22	_	0.5		0.4		0.3	0.5	ļ	0.09
23	1.4	5.1	1.3	1.3	1.0	1.4	0.9	1.4	1.0
24	0	0.2	0.5	0.5	0.6	0.6	0.6	0.7	0.6
25	-	0.0	0.0	0.0	0.1	0.1	0.1	_	_
26	0 (0)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27	25.4 (19.5)	55.3	40.7	43.0	36.0	41.6	32.1	53.3	39.1
28	3.3	2.5	6.7	7.4	5.9	5.9	5.9	8.1	7.0
29	0	7.0	0.4	1.1	1.5	1.3	1.1	0.8	1.0
30	0.5	0.0	-	0.0	-	0.0		-	0.0
31	0.6	1.0	0.6	0.6	0.4	2.8	2.4	1.6	1.2
32	5.2	16	6.6	6.1	6.4	6.4	25	6.6	6.0
33	19.9 (16.0)	45.4	33.4	35.3	29.5	34.1	26.3	43.8	32.1
34	10	1.3	4.5	5.2	4.6	5.3	4.4	7.2	5.5
35	19.9	46.7	37.9	40.5	34.1	39.4	30.7	51.0	37.6
36	30.2	75.3	50.4	54.1	46.4	54.2	64.4	64.9	50.7
37		18.8	6.8	6.1	5.9	6.9	5.7	5.5	5.2
38	-1.9	-1.4	-1.3	-1.3	-0.9	-1.3	-1.8	-0.7	-1.0
39		10.1	10.1	10.0	9.4	10.1	10.8	9.3	9.7
		High surface run-off	River low					River very low	

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

				FORT N	ELSON an	d ENVIR	ONS		
	Camp or Establishment	I	Fort Nelse	on - Mile 2	295, Alas	ska Highv	ay		
	Source(s)		·	We	ell				
No.				Raw	Water				
	Sampling Point		At Pı		fore Treat	ment		7.	
1	Date of sampling	Ian.12/56		May 15/56		Т	Tune 10/5	Feb.20/58	Mar.6/58
2	Storage period (days)	25:29	7:14	9:15	48:76	14:22	11:18	19:19	5:5
3	Sampling temperature, °C	0.6		•	4.4	5.0	5.0	5.0	10.0
4	Test temperature, °C.	24.1	23.7	21.5	26.3	25.6	26.6	24.6	24.4
5	Oxygen consumed by KMnO ₄	2.6	5.2	-		4.6	4.2		
6	Carbon dioxide (CO ₂) (calculated)	43	42	6.3	7	14	11		1
7	pH	7.3	7.3	8.1	8.0	7.8	7.9		7.3
8	Colour	5	5	30	5	15	5		,
9	Turbidity	High *	_	High *		Very High	1		
10	Suspended matter, dried at 105°C	140	_			,, IIIgii	-,,		
11	Suspended matter, ignited at 550°C	115	_						
12	,	1	1280		1522	1608			
13	Ignition loss at 550°C	86.4	38.0		115	131			
14	Specific conductance, micromhos at 25°C	1 .	1639	1477	1856	1938	1508	1881	1859
15	Calcium (Ca)	332	327	292	380	390	289	378	375
16	Magnesium (Mg)	50.4	54.0	45.7	53.6	65.5	51.3	67.2	66.8
17	Iron (Fe) Total	93.		1	Very High		77	78	79
18	Dissolved	0.09	-	Trace	0.26			/*	19
19	Manganese (Mn)	1	0.8	High	0.28	0.28 High	2.8 0.77		
20	Aluminum (Al)	0.0	-	IIIgii	1	0.36	0.77	-	
21	Copper (Cu)	0.0	0.0	_	0.44	Trace			
22	Zinc (Zn)	1	0.0	_	0.0		Slight 0.0		
23	Sodium (Na)		8.2		}	0.0			
24	Potassium (K)	8.3 3.0		7.0	8.5	8.5	7.1		
	Ammonium (NH ₄)	5.0 -	2.9	2.7	3.2	3.3	2.7		
25 26	Carbonate (CO ₃)	0.0	0.0 0.0	-	-	-	<u>-</u>		
27				0.0	0.0	0.0	0.0		
	Bicarbonate (HCO ₃)	684	683	592	725	762	581		
28	Sulphate (SO ₄)	472	-	390	553	626	458		
29	Chloride (Cl)	0.7	0.7	0.8	0.8	1.9	1.3		
30	Fluoride (F)	0.0	0.5	-	0.0	0.0	0.4		
31	Nitrate (NO ₃)	1.2	0.4	2.8	6.0	3.2	0.8	ĺ	
32	Silica (SiO ₂), colorimetric	11	13	13	11	11	9.8	/15	(0)
33	Carbonate hardness as CaCO ₃	561	560	486	595	625	476	615	606
34 25	Non-carbonate hardness as CaCO ₃	643	478	430	575	617	454	605	605
35	Total hardness as CaCO,	1	1038	916	1170	1242	931	1220	1211
36 27	Sum of constituents	ļ.	1220	1045	1375	1485	1508		
37	Per cent sodium	1.7	1.7	1.6	1.5	1.5	1.6		
38	Saturation index at test temperature	+1.0	+0.8	+1.1	+1.7	+1.4	+0.9		
39	Stability index at test temperature	4.3	5.7	6.1	4.6	5.0	6.1		
	Remarks:	* Iron oxides							

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

						NVIRONS							
				l'd)	way (Conc	aska High			Fort Ne		····		
NO							/ell						
						Dlopt	hed Water	in Centra	A. T.				
1	June 10/57	Apr.9/57	D 5/5/	7 4/50	15/5/								
2		- 1	·		May 15/56					Mar.6/56	Jan. 12/56		
3	11:18 22.1	14:22 20.0	48:76	29:64	9:15	9:15	14:19	23:29	8:21	7:14	25:29	11:17	11:54
4	26.6	25.6	22.8 26.3	16.7	21.5	-	-	-	-	-	15.6	-	-
5	4.0	4.2	20.5	23.3 4.1	21.5	24.1	23.5	22.5	24.4	23.7	24.2	21.8	22.3
6	2.5	7	2	2.0	1.5	- 2.1	-	-	-	5.1	2.9	-	9.1
7	8.2	7.9	8.3	8.0	8.2	2.1 8.3	3.7 8.0	2.6	2.5	2.7	1.7	1.6	1.3
8	5	10	10	5	0			8.0	8.1	8.1	8.1	8.3	8.2
9	15	35	10	0.9		10	10	10	10	10	5	10	5
10	14.2	,,	5.7	0.7	-	=	-	-	_	-	0.9	-	-
11	2.0		4.2] }					*	-		-
12	933	1300	1174	754	į l	ı				-	-	-	-
13	123	126	1174	80.8]					933	819	-	-
14	1170	1564	1400	943.9	1005	1119	1076	1020	1111	82.4	65.6		-
15	180	275	242	132	158	180	171	1029	1131	1183	1039	1142	006
16	51.4	65.3	56.9	40.5	40.8		47.1	153	176	197	164	194	184
17		0,,,	,,,,	0.26	40.6	51.2	47.1	46.9	51.4	49.3	41.0	40.6	22.1
18	0.02	0.02	0.10	0.18						1.8	0.08		-
19	0.04	0.06	0.12	0.04						- 0.13	0.08	-	0.05
20	0.31	0.26	0.29	0.25						0.12	0.05	-	0.02
21	Slight	Trace	0.0	0.0						0.0	0.28	-	0.03
22	0.0	0.0	0.0	0.0						0.0	l i	0.0	Trace
23	7.8	8.5	8.6	7.0	7.1	7.0	7.5	7.5	7.9	8.2	0.0		0.0
24	2.8	3.4	4.4	2.7	2.7	2.9	2.8	3.0	3.0	3.0	8.3	8.3	7.3
25		-	_	-	-			7.0).0	5.0	3.0	3.2	3.0
20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-	0.0
2	260	419	330	130	176	263	251	172	209	239	131	0. 0 208	145
21	451	633	553	381	416	376	403	433	452	469	475	488	445
29	7.7	0.9	1.1	0.8	0.8	0.6	1.0	1.1	0.9	0.6	0.7	1.0	0.2
30	0.13	0.2	0.0	0.0					-	0.5	0.7	1.0	0.2
3	2.4	1.8	6.0	4.0	10	3.2	8.0	2.0	2.4	0.8	1.6	1.6	1,2
3:	6.4	7.4	6.7	3.9	4.4	6.7	6.5	5.1	4.8	5.3	4.1	5.2	7.7
3	214	343	271	106	144	216	206	141	172	196	108	170	119
3	447	611	567	390	418	442	413	432	478	498	471	481	430
3	661	954	838	496	562	658	619	574	650	694	579	651	549
3	1170	1202	1042	636	726	757	770	737	801	851	763	844	742
3	2.5	1.9	2.2	2.9	2.7	5.3	2.6	2.7	2.6	2.5	3.9	2.7	2.8
3	+0.8	+1.3	+1.6	+0.6	+1.0	+1.4	+1.0	+0.8	+1.1	+1.2	+0.8	+1.3	+1.0
3	6.6	5.3	5.1	6.8	6.2	5.5	6.0	6.4	5.9	5.7	6.5	5.7	6.2
					-	-		 		+	 	1	

CHEMICAL ANALYSES OR ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

			FORT	NELSON and	ENVIRONS	(Concl'd)	
	Camp or Establishment	Maintenance Camp, Mile 392, Alaska Highway	Maintenance Camp, Mile 456, Alaska Highway	Maintenance 546, Alask	e Camp - Mile a Highway	(e Maintenanc Camp — aska Highwa
	Source(s)	Summit Lake	Well	Well alongsi	de Coal River	De	ep Well
NO.		Raw & Fini- shed Water	Raw & Fini- shed Water	Raw & Fini	ished Water	Raw & Fin	ished Water
	Sampling Point	At Pump	At Pump	At	Pump	A	t Pump
1 2	Date of sampling	. Oct.31/56 8:84	Oct.31/56 30:84	Aug.21/56 46:162	June, 1957	Aug.20/56 47:162	June 1957
3	Sampling temperature, °C	3.3	13.3	5.6	7.8	3.9	6.7
4	Test temperature, °C	25.3	20.8	22.3	25.8	22.4	25.8
5	Oxygen consumed by KMnO4	9.8	-	10.1	2.4	9.9	2.1
6	Carbon dioxide (CO ₂) (calculated)	1.2	3.3	3	2.5	1.3	1.6
7	pH	8.3	7.9	8.3	8.1	8.4	8.1
8	Colour	5	10	10	0	5	5
9	Turbidity	0.3	0	6	_	2	
10	Suspended matter, dried at 105°C. Suspended matter, ignited at 550°C			7.8 1.8	_ [_	
11 12	Residue on evaporation, dried at 105°C	132	153	352	_	175	_
13		20.0	26.8	32.0	_	29.2	_
14		237.1	264.2	666.3	460.71	318.8	231
15	Calcium (Ca)	30.0	36.6	88.0	33.2 †	51.5	28.7
16	Magnesium (Mg)	12.6	12.2	38.0	38.9	8.7	10.6
17	Iron (Fe) Total	-		-	- (-	-
18	Dissolved	0.01	0.0	0.05	0.08	0.04	3.1
19	Manganese (Mn)	0.0	Trace	0.0	-	0.0	0.0
20	Aluminum (Al) · · · · · · · · · · · · · · · · · · ·	0.14	0.16	0.20	0.35	0.06	0.0
21	Copper (Cu)	Trace	Trace	0.0	0.0	0.0	0.0
22	Zinc (Zn)	0.0	0.1	0.0	0.0	0.0	0.0
23	Sodium (Na)	0.9	0.6	1.5	2.9	2.9	5.2
24 25	Potassium (K) Ammonium (NH ₄)	0.3	0.4	1.7	1.7 0.0	1.0	1.0
26	Carbonate (CO ₃)	0.0	0.05 0.0	0.0	0.0	0.05 1.3	0.05
27	Bicarbonate (HCO ₃)	154	164	364	201 †	201	133
28	Sulphate (SO ₄)	3.0	9.9	85.1	65.7	3.2	3.5
29	Chloride((Cl)	0.3	1.1	0.4	0.5	5.2	6.8
30	Fluoride (F)	0.0	0.0	0.0	-	0.0	-
31	Nitrate (NO ₃)	0.4	0.4	0.4	0.2	Trace	1.2
32	Silica (SiO ₂), colorimetric	3.8	5.3	9.1	12	16	20
33	Carbonate hardness as CaCO ₃	127	135	298	165	164	109
34	Non-carbonate hardness as CaCO ₃	0.2	6.5	73.4	77.6	0.0	6.3
35		127	141	372	243 †	164	115
37	Sum of constituents	127	148 0.9	404 0.9	255	188	146
	Saturation index at test temperature	+0.5	+0.1	+1.2	2.8 +0.4	3.7 +0.9	8.5 +0.2
39	Stability index at test temperature	7.3	7.9	5.9	7.3	6.6	7.7
	Remarks:		-	† May have l	l		† This sam- ple may be Watson Lake

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

							OWBIY (C	SII COL	DILLI	 7			
				GH	RAYLEI			мо	NANAI	LADNER		AMLOOPS	
								anaimo	Camp Na	Boundary Bay			
		Wells and North Thompson River							Nanaimo Mu Supply - N	Delta Municipal	er	npson Rive	South Thor
		Artesian Well* Shallow Well* North Thompson River							Rive	ity Munic- ipal Supply			
NO.			Water	d Finished	Raw an			Finished Water		Raw & Finished Water	Water	Finished	Raw and
	ump	At P	Pump	At]		np,Bldg. 43	At Pur	Тар	At Camp	At Tap	e	Pumphous	At
1	Jan.15/57	Aug.30/56	an. 15/57	Jan. 23/56	Jan 15/57	Aug.30/56	Apr.25/56	Dec,2/56	Nov.29/56	Ian.31/57	an.15/57	ue 25/56 I	Apr. 15/56/
! Z	13:134	37:146	13:134	37:146	13:134	37:146	54:89	54:171	39:77	40:133	13:140	61:140	54:89
3	-0.6	14.4	9.4	10.0	8.9	10.0	6.7	3.3	3.9	5.0	0.6	15.0	3.3
4	23.8	22.3	23.9	22.4	23.8	22.4	23.4	22.2	22.4	25.3	23.8	25.2	23.2
5	10 2.0	10	2.0	27	-	-	8.4	11	11	1.2	10	5.8	8.6
6	7.7	7.5	3.8 8.2	3.7 8.2	9.0 7.8	3.2	3.0	2.3	1.5	1.7	4.3	2.4	1.1
7 8	5	10	5	5	7.8 5	8.3 5	8.3 0	7.1	7.2	4.8	7.2	7.4	7.8
9	0.8	30	ó	ó	ó	ó	0	10 0	10 1	5	5 0	5 0.8	0
10	-	25.4	-	`.	-	_	_	٠-			· -	0.8	18 43.3
11	-	21.5	-	· -	-	-	-	-	-	_	_	_	28.7
12	48.4	64.4	1190	1204	1164	1133	1183	79.6	31.2	12.4	66.8	70.4	68.4
13	19.2	14.4	173	118	188	123	182	12.0	8.8	40.0	24.8	16.8	25.2
14	129.0	80.52	1536	1546	1496	1476	1532	38.73	35.89	136	85.45	80.43	104.8
15	17.3	11.7	116	117	101	100	103	5.3	4.5	14.7	12.5	10.8	12.9
16	3.0	1.2	90.3	89.2	96.6	94.3	100	0.0	0.4	4.5	1.7	1.8	2.3
17	0.05	0.05	0.0	0.0	-	~		-	-	·	-	-	- [
18	0.0	0.0	0.0	0.0	0.0 0.04	Trace Trace	0.01	0.26	0.06	0.02	0.02	0.0	0.03
19 20	0.18	0.0	0.98	0.58	0.56	0.4	0.0	0.01	0.0	0.0	0.0	0.0	0.0
21	0.0	0.0	0.0	Slight	0.0	0.0	0.0	Trace	0.08 Slight	0.19	0.19	0.25	0.03
22	0.0	0.0	0.5	0.5	0.0	0.0	0.0	1.0	0.05	0.0	0.0 0.20	Slight	Trace
23	2.5	0.7	110	111	103	105	106	1.6	1.5	4.9	1.4	0.0	0.0
24	1.1	0.9	11.2	10.4	7.8	8.0	7.6	0.1	0.2	1.4	0.7	1.0	0.9
25	0.2	0.05	-	-	-	-	-	0.0	0.1	0.0	0.1	0.0	0.5
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27	61.2	36.1	440	442	410	411	407	17.7	14.6	72.3	42.8	36.9	43.9
28	10.8	7.4	533	525	534	523	545	1.0	0.2	4.9	6.9	6.7	8.9
29 30	0.0	0.4	8.5	8.9	3.4	4.7	4.1	1.9	2.7	2.3	0.6	0.3	0.1
31	0.0	0.0	0.0 8.0	0.46	0.0	0.5	0.4	0.0	0.0	0.0	0.0	0.0	0.0
32	11	5.1	18	21	1.2	1.2	1.6	0.4	0.8	0.0	0.2	1.6	1.6
33	50.2	29.6	360	363	336	337	333	5.2 13.2	5.7	25.1	6.9	6.7	8.6
34	5.3	4.5	301	297	313	301	337	0.0	12.0 0.9	55.2 0.0	35.1 3.1	30.3	36.0
35	55.5	34.1	661	660	649	638	670	13.2	12.9	55.2	38.2	4.0 34.3	5.6 41.6
36	76.7	46.1	1114	1114	978	956	1089	25.7	23.5	93.7	52.5	48.6	58.9
37	8.5	4.1	25.9	26.4	25.3	26.0	25.2	17.3	19.4	15.6	7.0	7.1	8.7
38	-0.8	-1.4	+1.3	+1.2	+0.8	+1.3	+1.2	-2.4	-2.4	-0.7	-1.6	-1.4	-1.0
39	9.3	10.3	5.6	5.8	6.2	5.7	5.9	11.9	12.0	9.2	10.4	10.2	9.8
	Winter	4' above low water			pply	ng water su	*Drinkii			See also W.S.R. No. 6	Low- river frozen	Summer	River 5' above low

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE

		VANCO	UVER	VERNON
	Camp or Establishment	Jericho	Beach	Camp Vernon
	Source (s)	Vancouver Municipal Supply	-Rivers and Lakes †	Vernon Municipal Supply -Creek, Treated
NO.		Raw and Finished W	ater	Finished
	Sampling Point	A t Tap		At Tap in Bldg. K.156
1	Date of sampling	December 10, 1956	March 21, 1958	December 11, 1956
2	Storage period (days)	46:137	13:26	45:167
3	Sampling temperature, °C	7.8	•	6.7
4	Test temperature, °C	21.8	24.9	22.0
5	Oxygen consumed by KMnO ₄	12	-	10
6	Carbon dioxide (CO ₂), (calculated)	1.5	1.7	1.7
7	рН	6.6	6.6	8.2
8	Colour	15	15	5
9	Turbidity	2	-	ó
10	Suspended matter dried at 105°C		<u>.</u>	
11	Suspended matter, ignited at 550°C	_	_	_
	Residue on evaporation, dried at 105°C.	16,8	_	240
12	Ignition loss at 550°C.	11.2	_	28.0
13	Specific conductance, micromhos at 25°C.	1	15.7	
14	1 ~	17.26	15.7	385.3
15	Calcium (Ca)	1.8	1.3	39.6
16	Magnesium (Mg)	0.0	0.3	16.3
17	Iron (Fe) Total	_	-	-
18	Dissolved	0.03	-	0.0
19	Manganese (Mn)	0.0	•	0.0
20	Aluminum (Al)	-	-	0.23
21	Copper (Cu)	0.0	•	0.0
22	Zinc (Zn)	0.15	-	0.02
23	Sodium (Na)	0.8	1.4	14.4
24	Potassium (K)	0.2	0.2	4.3
25	Ammonium (N H ₄)	0.05	0.1	0.0
26	Carbonate (CO ₃)	0.0	0.0	0.0
27	Bicarbonate (HCO ₃)	3.8	4.1	181
28	Sulphate (SO ₄)	2.5	2.6	53.4
29	Chloride (Cl)] 1.1	1.0	1.7
30	Fluoride (F)	0.0	-	0.3
31	Nitrate (NO ₃)	0.4	Trace	0.4
32	Silica (SiO ₂), colorimetric	3.9	3.0	14
33	Carbonate hardness as CaCO ₃	3.1	3.4	149
34	Non-carbonate hardness as CaCO ₃	1.4	1.1	17.1
35	Total hardness as CaCO ₃	4.5	4.5	166
36	Sum of constituents	10.7	11.9	234
37	Per cent sodium	22.0	37.9	15.0
38	Saturation index at test temperature	-4.0	-4.1	+0.5
39	Stability index at test temperature	14.6	14.4	7.2
	Remarks:	† See also W.S.R. No. 6		tt See also W.S.R. No.

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

		VICTORIA and ENVIRONS			
Albert Head	Gordon Head	Mary Hill	Work Point	Heales Rifle Range]
Greater Victoria Water	Board Municipal Supply -	Sooke and Goldstream Lakes	s - see also W.S.R.No.5	Well	
	Raw and I	Finished Water		Raw and Finished Water	NO
At Tap	At Tap	At Tap	A tTap	At Pump	
January 15, 1957	January 15, 1957	January 15, 1957	January 15, 1957	January 15, 1957	1
42:140	13:140	42:140	42:140	42:140	2
3.9	0.6	1.1	5.0	3.9	3
24.4	23.6	23.6	24.5	24.5	4
9.6	11	9.1	10	9.9	5
1.6	1.8	1.2	2.2	6.8	6
7.2	7.1	7.4	7.0	7.2	7
15	10	15 *	10	10	8
ő	0	15 *	0	o	9
-	-	6.7	-	-	10
_	_ ,	4.3	-	-	11
60.4	93.2	49.2	122	206	12
43.2	56.0	18.4	102	128	13
49.57	43.25	44.54	41.68	151.5	14
5.3	4.5	4.7	4.3	22.4	15
0.4	0.5	0.7	0.4	2.2	16
-	-	High	-	_	17
0.12	0.09	0.52	0.07	0.01	18
0.0	0.0	0.0	0.0	0.0	19
0.22	0.05	0.06	•	0.0	20
0.0	0.0	0.0	0.2	High	21
0.07	1.5	0.6	0.2	0.6	22
2.1	2.3	2.2	2.1	3.3	23
0.2	0.2	0.2	0.2	0.3	24
0.0	0.1	0.0	0.0	0.0	25
	0.0	0.0	0.0	0.0	26
0.0		18.7	13.8	68.9	27
16.3	15.5	1.8	2.5	9.3	28
2.9	3.4	3.2	3.5	4.1	29
3.2	3.5	0.0	0.0	0.0	30
0.0	0.4	0.0	0.2	2.4	31
0.0	4.8	4.1	4.9	9.1	32
5.3		14.6	11.3	56.5	33
13.4	12.7	0.0	1.1	8.4	34
1.5	t)	12.4	64.9	35
14.9	13.3	14.6 27.3	25.4	87.7	36
27.9	29.0	27.3	23.5	9.8	37
21.4	23.2	-2.1	-2.6	-1.1	38
- 2.3	-2.5			9.4	39
11.8	12.1	11.6	12.2	7.4	129
		* Iron oxides probably from corrosion in pipes			

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

	PROVINCE OR TERRITORY	TOKON 11	ERRITORY				
				MAY	0		
	Camp or Establishment						
	Sources (s)			Well	s		
			Well No. 1			Well No. 2	
NO.		Raw	Water	Finished Water	Fin	ished Water	
	Sampling Point	At Tap	in P.M.Q.s	Wells Well No. 2 Finished Water Finished Water	No. 2		
	Date of sampling	May 16/56		ſ		l	Mar. 14/57
1	1	42:83	29:55			(29:55
2	Storage period (days)	•			Ī		29.77
3	Sampling temperature, ⁰ C	4.4	4.4	i -	-	_	22.6
4	Test temperature, °C	24.4	22.0	23.3	1	25.5	22.6
5	Oxygen consumed by KMnO ₄	7.8					7.0
6	Carbon dioxide (CO ₂), (calculated)	3.1	6.0		ŀ		7.0
7	pH	7.8	7.5		1	i .	7.5
8	Colour	5	10	1 .			10
9	Turbidity	25	-	4	l .	0	-
10	Suspended matter, dried at 105°C	2.8	-	-	1	<u> </u>	-
11	Suspended matter, ignited at 550°C	0.9	-	-		-	-
12	Residue on evaporation, dried at 105°C	149	-	-	ł	-	-
13	Ignition loss at 550°C	36.8	-	-	l .	-	<u> </u>
14	Specific conductance, micromhos at 25°C.	254.6	234.1	255.3	242.9	294.1	256.0
15	Calcium (Ca)	6.4	14.9	0.0	0.0	0.2	0.0
16	Magnesium (Mg)	17.5	14.9	0.1	0.2	0.0	0.2
17	Iron (Fe) Total	1.8	} -	ļ -	-	-	-
18	Dissolved	0.31	0.06	-	0.31	-	0.07
19	Manganese (Mn)	3.47	1.2	-	0.02	-	-
20	Aluminum (Al)	0.0	0.51	_	0.0	-	0.42
21	Copper (Cu)	0.0	ļ <u>-</u>	-	0.0	-	-
22	Zinc (Zn)	0.6	-	_	0.2	_	-
23	Sodium (Na)	10.0	7.6	62.0	55.0	69.8	62.2
24	Potassium (K)	5,0	2.0	0.2	0.3	0.2	0.1
25	Ammonium (NH ₄)	-	0.05	0.05	0.1	0.1	0.0
26	Carbonate CO ₃)	0.0	0.0			Į.	0.0
27	Bicarbonate(HCO ₃)	120	125	4			137
28	Sulphate (SO ₄)	20.2	21.5	1 ''			19.0
29	Chloride (Cl)	5.2	0.7	1.4	0.9	(3.2
30	Fluoride (F)	0.0	-			-	-
31	Nitrate (NO ₃)	2.4	0.2	0.4	1	0.2	0.2
32	Silica (SiO ₂), colorimetric	7.4	6.2		1	1	6.5
	Carbonate hardness as CaCO ₃	94.3	98.4	1	ł		0.8
33 26		0.0	0.0	1	í	1	0.0
34 25	Non-carbonate hardness as CaCO ₃ Total hardness as CaCO ₃		1	1			0.8
35 36		94.3	98.4		1	1	159
36 27	Sum of constituents	137	131			Į.	
37	Per cent sodium	17.6	13.5	i	1		97.5
38	Saturation index at test temperature	+0.8	-0.8		i	1	-1.9
39	Stability index at test temperature	9.4	9.1	11.0	10.8	11.0	11.3
	Remarks:		* After soft	ener			

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

YUKON TERRITORY (Cont'd)

		MAY	O (Concl'd)			ALASKA	HIGHWAY	
						Maintenance C	amp - Mile 733	
		Wel	ls (Concl'd)					
	Well No. 3A			Well No. 3B		Swift 1	River	
		Finishe	l Water			Raw and Finishe	d Water	NC
A+ '72	ap in P.M.Q.s No.			Tap in P.M.Q.sN	a. 3B	At Pui		
··		l		<u> </u>	1	 		
May 16/56	Nov. 6/56	Mar.14/57	May 16/56	Nov.6/56	Mar.14/57	Aug.30/56	Feb.15/57	1
44:83	23:52	29:64	44:83	23:52	29:64	47:163	52:124	2
4.4	4.4		4.4	4.4	4.4	1.7	6.7	3
22.4	23.6	23.3	22.3	23.6	22.8	22.2	25.7	4
5.5	-	-	5.7	-	-	10	2.3	5
18	18	11	6.6	4.5	5.8	1.4	1.1	6
7.3	7.4	7.6	7.7	7.9	7.8	7.7	7.7	7
10	300	180	10	20	55	10	0	8
5	8 *	-	4	2	-	0	-	9
2.5	-	-	1.5	-	-	-	•	10
0.9	-	-	0.6	-	-	-	-	11
408	-	-	304	-	-	- [-	12
20.4	-	-	26.0	-	-	-	-	13
671.8	747.8	647.3	458.7	529.3	441.4	81.75	68.65	14
0.0	4.9	0.9	0.0	0.3	0.0	11.7	9.3	15
0.2	10.9	7.4	0.2	0.0	0.2	1.6	1.6	16
-	11.8 *	-	-	-	-	-	- ,	17
0.10	4.9	3.1	0.08	-	1.3	0.0	0.05	18
0.01	_	-	Trace	-	-	0.0	0.0	19
0.0	-	0.0	0.0	-	0.02	0.10	0.04	20
0.0	<u> </u>	_	0.0	-	-	0.0	0.0	21
0.1	-	-	0.1	-	-	0.05	0.0	22
145	132	110	106	126	103	1.5	2,9	23
1.0	13.4	12.2	0.3	0.2	0.2	0.4	0.6	24
3.0	8.0	-	0.2	0.1	0.0	0.1	0.0	25
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26
235	293	258	211	234	233	43.3	36.4	27
23.5	27.9	12.0	23.5	44.9	18.0	2.5	2,5	28
81.5	73.4	65.3	23.4	24.5	16.8	0.2	0.0	29
0.0	-	-	0.0	-	-	0.6	-	30
Trace	0.8	0.4	1.6	0.2	0.4	0.0	0.8	31
9.4	12	10	9.1	11	8.8	15.7	_	32
0.8	57.0	32.6	0.8	0.8	0.8	35.5	29.8	33
0.0	0.0	0.0	0.0	0.0	0.0	0.3	0.0	34
0.8	57.0	32.6	0.8	0.8	0.8	35.8	29.8	35
377	428	349	268	323	267	56.5	35.8	36
96 . 7	77.6	81.6	99.1	99.6	98.5	8.1	17.0	37
-1.9	-1.0	-1.6	-1.6	-1.3	-1.4	-1.1	-1.2	38
11.1	9.4	10.8	10.9	10.5	10.6	9.9	10.1	39
	* Iron oxides mostly							

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

TERRITORY

YUKON TERRITORY (Cont'd)

				A	LASKA HIG	HWAY (Co	nt'd)		
	Camp or Establishment	Maintena Mile 8	ance Camp-	Maintenar Mile	nce Camp- 1016	Maintena	nce Camp -	Mile 1083	
	Source (s)	Brook	's Creek	Shallow	Well		Well		
NO.		Raw	and	Raw	and				
240			ed Water	Finishe	d Water	Raw ar	nd Finished	Water	
	Sampling Point	At Pi	ımp	At Pu	At Pump		At Pump		
1	Date of sampling	Aug. 20/56	Feb.15/57	Aug.21/56	Feb.1/57	May 30/56	Aug.21/56	Feb.1/57	
2	Storage period (days)	47:163	52:124	70:92	11:96	36:69	49:63	11:96	
3	Sampling temperature, °C	1.7	7.8	11.1	4.4	8.9	4.4	3.3	
4	Test temperature, °C	25.2	25.6	25.7	22.8	23.5	20.8	22.4	
5	Oxygen consumed by KMnO ₄	-	2.9	8.4	_	4.0	-	_	
6	Carbon dioxide (CO ₂), (calculated)	1.6	1.3	0.8	1.3	1.9	1.6	3.3	
7	рН	8.0	8.2	8.4	8.2	8.2	8.3	8.0	
8	Colour	20	10	5	5	5	10	5	
9	Turbidity	3	-	0	-	0	3	-	
10	Suspended matter, dried at 105°C	_	- :	-	_	-		-	
11	Suspended matter, ignited at 550°C	_	_ :	-	_	_	_	-	
12	Residue on evaporation, dried at 105°C	115	-	144	-	404	_		
13	Ignition loss at 550°C	31.6	-	20.4	_	50.8	_		
14	Specific conductance, micromhos at 25°C.	167.4	231.2	219,4	229.9	590.1	589.7	612.4	
15	Calcium (Ca)	22.7	29.5	35.7	36.4	32.4	32.2	30.3	
16	Magnesium (Mg)	6.1	9.4	4.7	5.8	41.8	42.1	44.2	
17	Iron (Fe) Total	-	_	0.02	•	-	0.32	-	
18	Dissolved	Trace	0.08	-	•	0.06	-	_	
19	Manganese (Mn)	0.0	0.0	0.01	_	0.0	_	_	
20	Aluminum (Al)	0.1	0.12	0.24	-	0.21	-	_	
21	Copper (Cu)	•	0.0	Trace	-	0.0	_	_	
22	Zinc (Zn)	-	0.0	0.05	_	0.2	_	_	
23	Sodium (Na)	2.7	5.5	2.8	3.0	27.0	30.2	33.5	
24	Potassium (K)	0.9	0.9	1.4	1.2	4.4	4.7	5.1	
25	Ammonium (NH ₄)	0.05	0.0	0.0	0.0	0.0	0.1	0.05	
26	Carbonate (CO ₃)	0.0	0.0	1.0	0.0	0.0	0.0	0.0	
27	Bicarbonate (HCO3)	99.0	141	127	134	199	207	211	
28	Sulphate (SQ ₄)	6.2	9.6	11.0	14.0	144	145	159	
29	Chloride (Cl)	0.4	1.1	0.4	0.4	0.8	1.0	0.7	
30	Fluoride (F)	0.0	-	0.15	_	0.15	-	-	
31	Nitrate (NO ₃)	0.8	2.0	1.2	0.2	4.0	1.6	0.8	
32	Silica (SiO ₂) colorimetric	13.4	15.8	9.9	8.1	20	19	22	
33	Carbonate hardness as CaCO ₃	81.2	112	105	110	164	170	173	
34	Non-carbonate hardness as CaCO,	0.5	0.0	2.8	4.9	89.1	83.5	84.4	
35	Total hardness as CaCO ₃	81.7	112	108	115	253	254	257	
36	Sum of constituents	102	144	131	135	373	378	399	
37	Per cent sodium	6.6	9.5	5.2	5.3	18.4	30.2	22.8	
38	Saturation index at test temperature	-0.1	+0.3	+0.6	+0.3	+0.4	+0.5	+0.2	
39	Stability index at test temperature	8.1	7.6	7.2	7.6	7.4	7.3	7.6	
						 	† -		
	Remarks:	1							
	A 3 TO A STATE OF THE STATE OF	<u> </u>		<u></u>		1	1	L	

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

YUKON TERRITORY (Cont'd)

				ONS	and ENVII	HITEHORSE	W					
					mp Takhini	Са		-		Mile 1202	ce Camp - N	Maintenan
					ntyre Creek	McI					Well	
NO.				ater	Finished W	Raw and				Water	d Finished	Raw an
	At Barracks Tap				ting Plant	Central Hea	At Tap in				At Pump	
1	May 10/57	May 27/57	Feb.4/57	lov.26/56	Aug. 26/56	Feb.7/56	Jan.3/56	Mar.9/55	Tan. 13/55	Jan.31/57	Aug. 21/56	May 29/56
2	11:17	21:56	8:93	18:43	65:87	20:27	20:28	13:47	15:42	12:97	49:63	35:60
3	-	4.4	1.1	4.5	10.0	- 1	-	1.1	1.7	5.6	7.8	3.9
4	19.8	23.4	22.6	23.2	25.8	22.0	24.6	20.6	17.3	22.4	20.8	23.5
5	-	11	_	-	11	-	-	2.2	1.2	-		4.4
6	1.6	5.1	0.9	1.4	1.4	1.2	0.5	3.5	1.8	1.3	2.5	2.3
7	8.2	7.8	8.4	8.2	8.3	8.3	8.7	8.0	8.3	8.4	8.1	8.1
8	30	45	5	10	20	5	5	0	10	5	5	5
9	-	30	0	0	3	_		0	0	-	0	0.8
10	-	35.8	-	-		_		_		_	_	-
11	-	22.0	-	-	-	-	-	_	_	_	_	_
12	-	179	-	243	179	_		198	209	_	_	207
13	-	24.8	-	44.8	32.4	-	-	15.6	22.4	-	_	17.2
14	265.3	300.2	250.7	370.8	272.2	263.7	274.2	352.6	327.6	319.7	325.5	326.7
15	38.6	48.0	36.2	33.1	41.0	37.8	38.8	50.1	49.3	54.0	55.4	55.2
16	9.7	10.3	9.0	20.4	9.3	9.6	11.5	12.9	12.5	8.3	6.8	7.0
17	_ [-	-	-	-	-	_	-	-	-	Trace	-
18	0.05	0.03	-	0.0	0.0	-	-	0.05	0.0	-	0.0	0.12
19	0.0	0.0	1 -	0.0	0.0	-	-	Trace	0.0	_	-	0.0
20	-	0.0	-	0.11	0.1	-	_	0.03	0.0	-		0.55
21	-	0.0	-	0.0	Trace	-	-	0.0	Trace	_	-	Trace
22	-	0.0	-	0.0	0.0	-	- `	-	_	-	-	0.4
23	2.8	2.1	4.2	11.4	3.7	3.5	4.5	3.9	4.7	3.2	2.7	2.5
24	1.5	1.8	1.0	2.0	1.0	1.1	1.1	1.1	1.2	1.3	1.1	1.2
25	1 1	0.05	0.0	0.0	0.0	0.1	0.0	-	-	0.0	0.1	0.0
26	0.0	0.0	0.0	0.0	0.0	0.0	12.0	0.0	0.0	1.9	0.0	0.0
27	169	194	158	154	175	156	151	222	215	184	185	181
28	1 1	7.8	9.1	65.7	7.4	8.0	6.5	8.0	8.3	23.3	21.4	20.2
29	0.9	2.3	0.2	1.6	0.4	0.3	0.5	0.1	0.2	0.6	1.3	0.8
30	-	0.0	1	0.05	0.0	-	-	0.1	-	-	-	0.0
31	1 1	0.4	0.6	1.2	1.2	15	0.8	0.8	1.0	0.8	1.6	3.2
32	12	10	15	13	13	23	-	17	15	15	13	14
33	136	159	127	127	141	128	143	178	174	154	152	149
34	1 1	2.7	0.0	40.0	0.0	5.8	0.6	0.0	0.0	15.1	14.2	18.3
35	136	162	127	167	141	134	144	178	174	169	166	167
36	156	179	154	224	163	175	-	203	198	199	195	194
		2.7	6.6	12.7	5.3	5.3	6.3	4.5	5.5	3.9	3.4	3.1
38	1 1	+0.2	+0.6	+0.3	+0.7	+0.5	+1.0	+0.4	+0.7	+0.8	+0.5	+0.6
39	7.4	7.4	7.2	7.6	6.9	7.3	6.7	7.2	6.9	6.8	7.1	6.9

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

		YUKON TERRI TORY (Concl'd						
		WHITEHORSE & ENVIRONS (Concld)		AKL	AVIK			
	Camp or Establishment	Haines Road - Mile 75				·		
	Source (s)	Mule Creek	Aklavík or l	New Aklavik Mun	icipal Supply			
	·		Small Lake	Peel Cha	nnel (Macker	nzie River) *		
NO.		Raw & Finished Water		Raw and Fin	nished Water			
	Sampling Point	At Pump	At Tap	From Ri	ver	From Cistern Tap		
1	Date of sampling	Aug.22/56	June 13/56	Sept.1956	Mar.13/57	June 24/57		
2	Storage period (days)		26:57	-	27:56	14:28		
3	Sampling temperature, °C	10.6	-	10.0	0.6	-		
4	Test temperature, °C	25.8	23.5	24.8	23.9	26.0		
5	Oxygen consumed by KMnO4		9.9	-	3.4	6.6		
6	Carbon dioxide (CO ₂), (calculated)		3.7	0.9	6.0	4.3		
7	рН		7.5	8.3	7.7	7.6		
8	Colour		50	10	5	50		
9	Turbidity	1	20	50	3	50		
10	Suspended matter dried at 105°C		9.8	-		20.6		
11	Suspended matter ignited at 550°C		4.9	-	_	16.8		
12	Residue on evaporation, dried at 105°C		107	-	-	171		
13	Ignition loss at 550°C		24.0	_	-	44.0		
14	Specific conductance, micromhos at 25°C		166.9	267.0	407.5	234.1		
15	Calcium (Ca)		20.9	33.5	53.0	30.2		
16	Magnesium (Mg)		5.8	7.8	17.8	9.0		
17	Iron (Fe) Total		•	-	-	-		
18	Dissolved	[0.4	0.02	_	0.28		
19	Manganese (Mn)		0.04	0.0	-	0.0		
20	Aluminum (Al)		0.0	0.07	-	0.03		
21	Copper (Cu)		0.0	0.0	Trace	0.0		
22	Zinc (Zn)		1.0	0.05	0.05	0.5		
23	Sodium (Na)		2.3	7.7	5.8	3.2		
24	Potassium (K)		2.0	0.9	0.7	1.7		
25	Ammonium (NH ₄)		0.3	0.2	0.05	0.0		
26	Carbonate (CO ₃)		0.0	0.0	0.0	0.0		
27	Bicarbonate (HCO ₃)		73.0	111	199	112		
28	Sulphate (SO ₄)		13.2	30.7	50.1	25.1		
29	Chloride (Cl)	0.2	3.7	9.5	3.9	3.8		
30	Fluoride (F)	0.0	0.0	0.0	-	0.0		
31	Nitrate (NO ₃)		4.8	0.0	0.8	0.6		
32	Silica (SiO ₂) ₁ colorimetric	7.2	2.2	3.6	14	2.9		
33	Carbonate hardness as CaCO ₃		59.9	90.9	163	91.8		
34	Non-carbonate hardness as CaCO ₃		16.1	24.8	41.8	20.6		
35	Total hardness as CaCO ₃		76.0	116	205	112		
36	Sum of constituents	. 103	92.3	148	245	135		
37	Per cent sodium		6.1	12.6	5.8	5.7		
38	Saturation index at test temperature	0.0	+0.8	+0.4	+0.2	-0.3		
39	Stability index at test temperature	8.0	9.1	7.5	7.3	8.2		
	Remarks:		*.	 See also W.S.R. 	 No. 8 			

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

NORTHWEST TERRITORIES (Cont'd)

	OVIDENCE	FORT PR		FORT NORMAN		PE	ORT GOOD HOP	F
	e River *	Mackenzi	*	acken zie River	М		ackenzie River *	Ma
NO.	nished Water	Raw and Fir	ater	and Finished Wa	Raw	ter	and Finished Wa	Raw
1	Tap	At	At Tap				At Tap	
1 2	Aug.6/57 8:21	Aug.21/56 66:92	Apr.2/58 12:20	Aug.5/57 9:22	June 11/56 22:57	June 6/57 26:46	Nov. 9/56 20:49	June 16/56 26:57
3	2.2	7.8	13.3	2.2	15.6	1.1	1.1	-
4	23.9	23.6	26.5	24.0	23.3	22.4	23.8	23.5
5	3.6	12	5.4	16	7.9	9.0	-	9.7
6	1.2	1.3	1.3	1.8	1.6	1.9	1.3	2.3
7	8.1	8.1	8.2	7.9	8.0	7.9	8.2	7.8
8	10	10	-	100	30	40	20	40
9	5	6	60	9	18	250		10
10	7.0	10.2	98	7.6	9.1	226	-	8.8
11	0	5.8	86	-	2.3	213		3.9
12	140	151	200	152	180	144	_	134
13	31.6	23.2	34.8	55.2	43.2	29.2	_	39.2
14	222.1	230.2	308.2	191.0	233.0	202.1	289.8	219.2
15	27.5	28.8	36.9	26.9	29.2	27.6	30.7	27.6
16	5.4	5.7	8.8	6.0	7.6	5.9	12.6	6.8
17	-	-	0.29	_	-	-	•	•
18	0.02	0.0	0.09	0.33	0.11	0.15	_	0.09
19	0.0	0.0	0.0	Trace	0.0	0.0	-	0.0
20	0.0	0.10	0.03	0.0	0.14	0.0	-	0.34
21	0.0	0.0	0.0	Тгасе	0.0	0.0	-	0.0
22	0.0	0.0	0.5	0.6	0.2	0.0	-	1.0
23	8.0	8.5	12.5	3.4	6.6	4.7	8.8	6.1
24	1.0	1.1	1.2	0.8	1.1	1.2	1.3	1.0
25	0.0	0.1	0.0	-	0.1	0.0	0.05	0.2
26	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27	91.4	100	124	92.3	97.3	91.4	126	91.8
28	21.3	20.8	30.6	19.2	23.3	20.8	31.7	21.9
29	9.2	9.3	16.2	3.9	8.4	5.1	10.2	7.5
30	0.0	0.0	0.0	0.0	0.0	0.0	-	0.0
31	0.25	1,2	0.3	0.3	4.0	0.0	0.8	4.0
32	4.6	4.5	4.7	3.0	3.7	4.3	5.3	4.0
33	75.0	82.0	102	75.7	79.8	75.0	103	75.3
34	15.8	13.3	26.3	16.1	24.3	18.1	24.5	21.5
35	90.8	95.3	128	91.8	104	93.1	128	96.8
36	122	129	173	110	132	115	163	125
37	15.9	16.0	17.2	7.3	11.8	9.7	12.9	11.7
38	0.0	0.0	+0.4	+0.2	-0.1	-0.3	0.2	+0.3
39	8.1	8.1	7.4	8.3	8.2	8.5	7.8	8.4
	River high	River low	River low	River high		River above	River low	River high

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

TERRITORY

NORTHWEST TERRITORIES (Cont'd)

29 30 31 32 33	Chloride (Cl)	0.6 0.0 0.8 0.5 9.0	0.3 0.0 0.4 1.1 13.5	0.0 0.1 0.6 6.1	0.0 2.0 2.7 54.1
30 31	Fluoride (F)	0.0 0.8	0.0 0.4	0.0 0.1	0.0 2.0
30	Fluoride (F)	0.0	0.0	0.0	0.0
l l	` '	i			
29	Chioride (CI)	0.6	0.5	0.0	l l
	Chinal in (Ci)	1 00	0.2	0.6	7.7
28	Sulphate (SO ₄)	0.8	3.0	1.4	17.4
27	Bicarbonate (HCO ₃)	11.0	16.5	7.7	65.9
26 ∣	Carbonate (CO ₃)	0.0	0.0	0.0	0.0
25	Ammonium (NH ₄)	0.1	0.0	0.3	0.0
24	Potassium (K)	0.4	0.6	0.6	0.8
23	Sodium (Na)	0.5	0.7	0.6	6.3
22	Zinc (Zn)	0.07	0.0	0.25	0.0
21	Copper (Cu)	0.01	0.0	0.0	0.0
20	Aluminum (Al)	0.09	0.02	0.01	0.35
19	Manganese (Mn)	0.0	0.0	0.01	0.0
18		0.0	0.01		
17	Iron (Fe) Total	i i	1	0.0	Trace
16		0.9	-	-	3.9
- I	Magnesium (Mg)	0.9	1.4	0.7	3.9
15	Calcium (Ca)	2.2	3.3	1.3	21.6
	Specific conductance, micromhos at 25°C.	26.48	34.09	20.2	174.3
	Ignition loss at 550°C.	9.2	16.0	28.0	23.6
	Residue on evaporation, dried at 105°C	24.4	33.2	46.4	103
	Suspended matter, ignited at 550°C	-		-	-
	Suspended matter dried at 105°C	•	-	_	-
9	Turbidity	0.8	4	0.4	0.9
8	Colour	20	10	0	10
7	рН	6.9	7.0	6.8	7.9
	Carbon dioxide (CO ₂), (calculated)	2.2	2.7	1.9	1.3
- I	Oxygen consumed by KMnO ₄	11	4.0	2.9	5.5
- 1	Test temperature, °C	23.5	19.9	23.3	23.6
	Sampling temperature, °C	12.2	1.1	-	8.3
	Storage period (days)	47:90	13:75	32:41	18:56
1	Date of sampling	Aug.23/56	May 8/57	Mar.21/58	June 14/56
	Sampling Point		At Tap		At Tap
ıα		Raw	and Finished Wate	er	Raw & Finished
l	Source (s)	Great Slave Lak	e (McLeod Bay)		Great Slave Lak
1	Camp or Establishment				

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

NORTHWEST TERRITORIES (Concl'd)

*Ice	High	River very low * At junction of †Winter drinking		nzie Rivers				
7.7	9.1	8.6	10.1	8.6	8.4	7.8	8.3	39
+0.2	-0.6	-0.5	-1.0	-0.4	-0.3	0.0	+0.4	38
17.9	17.2	4.0	7.6	5.0	12.6	14.7	7.0	37
15.6	90.2	109	28.1	113	158	246	217	36
115	63.8	92 .9	21.7	93.5	114	177	179	35
23.6	13.7	17.4	0.0	18.4	48.9	75.2	20.5	34
91.5	50.1	75.5	21.7	75.1	65.1	102	158	33
5.2	5.0	4.6	1.6	7.1	3.5	6.1	4.9	32
0.8	0.3	4.0	0.6	0.7	4.8	0.8	1.0	31
-	0.0	0.0	0.0	0.0	0.0	-	0.0	30
11.7	7.2	1.8	1.7	2.9	4.1	4.7	5.3	29
28.7	18.0	16.2	1.0	19.2	54.8	94.4	33.0	28
116	61.1	92.0	26.7	91.5	79.2	124	193	27
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26
- i	0.0	0.0	0.1	-	0.0	-	0.0	25
1.2	0.7	1.1	0.2	1.6	2.6	1.5	2.1	24
11.7	6.2	1.8	0.9	2.3	7.9	14.4	6.5	23
-	0.0	0.0	0.05	0.0	0.5	-	0.8	22
- 1	0.0	0.0	0.0	0.0	0.0	-	0.0	21
- 1	0.02	0.03	0.24	0.0	0.0	-	0.0	20
-	0.0	0.0	0.01	0.0	0.0	-	0.01	19
-	0.01	0.06	0.01	0.15	0.43	-	3.3	18
-	-	0.70	-	· -	-	-	- 1	17
6.7	4.4	5.6	0.3	6.1	7.5	12.0	9.6	16
35.1	18.3	28.0	8.2	27.4	33.3	51.1	55.8	15
272.4	161.2	178.8	49.22	176.5	264.1	391.1	363.1	14
-	33.6	33.2	36.8	67.6	48.0	-	58.8	13
-	108	145	52.4	154	201	-	263	12
-	0.0	45.9	-	822	-	-	8.0	11
-	1.7	74.4	-	895	-	-	10.4	10
- 1	9	75	0	575	0	20	15	9
40	10	60	10	High	120	160	Very High	8
8.1	7.9	7.6	8.1	7.8	7.8	7.8	7.9	7
1.4	1.3	3.8	Trace	2.4	2.1	3.8	3.8	6
-	3.6	11	11	15	18	-	13	5
23.3	23.3	22.2	23.7	21.5	23.4	21.8	25.8	4
1.1	1.1	14.8	0.0	1.7	20.0	0.0	7.2	3
7:47	13:54	30:72	14:141	14:59	18:53	10:19	13:27	2
Nov.22/56 *	May 29/57	May 28/56	Jan.14/57	May 24/57	June 15/56	Oct.23/56	June 25/57	1
At T	ap or as Ice	From River *	Ice †	At Tap	At Storage Tank	Fron	Lake	
Raw and	l Finished Water	Raw	and Finished W	ater	Raw	and Finished V	Vater	NO
	Lake (Concl'd)		e (Snye) River	 		eat Slave Lake		
C 01	7 1 40 111							
					На	y River Station		
FORT RESOL	UTION (Concl'd)	F	ORT SIMPSON		HAY R	IVER SETTLEM	IENT	
	·				- 			

ADDENDUM TO TABLE II:

Additional Water Quality Data, - 1958

Prior to final printing of Water Survey Report #12 the analytical data from the 1958 annual survey of water quality at fifteen of the Army Establishments were available and are included herewith as an addendum to Table II of the main report. More recent data on chemical quality of waters from several other Camps were also obtained from studies carried out in connection with boiler water treatment control and water treatment studies and this information is also included in this addendum to Table II.

It will be noted that at several locations notably Valcartier, Camp Borden and the V.E. Proving Establishment near Orleans, new well supplies were in use or were being developed in 1958.

ADDENDUM TO TABLE II

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

	PROVINCE	NEW BRUN	SWICK				
						Mc	GIVNEY
	Camp or Establishment		Camp Ga	getown †			
	Source(s)		Deep	Wells		Deep	Wells
		Well	No. 1	Well N	o. 2	PMQ Area Well	Administra- tion Area Well
NO		Rs	w and Fini	shed Water		Raw and Finished Water	
	Sampling Point	At Pump		At	Pump	At Pump	At Pump
1	Date of sampling	June 23/58	Oct.1/58	June 24/58	Oct.1/58	July 3/58	July 3/58
2	Storage period (days)	28:43	14:21	27:42	14:21	20:21	20:21
3	Sampling temperature, °C	9.4	15.0	9.4	15.0	4.4	5.0
5 4	Test temperature, °C	23.2	26.6	23.0	26.5	25.0	25.0
_	Oxygen consumed by KMnO ₄	23.2 -	20.0	25.0	20.5	25.0	25.0
5 6	Carbon dioxide (CO ₂), (calculated)	3.2	3.3	1.5	1.7	3.3	3.5
7	pH	7.9	7.9	8.3	8.2	7.4	7.2
8	Colour	0	0	3	0	5	0
	1		0	0	0	0	0
9	Turbidity	2	U	"	U	"	0
10	Suspended matter, dried at 105°C			_			
11	Suspended matter dried at 550°C						
12	Residue on evaporation, dried at 105°C.	986	1011	554	748	80.8	61.0
13	Ignition loss at 550°C	39.6	120	12.8	82.7	18.0	13.0
14	Specific conductance, micromhos at 25°C.	1674	1770	1016	1324	118.4	90.0
15	Calcium (Ca)	87.1	93.3	56.9	72.8	18.0	12.1
16	Magnesium (Mg)	6.8	8.7	4.7	7.1	1.3	1.1
17	Iron (Fe) Total		0.01	-	0.01	-	-
18	Dissolved	0.01	0.01	Trace	0.01	0.0	0.0
19	Manganese (Mn)	0.0	-	0.0	i -	0.02	0.0
20	Aluminum (Al)	0.04	0.07	0.01	0.05	0.07	0.07
21	Copper (Cu)	0.0	0.0	0.0	0.0	0.0	0.0
22	Zinc (Zn)	0.0	0.05	0.0	0.05	0.0	0.60
23	Sodium (Na)	240	250	144	190	2.7	2.5
24	Potassium (K)	1.2	1.3	1.1	1.1	0.5	0.5
25	Ammonium (NH ₄)	0.05	0.05	0.05	0.05	0.10	0.05
26	Carbonate (CO ₃)	0.0	0.0	0.0	0.0	0.0	0.0
27	Bicarbonate (HCO ₃)	178	176	192	184	55.2	35.6
28	Sulphate (SO ₄)	33.7	31.0	30.0	27.3	9.5	8.5
29	Chloride (Cl)	424	448	205	307	1.7	3.6
30	Fluoride (F)	0.4	0.7	0.5	0.6	0.0	0.0
31	Nitrate (NO ₃)	0.4	0.7	0.5	0.2	0.0	0.4
32	Silica (SiO ₂) colorimetric	9.2	7.4	12	8.8	10	10
33	Carbonate hardness as CaCO ₃	146	145	158	151	45.3	29.2
34	Non-carbonate hardness as CaCO ₃	99	124	3	60	4.9	5.5
	Total hardness as CaCO ₃	245	269	161	211	50.2	
35 36			1	1	1	1	34.7
36	Sum of constituents	890 67.0	928	550	705	71.5	56.7
3 7	Per cent sodium	67.9	66.8	65.8	66.1	10.3	12.9
38 39	Saturation index at test temperature Stability index at test temperature	+0.5 6.9	+0.5	+0.7	+0.8	9.6	-1.6 10.4
	Stability index at test temperature	0.9	0.9	0.9	0.0	9.0	10.4
	Remarks:	At start of pump		At start of pump			
				vestigation R This Camp.	eport Cover	-	

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

QUEBEC

			CARTIER	VALO	<i></i>			ERESE	lear STE. TH	<u>, , , , , , , , , , , , , , , , , , , </u>
			Valcartier	Camp				chard	Camp Bou	
			p Wells	Dee				ells	Deep W	
	Mixed Wells	Well No. 28	Well No.27	Well No. 5	Well No. 3	Well No. 1	Mixed Wells	Well No. 4	Well No. 2	Well No. 1
NC	Finished Water			Raw Water			Finished Water		Raw Water	
	At Tap Bldg. No. 459			At Pumps			At Tap Bldg. No.42		At Pumps	
1	June 30/58	June 30/58	June 30/58	June 30/58	June 30/58	June 30/58	July 3/58	July 3/58	July 3/58	July 3/58
2	8:14	8:14	8:14	8:14	8:14	8:14	21:33	21:33	21:33	21:33
3	7.8	7.2	7.8	7.2	7.2	7.8	7.8	7.8	7.8	7.8
4	24.6	24.6	24.7	24.6	24.5	24.6	26.2	26.2	26.4	26.2
5	1.6	1.6	1,6	1.6	1.2	1.2	1			
6	3.0	8.0	4.1	4.0	3.5	3.3	3.4	2.4	4.5	1.6
:	6.9	6.5	6.6	6.7	6.7	6.8	8.2	8.2	8.1	8.5
1	5	5	5	5	5	5	. 45	0	45	40
9	1 1	0.8	0.8	2	0	0.8	0.8	0	0.7	0
1	1			1	}				0. 7	
1										
1	58.8	65.2	43.6	40.4	35.2	37.6	436	253	475	371
1	8.0	13.6	17.6	11.6	11.6	9.2	46.0	24.4	54.8	46.0
1	43.1	66.5	44.6	39.0	34.2	34.9	717.5	399.8	789.0	628.0
1	3.1	5.8	4.2	3.5	2.8	3.3	7.3	62.0	7.8	6.2
1	1.5	1.4	1.1	0.9	0.8	0.9	9.0	9.5	10.1	8.1
1	1	{			ļ		1	'''	10.1	0.1
1	Trace	0.02	0.0	0.02	Trace	0.0	0.04	0.03	0.02	0.02
1	Ttace	0.01	Trace	0.01	0.01	0.0	0.0	0.01	0.0	0.0
2	0.01	0.04	Trace	0.02	0.01	0.01	0.0	0.04	0.0	0.0
2	Trace	0.12	0.03	0.19	Trace	Trace	Trace	0.0	0.0	Trace
2	0.50	0.05	0.02	0.10	0.0	0.0	0.10	0.0	0.0	0.10
2	1.6	3.0	1.5	1.6	1.6	1.4	144	12.8	158	125
2	0.5	1.2	0.5	0.5	0.7	0.4	9.6	3.0	10.5	9.0
2	0.05	0.05	0.05	0.05	0.05	0.05	0.0	0.0	0.10	
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.05 5.3
2	16.2	16.1	11.0	13.0	11.6	13.0	360	244	385	
2	4.0	5.8	3.4	3.0	3.6	4.0	10.9	21.5	1	330
2	1.0	2.7	3.4	1.4	0.7	0.5	50.7	2.0	15.2 57.7	8.2
3	0.0	0.0	0.0	0.0	0.0	0.0	1.1	0.0	1.0	30.7
3	1.0	6.0	3.0	1.5	1.5	0.6	1.0	0.4	1.0	1.1
3	14	14	12	13	12	16	10	16	1.0	1.0
3	13.3	13.2	9.0	10.7	9.5	10.7	55.2	194	61.0	12
3	0.6	7.0	6.0	1.7	0.8	1.2	0.0	0.0	0.0	48.8
]	13.9	20.2	15.0	12.4	10.3	11.9	55.2	1		0.0
	35.1	47.7	35.0	32.2	29.9	33.2	421	194	61.0	48.8
	18.3	22.5	17.1	20.1	23.4	19.4	82.2	248	462	369
	-2.8	-2.9	-3.1	-3.1	-3.2	-3.0		12.3	82.2	81.8
	12.5	12.3	12.8	12.9	13.1	12.8	+0.1 8.0	+0.9	0.0	+0.3
		12.5	12.0	12.9	15.1	12.6	 	Water level	Water level - 30 feet	7.9 Vater level - 39 feet

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

	PROVINCE	QUEBEC ((Concl'd)		ON	TARIO	
		QUEBEC CI		Near HAGE	RSVILLE	Near PET	'AWAWA
	Camp or Establishment	Ste. Foy-P.M	I.Q. Area	Camp Hag	ersville	Camp Pe	etawawa
	Source (s)	Ste. Foy Muni		Lake Erie	and Wells	Ottawa Ri	ver & Spring
		Well No. 1	Well No. 2	Lake Erie	Well No. 3†	Ottawa R.	Spring Water
NO.		Raw & Fin	ished Water	Finished Water	Raw & Fin- ished Water		ater
	Sampling Point	At Tap	At Tap	At Tap R.C.E.Camp	At Pump	At Pump	Near Bldg. C.C. 19
1	Date of sampling	May 21/58	May 21/58	June 16/58	June 16/58	May 27/58	May 27/58
2	Storage period (days)	13:22	13:22	4:16	4:16	22:36	22:36
3	Sampling temperature, °C	5.6	5.6	15.0	10.0	8.9	7.8
4	Test temperature, °C	23.1	23.1	24.6	24.5	23.4	23.2
5	Oxygen consumed by KMnO ₄	2.4	2.3	2.2	1.5	9.1	1.2
6	Carbon dioxide (CO ₂), (calculated)	2.4	3.9	2.3	3.9	2.4	4.5
7	рН	8.1	7.9	7.9	8.1	6.9	7.1
8	Colour	10	10	5	5	40	0
9	Turbidity	0	0	1	15	1	0
10	Suspended matter, dried at 105°C				22.0	-	
11	Suspended matter, ignited at 550°C				22.0	-	
12	Residue on evaporation, dried at 105°C	254	272	192	681	50.4	146
13	Ignition loss at 550°C	50.0	26.8	36.8	69.6	24.8	57.6
14	Specific conductance, micromhos at 25°C	455.5	438.2	306.7	959.6	50.4	203.1
15	Calcium (Ca)		69.4	38.9	104	5.4	14.4
16	Magnesium (Mg)	8.0	7.0	8.4	35.0	1.6	9.4
17	Iron (Fe) Total		1	-	1.6	-	
18	Dissolved	0.02	0.02	0.04	0.03	0.06	0.0
19	Manganese (Mn)	0.06	0.17	0.0	0.02	0.0	Trace
20	Aluminum (Al)	0.10	0.0	0.05	0.06	0.0	Trace
21	Copper (Cu)	0.0	0.0	0.02	0.0	0.0	0.0
22	Zinc (Zn)	0.0	0.05	0.10	0.0	0.0	0.0
23	Sodium (Na)	13.4	10.9	8.4	61.2	1.3	6.4
24	Potassium (K)	1.4	1.5	1.1	2.5	0.6	1.4
25	Ammonium (NH ₄)	0.05	0.05	-	-	0.10	0.05
26	Carbonate (CO ₃)	0.0	0.0	0.0	0.0	0.0	0.0
27	Bicarbonate (HCO ₃)	190	194	114	326	12.1	34.5
28	Sulphate (SO ₄)	36.0	38.0	22.3	256	9.7	21.0
29	Chloride (Cl)	29.8	22.3	24.5	3.8	0.8	22.5
30	Fluoride (F)	-	0.0	0.0	0.60	0.0	0.0
31	Nitrate (NO ₃)	ł .	0.4	0.0	0.0	0.8	12
32	Silica (SiO ₂), colorimetric		8.1	0.9	7.1	4.7	14
33	Carbonate hardness as CaCO ₃		159	93.8	268	9.9	28.3
34	Non-carbonate hardness as CaCO ₃	49.9	42.9	37.8	134	10.2	46.3
35	Total hardness as CaCO ₃	206	202	131.6	402	20.1	74.6
36	Sum of constituents	261	253	161	630	30.9	118
37	Per cent sodium	12.3	10.4	12.1	24.7	11.9	15.4
38	Saturation index at test temperature	+0.6	+0.5	0.0	+1.0	-2.7	-1.8
39	Stability index at test temperature	6.9	6.9	7.9	6.1	12.3	10.7
	Remarks:	Water level -125 feet	Water level 124.5 feet		†Standby Supply	River - low	Normal level

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million

ONTARIO (Concl'd)

				(IO (Coner a)				
Near PETAW	AWA (Concl'd)	LAKEVIEW		Near ORLEANS				
Camp Petaw	awa	Lakeview Depot	V.E. I	Proving Establish	ment	Camp	Borden.	
Ottawa River		Lakeview Muni- cipal Supply -		Deep Wells			Wells	
Mixed S	Supply	Lake Ontario,		New ₩	ell	Well No. 1	Well No. 4	
Finished	Water	Finished Water	R	aw and Finished	W ater	Raw and F	inished Water	NC
At Tan Pida CI	At Tap BldgJ 10	A.C. W. Plant		At Pump		A. T	Pumps	
At 1 ap Didg.Gi	Vr Tab Did 210	Tap		At Fump	 	At I	- l	
May 27/58	Sept. 23/58	July 30/58	Aug. 27/58	Sept.29/58	Oct. 3/58	July 3/58	July 3/58	1
22:36	7:27	15:19	1:6	7:18	3:14	20:21	20:21	2
11.1	18.0	-	-	10.0	12.8	8.9	7.8	3
23.5	22.9	26.3	24.9	20.5	20.4	25.1	25.0	4
6.9	6.6	-	2.0	-	-	-	-	5
2.5	2.3	2.9	6.7	28	14	3.1	2.6	6
6.9	7 .2	7.8	7.9	7.4	7.7	8.0	8.1	7
35	-	5	15	0	10	5	0	8
1	45 *	0	Clear	0	2	0	2	9
			-				-	10
			-				-	11
62.0			-	945	921	244	200	12
27.6			-	244	239	42.4	27.6	13
64.9	92.8	311.2	987	1342	1340	412.8	338.8	14
6.3	8.4	40.0	117	166	166	47.1	45.7	15
2.1	3.2	8.9	48.3	68.1	66.4	16.7	11.4	16
	7.6	- 1	0.07	-			-	17
0.08		Trace	0.02	0.02	0.07	0.16	0.31	18
0.0	0.14	0.01	0.02	0.20	0.16	0.02	0.16	19
0.0	0.0	-	0.09	0.26	0.29	0.06	0.06	20
0.0	0.0	-	0.01	Trace	Trace	Trace	0.0	2.1
0.02	Тгасе	- [2.5	5.0	5.0	0.20	0.05	22
1.6	2.4	9.4	15.7	23.8	23.5	13.4	9.1	23
0.7	0.9	1.2	7.7	10.0	10.0	1.2	1.1	24
0.10		0.05	0.35	0.3	0.2	0.05	0.0	2:
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20
13.2	22.7	116	355	479	468	215	214	2
10.4	11.0	25.7	131	175	180	7.3	5.4	28
4.0	6.2	26.0	47.7	75.1	74.4	22.9	2.1	25
0.0	-	_	0.0	_		0.0	0.0	30
1.2	0.8	1.0	47	87	84	0.4	0.2	31
5.7	5.7	2.1	9.0	7.5	7.7	17	18	33
9.8	18.6	95.4	291	393	384	177	161	33
14.6	15.5	41.0	201	301	303	9.6	0.0	34
24.4	34.1	136	492	694	687	187	161	35
38.0	49.9	172	602	854	848	233	199	36
12.0	12.8	12.9	6.4	6.7	6.7	13.4	10.8	37
-2.7	-2.0	0.0	+0.9	+0.6	+0.9	+0.5	+0.6	38
12.3	10.2	7.8	6.1	6.2	5.9	7.0	6.9	39
	*Suspended		······································			Water level	Water level	
	Iron					-15 feet	- 40 feet	1
	Pb - Trace				1	1		1

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

	PROVINCE	MANITOBA							
			WINNIPEG			SHILO	77		
	C . T. III.								
	Camp or Establishment	ļ Fo	rt Osborne B	arracks		Camp Shilo			
	Source (s)	Winnipe	g Municipal hoal Lake	Supply	Deep Wells				
		- 0.	noai Lake		Well No. 1	Well No. 2	Well No. 3		
NO.		Raw and F	Finished Wate	er		Raw Water			
	Sampling Point	At No. 2 C.H. Plant Tap	At. No. 1 C.H. Plant Tap	At No. 2 C.H. Plant Tap		At Pumps	,		
1	Date of sampling	Aug.25/58	Sept. 23/58	Sept.24/58	June 30/58	June 30/58	June 30/58		
2	Storage period (days)	8:24	13:24	12:23	21:24	21:24	21:24		
3	Sampling temperature, C	-	-	• ⁻	5.6	5.6	5.6		
4	Test temperature, °C	21.7	22.9	23.6	23.8	24.0	24.1		
5	Oxygen consumed by KMnO4	-	-	-	-	_	-		
6	Carbon dioxide (CO ₂),(calculated)	4.0	4.4	3.9	4.1	5.8	-		
7	рН	7.6	7.6	7.7	8.0	7.9	8.2		
8	Colour	15	5	10	5	5	0		
9	Turbidity	-	-	-	4	1	16		
10	Suspended matter dried at 105°C				5.0	- 1	5.0		
11	Suspended matter, ignited at 550°C				0.7	-	1.3		
12	Residue on evaporation, dried at 105°C				289	328	314		
13	Ignition loss at 550°C.				49.6	45.2	74.4		
14	Specific conductance, micromhos at 25°C	175.1	173.9	177.9	448.7	494.1	536.2		
15	Calcium (Ca)	25.1	23.6	25.6	71.6	78.5	88.5		
16	Magnesium (Mg)	5.8	6.7	6.0	15.4	16.8	16.6		
17	Iron (Fe) Total	-	-	-	1.38	-	2.56		
18	Dissolved	0.02	0.03	- ,	0.58	0.36	0.92		
19	Manganese (Mn)		_	-	0.18	0.02	0.05		
20	Aluminum (Al)		-	-	0.04	0.06	0.07		
21	Copper (Cu)			-	0.0	0.17	Trace		
22	Zinc (Zn)			-	0.0	0.0	0.0		
23	Sodium (Na)	2.3	2.3	1.9	1.5	2.6	1.5		
24	Potassium (K)	1.2	1.2	1.3	1.1	1.3	1.4		
25	Ammonium (NH ₄)	0.05	0,1	0.05	0.05	0.05	0.05		
26	Carbonate (CO ₃)	0.0	0.0	0.0	0.0	0.0	0.0		
27	Bicarbonate (HCO ₃)	98.7	99.1	98.5	272	293	358		
28	Sulphate (SO ₄)	4.3	3.8	3.8	19.3	23.9	5.8		
29	Chloride (Cl)	2.0	1.2	1.2	2.3	3.7	1.0		
30	Fluoride (F)	-	-	-	0.0	0.0	0.0		
31	Nitrate (NO ₃)	0.8	1.2	0.6	1.5	2.0	0.05		
32	Silica (SiO ₂) ₂ colorimetric	7.0	8.3	4.7	24	25	26		
33	Carbonate hardness as CaCO ₃	81.0	81.3	80.8	223	240	289		
34	Non-carbonate hardness as CaCO ₃	5.5	5.1	7.7	19.0	24.7	0.0		
35	Total hardness as CaCO ₃	86.5	86.4	88.5	242	265	289		
36	Sum of constituents	97.1	97.1	93.6	271	298	319		
37	Per cent sodium	5.4	5.4	4.4	1.3	2.1	1.1		
38	Saturation index at test temperature	-0.6	-0.6	-0.4	+0.7	+0.7	+1.1		
39	Stability index at test temperature	8.8	8.8	8.5	6.6	6.5	6.0		
	Remarks:				Water levels -40'	× 40°	- 40'		

ADDENDUM TO TABLE II (Cont'd)

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million

	TCHEWAN	SASKA			Concl'd)	MANITOBA (
	OURN	DUNI	Near CLEAR LAKE				Concl'd)	SHILO (C	
	Camp Dundurn		Clear Lake Camp	Churchill	Fort C)	Shilo (Concl'd	Camp	
	Deep Wells		Clear Lake	Isobelle	Lake		Vells	Deep V	
	West Well	North Well				Mixed Wells	Rifle Range Well No.6	Disposal Plant Well No. 5	Well No. 4
NO.	Raw & Finished Water		Raw & Fin- ished Water	Finished Water	Raw Water	Finished Water	L	Raw Water	
	At Pumps		From Tap	At Plant Tap	At Pump	At Coffee Shop Tap		At Pumps	
1	June 26/58	June 26/58	June 6/58	May 22/58	May 22/58	June 30/58	Aug.14/58	June 30/58	June 30/58
2	15:22	15:22	132:152	12:21	12:21	21:24	8:19	23:24	21:24
3	5.6	5.6	-	-	0.0	11.1	6.7	7.8	5.6
4	25.3	25.2	26.2	23.0	23.0	23.9	23.7	25.0	23.7
5	3.4	7.8		4.0	7.2	-	2.1		-
6	2.4	3.8	1.6	0.9	2.9	3.3	3.3	3.9	5.2
7	8.3	8.3	8.4	7.9	7.8	8.2	8.0	7.9	8.0
8	5	10	5	10	35	0	5	5	0
9	5	25		0	4	0.8	l	0.9	11
10	13.5	15.7			15.5	0.8		0.9	6.3
11	5.0	6.4	<u>'</u>		13.2			<u> </u>	
12	490			240		260	200	-	4.3
13	84.0	754 204	į	240	240	360	232	233	347
	f		/50.0	38.0	51.6	49.6	36.4	28.4	78.8
14	680.9	1112	458.8	384.9	339.0	559.0	361.4	348.8	546.3
15	105	97.1	31.4	37.7	32.6	18.3	57.3	55.0	88.1
16	25.6	45.1	31.9	6.5	10.5	8.7	12.5	13.2	18.0
17	1.61	4.58	-	-	0.26	j	-	-	1.91
18	0.89	0.37	0.90	Trace	0.02	0.01	Trace	0.08	0.74
19	0.41	0.15	-	0.0	0.0	Trace	0.0	0.02	0.31
20	0.06	0.08	_	0.59	0.0	0.09	0.08	0.09	0.08
21	Trace	Trace	i -	0.0	0.0	0.01	0.0	0.0	0.23
22	0.0	0.0	- 1	0.0	0.0	0.0	0.10	0.05	0.0
23	6.6	93.5	16.2	23.0	28.0	103	0.8	0.9	3.8
24	2.3	6.3	5.0	2.3	3.0	2.9	0.5	0.7	1.7
25	_	_	_	0.05		0.05	0.20	0.10	0.05
26	0.0	0.0	1.9	0.0	0.0	0.0	0.0	0.0	0.0
27	347	533	210	44.1	116	337	217	120	335
28	95.7	197	62.3	70.4	18.1	21.0	1		
29	2.3	7.0	3.1	47.1			8.4	14.9	20.3
30	0.0	0.0	0.0		55.2	6.6	1.0	0.5	5.6
31	0.0	1.8		0.0	0.0	0.0	0.0	0.0	0.0
32	17		0.2	0.2	1.0	1.0	8.0	4.0	1.0
	1 1	21	175	1.3	5.7	25	23	21	25
33	285	428	175	36.2	94.9	81.4	178	172	275
34	82.4	0.0	34.4	84.6	29.6	0.0	16.8	19.2	18.9
35	367	428	209	121	125	81.4	195	191	294
36	427	732	j - i	211	211	353	218	214	330
37	3.7	31.7	14.0	28.2	32.2	72.3	0.9	1.0	2.7
38	+1.2	+1.4	+0.7	-0.5	-0.2	+0.4	+0.5	+0.4	+0.9
39	5.9	5.5	7.0	8.9	8.2	7.4	7.0	7.1	6.2
	Water level - 33'	Water level - 10'					- 14'	- 18'	- 40'

ADDENDUM TO TABLE II (Cont'd)

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

PROVINCE OR TERRITORY

ALBERTA

BRITISH COLUMBIA

					COLUMBIA
		1	Near WAINWRIGHT	1	Near CHILLIWAC
	Camp or Establishment		Camp Wainwright		Camp Chilliwack
	Source (s)	Battle R	iver, Betty Lake 8	k Wells †	Vedder R. & Well
		Battle River	Betty Lake	Mixed River & Lake, Camp Supply	Vedder River
NO-		Raw Water	Raw Water	Finished Water	
	Sampling Point	At Int	akes	At Camp Tap	At Pump No.1
1	Date of sampling	July 24/58	July 24/58	July 24/58	July 15/58
2	Storage period (days)	7:17	7:17	7:17	16:26
3	Sampling temperature, °C	20.6	20.0	20.0	15.6
4	Test temperature, °C	25.0	25.0	25.1	25.2
5	Oxygen consumed by KMnO ₄	7.4	16	8.3	2.3
6	Carbon dioxide (CO ₂), (calculated)	4.1	4.2	4.8	1.2
7	рН	8.1	8.2	8.1	7.5
8	Colour	35	25	40	0
9	Turbidity	0.9	8	3	0
10	Suspended matter, dried at 105°C	•	9.4	10.4	"_
11	Suspended matter, ignited at 550°C	-	2.7	4.0	_
12	Residue on evaporation, dried at 105°C	456	440	458	49.2
13	Ignition loss at 550°C.	62.8	139	103	12.0
14	Specific conductance, micromhos at 25°C	692.1	664.5	632.5	64.3
15	Calcium (Ca)	50.0	26.8	37.4	8.9
16	Magnesium (Mg)	25.8	49.8	35.8	0.9
17	Iron (Fe) Total	-	0.63	0.94	0.9
18	Dissolved	0.02	0.02	0.03	Trace
19	Manganese (Mn)	0.02	0.02	0.0	0.0
20	Aluminum (Al)	0.02	0.05	0.04	0.0
21	Copper (Cu)	0.02	Trace	0.04	1
22	Zinc (Zn)	0.0		i	0.0
	Sodium (Na)		0.0	0.0	0.0
23	Potassium (K)	69.0	48.5	59.5	0.8
24 25	Ammonium (NH ₄)	7.3	10.5	8.8	0.5
26	Carbonate (CO ₃)		-	1	0.05
20 27	Bicarbonate (HCO ₃)	0.0	0.0	0.0	0.0
28	1 · · · · · · 1	350	433	390	27.2
	Sulphate (SO ₄)	93.1	22.4	62.9	5.6
29	Chloride (Cl)	8.2	7.3	8.1	0.6
30	Fluoride (F)	0.0	0.2	0.2	0.0
31	Nitrate (NO ₃)	0.3	1.5	0.8	0.3
32	Silica (SiO ₂) colorimetric	8.5	8.2	8.5	5.9
33	Carbonate hardness as CaCO ₃	231	272	241	22.3
34	Non-carbonate hardness as CaCO ₃	0.0	0.0	0.0	3.6
35	Total hardness as CaCO ₃	231	272	241	25.9
36	Sum of constituents	434	389	414	36.9
37	Per cent sodium	38.4	27.0	37.9	6.2
38	Saturation index at test temperature	+0.8	+0.7	+0.7	-1.5
39	Stability index at test temperature	6.5	6.8	6.7	10.5
	Remarks:	† Standby supply	1	I	River low

ADDENDUM TO TABLE II (Concl'd)

CHEMICAL ANALYSES OF ARMY WATER SUPPLIES

(In parts per million)

BRITISH COLUMBIA (Concl'd)

YUKON

Near CHILLIWACK			Near FORT NELS	ON†		WHITEHORSE	
Camp Chilliwack		Muskwa G	arrison - Mile 295 /			Camp Takhini	
Vedder R. & Well			Deep Well			McIntyre Creek	
Well at Wet							
Bridging Area	Raw '	Water		Finished Water		Raw & Finished Water	
Raw & Finished Water						water	МО
At Pump	At It	ntake		At Tap or In Plant		At Camp Tap	
July 15/58	July 6/58 *	Oct.5/58	July 6/58	Oct.5/58	Oct.6/58	June 27/58	1
9:27	25:35	25:31	25:35	25:31	24:30	11:17	2
15.6	5.0	-	18.0	-	-	8.9	3
25.6	25.0	24.2	25.0	24.3	24.3	24.7	4
1.9	-	-	3.2	-		3.2	5
6.1	28	9	3.0	1.3	0	1.0	6
7.2	7.4	8.0	7.9	8.1	9.9	8.4	7
0	10	-	0	-	-	10	8
13	340	-	3	6	17	0.8	9
22.8	121	-		- .			10
17.3	95.4	-		_			11
104	1091	-	789	_		182	12
35.6	102	-	85.6	-		16.8	13
124.7	1381	1639	1005	1100	957	274.6	14
14.1	259 *	320	158	163	184	39.7	15
4.8	44.4	59.6	39.3	52.0	13	10.0	16
12.4	61	74	-	0.81	0.78	-	17
1.0	1.06	0.01	0.07	0.02	0.16	0.01	18
0.05	0.47	0.18	0.05	0.04	0.02	0.0	19
0.0	0.06	0.14	0.19	0.29	0.17	0.0	20
0.0	0.0	-	0.0	-		Тгасе	21
0.4	0.0	-	0.0	-		0.0	22
2.3	6.2	7.6	7.0	9.8	9.9	4.0	23
0.7	2.5	2.8	2.6	3.2	3.0	0.9	24
0.05	-	-	-	-	-	0.05	25
0.0	0.0	0.0	0.0	0.0	10.0	2.0	26
62.2	542	640	160	132	OH 0.9	166	27
3.2	394	508	413	511	489	8.2	28
6.3	1.8	1.5	5.8	3.9	4.2	0.7	29
0.0	0.0	-	0.0	-		0.0	30
0.2	4.0	0.2	0.2	0.2	0.2	0.2	31
14	10	9.8	3.6	3.0	2.6	15	32
51.0	445	525	131	108	19	140	33
3.9	385	505	425	512	493	0.0	34
54.9	830	1030	556	620	512	140	35
76.7	991	1278	709	812	717	162	36
7.7	1.6	1.6	2.6	3.3	3.9	5.8	37
-1.3	+0.7	+1.5	+0.7	+0.8	+1.8	+0.7	38
9.8	6.0	5.0	6.5	6.5	6.3	7.0	39

DISCUSSION

The usefulness of the data on plant operation and analytical water quality varies with the nature and extent of the problem. It is not proposed in this report to cover the many applications, although a few comments are made on problems of scaling, corrosion, and water hardness.

Tables II, III and IV show that problems of corrosion are the most probable although a number of the waters are hard and may cause scaling and other difficulties associated with the use of hard waters.

Tables I and III show that almost 50 per cent of the waters supplied are not treated and only 21 per cent receive treatment in addition to chlorination, and many of these are so treated in municipal plants.

About one-half the waters (46 per cent) used are ground waters (wells and springs), the remainder, except for two mixed supplies, being from surface sources. About 40 per cent of the population served use the ground and mixed waters. As would be expected, many of the smaller establishments use well waters.

A limited number of waters-about 7 - show iron and manganese content high enough to give rise to possible problems of staining and discolouration. Other waters, because of excessive pick-up of iron from piping and tanks due to corrosion, will also cause red water problems unless adequate treatment is carried out.

Water bardness and quality:

Table III summarizes much of the data on the hardness of the 100 water supplies reported in Table II. These hardnesses expressed in parts per million of calcium carbonate, are classified, as in previous Water Survey Reports, as follows:

Soft water - 0 to 60 p.p.m. hardness

Medium hard water - 61 to 120 p.p.m. "

Hard water - 121 to 180 p.p.m. "

Very hard water - over 180 p.p.m. "

Sixty-three waters of the 100 fall within the soft to medium hard classification, where maximum hardness is about that of Lake Ontario and Lake Erie waters, but most are soft waters. A further breakdown of the hardness shows that 23 per cent are very soft (below 25 p.p.m. hardness) and most of the remainder lie within the range of 51 to 199 p.p.m. hardness as CaCO₁.

The weighted average hardness¹ of the waters supplied to all Army establishments studied in Canada is about 115 p.p.m. or about the upper limit of a medium hard water. Camps in Newfoundland and Nova Scotia receive very soft water, well below the country average but establishments in the Territories, Ontario and Saskatchewan receive waters with hardness above this average. The few locations in Saskatchewan receive very hard waters, weighted average hardness of over 400 p.p.m. Army installations in the remaining provinces are below or near the country average of 115 p.p.m.

These weighted average hardness values are significantly influenced by a few larger establishments in each area. For example the inclusion of the large Ottawa headquarters population served with a soft water would lower significantly the average hardness for Ontario.

A study of the data of Table II shows that hardness in most of the waters is chiefly due to the bicarbonate salts of calcium and magnesium. Therefore, much of the hardness can be readily removed by lime treatment, although these waters will raise problems in certain uses due to release of carbon dioxide and/or deposition of calcium carbonate.

About one-half the population served, 51 per cent, use soft and medium hard waters, about 30 per cent use a hard water, while 19 per cent are supplied with waters over 180 p.p.m. hardness, that is, very hard waters. While many factors must be considered it is usually economical to soften waters for municipal use when the hardness is greater than about 200 p.p.m. as CaCO₃: such softening results in a water of 80 to 100 p.p.m. hardness.

Weighted average hardness is calculated by multiplying the average hardness of each supply by the population (no. of consumers) and the sum of these products is divided by the total population (sum of all consumers).

TABLE III
ARMY WATER SUPPLIES

Summary of Data on Source, Treatment and Water Hardness

	No. of	No. of					Treatmen Water Sup			ter Ha	rdness las:	3
	Establish- ments Studied	Sources Considered	W	ater Source	es		Chlor-	Other than				
Province	Studied	Considered	Ground	Surface	Mixed	None	ination Only	Chlor- ination	Soft	Med. Hard	Hard	Very Hatd
Newfoundland	1	1		1		1			1			
Nova Scotia	11	12	8	4		7	3	2	8	2	2	
New Brunswick	8	8	6	2		6	2		4	3	1	ĺ
Quebec	6	6	4	2		3	1	2	4	1	1	
Ontario **	19	19	7	11	1	5	7	7	2	4	8	5
Manitoba	5	5	1	4			3	2		4		1
Saskatchewan	4	4	3		1	3		1				4
Alberta	10	11	7	4		7		4	3	4	2	2
British Columbia	. 18	18	6	12		6	10	2	10	1	4	3
Yukon Territory	8	8	4	. 4		2	5	1	2	3	2	1
Northwest Territories	8	8		8		7	1		1	6	1	
CANADA	98	100	46*	52*	2	47*	32	21	35*	28	21	16

*Also per cent

Scale-formation and corrosion:

The corrosivity and the scaling tendency of a water are often the most important factors in its use in an Army establishment. This is particularly true where waters are to be used in central heating plants. These tendencies, especially the tendency to attack or corrode the distribution system and equipment, depend upon many factors. Besides the general chemical quality the temperature, velocity, amount of dissolved gases (carbon dioxide, oxygen, hydrogen sulphide, and ammonia), presence of galvanic couples, and design of the system or equipment must be considered.

It has always been the hope of water technologists to be able to quickly classify waters as to their corrosive or scaling tendencies, so that, if required, suitable methods of treatment may be recommended. The Industrial Waters Section is continually studying this problem and cooperating with international committees and others working toward the same goal. The large number of variables makes the problem particularly difficult and there is much technical literature on the subject. It is not the intention at this time to attempt to summarize these findings or even to classify definitely the waters studied, but a few comments may help in the interpretation of data included in this report.

The Langelier saturation index, pH - pH_S, was one of the earlier attempts to classify waters from their chemical analyses as to corrosivity or scale-forming tendency. Because it shows only the relative saturation of the water with respect to calcium carbonate and does not consider such important variables as velocity, dissolved gases, etc., it falls short of the ideal. Some workers, from long experience with corrosion of iron and steel in natural waters, consider that corrosion will occur at ordinary temperatures when the index is below about -0.75,

^{**}Does not include Ottawa headquarters

TABLE III -Continued ARMY WATER SUPPLIES

Summary of Data on Source, Treatment and Water Hardness

			,	V ater H	ardness in F	s, p.p.n lange	n, CaC	Ю,				Per cent of Population Served with Waters Classed as				Weighted Average Water Hardness
0 -10	11 -25	26 -50	51 - 99	100 -199	200 -299	300 -399	400 -499	500 -599	600 - 699	700 -999	1000 & over	Soft	Med. Hard	Hard	Very Hard	p.p.m. CaCO3
1												100				5
2	5	1	2	2								77.4	22.0	0.6		25
	3		4	1				!				39.2	4.4	56.4		115
1	2		1	2								61.7	22.7	15.6		70
		1	2	12	4							17.6	11.5	28.7	42.2	140**
			4		1							95.6			4.4	80
			ļ		1		1		1		1				100	415
1			5	3	1		1					41.0	5.2	53.5	0.3	105
1	5	3	2	4			1		2			82.9		14.8	3.2	65
1		1	2	3	1 .	į						0.8	1.6	96 .6	1.0	15 0 x
	1		5	2								12.6	87.4			165
7*	16	6	27	29	8		3		3		1	42.0	9. 0	29.6	19.4	115

and scale will deposit if it is above about +0.75. Between these values either corrosion or scaling may occur depending upon other variables, but this index gives little indication of the rate of such corrosion or scale formation. Temperature is an important factor since the pH_S, and consequently the index itself, changes with the temperature. Some waters that are satisfactory at ordinary temperatures may be quite scale-forming at the higher temperatures used in domestic hot water systems.

Because this index is a measure of the degree of saturation with CaCO, it is of considerable value in determining and controlling the treatment of a water with lime, to inhibit corrosion by deposition of a thin protective coating of calcium carbonate on piping, etc.

Some workers have found a more satisfactory co-relation between the stability index, 2pH_S - pH, and the corrosion and/or scaling occurring in actual service. It is usually considered that a water with a stability index below 6 will be scale-forming while one with an index greater than 8 will be corrosive: this index also changes with temperature.

Several formulae and indices have been developed and discussed from time to time in the literature in an attempt to more satisfactorily determine the corrosive or scaling tendency of waters. Some of them appear worthy of further study but none have been so universally used as the saturation and stability indices mentioned above.

Table IV summarizes most of the information on these indices set out in Table II. From the approximate classification outlined above it is evident that most of the Army waters show a corrosive tendency, 47 per cent having a stability index greater than 8. The high percentage sodium and low calcium content of other waters further increases their corrosive tendency. It appears from Table IV that only about 15 per cent of the waters might be considered as scale-forming when used at ordinary temperatures.

TABLE IV **ARMY WATER SUPPLIES**

Summary of Data on Corrosivity of Waters

	No. of Water Sources Considered	Inde	gelier Sa x (pH -) st Temp	pH_s)) T	Stabili Index 2pH _s - at Tes empera	pH) st		Calciu	m (p.p.m	ı .)	,	Per ce Sodiu	
Province	Constacted	<75	75 to +.75	>+.75	< 6	6 to 8	>8	0 -25	26 -50	51 -200	>200	<40	40 to 60	>60
Newfoundland	1	1					1	1					1	
Nova Scotia	12	7	5			3	9	10		2		7	4	1
New Brunswick	8	5	3			3	5	5	3			7		1
Quebec	6	2	4			4	2	4	1	1		4		2
Ontario	19	1	13	5	1	16	2	3	9	5	2	17		2
Manitoba	5		5			2	3	4	1			3	1	1
Saskatchewan	4			4	4					2	2	3	1	
Alberta	11	2	7	2	1	6	4	6	4	1		7		4
British Columbia	18	10	4	4	3	4	11	11	4	2	1	18		
Yukon Territory	8	2	6			6	2	3	4	1		7		1
Northwest Territories	8	1	7				8	2	5	1		8		
CANADA	100	31	54	15	9	44	47	49	31	15	5	81	7	12

^{*} See also Table V

Table V tabulates the replies to the questionnaire regarding problems of corrosion and scaling in Army establishments. Only with waters with a high stability index, and low calcium content and/or high sodium chloride content, were troubles reported. A number of establishments submitted no report on corrosivity, while others reported no serious problems even though all other factors indicated these waters to be corrosive. Since the questionnaire replies are in most cases the opinion of one person only, the relative corrosiveness of a water is largely the result of personal experience. For example, one who is accustomed to seeing galvanized hot water storage tanks last 15 to 20 years will consider a water corrosive if failure occurs in 8 years, while a person whose experience has been in locations where failure occurred within a year or so will doubtless report a water in which tanks lasted 8 years as very satisfactory. A controlled study of the relative corrosivity of a number of the camp waters would be of more value.

^{† + -} Shows Attacks †† - - Shows No Attack

^{†††} nr.-No Report

TABLE IV - Concluded ARMY WATER SUPPLIES Summary of Data on Corrosivity of Waters

Rej (I	ported Corrosive Atta From Questionnaires)	ack *	High Iron and/or	C	lassifica U.S. Ai Corros	tion of V my Scal	ing and	ito
On Iron and Steel	On Galv. Iron Hot Water Tanks	On Copper Pipes, etc.	Manganese Waters	No. 1	No. 2	No. 3	No. 4	No. 5
+†	+	+		1				
7+ 5-††	7+ 5-	7+ 5-	2	8		2		2
7–	1+ 6-	2+ 5-		5	3			
2+ 3-	2+ 3-	0 5-		4	1	1		
6+ 13-	3+ 16–	0 19-		3	9	1	4	2
3+ 1-	2+ 2-	1+ 3-		4	1			
2+ 1-	0 3-	0 3-	2					4
3+ 8-	1+ 10-	0 11	2	5	4			2
4+ 9-	6+ 7~	1+ 12-		11	4			3
			1	2	4	1	:	1
8-	8-	8-		2	5	1		
28+ 55- 17nr. †††	23+ 60- 17nr.	12+ 71- 17nr.	7	45	31	6	4	14

No establishment reported a serious scaling problem, although indications are that certain waters should give rise to such problems.

During World War II a study of water quality at more than 750 U.S. Army establishments was made¹. This work co-related corrosion and scaling with water quality, using test coupons, and studied several methods of treatment. The different waters supplying these camps were classified into 5 categories on the basis of corrosion and scaling problems in normal camp use. Table VI summarizes these categories which are based on the Langelier saturation index, the calcium content of the water, and certain other factors.

¹ Water Supply Practice in Army Training Centers - Lewis H. Kessler, V. Bruce Sundstrom and Arthur O. Tomek; Journal of the American Water Works Association, Vol. 35, p. 1009, August, 1943.

TABLE V

RESULTS OF QUESTIONNAIRES ON CORROSIVITY

			Attack Reported		
Province	Camp or Establishment	On Iron & Steel	On Galv. Iron Hot Water Tanks	On Copper	No Marked Attack Reported
Newfoundland	St. Johns	X	x	Х	
Nova Scotia	Aldershot Debert Bedford R.R. Elkins Bks. Hammond Plains Garrison Bks., Halifax McNabs Island Wallace Hill York Redoubt Johnston Petrie Road	X X X X X X	X X X X X X	X X X X X X	X X X
New Brunswick	Hanwell Road Maryland Hill Camp Gagetown Moncton Saint John Pennfield Utopia		х	x x	X X X X
Quebec	Camp Bouchard Citadel Ste. Foy St. Bruno Camp Valcartier	x x x	X X		X X
Ontario	Camp Barriefield Blackdown Park Camp Borden Cobourg Camp Hagersville Camp Ipperwash	X X X	х		X X X
	Lakeview Leitrim Cedar Springs, London London (Wolseley Bks.) Meaford R.R. Orleans	X (H ₂ S)	x		X X X X
	V.E.P.E. Oshawa Connaught Ranges Camp Petawawa Camp Picton Point Petrie	x	х	,	x x x
Manitoba	Clear Lake Fort Whyte (well) Camp Shilo Fort Churchill	x x x x	x x	x	х

TABLE V -- Continued RESULTS OF QUESTIONNAIRES ON CORROSIVITY

Attack Reported. No Marked On Attack Iron Hot On On Camp or Reported Establishment Iron & Steel Water Tanks Copper Province Saskatchewan Camp Dundurn X X Grenfell Regina X X Banff Camp Alberta X X X Sarcee Camp Currie Bks. Griesbach Bks. Х Bissell X Winterburn Range Ft. Chipewyan X \mathbf{x} McMurray X Strathmore Camp Wainwright Х X (8 yts) Camp Chilliwack British Columbia \mathbf{x} Camp Courtenay Camp Vernon X X Nanaimo Kamloops \mathbf{x} X X Ladner X Rayleigh X Vancouver Victoria -Albert Head Х X Gordon Head X Mary Hill Work Point X Heales R.R. X Х Aklavik Northwest X X X X Fort Good Hope Territories Fort Norman Fort Providence Fort Reliance Fort Resolution X Fort Simpson X Hay River

TABLE VI GENERAL CATEGORY OF WATERS AT U.S. ARMY CAMPS AND POSTS*

Category	Calcium as Ca in p.p.m.	General Description
1 (U.S. Army No. 1)	0 to 25	Normal soft water free from high concentrations of iron and manganese and non-scaling. Corrosive if dissolved oxygen is present.
2 (U.S. Army No. 1a)	· 26 to 50	Medium soft to hard water free from high concentrations of iron and manganese. May cause scale trouble.
3 (U.S. Army No. 2)	over 50	Saturation index changes from negative to positive in temperature range of 20° to 90°C.
4 (U.S. Army No. 2a)	over 50	Saturation index always positive.
5 (U.S. Army No. 3)	Hardness excessive; special or difficult waters	All waters not falling in categories 1 to 4 inclusive.

^{*} From reference 1, p. 113

Category 1 includes all waters having less than 25 p.p.m. calcium, and therefore almost all waters in the general classification of soft waters. Waters with such low calcium contents cannot, in normal camp usage, cause serious scaling. These waters are usually high in free carbon dioxide and therefore low in pH. The saturation index is usually negative and the stability index correspondingly high. Table IV shows that the majority, about 45 per cent, of the Canadian Army waters reported fall in this category. These waters are especially corrosive if dissolved oxygen is present. Their use in hot water storage tanks of galvanized iron often gives rise to serious attack due to their acidity, the fact that no protective coating of CaCO₃ can be formed, and to their increasing corrosivity at higher temperatures.

To decrease attack by these soft waters lined iron tanks or other resistant metal tanks should be used, but not galvanized iron. The waters should be stabilized to a higher pH (8.5) with lime or other caustic, but the calcium content should not exceed 25 p.p.m. Silicates are often used to decrease attack, sometimes in addition to lime treatment of pH adjustment. Some waters of this category supplied to Army establishments in Canada are already treated with lime to decrease corrosivity, as for example Halifax municipal water.

The second category (U.S. Army Category No. 1a), includes those waters that have a calcium content between 26 and 50 p.p.m., and are free from undesirable contents of iron and manganese. These waters may in certain uses cause scaling problems and a careful study must be made to cover all applications. With these waters it is considered that insufficient calcium is present to always develop and maintain a protective film of CaCO, on equipment: the saturation index is still generally negative. Such waters may also be quite corrosive, especially if dissolved oxygen is present or other conditions are favourable.

About 31 per cent of the waters studied in this report are placed in this category. When heated they may become significantly corrosive or even scale-forming and it is often necessary to use lined tanks, or to protect the tanks with sacrificial anodes, etc. Treatment to decrease attack again includes adjustment of pH similarly to category 1 waters, but lime is not used because it could cause deposition of CaCO₃ (scaling) with higher calcium

waters. Soda ash and/or sodium silicate is usually recommended. Sometimes threshold treatment with phosphates or certain organic compounds is necessary and useful.

Category 3 (U.S. Army No. 2) includes those waters with a calcium content over 50 p.p.m. whose saturation indices change from negative to positive as the waters are heated to the temperatures used in hot water storage tanks.

It is estimated that about 6 such waters are supplied to Canadian Army Camps, and they usually require only the minor pH adjustments necessary to counteract temperature conditions; in some cases treatment such as threshold conditioning to prevent excessive deposition of calcium carbonate is required. Such treatment should be designed to leave a slight protective coating of calcium carbonate on the metal surfaces.

The next category No. 4 (U.S. Army No. 2a) covers those waters with calcium contents greater than 50 p.p.m. and having a definitely positive saturation index and therefore low stability index. They are classed as heavily scale-forming, and treatment is designed to limit such scaling, especially in hot water storage tanks. It is estimated that about 4 waters supplied to Canadian camps fall within this category.

The final category No. 5; (U.S. Army No. 3) covers a wide range of waters, since it includes all those not covered by the previous four categories, and any waters in these categories that do not respond to the suggested, simple treatments. Included in this category are excessively hard waters, those high in manganese, iron, and total dissolved solids, and those which require special treatment for algae, colour and turbidity removal. About 14 Canadian Army waters are placed in category No. 5.

The treatments recommended for waters of categories 1, 2 and 3, namely pH adjustment and addition of inhibitors or threshold conditioning, is often simple and effective. However, care must be taken in the application of such treatments since under certain conditions inhibition is under anodic control and increased attack may result. The subject of inhibition and threshold conditioning in waters has been studied intensively and it is not possible to summarize all the findings at this time.

Sodium silicate has been successfully used for corrosion control in water systems for many years but the results are often unpredictable. Its protection is considered to be due to a deposited film of iron oxide and colloidal silica. It is claimed some initial corrosive attack is necessary to obtain satisfactory protection. Because protection is dependent upon film formation it is subject to the usual difficulties, such as the formation of relatively porous films due to extraneous foreign matter, organics, bacteria, the difficulty in maintaining a film of uniform thickness, and of preventing excessive deposition in certain areas, etc. The nature of the silica present in waters is of major importance and successful treatment is to some extent still a matter of trial and error. Usually an excess silica of 8 to 15 p.p.m. is maintained. Care must be taken to see that too heavy a deposition does not occur in hot water tanks.

The use of polyphosphates or threshold treatment has considerable advantages. A number of workers claim these glassy phosphates are cathodic inhibitors and therefore safe inhibitors for use in aqueous solutions. The polyphosphates are said to protect over a wide range of aqueous pH with only 2 to 5 p.p.m. being required, the amount depending upon conditions in the system, size of system, etc.

The film formed does not build up and the phosphate is protective at relatively high temperatures, although above 180°F its protection is not satisfactory. Some calcium is necessary for good protection, so that these phosphates are not used in almost zero softened water.

The corrosion preventive qualities of the polyphosphates have several well-known disadvantages that often outweigh their advantages for other than domestic or municipal waters. Polyphosphate action is not always predictable especially at higher temperatures; in the pH range 7 - 8 at elevated temperatures there may be sufficient reversion of the polyphosphates to orthophosphates to cause precipitation of calcium phosphate. Also, it is neces-

sary that sufficient flow be maintained in the system to which the polyphosphates are continuously fed.

These phosphates are of great value in preventing the deposition of iron salts and red water problems. In some cases red water believed to be caused by corrosion was actually due to precipitation of iron naturally dissolved in the water. The addition of polyphosphates in sufficient amount did not decrease corrosion but rather sequestered the iron and prevented its oxidation and precipitation. The successful use of phosphates to prevent red water and the discolouration due to manganese depends upon many factors such as location of the feed, amount fed, etc. Unlike its application for corrosion control, its use as a stabilizer for iron and manganese demands that it be fed in proportion to the amount of iron and manganese present. Normally 2 parts of the phosphate are required for every part of iron and manganese present. If chlorination is practiced, higher ratios are needed, at least initially. It is necessary that these phosphates be fed to the water with adequate mixing prior to any aeration, chlorination, or use of any substance that might oxidize the iron or manganese. Iron bacteria will, however, oxidize iron even in the presence of phosphates; also, the stabilization or sequestration of iron and manganese by polyphosphates will not last indefinitely.

The phosphates are also used to sequester or hold up calcium, and prevent its deposition as calcium carbonate. They are used to prevent after-precipitation in lime-softening or after pH adjustment with lime.

In some waters a mixture of sodium silicate and a polyphosphate may be advantageous, although such mixtures have their greatest use for corrosion control in cooling waters. In some waters natural colours and organics are present, which apparently act as inhibitors and greatly influence the rate of attack by the waters.

It is evident from the above that despite efforts to classify and simplify the problem of scaling and corrosion, careful studies must still be made of many waters to solve each individual problem, since any of a variety of factors may be controlling the reaction.

SUMMARY

The water quality used at Army installations in Canada is generally typical of the water quality of each geographical area. Most of the establishments use waters of soft to medium hard character, and corrosion is the major problem.

Smaller installations and some medium-sized establishments in the Prairie Provinces use well waters of less satisfactory quality and a few, therefore, have problems of scale formation especially at higher temperatures.

The survey indicates that additional treatment is desirable at a number of locations, not necessarily to decrease corrosion and related problems, but to provide personnel with a more satisfactory supply for general domestic use.

The waters are classified in a manner similar to the U.S. Army classification, and some brief comments on treatment methods used to decrease corrosion are given. The classification emphasizes the corrosivity of most waters and the need for some treatment.

Despite the extensive knowledge available on water quality, corrosion, and water treatment, many water problems require study before applying even the simpler treatments discussed. To solve these problems it is vitally important to have adequate knowledge on water quality and plant operation: the data tabulated in this report should materially assist in their solution.

APPENDIX A

	DATA PAGE	ANALYSIS PAGE
Newfoundland		
St. Johns	6	28
Nova Scotia		
Aldershot Military Camp	6	28
Bedford Rifle Range	7	30
Camp Aldershot	6	28
Camp Debert	6	29
Debert	6	29
Elkins Barracks	7	31
Garrison Barracks, Halifax	7	31
Halifax	7	31
Hammond Plains	7	32
Johnstown Magazine, Sydney	8	34
NcNabs Island	7	32
Petrie Point, Sydney	9	34
Sydney	8	34
Wallace Hill	7	33
York Redoubt	8	33
New Brunswick		
Barrack Green, Saint John	9	39
Camp Gagetown	8	36
Camp Utopia	9	39
Fredericton	8	35
Garrison Barracks, Moncton	9	39
Hanwell Road, Fredericton	9	3 5
Maryland Hill, Fredericton	9	35
McGivney	8	38
Moncton	9	39
Pennfield	9	39
Saint John	9	39
St. George	9	39
Quebec		
Bouchard	10	40
Camp Bouchard	10	40
Camp Valcartier	10	44
Citadel, Quebec	11	42
Longue Pointe	10	42
Montreal	11 .	42
Quebec City	11	42
St. Bruno Camp	11	43
Ste. Foy	11	43

APPENDIX A-(Continued)

	DATA PAGE	ANALYSIS PAGE
Quebec (Cont'd)		
Ste. Therese	10	40
Valcartier		44
Ontario	10	44
Barriefield Military Camp	10	48
Blackdown Park Camp		49
Camp Barriefield		48
Camp Blackdown Park	11	49
Camp Borden		50
Camp Hagersville		52
Camp Ipperwash		53
Camp Petawawa		62
Camp Picton		64
Cedar Springs Rifle Range	13	56
Cobourg	11	51
Connaught Rifle Ranges		60
Hagersville		52
Headquarters, Ottawa		60
Ipperwash	12	53
Lakeview	13	54
Leitrim		. 55
London		. 55 56
Meaford Rifle Range		57
Orleans	13	58
Oshawa	13	59
Ottawa	14	61
Picton	15	64
Point Petrie		65
V.E. Proving Establishment, Orleans		58
Wolseley Barracks, London	12	56
Manitoba	12)0
Camp Clear Lake	14	66
Camp Shilo	15	68
Clear Lake Camp	14	66
Fort Churchill	14	66
Fort Osborne	15	67
Fort Whyte	15	67
Winnipeg	15	67
Saskatchewan	4.7	07
Camp Dundurn	16	72
Dundurn	16	72 72
***************************************	10	12

APPENDIX A-(Continued)

	DATA PAGE	ANALYSIS PAGE
Saskatchewan (Concl'd)		
Grenfell	16	73
Llovdminster	17	73
Regina	17	73
Alberta	-,	,,
	1/	74
Banff Cadet Camp	16 17	74 77
Bissell Station		
Calgary	16	74
Camp Wainwright	19	80
Currie Barracks, Calgary	16	74
Edmonton	17	75
Fort Chipewyan	18	78
Griesbach Barracks, Edmonton	17	75
McMurray	19	79
Sarcee Camp, Calgary	17	75
Strathmore	19	79
Wainwright	19	80
Winterburn Rifle Range	18	77
British Columbia		
Alaska Highway	19	84
Albert Head, Victoria	21	89
Boundary Bay	21	87
Camp Chilliwack	18	82
Camp Courtenay	18	83
Camp Nanaimo	20	87
Camp Vernon	21	88
Chilliwack	18	82
Courtenay	18	83
Fort Nelson	19	84
Gordon Head, Victoria	22	89
Heales Rifle Range, Victoria	23	89
Jericho Beach	21	88
Kamloops	21	87
Ladner	21	87
Maintenance Camp - Mile 392	19	86
Maintenance Camp - Mile 456	19	86
Maintenance Camp — Mile 546	20	86
Maintenance Camp — Mile 635	20	86
Mary Hill, Victoria	22	89
Nanaimo	20	87
Rayleigh	20	87 87
•	20 21	88
Vancouver	41	00

APPENDIX A-(Concluded)

	DATA PAGE	ANALYSIS PAGE
British Columbia (Concl'd)		
Vernon	21	88
Victoria	21	89
Watson Lake	20	86
Work Point	23	89
Yukon Territory		
Alaska Highway-Mile 75	22	91
Alaska Highway-Mile 830	22	92
Alaska Highway-Mile 1016	23	92
Alaska Highway-Mile 1083	23	92
Alaska Highway-Mile 1202	23	93
Camp Takhini, Whitehorse	25	93
Maintenance Camp-Haines Road	25	94
Mayo	24	90
Whitehorse	25	93
Northwest Territories		
Aklayik	24	94
Fort Good Hope	24	95
Fort Norman	25	95
Fort Providence	25	95
Fort Reliance	25	96
Fort Resolution	26	96
Fort Simpson	27	97
Hay River Settlement	27	97
New Aklavik (Inuvik)	24	94

APPENDIX B

DEPARTMENT OF MINES AND TECHNICAL SURVEYS MINES BRANCH

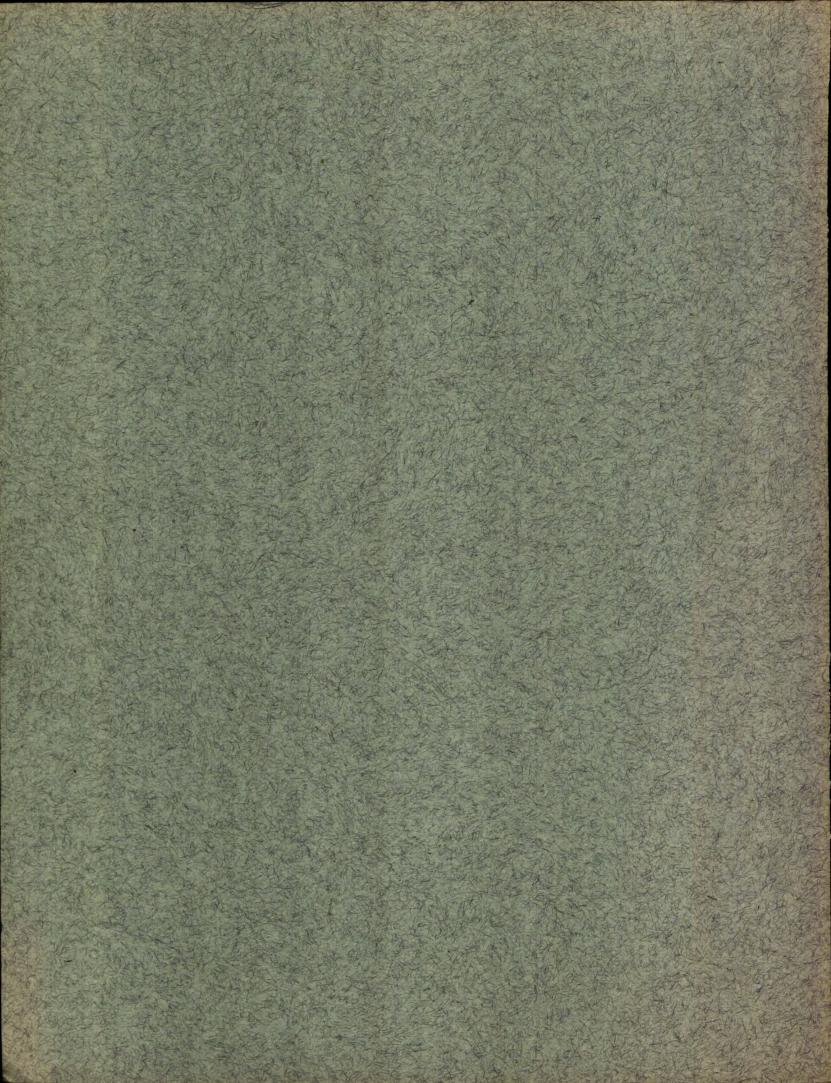
Industrial Minerals Division 40 Lydia Street Ottawa

Industrial Waters Investigation
D.N.D. (ARMY) Water Supply Questionnaire

1) 2)		camp				
6) 7)		on served in camp				
		mp?pe and capacity in imp. ga				
10)	Treatment of water at	camp, including brief flow	sheet of plant, amount of c	chemicals added	, etc	
				Min.		
11)	Comsumption: (Imp. gal./day)	Other Total				
		impti on supplied by municip total consumption used for	pality			
14)	Camp service problem	s, such as corrosion, treatn	ment, pollution, algae, etc.			
		galv. hot water tanks a pro tings attacked by your dome				
			Signature			
			Date			

APPENDIX C

Mines Branch report No. 819 "Industrial Waters of Canada", a report on investigations covering the period 1934 to 1943, was the last general report published and is now out of print. Since then the Branch has published various reports specific to certain river basins or drainage areas, as follows:


- No. 833. Industrial Water Resources of Canada, Water Survey Report No. 1, Scope, Procedure and Interpretation of Survey Studies, by J.F.J. Thomas, 1953. (75 cents)
- No. 834. Industrial Water Resources of Canada, Report No. 2, Chemical Quality of Surface and Civic Water Supplies, Ottawa River Drainage Basin, 1947-48, by J.F.J. Thomas, 1953. (75 cents)
- No. 837. Industrial Water Resources of Canada, Water Survey Report No. 3, Upper St. Lawrence River Central Great Lakes Drainage Basin, by J.F.J. Thomas, 1954. (\$1.50)
- No. 838. Industrial Water Resources of Canada, Water Survey Report No. 4, Columbia River Drainage Basin, 1949-50, by J.F.J. Thomas, 1953. (75 cents)
- No. 839. Industrial Water Resources of Canada, Water Survey Report No. 5, Skeena River, Vancouver Island, and Coastal Areas of British Columbia, 1949-51, by J.F.J. Thomas, 1953. (75 cents)
- No. 842. Industrial Water Resources of Canada, Water Survey Report No. 6, Fraser River Drainage Basin, 1950-51, by J.F.J. Thomas, 1954. (75 cents)
- No. 849. Industrial Water Resources of Canada, Water Survey Report No. 7, Saskatchewan River Drainage Basin, 1951-52, by J.F.J. Thomas, 1956. (75 cents)
- No. 856. Industrial Water Resources of Canada, Water Survey Report No. 8, Mackenzie River and Yukon River Drainage Basins in Canada, 1952-53, by J.F.J. Thomas, 1957. (\$1.00)
- No. 858. Industrial Water Resources of Canada, Water Survey Report No. 9, Churchill River and Mississippi River Drainage Basins in Canada, 1952-54, by J.F.J. Thomas, 1958. (50 cents)
- No. 861. Industrial Water Resources of Canada, Water Survey Report No. 10, Nelson River Drainage Basin in Canada, 1953-56. (in press)
- No. 864. Industrial Water Resources of Canada, Water Survey Report No. 11, Water Quality in the Atlantic Provinces and the Saint John River Drainage Basin in Canada, 1954-56. (in press)
- No. 865. Industrial Water Resources of Canada, Water Survey Report No. 12, Water Quality at some Canadian Military Establishments, 1956-58, by J.F.J. Thomas, 1959.

Memorandum

Series

No. 132. Interim Report on Hardness of Major Canadian Water Supplies by J.F.J. Thomas, 1956. (25 cents)

Any of the above mentioned publications are obtainable from The Queen's Printer, Ottawa or the Publications Distribution Office, Department of Mines and Technical Surveys, Ottawa, Ontario, Canada.

