

CANADA

DEPARTMENT OF MINES AND TECHNICAL SURVEYS

MINES BRANCH MINERAL PROCESSING DIVISION

INDUSTRIAL WATER RESOURCES OF CANADA

WATER SURVEY REPORT NO. 11

THE ATLANTIC PROVINCES, AND THE SAINT JOHN RIVER DRAINAGE

BASINS IN CANADA, 1954-56.

BY

J. F. J. THOMAS

ROGER DUHAMEL, F.R.S.C. QUEEN'S PRINTER AND CONTROLLER OF STATIONERY OTTAWA, 1960

Price \$1.25

SER 622 (21) C212r

CANADA

DEPARTMENT OF MINES AND TECHNICAL SURVEYS

MINES BRANCH MINERAL PROCESSING DIVISION

INDUSTRIAL WATER RESOURCES OF CANADA

WATER SURVEY REPORT NO. 11

THE ATLANTIC PROVINCES, AND THE SAINT JOHN RIVER DRAINAGE

BASINS IN CANADA, 1954-56.

BY

J. F. J. THOMAS

ROGER DUHAMEL, F.R.S.C. QUEEN'S PRINTER AND CONTROLLER OF STATIONERY OTTAWA, 1960

Price \$1.25

Price \$1.25 Cat. No. M32-864 Available from the Queen's Printer Ottawa, Canada .

- -

·

CONTENTS

.

PAGE	\mathbf{P}	A	GE
------	--------------	---	----

Introduction	5
The Atlantic Provinces and Saint John River drainage basins in Canada	7
Survey procedure	8
Analytical procedure	8
Description of municipal water systems in the basins	64
Discussion	146
Summary	152
Appendix A – Surface water sampling locations	154
Appendix B – Municipal water systems within the drainage areas studied	157

TABLES

I – Area and population distribution in the drainage basins	6
II-Chemical analyses of surface waters in the Atlantic Provinces and in the Sa	int
John River drainage basins in Canada	14
III - Chemical analyses of municipal water supplies in the Atlantic Provinces and	d in
the Saint John River drainage basins in Canada	
IV - Municipal water supplies in the drainage basins: summary of data on systems	s,
treatment and population served in 1951 and 1956	149
V-Municipal water supplies in the drainage basins: summary of data on water	
hardness, 1951 and 1956	151

(#)

FIGURES

Fig.	1	Map showing major drainage areas under study in Eastern Canada	4
Fig.	2	Map showing the location of sampling stations and municipal water supplies in the Atlantic	
		Provinces and in the Saint John River drainage basins in Canada)
Fig.	3	Chart showing variation in water hardness in the Saint John River system in Canada 1	0
Fig.	4	Relationship between mineral content and river discharge, Saint John River at Hawkshaw, N.B 1.	1
Fig.	5	Relationship between mineral content and river discharge, St. Mary's River at Stillwater, N.S 1	2
Fig.	6	Relationship between mineral content and river discharge, Gander River at Glenwood, Island of	
-		Newfoundland 1	3

FIGURE 1. MAP SHOWING DRAINAGE BASINS UNDER STUDY IN EASTERN CANADA

FIGURE 1. MAP SHOWING DRAINAGE BASINS UNDER STUDY IN WESTERN CANADA

ERRATA

Page 7, line 17 from bottom, <u>for</u> "There is heavy frost in the" <u>read</u> "There is heavy forest in the"

Page 147, line 13 from bottom, <u>for</u> "are significant" <u>read</u> "are insignificant".

INDUSTRIAL WATER RESOURCES OF CANADA

Chemical Quality of Surface and Municipal Water Supplies in the Atlantic Provinces and in the Saint John River Drainage Basins in Canada, 1954 - 1956/

INTRODUCTION

This report, the eleventh in a series continues the tabulation of data on the chemical quality of surface and municipal water supplies available for industrial and domestic use in Canada. Water Survey Report No. 1¹ introduced the series and outlines the aim, scope and procedure of the country-wide survey; it also includes general information, tables and graphs for use in interpreting the analytical results appearing in subsequent reports.

Studies on water quality in the specific areas or drainage basins outlined in Figure 1 are reported in detail in Water Survey Reports Nos. 2 to 11 inclusive: Figure 1 serves as an index to these ten reports. Only the areas designated Hudson Bay and Arctic drainage basins – for the most part very sparsely settled and relatively inaccessible – have not yet been studied in detail.

This report records the results of studies in the important eastern coastal region of Canada comprising four provinces and part of a fifth. It covers the drainage basins of the Saint John River in Quebec and New Brunswick and the draining basins of many other rivers in the Atlantic Provinces, i.e. Nova Scotia, Prince Edward Island, New Brunswick and the island of Newfoundland.

The method of presentation in this report is essentially the same as that employed in previous reports of the series, with no attempt being made to discuss in detail all the information recorded herein or obtained during the survey. However, some statistics on water quality and use at the time of this survey are presented and briefly discussed.

Table I and Figures 1 and 2 show the relationship of area and population (1951 and 1956) in the drainage basins covered by this report to other areas or basins studied or under study. Reference should be made to tables and maps of Water Survey Reports 2 to 10 inclusive for closer comparison of the various basins.

Table II gives in detail most of the analytical results obtained on surface waters in the drainage areas, while Figure 2 (in pocket) shows the location of the sampling stations which are listed alphabetically in Appendix A.

Figure 3 is a graphical presentation of much of the information in Table II on water hardness in the Saint John River system in Canada. It shows the change in total and non-carbonate hardness of this river as it flows to the sea. Additional data on chemical water quality in this watershed have recently been obtained by the New Brunswick Water Authority, a provincial body formed since 1956.²

Some relationships between mineral content and river discharge are graphically shown in Figures 4, 5, and 6; these figures respectively report some of the data of Table I on Saint John River at Hawkshaw, N.B., St. Mary's River at Stillwater, N.S. and Gander River at Glenwood, Island of Newfoundland. Similar graphs can be prepared from Table II for a number of other rivers and locations.

Table III reports the chemical quality of most waters supplied by organized municipal systems within the drainage areas; these municipalities are listed alphabetically in Appendix B and their locations are shown on the map of the area (Figure 2, in pocket) so as to classify them as to water hardness.

Table IV summarizes information available on the number of water systems, the character of the water sources, type of water treatment, if any, and the populations served by the systems, in 1951 and 1956.

Additional statistics, especially on the water hardness of municipal waters, are tabulated in Table V. A description of the systems and waterworks plants and their operation in 1954 and/or 1956 is also given.

Survey studies in the areas covered by this report were greatly facilitated by the cooperation of provincial and municipal officials, many of whom collected water samples and provided information on the operation of their waterworks systems. Assistance in the collection of water samples from a number of industrial firms, particularly pulp and paper and hydroelectric power companies, is also gratefully acknowledged.

² Freliminary Survey of Pollution in the Saint John's River Watershed – An Interim Report to the New Brunswick Water Authority – James F. MacLaren Associates, Saint John, N.B., August, 1958.

¹Water Survey Report No. 1 - Scope, Procedure and Interpretation of Survey Studies, Mines Branch Report No. 833, 1952.

	Appro. d	ximate area rained		Estima popul draina	ted total ation in ge areas	E popul wit organ	istimated ation served h water by nized system	Ir	acorporated Com	munities
Drainage basin of	Square miles	Percent of Province	Cen <u>s</u> us year	in hundreds	as percentage of total	in hundreds	as percentage of total population	No.	Estimated population in hundreds	Percentage of total population
Island of Newfoundland	42,734	100	1956	4,043	100	1,304	32.3	33	1,387	33.4
			1951	3,535	100	1,145	32.4			
Nova Scotia	21,068	100	1956	6,947	100	3,338	48.0	42	3,172	45.7
·			1951	6,426	100	3,047	47.4			
Prince Edward Island	2,184	100	1956	993	100	236	23.8	22	376	37.8
			1951	984	100	221	22.5			
New Brunswick Saint John River	10,985	(39.3	1956	2,363	42.6	1,367	57.9)	27++	1,986++	35.8++
		100 {	1951	2,235	43.3	1,228	54.9)			
Remainder	17,000	(60.7	1956	3,183	57.4	917	28.8)			
			1951	2,920	56.7	788	27.0)			
Quebec+ Saint John River	2,700	(0.45	1956	562	1.2	100	17.8)	527++	32,389++	69.9++
		0.79	1951	490	1.2	89	18.2)			
Restigouche Biver	2,000	((0.34	1956	348	0.75	111	31.9)			
			1951	317	0.78	99	31.2)			
Totals	98,671		1956	18,439	11.4*	7,373	40.0			
	(2.6%)*		1951	16,907	12.1*	6,617	39.1			

.

TABLE I Area and Population Distribution in the Drainage Basins

* Of all Canada + About 0.8% of the province ++ Approximate for total province

•

As in other basins, officials of the Water Resources Branch, Department of Northern Affairs and National Resources assisted by supplying data on river discharges.

The Atlantic Provinces and the Saint John River Drainage Basins in Canada

The 98,760 square-mile area covered by this report has many separate drainage basins or watersheds draining into the Atlantic Ocean, the principal ones being those of the Saint John, Ste. Croix, Miramichi and Restigouche rivers in New Brunswick and Quebec; the Margaree and Annapolis rivers in Nova Scotia and the Humber, Exploits and Gander rivers on the island of Newfoundland. None of these basins are large in comparison with those considered in previous reports of this series, the largest being that of the Saint John River which drains about 13,700 square miles in Canada, and in the United States about 7,000 square miles of northern Maine. The Miramichi, Humber, Exploits and Gander rivers drain approximately 4,900, 2,800, 4,600, and 2,000 square miles respectively. Many of the region's rivers are very short and are tidal for considerable distance upstream, the longer rivers are Saint John - about 418 miles; Exploits - 153 miles; Miramichi - 135 miles; Margaree - 130 miles and Gander - 102 miles. Glaciation of the area left many lakes. Some of the larger lakes are on the island of Newfoundland, Deer - 24 square miles; Grand - 140 square miles; and Gander - 49 square miles. In New Brunswick, Grand - 65 square miles, and in Cape Breton Island the brackish Bras d'Or, about 360 square miles in area.

These drainage areas lie within the Canadian Applachians, a part of the continuous geological structural unit extending northeastward from Tennessee and Arkansas in the United States. This is a geological region of severely folded and faulted rocks ranging from Precambrian to Palaeozic with considerable intrusion of granite and ultrabasic rocks of the latter age. Two major geosynclines run through the region; -the Laurentian, known in northwest Newfoundland as the Longe Range Mountains (2,500 feet elevation) and as the Shickshock and Notre Dame Mountains in the Gaspé Peninsula and Eastern Townships of Quebec. The other is the Acadian, running through the southeastern part of the island of Newfoundland and producing the uplands of New Brunswick and Nova Scotia.

Because the area was glaciated, the mountains are eroded and low in elevation with long, smooth outlines and only in the Gaspé Peninsula do they reach 4,000 feet elevation. The Saint John River, a broad, relatively shallow waterway, cuts across the York Plateau in its middle and lower reaches. In its upper reaches, it flows through an elevated plateau, 1,000 to 1,500 feet above sea level, made up mainly of calcareous or lime-containing shales. Between the upland hills in much of the Maritime provinces are found wide, fertile valleys floored with sandstone, as for example, the Minas Basin in Prince Edward Island, the valleys of the Annapolis and Saint John rivers. Generally the rivers have left fertile terraces suitable for agriculture.

Except for the Longe Range mountains, the island of Newfoundland is a relatively low, rolling upland. In the south and east are many barren rocky areas, covered with ponds and swamps. There is heavy frost in the river valleys and along the west coast and nowhere is there any extensive farm land. The climate is temperate with cool summers and usually mild winters. Pulp and paper manufacture, fishing and mining are important to the island. Extensive iron ore deposits are worked at Bell Island and the base metals, lead, zinc and copper are mined in the interior at Buchans.

Prince Edward Island is only about 120 miles long with an average width of 20 miles. None of the rivers can be classed as large or industrially important and most are tidal for most of their courses. The island is noted for its agriculture and fishing although it also has considerable forest suitable for the production of paper.

Nova Scotia also has relatively short rivers because of the central high ridge (1,500 feet average elevation) running lengthwise through the province. This ridge shelters the fertile valley of the Annapolis River thus permitting extensive farming and fruit-growing. The province has important deposits of salt, gypsum and bituminous coal, the latter near Sydney on Cape Breton Island and near Stellarton and Springhill on the mainland. Fishing is also an important industry.

New Brunswick and that part of the Saint John River basin in Quebec are rolling uplands with many rather wide river valleys. The highest mountains (2,690 feet) in New Brunswick are found near Grand Falls. The climate varies considerably depending on the distance from the ocean. In the northern part the summers are short and the winters cold, (snowfall averages 105 inches). In the southern part of the province both the summers and winters are warmer with snowfall about 96 inches. Precipitation is greater in the south and along the coast, the average rainfall varying from 35 inches in the interior to 45 inches along the coast.

New Brunswick and the Saint John River basin in Quebec are noted for the manufacture of pulp and paper, agriculture, mining and fishing. Mining and pulp and paper manufacture are especially important in the north and west. The granite intrusions of the Appalachian region have given rise to a number of important mineral deposits, base metals in the Gaspé Peninsula, and in the Bathurst and Newcastle areas of New Brunswick, and gold and other metals in Nova Scotia. Deposits of coal, petroleum and natural gas have also been found in New Brunswick.¹

SURVEY PROCEDURE

The methods of sampling and the survey procedure employed in this investigation were essentially the same as those used in previous surveys and outlined in detail in Water Survey Report No. 1.²

Because information on water quality in the Atlantic maritime area of Canada was especially requested, field studies to establish sampling stations and determine the extent of survey coverage were carried out in the fall of 1953. Except on the island of Newfoundland a year-long sampling program was initiated in July, 1954, at 45 locations on rivers and lakes. These monthly and bi-monthly sampling stations, listed in Appendix A and shown in Figure 2, were chosen so as to give representative samples of river or lake waters; the samples were shipped directly to the laboratory in Ottawa for chemical analysis. No daily sampling stations were operated but at each location an attempt was made to obtain extra samples at periods of high and low water.

Using a mobile laboratory, field work was carried out in the area during the summer or 1955, when samples of municipal water supplies and surface waters, in addition to samples at most of the monthly and bi-monthly stations, were collected and partially analysed. Some of these field results are reported in Tables II and III, in brackets beside the test results obtained in the laboratory. These field results indicate the quality of the water *in situ* and show if significant changes in quality occurred during shipment to, and storage in, the laboratory.

During field work in the area most of the incorporated municipalities having organized waterworks were visited; information on the operation of their water systems was obtained and samples of raw and finished water were collected and tested in the mobile laboratory. Additional information on these and other systems was obtained later by correspondence with municipal officers or officials of the several provincial health departments.

During 1955-56 a number of surface water sampling stations were operated on a monthly basis on the island of Newfoundland, and municipal waters were analysed. Difficulties in shipment to and from areas of Newfoundland limited the number of stations established and therefore limited coverage of water quality on the island. Provincial and municipal officials on the island also collected and forwarded samples of the various municipal waters and provided information on the operation of their water systems.

In late 1958 and early 1959 some additional information was obtained on major changes in a number of systems in the area and is included in this report. However, no attempt has been made to bring the data of Tables I, IV and V on all water systems up to the date of publication.

ANALYTICAL PROCEDURE

The analytical methods and techniques used in this study are essentially the same as those employed in the survey studies published in Water Survey Reports Nos. 9 and 10.³ Basic analytical techniques and interpretation of the results are also discussed in some detail in Water Survey Report No. 1.⁴

The standard procedures for the analyses of waters recently published by the American Public Health Association⁵ and the American Society for Testing Materials⁶ were employed for most determinations. However, close cooperation between the Industrial Minerals Division of the Mines Branch, and committees of the above societies enabled the Division to use certain new analytical techniques and procedures.

Water Survey Report No. 10 discusses in some detail important changes in analytical methods brought into use during the period 1953 to 1956 inclusive. Since the studies herein reported were also carried out in this period

¹ Economic Geology Series No. 1, - Geology and Economic Minerals of Canada (third edition) Geol. Surv., Canada, 1947

² See reference, page 1 ³ See Figure 1

³ See Figure 1

⁴ See reference, page 1 ⁵ Standard Methods for

⁵ Standard Methods for the Examination of Water, Sewage and Industrial Wastes - 10th Edition, 1955 -American Public Health Association Inc. - 1790 Broadway, New York 19, N.Y. ⁶ Manual on Industrial Water - A.S.T.M. Special Technical Publication No. 1488 - American Society for Technic Meteorical - 1016 Prov. 5

⁶ Manual on Industrial Water - A.S.T.M. Special Technical Publication No. 148B - American Society for Testing Materials - 1916 Race St. Philadelphia 3, Pa.

similar changes in analytical methods and techniques were used. These improved techniques have made it possible to present wider coverage in each drainage area, and increased analytical information on each water.

The determination "oxygen consumed by permanganate (KMnO₄)" was begun in October 1954 on all waters, and the determination of copper, aluminum, manganese and ammonia was initiated about May, 1955 on all municipal waters, on spot samples of surface waters and on every quarterly sample from a monthly sampling station. Spot tests for zinc were begun at a later date. Changes in the methods for determining sulphate, chloride and alkalinity, as discussed in Water Survey Report No. 10, were also initiated during the period covered by this report.

In order to permit increased coverage on waters, the determinations of residues on evaporation and ignition were omitted on every two out of three samples of waters received from a monthly station. However, it is considered that sufficient information is still reported on all waters to show clearly if significant seasonal variation is occurring.

An "average" value for water quality at each monthly sampling station is again omitted from this report. Such averages are of little value if water quality varies widely or if adequate discharge records are not available. True averages should be determined from numerous samples weighted as to discharge.

The saturation index, stability index and per cent sodium are reported for all waters. Interpretation of these calculated values has already been discussed in Water Survey Reports No. 1, 10 and 12; in brief, per cent sodium when correlated with total mineralization and boron content indicates the suitability of the water for irrigation; the saturation and stability indices are useful for assessing the corrosive and scaling tendency of the water. Care, however, must be exercised in interpreting these indices since many other factors are important, for example, when calcium hardness is less than about 10 ppm and the alkalinity is correspondingly low, there is no pH at which calcium carbonate can precipitate, and thus the indices have little significance. This is true for many of the very soft and low mineralized waters of this area. These indices and the free carbon dioxide content of the waters are calculated and reported for each water at the temperature of analysis. These values change significantly with changing temperature, pH and alkalinity. The carbon dioxide content of a cold deep well water may be markedly different from the content of the same water at laboratory temperature.

Dissolved oxygen was not determined on surface waters because it varies so widely with sampling location and depth, temperature, etc., and in most rivers, unless depleted by pollution, it is always near saturation. A survey of the dissolved oxygen content of streams requires detailed and specially designed study; such a study has been carried out on several rivers in New Brunswick for the New Brunswick Water Authority.¹²

¹ See reference, page 3

² Preliminary Survey of Pollution in the North Shore and East Coast Areas of New Brunswick - An interim report to The New Brunswick Water Authority - James, F. MacLaren Associates, Saint John, N.B., January, 1959.

FIGURE 3. GRAPH SHOWING VARIATION IN WATER HARDNESS IN THE SAINT JOHN RIVER SYSTEM IN CANADA

TABLE II

Chemical Analyses of Surface Waters in the Atlantic Provinces and in the Saint John River Drainage Basin in Quebec

(In part.	s per m	illion)
-----------	---------	---------

			Stzeam d (Second	ischarge d-feet)		med	U.				Susp	ended ter	Residu drie (Diss	е ол evap d at 105 ⁰ colved sol	oration C. ids)		S141	
No.	Date of collection	(Day s)	On sampling date	Monthly meaa	Water temp- erature (⁰ F.)	Oxygen consu by KMnO4	Carbon dioxid (calculated)	рН	범 이 이 (Hazen) (Units)	C sin (s)	Dried ^{at} 105 ⁰ C.	Ignited at 550°C.	Parts per million	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance $K \times 10^6$ at 25^0 C.	(Ca)

SAINT JOHN RIVER DRAINAGE

STATION NO. 1-SAINT JOHN RIVER

		Gauge height in feet													
I	Sept, 26/52	 3.07				4.5	7.2	35		 	60**	0.082	 	81.8	14
2	Apr. 10/53	 9.32		••••	•••••	7.9	6.4	55	•••••	 	48**	0.065	 	33.4	5.4

• Data supplied by Quality of Waters Branch, Water Resources Division, United States Geological Survey, Washington, D.C. •• Dried at 180°C.

					1					ı					SI	ATION N	D. 2 – SAIN	t john ri	IVER
3	July Aug.	3/54 4	9:47 12:15	30,300† 8,840	14,800† 15,500	61 65		4.2 0.8	7.0 7.8	120 60	1 3			67.0	0.091	5,475	28.4	85.4 55.5	6.9 9.1
5 6 7	Sept. Oct. Nov.	2 2 3	6:50 10:32 13:41	7,250 23,900 8,860	14,700 17,600 11,500	63 65 40	····· ····· 11	2.2 1.0 2.3	7.4 7.5 7.4	25 130 65	0 2 1			65.2	0.089	4,202	29.0	79.5	6.2 7.5 8.5
8	Dec.	-	No samp	le takentt	6,82011														
9 10	Jan. Feb.	4/55 5	9:36 3:27	5,700 2,940e	4,340 2,720	33 33	9.1	2.7 4.3	7.2	50 40	0.2			54.8	0.075	842	22.8	55.6 62.8	8.2
11	Mar.	3	15:53	3,090	3,620	32		3.3	7.2	35	0			56.0	0.076	5.42		65.7	9.6
13	May	2	11:23	73,200	42,800	40		1.8	7.4	35	2	•••••				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		58.7	9.4 9.4
15	July	3	22:37	3,470	3,230	74	16	5.0 1.2	7.6	45	0.8		····	56.8	0.077	530	24.8	44.2 63.1	9.9

e estimated, † Discharge records, ¼ mile below mouth of Fish River at Fort Kent, Maine, U.S.A.; total drainage area, 5,690 square miles. † Ice conditions December 21, 1954 to April 17, 1955.

														VER					
16	Aug.	5/54	7:117	14,200	15,500	62		4.1	7.1 (7.4)	70 (70)	3	3.6	0.8	57.6	0.078	2,197	19.6	58.6	9.5
	STATION NO. 4 – SAINT JOHN RIVE														VER				
17 18 19	July Aug. Aug.	6/54 6 6*	6:42 4:13 10:45	28,000† 28,000 28,000	18,900† 24,300 24,300	62.5 60.5 64		3.2 1.2 1.9	7.2 7.7 7.5	75 60 60	1 6 8			66.4	0.090	4,997	12.4	60.3 71.8 75.9	9.0 11.4 11.7
20 21 22 23	Sept. Oct. Nov. Dec.	7 6 6 7	6:45 8:28 4:34 4:84	11,000 32,200 19,800 8,910	21,800 26,400 18,900 10,900	59.5 50 50 34	18 17 13 15	3.2 2.1 1.1 3.2	7.3 7.4 7.7 7.3	50 95 45 40	3 2 5 1	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	81.2	0,111	7,092	27.0	70.9 64.7 78.2 88.4	12.6 10.1 11.2 12.1
24 25 26 27 28	Jan. Feb. Mar. Apr. May	14/55 7 8 9 9	10:32 4:52 7:48 6:46 4:9	7,400 4,630 6,800 10,300 87,100	7,280 5,510 6,930 47,400 62,600	32 32 32 41 48	18 16	6.0 7.8 5.8 3.6 1.6	7.0 7.0 7.1 7.2 7.4	40 40 40 35 40	0.2 2 0.8 3 4		• • • • • • • • • • •	80.4 	0.109	1,600 2,432	38.4 36.8	90.9 108.2 105.9 92.0	12.8 15.2 14.7 12.6 9 1
29 30	June July	9 7	18:26 13:20	14,800 6,050	14,900 5,150	58 73	18 14	3.4 1,3	7.2 7.7	40 30	25	9.5	5.3	66.4 68.4	0.089 0.093	2,610 1,117	30.8 21,6	72.8 87.0	10.9 13.6

* Sampled from ferry, 7 miles downstream from Grand Falls, N.B. † Discharge records 1,800 feet downstream from generating station of the Gatineau Power Company.

											_	STATION NO. 5 - SAINT JOHN RIV													
31 32	July Aug.	9/54 9	7:41 9:42	32,600 35,400	32,200 36,200	62 63	16	1.7 2.2	7.5 7.5	70 60	3 8	4.5	3.5	69.6	0.095	6,149	29.8	76.5 85.7	11.2 12.8						
33 34	Sept. Oct.	10 12	5:42 10:31	11,700 33,400	36,200 39,100	59 49	15 13	2.3 1.1	(7.6) 7.5 7.8	55 60	2	10.6	9.0		0.101	6.691		91.9 83.4	14.8						

* Sampled at highway No. 6 bridge.

ı

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec (In parts per million)

	Iro (Fe	n ;)	-				Alk	alis										Hard as C	ness aCO3	uents	Ę	еx		
Magnesium	Tœal	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Boron	Non- car- bonate	Total	Sum of constit	Per cent sodiı	Saturation ind	Stability index	No.
(Mg)			(Mn)	(A1)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO ₃)	(HCO3)	(SO4)	(Cl)	(F)	(NO3)	(SiO2)	(B)							
BASI	N IN C	AN AL	<u>A</u>																					
at DIC	CKEY, A	ROOST	00К С	o., mai	NE, U.	S.A.*																		
																		[-			
1.6	0.02	0.0	0.04	0.1	0.0	0.0	1.3	0.3		0.0	45	2,2	0.0	0.2	3.7	4.7		5	42	50	6.2	-1.5	10.2	1
0.4	0.07	0.07	0.0	0.3	0.0	0.0	0.9	0,8		0.0	12	6.2	1.6	0.2	0.9	3.3		7	17	25	9.8	- 3.2	12.8	2
near (ONNOR	S, N.B.													·	r	1		Γ					
1.3		0,12	0.0 	 	 	••••	6,1 1,5	0.4	• • • • • • • • • •	0.0	26.3 33.2	5.6	8.2 0.6	0.0	0.4	4.7		1.7	23.3	46.9 37.7	3.6 10.2	-2.2 -1.2	11.4 10.2	3
1.0		0.09		0.08	0.0		1.0	0.5		0.0	21.0 23.9	2.8 4.0 5.4	0.5 1.4 0.7		0.4 4.0 0.6	4.2		5.6	29.5	30.4 34.1	7.4 8.5 7.1	-1.8 -1.7	11.0	5 6 7
 1.3	•••••	0.05										61									····			8
1.5 1,2							1.2	0.2		0.0	31.7 30.6	4.1	0.9		0.6	3.7		2.6	28.6	36.8	8.3 8.2	-1.9 -2.0	11.1	10
1.2 0.8		0.04	0.0 	0.03	0.0		1.0 0.9	0.5 0.4	 	0.0 0.0	26.8 26.8	4.4	0.7 0.6	0.0	0.6 0.4	6.1 4.1		3.9	25.9 24.3	36.2 33.6	7.5	-2.1 -1.7	11.2 10.8	12 13
0.5		0,04	0.0	0.02	Trace	••••	0.7 0.8	0.3	0.2	0.0 0.0	18.9 29.6	4.4 4.9	0.5 0,6	0.0	0.8 1.2	3.2 3.4		5.3 4.1	20.8 28.4	27.2 36.9	6.7 5.6	-2.2 -1.3	11.4 10.2	14 15
																			•					
near C	LAIR, N	Ι.В.																						
1.0		0.07	0.0	0.0			1.2	0.3		0.0	31.0	3.9	1,0		0.7	4.4		2.4	27.8	37.4	8.4	-1.9	10.9	16
at GR			RD.			450			ļ	(0)	(30.3)	I		<u> </u>		1	I	L						I
1.6	0.13	0 13		ainage	area, c	,450 sq	uare m	nies.]	0.0	20 5	60				<u>.</u>	<u> </u>		1					<u> </u>
1,5	•••••	••••					2.1 2.4 1.6	0.5		0.0	28.5 38.0 38.0	3.5 3.2	1.1		4 4.0	4.9		. 3.6	29.1 34.8	39.5	13.4 12.8	-1.9	9.9	17
0.7							1.5	0.3		(0) 0.0	(40.5) 35.7	3.5	1.0		1.2	4.4		(2.9)	(36.1)	42.8	8.6	-1.6	10.5	20
1.3 1.6	· · · · · · · · · · · · · · · · · · ·	0.07	0.0	0.28	0.0		1.4 1.2	0,6 0,4	 	0.0 0.0	31.5 34.7	4.0 5.4	1.7 1.9	 	2.8 1.6	4.4	0.0	4.8	30.6 34.5	42.2 45.4	8.8 6.9	-1.6 -1.2	10.6	21 22
1.6 1,6	• • • • • • • • • • • • • •	0.08	0.0	Trace 0.0	0.0		1.3 1.3	0.3 0.4	0.0	0.0	37.5	9.1 12.5	1.5 2.1	0.0	0.8	4.8		. 6.0	36.8 38.5	50.0 53.8	7.0	-1.5 -1.8	10.3	23 24
2.0	 						1.8 1.7	0.5		0.0	46.9 42.9	12.6 12.5	2.7 2.2	 	Trace 0.4	3.7 5.2		7.7	46.2	61.6 60.4	7.7 7.5	-1.6 -1.6	10.2 10.3	25 26
0.4	•••••	0.04	0.0	0.05	0.0		1.6 0.8 1.0	0.6	0.15		34.1	2.9	2.2	0.0	1.2	3.6		$\begin{array}{c c} 10.0 \\ 4.4 \\ 6.7 \end{array}$	38.0	53.0	8.2	-1.7	10.6	27
1.4		0.03	0.0	0.04	0.0		1.3	0.4	0,4	0.0	42.8	5.0	1.0	0.0	0.8	3.9		4.6	32.5 39.7	45.4	6.2	-1.8	9.5	29 30
at EAS	T FLOR	ENCE	/ILLE,	N.B.*	- Drain	age are:	a, 13,4	130 squ	are mil t	es,	·			·			-1			·	· · · · ·	·-		·
1.7 1.5	 	0.12	0.0	· · · · · ·			1.8 1.9	0.6 0.4		. 0.0	33.9 41.4	7.6 5.8	1.3 1.5	0.	. 1.2 2 1.2	4.8 4.7		. 7.0) 34.8 38.1	47.0	9.9 7.3	-1.4 -1.3	10.3 10.1	31 32
0.9 1.4		0.32	0,0	0.0			1.7 1.5	0.4 0.4		. 0.0 . 0.0	40.3 44.2 41.8	5.4 4.5	1.6 1.2	 0.:	. 1.2 2 1.0	4.5 5.2		. 4.	4 40.7	7 52.3 4 49.8	8.0 7.5	-1.2 -0.9	2 9.9 9.6	33 34

Chemical Analyses of Surface Waters in the Atlantic Provinces and in the Saint John River Drainage Basin in Quebec

(In parts per million)

			Stream d (Second	ischarge l-feet)		međ	U U				Susp mat	ended ter	Residu dria (Diss	e on evap ed at 105° solved sol	oration C. ids)			
No.	Date of collection	Storage perioc	On sampling date	Monthly mean	Water temp- erature	Oxygen consu by KMnO4	Carbon dioxid (calculated)	рН	Colour	Turbidity	Dried at 105º C.	Ignited at 550 ⁰ C.	Parts per million	Tons per acre- foot	Tons per day	Loss on igni- tion at 550 ⁰ C.	Specific conduct- ance $K \times 10^6$ at 25^0 C.	Calcium
		(Days)			(ºF.)		(CO ₂)		(Units)	(Units)					ł			(Ca)
														ST	ATION N	0.6-SAI	NT JOHN R	IVER
1	Aug. 9/54	9:42	•••••		66		1.4	7.7 (7.0)	35 (80)	10	•••••	•••••		•••••			92.2	14.8
_														ST	ATION N	10. 7 – SAII	NT JOHN R	IVER
2	July 9/54	7:41	34,400†	33,800†	62	16	6.1	7.0	70	3			. 72,2	0.098	6,690	27.4	82.5	12.1
3	Aug. 10	8:41	35,900	34,200	63		1.6	7.7	40	8	• • • • • • • • •	•••••	•••••	•••••	•••••	•••••	91.3	14.3
4	Sept. l	8:21	16,300	37,300	62		2.6	7.5	60	1							90.2	14.3
5	Sept. 10	5:42	13,400	37,300	58	13	2.9	7.5	45	3							96.3	15.7
6	Sept. 13	4:30	135,000	37,300	55	10.5	1.1	7.9		175			85.8	0.117	31,670	27.6	93.4	16.1
7	Oct. 11	4:50	33,900	42,100	50	17	1.6	7.6	65	2							81.1	13.1
8	Nov. 10	7:54	36,900	34 <i>4</i> 00	40	9.7	1.4	7.7	55	2							89.5	14.1
9	Dec. 13	3:49	19,500	26,000	34	14	3.2	7.4	40	10	15	10	88.0	0.120	4,640	36.0	106.3	16.7
10	Jan. 10/55	3:25	19,100	18,000	34	8,5	2.7	7.5	35	0							114.6	17.8
11	Feb. 14	7:38	17,900	21,600	32	12	2.6	7.5	35	8							169.4	19.0
12	Mar. 9	6:47	18,300	21,300	33	9.4	3.0	7.4	40	8	10.1	8.5	91.2	0.124	4,500	22.8	129.9	17.9
13	Apr. 11	4:25	43,300	88,200	32		1.2	7.8	30	6							114.9	16.6
14	May 11	6:14	114,000	90,100	43		3.8	7.1	40	6		• • • • • • • • •					65.6	9.7
15	June 10	17:25	27,900	26,300	64	15	3.2	7.3	40	0.8			70.0	0.095	5,252	28.8	85.5	13.6
16	July 12	13:28	7,520	8,940	75	14	1,8	7.7	25	0.8			82.4	0.112	1,672	16.0	116.0	19.0

† Discharge records at highway bridge at Pokiok, N.B.; ice conditions December 29, 1954 to April 19, 1955.

														SI	ATION N	10, 8 – SAI	nt john h	RIVER
			Gaugeheight	in feet														
17	July 12/54	4:38	6.1+		64	16	3.2	7.3	65	1			75.8	0.103		30.0	87.0	13.3
18	Aug. 12*	13:50			63		1.6	7.3	45	8							111.3	14.1
								(6.9)	(70)									
19	Aug. 12	5:20]	62		8.0	7.0	50	0							91.0	14.9
20	Sept. 13	4:39	15.27		58	17	1.1	7.9		35				. 			106.3	18.1
21	Oct. 12	3:41	7.01	• • • • • • • •	54	15	2.1	7.5	60	10	11.1	9.6	74.6	0,102		23.8	85.3	13.8
22	Nov. 13	5:53	7.1†.		41	10	1.4	7.7	50	4							96.8	15.2
23	Dec. 13	6:43	7.6†		33	13	2.4	7.5	40	40							107.2	16.7
24	Jan. 12/55	5:34	8.67		32	9.6	2.4	7.5	40	0.3			88.8	0.121		27.2	1 10.8	16.6
25	Feb. 14	7:38	7.71		32	10	3.4	7.3	30	3							111.5	14.7
26	March	No sar	nple taken															
27	Apr. 12	6:25	10.01		33		2.7	7.4	30	9							104.1	15.5
28	May 12	5:28	15.9†		45	9.6	1.9	7.4	40	4	9.6	6.9	61.6	0.084		31.2	66.2	10.0
29	June 16	20:76	5.91.		62	17	2.1	7.5	35	3			78.4	0.107		23.6	108.5	14.6

* Sampled after chlorination -† Collector's estimate of discharge records

STATION NO. 9-SAINT JOHN RIVER

30	Aug.	13/54	13:169	High	 63	 0	9.5 (7.6)	70 (70)	4	8.8	2.6	73.2	0.099		31.2	78.7	12.2
													STA	ATION NO	D. 10 - SA	INT JOHN R	IVER

			Gaugeheig	sht in feet											 		
31 32	July 14/54 Aug.	12:55 No sam	4.0† ple taken		70		3.5	7.2	60	2		•••••	65.6	0.089	 28.8	70.9	9.3
33 34	Sept. Oct. 14	No sam 8:56	ple taken 3.5		. 52	14	1.4	7.6	70	1			83.6	0.114	 28.4	96.8	11,8

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec (In parts per million)

				La compressione	· · · · · · · · · · · · · · · · · · ·	10.0	A							· · · · · · · · · · · · · · · · · · ·						·,				· · · · ·
	Irc (F	e)					All	alis										Har	dness CaCO3	tuents	шn	lex	ex.	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bícarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Boron	Non- car- bonate	Total	Sum of consti	Per cent sodi	Saturation inc	Stability ind	No.
(M _B)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH3)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO3)	(SiO ₂)	(B)			1				
at WO	ODSTO	CK, N	.в.	·					·												<u>.</u>			
1.7							1.4	0.6		0.0 (0)	42.8 (42.9)	10.3	1.7		1.0	4.4	•••••	8.8	43.9	57.0	6.4	-1.0	9.9	1
at HAV	VKSHAW	, N.B.	-Draina	age are	a at Po	okiok, I	4,950	square	miles .															
1.6		0.12	0.0				2.0	0.6		0.0	37.8	7.8	1.4		1.6	4.7		5.7	36.7	50.5	10.4	-1.8	10.6	2
2.0							2.9	0.5		0.0	46.7	6.9	1.6		1.2	4.8		5.4	43.7	57.2	11.4	-1.2	10.1	4
1.0							1.4	0.4		0.0	47.7	5.9	1.6		1.2	4.3		4.2	43.3	55.0	6.5	-0.2	8.0	5
1.1		0.10		0.11			1.5	0.3		0.0	50.8 39.0	6.8 4.0	2.0		1.6	4.9		3.0 6.9	44.7	47.5	6.3 6.2	-0.7	9.3	7
1.4							1.3	0.3		0.0	41.7	5.3	1.5		1.2	5.3	0.00	6.7	40.9	50.9	6.4	-1.0	9.7	8
1.6	0.05	0.05	0.0	00	0.0	• • • • • •	1.8	0.5		0.0	46.7	8.7	3.2	0.0	2.8	4.2	• • • • •	10.0	48.3 50.6	62.6	7.4	-1.2	9.8	9 10
2.1							9.2	1.1		0.0	50.2	13.1	14.8		3.6	4.3		14.8	56.0	92.0	25.8	-1.0	9.5	11
1.6		0.05	0.0	0.05	0.0		4.1	0.6		0.0	46.7	10.4	6.3	0.1	3.2	5.7	• • • • •	12.9	51.2	73.5	14.4	-1.2	9.8	12
0.9		• • • • • •	• • • • • •				1.4	0.7	0.1	0.0	47.4 28.6	7.5 3.4	2.8		0.8	5.5 4.1		9.5 4.8	48.4 27.9	35.4	5.8 7.1	-1.9	9.4 10.9	13
1.2		Trace	0.0	0.22	0.0		1.0	0.5	0.2	0.0	38.3	8.5	1.0	0.0	1.2	3.8		7.5	38.9	49.9	5.1	-1.5	10.3	15
1.6		0.01	0.0	0.03	Trace	• • • • • •	1.3	0.5	0.0	0.0	57.4	5.8	1.9	0.0	1.2	4.0		6.9	54.0	63.6	4.9	-0.7	9,1	16
at FRI	EDERIC	ton, n	í.B.																					
						1												· · -· · ·						·····
13							29	0.6		0.0	30 5	8.5	16		2.0	5.0		6 4	38.8	54.8	13.9	-1.5	10.3	17
2.1							1.5	0,9		0.0	18.8	24.8	3.9		0.6	3.9		28.6	44.0	60.6	5.8	-1.8	10.9	18
									Í	(0)	(22.7)		• •						(43.5)					••
2,1	•••••	•••••	••••		• • • • •		1.6	1.3	• • • • • •	0.0	48.9	8.4 7.2	2.1	•••••	1.6 2.4	4.3	•••••	5.8 8.8	45.9	59.9	10.8 6.1	-1.6 -0.6	10.2	20
1.4		0.17	0,0	0.17		[1.6	0.4		0.0	41.4	7.9	1.3		1.6	5.2		6.2	40.2	54.1	7.5	-1.2	9.9	21
1.8	•••••					•••••	1.3	0.4	• • • • • •	0.0	45.0	8.0	2.0	• • • • •	2.4	4.9	0.0	8.4	45.3	58.2	5.8	-1.0	9.7	22
2.1	•••••	0.06	0.0	0.08	0.0		1.4	0.5		0.0	47.2	9.7	2.5	0.04	2.4 3.6	6.2 5.1		10.0	48.7	63.4 65.6	5.8 5.6	-1.0	9.5	23 24
2.1						[1.8	0.7		0.0	40.8	10.6	2.8		3.4	3.7		11.8	45.3	59.9	7.8	-1.4	10.1	25
								0.6			42.0	0.1	2.5			. 7		11.2	100	57.2				26
1.9		0.04	0.0	0.07	0.0	••••	1.5	0.5	0.1	0.0	45.0 28.6	5.9	1.6	0.0	1.2	3.8		6.0	40.5 29.5	39.2	6.7	-1.6	9.8	27
1.9		0.06	0.0	0.03	0.0		1.4	0.5	0.0	0.0	44.0	6.9	1.5	0.0	1.6	4.0		8.1	44.2	54.2	6.3	-1.1	9.7	29
near G	AGETO	WN, N.1	в.																					
1.6		0,09	0.0	0.0	0.02		1.5	0.3		1.2 (0)	37.7 (40.3)	5.3	1.7	0.0	1.2	5.6		4.1	37.0 (38.2)	49.3	8.0	+0.7	8.1	30
				L	L	<u>. </u>	L			l								(,,	(3012)	l	d			
		, IN.D.			1		1			<u> </u>			·				r					т	1	

1.4	 0.22	0.0			 3.0	0.9	 0.0	28.3	7.4	3.5		4.0	3.7	 . 5.9	29.1	47.9	17.7	-1.8	10.8	31 32
1,8	 0.12	0.0	0.0	0.0	 4.6	0.6	 0.0	35.8	7.3	7.1	0.1	1.2	4.8	 . 7.4	36.8	57.1	21.6	-1.2	10.0	33 34

88095-5--2

~

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

										_									
			Ŧ	Stream d (Second	ischarge l-feet)		umed	e P				Suspe matt	nded er	Residu drie (Diss	e on evap d at 105°C olved soli	oration C. ds)	Loss	Specific	
	Da	ite	eriod	On	Manufala	Water	O.	ioxic ted)				Dried	Ignited	Parts	Tons	Tons	on ieni-	conduct-	_
No.	و مالية	f	çe p	sampling	mean	temp-	a N	nd bud	pH	4	idity	105°C	at 550°C.	per million	acre-	per dav	tion	K × 10 ⁶	ium
1	Colle	ction	orag	date		erature	by F	calo]	oloi	urbi	, C.	<i>))</i> , c,		foot	,	at 550°C.	25°C	Calc
			ŭ.			- A	8-	50		(Hazen)	H	1							(0)
]	(Days)			(°F.)		(CO ₂)		(Units)	(Units)			l		TATION N	0 10 5	AINT IOWN	DIVER
		- 1							r	[·····				10.10-3		AIVER
1				Gauge heig	ht in feet														
1	Nov.	15/54	9:49	4.5		34	9.6	2,1	7.4	50	6	• • • • • • • •		•••••				84.7	11.2
2	Dec.	14	7:48	4.5		34	11	3.8	7.2	40	2		• • • • • • • •	73.6	0.100	• • • • • • • • • •	27.6	99.9	11.7
3	Jan.	14/55	14:55	3.1	•••••	32	8.2	3.4	7.3	40	0	•••••	• • • • • • • • •		• • • • • • • • •		•••••	724	15.7
4	Feb.	14*	7:44	3.3	• • • • • • • • • •	33	8.0	5.5	7.5	25	2	•••••		65.2	0.080		19.2	91.8	12.3
2	Mar.	14	6:42	2./		37	0.0	1.5	7.5	30	4				0.007		1	79.6	11.1
7	Mov.	14	2.8	9.7		48		2.5	7.2	40	3					[56.1	7.6
8	June	14	22:28	3.8		62	17	2.1	7.3	45	2			62.4	0.085		27.2	70,1	9.9
1	t Col Tid	lectors al influ	reading of	of gauge.	st wind.		L	I		·									
	_												STATI	ON NO. 1	1 – SAINT	JOHN RI	VER and	BAY OF F	JNDY
	(Com	posite	sample)						-					25 200					740
9	June	/50	••••		• • • • • • • • • •			• • • • • •	17.6.	•••••	••••••	•••••	•••••	25,200	34.28		• • • • • • • • • •	•••••	/40
	* San	ipled fr	om harboi	17,									STA	tion no	. 12 – FRC	NTIER L	AKE (SAI	NT JOHN R	IVER)
τo	Aug.	3/54	7:50			66		[4.6	140	5			61.2	0.083		28.2		7.0
								[(6.8)	(180)									
															ST	ATION NO	D. 13 – BI	G BLACK R	IVER
11	Aug.	3/54	7:50	Low		70		1.0	7.7	150	4			70.2	0.095		28,0	81.3	9.2
	* San	upled fr	om highw	1 av No. 24 1	l	I	l	I	(/.2)		I			I	<u>.</u>			1	
	Uu.	.pred II													ST	ATION N	0.14-1	LLAGASH F	IVER
				Gauge hei,	ght in feet*						1								
12	Sept.	26/52		1.88				2.6	7.4	29				56 **	0.076			. 73.8	11.0
3	Apr.	10/53		6.74				8.9	6.5	25				47**	0.064		23	41.0	6.1
	* Da ** Dri	ta supp ed at 1	lied by Q 80º C.	uality of Wa	aters Branc	h, Water	r Resou	rces D	lvisio	n, United	States G	eological	Swvey, W	/ashingto	n, D.C., U	S.A.	15 OT	ED ANCIS I	IVED
			1	<u> </u>	1		<u></u>	1.	Τ	1	<u> </u>	1	1			1			
14	July	1/54	6:14	Hight	·····	61	·····	1.3	7.5	40	2		•••••	52.0	0.071	•••••	17.4	64.7	9.1
ι5	Aug.	4	6:47	Low		64	· • • • •	0.8	7.8	40	3		• • • • • • • •	••••••	•••••		•••••	60.2	9.6
	l_						ļ		(6.5)	(45)								70 4	<u>م</u> -
16	Sept.	3	5:40	High		61	·····	2,3	7.3	45	0			•••••••	•••••	• • • • • • • •	• • • • • • • • • •	/8.0	9.7
17	Uct.	•	No san	ipie takea		110		1 2	1 7 /	25		1						62.4	07
L B	Nov.	2	8:30	High		40	8.2	1.3	1 /.0	55	1	••••••	{·····			1		03.4	9.7
19	Dec.	4100	No san	u:.u		25	111	22	-, -,	د م	0.2			51.6	0.070		26.6	500	07
20	Jan.	4/55	3:50 No. 55	High		' ²²	1	2.2	1 '.3	50	0,2	1	1		0.070		20.0	0,00	7./
21 27	Mar.	5	6.51	прие такеп		34	8.0	2.6	7.2	45	0.2	1		55.6	0.076		22.0	66.6	10.7
22 22	Apr	,	Noser	ple taken		1	0.0	~~~	1	1	0.2]			[]		,
24	Mav	17	8:15	High		41		1.6	7.4	40	2		1					58.9	9.1
25	June	6	12:40	12 ft. abov	/e normal	50		2.3	7.3	35	2							59.0	10.1
26	1 ulv	8	10:19	Low	1	75	15	11.1	7.6	45	0.2	1	I	52.4	0.071	1	16.8	67.3	9.1

† No records; collector's estimate of discharge or river level.

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

				1	1				1		·	<u> </u>	1	1		i								
	Iro (Fe	on 2)	-				Alk	alis										Hard as C	lness CaCO3	tuents	mu	lex	×	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Boron	Non- car- bonate	Total	Sum of consti	Per cent sodi	Saturation inc	Stability inde	No.
(Mg)			(Mn)	(AI)	(Cu)	(Zn)	(Na)	(K)	(NH3)	(CO3)	(HCO,)	(SO4)	(CI)	(F)	(NQ)	(SiO ₂)	(B)							
at OAJ	K POIN	г. н.в.	(Cont	inued)	•	• • • • • • •		L	1	·	·					I"	1		·	·		l		
		1			1	[Г		1				1					
1.4 1.6 1.8 13.0 1.6 1.3 1.3		0.07	0.0 0.0	0.0 Trace	0.0	· · · · · · · · · · · · · · · · · · ·	2.5 2.0 3.4 97.0 2.1 1.3 0.9	0.5 0.6 0.5 4.5 0.5 0.6 0.4		0.0 0.0 0.0 0.0 0.0 0.0 0.0	33.0 35.6 36.2 37.5 33.9 30.0 23.6	5.6 6.9 9.8 33.8 8.8 7.6 2.8	3.4 2.9 5.7 17.6 3.3 2.0 1.3	0.0 0.1	1.2 4.0 1.8 0.6 2.2 1.2 0.4	4.5 2.6 3.6 4.1 5.7 4.3 2.7	0.0	6.6 6.6 11.9 64.3 9.5 8.4 4.9	33.7 35.8 41.6 95.1 37.3 33.0 24.3	46.6 49.9 58.1 364, 53.4 44.2 29.1	13.6 10.6 14.9 67.8 10.7 7.7 7.3	-1.5 -1.7 -1.6 -1.5 -1.0 -1.6 -2.0	10.4 10.6 10.5 10.3 10.8 10.7 11.2	1 2 3 4 5 6 7
1.1		0.15	0.0	0.01	0.0		1.4	0.5	0.1	0.0	27.3	7.3	1.5	0.0	1.6	3.5		6.8	29.2	40.5	9.2	-1.6	10.5	8
at SAI	NT JOH	IN, N.B	•			·									t	1	1		-					
675	0.37						7,600	360 H	Bromide 60 ppm	0.0	115	1,926	13,840			5.4		4,530	4,625					9
at FRO	ONTIER	0.12	QUE.				1.0	0.2		0.0	24.6	3.5	1.0		0.4	4.2		3.7	23.9	31.1	8.3	-4.6	13.8	10
6	T D M		OUE		L	Į	I	<u> </u>	 		(17.7)						I	(1.1)	(22.2)					
near S	1, PAM	PHILE,	QUE.*	r		i	t						·····		1		r			I				
1.3		0.12	•••••	• • • • • •	•••••	•••••	1.1	0,2	• • • • • •	0.0 (0)	29.5 (25.5)	3.8	1.2	••••	1.0	4.7		4.3 · (6.9)	28.5 (27.6)	37.1	7.8	~1.3	10.3	11
				L	L	.	L	L	<u> </u>			·					L	(
near A	LLAGA	SH, MA	INE, U	.S.A.*																				
																						1		
0.9	0.02	0.0	0.0	0.1	0.0	0.0	1.2	0.4		0.0	41.0	1.2	0.1	0.1	0.8	4.6		0.0	31.0	40.6	7.5	-1.4	6.0	12
0.6	0.08	0,01	0.0	0.0	0.02	0.1	0.7	0.0		0.0	17.0	2.4	0.3	0.0	0.2	3.4		4.0	18,0	22,2	7.8	-2.9	12.3	13
					·	•		·		L			.				ł	ļ				·		
neer F	STCOL	זו <u>ה</u> דים	F																					
near L	01000	0.05		0.02	!	·		1							1 1									
0.8	•••••				· · · · ·		2.4	0.4	 	0.0	26.6	6.3 5.1	1.2	•••• ••••	0.8	3.1 2.9		4.1 3.0	25.9	38,0	16.1 8.6	-1.6 -1.2	9.7 10.2	14 15
0.6							1.4	0.5		(0)	(25.2)	57	0.0		0.6	2.0			26.7	26.6	10.0		10.0	16
0.0			•••••				1.4	0.5	•••••	0.0	27.5	5.7	0.8		0.0	5.9	• • • • •	4.5	20.7	50.0	10.0	-2.2	10.9	16 17
0.7	•••••	• • • • • •		• • • • • •		•••••	1,1	0.3		0.0	28.0	4.5	0.9		0.8	3.8	0.00	4.1	27.1	35.6	8.0	-1.5	10.4	18 19
0.9		0.03	0.0	0,0	0.0		1.1	0.3		0.0	27.7	5.5	1.1	0.08	0.8	3.8		5.2	27.9	[°] 36.9	7.8	-1.7	10.7	20
0.6		0.04	0.0	Trace	0.0		1.2	0.3		0.0	30.5	4.6	1.0	0.1	0.8	4.0		4.2	29.2	38.3	8.1	-1.7	10.7	22
0.5				•••••			0.9	0.5	0.1	0.0	24.4	4.4	1.2		0.8	3.7		4.8	24.8	33.1	7.1	-1.7	10.8	23 24
0.6 0.6		0.02	 0.0	0.03	0.0	 	0.8 1.I	0.4 0.4	0.1	0.0 0.0	29.1 25.2	4.1 4.6	0.6 0.9	0.0	0.8 0.6	3.3 3.2		3.8 4.5	27.7	35.1 33.0	5.8 8.5	-1.3 -1.4	10.7 10.4	25 26

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

	*****		4															
			Stream d (Secon	li scharge d-feet)		ımed	le				Suspe mate	ended ter	Residu dri (Disso	e on evapo ed at 105º olved solid	oration C. ls)	Long	Spacific	
	D				177	nst 1	្រុង្ត័ឡ				D: 1	T	Dente	Tons	T	on	conduct-	
No.	Date	pe :	sampling	Monthly	temp-	89	la di	ъН		LT.	at	at	per	per	per	igni-	ance	Ę
	collection	386	date	mean	erature	N See	l du	-	1 E	bid	105°C.	550°C.	million	foot	day	at	at	ciu
		Stor				<u>م کر</u> ا	0.5		3	La L						550°C.	25º C.	Cal
		- 05				Ŭ	ľ		(Hazen)									
	1	(Days)			(°F.)		(CO₂)		(Units)	(Units)	<u> </u>	L						(Ca)
					t				I			r.		STAT	TION NO.	16 – ST.	FRANCIS R	IVER
1	July 3/54	9:47	915†	708†	65	9.2	2.5	7.4	40	1			63.2	0.086	156	19.6	75.1	11.2
2	Aug. 4	12:15	895	1,780	65		1.3	7.8	35	3							79.3	13.8
3	Aug. 5	6:46	1,140	1,780	65		0.9	8.0	40	4	. <i></i>			• • • • • • • • •			79.3	13.1
,					6			(7.5)										
4	Sept. 2	12.22	1 700	1,100	52	10	2.1	/.8 7 c	50	0.7		•••••				1	88.8	12.5
6	Nor 3	13:32	1,/90 821	1 100	35	10.	2.1	7.5	4)	0.7	• • • • • • • • •		02.8	0.090	320	10.0	19.2	12.9
7	Dec. 5	10:50	979	743	38	9.2	1.5	7.6	40	10						{	02.0 77 7	13.1
8	Ian. 3/55	10:37	543	418	34	7.8	1.7	7.6	45	0.2		1	63.6	0.088	94.8	22.0	79.1	13.3
9	Feb. 5	3:27	260	251	31		1.9	7.6	40	2							85.3	14.3
10	Mar. 2	15:33	308	351	33		2.9	7.4	35	0			[[1	88.2	14.6
11	Apr. 1	12:54	372	2,970	35	7.5	6.3	7.1	30	0			70.8	0.096	70.9	27.2	90.8	15.1
12	May 2	11:22	7,810	4,510	38		1.7	7.5	35	2							69.9	11.5
13	June 1	12:40	2,280	1,350	50		2.3	7.3	35	2							59.0	10.1
14	July 5	20:35	469	345	72	15	1.1	7.7	35	0			58.4	0.079	73.5	20.0	71.5	12.1
			Gauge heig	sht in feet											SIAT		- FISH RI	
15	0.12/52	-	2 47*		1			7 4	16				c188	0.000		10		
<u> </u>	000.15/35		2.41					7.4	1.15	•••••			31.0	0.009		10	••••	11
_	* Data suppl ** Dried at 14	lied by Q 80°C.	uality of Wa	aters Branc	h, Water	Resour	ces Di	visioa	, U.S. Ge	ological	Survey, W	Vashingtor	, D.C., U	.S.A.	STATION	NO. 18 –	CABANO R	IVER
16	Aug. 4/54	7:118			64		2.5	7.6 (7.4)	30 (40)	5	4.7	3.4	71.6	0.097		3.6	103.2	15.8
									1	.	· · · · · · · · · · · · · · · · · · ·	1		STA	TION NO.	19-LAC	C TEMISCOU	JATA
17	Aug. 5/54	6:117			64	• • • • • •	1,4	7.9 (7.5)	25 (25)	4	3.2	0.8	86.0	0.117		5.8	120.2	19.4
	· · · · · · · · · · · · · · · · · · ·								- <u> </u>	I	d	L		STA	TION NO.	, 20 – MAT	DAWASKA R	IVER
18	July 2/54	6.13	1 940	1 850	65	1	22	77	10	2	T	1	79.4	0.100	407	12 /	112 7	17.4
19	Aug. 4	6:49	1,700	3,460	65	1	0.7	8.2	25	Ś		1	77.6	0.105	251	15.9	115.5	10 5
20	Aug. 5	6:46	2,490	3,460	62		1.1	8.0	40	Ś		1	//.0	0.107	, ,,,,	1.0	110.0	17.6
			-,,,,,				1	(7.4)	(40)	1		1					110.0	17.0
21	Sept. 2	6:41	1,710	2,370	61	22	1.4	7.9	25	1	1]					120.1	101
22	Oct. 28	7:67	2,710	3,060	50	7.2	1.4	7.9	25	6	6.3	4.7	88.0	0.119	639	23.6	122.5	19.2
23	Nov. 29	8:56	2,420	2,370	45	5.6	4.4	7.4	20	3		1	l		ļ		121.2	18.7
24	Dec.	No sam	ple taken	1,710											1			
25	Jan. 11/55	13:72	1,190*	983	35	5.5	1.4	7.9	30	0		.		J			124.4	20.2
26	Feb. 2	5:77	2,020*	546	35	4.6	2.4	7.7	25	0	1	4	83.2	0.113	453	16.8	121.7	20,0
27	Mar. 4	7:41	1,530*	674	35	5.4	1.8	7.8	30	0.2	1	4	l	.			127.3	20.2
28	Apr. 7	13:29	1,070	5,980	40		1.7	7.8	20	0		4	h				130.7	21.1
29	May 9	10:39	11,900	7,580	41	6.5	1.4	7.9	30	0		4	82.4	0.112	2,641	39.2	120.7	20.1
30	June 2	11:33	4,350	2,510	45	14	1.7	7.8	25	2	····	4	86.0	0.117	1,011	22.0	116.9	19.0
31	July 3	31:43	1,270	608	70	• • • • • •	9.8	7.0	30								. 117.5	18.8

* Ice conditions, January 1, 1955 to March 31, 1955,

.

Chemical Analyses of Surface Waters in the Atlantic Provinces and in the Saint John River Drainage Basin in Quebec

(In parts per million)

	In (F	on e)					Alk	alis										Hard as C	ness CaCO3	uents	E E	×		
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Amnonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nittate	Silica (colorimetric)	Boron	Non- car- bonate	Total	Sum of constit	Per cent sodiu	Saturation inde	Stability index	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO3)	(HCO ₃)	(SO4)	(C1)	(F)	(NO ₃)	(SiO ₂)	(B)			<u> </u>				ļ
	nu near		10, 11			l	1			r - 1		<u> </u>		I	1					ı —	t			
1.2 0.9 1.2	· · · · · · · · · · · · · · · · · · ·	0.09	0.0 		• • • • • • •	•••••	1.6 2.2 1.3	0.3 0.5 0.3	••••• •••••	0.0 0.0 0.0	36.8 47.9 41.4	5.5 4.3 5.5	0.6	0.1	0.6 0.2 0.6	3.8 3.5 3.9		2.8 0.0 3.7	33.0 38.3 37.7	43.0 50.8 47.0	9.4 10.9 6.9	1.5 0.9 0.8	10.4 9.6 9.6	1 2 3
1.6 1.1 1.0 0.8		0.03	0.0	0.12	0.0		1.3 1.8 1.0 1.0	0.4 0.7 0.3 0.3	• • • • • • • • •	0.0 0.0 0.0 0.0	39.6 41.3 41.4 37.9	3.9 4.0 5.0 5.0	0.7 1.0 0.5 1.0		1.0 2.8 0.6 0.4	4.1 4.3 4.8 5.9	0.00	5.3 2.8 2.8 4.9	37.8 36.7 36.8 36.0	44.9 49.1 46.7 46.2	6.8 9.4 5.5 5.6	-1.0 -1.3 -1.2 -1.1	9.8 10.1 9.9 9.8	4 5 6 7
1.2 1.1 1.0 1.1	•••••	0.04 0.08	0.0 0.0	0.0 0.01	0.0 0.0		1.0 1.2 1.3 1.3	0.4 0.3 0.3 0.4	••••••	0.0 0.0 0.0 0.0	40.8 44.2 43.6 49.9	5.3 5.8 5.6 4.4	0.8 <u>.</u> 1.0 0.5 0.8	0.0 0.0	0.6 0.4 0.6 0.2	4.4 3.3 4.8 4.5	· · · · · · · · · · · · · · · · · · ·	4.6 3.9 4.7 1.3	38.1 40.2 40.5 42.2	47.1 49.2 50.2 52.5	5.3 6.0 6.5 6.2	-1.1 -1.1 -1.3 -1.5	9.8 9.8 10.0 10.1	8 9 10 11
0.9 0.6 0.6		0.02	0.0	0.03	Trace		0.9 0.8 0.9	0.4 0.4 0.4	0.1 0.1 0.1	0.0 0.0 0.0	33.2 29.1 35.1	3.4 4.1 4.5	0.9 0.6 0.7	0.0	0.8 0.8 0.6	2.7 3.3 4.7	 	2.7 3.8 3.9	29.9 27.7 32.7	37.8 35.1 42.0	6.0 5.8 5.5	-1.4 -1.3 -1.1	10.3 10.7 9.9	12 13 14
near F	ORT KI	ENT, M	AINE, U	J.S.A.*																				
1.8	0.02	0.0	0.0	0.0	0.02	0.0	1.6	0.4	Lithiun 0.0	0.0	36.0	3.4	2.9	0.1	0.4	3.3		5	35.0	43	9.0	-1.5	10.4	15
at CA	BANO, (QUE.																						
2.2		0.06	0.0	0.0			1.8	0.5		0,0 (0)	55.6 (55.6)	6.8	1.3		1.0	4,1	•••••	2.9 (2.4)	48.5 (48.0)	61.2	7.4	-1.0	9.6	16
at NO	rre-da	ME-DU-	LAC, O	QUE.																				
2.2		0.01	0.0	0.0			1.7	0.5	• • • • • • •	0.0 (0)	66.3 (65.5)	6.0	1.5		1,2	3.9		3.0	57.4	69.3	6.0	-0.5	8.8	17
at hig	hway bri	dge at S	STE. R	OSE-DI	J-DÉGE	ELÉ, QI	JED	rainage	e area,	1,910 s	quare mi	les.												
3.0 2.7 2.5	} 	0.04 0.03	· · · · · · · · · · · · · · · · · · ·	0.0			2.8 1.7 1.4	1.2 0.4 0.5		0.0 0.0 0.0 (0)	63.6 68.8 62.2 (60.6)	6.3 5.0 5.0	1.6 1.0 1.1		0.6 0.8 0.2	3.5 4.2 3.5		3.4 0.9 3.2 (4.4)	55.6 57.3 54.2 (54.1)	67.7 68.5 62.4	9.6 6.0 5.3	-0.8 -0.3 -0.5	9.3 8.8 9.0	18 19 20
2.3 2.5 2.6	 	0.0	•••••	Trace	0.0		1.6 1.6 2.0	0.5 0.4 0.7	• • • • • • • • •	0.0 0.0 0.0	66.6 66.2 66.3	5.3 4.4 5.9	1.1 1.5 1.7	0.0	0.6 0.8 1.2	4.1 5.1 3.5	 0.05	2.5 3.9 3.0	57.1 58.2 57.4	67.4 68.1 69.0	5.7 5.6 6.9	-0.5 -0.5 -1.0	10.9 8.9 9.4	21 22 23 24
2.5 2.4 2.3 2.0	· · · · · · · · · · · · · · · · · · ·	Trace	Trace 	0.0 0.0	0.0		1.8 .1.7 2.6 1.4 1.5	0.4 0.5 0.4 0.6 0.5	0.3	0.0 0.0 0.0 0.0 0.0	67.5 68.6 69.1 71.7 66.3	4.9 6.6 6.6 4.6 4.8	1.0 0.8 1.1 0.9 1.1	Trace	0.6 0.7 0.6 0.8 0.8	3.1 3.9 3.9 4.8 3.9	· · · · · · · · · · · · · · · · · · ·	2.8 3.9 3.6 3.3 4.0	58.2 60.2 60.3 62.1 58.4	67.2 70.5 71.9 71.8 67.4	6.3 5.7 8.5 4.6 5.2	0.6 0.7 0.5 0.5 0.5	9.1 9.1 8.8 8.8 8.9	25 26 27 28 29
1.9 1.8		0.0	0.0 	0.09	0.0		1.3	0,6 0,4	0.0 0.2	0.0 0.0	61.1 62.5	4.8 4.3	0.9 0.6	0.0	0.8 0.8	5.1 3.5	•••••	2.6 3.0	52.7 54.3	64.6 62.6	5.0 5.3	-0.6 1.3	9.0 9.6	30 31

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

	· · ·		Stream di (Second	scharge -feet)		međ	U				Susper matt	nded er	Residu drie (Diss	e on evapo d at 105°C olved soli	ration 2. ds)	l	Cas alfia	
	Data	riod	0.		Watar	nsu	ed)				Drind	Ionited	Parts	Tons	Tone	on	conduct-	
No.	of	P S	sampling	Monthly	temp-	2g	la di	pН		ity	at	at	per	per	per	igni-	anice K x 10 ⁶	e
	collection	age	date	mean	erature	KN	L b		Ę	bid	105º C.	550° C.	million	foot	day	at	at	ciu
		Stor				py or	ું હું		0	E I						550°C.	25º C.	Cal
		(5)			(0-2-2)	Ŭ	(00)		(Hazen)	(11-:)								(Ca)
		(Day s)			(°F.)		(CO ₂)		(Units)	(Units)					l			(Ca)
														STA	TION NO.	21 – MAD	AWASKA R	IVER
			Gauge heig	ht in feet					[
			ounge act											0.114		22.0	116.0	17.6
1	July 7/54	5:41	471.31	•••••	63	• • • • • •	3.4	7.5	25	1	• • • • • • • • • • • • • • • • • • •	•••••	84.0	0.114	• • • • • • • •	22.0	110.8	17.0
2	Aug. 6	0:45	4/1.5		60.5	•••••	/./	7.0	60	4	• • • • • • • • •	••••••	77.2	0 105		22.2	97.4	15.8
د ۸	Aug. 6**	4:47	471.5	• • • • • • • • •	58	11	2.9	7.6	15	0	• • • • • • • • •		//.2				114.8	21.4
5	Oct 7	7.30	471.1		48.5	6.8	1.7	7.8	25	ō							113.9	18.5
6	Nov. 8	7:84	471.1		44.5	5.9	1.7	7.8	10	1			87.6	0.119		19.6	118.9	18.8
7	Dec. 7	4:34	471.1		36	6.8	2.1	7.7	30	0.8							126.2	13.5
8	Jan. 11/55	3:24	471.1		32.5	5.3	2.2	7.7	35	0.2							111.8	19.4
9	Feb. 7	4:72	471.1		32	6.1	2.8	7.6	25	0			81,6	0.111		16.4	125.3	20.0
10	Mar. 7	8:49	471.1	<i>.</i>	32		2.3	7.7	30	0						· · · · · · · · ·	124.7	20.3
11	Apr. 7	6:25	471.1	• • • • • • • •	35.5	6.2	6.9	7.2	20	0.9	• • • • • • • • •	•••••			•••••		127.5	20.1
12	May 9	4:31	471.3	•••••	37	5.3	2.1	7.7	20	2	•••••	•••••	89.2	0.122	. .	42.8	114.3	18.4
13	June 7	8:20	471.3	•••••	54	13	1.6	7.8	20	25	10.1	76	105	0.143	•••••	21.0	112.1	18.5
14	Nov. 26	1 6.14	Low flow	• • • • • • • • •	44		2.0	7.6	1 40	•••••	19.1	7.0	86 4	0.105	•••••	96	122.7	20.8
15	June 4/50	0:14		• • • • • • • • • •		14	1 4 8	7.0	20				00.4	0.117		9.0	151.7	19.5
	T Level co tt Sampled ttt Sampled	ntrolled b opposite near civio	y dam. civic well 1 c wells, 50	No. 2, from feet from :	n middle shore,	of river.								SI	'ation n	0, 21 A – I	ROQUOIS I	RIVER
	0 . 00/50	7.12	1				50	71	20				<u> </u>		-		82.0	11.5
	Oct. 23/58	7:13					5.0	/.1	20	ļ						·····	02.0	
				·			·		+						STATIC	N NO. 22	- GREEN I	RIVER
18	Aug. 6/54	6:116	. <i></i>		58		1.4	7.8	30	4	5.2	3.8	59.2	0.080		10.4	81.7	11.6
	-							(7.6)	(30)									
															STATIC	N NO. 23	- GRAND I	RIVER
10	Aug. 6/54	6:130			58		2.6	7.4	240	11	27	22	86.0	0.117		39.2	66.9	13.0
~/		01150						(7.4)	(160)									
	* Sampled a	nt No. 2 h	ighway brid	lge•	·			.1					,	·	STATION	I NO 24	SAL MON 1	DIVED
	······		·	í		i	·					·····	r			. 110. 24 -		1
20	Aug. 6/54	6:130			64		1.5	8.0	40	5	4.5	1.8	104	0.141		17.2	154.6	27.4
-			<u> </u>	I				(8.4)	(50)		l	L		L		l		1
	* Sampled a	t No. 21	highway bri	idge,														
														STA	TION NO	25 – ARC	OSTOOK I	UVER
			Gauge he	ight in feet											1			
21	Sept. 27/52		1.51				2.3	7.5	20				61.0	0.083			93.9	13.0
22	Apr. 12/53		8.07	[ļ	5.2	6.6	37	<i></i>		ļ	48.0	0.065			37.4	4.4

* Data supplied by Quality of Waters Branch, Water Resources Division, U.S. Geological Survey, Washington, D.C., U.S.A. ** Dried at 180°C.

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

.

(In par	ts per	million)
---------	--------	---------	---

												1								1	1		· · · · · ·	
	Ĭrc (Fe	on e)					Alk	alis					1					Hard as C	iness CaCO3	uents	Ę	x		
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Boron	Non- car- bonate	Total	Sum of constit	Per cent sodiı	Saturation inde	Stability index	No.
(Mg)			(Mn)	(A])	(Cu)	(Zn)	(Na)	(K)	(NH3)	(CO3)	(HCO3)	(SO4)	(CI)	(F)	(NO3)	(SiO₂)	(B)							
at ED	MUNDST	'ON, N.	в.•																					
																								_
2.7		0.09	0.0				2.4	0.8		0.0	64.6	7.4	1.3	0.0	1.2	4.0		2.2	55.2	69.3	8.5	-1.0	9.5	1
2.3				• • • • • •			2.5	0.8		0.0	45.5	10.0	4.1		1.2	3.9		13.0	50.3	63.6	9.6	-1.7	10.4	2
2.3	• • • • • • •	0.03				• • • • •	2.6	0.5		0.0	56.5	5.6	1.2		0.7	4.2		2.4	48.8	61.4	10.4	-0.6	9.1	3
0.9		{ • • • • • •	••••	•••••	• • • • • •	• • • • •	1.6	0.5	·····	0.0	64.0	5.6	1.1		0.8	3.9	••••	4.6	57.1	67.3	5.5	-0.8	9.2	4
2.1		0.03		Trace		• • • • •	1.0	0.4		0.0	62.8	5.0	1.0	0.1	0.4	4.2	•••••	3.3	24.8 55.5	65.0	5.9		9.2	2
2.4		0.05	0.0	LIACE	0.0	••••	1.4	0.4		0.0	64.2	6.1	0.9	0.0	1.2	3.9		3.3	56.0	66.5	5.1	-0.8	9.4	7
2.3							1.6	0.4		0.0	65.1	6.9	1.2		0.4	4.9		4.5	57.9	69.2	5.6	-0.8	9.3	8
2.2		0.02	0.0	0,0	0.0		1.5	0.4		0.0	66.4	6.2	0,8	0.0	0.6	4.0		4.5	59.0	68.5	5.2	-0.8	9,2	9
2.1							1.5	0.4		0.0	68.4	5.6	0.8		0.6	4.8		3.2	59.3	69.8	5.2	-0.6	8.9	10
2.2	•••••		• • • • • •				1.7	0.6		0.0	69.5	5.0	1.5		0.8	2.8		2,2	59.2	69.0	5.8	-1.1	9.4	11
2.1		Trace	0.0	0.07	0.0	• • • • •	1.4	0.5	0.2	0.0	62.2	4.3	1.0	0.0	0.6	3.9	•••••	3.6	54.6	66.0	5.2	-0.8	9.3	12
1.9	0.62	0.0	0.0	0.0	Trace		1.0	0.4	0.0	0.0	28.5	5.1	1.5	0.0	1.2	4.2	·····	5.5	53.5	62.4	3.9	-0.7	9.2	13
1.7	0,05	0.10	0.01	0.0	0.0	0.4	1.9	0.6	0.4	0.0	65.1	6.2	1.2	0.0	2 4	3.0		20,4	58.0	71.0	61	-2.3	10.9	14
2.2	0.18	0.04	0.0	0.40	0.0	0.05	4.6	0.5	0.0	0.0	73.6	6.7	1.1	0.0	0.8	2.5		0,0	57.7	74.7	14.2	-1.0	9.4	16
	L	·		L		1	L		•	J	1	ł		L	I	1	L				t	i		

	MOND	STON,	N.B.																					
2.1 0	0.15	0.06	0.0	0,03	0.0	0.0	2,8	0.4	0.1	0,0	40.5	5.1	1.2		<u></u>			4.1	37.3	49.5	13.8	-1.7	10.5	1
it GREE	EN RIV	'ER, N	.в.																					
2.4 .		0.03	0.0	0,04			1.6	0.4		0.0 (0)	47.3 (47.9)	3.1	0.8	0.2	1.2	6.6		0.0 (0)	38.8 (36.1)	51.2	8,2	-1.0	9.8	1
near ST	. LEO	NARD,	N.B.*																					
0.9		0.09	0.0	0.0	0.0		1.2	0.3		0.0 (0)	38,2 (40,4)	2.4	0.8		0.8	4.7	•••••	5.3 (5.0)	36.6 (38.2)	42.9	6.7	-1.4	10.2	1
iear OR	TONV	ILLE,	N.B.*																					
1.9		0.03	Trace	0.0	0.07	•••••	1,4	0.4		0.0 (0)	89.3 (90.8)	4,2	1.0	0,0	0.8	6,0		3.0 (1.8)	76.2 (76.4)	87.2	3.8	-0.1	8.2	2

2.6	0.18	0,0	0.01	0.0	0.0	0.0	2.0	0.4		0.0	47	7.3	2.4	0.2	0.5	4.4	 5	43	55.8	9.1	-1.2	9.9	21
1.0	0.06	0.06	0.0	0.3	0.0	0.07	1.3	0.8	0.0	0.0	14	5.0	3.9	0,1	0.7	3.6	 6	17	27.9	13.5	-3,1	12.8	22

•

TABLE II - (Continued) Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

T

				Stream d (Secon	lischarge d-feet)		t me d	J				Suspe mat	ended ter	Residu drie (Diss	e on evap d at 105 ⁶ solved sol	oration C. ids)	·	S	
No.	Date of collectio	on	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consu by KMnO4	Carbon dioxid (calculated)	pН	Colour	Turbidity	Dried at 105º C.	Ignited at 550°C.	Parts per million	Tons per acre- foot	Tons per day	Loss on igni- tion at 550 ⁰ C.	Specific conduct- ance $K \times 10^6$ at 25^0 C.	Calcium
			(Days)			(⁰ F.)		(CO₂)		(Hazen) (Units)	(Units)	ļ			}				(Ca)
				•	1 a										STA	TION NO	. 26 - ARC	OSTOOK R	IVER
		-								1	1					1			
				Gaugehei	ght in feet7														
1	July 7/5	54	5:41	20	• • • • • • • • • •	61	•••••	3.4	7.2	75	2		• • • • • • • •	76.0 78 4	0.103	•••••	32.8 36 4	75.4	10.5
2	Aug. /		10:129	••••	•••••	05	• • • • • • •	5./	(7.2)	(140)				70,4	0.107		50.4	//.0	12.9
3	Aug. 9		7:10	10		65		1.9	7.5	100	4							80.1	12.6
4	Sept. 13		4:51	71		55		4.0	7.0	65	12	•••••				{·····		55.1	9.1
5	Oct. 4		8:30	15	• • • • • • • • • •	53		1./	7.6	80		•••••	•••••	83.0	0.114	•••••	27.8	96.9	15.4
7	Dec 6		4-56	20		32	10	2.6	7.5	40	0.2						• • • • • • • • •	140.6	19.2
8	Lan. 3/5	5	4:37	15		32	8.5	3.5	7.3	40	0.3			81.2	0.110	1	25.6	112.1	16.6
9	Feb. 6	·	51:53	15		32	7.0	5.1	7.2	35	0							126.4	17.9
10	Mar. 5		6:40	15		33	7.1	4.1	7.3	40	0.2							129.4	18.9
11	Apr. 4		9:51	12		41	9.7	8.1	7.0	30	2			88.8	0.121		37.6	119.5	17.0
12	May 3		7:15	20		45		1.7	7.4	35	10] <u>.</u>			•••••	•••••••••		54.9	8.8
13	June 3		8:19	20	<u></u>	57	17	2.4	7.4	55	25	19	12	85,2	0.116		40.4	92.0	14.1
14	Aug. 7/5	54	11:135	1,950	2,160	66		1.3	7,8	40	2	.		64.4	S 0,088	TATION	NO. 27 – 1 29.2	OBIQUE R	IVER 12.5
	-								(8.2)	(55)									
	* Sampled	i at	town tap	's 	<u></u>	.		.				1			S	TATION	NO. 28 – 1	OBIQUE R	IVER
15	Aug. 7/5	54	10:135			64		3.6	7.3 (7.9)	50 (55)	0.6			64.4	0.088		23.6	80.5	12.7
	 Sampled 	d at	No. 2 hi	ghway brid;	ge,										s	TATION	NO. 29 – 1	OBIQUE R	IVER
16	July 7/	54	5:41	2.030	2.090	63		2.9	7.3	75	2			77.0	0.105	422	30.4	83.5	11.8
17	Aug. 9		7:10	2,170	2,390	64		1.1	7.9	30	6							88.0	13.8
18	Sept.13		4:51	18,300	4,030	55		3.8	7.0	65	12			ļ				49.7	8.0
19	Oct. 4		8:30		4,400	53		1.4	7.7	45	1			66.6	0.091		16.0	83.6	13.7
20	Nov. 4		6:40		4,700	45	8	1,1	7.7	50	3	·····		. .		•••••		71.9	10.6
21	Dec. 6		4:56		2,640	32	4.7	2.9	7.4	40	4					• • • • • • • •		87.1	12.8
22	Jan. 3/5	55	4:37		1,410	32	6.1	2.6	7.5	30	4	5.4	2.4	72.0	0.098		. 19.2	97.0	15.5
23	Feb. 6		5:21		1,670	33	4.6	2.7	1.5	28	0.3	·····		}····	•••••••	••••••	••••••••	105.3	16.7
24	Mar. 4		0.51		2,090	22	2.3	5.4	7.2	20	0.2	·····	•••••	62.0	0.084			/2.0	12.0
25	Apr. 4		7.15		11 100	40	4./	2.0	7.1	20	10			02.0	0.084		. 21.2	67.5	15.9
20	Lune 8		0.10		4 950	57	14	1.4	7.5	35	4	4.3	0.6	64.4	0.088		27.6	60.3	9.4
	J'ane D				4,770	1			1		1	4.5	0.0		0.000			00.5	7.4
	* Samplea † Dischar	d at tge :	head poi records a	nd of power it Narrows,	plant. at power p	lant of l	New Bru	nswick	Elec	tric Power	r Commi	ssion.			STA	TION NO	. 30 PRE	SQU'ILE F	IVER '
			<u>.</u>		1	1	1	1	1	1 _		<u> </u>	1		1	1	1		
28	July 9/	54	12:54	Normal†		65	13	2.5	7.9	25			·····	208	0.282		34.0	324.8	54.3
29	Aug. 9		9:133	High	·····	59.5	·····	8.5	1.4 (8 A)	(35)	4	0.3	0.0	202	0.275	·····	. 39.2	259.6	47.1
30	Sept.14		7:50	High		53		2.9	7.8	55	3							217.6	40.1
31	Oct. 11		11:84	High	1	50	9.6	1.3	8.2	40	4	13.0	7.6	164	0.223		36.0	235.1	42.4

† Collector's estimate of water level or discharge.

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In pa	irts per	million)	
--------	----------	----------	--

	Iror (Fe	1)					Alk	alis										Hard as Ca	ness aCO3	tuents	m	ex	×	
Magnesium	Total	Dissolved	Mangane se	Aluminum	Coppet	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bícarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Boron	Non- car- bonate	Total	Sum of consti	Per cent sodi	Saturation inc	Stability inde	No.
(M_g)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH3)	(CO3)	(нсо,)	(SO4)	(Cl)	(F)	(NO3)	(SiO₂)	(B)							
near A	ROOST	DOK, N	.в.•					- -	h															
2.4		0.12	0,0				2.7	0.5	.	0.0	31.2	8.1	2.0	0.08	2.4	5.3		10.3	35.9	49.5	13.8	-1.8	10.8	1
1.3	•••••	0.07	0.0	0.04	0.0		1.5	0.3	•••••	0.0	36.1	6.8	2.3	0.0	1.6	5.1		7.9	37.5	49.6	7.9	-2.3	11.8	2
2.0							2.7	1.8		0.0	39.1	7.8	2.8	0.0	1.2	4.9		7.7	39.8	55.1 [.]	12.3	-1.3	10,1	3
0.7							1.0	0.6		0.0	23.9	3.9	2.1		1.6	3.7		6.0	25.6	34.5	7.6	-2.2	11.4	4
1.7		0.09	0.0	0.0	0.0		1.5	0.5		0.0	42.4	7.4	3.1	1	4.0	5.4		10,6	45.4	59.9	6.6	-1.1	9.8	5
2.5					ļ		1.7	0.8		0.0	45.3	10.0	3.5		3.2	5.8	0.00	15.0	52.2	66.6	6.5	-1.1	9.8	6
2.5					.		1.7	0.6		0.0	47.9	12.2	4.4		6.0	5.5		6.9	58.2	75.7	5.9	-1.0	9.5	7
2.4		0.03	0.0	Trace	0.0		1.5	0.4		0.0	43.3	12.6	3.7	0.0	4.8	5.8		17.4	52.9	69.1	5.7	-1.3	9.9	8
2.2	• • • • • •	•••••			•••••	•••••	2.0	1.0	• • • • • •	0.0	49.5	9.1	3.9		5.2	3.8		13.1	53.7	69.5	7.3	-1.4	10.0	9
2.3						••••	2.0	0.6	• • • • • •	0.0	48.9	12.1	4.0	• • • • • •	4.0	5.9		16.5	56.6	72.9	7.0	-1.2	9.7	10
2.4		0.03	0.0	0.01	0.0	•••••	1.8	0.9		0.0	51.2	10.3	3.6	0.0	0.8	5.0		10.3	52.3	67.0	6.8	-1.5	10.0	11
0.6		1				•••••	0.9	0.4	0.15	0.0	24.5	1.1	0.4		6.0	5.1	•••••	4.3	24.4	35.4	7.3	-1.0	11.0	12
1.0		0.06	0.0	0,05	0.02	•••••	1.2	0.4	0.3	0.0	5/.1	8.9	2.0	0.0	3.2	4.3	••••	11.4	41.8	54.1	5.8	-1.3	10.0	13

at PLASTER ROCK, N.B.*-Drainage area, 1,210 square miles.

1.4	0.08 0	0.0	0.05	•••••		. 1.5	0.3		0.0 (0)	46.9 (47.9)	3.6	0.6	0.10	0.6	5.1		0.0 (0)	36.9 (37.2)	49.0	7.9	-0.9	9.6	14
-----	--------	-----	------	-------	--	-------	-----	--	------------	----------------	-----	-----	------	-----	-----	--	------------	----------------	------	-----	------	-----	----

at ARTHURETTE, N.B.*

					 			 						· · ·	 						r
1 7	i	0.07		0.0		10		~ ~			0.0	0.10	0.0							100	1
1./		0.05	0.0	0.0	 	1.0	0.3	 0.0	44.2	7.1	0.5	0.10	0.0	2.5	 2.5	38.8	51.7	8.2	-1.3	10.3	112
								(0)												-	
								(0)	(42.9)					l I	(2.4)	(37.6)					1
					 						r				(-···/						

near ANDOVER, N.B.* - Drainage area at Narrows, 1,670 square miles,

2.0		0.12	0.0	[l	2.5	0.6		0.0	34.1	8.1	2.3	0.08	2.4	5.4		9.8	37.8	52.1	12.3	-1.6	10.5	16
1.8							2.4	0.6		0.0	51.3	6.2	0.6		0.1	4.8		0.0	41.8	55.8	10.9	-0.7	9.3	17
0.9			ļ				1.1	0.6		0.0	22.1	3.8	0.9		2.0	4.9		5.7	23.8	33.1	8.9	-2,2	11.4	18
1.3		0.05	0.0	0.01	0.0		1.5	0.7		0.0	44.4	4.7	0.8		0.6	5.9		2.9	39.3	51.0	7.2	-1.0	9.7	19
1.1							1.1	0.3		0.0	33.4	4.5	0.6	ļ	1.2	5.5	0.00	3.6	31.8	41.4	7.1	-1.3	10.3	20
1.1		••••					1.2	0.2		0.0	43.6	3.1	0.7		0.6	5.8		0.7	36.5	47.0	6.6	-1.3	10.0	21
1.4		0.05	0.0	0.0	0.0		1.1	0.4		0.0	49.9	6,5	0.4	0.04	1.2	5.9		3.5	44.4	57.1	5.0	-1.0	9.5	22
1.6							1.3	0.4		0.0	52.4	7.0	0.8			3.9		5.3	48.3	58.3	5.5	-1.1	9.7	23
1.2							1,2	0.3	0.1	0.0	32.7	6.0	1.0		1.2	4.4	••••	5.8	32.6	42.5	7.3	-1.7	10.6	24
1.1		0.11	Trace	Trace	0.0		1.6	0.7		0.0	47.5	2.9	1.1	0.05	0.8	6.7		0.1	39.1	52.4	7.9	-1.5	10.1	25
0.8							1.0	0.4	0.2	0.0	22.6	2.0	1.2		8.0	4.1		7.7	26.2	37.8	7.5	-1.9	11.1	26
1.0		0.04	0.0	0.04	Trace		0.9	0.3	0.2	0.0	29.6	4.6	0.1	0.0	0.8	4.6		3.3	27.6	36.4	6.5	-1.4	10.3	27

at CENTREVILLE, N.B.

4.5		0,11	0.0		ļ	 4.4	2.9	 0.0	147	22.2	13.4	0.05	6.0	5.6	 33.5	154	186	5.7	10.3	7.3	28
3.0		0.03	0.0	0.03		 2.0	0.6	 0.0	136	16.8	5.4	0.0	3.2	5.5	 20.6	130	151	3.2	-0.3	8.0	29
								(0)	(136)						(19.8)	(132)					
2.0					ļ	 1.8	0.8	 0,0	108	13.1	5.5		1.6	5.6	 20.0	108	123	3.5	-0,2	8.2	30
2.5		0.01	0.0	0,0	Trace	 1.8	1.0	 0.0	1 16	14.5	6.4	0.0	4.0	5.3	 20.9	116	135	3.2	0.4	7.4	31
2,5		0.01	0.0	0.0	Trace	 1.8	1.0	 0.0	116	14.5	6.4	0.0	4.0	5.3	 20.9	116	135	3.2	0.4	7.4	31

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

1			Stream di (Second	scharge -feet)		med	U				Suspe matt	ended er	Residue drie (Disso	e on evapo d at 105 ⁰ olved soli	oration C. ds)		S	
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consu by KMnO4	Carbon dioxid (calculated)	рН	Hazen)	Turbidity	Dried at 105º C.	Ignited at 550°C.	Parts per million	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	ance K × 10 ⁵ at 25 ⁰ C.	Calcium
		(Days)			(°F.)	<u> </u>	(CO ₂)	<u> </u>	(Units)	(Units)				l				(Ca)
-													4	STA	tion no.	30 - PRE	SQU'ILE R	IVER
1	Nov. 9/54	8:55	High †		37	5.9	1.7	8.1	25	2			[264.7	46.2
2	Dec. 9	6:46	High		32	4.4	2.0	8,0	10	9							289.2	50.8
3	Ian. 9/55	15:37	Normal		32	2.5	1.8	8,1	10	0			222	0.301		40.8	323.1	55.8
4	Feb. 9	12:43	Normal		32	2.7	2.9	7.9	10	0							358.5	60.4
5	Mar. 10	15:46	Normal		32		4.7	7.7	10	0							278.2	46.8
6	Ал. 9	11:46	High		38	3.9	3.0	7.8	15	6	13.3	10.5	177	0.240		36.8	262.2	44.7
7	May 16	9:16	Spring high		57		1.5	8.1	15	1							246.8	42.8
	 I	8.26	Normal		66	12	1.0	8.3	15	0.8		1	170	0.230		23.6	265.8	47.2

(In parts per million)

† Collector's estimate of water level or discharge,

STATION NO. 31 -- NASHWAAK RIVER

9	Aug, 16/54	11:172	 	63	 1.3	7.4 (7.0)	70 (70)	2	 	43.6	0.059	•••••	. 20,8	45.1	5.1
											S	TATION N	10. 32 – N	ASHWAAK F	UVER

			Gauge heig	ht in feet†														
10 11 12 13 14	July 12/54 Aug. 12 Sept. 11 Oct. 18 Nov. 3	4:38 5:20 4:41 4:64 12:41	2.0 4.5 1.5 4.5 3.4		64 58 59 53 45	7 12 13 6.0	2.8 1.8 1.8 1.4 1.4	7.1 7.2 7.4 7.2 7.2 7.2	35 50 35 85 35	0.8 1 0 0 2		1.4	37.4 42.4	0.051 0.058		14.2 24.0	42.8 36.5 47.7 30.8 33.8	5.5 4.5 6.4 3.9 3.8
15 16 17 18	Dec. 10 Jan. /55 Feb. Mar.	5:45 No sam No sam No sam	4.0 ple taken ple taken ple taken	2 	33	6.7	1.9	7,0	40	10							36.7	4.0
19 20 21	Apr. 13 May 17 June 13	7:49 8:15 14:22	3.0 4.5 2.0		35 46 57	5.0 14	1.2 1.3 1.4	7.2 7.1 7.2	30 35 30	5 2 0.2	9 . 0	1.9 	42.0 42.0	0.057 0.057	• • • • • • • • • • • • • • • • • • •	18.8 18.8	33.1 27.6 35.1	3.9 3.4 4.5

† Collector's report of river level.

														ST	ATION NO	0.33 - 01	ROMOCTO R	IVER
22	Aug.	12/54	12:152	High	 66		1.4	7.2	100	3	6.1	4.0	37.4	0.051		23.0	29.2	3.0
23	June	3/57	16:36	•••••	 	12	3.9	6.8	65	20	16.0	9.5	46.4	0.063		21.2	45.9	4.8
24	Sept.	5/57*			 			7.1	2	6								14.4
25	Oct.	7*			 			7,9	1	3								13.6
26	Nov.	5*			 			6.6		5								5.6

* Analyses supplied by Betz Laboratories Limited, Montreal, Que.

STATION NO. 34 - SALMON RIVER

27	Aug, 14/54	13:163	Low t		60		4.5	6.6 (7.4)	180 (200)	2	 	50.0	0.068	 26.8	29.0	2.8
28	May 12/55	5:28	High		40.5	11	3.0	6.6	80	0,2	 	36.8	0.050	 20.0	23.1	2.0
29	June 13	23:28			60	1	1.9	7.0	100	0.8	 			 	32.4	3.5
30	July 13	12:14			58		2.1	7.3	45	2	 			 	66.0	7.4
31	Aug.	No sam	ple taken													
32	Sept. 13	6:12	Low		55	16	1.4	7.6	25	2	 	68.4	0.093	 15.2	89.5	11.3
33	Oct. 19	8:13	Summer lev	el	40		1.7	7.5	20	4	 			 • • • • • • • • • •	91.1	10.5

† Collector's estimate of river level or discharge.

* Sampled at highway bridge,

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

									· · · · · · · · · · · · · · · · · · ·						1						+			
	Iron (Fe	<u>}</u>					Alk	alis										Hard as C	ness aCO3	tuents	Ę	ex	×	
i um		ved	ese	Ę				Шn	<u>,</u>	ite	nate	υ				net ric,		Non- car-	Total	consti	t sodi	on ind	r inde	No.
lagnes	otal	i ssol	langan	lumin	opper	inc	odium	otassi	пошп	arbons	icarbo	ulphat	hlorid	luorid	itrate	llica : olorir	oron	bonate		in of	er cen	turati	ability	
≥ (Mg)	Ч	Д	_≥ (Mn)	(Al)	ເດພ	N (Zn)	دة (Na)	е. (K)	< (NH.)	0	MCON	یم (SO2)		— 年 (F)	Z (NO.)	SiO.)	(B)			Ś	ᅌ	ŝ	Š	
at CE	VTREVI	LLE. N	LB ((Conclud	ed)				1 (1			<u>1</u>	1	<u> </u>			1	L	L
3.7							2.0	0.8		0.0	124	19.0	6.9		6.0	63	0.00	20.1	131	152	27	+0.2	75	1
3.8							2.0	0.7		0.0	132	21.2	8.7		8.0	8.4	•••••	34.3	142	169	2.9	+0.4	7.2	2
3.7 4.4		Trace	0.0	0.03	0.0		2.2	0.9 1.3		0.0 0.0	141 158	24.6	8.9 10.0	0.0	14 11	6.5 3.3		38.7	154 169	186 197	3.0 3.1	+0.4	7.3	3
3.7							2.1	1.2	• • • • • •	0.0	124	20.7	6.7		6.0	5.5		30.0	132	154	3.3	-0.2	8.1	5
3.2							1.7	0.9	0.0	0.0	117	16.9	6.0		8.0	5.1 5.5	•••••	28.3	124	151	3.2	0.0 +0.3	8.4	6 7
3.1		Trace	Trace	0.09	0.0		1.6	1.3	0.1	0.0	130	17.9	5,1	0.0	6.0	5.0		23.7	131	152	2,6	+0.6	7.1	8
near T	AYMOU	TH, N.I	в.										1	· · · ·							1		· ··	
0.7		0.07	0.0	0.05	Trace		1.4	0.3	••••	0.0 (0)	19.6 (17,7)	2.5	0.8	0.15	0.4	5.5	••••	0.0	15.6 (17.0)	26.7	15.7	-2.1	11.6	9
near M	ARYSV	LLE. N	ч.в.	<u> </u>	·	L[L			I	1	1					<u> </u>		I	L	I	<u> </u>
	1													1					r					
0.7		0.1	0.0				1.9	0.3		0.0	21.2	1.8	1.1		0.3	60		00	16.6	28.1	19 5	-7 3	11.7	10
0.7						•••••	. 1.9	0.4		0.0	17.9	1.9	0.8		0.8	5,1		0.0	14.1	24.9	22.0	-2,3	11.8	11
0.6 0.6		0.08	0.0	Trace	0.0		1.9 1.0	0.4		0.0	24.1	1.5	0.9	0.0	0.4	6.1 5.2	••••	0.0 2.0	18.4	30.1	17.9	-1.9	11.2	12
0.8							1.2	0.3		0.0	14.1	3.1	0.9		0,4	5.8		1.2	12.8	23.2	16.5	-2.5	12.2	14
0,6	' 			{····	•••••		1.0	0.2		0.0	13.0	3.4	1.0		0.4	5.5	• • • • •	1,8	12.5	22.5	14.6	-2.6	12.2	15 16
																								17
0.6	l	0.01	0.0	0.05	0.0		1.1	0.4		0.0	11.6	3.4	0.9	0.0	1.2	4.4		2.7	12.2	21.7	15.5	-2.6	12.4	18
0.4	•••••						1.0	0.3	0.2	0.0	10.6	2.4	0.7		0.8	4.4	••••	1.4	10.1	18.6	17.1	-2.7	12.5	20
0,4		0.05	•••••	10.01	10.0		1,1	0.5	0,1	0.0	15.9	4.3	0.6	1 0.0	0,4	4.9	•••••	1.5	12.9	23.4	15.2	-2.5	12.2	21
at OR	эмосто) or nea	r Camp	Gageto	own. N	.в.																		
0.7		0.02	0.0	0.0	0.0		1.8	0.2		0.0	15.2	0.5	0.9		0.8	3.6		0.0	10.4	19.7	26.3	-2.5	12.2	22
										(0)	(10.1)					5.0			(10.6)	.,				
1.2	, 0.34	0.19	0.0	0.01	0.0	0,0	1.6	0.4	0.5	0.0	16.9	3.4	2.0	0.0	0.8	2.3	••••	3.0	16.9	25.3	16.0	-2.6	12.0	23
2.9 3.4	.0.02						 			0	51.2 48.8	8 12	4.0			2.5 1.4	· · · · · ·	6	48 48			• • • • •		24
1.0	0.01	<u>.</u>					• • • • • •			0	24.4		4.0			0.9		0	18					26
at CHI	IPMAN,	N.B.*																						
0,6		0,2	0.0	0.0	0.0		1.5	0.2		0.0	10.5	2.0	1.4	0.0	0,6	5.0		1.0	9.6	19.5	24.4	-3.4	13.4	27
0.6		0.09	0.0	0.07	0.0	ļ	1.4	0.3	0.3	(0) 0.0	(10.1)	2.8	1.7	0.0	0.2	4.1		1.7	(10.6)	16.8	26.6	-3.7	14.0	28
0.5			<u>}</u>	.			1.8	0.3	0.3	0.0	11.7	3.5	1.0		0.4	4.5		1.2	10.8	21.3	25.9	-2.7	12.4	29
0.7	•••••	•••••	}····	1	••••••	•••••	3.9	0.5	0.1	0.0	26.2	6,1	2,0		0.2	5.7	••••	0.0	21.4	39.4	27.8	-1.8	10.9	30 31
0.3	ŀ	0.06	Trace	0.0	0.0	0.0	5.5	0.6	0.0	0.0	36.6	6.6	3.4	0.0	0.2	4.9	Li=0*	* 0.0	29.4	50.6	28.3	-1.2	10.0	32
** 1 ;.·	ի իiստ	F	•••••	•••••		*****	1.1	, 0.)	1 010	. 0.0	1.1.1	10.0	1 2.1	1	10.0	0.4	ы - 0.	413	1 21.1	1,10,1	· 24,/1	-1,4	10.2	100

.

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

						~	()	In par	ts per mi	llion)		- •						
			Stream di (Second	ischarge l-feet)		med	<u>ຍ</u>				Suspe mat	ended ter	Residu drie (Diss	e on evap d at 105° olved sol	oration C. ids)	Logg	Specific	
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp• erature	Oxygen consu by KMaO ₄	Carbon dioxid (calculated)	рН	Hazen)	Turbidity	Dried at 105°C.	Ignited at 550°C.	Parts per million	Tons per acre- foot	Tons per day	on igni- tion at 550°C.	specific conduct- ance $K \times 10^{6}$ at 25^{0} C.	Calcium
		(Days)			(⁰ F.)		(CO2)		(Units)	(Units)		<u> </u>	ļ				·	(Ca)
				·			<u> </u>	·	I		r7				STATION	NO. 34	SALMON R	IVER
1 2 3	Nov. 19/55 Dec. Jan. 23/56	5:26 No sampl 17:24	Low ^T e taken		45	8.7	2.1 7.8	7.2	80 100	0.2			70,8	0.096	·····	24.8	68.0 28.7	7.7 2.5
4	Feb.	No sampl	e taken							5]			
5 6	Mar. Apr. 19	No sampl 28:47	e taken High		40	13	5.2	5.9	70	2			34.4	0.047		21.6	17.3	1.6
	† Collector'	s estimate	of river le	vel or disc	harge,													
	* Sampled a	t highway	bridge.			-			·} · · · ·		·	·			STATIC	N NO. 35	- GRAND I	LAKE
7 8	May 1/50* May 20**	19 				 	5.0 8.6	6.2 6.1	60 	8			 70 . 1	0.095			· · · · · · · · · · · · · · · · · · ·	3.2 8.9
	* Analysis	s supplied	by The Pe	rmutit Co.	of Cana	da Limi	ed, Ma	ontreal	, Que.			•						
	mary sis	supprieu	by Alchem	, Similed, L	arnigt	n, onta									STATION	NO. 36 -	CANAAN R	IVER
9	July 14/54	12:49	High†		70	26	3.5	6.9	110	2		Γ	59.6	0.081		28.2	40.6	4.4
10	Aug. 14	13:48			66.5		2.2	2.0	165	2							38.3	3.9
11	Aug. 16	8:16	High				. 1.7	7.1	200	4	ļ				l <i></i>		37.4	4.7
12	Sept. 18	13:93	High		61		2.2	7.2	90	2					4		67.9	8.2
13 14	Nov. 17	8:52	High High		35	13	4.1	6.6	75	2	5,5	<u> </u>		0.085		29.6	43.1	4.8
15	Dec. 1954 to	April 19	55 Nn samp	oles taken														
16	May 27/55	5:21	High	•••••	63	13	2.4	6.9	100	2	·····	•••••••••••••••••••••••••••••••••••••••	. 52.4	0.071		34.8	39.6 39.3	4.7
18	July	No samp	le taken		1					2			1			[57.5	4.0
19	Aug. 8	4:29	Low		75	14	1.9	7,4	25	0.2			65.6	0.089		7.6	106.6	12.2
	* Sampled a † Collector'	t highway s estimate	No. 9 brid of river le	ge. evel or disc	harge.			-				.	, <u> </u>		STATION	NO. 37 -	NEREPIS F	IVER
20	Aug. 13/54	12:169			62	·····	0.5	7.8 (7.6)	75 (70)	5	10.9	3.9	50.0	0.068		30.4	43.9	5.6
	* Sampled a	t period o	f slack tide	•											STATION	NO. 38 -	WARD'S C	REEK
21	Aug. 14/54	13:163			. 66		1.6	7.8 (7.3)	10 (10)	0,6	1		82.4	0.112		10.4	126.0	13.9
				•			·				• • • • •			STATI	ON NO. 39	– KENN E	BECASIS I	RIVER
			Gauge hei	ght in feet†	1	T		1	1	1	1	1	1	1	[1	[
22	July 14/54	7:49	5	l	. 62	13	2.4	7.4	10	2			105	0.144		0.6	168.8	15.3
23	Aug. 14	10:18	4		. 72		. 1.6	7.7	25	0.7				<i> </i>			. 191.6	17.3
24	Sept. 14	3:29	3		59	6.2	0.7	8.1	20	0.8		•••••	112	0.154	·····	16.0	212.3	19.7
26	Nov. 15	9:49	5		52	3.4	1.6	7.5	15	3		1	113	0,154		10.0	134.2	12.2
27	Dec. 12	7:41	5		38	3.5	2.6	7.1	20	3		1	[1		. 72.4	7.8
28	Jan. 14/55	10:32	5		. 39	3.0	1.4	7.5	20	0		••••••	90.4	0.123		25.2	132.8	13.0
29	Feb. 14	1 7:38	18	ŀ	33	4.6	2.6	6.8	30	7		••••••	• • • • • • • • •	1	4	} • · · · • • •	48.3	4.6

† Collector's report of water level.

.

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

	Iron (Fe	n)					Alk	alis								6		Hard as Ca	ness aCO3	tituents	dium	ndex	iex	
Magnesium	Fotal	Díssolved	Vanganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetri	Boron	Non- car- bonate	Total	Sum of cons	Per cent so	Saturation i	Stability inc	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH3)	- (CO ₃)	(HCO3)	(SO4)	(Cl)	(F)	(NO3)	(SiO ₂)	(в)							
at CH	PMAN,	N.B.* -	-(Conc	luded)																				
1.3		0,16	0.0	0.0	0,0	0.01	4.0	0,5	0.01	0.0	20.7	7.3	3.2		2.4	7.8	0.00	2.6	19.6	44.6	29.8	-2.0	11.2	1
0.7							1,5	0.4	0.2	0.0	4.0	6.0	1.9	••••	0.4	4.5	····	5.8	9.1	19.9	25.3	-4.6	15.1	2 3
0.4		0.06	0.0	0.06	Trace		0.9	0.3		0.0	2.4	2.6	1.1	0.0	1.6	3,2		3.6	5,6	13.1	23.2	-5.0	15.9	4 5 6
	<u></u>																							
near D	OUGLA	S HAR	BOUR,	N.B.									·	·	ı								·· •	
0.9 0.0	0.3			0.01			1,8 a	s Na		. 0 0	4.9 2.1	8.6 3.0	1.4			3.2 3.4		7.8 20.1	11.8 22.2	23.8	25.1	-4.1 -4.1	14.2 14.3	7 8
	(*******				l									L	1		L							
at CO	LES ISL	AND, N	ł.в.*													1								
1.1		0.4	0.0				2.6	0.4		0.0	15.8	5.4	2.2		0.8	4.3		2.3	15.3	29.4	26.3	-2.7	12, 1	9
0.8	••••	• • • • • •					2.3	0,0		(0)	(15.1)	3.3	2.5	•••••	0.0	4.0		2.1	(13.8)	25.0	20.0	2.7	12,4	10
0.4 0.7		.			 	 .	2.2 4.0	0.6 0.4		0.0 0.0	13.5 22,4	3.0 8.7	1.9 3.4	••••• ••••	0.8 0.6	4.4 5.1	 	2.3	13.4 23.3	24.7 42.2	25.1	-2.5 -2.0	12.1 11.2	11 12
0.6 0.9		0.52	0.0	0.0	0.0		2.5	0.6 0.4		. 0.0 0.0	12.2	5.6 6.3	3.1 2.5		0.8 0.8	5.1 4.7	0.00	4.4 5.6	14.4	29.5 27.0	26.4	-3.0	12.7 13.0	13 14
•••								0.6	0.2	0.0		4.6	2.0		0.6	27		4.2	12.4	1 2 2	22.2	-2 0	12 5	15
0.4		0.21					2,1	0.4	0.2	0.0	12.9	4.4	1.7		0.6	2.5		2.1	12.7	23.0	25.7	-3.0	12.6	17
0.8		0.04	0.0	0.0	0.0		6.0	0.6	0,1	0.0	30.8	12.5	5.0	0.0	0.8	1.9	Li= 0**	8.4	33.7	55.0	27.4	-1.4	10.2	18
** Lit	hium = 1	Li,			4													_						
near N	IEREPL	s rive	R, N.B																					
0.9		0.07	0.0	0.03	0.0		1.7	0.3		0,0 (0)	21.7	2.8	1.6	0,0	0.8	5.5		0,0 (0)	17.7	30,0	16.8	-1.5	10.8	20
	.!	I	Į	1	١	I			ļ,			I	I	ł	I - · · ·	I	I	L	<u> </u>		L	L		L
at SUS	SSEX, N	.в.																						
2.4		Trace	Trace	0.0	0.0		6,8	0.8	0.0	0.0 (0)	59.2 (60.6)	7.0	4.4	0.0	1.2	9.3		0.0 (0)	45.6 (44.6)	75.0	24.5	-0,8	9.4	21
at NO	RTON,	N.B.																						
													1		1									
2.9		0.12	0.0				13.7	I.4		0.0	38.3	17.6	18.5	0.15	0.6	6.9		13.8	45.2	96.1	38.8	-1.3	10.0	22
2.3 2.1						• • • • • • • • • • • •	16.2	1.4 2.2		0.0	47.4 51.1	23.8	23.6		Trace	6.1		15.9	57.8	120	38.7	-0.5	9.1	25
1,8 1.2		0.19	0.0	0.0			12.7	1.4 0.9	• • • • • • •	0.0	41.2	17.8	16.6	0.3	0.4	6.4 6.5		16.8	50.6 35.4	95.2 71.4	34.5 34.6	-1.0	9.7 10.3	25 26
1.0							3.6	0.6		0.0	20.0	8.8	5.5	0.24	0.4	5.0		7.2	23.6	42.6 71 7	24.3	-2.2	11.5	27
0,8				0.24		ļ	2.3	0.7		0.0	9.9	6.5	3.4		1.4	2.8		6.7	14.8	27.4	24.2	-3.0	12.8	29

•

Chemical Analyses of Surface Waters in the Atlantic Provinces and in the Saint John River Drainage Basin in Quebec (in parts per million)

Date officerion On sampling gr Munthy mann Water wenthy errive B gr G gr B gr B gr B gr Dided gr Januari (Liszen) Dided ast Disc Januari (Liszen) Dided Disc Januari (Liszen) Januari (Liszen) Disc Januari (Liszen) Diso Januari (Liszen) <t< th=""><th></th><th></th><th></th><th>Stream of (Secon</th><th>lischarge d-feet)</th><th></th><th>le d</th><th></th><th></th><th></th><th></th><th>Suspe</th><th>ended ter</th><th>Residu drie (Diss</th><th>e on evap d at 105°(olved sol</th><th>oration C. ids)</th><th></th><th></th><th></th></t<>				Stream of (Secon	lischarge d-feet)		le d					Suspe	ended ter	Residu drie (Diss	e on evap d at 105°(olved sol	oration C. ids)			
(Days) (°F.) (CO ₂) (Units) STATION NO. 39 - KENNEBECASIS F Mar. 14/55 4:42 5.5		Date of collection	Storage period	On sampling date	Moathly mean	Water temp- erature	Oxygen consun by KMnO ₄	Carbon dioxide (calculated)	рН	Colour	Turbidity	Dried at 105º C.	Ignited at 550°C.	Parts per million	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
Mar. 14/55 4:42 5:5 Gauge height in facet 5:5 38 5:5 20 5:5 7.2 5:5 7.5 5:5 7.5			(Days)			(⁰ F.)		(CO ₂)		(Units)	(Units)							Ì	(Ca
Mar. 14/55 d:42 5.5															STATI	ON NO. 3	9 – KENNI	EBECASIS	RIVE
Mat. 14/55 4:42 5.5	-			Gauge hei	ght in feet†			[1				1			
Mar. 179 Max 1.0 1.0 1.1 1.2 2.5 1.0 7.1 2.5 2.0 1.1.8 4.9.6 0.068	1	Mar 14/55	4.47	5.5		1 2.8		20	7 2	25	1							90.2	0
May 16 916 916 4	2	Ant. 17	8.45	8		42	5.3	1.6	7.1	35	20	18.0	11.8	49.6	0.068		24.0	48.3	5
June 15 13:27 4	3	May 16	9:16	4		54		1.4	7.5	15	4	1010		17.0	0.000		2410	119.2	11
t Collector's report of water level. STATION NO. 40 - KENNEBECASIS F Aug. 14/54* 13:163 65 2.1 7.5 35 2 103 0.140 12.8 181.6 * Sampled at period of high tide. STATION NO. 41 - SPRUCE I Nov. 16/50* Jan. 14/54 515 1.8 6.7	4	June 15	13:27	4		58	12	1.7	7.5	20	0.3			90.8	0.124		17.6	135.7	14
STATION NO. 40 - KENNEBECASIS F Aug. 14/54* 13:163 65 2.1 7.5 35 2 103 0.140 12.8 181.6 * Sampled at period of high tide. STATION NO. 41 - SPRUCE I Nov. 16/50* 3.9 3 6.5 10 5 3.0.0.043		† Collector's	s report o	f water leve	el.		ł	1	I	1		.I	L	I,		ł			
Aug. 14/54* 13:163 65 2.1 7.5 35 2 103 0.140 12.8 181.6 * Sampled at period of high tide. STATION NO. 41 – SPRUCE I Nov. 16/50* Jan. 14/54* 55 3.9 3 6.5 10 5 3															STATIC	ON NO. 40	- KENNE	BECASIS	RIVE
* Sampled at period of high tide. (7.2) (40) STATION NO. 41 – SPRUCE I Nov. 16/50*	5	Aug. 14/54*	13:163			65		2.1	7.5	35	2			103	0.140		12.8	181.6	15.
* Sampled at period of high tide. Nov. 16/50 Jan. 14/54 * Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses Supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses Supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses Supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses Supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses Supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses Supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses Supplied by The Permutit Co. of Canada Limited, Montreal, Que. * Analyses Supplied by The Permutit Co. of Canada Limited, Montreal, Que. * STATION NO. 42 – MATAPEDIA R * Station No. 42 – MATAPEDIA R * Station No. 43 – MATAPEDIA R * Station Normal									(7.2)	(40)	L	<u> </u>				<u> </u>			
 Analyses supplied by The Permutit Co. of Canada Limited, Montreal, Que. Analyses supplied by Alchem Limited, Burlington, Ontario. July 8/55 17:159 63 1.2 8.3 (8.1) 0 0 160 0.218 65.2 279.7 STATION NO. 42 - LAUZIER CI July 8/55 19:159 63 1.2 8.3 (8.1) 10 0 160 0.218 65.2 279.7 STATION NO. 42 - MATAPEDIA R July 8/55 19:159 74 8.3 (8.3) 20 0.9 111 0.151 49.2 188.1 July 26/55 8:20 Very lowt 71 12 0.9 8.3 15 2 59.4 0.081 80. 200.5 Sept. 20 13:49 Normal 54 25. 7.9 15 0.3 204.3 Oct. 19 8:167 Low 50 111 1.2 8.2 120 0.8 122 0.160 27.2 195.4 Nov. 19 11:26 Normal 34 1.8 8.1 15 0 217.4 Jan. 20/56 20:104 35 3.2 1.3 8.2 15 0.3 132 0.179 217.4 Jan. 20/56 20:104 35 3.2 1.3 8.2 15 0.3 132 0.179 217.4 Jan. 20/56 20:104	6 7	Nov. 16/50* Jan. 14/54	5:5				3.9	3 1.8	6.5 6.7	10	5 3			32.0	0.043				2
July 8/55 17;159 63 1.2 8.3 (8.1) 10 0 160 0.218 65.2 279.7 July 8/55 19:159 74 8.3 (8.3) 20 0.9 111 0.151 49.2 188.1 July 26/55 8:20 Very low† 71 12 0.9 8.3 15 2 59.4 0.081 208.3 Sept. 20 13:49 Normal		** Analyses	supplied	by Alchem	Limited, 1	Burlingt	on, Onta	rio.	1	, .	I		r	·····	s	TATION	NO. 42 - L	AUZIER C	REE
July 8/55 19:159 74 8.3 (8.3) 20 0.9 111 0.151 49.2 188.1 STATION NO. 42A – MATAPEDIA R July 8/55 19:159 74 8.3 20 0.9 111 0.151 49.2 188.1 STATION NO. 43 – MATAPEDIA R July 26/55 8:20 Very lowt 71 12 0.9 8.3 15 2 59.4 0.081 200.5 Sept. 20 13:49 Normal	8	July 8/55	17:159			63	• • • • • • •	1.2	8.3 (8.1)	10	0		•••••	. 160	0.218	·····	65.2	279.7	45
July 8/55 19:159															STAT	fion no.	42 A – MA'	TAPEDIA I	UVE:
July 26/55 8:20 Very low† 71 12 0.9 8.3 15 2 59.4 0.081 8.0 200.5 Aug. 22 4:24 Low 67 1.0 8.2 15 0 59.4 0.081 208.3 208.3 Sept. 20 13:49 Normal	9	July 8/55	19:159			74			8.3 (8.3)	20	0.9			111	0.151		49.2	188.1	30
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															ST	ATION NO). 43 – MA	TAPEDIA I	UVE
Aug. 22 4:24 Low	0	July 26/55	8:20	Very lowt	1	71	12	0.9	8.3	15	2			59.4	0.081		8.0	200.5	31
Sept. 20 13:49 Normal	1	Aug. 22	4:24	Low		67	1	1.0	8.2	15	0]	208.3	34
Oct. 19 8:167 Low 50 11 1.2 8.2 20 0.8	2	Sept. 20	13:49	Normal		54		2.5	7.9	15	0.3			[[1]	204.3	36
Nov. 19 11:26 Normal 37 1.2 8.2 15 5	3	Oct. 19	8:167	Low		50	11	1.2	8.2	20	0.8	1		122	0.160		27.2	195.4	31
Dec. 19 15:65 Low	4	Nov. 19	11:26	Normal		37		1.2	8.2	15	5							201.5	33
Jan. 20/56 20:104	5	Dec. 19	15:65	Low		34		1.8	8.1	15	lo				[]	1	217.4	35
Feb. 28 18:82 Normal 33 1.1 8.3 15 0 21.1.8 Mar. 19 35:58 Normal 34 1.1 8.3 10 0.3 21.1.8 Apr. 19 28:47 Normal	6	Jan. 20/56	20:104		1	35	3.2	1.3	8.2	15	0.3			132	0.179	1	19.2	219.9	36
Mar. 19 35:58 Normal 34	7	Feb. 28	18:82	Normal	[33		1.1	8.3	15	0					1]	211.8	24
Apr. 19 28:47 Normal 36 7.1 1.7 8.1 10 2 138 0.188 53.2 225.1 May 19 615 Medium high 56 2.4 7.8 20 4 138 0.188	B	Mar. 19	35:58	Normal	[34		1.1	8.3	10	0.3		1	[[1	1	274 1	20
May 19 6:15 Medium high 56 2.4 7.8 20 4	9	Apr. 19	28:47	Normal	[36	7.1	1.7	8.1	10	2	1	1	138	0.188	1	52 2	225 1	27
109/2 $101/6$ $100/6$ 1000	ń	May 10	6.15	Medium 1:	r • • • • • • • • •	56	1	2.4	7.9	20	6	[1		0.100	1	2+00	160 5	1
	1	May 20	10:16	Very high	,	30		1.7	81	20	2		1	r · · · · · · · · ·	[·····	1		162 4	24
	_		-0.10	L'riy mgu				1.12	0.1		L					· · · · · · · · ·		102.3	<u></u>
				l †		1	1			L		1	· · · · ·		1	1	1	1	T

22	July 19/54	7:50	Medium '		60		1.6	8.0	10	1			94.2	0.128	 18.4	146.8	23.6
23	Aug. 20	4:12	High		62		1.6	8.1	25	2					 	157.6	25.0
24	Sept. 15	23:245			47	6.9	1.3	8.0	15	4	10.6	7.9	98.4	0.134	 14.8	136.3	20.7
								(7.9)									1
25	Sept. 22	5:42	Season's h	igh	54	4.8	2.1	7.8	25	0					 	155.4	23.3
_		· · · · · ·				1 '						-					1

† Collector's estimate of river level.

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

_

(In	parts	per	million)	
-----	-------	-----	----------	--

			+																					_
	Iron (Fe)	[Alk	alis			ų					ríc)		Harc as C	lness CaCO3	astituents	odium	index	ndex	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonat	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimeti	Baron	Non- car- bonate	Total	Sum of cor	Per cent s	Saturation	Stability i	No.
(Mg)			(Mn)	(A1)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO3)	(SiO ₂)	(B)							
at NC	RTON,	N.B	(Conclu	uded)																				
																								Í
0.9	•••••						4.4	0.6		0.0	19.4	8.6	5.9		0.8	5.5	•••••	8.0	23.9	44.4	27.9	-2.1	11.4	1
0,6 1.3	 	0.01	0.0	0.04	0.0		2.6 7.3	0.7	0.0	0.0	11.9 28.4	5.9	3.2	0.0	0.8	5.3 9.4	•••••	5.6 10.7	15.4 34.0	30.3 67.5	25.4 31.2	-2.5 -1.4	12.1 10.3	3
1.1	••••••	0.06	Trace	0.01	0.0		9.1	0.9	0.0	0.0	35.1	13.7	12.0	0.0	0.4	5.2		10.7	39.5	73.8	32.7	-1.2	9.9	4
		NND																						
1.5		0.07	Trace	0.0	0.0		11.9	1.1		0.0 (0)	40.6 (43.0)	16.9	15.6	0.0	0.6	6,6	·····	11.3 (10.0)	44.6 (45.2)	89.7	35.9	-1.2	9.9	5
• • • • • • • • •	2	L			I	L	1	L	.			· · ·	L	 			·						L	L
near I	ANCAS	TER (F	AIRVI	LLE), N	ч.в.																			
0.2	0,2						3.7	as Na		0	6.1	1.9	6.4	.		1,3		2.6	7.6	18.2	55.5	-3.8	14.1	6
0.0	0.2			0,0					0.0	0	4.9	6.8	3.9			1.9		4.0	8.0		•••••	-3.5	13.7	7
neat \	AL-BRI	LLAN	r, que																					
7,6		0.01	0,0	0.07	0.02		1.7	0.5	0.15	0,0	170	3.7	1,3	0,0	1.6	6,6		3.8	144	152	2.5	+0.7	6,9	8
at LA	C-AU-SA	UMON	, QUE.																					-
4.1		0.18	0.0	0.0	0.04		2.1	0.6	0.0	0.0	108	4.7	1.5	0.0	1.6	6.7		4.2 (0)	93.0 (84.3)	105	4.6	+0.4	7.5	9
at CA	USAPSC	AL, Q	UE.																					
5.0		0.0	0.0	0.03	0.0		1.4	0.5	0.15	0.0	118	6.0	1.5	0.0	0.0	8.1		2.7	99.2	112	3.0	+0.5	7.3	10
4.1 3.1	•••••			•••••	0.0	• • • • •	1,8 1.4	0.5	0.0	0.0	12I 121	4.8	1.8	0.0	0.8	3.4 5.2	0.00	2.8	102 104	107 115	3.7	+0.3	7.6	11
4.6		0.02	0.0	0.01			1.9	0.6	0.0	0.0	116	5.9	1.5	0.0	0.8	5.9		3.0	98.0	110	4.0	+0.3	7.6	13
5.0 6.0							1.7	0.5	0.0	0.0	121	6.5	1.2		1.2	3.5		5.7 4.7	105	113 123	3.4	+0.3	7.6	14
5.5		Trace	0.0	0.0	0.0	0.0	1.8	0.5	0.0	0.0	127	7.4	1.3	0.0	3.2	4.6		8.5	113	123	3.3	+0.3	7.6	16
4.9 5.3						{	1.7	0.5	0.0	0.0	122 128	3.9	1.8		. 6.0 6.0	4.8	0,00	7.5	108	119 128	3.3	+0.4	7.5	17
5.7		Trace	0,0	0.05	0.0	0.0	1.7	0,6	0.0	0.0	130	7.1	1.9	0.0	2.4	4.5		9.9	116	125	3.1	+0.2	7.7	19
4.1 3.6	·····				0.0	0.0	1.5	0.5	0.1	0.0	94.7 91.5	4.8	1.5		1.6 1.2	3.0		7.2 6.6	85.0 81.7	91.4 88.8	3.7	-0.3	8.4 8.1	20
near M	ATAPE	DIA. O	UE.	r	4	L	1	<u>،</u>		L			<u>د</u>		۱ <u>ـــــ</u>			L	<u> </u>	·	L		L	
3.8	0.08		0.0	1	<u> </u>		2.0	0.7		0.0	87.3	5.0	1.0	0.05	1.2	6.3	<u> </u>	2.9	74 5	86.7	55	-0.1	8.2	1 22
3.4					[[13.6	0.9	[0.0	124	5.0	0.8		0.8	5.5		0.0	76.5	116	2,8	+0.1	7.9	23
3.1	·····	0.01	0,0	0.03	0.0		2.4	0.5	····	0.0	76.3	1.4	2.2	0.05	2.4	7.8	•••••	1.8	64.4	72.2	7.4	-0.3	8,6	24
3.3	ļ	 			.	l	1.6	0.5	 	0.0	84.2	4.4	0.6		0.4	5.3		2.6	71.7	80.9	4.6	-0.4	8.6	25

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

			Stream d (Secon	ischarge d-feet)		ped					Sus pe mate	nded er	Residu drie (Diss	e on evap ed at 105 ⁰ olved sol	oration C. ids)			
ło.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consur by KMnO ₄	Carbon dioxide (calculated)	рН	Colour	Turbidity	Dried at 105º C.	Ignited at 550°C.	P.P.M.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ^o C.	Calcium
		(m)			10 - 1		1000		(Hazen)	(Unite)								(Ca)
1		(Days)			J(F.)	1 :	(CO_2)	1	(onits)	(ounts)					· · · ·			,,
1		(Days)	<u> </u>	l	(1	1(002)	I	[(ontes)	(outs)		. <u></u>	l	STA	TION NO	. 44 – MA	L	IVER
1	Det. 25/54	(Days)	High		44	5.3	1.6	8.0	10	1			106	STA 0.145	ATION NO	. 44 – MA 12.4	TAPEDIA R	IVER 24.5
	Dct. 25/54 Nov. 24	(Days) 4:45 6:58	High High		44 40	5.3 5.3	1.6	8.0	10 20	1 4			106	STA 0.145	ATION NO	. 44 – MA 12.4	L TAPEDIA R 153.8 138.5	IVER 24.5 22.7
	Dct. 25/54 Nov. 24 Dec. 16	(Days) 4:45 6:58 5:39	High High High	· · · · · · · · · · · · · · · · · · ·	44 40 37	5.3 5.3 3.2	1.6 3.4 1.9	8.0 7.6 7.9	10 20 5	1 4 2			106	STA 0.145	ATION NO	. 44 – MA 12.4	FAPEDIA R 153.8 138.5 156.9	IVER 24.5 22.7 25.0
	Dct. 25/54 Nov. 24 Dec. 16 Ian. 15/55	(Days) 4:45 6:58 5:39 9:31	High High High Seasnn hig		44 40 37 39	5.3 5.3 3.2 2.6	1.6 3.4 1.9 1.4	8.0 7.6 7.9 8.1	10 20 5 10	1 4 2 0			106 108	STA 0.145 0.147	ATION NO	. 44 – MA 12.4 17.6	TAPEDIA R 153.8 138.5 156.9 171.2	IVER 24.5 22.7 25.0 27.8
	Dct. 25/54 Nov. 24 Dec. 16 Ian. 15/55 Feb. 22	(Days) 4:45 6:58 5:39 9:31 7:87	High High High Seasnn hig High	;h	44 40 37 39 34	5.3 5.3 3.2 2.6 2.7	1.6 3.4 1.9 1.4 1.7	8.0 7.6 7.9 8.1 8.0	10 20 5 10 10	1 4 2 0 0			106 108	STA 0.145 0.147	ATION NO	. 44 – MA 12.4 17.6	TAPEDIA R 153.8 138.5 156.9 171.2 178.4	IVER 24.5 22.7 25.0 27.8 27.7
	Dct. 25/54 Nov. 24 Dec. 16 Jan. 15/55 Feb. 22 Mar. 26	(Days) 4:45 6:58 5:39 9:31 7:87 6:41	High High High Seasnn hig High High		44 40 37 39 34 38	5.3 5.3 3.2 2.6 2.7	1.6 3.4 1.9 1.4 1.7 2.2	8.0 7.6 7.9 8.1 8.0 7.9	10 20 5 10 10 10	1 4 2 0 0 0			106 108 	STA 0.145 0.147 0.141	ATION NO	12.4 12.4 17.6 12.8	TAPEDIA R 153.8 138.5 156.9 171.2 178.4 183.8	IVER 24.5 22.7 25.0 27.8 27.7 28.5
	Dct. 25/54 Nov. 24 Dec. 16 Ian. 15/55 Feb. 22 Mar. 26 Apr. 20	(Days) 4:45 6:58 5:39 9:31 7:87 6:41 5:42	High High High Seasnn hig High High Spring higi		44 40 37 39 34 38 34	5.3 5.3 3.2 2.6 2.7 3.2	1.6 3.4 1.9 1.4 1.7 2.2 2.3	8.0 7.6 7.9 8.1 8.0 7.9 7.8	10 20 5 10 10 10 10	1 4 2 0 0 0 17	23.8		106 108 104 103	STA 0.145 0.147 0.141 0.141	ATION NO	12.4 12.4 17.6 12.8 16.8	TAPEDIA R 153.8 138.5 156.9 171.2 178.4 183.8 159.4	IVER 24.5 22.7 25.0 27.8 27.7 28.5 25.5
1 2 3 4 5 5 5 7 3	Det. 25/54 Nov. 24 Dec. 16 Ian. 15/55 Feb. 22 Mar. 26 Apr. 20 May 19	(Days) 4:45 6:58 5:39 9:31 7:87 6:41 5:42 11:29	l High High Seasnn hig High High Spring high		44 40 37 39 34 38 34 43	5.3 5.3 3.2 2.6 2.7 3.2	1.6 3.4 1.9 1.4 1.7 2.2 2.3 1.1	8.0 7.6 7.9 8.1 8.0 7.9 7.8 8.0	10 20 5 10 10 10 10 10 10	1 4 2 0 0 0 17 9	23.8	14.3	106 108 104 103	STA 0.145 0.147 0.141 0.141	ATION NO	. 44 – MA 12.4 17.6 12.8 16.8	FAPEDIA R 153.8 138.5 156.9 171.2 178.4 183.8 159.4 118.9	24.5 22.7 25.0 27.8 27.7 28.5 25.5 19.2

† Collector's estimate of river level.

													STAT	ION NO. 45	5 – RESTI	GOUCHE R	IVER
10 11	July 19/54 Aug. 20	7:50 4:12	† High		12	1.6 1.3	7.9 8.1	10 15	1 2			85.2	0.116		.12.8	136.1 146.5	21.9 22.5
12	Sept. 15	23:245		. 47	7.2	1.4	7.9 (7.8)	25	6	9.4	7.3	92.0	0.125		2.8	119.8	19.7
13	Sept. 22	5:54	Seasons high	. 52	3.6	1.3	8.0	20	0							144.3	23.0
14	Oct. 25	4:45	High	44	4.7	1.8	7.9	-15	2			92.0	0,125		11.2	137.8	22.3
15	Nov. 24	6:58	High	38	5.1	3.3	7.5	20	5							114.7	19.0
16	Dec. 16/54	5:39	High [†]	36	2.7	2.2	7.8	5	2							141.6	23.1
17	Jan. 14/55	14:32	Seasonshigh	. 40	1.3	2.1	8,2	>	0		•••••	211	0.287		26.4	167.8	55.2
18	Feb. 22	7:37	High	. 38	2.2	1.9	1.9	10	0				•••••	· · · · · · · · · · · · · · · · · · ·		108.6	27.4
19	Mar. 26	6:41	High I	38		1.4	8.1	5	0		• • • • • • • •	106	0.144		46.0	181.6	30.1
20	Apr. 20	5:42	Spring high	38	4.4	2.8	7.6	25	50	34.1	24.7	86.4	0.118		18.0	123.9	20.4
21	May 19	11:29	High	44		1.1	7.9	15	15							102.9	17.I
22	June 19	17:30	Normal	65	11	0.8	8.2	10	0			80.4	0.109	<u></u>	11.6	130.4	21.3

† Collector's estimate of river discharge or level.

STATION NO. 46 - RESTIGOUCHE RIVER

STATION NO. 40 – RESTIGUOCHE R														(IVER			
23	Nov. 14/46			12.9**	40	3.2		. 8.0	13	4			105	0.143	 52.7		28.0
24	Jan. 22/47			12.4**	33	0.6	4.4	7.7	5	4 5	•••••		131	0.179	 		19.2

Sample taken near a pulp and paper plant,
Dissolved oxygen;

STATION NO. 46A - DUFF'S LAKE

25	June	/57						2.3	7.4	15			 				95.2	10.9
														STAT	ON NO.	47 – UPSAL	QUITCH I	RIVER
26	July	19/54	16:56	1,699	1,130	63		1.0	8.2	10	1		 101	0.138	3,175	12.0	153.9	25.6
27	Oct.	8	14:39	1,420	2,270	56	5.3	1,1	8.1	20	2		 				135.1	22.4
28	Nov.	20	4:49	1,720	2,600	41	2.4	1.7	7.9	7	2		 				145.8	23.3
29	Dec.		No sample taken		916†		1											
30	Jan.	31/55	7:79	374	504	35	1.3	1.7	8.0	5	0		 100	0.136	101	17.6	161.7	27.4
31	Feb.		No sample taken		598							1						
32	Mar.		No san	ple taken	760		1		Į			1	I	l	,			

• Sampled from railway bridge. † Ice conditions December 15, 1954 to April 10, 1955.

.

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

						1			-	(17)	purts p	er mutt	1011)											
	Iron (Fe)						Alkalis											Hard as Ci	ness aCO3	uents	g	Xa		
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Вогол	Non- car- bonate	Total	Sum of constitu	Per cent sodiu	Saturation inde	Stability index	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH3)	(CO3)	(HCO3)	(SO4)	(CI)	(F)	(NO ₃)	(SiO ₂)	(B)						••	
near MATAPEDIA, QUE (Concluded)															<u></u>									
3.5		0.01	0.0	0.0	0.0		1.7	0.4		0.0	97.2	4.3	0.4	0.05	0.8	82		0.0	76 6				<u> </u>	<u>,</u>
3.3				• • • • • • •		••••	1.2	0.4		0.0	79.2	4.6	0.9		1.2	3.0	0.0	5.2	70.2	76.4	4.0 3.6	-0.2	8.4 8.8	2
4.1 3.9		Trace	0.0	0.0	 0.0	• • • • • •	1.4	0.5		0.0	89.7	6.3	1,3		1.2	3.9		5.7	79.3	87.9	3.7	-0,3	8.5	3
3.9							2.0	0.5	0.3	0.0	98.7	4.6	1.3	0.02	1.2	3.4	•••••	3.9 4.2	85.2	94.2 93.3	2.9	0.0	8.1	4
4.4	• • • • • •	Trace	0.0	0.08	0.0	••••	1.5	0.5		0.0	106	5.4	0.9	0.0	1.2	5.6		2.5	89.2	100	3.5	-0.2	8.3	6
3.4 2.5	•••••	0.0	0,0	0.04	0.0	• • • • •	1.3	0.5		0.0	90.9	3.8	1.1	0.0	1.6	5.2	••••	3.0	77.6	87.2	3.5	-0.3	8.4	7
3.5		Trace	0.0	0.0	0.0		1.5	0.4	0.0	0.0	83.7	4.0	0.8	0.05	0.8	5.2 6.5	• • • • • • • • • •	4.5	58.2 70.0	68.2 80.9	4.2 4.4	-0.4	8.8 8.1	8
near M 	1ATAPE	EDIA, Q	UE.	0.0		<u></u>	1,9	0.7	1	0.0	81.4	5.1	0.7	0.1	1.2	6.4		0.3	67.1	81.2	5.7	-0.3	85	10
3.1							4.5	0.7		0.0	90.7	5.4	0.2		0.4	7.1		0.0	69.1	88,5	12,1	-0.1	8.3	11
1.9	•••••	0.01	0.0	0.01	Trace	•••••	1.7	0.4		0.0	68,1 (68,1)	2,5	0.7	0.05	1.2	9.9		1.1	57.0	69.2	6.0	-0.5	8.9	12
2.5							1.6	0.3		0.0	80.8	4.1	0.8	0.1	0.4	8.2		0.0	17.7	80.8	4.9	-0.3	8.6	13
2.4		0.06	0.0	0.0	0.0	•••••		0.4		0.0	81.2	4.1	0.6	0.1	0.6	10.6		0.1	66.7	83.4	5.8	-0.4	8.7	14
2.8	[[1 4	0.5		0.0	82.6	1 1.5	0.0			5.5	0.00	4.9	21.3	64.4	4.0	-0.9	9.3	
7.3		0.06	0.0	0.07	0.0		6.7	0.9		0.0	194	16.1	5.8	0.0	3.2	6.7		8,7	168	198	7.9	+0.5	8.8	10
3.0							1,8	0.3	0.0	0.0	93.1	6.5	0.7		0.6	4.1		4.3	80.7	90.3	4.6	-0.2	8,3	18
2.3		Trace	0.0	0.00	0.0	•••••	1.5	0.4		0.0	103	6.9	0.2	0.0	Trace	1.2		3.3	87.4	101	3.6	0.0	8,1	19
1.4							1.2	0.5	0.0	0.0	54.7	6.0	0.5		0.4	5.9		3.5	48.4	60.0	5.0	-0.6	9.0 9.1	20
2.2	<u> </u>	Trace	0.0	0.0	.0.0.		1.6	0,4	0,0	0.0	73.5	4.9	0.5	0.0	0.2	7.5		1.9	62.2	74.8	5.3	0.0	8,2	22
near T	IDEHE	AD, N.I	3.*	-					.															
1.3										0.0	60,0	33.4	5.0			11.6		25.3	75.3					23
3.6	<u>.</u>									0.0	115	33.3	5.9			11.8		0.0	62.8		[]			24
																					·······			<u> </u>
near T	IDEHE.	AD, N.I	3.																					
1.6		0.02					2,5	0,2	0.05	0.0	36.3	7.4	1.4	0.0	0.0	6.1		4.0	33.8	48.0	13.8	-1.5	10.4	25
at UPS	SALQUI	тсн, м	I.B.*-)	Drainag	e area,	870 sq	uare n	niles,									I				-			

3.7 2.5 2.4 8.2 26 8.3 27 8.7 28 29 8.4 30 31 32 0.11 0.0 2.1 0.6 3.2 1.1 • • • • 0,0 92.6 6.2 0.4 0.1 0.0 11,2 79.2 95.6 0.0 5.4 . . . 0.4 5.0 -0.1 4.6 -0.4 1.6 0.0 79,6 5.4 0,6 0.3 8.0 66.4 80.4 1.5 0.3 78.7 • • • • 0.0 5.4 0.5 0.6 7.7 0.00 3.4 68.0 80.5 2.8 Trace 0.0 0.02 0.0 1.9 0.6 0.0 94.7 7.0 0.8 Trace 1.6 7.4 2.2 79.9 L 96.2 4.9 -0.2
Chemical Analyses of Surface Waters in the Atlantic Provinces and in the Saint John River Drainage Basin in Quebec

(In parts per million)

			Stream d (Second	ischarge l-feet)		ned					Suspe	ended ter	Residu drie (Diss	e on evap d at 105° olved soli	oration C. ds)	_	- 14	
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consur by KMnO4	Carbon dioxide (calculated)	рН	Hazen)	Turbidity	Dried at 105º C.	Ignited at 550°C.	Parts per million	Tons per acre- foot	Tons per day	Loss on igni- tion at 550 ⁰ C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		(Days)			(°F.)		(CO2)		(Units)	(Units)								(Ca)
														STATI	on no. 4	7 – UPSAL	QUITCH RI	VER
1	Apr. 2/55 May	No camp	989 e taken	5,020	34	2.2	4.2	7.5	5	2			94.4	0,128	251	16,8	155.0	25.5
3	June 13	15:30	2,410	2,480	58	13	1.2	8.0	10	0			82.4	0.112	535	6.8	128.9	20.7
	* Sampled fr	om railwa	y bridge.											STATIO	ON NO. 4	8 – UPSAL	QUITCH RI	VER
4	Se pt.15/54	23:245	4,980†	3,070†	46	7.1	1.5	7.9	20	3	20.0	15.7	175	0.238	2,346	39.2	275.0	21.8
	† Discharge	records a	t Upsalquit	ch, N.B.	1	!		<u> </u>	J	I	I							
												ST	ATION NO). 49 – MA	IN SOUT	HWEST MI	RAMICHI R	IVER
5	Aug. 16/54	14:200			63		0.9	7.5	60	0			53.6	0.073		11.6	30.9	3.9
6	Sept. 25	20:66	2 ft above	 	51	15	1.9	7.0	60	1			47.6	0.065		13.2	28.7	3.6
7	Oct. 25	16:113	3 ft above	". 	. 43	9.5	3.6	6.7	45	2			44.0	0.060		29.4	28.7	3.0
8	Nov. 29	11:42	1 ft above	"	33	7.1	1.7	7.1	30	0.2			•••••				34.1	3.6
9	Dec. 24	11:47	2 ft above		37	6.9	2.4	6.9	30	2			34.4	0,047		14.8	30.1	3.2
10	Jan. 28/55	10:35	I ft above	' ,I	33	8.5	2.5	7.0	30	2							44,6	4.7
11	Feb. 26	24:58	1 ft above		33		2.3	7.0	30	0.2							43.0	4.5
12	Mar, 20	18:60	1 ft above summer lo	* 	34	4.5	2.1	7,0	20	0.2			62.0	0.084		37.6	47.2	4.9
13 14	Apr. May 25	No samp 12:33	le taken 3 ft above		50		1.6	7.0	40	0,8					ļ		27.0	3.4
15 16	June July 30	No samp 24:38	le taken 1 ft above	~ 	65		2.1	7.1	85	0.3							44.6	5.4
17	Aug.	No samp	summer lo le taken	ΥΫ́													ļ	
18	Sept. 15	18:32	Summer lov	,	55	4.3	1.2	7.4	25	0			41.6	0.057		17.6	46.1	5.3
	* Sampled at † Collector's	No.8 h sestimate	ighway brid e of river le	ge. vel or dis	charge							ST	ATION NO). 50 – MA	IN SOUT	HWEST MI	RAMICHI R	IVER
10	Ing 21/47		1		37	3.7	1	7.6	12	15	1	1			1			
20	Jan. 21/4/	14.177		•	63	5.2	0.9	7.4	80				52.4	0.071		24.0	31.05	3.6
20	Mug. 10/)4	14.177			<u> </u>	<u> </u>		(7.2)	(110)			I						
												ST	ATION NO	D. 51 MA	IN SOUT	HWEST M	RAMICHI R	IVER
21	Aug. 22/57					. 9.3	2.0	7,1	65	2	<u></u>		1,524	2.08		250	2,593	18.9
	* Tidal – sa	mpled bel	low outlet c	of the Fras	er Co. L	td. pulj	mill.							STATION	NO. 51A	- CHARL) RIVER (L	AKE)
		24.000	r	T	67.6	16	122	17.	70	6	1 12 2	11 0	00.0	0 121		34.0	91.0	14.2
22	Sept. 14/54	24:259		1	(,,,)	10	2.5	(7.4)	(120)		19.9	1.0	00.0	0.121		1 ,4.0	51.0	17.4
	* Sampled a	t dam.	1	1	I	I	1	I	I	I	I	I	ł	I	•			1

.

٩

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

			······												(r	1					F		
	Iro (Fe	n)		i i			All	calis								2		Hard as C	iness aCO ₃	tituents	lium	ıdex	ex	
agnesium	otal	issolved	anganese	uninum	opper	g	muibo	otassium	mmonia	arbonate	icarbonate	ılphate	hloride	luoride	itrate	lica olorimetric	oron	Non- car- bonate	Total	um of const	er cent soc	aturation in	ability ind	No.
ž (Ma)	Ă	Ä	ヹ (Mn)	(A1)	U Cui	N (Zn)	й (Na)	ф. (K)	(NH-)	് ഗ്രം	й (НСО-)	(SO')	U (CD) щ (F)	Z (NO.)	ା ଭିଥି (SiQJ	(В)			ي م	<u></u>	ů,	ŝ	
at UP	SALQUI	TCH, N	I.B.* -	(Conclu	vd ed)	()		(11)	(1113)	(003)	(1.003)	(004)	(0.)		(+3)	(0104)	1.27	. <u> </u>	l	L	L			<u> </u>
2.6		Trace	Trace	0.05	0.0		1.4	0,4		0.0	86.5	5.1	0.7	0.05	0.6	7.0		3.3	74.3	86,1	3.9	-0.8	9.1	1
2.3		0.02	Trace	0.01	0.0		1,4	0.4	0.0	0,0	72.0	5,1	0.4	0.0	0.4	6.4		2.0	61.1	72.2	4.7	-0,3	8.6	2 3
			•					I						I		•								1
at RC	BINSON	VILLE	, N.B.					·				· · · · · · ·	·	,			,							t
4.4		0.01	0.0	0.06	0.0		25.3	1.6		0.0 (0)	71.6 (74.6)	12.0	41.7	0.0	0.4	9.0		13.8 (10.0)	72.5 (71.1)	152	42.5	-0.5	8.9	4
	1		<u>ا</u>			L					<u> </u>			1	L	I		·			·			
at DO	AKTOW	N, N.B.	•			, <u></u>	·										·							
0.6		0.06	0.0	0.0	0.0		1,8	0.2		0.0 (0)	16.0 (16.4)	2.1	0.9	0.12	0.02	3.0	•••••	0.0 (0.0)	12.2	20,6	25.7	-2.2	11.9	5
0.6		0.12	0.0	0.02			1,3	0.4		0.0	11.8	3.9	1,3	0.20	Trace	6.5		1.8	11.5	23.7	20.3	-2.8	12.6	6
0.9		0.06	0.0	Trace			1.2	0.4		0.0	10,6	2.8	1.1	0.0	0.8	4.6		2.5	11.2	20.1	18,1	-3.3	13.3	7
0,6							1.4	0.3		0.0	13.5	3.1	0.7		0.6	8.5		0.4	11.5	25.5	20.5	-2.7	12.5	8
0.7	•••••	0.03	0.0	0.02	0.0		1.3	0.3		0.0	11.8	3.6	0.7	0.0	0.8	6.5		1.2	10.9	23.0	19.8	-2.9	12.7	9
0.7							2.0	0.5		0,0	15.7		1,6			0.9		1.7	14.6		22.2	-1.7	11.4	10
0.5							2.1	0.3		0.0	13.4	3.1	2.3		0,8	8.0		2.3	13.3	28.2	25.1	-2.7	12.4	11
0.5		0.02	0.0	0.01	0.0		2.7	0.6		0.0	13.9	2.9	3.8	0.0	0.4	7.6		2.9	14.3	30.3	27.9	-2.6	12.2	12
						l																		13
0.5	•••••	••••		•••••			. 1.1	0,3	0.3	0.0	9.3	2.4	0.6	•••••	1.2	5.1		2.9	10.5	19.2	17.9	-2.9	12.8	14 15
1.0		•••••	 				1.8	0,4	0.2	0,0	16.5	2.9	1.5		1.2	6.0		4.1	17.6	28.5	17.8	-2.3	11,7	16
0.4		0.03	0.0	0.0	0.0	0.0	2,1	0.4	0.0	0,0	17.8	4.3	1.1	0.0	0.4	6.2		0.3	14.9	29.0	22.8	-2,1	11.6	17 18
	I			L	L	·					L		 _)
at OU	ARRYV	ILLE, I	м.в.																					
	Ţ		ļ							0.0	33.6		3.9											19
0.5		0.05	0.0	0.02	0.0		1.9	0,2		0.0	13.4	2.8	1.0		0.2	4.5		0.0	11.0	21.9	26.4	-2.4	12.2	20
										(0,0)	(13.9)							(0.3)	(11.7)					L
near l	NEWCAS	TLE,	N.B.*																		74.4	1.0	100	[
49.8	<u>.</u>	0.11	1 0.0	0.0	0.0	0.0	41.4	15.5		0.0	21.3	109	11.8	10.0	0,2	4.0		254	252	1,340	/0.0	-1.9	10.9	21
near l	ALHOU	JSIE, N	.B.*																					
1.2		Trace	0.0	0.0	0.0		1.6	0.4		0.0	45.4	3.5	1.0	0.0	1,2	7.3		3.2 (0)	40.4	52.8	7.9	-1.2	9.9	22

Chemical Analyses of Surface Waters in the Atlantic Provinces and in the Saint John River Drainage Basin in Quebec

									(In parts	s per mi	llion)							
	1		Stream d (Second	ischarge d-feet)		med	e				Suspe mat	ended ter	Residue drie (Diss	e on evapo d at 105° olved soli	oration C. ds)	Less	Specific	
No.	Date of collectinn	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consu by KMnO4	Carbon dioxid (calculated)	рН	Hazen)	Turbidity	Dried at 105°C.	Ignited at 550°C.	Parts per millioa	Tons per acre- foot	Tons per day	on igni- tion at 550 ⁰ C.	conduct- ance K × 10 ⁶ at 25 ⁰ C,	Calcium
	L]	(Days)]i		(°F.)		(CO ₂)		(Units)	(Units)				l		L		(Ca)
	+												SI	TATION N	0. 51A -	CHARLO	RIVER (LA	ке)
1 2	Jan. 24/56 [†] July 10 [†]	3: 13:					2.6 	7.8 8.2	0 I0	2 2	Trace Trace	•••••	75 				110	. 24 19
	* Sampled at † Analyses s	t dam. supplied b	y Alchem	Limited, B	urlingtor	, Ont.									STATION	I NO. 52	RENOUS R	IVER
3	Aug. 16/54	14:172			65		3.9	7.0 (7.2)	80 (75)	0			49.2	0.064		27,6	32.4	4.2
	(<u>.</u>		4				•			STATI	on no. 5	3 – LITTI	.E SOUTI	HWEST MI	RAMICHI R	IVER
4	July 22/54	13:47	750†	783†	69	<u> </u>	1.2	7.4	30	2			37.8	0.051	76,2	15.4	34.4	3.9
5	Aug. 16	14:32	1,640	1,380	62		0.9	7.4	80	0,7			•••••		••••••	••••••	30.4	4.0
6	Sept. 22	5:21	1.030	1,520	60	11	1.6	7.1	60	0							30.2	3.4
7	Nov. 23	3:48	2,300	2,140	39	8.2	2.5	6.8	65	2		ļ				ļ	22.1	2.5
8	Jan. 24/55	4:80	349*	499	35	4.2	2.1	7.0	30	0			30.8	0.042	29.1	10.8	27.2	3.1
9	Mar. 24	7:43	533	946		4.4	1.9	7.0	20	0.2			33.6	0.046	48.6	11.6	29.8	3.3
10	May 25	7:23	5,050	5,180	50		2.8	6.4	45	2				<i>{</i>		• • • • • • • • •	17.5	2,1
11	July 22	4:18	396	474	69	14	0.9	7.3	40	0			34.4	0.047	36.8	16.4	28.2	3.2
	† Discharge * Ice conditi	records a ions, Dec	t No. 11 hi ember 6, 19	ghway bridg 954 to Apri	ge at Ly 1 22, 19	ttleton; 55.	draina,	ge are	a 556 squ	are mile	:s.	r	STATI	ON NO. 5	4 – NORT	HWEST MI	RAMICHI R	IVER
			Gaugehei	ght in feet				ł										
12	Jan. 23/47		• • • • • • • • • •	.	32	5.7		6.9	30	4 5					(† • • • • • • •			· · · · · ·
13	July 22/54	13:47	8 ft 2 in.	 	67		1.0	7.5	30	2			41.2	0.056	•••••	14.6	40.4	5.2
14	Aug. 16	14:32	·····	• • • • • • • • • •	62.5		0,9	7.5	(90)	0.7				1		•••••••	. 30.6	4.1
	Sant 22	5.80	7 ft 3 in		55	8.0	1.3	7.2	50	0	1	1	1				37.1	4.8
15	100000022	3.49	9 ft] 40	10	1.9	7.0	65	2			1				26.7	3.3
15 16	Nov 23		12.45	1	1	1 -	1	1		-					1			,
15 16 17	Nov. 23	No same	le taken									1	1				1	
15 16 17 18	Nov. 23 Jan. /55 Mar. 24	No samp 7:43	le taken 18 ft			4.6	2.0	7.1	30	0	1]	35.2	0.048		. 12.0	38.2	4.5
15 16 17 18 19	Nov. 23 Jan. /55 Mar. 24 May 25	No samp 7:43 7:23	le taken 8 ft 11 ft	,	51	4.6	2,0	7.1	30 40	0			. 35.2	0.048		. 12.0	38.2 22.3	4.5

21	July 21/54	5:48	674†	976†	61	13	2.0	7.2	20	1			36.6	0.050	66.5	12.8	40.7	43
22	Aug. 20	4:28	1,510	1,700	60		1.3	7.4	10	2							39.9	4.2
23	Sept. 21	6:90	1,640	1,740	56	6.6	1.2	7.4	40	0							39.2	4.9
24	Oct. 20	6:50	1,680	1,650	43	11	1.6	7.2	65	0.7			43.6	0.059	197	18.0	33.3	3.6
25	Nov. 20	6:51	1,500	1,950	45	6.2	1.4	7.2	35	2							34.9	3.6
26	Dec. 20	8:42	1,840	1,250	34	6.3	2.6	6.9	40	0.9							33.0	3.6
27	Jan. 24/55	9:80	665	772	34	5.0	1.5	7.2	35	0			36.4	0.050	66.0	14.0	37.4	4.2
28	Feb. 21	4:38	740	712	33	5.7	1.9	7.1	40	0.3							38.7	4.2
29	Mar. 24	7:39	605	677	33		. 1.8	7.1	30	0							37.8	4.3
30	Apr. 20	6:42	3,550	2,340	33	9.4	1.7	7.0	50	12	28.5	16.0	41.2	0.056	394	22.4	39.4	3.2
31	May 25	5:23	6,740	5,610	47	1	1.2	7.1	40	4							25.0	3.2
32	June 21	15:28	1,670	2,560	58	13	0.9	7.4	25	0			34.4	0.047	156	13.6	37.0	4.0

.

• Sampled at intake to pulp mill. † Discharge records at Great Falls, at powerhouse of Bathurst Power and Paper Company, Limited, -drainage area, 700 square miles.

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

	Iro (F	e)					Alk	alis										Hard as C	ness aCO3	uents	E	×		
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorímetric)	Boron	Non- car- bonate	Total	Sum of constit	Per cent sodiu	Saturation inde	Stability index	No.
near D	ALHOU	ISIE, N	.B.*-(C	onclude	ed)	(2,11)	(Na)	(K)	(NH ₃)	(03)	(ncO ₃)	(304)		<u>}(F)</u>	(NU ₃)	(SiO ₂)	(B)	I	!			.	}	<u> </u>
2.4 1.5	Trace 0.0			0,1 0.0					0.0 0.2	0 0	63.4 65.9	6.8 4.1	7.3 3.6			5.0 3.9		18 0	70 54			-0.5 -0.2	8.8 8.6	1 2
near R	ENOUS	, N.B.																		•				
0.5		0.07	0.0	0.0	0.0		1.5	0.3		0.0 (0)	18.4 (18.9)	1.1	0.3		0.6	5.9		0.0	12.5	23.8	20.0	-2.5	12.0	3
at RE	d bank	, N.B.														-								
0.7 0.5		0.11 	0.0 		•••••		2.0 1.5	0.4 0.4		0,0 0,0 (0)	18.0 16.7 (16.4)	1.2 0.5	0.6 0.8	0.2 	0.8 0.2	5.7 4.4	•••••	0.0 0.0 (0.0)	12.6 11.8 (13.1)	24.5 20.5	24.9 20.9	-2.3 -2.2	11.5 11.8	4 5
0.2 0.5 0.5	•••••	 0.0	 0.0	0.10	 0.0	· · · · · · · · · · · · · · · · · · ·	1.5 1.2 1.6	0.5 0.3 0.3	 	0.0 0.0 0.0	13.2 9.6 11.7	2.2 2.2 3.3	0.8 0.6 0.8	 0.1	Trace 0.4 0.8	7.7 6.9 8.2	0.00	0.0 0.4 0.2	9.6 8.3 9.8	22.9 19.3 24.6	24.9 23.2 24.5	-2.7 -3.3 -3.0	12.5 13.4 13.0	6 7 8
0.4 0.0 0.4	•••••	0.04 0.04	Trace 0.0	0.04 0.02	0.0 0.0	·····	1.3 1.0 1.2	0.3 0.3 0.4	0.2 0.2	0.0 0.0 0.0	12.2 4.3 11.0	0.9 2.8 3.4	0.5 0.6 0.7	0.2 0.0	0.4 0.2 0.4	9.0 4.6 7.8	· · · · · ·	0.0 1.7 0.6	9.9 5.2 9.6	22.3 13.7 23.2	21.2 27.9 20.2	-2.8 -4.1 -2.5	12.6 14.6 12.3	9 10 11
near R	ED BAN	JK. N.I	3.*																					
										· · · · ·]										1				[
 0.9 0.5	· · · · · · · · · · · ·	0.11		: 	•••••		1.9 1.4	0.4 0.4		0.0 0.0 0.0	26.9 21.2 17.2	2.2 0.4	5.9 0.9 0.8	0.1	8.4 0.2	5.4 5.2	•••••	0.0 0.0	16.5 12.1	27.9 21.5	19.6 19.1	-1.9 -2.1	11.3 11.7	12 13 14
0,2 0,6		•••••				 	1.3 1.0	0.3 0.3		(0) 0.0 0.0	(17.7) 15.7 11.1	3.1 2.1	0.6 1.0	 	0.6 0.6	6.9 5.8	 0.03	0.0 1,6	12.8 10.7	25.5 20,2	17.6 16.5	-2.4 -2.9	12.0 12.8	15 16
0.7 0.1 0.7		0.04 0.08	0.0 0.0	0.04	0.0 0.0		1.6 1.0 1.5	0.4 0.3 0.4	0,1 0.1	0.0 0.0 0.0	16.0 7.4 19.6	1.9 2.5 2.8	0.7 0.7 1.3	0.1 0.0	2.0 0.4 0.8	7.8 4.0 5.6	•••••	1.0 2.1 1.3	14.1 8.2 17.4	27.7 15.8 28.7	19.0 20.3 15.3	-2.4 -3.2 -1.9	11.9 13.3 11.2	17 18 19 20
near B	ATHURS	ST, N.I	3.•				·					<u> </u>	4	- '				I		<u> </u>				
1.1		0.12	0.0				2.0	0.6		0.0	21.1	1.6	0.6	0.1	0,6	7.2		0.0	15.3	28.6	21.4	-2.2	11.2	21
1.1 0.4		•••••			•••••		1.6 1.4	0.4 0.4		0.0 0.0	21.8 17.9	0.8 1.8	0.8 0.6		0.2	6.2 8.6		0.0 0.0	15.0 13.9	26.0 26.8	18.3	-2.1	10.6	22 23
1.0 1.0		0.09	0.0	0.0	0.0		1.3	0.5		0.0	16.6 14.5	1.6	1.0		0.6	7,1		0.0	13.1	25.1	17.1	-2.5	12.2	24
0,8							1.4	0.4	•••••	0.0	13.8	3.8	1.2		1.2	6.6		1.0	12.3	25.8	19.2	-3.4	13.1	26
0.8				0.23		•••••	1.6	0.4 0.5		0.0	15.4	5.5 2.8	1.0		0.8	7.7 5.6	· • · · · ·	1.2	13.8 13.8	27.9 24.6	18.1 19.4	-2.5 -2.3	12.2	27 28
0.9 0.5		0.04	0.0	0.03	0.0		1.3 1.0	0.5 0.5		0.0 0.0	16.8 9.3	2.0 2.5	0.8 0.8	0.0	0.6 1.4	8.3 7.3		0.6 2.4	14.4 10.0	27.0 21.9	15.8 16.6	-2.4 -2.9	11.9 12.8	29 30
0.3 0.6	· · · · · · ·	0.04	0.0	0.0	0.0	····	1.2 1.4	0.6 0.4	0.2 0.1	0 0 0.0	8.9 15.0	3.6 2.8	0.7 0.5	0.0	0,8 0,1	4.8 6.1	 	1.9 0.2	9.2 12.5	19.6 23.3	20.7 18.9	-2.9 -2.2	12.9 11.8	31 32

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

			Stream d (Second	ischarge d-feet)		лed	61				Suspe	ended ter	Residue dried (Disso	on evapo at 105°C lved solid	oration ds)			
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consu by KMnO4	Carbon dioxid (calculated)	рН	Colour	Turbidity	Dried at 105 ⁰ C.	Ignited at 550° C.	Parts per million	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance $K \times 10^6$ at 25^0 C.	Calcium
		(Days)		r.	(°F.)		(CO ₂)		(Hazen) (Units)	(Units)								(Ca)
_				•										STA	TION NO	0.56 – RI	снівисто	RIVER
1	Aug. 17/54	16:171			57		2.7	7.0 (7.6)	170 (180)	0.7			62.0	0.084		33.5	35.3	5.2
	_			·····				• • • • •						STAT	TION NO.	57 - PE1	TTCODIAC	RIVER
			Water I	evel [†]				<u> </u>										
2 3	July 23/54 Aug. 18	12:52 15:44	Low Low		. 68 . 59		1.4 1.9	7.6 7.6	20 30	0.7 460	· · · · · · · · · ·		I 10	0.150		15.2	170.5 310.3	13.5 20.3
4	Aug. 23 Sept. 23	4:25	Very low Low		60		1.4 2.3	(6.9) 7.7 7.5	20 25	16 190							345.6 426.3	21.8 27.0
6 7	Oct. Nov.	No samp No samp	le taken le taken							_			04.8	0 120		26.4	101.2	10.7
8 9	Dec. 1 Jan. 24/55	7:61 9:80	Medium hig High	gh	33	5.9	2.2	7.2	30	10	131	127	94.8	0.129		14.0	142.2	11.6
10 11	Feb. Mar. 23	No samp 9:44	le taken Medium		. 36	4.2	2.7	6.9	30	4	32	26	51.2	0.070		. 24.0	64.8	5.9
12 13	Apr. May 24	No samp 6:16	le taken High High		70	4.5	1,2	7.5	20	35 30	, 30	25	96.0	0.131		22.8	135.8 258.2	10.7 17.7
	• Sampled fi	om highw	ay bridge.		1	<u></u>		1	I	<u> </u>		1		i	1	4		
	† Collector'	s estimate	e of river l	evel.										STA	TION NC). 58 – ME	MRAMCOOK	RIVER
15	Aug, 18/54	16:205			60		2.5	7.9	35	925	1,151	1,092	233,830	318		. 24,450	36,593	38.1
	* Sampled fi	rom No. 2	highway b	ridge at lo	w tide.	I	.		•			1 ¹						
	1	1	1		1		1	-1	1	1	1	<u> </u>	1			NO. 59-		
			Gauge	height T									1 22 0	0.042		16.6	20.0	21
16 17	July 15/54 Aug. 10	6:48 10:120	5 ft 2in	•	. 70	19	7.5	6.3 7.0 (6.6)	35 45 (25)	2				0.043	••••••		26.5	3.0
18	Sept.16	5:48	3 ft 6 in	n 	63		. 2.8	6.8	45	0	•••••	•••••••		0.043	· ¦ ·····	12.6	30.0	3.1
19	Oct. 7	9.49	6 ft 8 ft 2 i		. 52	8.1	1.7	7.0	40	2				0.045			20.4	3.1
20 21 22	Dec. Jan. 15/55	No samp 9:31	le taken 6 ft		. 35	7.3	2.8	6.8	45	0			. 34.8	0.047		18.4	27.9	3.1
23	Feb.	No samp	le taken										1 20.0	0.042		140	21.2	26
24	Mar. 15	3:41	7 ft		. <u>38</u> ∡∩	7.4	0.9	6.9	40	2				0.042		1 14.0	22.3	2.5
25 26 27	May IG	3:24	6 ft 6 i	n	. 54	6.8	1.5	6.9	40	o			. 42.0	0.057		23.0	26.3	2.5
28	July 12	8:15	6 ft 7 i	n	. 75	14	0.9	7.2	30	0		. <u></u>	. 36.0	0.049		21.6	27.6	3.2

* Sampled at bridge at Custom's House, † Collector's record of river level.

26.0** 27.1 3.4 0.035 Sept. 23/52 1,210 3.2 6.7 29 35 2,287 26.6 40.0** 0.054 26 3.0 30 May 7/53 2,120 2,990 9.8 6.2 38 **....**

.

Data supplied by Quality of Waters Branch, Water Resources Division, U.S. Geological Survey, Washington, D.C.; samples collected at gauge below the powerhouse at Grand Falls.
 Dried at 180°C.

STATION NO. 60-ST. CROIX RIVER

Chemical Analyses of Surface Waters in the Atlantic Provinces and in the Saint John River Drainage Basin in Quebec

(In parts per million)

	Iro (Fe	n }					Alka	alis										Hard as Ci	ness aCO3	tuents	E E	ex	×	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonat e	Bicarbonate	Sulphate	Chloride	Fluoride	Nítrate	Silica (colorimetric)	Boron	Non- car- bonate	Total	Sum of consti	Per cent sodi	Saturation ind	Stability inde	No.
(Mg)			(Mn)	(AI)	(Cu)	(Zn)	(Na)	(к)	(NH3)	(CO3)	(HCO₃)	(SO₄)	(Cl)	(F)	(NO ₃)	(SiO ₂)	(B)							
near l	ARCOU	МТ, N .	в.	1															1					<u> </u>
0.5	•••••	0.20	0.0	0.08	0.0		1.9	0,2		0.0 (0)	16.7 (21.5)	2,8	15	0.0	0.4	6,8		1.3 (0)	15.0 (17.0)	27.8	20.9	-2.5	12.0	1
at SA	LISBUR	Y, N.B.	•																					
1.9 3.7		0.19	0.0		• • • • • •		19.0 34.0	0.6		0.0 0.0	34.6 44.2	22.0	21.0	0.2	0.0	5.9		13.1 29.6	41.5	95.4 171	49.4	-1.2	10.0 9.6	2
25							27 4	1 2		(0)	(45.6)	37.0	44.5	[````	0.2	4.0		21 4	64.7	164	51.6	0	0.5	, ,
2.5 3.9		• • • • • • • •		•••••			48,6	1.2	•••••	0.0	46,8	57.5	65.9		0.2	2.6	0.04	45.0	83.4	231	55.1	-0.9	9.3 9.3	4 5 6
1 4		0.07	0.0	0.0	0.0		03	0.6		0.0	21.7	17 5	13.3	0.1	0.8	4.5		14.8	32.6	69.0	377	-21	11 4	7 8
1.4		0.02	0.0	0.13	0.0		10.6	0.7		0.0	21.9	19.0	14.4	0.1	1.2	5.6		16.7	34.7	75.6	38.8	-2.1	11.3	9
0.8		0.04	0.0	0.08	0.0	 	3.4	0.8		0,0	12.6	9.0	4.6	0.0	0,6	4.5		7.7	18.0	35.9	27.7	-2.7	12.3	10 11
1,1		0.06	0.0	Trace	0.0		11.2	0.8	0.01	0.0	21.9	16.9	15.0	0.0	0,8	4.6		13.2	31.2	72.0	42.9	-1.6	10.7	12 13
2.5							25.3	1.0	0.0	0.0	33.4	29.6	36.2		0.4	3.9		27.0	54.4	131	49.7	-1.1	9.7	14

at MEMRAMCOOK, N.B.*

954 0.03 0.0 0.0 6,760 250 0.0 121 1,677 12,067 10 3,918 4,017 21,816 77.2 -0.2

at ST, CROIX, N.B.*

								·						<u> </u>							1		r
0.4		0.01	0.0			 1.4	0.4		0.0	9.5	3.8	0.8	0.05	0.6	1.8		1.7	9.5	17.5	23.3	-3.6	13.5	16
0.4	• • • • • •				• • • • •	 1.0			(0)	(12.6)	1.0	1.0		0.0	1,0		1.0		14.0	10.0	5.0	19.0	1,
0.3			{			 1.3	0.4		0.0	10,7	1.7	0,8		0.8	1.9		0,2	9.0	15.6	23.0	-3.2	13.2	18
0.5		0.03	0.0	0.26	0.0	 1,3	0,4		0.0	9,8	1.3	1,0	0.05	3.6	1.6		1.7	9.7	18.4	21.5	-3.0	13.0	19
0.6			.			 1.1	0.3		0.0	9.5	2.7	0.7		0.6	2.5	0.00	2,4	10.2	16.3	18.4	-3.0	13.0	20
			1								1												21
0,6		0.04	0.0	0.0	0.0	 0,8	0.3		0,0	9,4	3.1	1,0	0.0	0,6	2.4		2.5	10.2	16.5	14.0	-3.2	13.2	22
					1																		23
0,6		0.04	Trace	0.02	0.0	 1.1	0.3		0.0	10.4	3.6	1.0	0,1	0.6	3.4		3.0	11.5	19.5	16.6	-3.0	12.9	24
0.3						 1.0	0,3	0,2	0.0	6.7	2.0	0.7		1.2	7.2		2.0	7.5	18.5	21,7	-3.5	13.6	25
0.4		0.02	0,0	0,07	0.0	 1.0	0.3	0.0	0,0	7.1	2.4	1,1	0.0	0.6	2.0		2.1	7.9	13.9	20.0	-3.3	13.5	26
												1											27
0,4		0.02	0.0	0.03	0.0	 1,1	0.4	0.2	0,0	9.4	2,0	1.1	0.0	0.4	1.7		1.9	9.6	14.4	18,8	-2.7	12.6	28

at BAILEYVILLE, MAINE, U.S.A.*

0,2	0,1	0,0	0,01	0.0	0.0	0,0	1.1	0,4	 0.0	10.0	1.6	1.0	0.1	2.1	2.9	 1.0	9.0	16.9	19.6	-3.2	13,1	29
0,4	0.07	0.03	0,0	0.0	0,02	0.19	0.9	0.3	 0.0	9,0	1,6	1.6	0.0	0.3	1,8	 2.0	10,0	14.1	16.5	-3.8	13.8	30

Chemical Analyses of Surface Waters in the Atlantic Provinces and in the Saint John River Drainage Basin in Quebec

(In parts per million)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Stream d (Second	ischarge 1-feet)		med	٩				Susp mat	ended ter	Residu drie (Disso	e on evap d at 105°(olved soli	oration C. ds)				
Image:	No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consu by KMnO4	Carbon dioxid (calculated)	pН	Hazen)	Turbidity	Dried at 105 ⁰ C.	Ignited at 550 ⁰ C.	Parts per million	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C,	ance K × 10 ⁶ at 25 ⁰ C.	Calcium	
$ \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} \frac{1}{2} \frac{1}{4} 1$			(Days)			(°F.)		(CO2)		(Units)	(Units)								(Ca)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															S	TATION N	io. 61 - St	r. croix r	IVER	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	July 16/54	5:47	2,400†	2,410 [†]	67	27	8.2	6.4	65	2			44.2	0.060	285	19.8	33.8	4.1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	Aug. 10	10:146	2,710	2,510	68		3.1	6.8	70	4	5.4	0.5	50.8	0.069	371	32.8	33.7	4.4	
	2	Ang. 18	6:14	2,660	2,510	64		1.6	(6.4)	(80) 75	2							36.7	4.4	
$ \begin{array}{c} 5 & 0c. 18 \\ 0.Nov. 18 \\ 0.Nov. 18 \\ 0.Nov. 18 \\ 0.Nov. 18 \\ 0.164 \\$	4	Sept. 18	3:46	3,910	3,460	69		4.8	6.5	100	0.8							30.3	3.7	
6 Nov. 18 6:46 2,460 3,880 39 12 24.0 6.6 65 2 $\frac{2}{2}$	5	Oct, 18	8:52	5,120	2,900		15	2.6	6.9	90	2	••••	•••••	43.2	0.059	599	24.0	32.3	3.9	
$ \begin{array}{ c c c c c c c c c c c c $	6	Nov. 18	6:46	2,640	3,830	39	12	4.0	6.6	65 60	2			• • • • • • • • • •	• • • • • • • •	••••	•••••	31.3	3.4	
9 7 640 4400 4405 33 10	/ 8	Dec. 18	5:44 6:46	2,990	3,660	31	12	2.4 4.3	6.5	50	0.3	•••••		47.6	0.065	386	35.6	31.5	3.6	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9	Feb. 19	6:40	4,800	4,050	33	10		6.7	50	0.8							36,1	3.2	
11 Nay, 18 7,44 7,040 5,840 43 8,8 2,5 6,6 40 0,2	IO	Mar. 19	3:37	5,110	4,240	32.5		3.3	6.6	40	0,2							30.0	3.2	
12 May 20 512 2,270 2,870 55	11	Apr. 18	7:44	7,040	5,840	43	8.8	2.5	6.6	40	0.2			34.4	0.047	656	21.2	23.8	2.7	
13 June 18 181.2 2.10 9.1	12	May 20	5:12	2,270	2,870	55		2.6	6.7	40	3							28.4	3.6	
* Sampled at forebay to power plant. † Discharge records, 700 f downstream from Grand Falls and 8 miles upstream from Woodland, Me.; drainage area, 1,320 square miles, STATION NO. 62 - GRAND LAKE STREAM 14 Oct. 15/73 2.48	13	June 18	18:24	2,030	2,400	03	21	5,1	0.0	45	0.2			41,2	0.050	281	22.8	52.5	2.4	
STATION NO. 62 - GRAND LAKE STREAM 14 Oct. 15/53		 Sampled at † Discharge 	forebay records,	tn power p 700 ft down	lant. stream from	n Grand	Falls a	nd 8 m	iles u	pstream fr	om W000	lland, Me	.; drainag	e area, I,	320 square	e miles,				
14 Oct. 15/53 2.48 3.4 6.6 10 23.0** 0.031 7.0 25.4 2.3 * Data supplied by Quality of Waters Branch, Water Resources Division, U.S. Geological Survey, Washington, D.C. STATION NO. 63 – DIGDEGUASH RIVER IS Aug. 10/54 10:132 Cont. 63 C.1 7.2 180°C. STATION NO. 63 – DIGDEGUASH RIVER IS Aug. 10/54 10:132 Cont. 64 0.03 Cont. 42.4 37.1 6.4 IS Aug. 10/54 9:14.4 7.1 Cont. STATION NO. 63 – DIGDEGUASH RIVER IS Aug. 11/54 9:14.4 7.1 6.9 STATION NO. 63 – DIGDEGUASH RIVER IS Aug. 10/54 9:14.4 7.1 1.9 6.9 STATION NO. 65 – MAGAGUADAVIC RIVER IT Aug. 10/54 10:192 874 <th col<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>STATI</td><td>ON NO. 62</td><td> GRANI</td><td>LAKE ST</td><td>REAM</td></th>	<td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>STATI</td> <td>ON NO. 62</td> <td> GRANI</td> <td>LAKE ST</td> <td>REAM</td>							·								STATI	ON NO. 62	GRANI	LAKE ST	REAM
* Data supplied by Quality of Waters Branch, Water Resources Division, U.S. Geological Survey, Washington, D.C. ** Dried at 180°C. STATION NO. 63 – DIGDEGUASH RIVER 15 Aug. 10/54 10:132 63	14	Oct. 15/53		2.48				3.4	6.6	10				23.0**	0.031		7.0	25.4	2.3	
15 Aug. 10/54 10:132		* Data suppl	80°C.	lality of wa	iters branc	n, water	Kesour		VISIO	, U.S. Ge	ological	Survey,		on, D.C.	STA	TION NO	. 63 – DIG	DEGUASH	RIVER	
Id Aug. 11/54 9:145	15	Aug. 10/54	10:132	•••••	••••••	63		2,1	(6.5)	(160)		0.8	0.0	62,8	0.085		42.4	37.1	6.4	
16 Aug. 11/54 9:145					•										St	TATION N	0, 64 – C	HAMCOOK	LAKE	
Sampled at town tap, STATION NO. 65 - MAGAGUADAVIC RIVER 17 Aug. 10/54 10:52 874† 770† 69 2.1 6.9 55 4 25.1 2.8 * Sampled at No. 4 highway bridge. † Discharge records at Elmeroft, N.B. about 12 miles upstream from St. George; drainage area, 754 square miles, STATION NO. 66 - MAGAGUADAVIC RIVER 18 July 17/54 4:46 353 [†] 1,080 [†] 67 21 2.3 7.0 50 3	16	Aug. 11/54	9:145			58		1.9	6.9	15	2			32.0	0.044		14.0	42.3	4.7	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		* Sampled at	town far	·	••••••	1				•			·		L		I			
17 Aug. 10/54 10:52 874^{+} 770 ⁺ 69 2.1 6.9 55 4 25.1 2.8 * Sampled at No. 4 highway bridge. T Discharge records at Elmcroft, N.B. about 12 miles upstream from St. George; drainage area, 754 square miles, STATION NO. 66 - MAGAGUADAVIC RIVER 18 July 17/54 4:46 353^{+} 1,080 ⁺ 67 21 2.3 7.0 50 3 40.6 0.055 38.6 19.4 36.0 3.8 19 Aug. 11 9:51 1,420 770 67 26 0.6 7.6 70 2 40.6 0.055 38.6 19.4 36.0 3.8 20 Aug. 31 7:43 226 770 67 26 0.6 7.6 70 2 40.6 0.055 24.7 18.6 35.2 3.8 21 Sept. 17 4:17 2,310 1,490 58 4.2 6.6 110 0.8				· · · · · · · · · · · · · · · · · · ·		·		r							STATIO	N NO. 65	- MAGAG	UADAVIC F	IVER	
* Sampled at No. 4 highway bridge. T Discharge records at Elmcroft, N.B. about 12 miles upstream from St. George; drainage area, 754 square miles, STATION NO. 66 - MAGAGUADAVIC RIVER 18 July 17/54 4:46 353^{\dagger} 1,080 ^{\dagger} 67 21 2.3 7.0 50 3 40.6 0.055 38.6 19.4 36.0 3.8 19 Aug. 11 9:51 1,420 770 68 3.5 6.8 45 2 40.6 0.055 24.7 18.6 35.2 3.8 20 Aug. 31 7:43 226 770 67 26 0.6 7.6 70 2 40.6 0.055 24.7 18.6 35.2 3.8 21 Sept. 17 4:17 2,310 1,490 58 4.2 6.6 110 0.8 40.6 0.055 24.7 18.6 35.2 3.8 22 Oct. No sample taken 1,790 23 Nov. 24 6:53 1,830 2,020 42 8.6 2.2 6.9 65 2 43.2 0.059 105 32.8 29.2 3.5 24 Dec. No sample taken 2,990 25 Jan. 18/55 10:50 898 1,670 34 8.9 2.5 6.8 70 0 43.2 0.059 105 32.8 29.2 3.5 26 Feb. No sample taken 1,600 27 Mar. 26 5:41 1,350 1,090 34 7.2 2.4 6.7 50 0.8 65.2 0.089 238 16.4 26.5 2.7 29 May 16 7:14 1,390 1,730 55 1.5 7.0 45 2 65.2 0.089 238 16.4 26.5 2.7 27 Mar. 16 7:14 1,390 1,730 55 1.5 7.0 45 2	17	Aug. 10/54	10:52	874†	770†	69		2.1	6.9 (6.8)	55 (65)	4							25.1	2.8	
18 July 17/54 4:46 353^{\dagger} $1,080^{\dagger}$ 67 21 2.3 7.0 50 3 \ldots 40.6 0.055 38.6 19.4 36.0 3.8 19 Aug. 11 9:51 $1,420$ 770 68 \ldots 3.5 6.8 45 2 \ldots \ldots 31.3 4.3 20 Aug. 31 7:43 226 770 67 26 0.6 7.6 70 2 \ldots \ldots 40.6 0.055 24.7 18.6 35.2 3.8 20 Aug. 31 7:43 226 770 67 26 0.6 7.6 70 2 \ldots 40.6 0.055 24.7 18.6 35.2 3.8 21 Sept. 17 $4:17$ $2,310$ $1,490$ 58 \ldots 4.2 6.6 10 0.8 \ldots \ldots \ldots 34.4 3.2 22 Oct. No sample taken $1,790$ 58 $$		* Sampled at † Discharge	t No.4 hi records a	ghway brid t Elmcroft,	ge. N.B. abou	ıt 12 m	iles ups	stream	from S	St. George	; draina _l	ze area, 7	54 square	miles,	STATIO	N NO, 66	-MAGAG	UADAVIC I	IVER	
19 Aug. 11 9:51 1,420 770 68 3.5 6.8 45 2 31.3 4.3 20 Aug. 3I 7:43 226 770 67 26 0.6 7.6 70 2 40.6 0.055 24.7 18.6 35.2 3.8 21 Sept. 17 4:17 2,310 1,490 58 4.2 6.6 110 0.8	18	July 17/54	4:46	353†	1,080†	67	21	2.3	7.0	50	3			40.6	0.055	38.6	19.4	36.0	3.8	
20 Aug. 31 7:43 226 770 67 26 0.6 7.6 70 2	19	Aug. 11	9:51	1,420	770	68		3.5	6.8	45	2		 					31.3	4.3	
20 Mgs 7.45 220 770 67 22 66 70	20	Aug 21	7.42	226	770	67	26	0.6	76	(120)	2			100	0.044	24.7	10.6	25.0	2.0	
22 $0.1.$ 1.790 1.2 0.6 1.0 0.6	20	Sept. 17	4:17	2.310	1.490	58	20	4.2	6.6	110	0.8		1	40.0	0.033	24.1	18,0	37.2 36 A	5.8 2 7	
23 Nov. 24 6:53 1,830 2,020 42 8.6 2.2 6.9 65 2 32.1 3.4 24 Dec. No sample taken 2,990 2,990 34 8.9 2.5 6.8 70 0	22	Oct.	No samp	le taken	1,790		[1				1	1		1	[24.4	212	
25 Jan. 18/55 10:50 898 1,670 34 8.9 2.5 6.8 70 0 43.2 0.059 105 32.8 29.2 3.5 26 Feb. No sample taken 1,660 1 7.2 2.4 6.7 50 0.8 65.2 0.089 238 16.4 26.5 2.7 28 Apr. No sample taken 3,510 3.5 1.5 7.0 45 2 65.2 0.089 238 16.4 26.5 2.7 29 May 16 7:14 1,390 1,730 55 1.5 7.0 45 2 27.3 3.1	23 24	Nov. 24 Dec.	6:53 No samp	1,830 le taken	2,020 2,990	42	8,6	2.2	6.9	65	2							32.1	3.4	
27 Mar. 26 5:41 1,350 1,090 34 7.2 2.4 6.7 50 0.8 65.2 0.089 238 16.4 26.5 2.7 28 Apr. No sample taken 3,510 1,730 55 1.5 7.0 45 2 65.2 0.089 238 16.4 26.5 2.7 29 May 16 7:14 1,390 1,730 55 1.5 7.0 45 2 27.3 3.1	25 26	Jan. 18/55 Feb.	10:50	898 le taken	1,670	34	8.9	2.5	6.8	70	0	·•···	 	43,2	0.059	105	32.8	29.2	3.5	
ZB Apr. INO sample taken 3,510 55 1.5 7.0 45 2 27.3 3.1	27	Mar. 26	5:41	1,350	1,090	34	7.2	2.4	6.7	50	0,8		 	65.2	0.089	238	16.4	26.5	2.7	
	28 29	May 16	7:14	1,390	1,730	55		1.5	7.0	45	2		ļ			 		27.3	3.1	

Sampled at No. 1 highway bridge.
 † Discharge records at Elmcroft, about 12 miles upstream from St. George; drainage area, 754 square miles.

Chemical Analyses of Surface Waters in the Atlantic Provinces and in the Saint John River Drainage Basin in Quebec (In parts per million)

(1)	n parts	peri	million)	

	Iro (Fe	n ;)					Alka	alis										Hard as C	ness aCO3	tuents	u u	lex	×	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Boron	Non- car- bonate	Total	Sum of consti	Per cent sodi	Saturation inc	Stability inde:	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO3)	(SiO ₂)	(B)						1	1
at MII	LTOW	I, N.B.	•	+																				
0.6		0.15	0.0				1.5	0.6		0.0	14.6		1,2		0.6	2.6		4.3	12.6		19.6	-3.2	12.8	1
0.4		0.21	0.0	0.0	0.01		1.5	0.4		0.0	12.1	5.9	1.3	0.0	0,1	2.6		2.7	12.6	22.7	19.4	2.9	12.6	2
										(0)	(12.6)							(4.5)	(14.8)					
0.5	• • • • • •	•••••	• • • • • •	• • • • • •	• • • • •	•••••	1.4	0.6	• • • • • • •	0.0	14.7	•••••	0.7	• • • • • •	0.6	2.4	••••	0.9	13.0		18.1	-2.4	12.0	3
0.4		0.31	0.0		1	1	1.5	0.4	•••••	0.0	12.2	2.8	1.2		0.4	5.1		2.4	10.9	21 7	19.2	-2.0	12.5	4
0.7		0.51	0.0	0.0	0.0	1	1.4	0.3		0.0	9.8	5.9	1.0	0.2	0.6	3.1		3.4	11.4	21.7	20.6	-3.6	12.5	6
0.7					[]	1.4	0.3	[0.0	9.9	5.0	2.0		0.2	3.2		2.8	10.9	20.9	21.3	-3.3	13.3	7
0.8		0.03	0.0	0.03	0.0		1.2	0.3		0.0	7.9	6.2	1.8	0.0	Trace	1.9		5.8	12.3	20.5	16.9	-3.6	13.7	8
0.7					.		1,2	0.4		0.0	7.7	3.8	1.3		0.8	2.5	0.00	4.6	10.9	17.7	18.7	-3.4	13.5	9
0.5							1.3	0,3		0.0	7.7	5.0	1.0		0.4	3.2		3.7	10.0	18.7	21.3	-3.5	13.6	10
0.4		0.01	0.0	0.04	0.0		1,0	0,6		0.0	6.2	4.8	0.9	0.0	0.6	3.4		3.3	8,4	17.9	18.8	-3,6	13.8	11
0.4							1,0	0.3	0.2	0.0	7.9	4.8	0.9		0.6	1.8		4.1	10,6	17.9	16.5	-3,2	13.1	12
0.5		0.07	0.0	0.02	Trace	• • • • • • •	1,1	0.3	0.1	0.0	7.9	5.5	0.9	0.0	0,2	1.7		4.0	10.5	17.6	17.6	-3.3	13.2	13
				-	-																			

near GRAND LAKE STREAM, WASHINGTON CO., MAINE, U.S.A.*

0.8	0.08	0.0	0.0	0.0	0.01	0.0	1.6	0.4	 0.0	9.0	1.7	1.9	0.3	0.5	2.2	 2.0	9.0	15.0	26,7	-4.5	13.6	14

near I	AWREN	ICE, N	.В.				_														
1.0		0,1	0,0	Trace	0.0	 1.1	0,1	 0.0 (0)	21.3 (22.8)	0.8	0,9		1.2	3.3	 2.6 (2.6)	20.1 (21.2)	25.4	10.5	-2,1	11.4	15
near S	T. AND	REWS,	N.B.*			 •									 						
0.1		0,16	Trace	0.20	0.92	 2.3	0.3	 0.0 (0)	10.6 (12.6)	3.9	4,0	0.05	0.8	1,1	 3.4 (2.4)	12.1 (12.7)	23.7	24.6	-2.8	12.5	16

near THOMASTON, N.B.*

0.5			 	•••••	 1.2	0.3	 0,0 (0)	10.1	2.0	1.1	 0.4	3.1	•••••	0,7	9.0	16,4	21.7	3,1	13.1	17
	[l	 		L		 (0)	(1001)			 		<u> </u>							L

at ST. GEORGE, N.B.*

														the second se										
0,4		0.11	0.0				2.0	0.4		0.0	12.7	1.7	1.3	0.3	1.2	3.7		0.6	11.0	21.2	27.4	-2.3	12.4	18
0,6							1.5	0.3		0.0	14.6	1.7	1.7		0.4	3.5		1.1	13.1	21.3	20.5	-3.2	12,4	19
			}							(0)	(15.2)								(12.7)					
0.7		0.11		0.02			1.7	0.5		0.0	16.9	1.4	1.9		0.6	3.4		0.0	12.2	22.3	21.7	-2,1	10.8	20
0.8							1.2	0.6		0.0	9.9	2.8	2.2		0.4	3.4		3.2	11.3	19.5	17.8	-3.4	15.4	21
							ł																	22
0.7							1.5	0.3		0.0	10.6	3.1	1.8		0.4	3.9	0.00	2.7	11.4	20.3	21.7	-3.0	12,9	23
	{						ļ																	24
0.4		0.04	0.0	0.03	0.0		1,4	0.3		0.0	9.0	2.8	2.4		0.4	3.1		3.0	10.4	19.6	21.7	-3.3	13.4	25
														1										26
0.5		0.05	0.0	0.12	0.0		1.2	0.3		0.0	7.4	2.0	1,8	0,1	0.8	4.9		2.7	8,8	18.2	21.0	-3.4	13.5	27
											1						1							28
0.4						ι	1.3	0.5	0.4	0.0	9.5	1.9	1.7		0.6	4.9		1.6	9.4	19.1	22.0	-2.9	12.8	29

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

								(in paris	per mill	101)							
			Stream d (Secon	ischarge d-feet)		ned	4				Susp mat	ended tter	Residu dried (Disso	е оп evap l at 105°С olved soli	oration C. ds)			
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consun by KMnO ₄	Carbon dioxide (calculated)	pН	Colour	Turbidity	Dried at 105ºC.	Ignited at 550°C.	Parts per million	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C,	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		(Days)			(°F.)		(CO2)		(Units)	(Units)								(Ca)
														STATIO	N NO. 66-	-MAGAGL	JADAVIC RI	IVER
		r	. +	ave t			1			[]						r*		
2	June 1955 July 20	No samp 6:20	e taken 573 e	480	74	14	1.3	7.1	40	2			36.0	0.049	56.0e	16.0	33.9	3.6
	* Sampled a † Discharge ¢ estimated	t No. 1 hij records a	shway bridi t Elmcroft,	ge. about 12 r	niles up:	stream f	rom St.	. Geor	ge, draina	nge area,	754 squ	are miles,		ST	ATION NO). 67 – MU	SQUASH RI	VER
3	Aug. 11/54	13:153			65		1.6	7.1	150 (220)	10	8.0	0,8	53.6	0.073		32.0	48.0	3.1
														S	TATION 2	NO. 68 – 1	NAPPAN RI	VER
4	Aug. 18/54	18:159			65		0.4	8.2	50	4	4.1	2.7	76,8	0.105		20.0	95.6	11.2
5	Aug. 24/55	ŧ					11.4	6,8		2	Trace		120	0.163		12.8		1.9
	† Analysis	supplied	y Alchem	Limited, B	urlingtor	n: Ont.		i	r	 		·		STATION	1 NO. 69 -	SHUBEN	ACADIE L.	AKE
6	Aug. 28/54	19:243	• • • • • • • • • •		66	5.9	1.2	7.0	8	0	••••		28.0	0.038	• • • • • • • • •	8.0	35.0	2.5
	<u>1</u> .	[L			L			·		·		STATIO	N NO 70.	SHUBEN		IVER
		10.107			60		1.0		70	60	(01	447	224	0.246		24.0	206.6	24.6
-	Aug. 19/54	19:197	<u>.</u>		68		1.5	1.1	/0	00	481	447	224	0.945		54.0	285.8	24.0
	t	 			r	1		<u></u>	1	t	I			STATI	ON NO. 7	1 – KENN I	ETCOOK R	IVER
8	Aug. 20/54	18:202			. 66			8.0 (7.5)	25	900	1,102	1,020	228,755	310.7	· • • • • • • • • •	25,120	32,403	260
	* Sampled a	t low tide	1											ST	TATION N	0. 72 - SI	. CROIX R	IVER
9	Aug. 20/54	18:196			. 69		1,1	7.6	90	850	1,259	1,162	196	0.226		31.6	270.8	11.1
	* Sampled a	t low tide													STATIO	ON NO. 7	3 – AVON R	IVER
10	Aug. 20/54	18:168			. 68			7.4 (7.6)	70	850	1,128	1,042	4,154	5.66		509	7,212	57.4
						_									STATIO	50 NO. 74	- MAGEE	LAKE
11	Aug. 20/54	20:203			. 63		5.8	6,3	90	0.9			40.8	0.056		10.4	30.2	1.6
12 12	Apr. 16/56	56:85			45	7	0	8.8	0	2		4.3	94.8 97.6	0.129		18.8	135.4 142.4	3.9 4.9
<u>.,</u>	• Sampled a	it town int	ake,	1	1		<u> </u>	1	·					<u>د</u>). 75 - AN		IVER
_	T	1	1			1	<u> </u>	T	<u> </u>	1	l	·	[
			Gaugehei	ght in feet	-													
14	July 27/54	8:48	5.0	ŀ••••	68	·····	1.7	7.4	45	2		 ······	63.8	0.087	• • • • • • • •	••••••	97.2	10.6

8:48 * Sampled at No. 1 highway bridge. † Collector's report of river level.

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

										(1/1	partor		1110117											
	Iron (Fe)					Alk	alis										Harc as C	lness CaCO3	ituents	lium	idex	ex	
agnesium	otal	issolved	anganese	lumiaum	opper	inc	ndium	otassium	mmonia	arbonate	icarbonate	ulphate	hloride	luoride	itrate	ilica colorimetric	oron	Non- car- bonate	Total	um of const	er cent soc	aturation in	tability ind	No.
∑ (Ma)	н	Δ	∑ (Ma)	⊽ (۵۱)	0 (Cri)	N (7n)	فر (Na)	е. (К)	≺ (NH.)	0	е (НСО.)	(SQ.)	(CI)	(F)		sin.)	(B)			ŝ	щ	s	ŝ	
	CFORC	E NE		un olude	(Cu) (J)	(2511)	(114)	(11)	(1113)	(003)	(11003)	1(004)	1(01)	1(1)	111037	(010)	1.07	I	I					L
	GEORG	E, R.I	. ~(C								<u> </u>		····			. <u>.</u>	<u> </u>		1					1
0.4		0.04	0.0	0.05	0.0		1.3	0,4	0.3	0.0	10.1	2.1	1.9	0.0	0.6	2.3		2.3	10.6	17.7	19.7	2.7	12.5	2
near N	IUSQUAS	SH ,N.B	•						.							-								
0.4		0.3	0.0	0.2	0.01		3.2	0.3		0.0	12.8	0.6	3.8	•••••	0,8	3.6		0.0	9.4	22,6	37.8	-2.7	12.5	3
						l			I	(0)	(12.0)	I			L				(11.7)	l			L	l
near A	IMHERS.	0.1	0.0	0.0			5 0	0.0			20.0		6.0	0.2	1.0	6.1			32.6			0.6		
1.1	• • • • • • •	0.1	0.0	0.0	0.0		5,8	0.8		(0)	(40.4)	4./	5.0	0.2	1.0	5.1		(0)	32.0 (31.8)	24.8	9.8	-0.0	9.4	4
<u></u>	0.9	•••••		0.1	• • • • • •			••••		0.0	41.5	13.5	16.9			4.0	•••••	6.0	40.0		•••••	-2.0	10.8	5
near V	VAVERL	EY, N.	s.								1	1			1			I					r	ı
0.2	• • • • • • • •	0.06	0.01	Trace	0.0		2,9	0.3		0.0	5.9	4.5	4.0	Trace	0.2	1.8		2.3	7.1	19.4	45.4	-3.3	13.0	6
at SH	UBENAC	ADIE.	N.S.		l		·			5	·	.1.		·	.1		1	1		.				L
7.4		0.06	0,02	0.0	0.0		16.4	2.5		0.0	36.3	65.0	23.6	0.20	0.4	5.0		62.0	91.8	163	27.3	-0.9	9.5	7
nent I	BROOKL	YN, N	.s.*	l,	L	1		l	<u> </u>	I	l	<u>.</u>	·		_		J		1				L	<u> </u>
747		Trace	0.0		0.0		6,520	250		0.0	113	1,654	11,807			6,2		3,629	3,721	21,301	77,7	+0.6	6.8	8
									L					<u> </u>										L
near V	VINDSOR	., N.S.	•	I	r		r	1	ı —–	1	1	T	1				,		I		·			
5.1	•••••	0,13	0.02	0.35	0.0		32.8	3.3		0.0	24.5	33.2	50.1	0.5	1.6	5.5		28.6	48.7	156	63.4	-1.5	10,6	9
at UP	PER FA	LMOUT	і :н, n.s	·	L	1	·	I	I	1	J	J	<u>.</u>	1	J	<u> </u>	·i							<u> </u>
142		0.04	0.0	0.26	0.0		1,215	50.0		0.0	50.0	314	2,167			7.5		685	726	3,977	77.0	-1.1	11.2	10
	ļ		L	L		[
near l		LE,N	.s.*	<u> </u>		1	1	1		r	r	1	r	1	1									<u> </u>
0.5	0.3		0.0	0.0	Trace		2.8	0.4		0.0	7.1 (10.1)	1.6	3.0		1.2	3.1	••••	0.3	6.1	18.0	46.4	-3.1	13.5	11
0.4 0.1	0.1	0.1	0.0 0.0	Trace 0.08	0.0	0.0	21.0	2.4		3.6 3.6	49.4	3.3	6.5	0,2	0.8	11 8.8		0.0 0.0	11.4 12.6	76.4 83.2	75.7	-0.4 -0.2	9.6 9.2	12 13
			L	1	L		L		I	I	1			1	1	<u>_</u>	1							
at LA	WRENCE	etown	, N.S.	•		1			· · · ·			····	t		.		····			·····	<u> </u>			<u>,</u>
1.6		0.26	0.0	0.0			4.9	0.8	 	0.0	28.1	13,8	4.9	0,2	0.0	5.7		10.1	33.1	56.6	24.1	-1.6	10.6	14

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million) ___

			Stream d (Second	ischarge l-feet)		med	<u>u</u>				Susp mat	ended ter	Residu drie (Diss	e on evar ed at 105 ⁰ olved sol	oration C. ids)		_	
No.	Date of collection	Storage perio	On sampling date	Monthly mean	Water temp- eratwre	Oxygen consu by KMnO ₄	Carbon dioxid (calculated)	рН	Colour	Turbidity	Dried ^{at} 105 ^o C.	Ignited at 550º C.	Parts per million	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		(Days)			(° F.)		(CO ₂)		(Units)	(Units)								(Ca)
-										.			· · · · · · · · · · · · · · · · · · ·	STA	TION NO). 75 – ANI	NAPOLIS R	VER
		[Gauge hei	ght in feet [†]				_										
1	Aug 25/54	5.22	5		65		1.4	76	55	2							106 7	11.0
2	Sept. 26	5.85			58	22	1 7	7.0	15	1	••••	•••••	•••••	••••••	••••••	• • • • • • • • •	100.7	11.2
3	Oct. 25	3.45	6	******	18	17	20	7.0	100	12	10.2	15 7	73.6	0 100	•••••	•••••	65 1	5 7
4	Nov. 24	6:58	Š		40	13	7.4	6.4	70	4	1.5	1,5.7	15.0	0,100	••••••	• • • • • • • • •	60.3	5.1
5	Dec. 24	5:42	5		40	11	3.4	6.7	80	7		••••••••••					46.4	3 1
6	lan. 24/55	9:80	5		35	8.2	2.9	6.9	80	0.2			53.6	0.073	•••••		64.6	5.9
7	Feb.25	11:40	5		35	7.2	1.2	7.1	65	5							49.8	3.8
8	Mar. 24	7:39	6		38		1.7	6.8	60	12							42.3	3.6
9	Apr. 25	8:37	5		35	7.6	1.3	7.1	50	2			49.2	0,067			52.0	4.5
10	May 25	5:23			60		1.6	7.2	55	3							73.0	7.4
11	June 22	16:27	3		60	14	3.8	7.0	50	3			70,0	0.095			97,6	10,7
	* Sampled at † Collector's	No.1 h	ighway brid river level	dge. l.		•								••		ι		

													STATI	ON NO. 7	6 – BEAR R	IVER
12	Aug. 24/54	20:267	 	63	 	6.9 (6.4)	90 (130)	4	10.3	4.9	3,974	5.40		472	6,513	47.9

* Sampled at high tide.

STATION NO. 77-SISSIBOO RIVER

				,							-			the second se		
		Water level [†]														
July 27/54	9:48		71		6.2	6.0	160	2			45.4	0.062		25.8	26,8	0.9
Aug, 24**	20:50		66	9.1	6.9	5.9	10	3							94.4	1.9
						(6.2)	(180)									
Aug. 27	6:21	10" over dam	68		13	5.7	150	0.7							27.3	0.9
Sept.24	7:87		60		4.8	6.2	130	1			<i>.</i>				32.8	1.1
Oct. 25	10:70	6" over dam	50	10	18	5.7	150	7	7.1	0.3	79.6	0.108		50.4	48.3	2.1
Nov.25	12:55	4" over dam	44	20	32	4.9	140	1							39.4	1.2
Dec. 29	9:37	7" over dam	34	16	37	4.8	140	2							40.9	0.9
Jan. 25/55	8:79	6" nver dam	33	13	37	5.1	120	0			39.6	0.054		18,4	37.5	1.1
Feb. 25	9:48	12" over dam	38	10	11	5.0	90	0.2							41.3	1,0
Mar. 25	7:38	12" over dam	38		4.2	5.3	60	2		.					36.9	1.0
Apr. 25	8:45	4" over dam	52	9,8	4.8	5.3	70	2			36.4	0,050		25.6	35.7	1.1
May 25	7:23	54" over dam	63		3.1	5.6	75	0.8				:			33.8	1.5
June 25	13:24	Low	68	18	1.2	6.3	75	0.8			36.4	0.050		20.4	33.5	1.0
	July 27/54 Aug. 24** Aug. 27 Sept.24 Oct. 25 Nov. 25 Dec. 29 Jan. 25/55 Feb. 25 Mar. 25 Apr. 25 May 25 June 25	July 27/54 9:48 Aug. 24** 20:50 Aug. 27 6:21 Sept.24 7:87 Oct. 25 10:70 Nov. 25 12:55 Dec. 29 9:37 Jan. 25/55 8:79 Feb. 25 9:48 Mar. 25 7:38 Apr. 25 8:45 May 25 7:23 June 25 13:24	July 27/54 9:48 Water level [†] Aug. 24** 20:50 Aug. 27 6:21 10" over dam Sept.24 7:87 Oct. 25 10:70 6" over dam Dec. 29 9:37 7" over dam Jan. 25/55 8:79 6" nver dam Feb. 25 9:48 12" over dam Mar. 25 7:38 12" over dam May. 25 7:23 54" over dam June 25 13:24 Low	July 27/54 9:48 Water level [†] 71 Aug. 24** 20:50	July 27/54 9:48 Water level [†] 71 9.1 Aug. 24** 20:50 66 9.1 Aug. 24** 20:50 66 9.1 Aug. 27 6:21 10" over dam 68 Sept. 24 7:87 60 Nov. 25 10:70 6" over dam 50 10 Nov. 25 12:55 4" over dam 34 16 Dec. 29 9:37 7" over dam 34 16 Jan. 25/55 8:79 6" nver dam 33 13 Feb. 25 9:48 12" over dam 38 10 Mar. 25 7:38 12" over dam 38 Apr. 25 8:45 4" over dam 52 9.8 May 2 5 7:23 54" over dam 63 June 25 13:24 Low 68 18	July 27/549:48Water level \uparrow 716.2Aug. 24**20:50669.16.9Aug. 276:2110" over dam6813Sept.247:87604.8Oct. 2510:706" over dam501018Nov. 2512:554" over dam341637Jan. 25/558:796" nver dam381011Mar. 259:4812" over dam384.2Apr. 258:454" over dam384.2June 2513:24Low68181.2	July 27/54 9:48 Water level [†] 71	July 27/54 9:48 Water level [†] 71 6.2 6.0 160 Aug. 24** 20:50 71 6.2 6.0 160 Aug. 24** 20:50 66 9.1 6.9 5.9 10 Aug. 27 6:21 10" over dam 68 13 5.7 150 Sept. 24 7:87 60 4.8 6.2 130 Oct. 25 10:70 6" over dam 50 10 18 5.7 150 Nov. 25 12:55 4" over dam 34 16 37 4.8 140 Jan. 25/55 8:79 6" nver dam 33 13 37 5.1 120 Feb. 25 9:48 12" over dam 38 10 11 5.0 90 Mar. 25 7:38 12" over dam 38 4.2 5.3 60 Apr. 25 <	July 27/549:48 $\underbrace{Water level^{\dagger}}{\dots \dots \dots$	July 27/549:48Water level1716.26.01602Aug. 24**20:50669.16.95.9103Aug. 24**20:50669.16.95.9103Aug. 276:2110" over dam68135.71500.7Sept. 247:87604.86.21301Oct. 2510:706" over dam5010185.715077.1Nov. 2512:554" over dam3416374.81402Jan. 25/558:796" nver dam3810115.0900.2Feb. 259:4812" over dam3810115.0900.2Mar. 257:3812" over dam384.25.3602May 257:2354" over dam529.84.83702June 2513:24Low68181.26.3750.8	July 27/549:48Water level716.26.01602Aug. 24**20:50669.16.95.9103Aug. 24**20:50669.16.95.9103Aug. 276:2110" over dam68135.71500.7Sept. 247:87604.86.21301Oct. 2510:706" over dam5010185.715077.10.3Nov. 2512:554" over dam3416374.81401Jan. 25/558:796" nver dam3810115.0900.2Feb. 259:4812" over dam3810115.0900.2Mar. 257:3812" over dam384.25.3602May 257:2354" over dam529.84.85.3702June 2513:24Low68181.26.3750.8	July 27/54 9:48 Water level [†] 71 6.2 6.0 160 2	July 27/54 9:48 $\underbrace{Water level1}{\dots}$ 71 \dots 6.2 6.0 160 2 \dots 45.4 0.062 Aug. 24** 20:50 \dots 66 9.1 6.9 5.9 10 3 \dots 45.4 0.062 Aug. 24** 20:50 10° over dam 68 \dots 13 5.7 150 0.7 \dots </td <td>July 27/54 9:48 $\underbrace{Water level}{r}$ 71 6.2 6.0 160 2 45.4 0.062 Aug. 24** 20:50 66 9.1 6.9 5.9 10 3 45.4 0.062 Aug. 24** 20:50 66 9.1 6.9 5.9 10 3 </td> <td>July 27/54 9:48 $\underbrace{Water evel^{\dagger}}{20:50}$ 71 6.2 6.0 160 2 45.4 0.062 25.8 Aug. 24** 20:50 66 9.1 6.9 5.9 10 3 45.4 0.062 25.8 Aug. 24** 20:50 </td> <td>July 27/54 9:48 $water level^{1}$ 71 6.2 6.0 160 2 45.4 0.062 25.8 26.8 94.4 Aug. 24** 20:50 66 9.1 6.9 5.9 10 3 45.4 0.062 25.8 26.8 94.4 Aug. 24** 20:50 </td>	July 27/54 9:48 $\underbrace{Water level}{r}$ 71 6.2 6.0 160 2 45.4 0.062 Aug. 24** 20:50 66 9.1 6.9 5.9 10 3 45.4 0.062 Aug. 24** 20:50 66 9.1 6.9 5.9 10 3	July 27/54 9:48 $\underbrace{Water evel^{\dagger}}{20:50}$ 71 6.2 6.0 160 2 45.4 0.062 25.8 Aug. 24** 20:50 66 9.1 6.9 5.9 10 3 45.4 0.062 25.8 Aug. 24** 20:50	July 27/54 9:48 $water level^{1}$ 71 6.2 6.0 160 2 45.4 0.062 25.8 26.8 94.4 Aug. 24** 20:50 66 9.1 6.9 5.9 10 3 45.4 0.062 25.8 26.8 94.4 Aug. 24** 20:50

Sampled about 5 miles upriver from Weymouth.
* Sampled at falls at slacktide.
† Collector's estimate of river level.

STATION NO. 78 - LAKE GEORGE

26	Aug. 24/54	20:219	• • • • • • • • • •	 64	12	5.6	120	2	 	27.8	0.038	 8.0	46,3	1.7
						(5.5)	(30)							1

 Sampled 	at	town	tap.
-----------------------------	----	------	------

STATION NO. 79-CARLETON RIVER

	27	Aug. 25/54	19:238			67.5	11	4.0	6.3 (6.6)	35 (50)	0.8	•••••		30.4	0.041	•••••	9.6	36.5	1.9
--	----	------------	--------	--	--	------	----	-----	--------------	------------	-----	-------	--	------	-------	-------	-----	------	-----

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

	Irc (F	e)					Alk	alis										Hard as Ca	ness aCO3	tuents	E.	lex	×	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Вогов	Non- car- bonate	Total	Sum of consti	Per cent sodi	Saturation inc	Stability inde	No.
(Mg)			(Mn)	(A1)	(Cu)	(Zn)	(Na)	(K)	(NH3)	(CO3)	(нсо3)	(SO4)	(CI)	(F)	(NO3)	(SiO ₂)	(B)		I					
at LA	WRENC	ETOWN	, N.S.*	-(Conc	luded)						-								•					
																							l l	
1.6							5.5	0.9		0.0	31.2	15.8	6.1		0.4	2,4		8.9	34.5	59.2	25.0	-1.4	10.4	1
1.7							5.2	1.2		0.0	33.4	14.1	5.7		1.2	4.5		10.3	37.7	62.4	22,4	-1.3	10.2	2
1.4		0.22	0.0	0.0	0.0		3.8	1.1		0.0	12,1	11.1	5,8	0.2	1.2	6.3		10.1	20.0	32.8	27.9	-2.6	11.2	3
1.3					• • • • • •		3.6	0.7		0.0	11.3	7.5	5.6		0.4	2.9	0,00	8.8	18,1	32.7	29.2	-3.3	13.0	4
0.9							3.6	0.5	• • • • • •	0.0	10.0	5.5	5.0		0.4	5.1		3.2	11.4	29.0	39.3	-3.3	13.3	5
1.2		0.15	0.0	0.18	0,0		3.8	0.6		0.0	14.6	9.5	5.4	0.0	0,8	5.4	••••	7.7	19.7	40.1	27.6	-2.7	12.3	6
1.1	•••••	•••••			•••••	•••••	3.1	0.6	•••••	0.0	8.8	5.3	4.9		0.6	3.3	••••	6.8	14.0	12.9	31.3	-2.9	12.9	7
0.5	• • • • • •	} • • • • • •	•••••		1		2.4	0.4		0.0	6.9	3.9	4.3		1.2	3.8		5.3	11.0	23.5	31.2	-3.2	13.2	8
0.8	•••••	0.11	0.0	0.05	0.0	•••••	3.0	0.5	0.0	0.0	9.8	5.4	4.7	0.0	0.8	5.8		6.5	14.5	30.5	29.4	-2.7	12.5	19
0.9	•••••					+ • • • • •	3.1	0.8	0,25	0.0	10.0	9.3	4.5		1.2	5.4	• • • • •	9.1	22.2	57.7	22.8	-1.0	10.0	10
1.2	•••••	0.23	0.0	0.0	0.0	+ • • • • •	4./	0.8	1 0.15	0.0	23.0	14,1	<u> </u>	10.0	1,4	5.9		12,4	52.9	171.5	23.0	-1.9	10.0	111

at BEAR RIVER, N.S.*

12.9	 0.03	0.0	0.36	0.0	 1,072	56.0	 0,0	83.5	336	1,988	••••	 2.0	 583	651	3,672	763	-1.3	9.5	12
	 		•					1						<u>.</u>					

near WEYMOUTH, N.S.*

0.5		0.24	0.0	Trace		 2.9	0.3		0.0	3.9	2.5	4.5		Trace	2.1		1,4	4.6	15.9	56.3	-4.8	15.2	13
0.7						 9.6	0.7		0.0	3.2	2.6	16.4		Trace	2.5		5.0	7.6	36.0	71.0	-4.9	15.5	14
								1	(0)	(6,4)												1	
0.3	1				ł	 3.1	0.5		0.0	4.2	0.5	4.3		0,2	0.9	~···	0.0	3.2	12.7	64.4	-5.1	15.9	15
0.5						 3.4	0.3		0.0	4.5	3.4	4.6		Trace	6.0		1.1	4.8	21.5	58.7	-4.4	15.4	16
1.4		0.22	0.0	0,20	0.0	 4.6	0.8		0.0	5.6	4.4	7.5		0.2	5.2		6.4	11.0	29.4	42.5	-4.7	15.1	17
0,6						 3.3	0,4		0.0	1.6	3.4	5.6		0.4	5.3	0.00	4.2	5.5	21.0	54.6	-5.3	15.5	18
0.9						 3.3	0.3	ļ	0.0	1.5	3.3	6.3		Trace	4.0		4.8	6.0	19.7	53.3	-6.5	17.8	19
0.6		0.14	0,0	0.0	0.0	 3.5	0.4	•	0.0	2.8	2,8	6,1		0.6	3.6		2.9	5.2	16.9	56.0	-5.9	16.9	20
0,7						 3.8	0.4	0.3	0.0	0.6	3.5	7.2		Trace	4.0		4.9	5.4	20.9	58.3	-6.4	17.8	21
0,4						 3.2	0.5		0.0	0.5	3.0	6.0		0.4	3.5		3.7	4.1	18.2	59.2	-6.0	17.3	22
0.5		0.07	Trace	0.14	0.0	 3.2	0.5	0.3	0.0	0.6	3.6	5.9	0.0	0.6	1.8		4.3	4.8	17.7	54.3	-6.0	17.3	23
0.3					!	 3.2	0.5	0.3	0.0	0.7	3.5	5.2		1.2	1.0		4.4	5.0	16.8	55.2	-5.6	16.8	24
0.5		0.16	0.01	0.07	0.0	 3.4	0.4	0.3	0.0	1.6	3.6	5.1		0.2	1.3		3.3	4.6	16.5	56.2	-5.8	16.9	25

near Y	ARMOU	TH, N	.s.*												 						
0.6	•••••	0.03	Trace	0.04	0,04	 4.9	0.6	 0.0	2.9	4.0	8.9	0.1	0.6	1.1	 4.3 (5.5)	6.7 (9.6)	24.0	57.5	~5.2	16.0 2	26
														•	 						

near CARLETON, N.S.

0.3	 0.04	0.0	0.21	0.0	 4.0	0.4	 0.0	4.6	3.8	5.6	0.1	0.2	0.8		2.2	6.0	19.7	53.1	-4.3	14.9 27

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

			Stream (Secor	discharge 1d-feet)		med	U				Susp mat	ended ter	Residu drie (Diss	e on evap ed at 105 ⁰ olved soli	oration C. ids)			
No.	Date of collection	Storage perioc	On sampling date	Monthly mean	Water temp- erature	Oxygen consu by KMnO4	Carbon dioxid (calculated)	pH	Colour	Turbidity	Dried at 105ºC.	Ignited at 550º C.	Parts per million	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		(Days)			(°F.)	•	(CO ₂)		(Hazen) (Units)	(Units)								(Ca)
															STATION	I NO. 80	TUSKET R	IVER
1	Aug. 25/54	19:238	600†	787 [†]	67		14	5.7 (6.2)	130 (160)	3	•••••		44.0	0,060	71.4	19.2	30.2	0.8
															STATION	I NO. 81 ~	TUSKET RI	ver.
_						1			1									
2	July 26/54	10:49	889†	933†	71		5.5	6.0	140	2			40.4	0.055	96.9	22.0	30.1	0.9
2 3	July 26/54 Sept. 7	10:49 8:36	889† 353	933† 269	71 67		5.5 6,8	6.0 5.8	140 90	2 3			40.4 39.2	0.055 0.053	96.9 37.1	22.0 20.0	30.1 31.5	0.9
2 3 4	July 26/54 Sept. 7 Sept.27	10:49 8:36 10:64	889 [†] 353 164	933† 269 269	71 67 61	15	5.5 6.8 3.3	6.0 5.8 6.1	140 90 80	2 3 0			40.4 39.2	0.055 0.053	96.9 37.1	22.0 20.0	30.1 31.5 32.3	0.9 0.8 1.1
2 3 4 5	July 26/54 Sept. 7 Sept.27 Oct.	10:49 8:36 10:64 No samp	889 [†] 353 164 le taken	933† 269 269	71 67 61	15 	5.5 6.8 3.3	6.0 5.8 6.1	140 90 80	2 3 0	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • •	40.4 39.2	0.055 0.053	96.9 37.1	22.0 20.0	30.1 31.5 32.3	0.9 0.8 1.1
2 3 4 5 6	July 26/54 Sept. 7 Sept. 27 Oct. Nov. 25	10:49 8:36 10:64 No samp 5:55	889 [†] 353 164 le taken 1,950	933† 269 269 2,450	71 67 61 45	15 16	5.5 6.8 3.3 35	6.0 5.8 6.1 4.9	140 90 80 70	2 3 0 2			40.4 39.2	0.055 0.053	96.9 37.1	22.0 20.0	30.1 31.5 32.3	0.9 0.8 1.1
2 3 4 5 6 7	July 26/54 Sept. 7 Sept.27 Oct. Nov.25 Dec.	10:49 8:36 10:64 No samp 5:55 No samp	889 [†] 353 164 le taken 1,950 le taken	933† 269 269 2,450	71 67 61 45	15 16	5.5 6.8 3.3 35	6.0 5.8 6.1 4.9	140 90 80 70	2 3 0 2	•••••		40.4 39.2	0.055 0.053	96.9 37.1 	22.0 20.0	30.1 31.5 32.3 33.5	0.9 0.8 1.1 1.0
2 3 4 5 6 7 8	July 26/54 Sept. 7 Sept. 27 Oct. Nov. 25 Dec. Jan. 27/55	10:49 8:36 10:64 No samp 5:55 No samp 6:77	889 [†] 353 164 le taken 1,950 le taken 643	933† 269 269 2,450 1,280	71 67 61 45 36	15 16 12	5.5 6.8 3.3 35 38	6.0 5.8 6.1 4.9 5.1	140 90 80 70 110	2 3 0 2 0.2			40.4 39.2	0.055 0.053	96.9 37.1 	22.0 20.0	30.1 31.5 32.3 33.5	0.9 0.8 1.1 1.0
2 3 4 5 6 7 8 9	July 26/54 Sept. 7 Sept. 27 Oct. Nov. 25 Dec. Jan. 27/55 Feb.	10:49 8:36 10:64 No samp 5:55 No samp 6:77 No samp	889 [†] 353 164 le taken 1,950 le taken 643 le taken	933† 269 269 2,450 1,280	71 67 61 45 36	15 16 12	5.5 6.8 3.3 35 38	6.0 5.8 6.1 4.9 5.1	140 90 80 70 110	2 3 0 2 0.2			40.4 39.2 	0.055 0.053 	96.9 37.1 71.4	22.0 20.0 20.8	30.1 31.5 32.3 33.5 41.3	0.9 0.8 1.1 1.0 1.0
2 3 4 5 6 7 8 9 10	July 26/54 Sept. 7 Sept. 27 Oct. Nov. 25 Dec. Jan. 27/55 Feb. Mar. 28	10:49 8:36 10:64 No samp 5:55 No samp 6:77 No samp 8:39	889 [†] 353 164 le taken 1,950 le taken 643 le taken 2,320	933† 269 269 2,450 1,280 2,020	71 67 61 45 36 39	15 16 12 8.9	5.5 6.8 3.3 35 38 11	6.0 5.8 6.1 4.9 5.1 5.2	140 90 80 70 110 60	2 3 0 2 0.2			40.4 39.2 40.8 35.6	0.055 0.053 	96.9 37.1 71.4	22.0 20.0 20.8 25.6	30.1 31.5 32.3 33.5 41.3 38.9	0.9 0.8 1.1 1.0 1.0
2 3 4 5 6 7 8 9 10 11	July 26/54 Sept. 7 Sept. 27 Oct. Nov. 25 Dec. Jan. 27/55 Feb. Mat. 28 App.	10:49 8:36 10:64 No samp 5:55 No samp 6:77 No samp 8:39 No samp	889 [†] 353 164 le taken 1,950 le taken 643 le taken 2,320 le taken	933† 269 269 2,450 1,280 2,020	71 67 61 45 36 39	15 16 12 8.9	5.5 6.8 3.3 35 38 11	6.0 5.8 6.1 4.9 5.1 5.2	140 90 80 70 110 60	2 3 0 2 0.2 0.2			40.4 39.2 40.8 35.6	0.055 0.053 0.056 0.048	96.9 37.1 71.4 221	22.0 20.0 20.8 25.6	30.1 31.5 32.3 33.5 41.3 38.9	0.9 0.8 1.1 1.0 1.0 1.1
2 3 4 5 6 7 8 9 10 11 12	July 26/54 Sept. 7 Sept. 27 Oct. Nov. 25 Dec. Jan. 27/55 Feb. Mar. 28 Apr. May 26	10:49 8:36 10:64 No samp 5:55 No samp 6:77 No samp 8:39 No samp 6:22	889 [†] 353 164 le taken 1,950 le taken 643 le taken 2,320 le taken 469	933† 269 269 2,450 1,280 2,020 827	71 67 61 45 36 39 61	15 16 12 8.9 8.6	5.5 6.8 3.3 35 38 11 3.9	6.0 5.8 6.1 4.9 5.1 5.2 5.7	140 90 80 70 110 60 55	2 3 0 2 0.2 0.2 0.2 0			40.4 39.2 40.8 35.6 40.8	0.055 0.053 0.056 0.056 0.048 0.056	96.9 37.1 71.4 221 52.0	22.0 20.0 20.8 25.6 18.8	30.1 31.5 32.3 33.5 41.3 38.9 45.0	0.9 0.8 1.1 1.0 1.0 1.1 1.5

n,1 ea, 392 squ B iles 🖌 * Sampled at Tusket Falls.

			1									STATIC	N NO. 82	-CLYDE R	IVER
13	Aug. 25/54	19:238		 69.0	 3.8	5.0 (5.5)	220 (240)	2	 	47.6	0,065		30.4	31.3	1.0

* Sampled at No. 3 highway bridge at low tide.

			•	+										5	TATION	NO. 83 – H	COSEWAY R	IVER
14	July 26/54	10:49	151†	1897	70		5.2	6.1	280	2			54.0	0.073	21.9	36.2	27.9	1.3
15	Aug. 25	22:224	133	176	70	24	28	5.2	200	3							26.3	0.8
								(5.1)	(200)		ļ							
16	Aug. 30	8:44	73.0	176	68		4.9	6.4	140	1							58.2	3.2
17	Sept. 29	8:62	39.0	59.0	60		6,2	6.1	160	0							40.8	1.5
18	Oct. 30	11:130	1,030	540	55	27		4.5	130	4	4.6	0.3	66.4	0.090	184	38.8	51.1	1.3
19	Nov. 24	6:58	1,170	1,430	50	20		4.4	90	2							31.3	0.0
20	Dec. 27	8:39	900	1,000	46	16		4.4	140	2							40.8	0.0
21	Jan. 26/55	7:78	276	582	40	15		4.8	130	3			40.4	0.055	30.2	22.8	38.7	0.7
22	Feb. 22	14:51	755	544	40	12		4.9	110	0.8							39.2	0.6
23	Mar. 29	8:34	1,150	1,050	35		12	5.0	90	0.9							33.7	0.5
24	Apr. 28	7:42	318	477	54	12		5.1	90	2			34.4	0.047	29.6	24.0	32.3	0.9
25	May 25	10:31	171	343	69			4.7	130	2							32.2	0.8
26	June 28	10:21	112	178	75	21	1.3	7.3	130	0.8	·····		51.6	0.070	15.6	26.8	50.7	5.7

Sampled at No. 3 highway bridge.
 † Discharge records at highway bridge, Lower Ohio; about six miles from Shelburne; drainage area, 190 square miles.
 †† Ice conditions February 1 to 7, 1955.

	····		 	1	, <u> </u>								STATION	NO. 84 -	- JORDAN RI	IVER
27	Aug. 25/54	21:257	 	72		47	5.1 (5.1)	200 (200)	0,8	• • • • • • • •	 50.0	0.068		34.0	39.0	1.3

* Sampled at No. 3 highway bridge.

				 	· · · · · · ·						· · · · · · · · · · · · · · · · · · ·			 		
28 29	July 27/54 Aug. 23	9:48 18:226	Norma l	 71 68	 	2.9 2.3	6,2 6,6 (5,9)	50 50 (60)	2 3	•		28.8	0.039	 13.4	23.3 23.4 (24.4)	1.0 0.7

STATION NO. 83 - ROSEWAY RIVER

STATION NO. 85 - MERSEY RIVER

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec (In parts per million)

	Iro (Fe	n)					Alk	alis								-		Hard as C	ness aCO3	ituents	lí um	idex	×	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Boron	Non- car- bonate	Total	Sum of const	Per cent sod	Saturation in	Stability ind	No.
(Mg)			(Mn)	(A1)	(Cu)	(Zn)	(Na)	(К)	(NH3)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO3)	(SiO₂)	(B)							
near Q	UINAN,	N.S.																						
0.5		0.09	0.0	0.13	0.0 .		4.2	0.3	•••••	0.0	4.4	2,5	4.7		0.6	1.9		0.5	4.1	17.9	61.2	-5.2	16.1	1
near T	USKET	N.S.*																						
0.9 0.6 0.5	•••••	0.22 0.17	0.0	0.13 			3.2 3.5 3.4	0,7 0.4 0,2		0.0 0.0 0.0	3.4 2.4 2.4	3.2 2.5 3.4	4.9 5.4 5.3	 	0,2 0,4 0,3	2.1 1.7 1.2	 	3.1 2.2 2.8	5.9 4.2 4.8	18.0 16.2 16.6	50.9 62.3 59.3	-4.9 -5.3 -4.9	15.8 16.4 15.9	2 3 4 5
0.8							3.2	0.4		0.0	1.8	3.5	5.8		0.4	3.4	0.00	4.3	5.8	19.4	52.6	-6.3	17.5	6
0.6	•••••	0.15	0.0	0,12	0.0	 	3.9	0.3		0.0	2.9	2.4	7.2		0.0	3.2		2.6	5.0	20.3	57.4	5.9	16.9	7 8 9
0.6		0.09	0.01	0.11	0.0		3.4	0.4		0.0	1,1	2.9	6.2	0.0	0.2	3.7		4.3	5.2	19.2	53.2	-6.1	17.4	10
0.6		0.07	0.0	0.06	Trace	ļ. <u></u>	3.5	0.4	0.3	0.0	1.2	3.9	6.4	0.0	0.6	1.9		5.2	6.2	19.5	51.5	-5.5	16.9	(12
at CL	/DE RIV	/ER, N 0.17	.S.* 0.0	0.13	0.0		3.3	0.3	•••••	0.0	2.2	1.6	5.3		0.3	1.8		1.9	3.7	15.3	58.2	-6.5	17.4	13
near S	HELBUI	RNE, N	i.s.*		T	T	I		ı.		·	<u>.</u>		1	1	1				<u>. </u>	1			r
0.3 0.3	•••••	0 . 26 	0.0	•••••	 		2.6 3.0	0.2		0.0 0.0	4.1 2.7	1.2 1.8	3.9 4.0	 	0.4 0.4	1.7 0.5	 	1.1 1.0	4.5 3.2	16.0 12.4	54.5 64.3	-4.6 -6.1	15.3 17.4	14 15
0.3							7.2	1.2		0.0	7.3	3.2	12.1		Trace	0.9		3.1	9.1	31.7	59.4	-3.7	13.8	16
0.6		0.13	Trace	0.18	0.0		4.8 3.7	0.6	•••••	0.0	0.0	2.8	7.5		0.5	2.0	••••	5.7	5.7	19.2	52.0	-4.5 -6.7	17.9	18
0.8 0.8	•••••				<u>}</u>	·····	2.8	0.5		0.0	0.0	1.9 2.7	5.0 6.1		Trace Trace	2.2	0.00	3.3 3.3	3.3 3.3	13.2 16.5	60.7	 -6.9	18.2	19 20
0.4		0.15	0.0	0.16	0.0		3.6	0.6		0.0	2.0	2.5	6.3		Trace	3.2		1.8	3.4	18.6	59.6	-6.4	17.6	21
0.5		 					2.9	0.6	0.2	0.0	0.4	3.4 1.9	5.2		0.4	2.9		3.3 2.4	3.0	18.4	65.1	-0.5 -6.5	17.9	22
0.2		0.05	Trace	0.15	0.0		2.6	0.7	0.4	0.0	0.1	2.3	5.5	0.0	0.4	2.2		3.0	3.1	15.1	53.7	-6.2	17.5	24
0.5		0.14	0.0	0.07	0.0		3.2	0.4	0.4	0.0	16.5	2.5	5.3		0.6	1.2		2.8	16.3	27.7	26.8	-2.1	11.5	26
at JOF	DAN F.	ALLS,	N.S.*																					
0.4		0.09	0.0	0.13	0.0		4.3	0.4	•••••	0.0	3.7	1.3	7.0		0,2	0.9		1.9	4.9	17.8	59.8	-5.7	16.5	27
at MIL	TON, N	.s.													,									
0.4 0.4		0.24	0.0				2,4 2.5	0.3 0.3		0.0 0.0	2.9 5.4	2.2 0.1	3.3 3.1	0.2	0.0 0,4	2.5 0.6	 	1.7 0.0	4.1 3.4	13.9 10.7	53.8 59.1	-4.7 -4.3	15.6 15.2	28 29
		-		•						(0.0)	(5.1)	1	I	I	I		'		•					

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

			Stream d (Second	lischarge d-feet)		med	U				Suspe mat	ended ter	Residue dried (Disso	on evapo at 105 ⁰ C olved solid	oration ds)			
		bo				T S T	id G							Tone		Loss	Specific	
	Date	, iii	On	Manchly	Water	<u>2</u> 2	ate D			~	Dried	Ignited	Parts	Der	Tons	igni-	ance	_
No.	of	5	sampling	mean	temp-	a M	E g	pH	4	dit	at	at	per	acre-	per	tion	$K \times 10^{6}$	5
	collection	138	date		erature	N.B.	of la	1	l nol	ið	10, 0,	, J J J C	million	foot	uay	at	at	lo:
) ĝ		1		8	a S	1	ů	្រី						>50°C.	25°C.) ပ <u>ီ</u>
						_	-		(Hazen)									
		(Days)			(°F.)	1	(CO ₂)	ļ	(Units)	(Units)								(Ca)
															STATION	NO. 85 –	MERSEY R	VER
,	Aug 27/54	6.25	Low		67		5 2	60	80	0							24.3	1.3
1	Aug. 27/04	0:25	Low		60	• • • • • •	2.6	6.5	50			1		••••••			27.4	1.2
2	Sept. 27	4:25	Low		55	70	2.0	6.0	45	0.7			25 4	0.025		12.2	27.9	0.8
3	Oct. 12	8:41	very low		22	7.0	2.0	6.0	4)	5			27.4	0.055		14.14	25 4	1.0
4	Nov. 26	4:50	High	••••••	45	9.5	2.0	5.0	50	2			1	••••••	1		20.0	0.8
>	Dec. 2/	8:39	1,340	1 0 10	20	7.0	19	5.4	70	2			22.0	0.045	170	169	26.2	1 2
6	Jan. 27/55	11:83	1,900	1,840	20	0.1	4	5.1	70	2	•••••		52.0	0.04)	1.10	10.0	20.5	0.8
7	Feb. 28	8:45	1,770		30	8.1	8	5.0	12	0.2	•••••		{ • • • • • • • • •				20.5	0.0
8	Mar. 28	4:35	11,880	2,160	30		2,1	0.0))) ())	2			1		1.05	20.0	27.0	0.0
9	Apr. 23	10:34	2,170	1,980	50	8.8	8.8	2.0		2	•••••		51.0	0.045	10)	20.0	20.7	1.0
10	May 28	9:30	2,250	1,770	63	••••	6.3	2.2	60	2	•••••	• • • • • • • • •			••••		20.7	1.0
11	June	No samp	ole taken	1,890				1.0				ļ	200	0.010	107	100	20.0	
12	July 4	4:15	1,520	1,760	74	15	2.4	6.2	50	2			30,8	0.042	12/	15.0	28.0	1.2
	† Discharge	records	about ¾ mil	e upstream	from his	shway bi	idge a	t Milto	n; draina)	ge area,	790 squa	re miles,						
	1 2				-		D								STATION	NO. 86 -1	MEDWAY R	IVER
	r			·		l	I	·	<u>. </u>	t	1		τ	<u> </u>	1	t	r	1
13	July 26/54	9:49	27.9†	60†	70		3.0	6.5	50	2			26.6	0.036	1.99	13.0	25.2	1.3
14	Aug. 23	18:240	66	130	65		1.3	6.7	65	0			. 29.2	0.040	5.22	13.6	26.6	0.8
	-				1			(5.9)	(90)	1			1		1			1
15	Aug. 30	4:31	17.6	130	64		1,3	6.9	80	0			34.0	0.046	1.42	18.4	25.1	0.9
16	Sept. 27	4:53	18.7	38.3	60		1.9	6.6	80	0.7				1			26.5	1.0
17	Oct.	No same	ble taken	225						1					1	1		
18	Nov. 26	4:66	314	669	44	15	6.5	5.1	90	4	0.5	0.0	13.2	0.018	11.2	4.0	25.9	1.0
19	Dec.	No sam	le taken	758		-				í			· ·					
20	Ian, 26/55	7:78	1 105	373	33	7.5	4.1	6.0	70	2			27.2	0.037	7.7	14.4	26.2	1.1
21	Feb.	No sami	ole taken	409	1													
22	Mar. 25	7:42	1 740	533	37	7.8	3.9	5.7	50	0	L		. 30.4	0.041	60.1	19.2	26.3	0.7
23	Apr.	No same	le taken	264	1									1				
24	May 27	4:14	303	369	64	11	11	5.2	80	0,8			36.8	0.050	30.1	21.6	25.8	1.1
				I	J		I			I	<u> </u>	I	-l			1		-l
	Sampled a	South B	rookfield, N	I.S.		- 511 7		_:1_	Com Colo	Jacint -		126						
	I Discharge	recards a	at nignway l	uriage, % f	me belo	WEIL:	ake, 4	miles	from cale	uoara; c	uannage a	102, 130 5	Aeste mit	:3.				
															STATION	NO. 87	MEDWAY R	IVER
	1 1 20/21	7.00		1 207t	T 70		1.0	61	1 10		1	1	24.0	0.024	14.0	12.0	22.1	07
25	July 29/54	/:55	2081	1 29/1	1 /0	· · · · · ·	11.9	0.5	40	1	+	••••••••	1 24.0	0.054	14.0	12,2	22.1	0.7

42	July 29/94	1477	200.	271.	10		1 4.9	0.7	40	-		 2.110	01034	****	~~		
26	Aug. 23	18:51	316	303	66.5		3.2	6.4	35	0.8		 				25.2	1.1
								(6.6)	(45)	1							
27	Sept.29	8:62	96	158	60		2.3	6.5	30	0		 				24.2	0.9
28	Oct.	No samj	ple taken	422				1					ļ			i	
29	Nov. 30	8:62	2,960	2,730	39	12	16	5.5	80	2		 				28.2	1.1
30	Dec.	No sam	ole taken	2,920						ļ						i i	
31	Jan. 29/55	9:81	905	1,770	32	po	7.9	5.9	90	2		 35.6	0.048	86.0	16.0	29.3	1.3
32	Feb.	No samp	ole taken	1,610			1										
33	Mar. 29	8:50	2,910	2,640		8.0	5.5	5.7	50	2		 31.6	0.043	248	18.4	26.3	0.9
34	Apr.	No sam	ole taken	1,260													
35	May 30	7:21	662	1,130	67	17	2.9	6.0	40	2		 28.4	0.039	51.1	19.6	26.2	1.2

* Sampled at Charleston bridge. † Discharge records at Charleston.

												STATION	I NO. 87A -	HEBBS L	AKE
36 Sep	ot. 4/58	8:20	 	 4.9	3.3	6,1	25	0	 	38.0	0.052		18.4	28.5	0.8

Chemical Analyses of Surface Waters in the Atlantic Provinces and in the Saint John River Drainage Basin in Quebec

(In parts per million)

			7	1																			1	_
	Iros (Fe	n)					Alk	alis										Hard as C	ness aCO3	tuents	- E	ex	×	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Boron	Non- car- bonate	Total	Sum of consti	Per cent sodi	Saturation ind	Stability inde	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(К)	(NH3)	(CO3)	(нсо3)	(SO4)	(Cl)	(F)	(NO3)	(SiO ₂)	(B)							
at MII	.TON, N	.s(c	onclud	ed)																		·		
0.3							2,6	0.4	[0.0	3.3		3.6		0.2	0.3		1.8	4.5		53.1	-4.8	15.6	1
0.1						• • • • • •	2.9	0.5		0.0	4.6	0.3	4.3		0.2	1.2		0.0	3.4	13.0	61.0	-3.2	14.9	2
0.9		0.25	0.0	0.05		{••••	3.0	0.5		0.0	3./	0.5	3.9	0.1	0.8	1.4		0.2	3.2	15.2	62.8	-4.7	15.6	3
0.5							2.7	0.4		0.0	3.0	2.3	4.8		Trace	1.9	0.00	1.6	4.1	14.9	56.4	-5.5	16.4	5
0.2		0.09	0.0	0.05	0.0		2.6	0.3		0.0	1.2	2,6	4.4	0.2	0.4	1.2		2,8	3.8	13.8	54.9	-5.6	16.9	6
0.6							2.7	0.3	0.2	0.0	1.8	3.0	4.4		0.2	1.6		3.0	4.5	14.5	54.8	-5.6	16.8	7
0.4						•••••	2.5	0.5		0.0	1.6	1.8	4.2		0.8	1.9		2.3	3.6	13.7	56.0	-5.3	16.6	8
0.5	•••••	0.10	0,0	0.16	0.0	•••••	2.5	0.4	0.2	0.0	2.2	1.0	3.9	0.0	1.8	1.8		2.0	3.8	12.7	53.0	-5.7	17.0	9
0.4		•••••	•••••	••••	1		2.2	0.5	0.5	0.0	1.5	2,1	5.9	•••••	0.8	1.8		2.9	4.1	13.5	51.4	->./	16.9	10
0.2		0.26	0.0	0.06	0.0		3.0	0.4	0.2	0.0	2.6	1,8	4.2	0.0	0.2	1.5		1.7	3.8	14.1	60.0	-4.6	15.4	12
near (ALEDO	NIA, N	.S.* – D	rainage	area, :	about 1	36 squ	are mi	les.		J 			1	·					1		1		
0.6 0.4	•••••	0.32 0.10	0.0 0.0	0.15	0.0		2.6 2.8	0.3 0.4	••••• •••••	0.0 0.0	5.8 3.8	1.5 2.0	2.9 3.4	0.2 0.2	Trace 0.6	1.6 0.3		0.9 0.5	5.7 3.6	14.2 13.1	48.4 54.1	-4.0 -4.4	14.5 15.5	13 14
0.5		0.23		0,0			3.2 2.9	0.5		0.0 0.0	6.1 4.6	0.5 0.8	4.0 4.1		Trace 0.6	0.6	0.00	0.0	4.3	13.3	58.4	-3.7 -4.2	14.3 15.0	15 16
0.6		0.10	0.0	0,04	0.0		2.4	0.5		0.0	5.7	0.7	4.2	0.0	0.4	2.1		0.3	5.0	14.8	46.5	-5.7	16,5	17 18
0.5		0.09	0.0	0,06	0.0		2.6	0.3		0.0	2.3	3.4	4.1	Trace	Trace	2.4	•••••	2.9	4.8	15.7	49.9	-5.1	16,2	19 20
0.5		0.09	0.0	0.09	0.0	•••••	2.2	0.5		0.0	1.2	3.4	3.3	0.0	0.4	4.3		2,8	3.8	16.1	48.4	-5.7	17.1	22
0.2		0.07	Trace	0.08	0.0		2.2	0.4	0.3	0.0	1.1	1.0	4.6	0.0	0.4	1.6		2.7	3.6	12.2	50,8	-6.1	17.4	24
near N	ILL VIL	.LAGE,	N.S.* -	- Draina	ge arei	a, 560 s	quare	miles																
		0.02	0.0		l –		2.6	0.0			10													
0.2	•••••		••••	••••		•••••	2.5	0.2	•••••	0.0 0.0 (0)	4.9 (5.0)	0.7	3.5		U.3 Trace	1.0		0.0	3.7 3.6	12.3	58.0 57.4	-4.3 -4.4	15.1	25 26
0.5		•••••	•••••			•••••	2.3	0.2		0.0	4.3	2,3	3.5		0.7	1.0		0.8	4.3	13.2	53.7	-4.3	15.1	27 28
0.7		•••••				•••••	2.5	0.3		0.0	3.0	3.1	4.3		0.4	2.6	0.01	3.1	5.6	16.5	47.5	-5.4	16.3	29 30
0.4		0.16	0.02		0.05		2.6	0.3	•••••	0.0	3.7	2.1	4.9	0.2	Trace	4.3		1.9	4.9	18.6	46.9	-4.9	15.7	31 32
0.5		0.03	0.0	0.06	0.0		2.4	0.4		0.0	1.8	1.6	4.2	0.1	0.4	2.9	•••••	2.8	4.3	14.4	50.1	-5.4	16.5	33 34
0.3	•••••	0.04	0.0	0.0	0.0	•••••	2.4	0.4	0.3	0,0	2.0	2.8	3.4	0.0	0.4	0.5		2.6	4.2	12.4	52.1	-5.0	16.0	35

near BRIDGEWATER, N.S.

			+	~								1	4	 				
0.6	0.04 0.0	0.07	0.0	0.0	2.8	0,5	0.1	0.0	2,6	3.1	4.5 0.0	0.2	1.8	 2.4	4.5	15.7	52.2-5.0	16,1 36

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(ln parts per million)

			Stream di: (Second-	scharge ·feet)		med	e				Suspe	ended ter	Residua dried (Disso	e on evapo at 105ºC lved solid	oration s)	T and	S	
		pol				ns	÷ ظ							Tone			conduct.	
	Date	Ċ,	On	Manthler	Water	50	ig B				Dried	Ignited	Parts	Der	Tons	igni-	ance	
No.	of	U	sampling	mean	temp-	a H	- a a	рН	н	dit	at	at	per milling	acre-	per der	tion	K × 10 ⁶	H H
	collection	38	date		erature	88 X	20		lot	Pi	103-0-	JJ0.C.	million	foot	uay	at	at	Ci.
- (ţo				हिंदे	C a		ပိ	н Н						550°C.	25°C.	Gaj
		Ś				Ŭ	0 -		(Hazen)									
		(Days)			(°F.)		(CO₂)		(Units)	(Units)								(Ca)
									·						er A TION		LAHAVET	IVER
															SINITON			
	1 1 27/64	0.67	465	252t	70		18	67	55	2			29.6	0.040	36.9	14.8	25.4	1.3
1	July 27/54	9:57	405	5721		• • • • • • •	3.2	6.5	00	0.8							27.7	1.7
2	Aug. 21	19:228	309	470	09		5.5	(7 7)	(120)	0.0								
_				176	65		10	(1.2)	120	0.7						1	26.1	1.9
3	Aug. 27	6:21	239	4/0	60	1	3 1	67	55	0.7			····				28.55	1.6
4	Sept, 27	10:53	161	194	20	•••••	2.1	6.1	70	2	6.0	0.0	48.8	0.066	164	26.0	31.75	2.0
5	Oct. 28	7:67	1,250	822	40	14	0.0	0.1	10	2	0.0	0.0	40.0	0.000	104	2010	27.5	1.1
6	Nov. 28	10:64	1,490	2,500	43	11	9.2	2.0	60								27.4	1.3
7	Dec. 28	7:38	1,800	2,520	3/	12	7.0	2.9	60				22.7	0.045	52 1	14 4	27.8	1.4
8	Jan. 28/55	10:82	583	1,250	32	8.5	3.2	0.4	0)				1 22.2	0.04)	J2.1	17.7	25.0	1 2
9	Feb. 27	5:36	1,630	1,720	38		2.2	0.2	45	0.9		• • • • • • • • •	21 6	0.042	250	19 4	26.3	0.0
10	Mar. 29	8:50	2,930	2,390	34	8.0	5.3	5.7	50	2		• • • • • • • • •	20.4	0.045	2,00	22.6	25.5	1.4
11	Apr. 27	8:43	723	1,270	47	7.8	2.9	6.3	45				20.4	0.041	10.7	29.0	26.2	1.9
12	May 27	10:31	335	795	64		2.5	6.3	40	2		• • • • • • • • •		•••••			20.2	1.9
	+ Discharge	records	at Bruhm's	bridge, W	est Nort	hfield, a	hout 7	mile	s above B	ridgewat	er, N.S.							
	Discharge	records	at Diuna 3	bindBei #	Cot Mort									C/T & /TT		O MIROI	יסטסטויד	DIVED
														51711		- MUSQL		MIVER
	1 1 20/64	1.00		74	72		1.6	71	40	2			61.8	0.084	9.15	14.4	82,4	10.0
13	July 30/54	0:24	20 5	175	67	12	0.4	7.8	65	l õ		ľ	50.0	0.068	5.19	16.4	69.9	6.0
14	Aug. 50	17:241	50.5	1,1	"		0.4	(7.0)	(75)	1 -								
10	0	7.61	20.7	26.9	50		1.3	7.4	25	0]		l		109.9	13.0
15	Sept. 30	7:01	-1- 4-14-5	241	,,,		1.5	1		ľ			1					
10	Uct.	No sam	le taken	1 220														
17	Nov.	No sam	1 1 270	1,290	22	71	20	6.6	40	8	11.4	7.7	44.8	0.061	154	18.4	53.7	4.6
18	Dec. 30	0:41	1,270	1,270	52	/	.	0.0	40	ľ								
19	Jan. 1955	NO SEM	ple taken		22		25	66	40	0.8			33.2	0.045	86.2	20.8	40.8	3.2
20	Feb. 28	11:51	900	1,010	52	,,0	2.5	0.0	40	0.0		1	1 , , , , ,	0.017				2
21	Mar.	No sam	ple taken	1,190	1 10		27	100	50	6							42.7	4.5
22	Apr. 30	10:18	1,/40	522	49	• • • • • • •	2.1	0.0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		1	1	1		1		
23	May	Nosam	pie taken	223			1							ļ				
24	June	No sam	ple taken	281		1.		100	26	0.7			50 4	0.060	10.7	20.8	63.4	7.1
25	July 1	11:18	/8	86	12	1.4	2.9	0./	55	0.2			,)0.4	0.009	10.7	2010		
	* Sampled a	t and dis	charge reco	ords at high	hway bri	dge, 6 m	iles fr	om M	usquodob	oit Harbo	our.							
	Cumbred a	440												57	ATTON N	10.90 - ST	MARY'S	RIVER
				. <u>.</u>								,	1		1		1	1
26	July 28/54	8:56	2087	193†	71		2.5	6.5	60	2			. 33.2	0.045	18.6	15.8	28.6	1.2
20	Aug 30	7.219	97	491	67.5	10	1.2	7.0	35	0	1		1				. 32.8	1.5
41	1.08. 50	1	1 "			1	-	17.0	(40)									
20	S 20	12.62	46.6	06	55		16	6.8	20	0			1			.1	. 35.0	1.8
28	Sept. 29	7.67	2 500	1.370	45	10	5.8	6.3	45	6	3.8	1.0	42.8	0.058	288	24.8	39.0	1.6
29	Nov. 20	7.67	1 070	2 380	25	77	1 4 1	62	35	2					l		. 33.0	1.4
50 21	Der 20	5.26	2,000	3 040	25	71	0.4	6.0	30	3			1			.[. 28.7	1.1
21	Lec. 30	0.01	670	1 550	25	1 4 2	1 9	6.7	35	0.8			28.4	0.039	47.9	9.2	33.7	1.5
32	Jan. 29/55	9:81	1 610	2 000	25	4.2	1 6	6.2	35	0.0		1]		l	1	27.0	1.1
53	Feb. 28	0:40	2 600	2,900	20	*•)	21	6.2	20	0.2			1	1	[24.1	1.0
34	Mar. 28	4:57	2,000	1 000	20	7.0	2.1	6.5	20	0.5		1	22.9	0.045	168	18.8	27.2	1.1
35	Apr. 28	/:42	1,880	1,090	40	'.0	2.2	6,1	20			T	1		1	1	28.5	1.8
36	May 28	9:30	40)	1,440	20	l	2.4	6.4	44	1		1		1			28.2	1.5
37	June 28	110:13	279	204	62	1	2.3	10.5	47		· [· · · · · · · ·		1	<u></u>			1 2012	· /

† Discharge records at highway bridge at Stillwater, about 3 miles from Sherbrooke; drainage area 523 square miles.

-	-											s	TATION N	0. 91 – B	RAS d'OR	RIVER
38 Ju	y 6/54	6:44	Norma 1 [†]	 61	19	1.3	7.8	2	1	·····	 22,940	31.20		3,095	31,754	251
• 5	ampled a	t Canal I	Locks.		l	1	I		I							

† Collector's estimate of river level.

Chemical Analyses of Surface Waters in the Atlantic Provinces and in the Saint John River Drainage Basin in Quehec

(In parts per million)

	Iron (Fe)						Alk	alis		-								Hard as C	ness aCO3	tuents	Ę	lex	×	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Вогоп	Non- car+ bonate	Total	Sum of consti	Per cent sodi	Saturation inc	Stability inde	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO3)	(нсо3)	(SO4)	(CI)	(F)	(NO ₃)	(SiO ₂)	(B)							
near B	RIDGEW	ATER,	N.S1	Drainag	e area	about 4	497 sq	uare m	iles,															
0.5	•••••	0.07	0.0				2.6	0.2		0.0	5.6	1.4	3.0		0.2	1.8		0.8	5.4	14.3	50,1	-3.9	14.5	1
0.4	••••			• • • • • •		}····	2.7	0.3	•••••	0.0	6.3	2.4	3.2		0.4	1,7		0.7	5.9	15.9	44.3	-3.9	14.3	2
0.3	•••••		•••••	••••			2.5	0.4		0.0	6.7	1.7	3.0		0.2	2.3		0.5	6.0	15.5	45.3	-4.2	14.5	3
0.5	••••••	 0.12	 0.0	0,02	0.0	} 	3.0	0.4		0.0	6.2 4.6	0.8 4.3	3.2 4.6	0.0	0.4	1.3 4.0		0.9	6.0 6.6	14.1 21.4	49.9	-3.8 -2.9	14.3 12.8	4
0.7	• • • • • •		•••••	•••••			2.2	0.3		0.0	3.7	3.4	3.9		0.2	3.2	0.00	2,6	5.6	16.8	44.3	~5.0	15.8	6
0.5		0.03	0.0	0.10	0.0	· · · · ·	2.2	0.3		0.0	3.9	1.9 2.9	4.0 3.9	0.2	Trace 0.3	3.6 3.1	• • • • • • •	2.1	5.3 6.0	15.7 17.5	45.7	-4.8	15.5	7 8
0,4	· · · · · · ·						2.0	0.5		0.0	2.1	3.4	3.2		0.2	2.8		2.9	4.6	14.7	45.1	-4.9	16.0	9
0.5	•••••	0.03	0.0	0,06	0.0	}	2.4	0.4	0.2	0.0	1,8	1.1 2.0	4.2	0.1	0.4	2.9 2.0	• • • • • • •	2.8	4.3	13.9 14.1	50.1 42.2	-5.4	16.5	10
0,1						[1.9	0.4	0.3	0.0	3.2	3.6	2.9		0.8	1,5		2.6	5.2	14.7	42.2	-4.3	14.9	12
neorhfi	leouon	OBOIT	UADBO	א פוזר	e * D	en in na ac		57 ~~~	inen mil															
hearm	50000	OBOIT	INKO	JOK, N.	ID	lanage	area 2	1 pa \ C		es.				1					·1					1
1.6 1.0	• • • • • • •	0.07	0.0	0.06	0.0		2.8	0.4	•••••		12.7	20.7	3.4	0.1	0.3	2.4	•••••	21,2	31.6	47.9	16.0	-2.2	11.5	13
		0120		0.00			2.0	0.5		(0)	(15.2)	10.0	<i></i>	0.1	0.4	2.0		(8.8)	(21.2)	92.0	21.2	-1.9	11.0	14
2.0	• • • • • • •	•••••	• • • • • • •	• • • • • •		•••••	3.2	0.4	•••••	0.0	18,3	25.5	3.9		0.4	3.3	•••••	25.5	40.5	60.7	14.5	-1.7	10.8	15
																								17
1.0	•••••	0.06	0.0	0.02	0.0	•••••	2.4	0.4	·····	0.0	7.4	10.6	4.4	0.1	0.4	2,4	•••••	9.5	15.6	30.1	24.3	-3.3	13.2	18
0,8		0.02	0.0	0,0	0.0		2.3	0.4	0.6	0.0	6.1	5.0	3.5	Trace	0.8	1.5		6.3	11.3	20.5	29.7	-3.6	13.8	20
0,3							2.0	0.4	0.3	0.0	6.6	3.5	3.0		6.0	1.5		7.1	12.5	24.4	25.1	-3.4	13.4	21
													_										-200	23
0.8		0.09	0.0	0.04	0.0		2.5	0.3	0.2	0.0	9.3	13.5	3.4	0.0	0,8	1.4		13.4	21.0	12.5	20.0	-2.9	12.5	24 25
	I	, ,						L		•	<u></u>				I	L			L1	1				ц <u> </u>
at STI	LWATI	er, n.s	•																					
0.7		0.07	0.0				3.1	0.4		0.0	4.9	1.7	4.2	<u> </u>	1.2	1.9		1.7	5.7	16.0	52.3	-4.1	14.7	26
0.8	•••••	• • • • • •		• • • • • •			3.3	0.3	h	0.0	6.6	2,3	4,2	· · · · •	0.4	1.4	• • • • • •	1.6	7.0	17.2	49.2	-3.3	13.6	27
0.8							3.4	0.4		0.0	8.0	2.6	4.6		0.4	1.8		3.7	7.8	19.7	47.1	-3.6	14.0	28
1.0	• • • • • • •	0.04	0.0	0.02	0.0		3.4	0.5		0.0	6.7	3.1	5.3	0.1	0.6	3.1	0.00	3.2	8.1	21.7	45.3	-4.2	14.7	29
0.6	•••••	• • • • • • •		•••••	· · · · · ·		2.9	0.3		0.0	4.1	3.1 2.8	5.5 4.8		0.2 Trace	2.3	0.00	2.6 2.3	6.0 5.2	18.3	49.8	-4.5	15.2	30 31
0.6		0.02	Trace	0.0	0.0		2.9	0.3		0,0	5.4	2,0	5.0	0.1	0.2	2.7		1.8	6.2	17.9	48.7	-3.9	14.5	32
0.5	•••••	•••••	•••••	•••••	•••••		2.6	0.3	0.2	0.0	1.8	3.0	4.3	þ	Trace	1.6	• • • • • •	3.3	4.8	14.3	52.1	-4.9	16.5	33
0.4	•••••	0.01	0.0	0.12	0.0	•••••	2.1	0.4	0.1	0.0	2.0	2,8	3.4	0.0	0.4	2.0	•••••	2.0	4.1	13.8	49.6 54.0	-4.8	15.9	34
0.5				•••••			.2.2	0.4	0.3	0.0	3.8	2.0	3.3		0.6	0.8		3.5	6.6	13.5	40.4	-4.2	14.8	36
0.4				•••••			••••	<u> </u>	0.1	0.0	4.8	•••••		····		•••••		1.4	5.4		••••	••••	••••	37

at ST. PETERS, N.S.*

812		0,08	0.0				6,700	290		0.0	98.3	1,656	11,648		15	2.0		3,888	3,968	21,423	77.1	+0.3	7.2	38
-----	--	------	-----	--	--	--	-------	-----	--	-----	------	-------	--------	--	----	-----	--	-------	-------	--------	------	------	-----	----

Chemical Analyses of Surface Waters in the Atlantic Provinces and in the Saint John River Drainage Basin in Quebec

			-
(In	parts	per	million)

			Stream di (Second	scharge -feet)		med	e				Suspe matt	ended er	Residue dried (Dissol	on evapo at 105ºC. ved solida	ration s)	T	e i fi .	
No.	Date of collection) Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consu by KMnO4	Carbon dioxid (calculated)	pH	Hazen)	Turbidity	Dried at 105º C.	Ignited at 550º C.	Parts per million	Tons per acre- foot	Tons per day	on igni- tion at 550°C.	Specific conduct- ance $K \times 10^6$ at 25^0 C.	Calcium
	<u> </u>	(Days)	<u> </u>		(F.)		(002)	ļ	(Onits)	(onits)				STA	TION NO), 91 – BRA	AS d'OR RI	VER
1	Aug. 5/54	5:14	Norma 1 [†]		65		0.4	8.4	10	1							31,752	250
2	Sept. 2	6:41	Normal		65		0.6	8.2	6	0		• • • • • • • • • •			• • • • • • • •		32,114	243
3	Oct. 6	8:28	High		55	22	1.1	7.9	6	0			23,458	31.95	••••	2,648	33,067	261
4	Oct. 14	/:48	Normal	• • • • • • • • • •	39	21	2.5	7.4	10	1		• • • • • • • • •	•••••	• • • • • • • • •	•••••	• • • • • • • • •	32,580	240
6	Nov. 9	No campl	LOW a taken		45	17	1.1	/./	10	1	• • • • • • • • •	••••••	•••••	••••••	•••••		30,487	243
7	Jan. 8/55	0.75	Normal		38	10	1.0	7.7	10	0.9							20 075	221
8	Feb. 8	13:37	Normal		31	14	1.8	7.8	12	3							21.912	166
9	Mar. 10	5:14	Normal		35		2.2	7.6	10	0							30,460	230
10	Apr. 19	6:59			42		1,7	7.7	5	0							32,142	243
11	May 18	7:40	Normal		45		1.0	7.9	5	0.3			23,195	31.55		3,360	32,987	254
12	June 7	10:28	Normal		52	23	1.4	7.7	10	0,8			20,270	27.55		3,075	29,540	221
	* Sampled at † Collector's	canal Los estimate	ocks.	vel.											STATION	NO. 92 -	LOCH LON	IOND
13	Sept. 4/54	20:240	• • • • • • • • • •	•••••	65	1.1	2.1	6,8 (7.5)	35	U	• • • • • • • • •	• • • • • • • • •	54.0	73.0		16.8	74.1	6.7
			· · · · · · · · · · · · · · · · · · ·				! *		1		 	I	 	sı	ATION N	io. 93 – BF	AS d'OR L	AKE
14	Sept. 4/54	20:194			66	12	••••	(8.0)	,	0						•••••	31,773	254
				I				1			1	1	I	·	STAT	ION NO. 9	4 – MIRA R	IVER
			Time of S	ampling											[1		
15	Sept. 4/54	17:194	High tio	le	67	10		7.3	40	0	[1.969	2.68		256	3.461	23.9
16	Oct.	No samp	e taken					(7.0)	(50)				,					
17	Nov. 8	7:84	High tio	ie	48	7.2	2.8	6.6	45	I			425	0.578		68.0	767.0	6,8
18 19	Dec. Jan. 10/55	No sampl 4:30	le taken Verv hiøl	l Itide	38	6.5	1.6	6.8	50	0.8			276	0.376		64.8	408.0	4.7
20	Feb.	No sampl	e taken	1	1		1		1		[1 2/0		[04.0	490.0	1
21	Mar, 8	7:48	High tic	le	34	5.3	2.4	6.4	40	7	11.3	9.9	118	0,160		25.6	207.8	2.8
22	Apr.	No sampl	e taken	1						1								
23	May 10	7:30	Very hig	h tide	43	7.2	2.1	6.5	30	0.2			102	0.138		. 32.8	165.2	2.4
24	June	No sampl	e taken	1		1												
25	July 8	12:19	Medium	tide	73	16		7.3	20	5	11.9	6.8	27,260	37.10		. 4,260	11,147	73.9
26	Aug.	No sampl	e taken		1.0													1
27	Sept. 15	8:22	High tid	le	05		2.0	1.5	20	0.3			13,596	18.48	• • • • • • •	1,850	20,662	153
															STAT	ion no. 9	5 – SAND I	.AKE
28	Sept. 2/54	17:217			63.0	8.9	16	5.8 (5.0)	15	2			39.2	0.05	3	. 11.0	62.8	1.4
	* Sampled at	town tap	•								• • • • • • • • • • • • • • • • • • •							<u>.</u>
				·			·	·		ı —			· · · ·		STATION	NO. 96-	MIDDLE R	
29 30	July 11/54 Aug.	10:39 No samp	Very low	•	54		2,6	7.4	5	1.		•••••••	128	0.17	4	. 19.	s 183.9	24.5

† Collector's estimate of river level.

•

.

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In	parts	per	mili	lion)	
---	----	-------	-----	------	-------	--

	Iro (Fe	n 2)					Alk	alis										Hard as C	ness aCO3	tuents	Ę	lex	×	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bícarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Boron	Non- car- bonate	Total	Sum of consti	Per cent sodi	Saturation inc	Stability inde	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH3)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO3)	(SiO ₂)	(B)							
at ST.	PETER	s, n.s.	* - (Co	onclude	d)									·										
765 735 790 757 733	· · · · · · · · · · · ·	0.01	0.0	0.0	0.0	• • • • • • •	6,700 6,440 6,400 6,280 6,120	285 250 240 220 250	· · · · · · · · · · · · · · · · · · ·	6.2 0.0 0.0 0.0 0.0	93.6 104 102 93.5 96.4	1,440 1,629 1,695 1,605 1,616	11,782 11,611 11,725 11,496 11,233		15 	1.3 2.2 1.4 2.1 2.3	2.3	3,686 3,541 3,815 3,654 3,543	3,774 3,626 3,899 3,731 3,622	21,292 20,961 21,162 20,665 20,240	77.9 78.1 76.7 77.4 77.1	+1.1 +0.8 +0.5 -0.1 +0.2	6.2 6.6 6.9 7.6 7.1	1 2 3 4 5
717 472 695 783 793	· · · · · · · · · · · · · · · · · · ·	Trace Trace	0.0	· · · · · · · · · · · · · · · · · · ·	0.0		5,760 3,920 5,700 6,120 6,060	240 160 240 240 240	· · · · · · · · · · · · · · · · · · ·	0.0 0.0 0.0 0.0 0.0	92.3 105 96.7 98.0 96.7	1,479 991 1,468 1,566 1,259	10,629 7,183 10,463 11,189 11,525	5.0	· · · · · · · · · · · · · · · · · · ·	1.6 . 1.7 1.2	· · · · · · · · · · · · · · · · · · ·	3,448 2,270 3,356 3,743 3,816	3,524 2,356 3,435 3,823 3,896	19,103 12,951 18,845 20,188 20,178	76.6 77.1 77.8 76.4 75.8	+0.2 +0.3 +0.1 +0.3 +0.5	7.1 7.4 7.1 7.1 6.9	6 7 8 9 10 11
720	•••••	0.0	0.0		0.0		5,600	260		0.0	85.7	1,382	10,149				••••	3,440	3,510	18,374	76.0	+0,2	7,1	12
near L 	OCH LO	OMOND	, N.S.	0.0	0.0		4.1	0.8		0.0	10.2	10.9	6.7	0.1	1.2	1.1		12.0	20.4	37.5	29.4	-2 0	12.6	13
										(0)	(12.6)							(12.0)	(22.3)		2714	,		
at BIG	POND,	N.S.																						
746		T <i>i</i> ace					6,300	250		. 0.0 (0)	99.0 (103)	1,590	11,563			0.8	•••••	3,618	3,699	20,752	77,2	+0.7	6,6	14
at MAI	RION BI	RIDGE,	N.S.													•								
71,9		0.02	0.02	0.13	Trace		570	22.4		0.0 (0)	14.9 (15.2)	147	1,035			0.8		343	355	1,879	76.3	-1.9	11.1	15
13.9		0.04	0.0	0,03	0.0		113	4.4.		0.0	7.3	30.5	207	0.0	0.6	1.1		68.1	74.1	380	75.4	-3.2	13.0	16 17 18
8.9		0.04	0.0	0.06	0.0	•••••	71.2	2.9		0.0	6,2	20.6	129	0.08	Trace	2.3	0.00	3.2	48.3	243	74.7	-3.3	13.4	19 20
3.6	• • • • • • •	.0.07	Trace	0.01	0.0		26.2	1.2		0.0	3.7	9.2	48.3	0,1	0.4	3.9	• • • • • •	18,8	21.8	97.7	70.3	-4.1	14.6	21
2.8		Trace	0.0	0.11	0.0		21.6	1.1	0,1	0,0	4.1	8.5	37.9	0.0	0,4	1.7	•••••	14,1	17,5	78.5	70.7	-4.0	14.5	22 23 24
232		Trace	0.0		0.0		1,980	76.0		0.0	29.4	486	3,397	0,0			•••••	1,115	1,139	6,260	77,7	-1.0	9.3	25
450		0.0		•••••	0.0	5.4	m 3,870	153		0,0	54.5	952	6,997		5.4			1,188	2,233	12,602	77.5	-0.4	8.3	27
at GL	ACE BA	Y, N.S.	•	· _	-																			
1.1		0.07	0.03	0.19	0.01		6.5	0.5		0.0	5.9	4.5	11.9	0.05	0,2	0.7		3.2	8.0 (8.9)	30.0	58,8	-4.8	5.4	28

near MIDDLE RIVER, N.S.

١

Chemical Analyses of Surface Waters in the Atlantic Provinces and in the Saint John River Drainage Basin in Quebec

(In parts per million)

Ne. Date collection Number and big Ware (P,F) Not (Col) Number (P,F) Number (P,F)				Stream d (Second	ischarge d-feet)		med	υ				Suspe mat	ended ter	Residu dried (Disso	e on evapo l at 105ºC olved soli	ds)	1	See alfia	
CDay 2) (PF.) (CO.) (Constant)	No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consu by KMnO ₄	Carbon dioxid (calculated)	рН	Colour	Turbidity	Dried ^{at} 105ºC.	Ignited at 550°C.	Parts per million	Tons per acre- foot	Tons per day	on igni- tion at 550°C.	specific conduct- ance $K \times 10^{6}$ at 25° C.	Calcium
STATION NO. 96 - MIDDLE RIVE 1 Sept. 1/54 17239			(Days)			(°F.)		(CO2)		(Units)	(Units)								(Ca)
1 Sept. 1/34 17;239																STATIO	N NO. 96	-MIDDLE	RIVER
2 Sept. 20 3 11560 Medium ²	1	Sept. 1/54	17:239			60	5.3	0.7	7.7	10	0			52.0	0.071		8.4	76.6	7.2
4 Nor. 20 5 Dec. 6 106/2 Median 47 2.6 3.1 7.1 10 1 1 1 10 10	2	Sept. 20 Oct.	11:60 No samu	Medium [†] le taken		54		0.9	7.8	3	2	•••••					••••••	141.8	17.5
2 Does ample taken 8 Sept. 1/54 174 152 5 3 0.9 7.6 2 0 139.6 0.190 65.5 15.6 233.1 7 7 Discharge records near bighway bridge at Fritzleton, NS., dratange area, 151 square miles, STATION NO. 99 – MARGAREE RIVER, NORTH EAST BRAN 9 Oct. 14/54 6:39 317 473 55 6.3 1.4 7.4 35 0	4	Nov. 20	10:62	Medium	•••••	47	2.6	3.1	7.1	10	1		• • • • • • • • •	• • • • • • • • •	••••••	•••••	• • • • • • • •	105.7	11.3
STATION NO. 97	5 6 7	Dec. Jan. 12/55 May 4	13:34 9:21	le taken High High		38 41	1.3	1.0	7.5 7.4	10 5	0			77.6	0.106		28.8	100.6 88.5	10.6 9.9
STATION NO. 97 – MARGAREE RIVER, NORTH EAST BRANK 8 Sept. 1/54 17.239 17d ⁺ 152 ⁺ 59.5 5.3 0.9 7.6 2 0		† Collector'	s estimat	e of river l	evel.			·		4	1	· · · · · · · · · · · · · · · · · · ·	·		·	······································	·	L	<u> </u>
B Sept. 1/54 17;239 174 [†] 152 [†] 59.5 5.3 0.9 7.6 2 0 139.6 0.190 65.5 15.6 233.1 7 † Discharge records near highway bridge at Frizzleton, N.S., drafange area, 151 square miles. STATION NO. 99 - MARGAREE RIVER, NORTH EAST BRAN 9 Oct. 14/54 6:39 317 [†] 478 [†] 55 6.3 1.4 7.4 55 0													STATIC	ON NO. 97	M ARGA	REE RIV	er, nor	TH EAST B	RANCH
† Discharge records near bighway bridge at Frizzleton, N.S., drainage area, 151 square miles. STATION NO. 98 - MARGAREE RIVER, NORTH EAST BRAN 9 Oct. 14/54 6:39 317 [†] 473 [†] 55 6.3 1.4 7.4 35 0 144 0.196 18.2 24.6 15 10 June 7/35 102.8 55 478 55 1.2 2.0 7.1 15 0	8	Sept. 1/54	17:239	174†	152†	59.5	5.3	0.9	7.6 (7.9)	2	0			139.6	0.190	65.5	15.6	233.1	7.7
STATION NO. 99 – MARGAREE RIVER, NORTH EAST BRAN 9 Oct. 14/54 6:39 317 [†] 473 [†] 55 6:3 1.4 7.4 35 0		† Discharge	records i	near highwa	av bridge a	t Frizzle	eton, N.	S., dra	inage	area, 151	square	miles,	1	!	·	L	L		1
9 0 ct. 14/54 6:39 317 [†] 473 [†] 55 6.3 1.4 7.4 35 0											•	 	STATI	ON NO. 98	MARGA	REE RIV	ER, NOR	TH EAST B	RANCH
10 Jine 7/53 102/2 303 428 1.1	9	Oct. 14/54	6:39	317	473	55	6.3	1.4	7.4	35	0	· · · · · · · ·		144	0.196		18.2	241.6	15.4
T Discharge records near highway bridge at Frizzleton, N.S.; drainage area, 151 square miles. STATION NO, 99 - MARGAREE RIVER, SOUTH WEST BRAN TI Jug 14/54 7.49 159 [†] 175 [†] 76 13 2.0 7.4 10 2 143 0.195 61.4 26.2 225.5 17 IS Sept. 1 17.239 117 105 63 6.5 1.0 7.7 6 4 6.0 3.9 115 0.156 61.4 26.2 225.0 21 Id Oct. 14 83.9 99 133 58 5.3 1.0 7.7 20 7 2 2	11	June 7/55 Sept. 1/55	26:34	723	708	61		2.0	7.2	10	0			182	0.248		19.2	307.5	19.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		† Discharge	e records	near highw	ay bridge a	t Frizzl	eton, N.	S.; dra	inage	area, 151	square	miles,	STATI	ON NO. 9	9 – MARG	AREE RIV	/ER, SOU	TH WEST B	RANCH
13 Sept. 1 17.239 117 105 63 6.5 1.0 7.7 6 4 6.0 3.9 115 0.156 36.2 13.6 185.9 16 14 Oct. 14 8:39 99 133 58 5.3 1.0 7.7 20 7 106 0.144 43.7 24.0 170.1 14 15 June 7/55 15:28 479 413 56 11 1.8 7.3 15 2 106 0.144 43.7 24.0 170.1 14 16 Sept. 14 13:21 103 156 64 109 0.203 41.5 18.4 240.0 20 † Discharge records at highway bridge at Upper Margaree, N.S.; drainage area 143 square miles. STATION NO. 100 – EAST RIVE STATION NO. 101 – MIDDLE RIVE STATION NO. 101 – MIDDLE RIVE 17 Sept. 8/54 16:236	12	Inly 14/54	7:49	1597	1737	76	13	2.0	7.4	10	2	1	<u> </u>	143	0.195	61.4	26.2	225.5	17.2
14 Oct. 14 8:39 99 133 58 5.3 1.0 7.7 20 7	13	Sept. 1	17:239	117	105	63	6.5	1.0	7.7 (7.9)	6	4	6.0	3.9	115	0.156	36.2	13.6	185.9	16.2
13 13.20 17.9 13.6 17.2 17.2 17.2 10 10 11.1 11.0 11.1	14	Oct. 14	8:39	99	133	58	5.3	1.0	7.7	20	7		••••••	106	0 144	43 7	24.0	252.0	21.5
T Discharge records at highway bridge at Upper Margaree, N.S.; drainage area 143 square miles. STATION NO. 100 – EAST RIVE STATION NO. 100 – EAST RIVE STATION NO. 100 – EAST RIVE STATION NO. 101 – MIDDLE RIVE STATION NO. 102 – TATAMAGOUCHE RIVE STATION NO. 102 – TATAMAGOUCHE RIVE STATION NO. 102 – TATAMAGOUCHE RIVE 19 Sept. 8/54 19:245 STATION NO. 102 – TATAMAGOUCHE RIVE STATION NO. 103 – PHILIP RIVE STATION NO. 103 – PHILIP RIVE STATION NO. 103 – PHILIP RIVE STATION NO. 104 – HILLSBOROUGH RIVER STATION NO. 104 – HILLSBOROUGH RIVER	16	Sept. 14	13:21	103	156	64		3.2	7.2	5	0			149	0.203	41.5	18.4	240.0	20.9
17 Sept. 8/54 16:236 61.5 2.5 1.3 7.5 10 0 90.8 0.123 0.34 22.4 144.1 16 STATION NO. 101 - MEDDLE RIVE STATION NO. 101 - MEDDLE RIVE 18 Sept. 8/54 16:236 64 2.4 1.6 7.4 5 0 130 0.177 29.6 219.7 10 STATION NO. 102 - TATAMAGOUCHE RIVE STATION NO. 103 - PHILIP RIVE STATION NO. 103 - PHILIP RIVE STATION NO. 103 - PHILIP RIVE STATION NO. 104 - HILLSBOROUGH RIVE STATION NO. 104 - HILLSBOROUGH RIVE		† Discharge	e records	at highway	bridge at	Upper Ma	argaree,	N.S.;	draina	ge area 1	43 squar	e miles.				STAT	ion no.	100 – EAST	RIVER
STATION NO. 101 - MIDDLE RIVE 18 Sept. 8/54 16:236	 17	Sept. 8/54	16:236			61.5	2.5	1.3	7.5	10	0			90.8	0.123	0.34	22.4	144.1	16.7
18 Sept. 8/54 16:236 64 2.4 1.6 7.4 5 0 130 0.177 29.6 219.7 16 STATION NO. 102 – TATAMAGOUCHE RIVE 19 Sept. 8/54 19:245 65 4.1 0.9 7.9 15 240 0.326 26.8 422.9 12 STATION NO. 102 – TATAMAGOUCHE RIVE 19 Sept. 8/54 19:245 65 4.1 0.9 7.9 15 240 0.326 26.8 422.9 12 STATION NO. 103 – PHILIP RIVE 20 Sept. 10/54 46:243 63 4.3 1.3 7.4 15 1 335 0.455 26.4 591.8 24 STATION NO. 104 – HILLSBOROUGH RIVER Time of sampling [†] A		<u> </u>		J	J	.I			(7.5)	L	.L	1	l	I	1	STATION	I NO. 101	-MIDDLE	RIVER
(7.4) STATION NO, 102 – TATAMAGOUCHE RIVE 19 Sept. 8/54 19:245 65 4.1 0.9 7.9 15 240 0.326 26.8 422.9 12 STATION NO. 103 – PHILIP RIVE 20 Sept. 10/54 46:243 63 4.3 1.3 7.4 15 1 335 0.455 26.4 591.8 24 STATION NO. 104 – HILLSBOROUGH RIVER Time of sampling [†] Time of sampling [†]	18	Sept. 8/54	16:236	·····		64	2.4	1.6	7.4	5	0	·····	ļ	130	0.177		29.6	219.7	10.1
19 Sept. 8/54 19:245 65 4.1 0.9 7.9 15 240 0.326 26.8 422.9 12 STATION NO. 103 - PHILIP RIVE 20 Sept. 10/54 46:243 63 4.3 1.3 7.4 15 1 335 0.455 26.4 591.8 26 STATION NO. 104 - HILLSBOROUGH RIVER Time of sampling [†] Time of sampling [†]			1	I	<u>.</u> [L			1(7.4)			1	·L	I	STATION	NO. 102	 татам	AGOUCHE	RIVER
20 Sept. 10/54 46:243 63 4.3 1.3 7.4 15 1 335 0.455 26.4 591.8 24 STATION NO. 104 – HILLSBOROUGH RIVER Time of sampling [†]	19	Sept. 8/54	19:245			65	4.1	0.9	7.9	15	·			240	0.326	·····	26.8	422.9	12.6
20 Sept. 10/54 46:243 63 4.3 1.3 7.4 15 1 335 0.455 26.4 591.8 24 STATION NO. 104 – HILLSBOROUGH RIVED Time of sampling [†]				<u> </u>	1				(8.4)	·		J	I	I	1	STATIO	NO. 102		
STATION NO. 104 – HILLSBOROUGH RIVER	20	Sept. 10/54	46:243			63	4.3	1.3	7.4	15	1	·		335	0.455		26.4	591.8	24.1
Time of sampling [†]		l	J	J	-	-l	<u> </u>	1	1	-I	_!	<u> </u>	L	I	STATION	I	-HILLSI	J	L
				Time of s	amplingt	1	1	1		1	1		1	1		T	1		1
21 [July 15/54] 6:48 Medium tide 68	21	July 15/54	6:48	Medium	tide	68			7.5	20	1		.	16,240	22.10		2,468	22,677	192

† As reported by collector.

•

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

						1					·													
mis	Iror (Fe)	ved	lese	un	-		Alk	alis	ia	ate	onate	U		<u>_u</u>		netric)		Hard as C Non- car-	ness CaCO ₃ Total	constituents	ıt sodium	ion index	y index	No.
agnes	otal	issol	angar	lumin	opper	inc	dium	otass	пощ	arbon	icarbo	ılphat	hlorid	luorid	itrate	lica olorii	oron	bonate		in of	er cer	ıt urat	abilit	
Z (Ma)	ч	Q	∑ (Mn)		0 (Cw)	N (7n)	й (No)		₹ (NH)	0	м (HCO-)	ര്വ		<u>н</u> (Б)	Z (NO.)	50	m (B)			ŝ	ď,	S	š	ĺ
near M	IDDLE	RIVER.	N.S(conclud	led)	1 (200)	(114)		(((13)	1(003)	(11003)	(304)		<u>h</u>	(1103)	(3102)			<u> </u>	.1				<u> </u>
1.0		0.05	0.0	0.03	0.0		4.7	0.5		0.0	21.5	6.3	6.2	Trace	0.6	8.4		4.5	22.1	45.6	30.8	-1.6	10.9	1
1.5							6.3	0.6		(0) 0.0	(22.7) 34.7	20.5	8,8		0.6	7.4		(4.8) 21.3	(23.4)	80.3	21,3	-1.0	9.8	2
1.5							5.1	0.6		0.0	23.9	15.0	7.8		1.6	7.2	0.00	14.8	34.4	61.9	24.0	-1.9	10.9	3 4
1.2		0.01	0.0	0.0	0.0		4.4	0.6		0.0	20.0	16,0	7.9	0.02	0.6	5.5		15.0	31.4	56.7	23.0	-1.7	10.9	5 6
1,1							3.7	0.5	0,1	0.0	19.3	12.4	5.4		0,8	5.2		13.4	29.2	48.5	21.2	-1.8	11.0	7
near N	ORTH I	EAST M	ARGAE	REE, N	.s.	.			r					1i	• • • • • • • • • • • • • • • • • • •				·	ì				
6.9		0.07	0.0	0.03	0.0	h	23.3	0.5		0.0 (0)	22.I (26.5)	27.2	37.8	Trace	0.4	9.8		29.5 (27.1)	47.6 (48.8)	125	51.1	-1.7	11.0	8
	I			! .				1	!		I			<u> </u>		L	·		d			í I		
near M	ARGAR	EE FO	RKS, N	.s.	·	.	·		I		1		,	,		·			·					<u> </u>
1.5 1.0	•••••	0.06	0.0 0.0	0.03	 0.0		27.4	0,7 0,8	 0.0	0.0	20,4 15,8	23.3 19.8	42.8 31.3	0.1	0.4 0.6	7.4 6.1		27.9	44.6	130 98.8	56.7 56.9	-2.3 -2.1	10.6 11.3	9 10
0.7		Trace	0.0	0.04	Trace	0.15	35.2	0.8	0.1	0.0	22.7	31.0	56.1	0.0	0.4	6,8		31.9	50.5	161	59.8	-1.7	10.6	11
near M	IARGAR	EE FO	rks, n	.s.	ı			1			• · · · •		r	· · · · · ·								·		
3.1 1.7		0.08 0.08	0.0	0,03	 0.0		17.5 15.0	0.9 0.6		0.0 0.0 (0)	31.5 29.5 (30.3)	31.5 25.0	25.1 21,1	0.15 Trace	1.0 0.4	4.9 8.8		29.8 23.2 (24.0)	55,6 47,4 (48,8)	117 103	40.1 40.1	-1.4 -1.2	9.8 10.1	12 13
2.3				0.02	0.01		21.1	0.7		0.0	31.2	39.6 23.4	33.5		0.4	5.2		37.5	63.1 41.4	140 90.7	41.7	-1.0	9.9 10.7	14
1.2		0.01	Trace	0.0	Trace	0,1	20,6	1.2	0.0	0.0	30.5	34.1	30.7	0.0	Trace	4.3		32,1	57.1	128	43.3	-1.5	10.2	16
at STI	ELLART	'ON, N.	s.					1								,			t					
2.2		0.0	0.0	0.0	0.0	•••••	5.2	0.8		0.0 (0)	26.6 (27,9)	30,4	6.7	0.1	0,8	4.4		28.9 (28,1)	50.7 (50.9)	80.4	17.9	-1.4	10.3	17
at WES	STVILL	E, N.S.	!		I			L			I		L	L				•	I			I		
2,5		0.05	0.0	0.0	0.0		26.6	0.8		0.0 (0)	22.9 (24.1)	10.4	46.5	0.0	0,8	4.2		16.7 (18.5)	35.5 (38.2)	113	61.3	-1.8	11.0	18
леаг Т	ATAMA	GOUCH	IE, N.S	•		1							•											
6,3		Trace	0.01	0.02	0.02		52.8	3.0		0 (2.5)	45.0 (42.8)	13.4	89.9	0.0	0.8	17	• • • • •	20.4 (17.6)	57.3 (56.9)	218	65.2	-0.9	9,7	19
at OX	FORD, N	1.S.																						
1.6		0.04	0.01	0.02	0.0		84.5	1.5		0.0 (0)	21.0 (24.0)	42.7	135	0.05	0.4	9.4	•	49.5 (47.1)	66.7 (66.8)	310	72.9	-1.5	10,4	20
at MO		EWART	, P.E.I							i		r					r	1	I I			1		·····
549		0.07	0.0	ļ			4,280	290	 	0.0	109	1,100	7,759		5.0	3.7	ļ	2,594	2,684	14,211	75.3	0.0	7.5	21

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quehec

(In parts per million)

No. Stream-discharge (Second-Ket) Ware and are date No. Stream-discharge (Second-Ket) No. Stream-discharge (Second-Ket) No. Stream-discharge (Second-Ket) Stream-discharge (Second																			
No. Date callection The sampling by gr Monthly callection Water by gr Water (cos) Water by gr Water by gr<				Stream-d (Secon	lischarge d-feet)		neđ	41				Suspe	end ed ter	Residu dried (Disso	e on evap at 105° (olved soli	oration ds)		a	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			8				in s	d)							Tone			conduct-	
No. olie of mathem sampling mean terms oligon oligon <tholigon< th=""> oligon <tho <="" oligon<="" td=""><td></td><td>Date</td><td>.F</td><td>On</td><td>Monthly</td><td>Water</td><td>100 T</td><td>lios ate</td><td></td><td></td><td>~</td><td>Dried</td><td>Ignited</td><td>Parts</td><td>per</td><td>Tons</td><td>igni-</td><td>ance</td><td>-</td></tho></tholigon<>		Date	.F	On	Monthly	Water	100 T	lios ate			~	Dried	Ignited	Parts	per	Tons	igni-	ance	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	No.	of .	9 D	sampling	mean	temp-	a A	a d Lucia	pН	ч	dit	at 105°C	at 55.0°C	per million	acre-	dav	tion	K × 10 ⁶	1
gr gr<		collection	rag	date		erature	yge y F	cal		lou	rbi	107 C	,,,, C.	minion	foot		at	at 25°C	alc
(Days) (P.) (CO ₂) (Harrow) (Unix)			Sto				ŏ	ű		Ů	μ						JJU C.	2) С.	0
STATION NO. 104 - HILLSDOR OUGH RIVER 1 Aug. 1954 No sample taken 63 18 7.6 20 15 <th< td=""><td></td><td></td><td>(5)</td><td></td><td></td><td>10 -</td><td></td><td>(00)</td><td></td><td>(Hazen)</td><td>(Unite)</td><td></td><td></td><td></td><td>l</td><td>{</td><td></td><td></td><td>(Ca)</td></th<>			(5)			10 -		(00)		(Hazen)	(Unite)				l	{			(Ca)
I Aug. 1954 No sample taken 65 18 7.6 20 15			(Days)		l	((002)	I	(ones)	(Onica)			L	STATION	I NO 104	- HILLSB	OR OUGH R	VEP
I Aug. 1954 No sample taken Construction Constructi					+	l								[]		140.104	-111.1.55		
1 Avs. 1954 No sample taken 63 18 , 7,6 20 15 ,,,,,,,				Time of	sampling														
2 Sept. 10 262.08 High tide 63 18 7,6 20 13 27,528 207 3 Sept. 16 27,528 207 4 Oct. No sample taken 35 18 7,6 35 35 27,53 16 27,53 27,71 166 6 Dec. No sample taken 36 11 7,6 35 35 14,265 107 8 Fob. No sample taken 36 11 7,6 40 9 18 12 6,173 8,39 14,265 107 8 Fob. No sample taken 36 11 7,7 40 8 14,265 107 9 Mar. 21 458 Medium tide 36 11 7,7 40 8 14,265 107 11 May 15 1043 Medium tide 47 7,7 25 10 9,4 6,7 5,124 20,75 2,540 22,481 168 12 June 16 66 24 7,8 15 3 16.3 5.7 19,095 25.92 2,725 27,714 213 148,142 148 1	1	Aug. 1954	No samp	le taken	l													26.216	202
3 Sept. 16 3:48 Low tide 60	2	Sept.11	26:208	High tic	le	63	18	• • • • • •	7.6	20	15			•••••	• • • • • • • • •			20,010	202
4 Oct. Nov. 10 S:29 Low ide 35 18 7.6 35 35 23,173 166 6 Dec. No sample taken 1 34 14 7.7 40 8 7 Jan. 14/5 10/31 One quarter tide 34 14 7.4 40 9 18 12 6,173 8.39 14,265 107 9 Mar. 21 10:43 Medium tide 47	3	Sept. 16	5:48	Low tid	le I	60		• • • • •	1.1	50	15		} • • • • • • • •	•••••	•••••		• • • • • • • • •	27,,)20	207
Nov. 15 92. Vol. 15 92. Vol. 16 93. Vol. 16 93. Vol. 17 74. Vol. 16 93. Vol. 17 14.265 107 I Jan. 14/55 10.31 One quarter tide 34 14 , 7.7 40 8 , 14.265 107 Mar. 21 Ars. 18 Medium tide 38 11 , 7.7 40 9 18 12 6,173 8.39 , 1,334 9,164 67.2 10 Apr. No sample taken 38 11 , 7.7 25 10 9.4 6.7 15,124 20.75 , 2,540 22,481 166 12 Ine 16 18,26 High tide 66 24 , 7.8 15 3 16.3 5.7 19,095 25.92	4	Oct.	No samp.	le taken	1	25	10		76	25	35							23,173	166
0 0	2	Nov. 15	9:29	∣ Lowiid Iotaken		55	10		1.0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								
8 Feb. No sample takan 38 11 7.4 40 9 18 12 6,173 8.39	7	Jan. 14/55	10:31		arter tide	34	14		7.7	40	8					ļ		14,265	107
9 Mar. 21 4:56 Medium tide 38 11	8	Feb.	No samp	le taken	1														
10 11 11 12 12 13 Apr. 10:43 18:26 Nedium tide High tide 47 66	9	Mar. 21	4:58	Medium	tide	38	11		7.4	40	9	18	12	6,173	8.39		1,334	9,164	67.2
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10	Apr.	No samp	le taken	1	1	1				1	}	1						
12 June 16 18:26 High tide 66 24 7.8 15 3 16.3 5.7 19,095 25.92 2,725 27,714 213 r As reported by collector. STATION NO. 105 – LAKE ST. GEORGE 13 Sept. 14/53 35:121 STATION NO. 105 – LAKE ST. GEORGE TATION NO. 106 – CORNER BROOK RIVER 14 Nov. 25/53* 9 0.9 7.7 70.0 0.095 9.6 15 Mar. 23/54** 10 0.9 7.7	11	May 15	10:43	Medium	tide	47			7.7	25	10	9.4	6.7	15,124	20.75	<u>.</u>	2,540	22,481	168
T As reported by collector. STATION NO. 105 - LAKE ST. GEORGE I3 Sept. 14/53 35:121	12	June 16	18:26	High tie	de	66	24	,	7.8	15	3	16.3	5.7	19,095	25.92	<u>}</u>	2,725	27,714	213
STATION NO. 105 - LAKE ST. GEORGE I3 Sept. 14/53 35:121 13. 8.0 10 3		† As reporte	d by call	ector.			,											•	
Introduction Construction Constructing Constructing Construction Construction Construction C		1 As reporte	d by com												A T2	TION NO	105 1 41	KEST GEO) P C F
13 Sept. 14/53 35:121 1.3 8.0 10 3		·		·I		1			,	.		1		<u> </u>	517	1	10) - 11	AF SIL OF	
STATION NO. 106 - CORNER BROOK RIVER 14 Nov. 25/53*6 9 Water level* 0.9 7.7	13	Sept. 14/53	35:121	l		Į	ļ	1.3	8.0	10	3			96.4	0,131		23.4	149.7	21.7
Vater level [†] Vater level [†] 0.9 7.7 7.7 70.0 0.095 7.7 96.1 15 Mar. 23/54** 10 1.4 ft 5 in 3.5 6.8 3															STATION	INO 106	-COPNET		IVED
Image: Normal and the state of the stat	_	····	·	· · · · · · · · · · · · · · · · · · ·			T	r	·	· · · · · ·	1		1	,	1	1			
14 Nov. 25/53** 9			ļ	Water le	evel [†]			1	}	1	1								
Mar. 23/54*10	14	Nov. 25/53*	• •		T	1	l	0.9	7.7	1	1			70.0	0.095				16
16 July 15/55 10:25 14 ft 5 in.	15	Mar. 23/54*	* 10 .			1	[3.5	6.8		3								9.6
17 Aug. 8 15:29 14 ft	16	July 15/55	10:25	14 ft 5 in.		61.5	13	0.9	7.6	30	0			46.4	0.063		19.2	59.1	7.2
18 Sept. 3 11:27 14 ft 5 in. 59 1.8 7.6 35 0	17	Aug. 8	15:29	14 ft		61	1	1.0	7.7	35	0	1		1		4		98.1	10.1
19 Sept. 29** 12 4.4 7.0 2 Trace 60.0 0.082 15.2 20 Oct. 10 10:51 14 ft 10 in. 49 13 1.6 7.5 40 0 54.0 0.073 24.4 74.82 9.1 21 Nov. 8 11:22 14 ft 6 in. 44 1.9 7.5 35 0.3	18	Sept. 3	11:27	14 ft 5 in.	.	. 59	·····	1.8	7.6	35	0				{	4	•••••	92.03	14.6
20 Oct. 10 10:51 14 ft 10 in. 49 13 1.6 7.5 40 0	19	Sept. 29**	12		.	4	•••••	4.4	7.0	'	2	Trace		60.0	0.082				15.2
11 Nov. 8 11:22 14 ft 6 in	20	Oct. 10	10:51	14 ft 10 in		. 49	13	1.6	7.5	40	0			. 54.0	0.073		24.4	74.82	9,1
22 Dec. 9 18:73 14 ft 1 in. 34	21	Nov. 8	11:22	14 ft 6 in	•• • • • • • • • •	. 44		1.9	7.5	35	0.3		· · · · · · · · · ·			·····	••••••	81.65	10.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	Dec. 9	18:73	14 tt 1 in	• • • • • • • • •	. 34		1 2.2	7.4	30	4	·····	· · · · · · · · · · · · · · · · · · ·		0.076		10.2	81.19	10.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	Jao. 10/50	13:100	15 11 / 10	••••••••	. 24	0.0	1.5	7.5	25				. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.075		19.2	66.22	9.0
25 Feb. 17 20:70 Feb. 17 20:70 Feb. 17 212 ft 9 in,	24	Feb. 9	29:95	1411 910	•••••••••••••••••••••••••••••••••••••••	29	1	2.2	6.4	50	0	1		1		1		30.91	2.0
27 Apr. 17 31:49 9 ft 4 in. 36 7.7 1.8 7.3 35 0.2	25	Mar. 14	43:65	12 ft 9 in		34	[2.1	7.3	35	lõ		1	1	1	1		66.89	8.2
28 May 10 20:26 9 ft 10 in,	27	Apr. 17	31:49	9 ft 4 in		. 36	7.7	1.8	7.3	35	0.2]	48.0	0.065		0,8	62.73	7.7
29 June 11 9:16 17 ft 1 in. 46 13 1.4 7.4 40 0	28	May 10	20:26	9 ft 10 in		39		1,3	7.6	30	0			1		1		87.46	10,6
30 July 3 15:20 about 25 ft 52 8.4 2.3 7.3 35 0 57.6 0.078 20.8 67.0 8.7 31 July 26** 12 8.8 6.5 20 2 70 0.095 8.8 * Sampled at Pulp Mill iotake.	29	June 11	9:16	17 ft 1 in		46	13	1.4	7.4	40	0			40.8	0.055		8.4	58.67	7.4
31 July 26** 12 8.8 6.5 20 2 70 0.095 8.8 * Sampled at Pulp Mill iotake. 8.8 6.5 20 2 70 0.095 8.8	30	July 3	15:20	about 25 f	t	. 52	8.4	2.3	7.3	35	0			. 57.6	0.078		20.8	67.0	8.7
* Sampled at Pulp Mill iotake.	31	July 26**	12		.1			8.8	6.5	20	2	<u> </u>		. 70	0.095				8.8
		* Sampled	at Pulp M	lill iotake.															

** Analysis supplied by Alchem Ltd., Burlington, Ootario.
† Collector's estimate on river level.

.

									2						STATIO	N NO. 107	- GRAND	RIVER (LA	KE)
32	July	2/55	10:17	370.4†		54		1.3	7.2	20	0			36.0	0.049		16.4	40.19	4.3
33	Aug.	2	9:35	367.5	l	57		1.4	7.1	20	0				ļ			37.38	4.1
34	Sept.	2	6:21	369.9		57		1.2	7.3	25	0							37.48	4.5
35	Oct.	3	9:176	369.5		52	4.8	1.1	7.3	30	3			37.2	0.050		16.4	38.06	4.5
36	Nov.	2	13:97	370.5		44		1.3	7.2	25	0				ļ			35.81	4.1
37	Dec.	2	12:101	369.8		39		1.3	7.3	20	0				}			36.74	4.2
38	Jan.	3/56	14:107	370.1		34	4.6	1.7	7.1	30	0			32.8	0.045	1	12.8	37.84	3.9
		· · · · · · · · · · · · · · · · · · ·	-		,		•				1	,	I	1	-				

74

† Controlled water level at Deer Lake powerhouse, forebay.

.

.

Chemical Analyses of Surface Waters in the Atlantic Provinces and in the Saint John River Drainage Basin in Quebec

(In parts per million)

																	1							
	Iro (Fe	n :)					Alk	alis										Hard as C	lness aCO3	uents	Ę	x		
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Boron	Non- car- bonate	Total	Sum of constit	Per cent sodiu	Saturation inde	Stability index	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH3)	(CO3)	(HCO ₃)	(SO4)	(Cl)	(F)	(NO3)	(SiO ₂)	(B)							
at MOU	JNT ST	EWART	P.E.I	⊷(Con	cluded)																		
·) 						l				ľ				1					
																								1
638 627		0.05 				 	5,100 5,300	200 200	 	0.0 0.0	111 119	1,278 1,314	9,363 9,389			2.8 3.3		3,135 2,996	3,226 3,094	16,838 17,099	76.0 77.4	+0,1 +0,2	7.2 7.3	2 3
507						 	4,140	160		0.0	100	1,099	7,517			4.3	1.5	2,418	2,501	13,643	76.9	0.0	7.6	5
306		0,04			0.0		2,550	104		0.0	72.5	642	4,588	1.0		2.4		1,468	1,527	8,337	76.9	-0,2	8.1	6 7 8
191		0.02	0.0	0.45	0,0		1,512	64,0		0.0	65,6	346	2,805			3,6		898	952	5,021	76,1	-0.8	9.0	9
518 669		0.03	0.0 Trace		Trace 0.0		4,000	170 280		0.0 0.0	94.8 120	1,020 1,373	7,367 9,649					2,473 3,184	2,551 3,282	13.091 17,562	75.8 76.0	+0,2 +0,5	6.3 6.8	10 11 12
near C	ORNER	BROOD	K, NFL	.D.				·I.——					•	.			,							
3.3		0.02					4.4	0.9		0.0	78.6	4.4	6.5	0,1	1.4	3.2		3.6	68.0	84.6	12.2	-0.3	10.6	13
at COI	NER B	rook,	NFLD.	.•																				
							1	1						1	1									
1.2	0.7			0.0		J		J	. 0.0	0.0	42,7	6.8	6,1			2.3		10.0	45			-0.9	9.5	14
1.4	0.2			0.0		 		l	0.0	0.0	31.7	0	6.1			4.4		4.0	30			-2.2	11.2	15
0.9		0,02	0.0	0.24	0.33		. 2.0	0.4	0.0	0.0	23.2	2.6	4.2	0.0	0.4	1.7		2,7	21.7	31.4	15.3	-1.5	10.6	16
1.7		•••••	••••		••••		2.3	0.4	0.1	0.0	32.5	3.5	3.9		0.2	1.5	• • • • •	>.>	32.2	39./	13.2	-1.2	10.1	1/
2 4	0.2		1	0.1			2.5	0.4	0.1	0.0	44.4	0	6.1		0.2	2.0	••••	10.0	48	40.)	12.1	-1.6	10.2	10
1.4	0.2	0.03	0.0	0.05	0.08	0.0	2.4	0.4	0.1	0.0	30.5	3.3	4.0	0.0	1.2	1.9		3.5	28.5	38.8	15.1	-1.5	10.5	20
1.9							2.4	0.4	0.1	0.0	37.3	2.0	4.3		1.2	1.9		3.9	34.5	43.2	13.0	-1.4	10.3	21
1.7							2.5	0.3	0.0	0.0	34.1	2.7	5.8		1.2	2,2		6.2	34.2	44.1	13.6	-1.6	10.6	22
1.6		0.03	0.0	0.03	Trace	0.0	2,8	0.4	0.1	0.0	30.2	3.4	5.6	0.0	0.6	2.4		5.7	30.5	41.3	16,3	-1.5	10.5	23
1.4							2.5	0.4	0.1	0.0	25.2	3.1	4.7		1.4	2.8	0,0	5.3	26.0	36.8	17.0	-1.7	10.9	24
0.6							2.1	0.4	0.2	0.0	4.3	3.1	3.7		1.2	2.6	0,0	4.0	7.5	17.8	36.4	-4.1	14.5	25
1.2		} • • • • • •		• • • • • • •		••••••	2.5	0.4	0.1	0.0	25.1	3.0	4.3	····	2.4	2,4		4.8	25.4	36.8	17.3	-1.8	10,9	26
1.1		0.04	0,0	0.05	0.07	0.0	2.5	0.4	0.1	0.0	23.8	2.6	4.8	0,0	1.2	2.2		4.2	23.7	34.3	18.0	-1.9	10.9	27
1.7			ł			••••••	3.5	0.4	0.0	0.0	33.9	5.4	4.9		1.2	2.2	• • • •	5.6	33.4	46.6	18.3	-1.3	10.2	28
1.0		0.06	0.0	0.09	0.0	0.1	2.4	0.4	0.2	0.0	21.9	3.2	4.4	0.0	4.3	2.1	• • • • •	4.6	22.6	36.3	1/.7	-1.8	11.0	29
1.5	0.2	0.04	0.0	0.08	0.0	0.0	2.4	0.4	0.2	0.0	31.7	2.0	4.2	0.0	1.0	2.0		2,0	20.0	57.0	15.0	-2.5	11 5	31
	1	<u>.</u>	1	1		T	-{	· · · · ·	4	L	1 2	1 - 1	1	1		ļ	1		I	1	L	<u> </u>		<u> </u>

at D	EER LA	KE, NI	FLD.																					
0,3	1	0.05	0.0	0.04	0.0		1.9	0.3	0.2	0.0	12.2	2,1	2.9	0.0	0.4	3.8	0.0	2.0	12.0	22.1	24.6	-1.4	10.0	32
0.4							1.9	0.4	0.0	0.0	11.7	2,0	2.6		0.6	3.0		2.3	11.9	20.8	25.0	-2.6	12.3	33
0.4]					Li.0.0	2.0	0.2	0.0	0.0	13.3	2.1	2.7		0.6	2.8		2.0	12.9	21.9	24.9	-2.4	12.1	34
0.3		0.02	0.0	Trace	0.0	0.0	2.7	0.3	0.0	0.0	12.9	2.2	3.1	0.0	0.6	4.0		1.9	12.5	23.6	27,1	-2.4	12.1	35
0.5							1.9	0.3	0.0	0.0	12.8		2.8		0.8	3.2		1.8	12.3		24.6	-2.5	12.2	36
0.4							2.1	0.3	0.0	0.0	12.6	2.5	2.7		1.6	3.3		1.8	12.1	23.3	26.7	-2.4	12.1	37
0,6		ļ 0.0	0.0	0.03	0.0	10.0	2,0	0.4	0.2	0.0	12.7	2.2	3.3	0.0	0.4	3.3		1.8	12.2	22.4	25.2	-2.6	12.3	38
0,6	}	ļ 0 . 0	0.0	0.03	0.0	0.0	2,0	0.4	0.2	0.0	12.7	2.2	3.3	0,0	0.4	3.3		1.8	12.2	22.4	25.2	-2.6	12.3	38

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

									(In p	arts per	million,)							
				Stream (Secor	discharge nd-feet)		med	U				Suspo	ended ter	Residu dried (Disse	e on evar l at 105º olved sol	oration C. ids)	Loss	Specific	
No.	Da colle	ate of ection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consu by KMnO4	Carbon dioxid (calculated)	рН	л оро ОО (Hazen)	Turbidity	Dried at 105°C.	Ignited at 550°C.	Parts per million	Tons per acre- foot	Tons per day	on igni- tion at 550°C.	conduct- ance $K \times 10^6$ at 25^0 C.	Calcium
			(Days)			(°F.)		(CO₂)		(Units)	(Units)						L		(Ca)
															STATIC	N NO. 10	7 – GRANE	RIVER (L	AKE)
1	Feh.	3/56	31:68	370.1		35	4.6	1,1	7.3	25	0							36.05	4.1
2	Mar.	2	19:71	370.0		34		1.0	7.3	25	0							36.69	4.5
3	Apr.	3	41:52	369.6		34	6.4	1.0	7.3	20	3			52.0	0.071	•••••	22.0	35.56	4.4
4	May	2	20:33	370.0		37	•••••	1.9	7.0	20	3			• • • • • • • • •	••••••		• • • • • • • • • •	36.88	3.9
6	June Sept.	27/56	10:21	509.9		40	12	1.4	7.2	20	4	3.2	0,6	42.0	0.057		12.0	39.72	4.0
	Controlled water level at Deer Lake powerhouse, forebay. STATION NO. 108 - HUMBER RIVER																		
	STATION NO. 108 – HUMBER RIVER 7 July 2/55 6:17 1,600 [†] 66 15 1.2 7.1 60 0.8 50.4 0.069 217 37.2 30.4 3.0 8 Aug 7 9:28 5.510 64 1.8 7.0 45 0.2 50.4 0.069 217 37.2 30.4 3.0																		
7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
8	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
10	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
11	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																		
12	J Oct. 3 9:176																		
13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
14	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
16	Mar.	2	37.52		5.800	32	13	2.1	7.2	50	0.2			70.4	0.096	1.098	24.4	70.33	6.7
17	Mav	2	20:33		13,900	35		2.0	6.8	70	0.8							46.27	3.8
18	Mar. 2 19:71 1,260 32 1.2 7.3 55 0.2 1.1.1 1.2 7.3 55 0.2 1.1.1 1.1.2 7.3 55 0.2 1.1.2 7.3 5.5 0.2 1.1.2 7.3 </td																		
	† Dis	charge	records a	nt Deer Lai	ke powerhou	ıse, drai	nage ai	ea, 1,8	850 sq	uare mile	s,		1			STATIC	N NO. 109	- SANDY	LAKE
19	Sept.	1/56	18:23			64	15	2.7	6.6	45	0.3		<u></u>	34.8	0.047	<u> </u>	20.8	18.78	2.4
					· · · · · · · · · · · · · · · · · · ·			r	_	···			<u></u>	1	51 	ATION N	0. 110 – E	XPLOITS 1	RIVER
20	Oct.	3/55	14:50	High		. 52.5	6.2	1.6	6.8	35	0.7	· · · · · · ·	•••••	. 33.2	0.045	• • • • • • • •	. 16.4	29.31	3.0
21	Oct.	28/55	18:102	High	• • • • • • • • • •	44		1.8	6.8	75	2	+			0.046	••••••	14 9	23.75	2.8
22	Mar.	23/36	48:56	High	<u></u>	. 32	14	1.4	0.8	40	10	+ • • • • • • •	<u> </u>		0.040	+	. 14.0	20.90	2.9
			·	1				··				+	·	·1	51 	ATION N	0. 111 – E	XPLOITS I	NVER
23	Sept.	17/53	20:118		. 3,340†	· · · · · ·		1.6	7.4	30	2			42.6	0.058		. 12.2	55.4	5.9
24	Oct.	4/55	13:49	High	7,380	49	6.9	1.6	6.8	35	2	h		32.8	0.045	·····	. 15.2	42.3	2.9
25	Mar.	23/56	48:63	High	2,170	32	11	1.4	6.9	40	0			40.8	0.056	•••••	. 19.6	30.63	3.1
26	May	2/36	23:33	Very high	n 24,100	52	14	2.1	6.6	40	2			30.4	0.041		16.4	1 32.53	2.0
<u> </u>	† Dis	charge	records	at Grand Fa	alls powerh	ouse of	Anglo-1	Vewfou	Indlan	d Develop	ment Co). Ltd.; dr	ainage arc	a, 3,760 s	quare mi	les. STATION	NO. 112 -	PETER'S	POND
28	July	3/56	10:14	1			10	2.2	7.0	50	0	1	1					. 46.1	6.2
	* C	لماما		4			<u>!</u>			•	_		·	-l			-l		
	San	ibied g	(IOWII TA)	۲.											:	STATION	NO. 113 –	GANDER F	IVER

														<u> </u>				
29	July 7/55	13:26	2,040et	1,850†	48	16	1.6	6.7	55	0			34.4	0.047	190	22.8	25.9	1.8
30	Aug. 8	9:29	2,270	1,660	58		4.8	6.2	50	20							23.6	1.3
31	Sept. 9	10:26	1,070	1,120	58		1.8	6.7	45	0]						25.34	1.9
32	Oct. 20	8:41	3,440	3,570	50	15	2.2	6.6	45	0			31.2	0.042	286	16.8	25.71	1.9
-			• •	1 .		•			1	1		1						•

Sampled from highway bridge.
 † Discharge records, 3 miles downstream from Glenwood at Big Chute, Nfld.; draioage area, 1,730 square miles.
 e estimated.

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

_						1			1					P					-					
	Iro (Fe	n :)					All	calis										Hard as Ca	ness aCO3	ituents	ium	dex	ex	
dagnesium	l'ota l	Dissolved	langanese	Aluminum	Copper	Zinc	todium	otassium	Ammonia	Carbonate	licarbonate	ulphate	Chl oride	luoride	litrate	ili ca colorime tric	3or on	Non- car- bonate	Total	um of const	er cent sod	aturation in	tability ind	No.
(Mg)			(Mn)	(A1)	(Cu)	(Zn)	(Na)	(K)	(NH ₂)	ഹം	(HCO1)	(SOJ)	(C1)	(F)	(NO ₂)	(SiO ₂)	(B)			0	Щ	S	03	
at DE	ER LAK	τ <u>.</u> τε. Ν	FLD	(Conc)	uded)					(1		1		L	·	I	· I		<u> </u>
0.6				,			2.0	0.4		0.0	12.2	27	2.2		0.6	16		27	12.7	22.2	24.0	-2.4	12.1	1,
0.5		••••••				 	2.0	0.3	0.1	0.0	12.9	2.3	3 2	• • • • • • • • • •	3.2	3.3		2.7	13.3	28.3	24.0	-2.4	12.1	2
0.5	•••••	0.03	0,0	0.07	0.0	0.0	2.0	0.3	0.5	0.0 0.0	12.2	2.6	3.0	0.0	2.4	3.3		3.0	13.0	24.6	23.9 25.8	-2.4	12.1	3
0.7							1.9	0.3	0.2	0.0	11.2	2.1	2.8		3.6	3.3		3.4	12.6	24.1	24.1	-2.8	12.6	5
0.7		0.01	0.0		0.0	0.2	2,6	0.3	0,15	0.0	14.3	1.7	3.2	0.0	1.2	3.6		1.2	12.9	24.3	29.9	-2.4	12.0	6
near D	EER LA	KE, NF	LD.		r	······	r		·					r	·	·					γ - 			
0.5		0.14	0.0	Trace	0.0	 .	2.1	0.3	0.75	0.0	9.3	3.1	2.5		0.2	0.7	0.00	1.9	9.5	17.1	31,0	-2.8	12.7	7
0.5	 					Li.0.0	2.5	0.3	0.2	0.0	11.9	1.7	2.9		0.4	1.1		3.2	12.0	18.9	26.1	-2.7	12.4	9
0.7		0.05	0.01	0.01	0.0	0.0	2.3	0.3	0.2	0.0	8.3	1.9	4.2	0.0	0.6	2.0		2.8	9.6	18,9	33.0	-3.3	13.4	10
0.9							2.5	0.3	0.2	0.0	11.8	3.6	3.5		3.2	3.3		5.0	14.7	27.7	26.5	-2.6	12.3	12
1.2		0,07	0.0	0.06	0.0	0,0	3.4	0.5	0.2	0.0	18.4	4.2	4.9	0.0	0.6	4.2		3.6	18.7	33.7	27.2	-2.4	11.8	13
2.3		 		1			3.7 4.0	0.5	0.0	0.0	13.4	4.9	7.2	· · · · ·	2.4	4.6		8.9	19.9	35.6	29.8	-2,6 -2,4	12.2	14
1.2		0,18	0.0	0.0	0.0	0.0	4.3	0.6	0.5	0.0	21.2	3.8	7.1	0.0	2.4	4.6	[4.3	21.7	41.3	29.2	-2.1	11.4	16
0.5	 	 .			·····	•••••	2.2	0.4	0.0	0.0	3.8	2.4	5.9 4.2	· · · · ·	3.6	2.0	• • • • • • • • • •	3.5	6.6	18.7	35.1	-3.2	13.2	17 18
near B	UCHANS	S, NFLI).		·	•	<u> </u>		<u> </u>		·			+		<u> </u>	L	•	1		<u> </u>	L		
0.2		0.08	0.0	0.12	Slight	0.02	1.0	0.2	0.2	0,0	6.2	2.8	1.1	0.0	0.2	2.4		1.7	6.8	13.6	21.6	-3.7	14.0	19
at BAD	GER, N	IFLD,	,	·		· · ·		, <u> </u>	, <u> </u>			1	I	r <u> </u>	1	1		r	, ,	,	1	·		
0.3		0.03	0.0	0.13	0.01	0.07	1.4	0.2	0.2	0.0	6.7 7.1	2.5	2.3	0.0	0.8	2.4	0.00	3.2	8.7	16.4	23.8	-3.3	13.4	20
0.5		0,08	0,0	0.0	Trace	0.1	1.6	0.3	0.6	0,0	6.0	3.3	2.4	0.0	1.6	2,5		4.4	9.3	18.1	26.2	-3.3	13.4	22
at GR	ND FAI	LLS, N	FLD.	r	r			1				1		r	r	1		1		I	1			-
1.5 0.4		0.03	0.0	0.07	0.01	0.05	3.6	0.9	0.2	0.0	23.1	3.8	4.3	0.0	0.2	2.4		. 1.9	20.8	34.2	26.3	-2.0	11.4	23
0.3		0.05	0.0	0,03	Slight	0.2	1.9	0.3	0.6	0.0	6.8	3.3	2.5	0.0	2.4	2.9	0.00	3.4	9.0	20.2	30.1	-3.2	13.3	25
0.2 0.7	•••••	0.05	0.01		0.0	0.15	1.2	0.2	0,0	0.0	4.9 7.4	2,1	2.0	0.0	1.2	2.7		- 3.6 4.0	7.6	14.7	25.0	-3.7	14.0	26
					1	1 *** 2		10.5				1.10	5.2	1010	0.4		1		1.0.1	120.4	120.0	5,5	1,510	21
near B		D, NFL	D.*	· · · · ·	.	·	r	·r	1			1		r	+	·	1		·					
0,8	• • • • • • •	0.12	0.0	0.05	0,0	0.1	2.0	0.2	0,2	0.0	14.3	1.6	5.1	0.0	4.0	3.8		. 7.1	18.8	30.9	18.2	-2.5	12.0	28
at GLE	NWOOD	, NFLE) . *				•				• • • • •	_		•										
0.3		0.0	0.0	0.08	0.0	 	1.3	0.3	0,25	0.0	4.9	1.1	2.2	 .	0.6	2.8	0.06	1.7	5.7	12.9	30.1	-3.7	14.1	29
0.6 0.3							1.6	0.3	0.3	0.0	5.0 5.6	0.9	2.6	[·····	0.0	1.7	 Ti.0.0	. 1.6	5.7	11.8	36.3 37.0	-4.3	14.8	30 31
0.4		Trace	0.0	0.03	0.0	0.0	1.7	0.3	0.1	0.0	5.2	1.2	2.5	0.0	1.2	2,3		2.1	6.4	14,1	36.1	-3.8	14.2	32

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec (In parts per million)

			Stream d (Second	ischarge l-feet)		med	Ð				Suspe mate	ended ter	Residu dried (Disso	e on evan d at 105° lved soli	oration C. ds)			
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consu by KMnO4	Carbon dioxid (calculated)	pН	Colour	Turbidity	Dried ^{at} 105 ⁰ C.	Ignited at 550º C.	Parts per million	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance $K \times 10^{6}$ at 25° C.	Calcium
		(Days)			(° F.)		(CO2)		(Units)	(Units)								(Ca)
							.								STATION	NO. 113 –	GANDER F	IVER
1	Nov. 19/55	13:26	4,940†	6,590†	40		4.0	6.3	50	2							28,40	1.8
2	Dec. 9	18:73	4,360	3,640	37		4.7	6,2	50	0.9							33.87	2.4
3	Jan. 9/56	14:101	7,210	8,870	38	8,1	3.0	6,4	50	0.3			32.4	0.044	630	19.2	34.29	1.7
4	Feb. 15	20:70	2,960	3,430	38		3.8	6.4	50	0		• • • • • • • • •					30.91	2.0
5	Mar	No sampl	e taken	1,690														
6	Apr. 7	37:58	2,020	9,010	37		2.9	6.4	50	4							25.56	2.1
7	May 7	24:38	9,620	10,500	41	10	4.1	6.8	50	2			36.0	0.049	934	16.4	42.73	2.3
8	June 5	8:17	5,340	4,820	42	•••••	3.0	6.3	50	0.3		• • • • • • • • •	• • • • • • • • • •				20.95	1.6
	July 5	13:18	4,600	3,010	50		3.3	6.4	45	0	• • • • • • • • •	. <u></u>		l			25.72	1.9

Sampled from highway bridge,
 Discharge records, 3 miles downstream from Glenwood at Big Chute, Nfld.; drainage area, 1,730 square miles.

	· · ·			·			· · · · -						 		STATION	NO. 114 -	-GANDER	LAKE
10	July	5/56	8:12		<i></i>	50	10.1	1.2	6.3	40	0	<u> </u>	 18.8	0.026		4.8	24.2	1,6
	*Ata	irport h	otel tap,															

														STATION	I NO. 115	- ROCKY R	IVER
11	July 20/55	13:26	3387	172†	65	18	0.9	7.2	90	0	 	42.4	0.058	38.9	22.8	37,90	1.8
12	Aug.	No sample	e taken	255										5-17		57450	
13	Sept.7	12:28	85	176	56	1	1.7	6.9	80	0	 					30 78	2.8
14	Oct.	No sample	e taken	587									1			37.10	2.0
15	Nov. 7*	23:38	1,530	839	45		5.0	6.0	160	0.8	 					32 38	11
16	Dec.	No sample	e taken	483**										••••••••		52.50	1.1
17	Jan. 1/56	19:117	850e	606	45	9.6	4.0	6.0	70	0.8	 	33.6	0.046	77.5	18.0	37 10	1 2
18	Feb.	No sample	e taken	301								55.0	1		1010	5/11/	1.5
19	Mar. 7/56	41:66	338	487	32		1.8	6.6	60	0.8	 					30.02	1.9
20	Apr.	No sample	e taken	66									1		•••••	57.75	
21	May 7	13:38	612	496	45	11	2.5	6.4	70	0,2	 	31.6	0.043	52.2	14.0	30.30	1.6
22	June 27	21:26	663	385	55		3.8	6.2	130	2	 					29.32	1.0

[†] Discharge records, 1,200 yards upstream from highway bridge No. 6; drainage area 100 square miles. [•] After 20 days rain, [•] Ice conditions December 17 to 31, 1955, January 31 to February 29, 1956. ^e estimated,

			1		·										STATION	NO. 116	- BLACK RI	VER
23	Dec.	7/56	28:41	Normal		44	16	4.8	6.0	50	0	 	49.2	0.067		33.6	26.32	1.1
	* Sam	pled at	highway	bridge.														

.

		1												STATI	ON NO. 11	7 – PIPEI	'S HOLE R	IVER
24	July 24/55	22:73	976†	528†	57	23	2,4	6.4	100	3	l		35.6	0.048	93.0	23.6	23.10	16
25	Aug.	No sample	taken				1					[1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,00	2 3.10	1.0
26	Sept.12	9:45	116	426	61		1.7	6.8	45	3							31 50	28
27	Oct.	No sample	taken										[1	[•••••	51.50	2,0
28	Nov.	No sam; le	taken											-				
29	Dec. 15	12:118	703	782*	32	9.8	2.5	6.4	75	2			35.6	0.048	66.9	18.8	22.65	16
30	Jan. 1956	No sample	taken	1,810									55.0		0017	10.0	22.0)	1.0
31	Feb. 15/56	20:82	655	576	34	1	2.5	6.4	60	0							22 12	16
32	Mar.	No sample	taken	878			1				1			1			23.12	1.0
33	Apr. 12	35:48	2,260	2,400	37	10	3.2	6.1	60	4	3.5	2.0	32.8	0.045	202	21.6	20,38	1.6
	· - · ·				,	,	1	1011		1 7		2.0	34.0	1 0.045	202	21.6	20,38	1

† Discharge records immediately below confluence of Mothers Brook, about 9 miles from Swift Current; drainage area, 300 square miles.
• Ice conditions, December 20, 1955 to January 6, 1956, February 8 to 27 and March 12 to 25, 1956.

.

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

(In parts per million)

	Iro (F	on e)					Aik	alis										Hardi as Ce	ness ICO3	uents	Ę	ex	~~~~	
Magnesium	Total	Dissolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (culorimetric)	Boron	Non- car- bonate	Total	Sum of constit	Per cent sodit	Saturation ind	Stability inde	No.
(Mg)			(Mn)	(Al)	(Cu)	(Zn)	(Na)	(K)	(NH ₃)	(CO3)	(HCO3)	(SO4)	(Cl)	(F)	(NO3)	(SiO ₂)	(B)							
at GLI	ENWOO	D, NFL	D.*-((Conclud	ed)				•															
0.6							1.9	0.5	0.5	0.0	5.0	2.2	2.8		0.8	2.6		2.9	7.0	15.7	35.2	-4.1	14.5	1
0.7		[2.2	0.5	0.2	0.0	4.5	3.1	2.9		3.2	2.7		5.2	8.9	19.9	33.5	-4.2	14.6	2
0.5		0.0	0.0	0.03	0.0	0.0	1.7	0.4	0.2	0.0	4.6	2.1	2,8	0.0	0.8	3.0		2.5	6,3	15.3	34.6	-4.0	14.6	3
0.6		l					2.1	0.4	0.2	0.0	4.3	3,1	3.7		1.2	2,6	0.00	4.0	7.5	17.8	36.4	-4.1	14.5	4
				-				1				-]									5
0.2							1.8	0.4	1.0	0.0	4.6	2.4	2.9		2.4	2.5		2.3	6.1	18.0	29.5	-4.0	14.4	6
0.5		0.03	0.0	0.0	0.0	0.0	4.4	0.7	0.3	0.0	6.6	2.4	5.9	0.0	4.0	2.8		2.4	7.8	26.2	52.2	-3.8	14.0	7
0.4							1.4	0.3	0.2	0.0	3.7	1.5	2.2		3.2	2.3		2.6	5.6	14.7	31.7	-4.3	14.9	8
0.4					0.0	0.0	1.6	0.3	0.3	0.0	5.0	1.4	2.3		1.6	2.4		2.3	6.4	14.4	31.4	-4.0	14.4	9
		<u>.</u>					••								·									

at GAN	IDER, I	NFLD.*																				
0.7		0.08	Trace	0.05	0	.05	1.7	0.3	0.2.	0.0	1.5	2.6	4.6	6.3	2.4	2.6	 	 17.4	32.5	-4.7	15.7	10

near COLINET, NFLD.

0.7	 0.0	0.0	0.12	0.0		3.2	0,4	0.3	0.0	8.7	2.9			0,6	1.9		0.2	7.4	• • • • • •	44.9	-2.9	13.0	11
0.4	 					4.0	0.4	0.2	0.0	8.3	1.6	5.8	Li.0.0	0.2	1.2	0.01	1.8	8.6	20.5	48.8	-3.1	13,1	13
0,8	 					3.4	0.3	0.4	0.0	3.3	1.4	6.0		0.2	1.6		3.3	6.0	16.4	53.5	-4.8	15.6	15
0.7	 0.05	0.0	0.0	Trace	0.0	3.8	0.2	0.1	0.0	2.4	2.3	7.3	0.0	2.4	2.3		4.1	6.1	21.6	56.1	-5.0	16.0	17
0,5	 		•••••	 		4.3	0.6		0.0	4.1	2.4	7.6		2.8	2.4	0.00	3.1	6.5	24.4	56.1	-4.0	14.6	18
0.5	 0.10	0.0	0.0	0.0	0.0	3.3	0,3	0.0	0.0	4.0	1.7	5.8	0.0	1.6	1.5		2.7	6.0	18.4	52.0	-4.2	14.8	20 21
0.6	 		• • • • • •	0.0	0.0	3.1	0.2	0.2	0,0	3.9	1.6	4.3		. 3.2	1.4		2.8	6.0	17.7	49.9	-4.5	15.2	22

near H	BLACK I	RIVER,	NFLD	.•																	
0.6		0.09	0.0	0.26	0.0	0.0	2,6	0.2	0.2	0.0	3.0	1.7	5.0	0.0	0,8	3.3	 2.7	5.2	17.2	44.4 -4.9 15.8 2	3

near SWIFT CURRENT, NFLD.

0.4		0.13	0.0	0.11	0.0		1.7	0.3	0.0	0.0	3.9	2.8	2.5		0.4	1.7	Li. 0.0	2.4	5.6	13.5	34.9	-4.1	14.6	24
												1.0	()		. .	1.5		1.0	- <i>,</i>	16.0			1	25
0.1	•••••	••••	• • • • • •	• • • • • •			2.5	0.3	0.0	0.0	6.7	1.0	4.2	•••••	0.4	1.2	L1. 0.0	1.9	7.4	12.8	41.1	-3.4	13.0	26 27
						ĺ																		28
0.3		0.09	0.0	0.0	Trace	0.0	2,2	0.3	0.15	0.0	3.9	1.8	3.2	0,0	0.8	3.3		2.0	5,2	15.5	45.3	-4.2	14.8	29
0.3							2.0	0.3	0.1	0.0	4.0		4.0		2.0	2.8	0.0	1.9	5.2		43.7	-4.3	15.0	30
						[•••											32
0.1		0.11	0.0	0,02	Trace	0.0	1.7	0.3	0.0	0.0	2.4	1.1	3.1	0.0	3.2	2.0	<u> </u>	2.4	4.4	14.4	42.1	-4.8	15.7	33

TABLE II - (Concluded)

Chemical Analyses of Surface Waters in the Atlantic Provinces

and in the Saint John River Drainage Basin in Quebec

							1											
			Stream di (Second	ischarge l-feet)		bed					Suspe mati	nded er	Residu driec (Disso	e on evap 1 at 105° lved soli	oration C. ds)			
No.	Date of collection	Storage period	On sampling date	Monthly mean	Water temp- erature	Oxygen consur by KMnO4	Carbon dioxide (calculated)	pН	Hazen)	Turbidity	Dried at 105° C.	Ignited at 550°C.	Parts per million	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.	Specific conduct- ance K × 10 ⁶ at 25 ⁰ C.	Calcium
		(Days)	<u> </u>		(º F.)		(CO ₂)		(Units)	(Units)			ļ					(Ca)
															STATION	NO. 118	- DUNN'S F	IVER
1	Dec. 7/56	28:41	Normal		38	18	9.2	5.6	70	0			40.8	0.056		40.4	29.98	1.2
		-												5	STATION I	NO. 119 -	BAY OF F	UNDY
2	Aug. 2/55	21:142	Sampled a tide	at Kebb	54			7.9	0	0			34,985	47.49		3,205	48,869	406
							1		4	·	d. <u></u>		L		STATION I	NO. 120 -	BAY OF F	UNDY
3	July 29/55	13:24	Sampled a high tide	t nearly	66			. 7.9	5	5.0			31,138	42.35		4,508	45,698	336
												1		STA	TION NO.	121 – AT	LANTIC O	CEAN
4	Aug. 5/55	10:17	Sampled a	t high tide	71			8.1	10	0			23,464	31.90		3,424	35,616	251
														STA	TION NO.	122 – AT	LANTIC O	CEAN
5	Aug. 5/55	10:17	Sampled a	t high tide	57		ļ	8.0	5	0.3	[33,500	45.51		4,384	49,097	360
												•		STA	TION NO.	123 – AT	LANTIC O	CEAN
6	Aug. 11/55	12:33	Sampled a	t ¾ tide	68	İ		8.1	5	0.3	[29,662	40.35		2,960	42,053	333
						1			•	··· ·	·		·	STA	TION NO.	124 – AT	LANTIC O	CEAN
7	July 30/55	12:23	Sampled a	t high tide	54			8.0	5	0		<u>-</u>	33.812	46.00		3.916	49,277	363

TABLE II - (Concluded)

Chemical Analyses of Surface Waters in the Atlantic Provinces and in the Saint John River Drainage Basin in Quebec

(In parts per million)

	Iroi (Fe	1)					Alk	alis										Hard as C	ness aCO3	tuents	E a	cx	×	
Magnesium	Total	Díssolved	Manganese	Aluminum	Copper	Zinc	Sodium	Potassium	Ammonia	Carbonate	Bicarbonate	Sulphate	Chloride	Fluoride	Nitrate	Silica (colorimetric)	Boron	Non- car- bonate	Total	Sum of consti	Per cent sodi	Saturation ind	Stability inde	Nc.
(Mg)			(Mn)	(A1)	(Cu)	(Zn)	(Na)	(K)	(NH3)	(CO3)	(HCO3)	(SO4)	(CI)	(F)	(NO ₃)	(SiO ₂)	(B)		l					
east D	f TERR	ENCEV	ILLE,	NFLD.																				
0.6		0.07	0.0	0.3	0.0	0.0	3.0	0.2	0.3	0.0	2.3	2.8	5.8	0.0	0.8	1,7		3.6	5.5	17.6	46.5	-5.4	16.4	1
at DIG	BY, N.	S.																						
1,148	•••••	Trace			0.0	0,0	9,640	400	0.0	0.0	138	2,517	18,252	0.0				5,620	5,733	32,431	77.6			2
at HA	NTSPOI	RT, N.S																						
1,063		Trace			0.0		8,480	312		0.0	126	2,172	15,640	••••		•••••		5,108	5,211	28,065	76.6	••••		3
at IRI	SH COV	E, N.S.																						
798		0.0		[0.0		6,360	249		0.0	106	1,628	11,820					3,821	3,908	21,225	76.5			4
at MU	LGRAV	E, N.S.						-																
1,108		0.06			0.0		9,040	348		0.0	132	2,319	16,800				••••	5,345	5,454	30,040	76.9			5
at PU	GWASH,	N.S.																						
977		Trace					8,480	320		0.0	124	2,075	15,106	0.0				4,747	4,849	27,355	77.8			6
at HE	RRING	COVE,	N.S.																					
1,162		Trace			0.0		9,760	353		0.0	132	2,374	17,320					5,577	5,686	21,400	77.5			7

A. ISLAND OF NEWFOUNDLAND

Municipality	BELLEO	RAM		BOTWOOD	
Population served:	1951	1956	1951	1956	1958
In municipality Outside municipality	663c 0	600 (570)d 0	3,421¢	3,000 (3,894)d	4,000 (est.) 0
Total	663	600	3,421	3,000	4,000 (est.)
Date(s) of survey Ownership	July 17, 1956 Municipally owned and o	operated	July 6, 195 Owned and Corporatio	6 operated by Boty n	wood Water
Source of supply Treatment	Rabbit's Pond No treatment; water flov reservoir and system.	vs by gravity to	Peter's Por Pumped fro voir and s	nd River, 5 miles m pond in river, ystem with chlor	west of town to reser- ination.
Storage capacity (thousand gallons) Consumption (average in m.g.d.)	Wooden reservoir <u>1955</u> 5,000 g	No data .p.d.	Concrete re $\frac{195}{0.3}$	eservoir \dots 6	58 60
Industrial use	The only major industry essing plant using abo total water.	is a herring proc- ut 2 per cent of	Industrial v ping, and ment Co.,	vater users are C the Anglo-Newfo Ltd.	.N. Rys., ship undland Develo
Remarks:				•••••	
Municipality	CORNER I	BROOK		CURLING*	
Population served:	1956		1956	1957	_
In municipality	23,000	(23,225)d†	3,559	3,601)
Outside municipality	0		0		0
Total	23,000	k.	3,559	3,60	0
Date(s) of survey Ownership	July 3, 1956 Owned and operated by Sewage Corporation of Brook	the Water and Greater Corner	August, 19 Owned and Sewage C Brook	57 operated by the orporation of Gre	Water and ater Corner
Source of supply	Impounding reservoirs (Pond) on Corner Brook	3 mile dam and 2nd River	Second Por River)	nd (reservoir on (Corner Brook
Treatment	Water is screened and f system with chlorinati	lows by gravity to on.	Water flow and chlori	s by gravity with nation to system	screening 1.
Storage capacity (thousand gallons) Consumption (average in m.g.d.)	None but impounding re <u>1956-57</u> <u>5.0 (est.)</u>	servoirs on river *	None but in	npounding reserv <u>1956</u> 0.40	oirs in river
Industrial use	Major users are Bowate and Paper Mills Ltd., Cement Co. and Atlant Ltd.	r's Nfld. Pulp North Star ic Gypsum Co.,	A fish plan	t is the principa	l user.
Remarks:	* Includes Corner Brool Brook West and Curlin	c East, Corner g	* Curling Corner Br and water	is a part of city ook but has its c source.	of Greater wn system
^c Population according to ninth census of d Population according to tenth census of † Boundary change since 1951	Canada, 1951. Canada, 1956.				

A. ISLAND OF NEWFOUNDLAND - (Continued)

RIICU	ANS	CAR	BONFAR	CHANNEL DO	DT AILY BASOURS
1051	1054		DONEAR	CHAINEL-PC	ALL AUX DASQUES
1951	1956	1951	1956	1951	1956
1,944¢	2,500 (2,413)d	3,351c	$2,000 (3,955)^{d}$	2,634c	3,500 (3,320) ^d
1,944	2,500	3,351	2,000	2,634	3,500
June 26, 1956		November 16, 1956	5; 1958	June 27, 1956	
Owned and operated Mining Co. Ltd.	by the Buchans	In 1956, privately Carbonear Water (municipally owne	owned and operated by Co. In 1958-59 system d and operated	Municipally owne	ed and operated
Sandy Lake Water is filtered and	chlorinated.	Little Island Pond Water is screened gravity.	and flows to system by	Small river damm Water flows by g tion to system.	ed to form a lake* ravity with chlorina-
Elevated tank 1955 2.01	100 -	None Not known		Dam (reservoir) No data	120,000
The only major indus and mine using abo pumpage.	stries are a mill ut 80 per cent of	No major industria	l users	The major indust Rys. and West Railway uses 2 Co. about 70,00	rial users are C.N. Coast Power Co. Ltd. m.g./month and Power 0 gal./month.
				* Yearly run-off a	ubout 500 m.g.
DEER L	AKE	FO	RTUNE	FRF	SHWATER
1951	1956	1951	1956	1951	1956
2,655c	3,500 (3,481) ^d	867¢	1,200 (1,194) ^d	810	2,000 (1,048) ^d
0	0	0	0		0
2,655	3,500	867	1,200	810	2,000
September 29, 1956		July 4, 1956	••••••	July 10, 1956	•••••
Municipally owned a	nd operated	Municipally owned	and operated	Municipally owne	ed and operated
Grand Lake		Fortune Brook		Larkin's Pond*	
No treatment; water through hydroelectr thence to system.	flows by gravity ic penstock and	Water is screened rination to reserv	and pumped with chlo- oir and system.	Water is pumped tanks and syste	with chlorination to em.
None <u>1956</u> 0.25 (oct.)	$\frac{1958}{0.30}$	Elevated tank 1955 0.09		Two elevated tar	nks 10 and 30 1955).042
No major industrial v	users	The only major inc processing plant, per cent of total	lustrial user is a fish which uses about 50 pumpage.	No major industr	ial users
				* See also Place	entia
	·				

ì

A. ISLAND OF NEWFOUNDLAND - (Continued)

Municipality	GANDER A	GANDER TOWNSITE*				
Population served:	1951	1956		1956		
In municipality	3,956°	(3,649) ^d		1,289d		
Outside municipality				0		
Total		6,000* .		1,289		
Date(s) of survey	June 27, 1956		December, 195	7; May, 1959 .		
Ownership	Owned and operated b Department of Trans	y the Federal	Municipally or	wned and operate	ed*	
Source of supply Treatment	Gander Lake Water is pumped with rination to reservoirs	Water obtained from Gander Airport system See Gander Airport				
Storage capacity (thousand gallons)	Two tanks (wood) One concrete reservoi	No data				
Consumption (average in m.g.d.)	$\frac{1956}{1.125}$		No data	No data		
Industrial use	No data; - used by air	port	No data			
Remarks:	* Only partly served (some in Gander Tow	1,000) and includes nsite.	* In late 1957 construction completed.	the system was but, by 1959,was	still under almost	
	HARBOUF	GRACE		JERSEYSIDE		
Population served:	1951	1956	1951	1956	1957	
In municipality	2,3310	2,500 (2,545) ^d	544c	713d	700	
Outside municipality	0				<u> </u>	
Total	2,331	2,500	544	713	700 **	
Date(s) of survey Ownership Source of supply	July 11, 1956 Municipally owned an Bannerman Lake	d operated	August, 1957; Municipally o Larkin's Pond	1958 wned and operat **	ed	
Treatment	No treatment; water is by gravity to system	s screened and flows •	In 1957, no tr gravity to th tion was bei	eatment; water f e system. In 195 ng carried out.	lows by 8, chlorina-	
Storage capacity (thousand gallons)	None		No data		•••••	
Consumption (average in m.g.d.)	0.1	No data		••••		
Industrial use	The major industrial processing plant, an tries such as an oil whaling company. In about 0.1 per cent of	No data				
Remarks:	* Shipping supplied w water.	ith drinking	*Not all ser ** See also P	ved lacentia		
^c Population according to ninth census of d Population according to tenth census of	f Canada, 1951. f Canada, 1956.					

A. ISLAND OF NEWFOUNDLAND - (Continued)

GRAND BANK		GRA	ND FALLS	GREENSPOND		
1951	1956	1951	1956		1956	
2,148°	2,450 (2,430)d	5,064°	6,000 (6,064)d		800 (784)d	
0	0	0	0		0	
2,148	2,450	5,064	6,000		800	
June 29, 1956		October 22, 1956		January 2, 1956		
Municipally owne	d and operated	Owned and operat foundland Devel	ed by the Anglo-New- opment Co. Ltd.	Municipally owne	d and operated	
Grand Bank Brook Water is pumped with chlorination to tank and system.		Exploits River Water is prechlori treated with Cal tem.	nated, pressure-filtered, gon and pumped to sys-	A small pond Water flows by gravity to the system with no treatment.		
Tank (wood)		None	 56	No data		
0.100 Plant capacity -	(Max. 0.135) 0.150	1.	0	No data		
The major industri essing plant and Storage Co.,Ltd 40 to 45 per cen	rial users are afish proc- l the Bonavista Cold . Industrial use is about t of total pumpage.	The only industri Newfoundland D using about 20 p pumpage.	al user is the Anglo- evelopment Co.,Ltd., er cent of total	No data		
LEWISPORTE		PL.	ACENTIA	ST. ANTHONY		
1951	1956	1956	1958	1951	1956	
1,218	2,000 (2,076) ^d	1,000 (1,23	3)d 1,500	1,380°	1,400 (1,761)d	
0	0	600*	<u> </u>	0	0	
1,218	2,000	1,600	1,500	1,380	1,400	
June 26, 1956; D	ecember, 1958	July 6, 1956; Dec	ember, 1958	September 11, 19	56	
Stanhope Lake .	d and operated	Municipally owne Larkin's Pond	d and operated	International Grenfell Association Reser-		
-			.	voir (surface ru	n-off)	
to tank and syst tion was being o	nent; water is pumped em. In 1958, chlorina- carried out.	In 1956, no treatment; flows by gravity to system. In 1958, chlorination was being carried out.		Water is supplied by gravity, by two separate systems.		
Tank (wood) In 1958, one tank	(steel)	No data	•••••••••••••••••	.No data		
$\frac{1956}{0.12 (Max. 0.14)} \frac{1958}{0.15}$ Plant capacity - 0.288 m.g.d.			1956 0.10	No data	• • • • • • • • • • • • • • • • • • • •	
No major industri	al users	No data		No data		
		*Jerseyside				
		L				

A. ISLAND OF NEWFOUNDLAND-(Continued)

Municipality	ST. JOHN'S*			ST. LAWRENCE		
Population served:	1951	1956	1957	1951	1956	
In municipality Outside municipality	52,873° No data	53,000 (57,078)d No data	57,000 13,000	1,451c 0	2,000 (1,837)d 0	
Total			70,000	1451	2,000	
Date(s) of survey Ownership Source of supply	June 5 and Municipall Petty Harb Lake, 3 a tively**	Dec. 6, 1956; Jan y owned and operat our Long Pond an nd 5 miles distant,	. 16, 1957 ed d Windsor respec-	August 31, 1956 Municipally owne Well, 300 feet dee	ep	
Treatment	In 1956, w screening At a later started.	ater flows by gravi and chlorination t date lime treatmen	ty with o systems. nt was	No treatment; water is pumped to reservoir and system.		
Storage capacity (thousand gallons)	None, except Windsor Lake, Petty Har- bour Long Pond and Georges Pond			Steel reservoir 500		
Consumption (average in m.g.d.)	195 9.5(Max	5 1956 11.0) 9.8 (Max	. 11.0)	1956 No data	1958 0.188	
Industrial use	Main users Base,Torl ing and C use is ab	8.0) (Min. are Ft. Pepperell bay Airport, a fish p .N. Rys. Dockyard. out 31 per cent of t	9.0) Air Force lant, shipp- Industrial total use.	No major industri	al users	
Remarks:	* Total me 1956 was ** Windsor supplies Airport.	tropolitan area pop 5 77,991. Lake is the main s St. John's East ar	ulation in supply and id Torbay	•••••		
	, B.PR	INCE EDWARD IS	LAND			
	T	·····		1 • • • • • • • • • • • • • • • • • • •		

	CHARLOTTETOWN			SUMMERSIDE			
1951	1954	1956	1951	1954	1956		
15,887°	16,000 600	16,707d	6,547° 0	7,000 0	7,242d 0		
	16,600		6,547	7,000*	7,242		
September 11, Municipally o Public Utilit	1954 wned and ope ies Commiss	erated by a ion.	September 11 Municipally c	, 1954 wned and opera	ated		
29 wells, 10 a 18 at Brackle one at the ma	t Union Pum ey Pumping S a in pumping	ping Station, Station and station.	5 wells, two 600 feet deep, one 250 feet deep and two 500 feet deep. One 600 and two 500 feet deep wells were not being used at the time of the survey.				
Water is pump system.	ed with chlo	tination to	No treatment to standpipe	wells are pum and system.	ped separately		
One concrete	reservoir	1,250	Standpipe	• • • • • • • • • • • • • •			
1954		1958	1954		1958		
1.75 (Max. 2. Pumping capa Major industri Canada Pack plant and a c estimated at pumpage.	0) city - 10 m.g al users are cers, a found creamery. Inc 50 per cent	1.92 a.d. C.N. Rys., ry, a pickling lustrial use is of total	0.70 (Max Major industr potato bag f plant. * 95 per cent water	. 0.80) ial users are a actory and a cc of the people s	1.0 creamery, a old storage served with		
	15,887 September 11, Municipally or Public Utilit 29 wells, 10 a 18 at Brackling one at the main Water is pump system. One concrete <u>1954</u> 1.75 (Max. 2. Pumping capa Major industri Canada Pacl plant and a content estimated at pumpage.	15,887c 16,000 600 16,600 September 11, 1954 Municipally owned and oper Public Utilities Commiss 29 wells, 10 at Union Pum 18 at Brackley Pumping Sone at the main pumping Sone at the	15,887c 16,000 16,707d 600 600 16,600 16,600 September 11, 1954 16,600 September 11, 1954 16,600 September 11, 1954 16,600 September 11, 1954 10 29 wells, 10 at Union Pumping Station, 18 at Brackley Pumping Station and one at the main pumping station. Water is pumped with chlorination to system. One concrete reservoir 0ne concrete reservoir 1954 1958 1.75 (Max. 2.0) 1.92 Pumping capacity - 10 m.g.d. Major industrial users are C.N. Rys., Canada Packers, a foundry, a pickling plant and a creamery. Industrial use is estimated at 50 per cent of total pumpage.	15,887c16,00016,707d6006,547c06,547September 11, 19549Public Utilities Commission.929 wells, 10 at Union Pumping Station, 18 at Brackley Pumping Station.529 wells, 10 at Union Pumping Station, 18 at Brackley Pumping Station.5Water is pumped with chlorination to system.501954195419581.75 (Max. 2.0)1.92Pumping capacity - 10 m.g.d.Major industrial users are C.N. Rys., Canada Packers, a foundry, a pickling plant and a creamery. Industrial use is estimated at 50 per cent of total pumpage.1954* 95 per cent water	15,887c16,00016,707d6006,547c7,00016,6000016,6000016,6000016,6000016,6000016,60000September 11, 1954029 wells, 10 at Union Pumping Station, 18 at Brackley Pumping Station and one at the main pumping station.5 wells, two 600 feet deep, deep and two 500 feet deep wells we at the time of the survey.Water is pumped with chlorination to system.195419581.75 (Max. 2.0)1.921954Pumping capacity - 10 m.g.d.19541954Major industrial users are C.N. Rys., Canada Packers, a foundry, a pickling plant and a creamery. Industrial use is estimated at 50 per cent of total pumpage.1954* 95 per cent of total pumpage.* 95 per cent of the people water		

dPopulation according to tenth census of Canada, 1956.

			+				_			
SPRINGDALE*			STEPHENVILLE				WINDSOR			
1951	1956		1950	5	1959	1951		1956	1957	
1,238	2,000 (1,6	38) ^d	3,750	(3,762)d	7,000	3.674	c	4.520d	4,500	
0	0		0)	0	0	I	0	0	
1,238	2,000		3,750)	7,000	3,674		4,520	4,500	
July 6, 1956	••••••••••••••••		December 1	 1, 1956; Feb	ruary 9, 1959	. August,				
Owned by Ru Sullivan's Po	ral District Council ond		Municipally Island Pond	owned and o	perated	. Municip . Exploits	ally owne 8 River	ed and opera	ted	
No treatment system.	; water flows by grav	rity to	Water flows to system.	by gravity w	ith chlorination	Water is rination	pumped n to syste	with screeni em.	ing and chlo-	
None			Earth dam a	t Pond	270,000	No data		•••••	•••••••••••	
	1956		1956		1958		1957		1958	
	6,000 g.p.d.		0.40	- 0.60	(Max. 1.50)		No data		0.42	
No major ind	ustrial users	• • • • • • • •	A bottling p water.	lant and a la	(Min. 0.25) aundry use town	No data				
* Springdale	e-South Brook Rural I	District			• • • • • • • • • • • • • • • •	• System	under cor	astruction in	late 1956.	
				C. NOVA SC	οτια					
1051	AMHERST	1056	A	NNAPOLIS F	ROYAL	1051	AN	TIGONISH	1050	
1951	1994	1950	1991	1954	1950	1951	1954	1950	1958	
9,8700	10,000	10,3010	/84C	/60	765a	* 3,196°	4,500	3,592ª	4,500	
0.870	10,000	10 201		1 014	1 015	2 106	4 500	2 502	4.500	
9,870	10,000	10,501		1,014	1,015	5,190	4,500	<u>5,592</u>	4,500	
August 18, 1 Municipally o Public Utili	954; December, 1958 owned and operated b ties Commission	з oy а	August 23, Municipally	owned and c	perated	August Municip	30, 1954; ally owne	d and opera	ted	
In 1954, five wells (600 feet deep) in town and Nappan River, 3 miles distant*			iles distant	Brooks : Clydes	and sprin dale Rive	gs 3½ miles er.*	distant, and			
Well water is pumped to reservoir with- out treatment; river water is pumped from dam with chlorination to reservoir and system.			No treatment; water flows by gravity to system. Springs and brook water, collopen reservoir, flow by grav rination to system. River we with chlorination to system.			lected in vity with chlo- ater is pumped				
Brookdale da	m	.800,000	None			Two ope	n earth r	eservoirs 2,	500 and 1,000	
1954	1958 1958	. 1,500	Not known		<i>.</i>	Oue con	1954	ervoir 19	58	
1.0** (Ma	x. 1.25) 1.5					0.	55 (Max.	0.60) 0.	75	
Major users a enamel plan foundry.	are C.N. Rys., aircra ts, a rolling mill and	ft and l a	Major indus mill.	try in the are	a is a lumber	Major us a colle cent of	ers are (ge. Indus total con	C.N. Rys., a strial use is nsumption.	hospital and about 50 per	
* All wells at Nappan Riv 1958, there are normally ** 99 per cen	te in same water tabl er is a standby supp were 6 wells, but on y used. tt well water	le. ly. In ly 5	* Part of Le	quille, N.S.		* River : season	supply is (2 to 3 r	used only d nonths each	luring the dry year)	

A. ISLAND OF NEWFOUNDLAND - (Concluded)
.

C. NOVA SCOTIA - (Continued)

1					
. BADDECK]]	BIRCH GROV	E
1951	1954	1956	1951	1954	1956
549c	1,500	772d	421¢	500	338d
. 0	0	0	0	0	0
. 549	1,500	772	421	500	3 38
September 1, Municipally of Public Utility	1954	ated by a	July 2, 1954; 2 Owned and ope	1958 erated by the	Dominion Coal
Springs and s	surface run-off	from 23 acres	MacDonald's I	Lake, $\frac{1}{2}$ mile	distant
No treatment; ural filtratio	flows by grav on from reservo	ity with nat- irs to system.	No treatment; and system. charge.	water is pumj Water is supp	ped to standpip lied free of
. Two open ear	th reservoirs.	7,000 and 2,000	Standpipe (wo	od)	30
•	1954	•	<u>1954</u>		1958
The major up	0.075		1.4 (Max. 1	l.8)	0.055
. The major us	er is a creame	.y	. No major mau	striar user .	
			/		
•	CENTREVILL	E		DARTMOUTH	I
1951	1954	1956	1951	1954	1956
. 318°	No data	437d 0	15,037°	20,000 800	21,093d
. 318		437		20,800	
September 1, Municipally of	1954 owned and oper	ated	August 27, 19 Municipally or	54 wned and ope	rated
.Supplied by S North Sydne	Sydney Mines, y, N.S.	N.S. and	Lamont, Topsail and Loon Lakes, 3½ mildistant.*		
. <i>see</i> Sydney M	lines and North	h Sydney	Water is pumped with lime treatment (to ph 7.6 - 7.9) and chlorination to system. Fluoridation was begun in 1956.		
		•••••	Reservoir (eau	rth)	
	1954		1954	<u>i</u>	1958
	0.80		1.4 (Max.	1.8)	2.3
			some Navy e plant. Total cent of pump	stablishments industrial use age.	s and a liquid a s is about 20 pe
* 100 served by North Sydney in 1954 small systems supplyin number of establishme of National Defence. A Woodside, the Imperial and Imperoyal Village Morris Lake. Other lak small systems are Bis Albro Lakes. These su be covered in later rep					re are several lake waters to of the Departm agar refinery at l Co. Ltd. plan supplied from used in these , Anderson and ler systems wil
			De covered li	n later report.	s.
	1951 549c 0 549 September 1, Municipally of Public Utilit Springs and s No treatment; ural filtration Two open ease The major us .	1951 1954 549c 1,500 0 0 549 1,500 September 1, 1954 Municipally owned and oper Public Utilities Commissic Springs and surface run-off No treatment; flows by grav Intervention from reservoirs	Displace 1951 1954 1956 549c 1,500 772d	1951 1954 1956 1951 1951 1954 1956 1951 549c 1,500 772 421 September 1, 1954 1942 1954 1954 Municipally owned and operated by a Public Utilities Commission. July 2, 1954; Owned and operated by a and Steel Co No treatment; flows by gravity with nat- ural filtration from reservoirs to system. No treatment; and system. charge. No treatment; and system. charge. Two open earth reservoirs 7,000 and 2,000 1954 1.4 (Max. J 1951 1954 0.075 1956 The major user is a creamery. No major indu Municipally owned and operated North Sydney, N.S. Municipally owned and operated Municipally owned and operated 1951 September 1,1954 1956 1951 318 437 August 27, 19 Municipally owned and operated Municipally owner and North Sydney Municipally owner and operated Municipally owned and North Sydney 1954 1.4 (Max. 1954 0.80 1.4 (Max. 100 served by North Sydney in 1954 1954 100 served by North Sydney in 1954 1954 100 served by N	195119541956 1951 19541956 0 0 0 0 0 0 249 $1,500$ 772 $421c$ 500 September 1, 1954 0 0 0 0 0 $291bic$ Utilities Commission. 9142 , 1954 ; 1958 Springs and surface run-off from 23 acres 0 No treatment; flows by gravity with natural filtration from reservoirs to system.No treatment; water is pumTwo open earth reservoirs $7,000$ 1954 0.075 The major user is a creamery. $$

d Population according to tenth census of Canada, 1956.

•

			t			1		
В	RIDGETOWN		E	RIDGEWATE	R		CANNING	
1951	1954	1956	1951	1954	1956	1951	1954	1956
1,038°	1,050	1,041d	4,010c	4,000	 4,445d	531	1,000	619d
, -	100	100 (est.	0	0	0	0	0	Ø
	1,150	1,141	4,010	4,000*	4,445	531	1,000*	619
August 23, 195	4		August 21, 19	54		September 9, 1	1954	
Municipally ow	med and oper	ated	Municipally ov Public Utilit	vned and oper ies Commissi	ated by a on.	Municipally or Public Utilit	wned and oper ies Commissio	ated by a on.
Croskill Lake distant.	, spring-fed,	3 miles	Hebbs Lake, 2	2½ miles dista	ant	Springs, 3 miles distant and a brook**, 1½ miles distant.		
No treatment; reservoirs and	water flows b 1 system.	y gravity to	Water is pump system with	ed to reservoi chlorination.	r and then to	No treatment; spring feeds an open reservoir which supplies system by gravity. Brook is pumped from behind a dam to system.		
Two open eart distant	h reservoirs, 22,000 an	½ mile d 1,500	Open reservoir				1,500	
	1954	·	19	954	1958	Not known		
	0.30		0.25 (Ma	x. 0.325)	0.275			
Major users are mill.	e a distillery	and a lumber	Main users are facturing pla	e C.N. Rys., a nt, a woodwor lant.	n engine manu- king plant and	Major industria and a food ma	al users are an anufacturer.	n axe factory
		•••••	* Only about 8 water.	30 per cent se	rved with	* Only about 6 water. ** Brook is a mostly in sum	0 per cent ser reserve supply nmer.	rved with y, used
	DIGBY			DOMINION			DONKIN	<u> </u>
1951	1954	1956	1951	1954	1956	1951	1954	1956
2,047°	2,100	2,145d	3,143¢	3,500	2,964d	1,360¢	1,400	1,197d
	500	·	0	0	0	0	0	0
	2,600		3,143	3,500	2,964	1,360	1,400*	1,197
August 24, 195 Municipally ov Public Utiliti	4 vned and oper es Commissi	rated by a on.	September 2, 1 Municipally o	1954 wned and oper	ated*	September 2, Owned and op Coal and Ste	1954 erated by the el Corp. Ltd.	Dominion
Lily Lake, 3 n run-off (artifi	ules distant cial lake*)	and surface	Purchased fro	m Glace Bay,	N.S.	Spring-fed lake, ½ mile distant (10 m.g. capacity)		
Water from Lily with chlorina	y Lake flows ion, to syste	by gravity, m.	see Glace Bay, N.S			Water is pumped through 1 foot of sand and gravel in bottom of standpipes, through standpipes and thence to syste		
Open reservoir Artificial lake	·		None		•••••	Two standpip	es (wood)	12 (each)
	1954		1954	1956	1958		1954	
	0.120		0.13	0.109	0.08		0.40	
Major industria fish processia and cold stora about 20 per	al users are a ng plant, lum age plant. Inc cent of total	n ice plant, ber mill, dairy lustrial use is consumption.	No data		• • • • • • • • • • • • •	. No major indu	strial users	
* This artifici Lily Lake is	al lake is a r spring-fed.	eserve supply.	*Glace Bay an Corp. Ltd. en pumping.	nd Dominion (ach pay one-h	Coal and Steel alf the cost of	* Only 1,000 water; water i	of population s supplied fre	served with e of charge.
			panipung.					

Population served: In municipality Outside municipality Total Date(s) of survey Ownership	$ \frac{1951}{1,907^{c}} \\ \frac{0!}{1,907} \\ 1954 \dots	$\frac{1956}{1,941d} \\ 0 \\ 1.941*$	
In municipality Outside municipality Total Date(s) of survey Ownership	1,907° 01 1,907 1,907 1954	1,941d 0 1.941*	
Outside municipality Total Date(s) of survey Ownership	<u> </u>	0 1.941*	
Total Date(s) of survey Ownership	$ \frac{1,907}{1954} $	1.941*	
Date(s) of survey Ownership	1954		
		•••••	
Source of supply	see North Sydney, N.	5	A part of metropolitan Halifax.
Treatment	see North Sydney, N.	5	see Halifax, N.S
Storage capacity (thousand gallons) Consumption (average in m.g.d.)	None		
Industrial use	No data		
Remarks:	* In 1954, 150 only s from North Sydney.	erved with water	

C. NOVA SCOTIA - (Continued)

,

									······································		
	GLACE	BAY		GRA	NVILLE FE	RRY	1	HALIFAX,	N.S.		
1951 25,586°	<u>1954</u> 31,500	<u>1956</u> 24,416d	<u>1958</u> 28,000	1951 608°	$\frac{1954}{280}$	1956 376d	1951 85,589°	<u>1954</u> 100,000	1956 93,301d* 1958 105,500		
	 38,550			0 608	0 280	0 376		3,200 103,200	No data		
September Municipall Public Ut	2, 1954; De y owned an tilities Con	ecember, 19 d operated mission	58 by a	September 9,1 Municipally ov	954 wned and ope	rated	August 27, Municipally Public Util	August 27, 1954 Municipally owned and operated by a Public Utilities Commission			
Sand Lake springs an (430 m.g.	, 5 miles d nd a small capacity)	istant, fed watershed	by	Springs and w serve supply	ells, the latte	er being a re-	distant and Spruce Hill Lake -6 mi distant. The former lakes supply we for low elevations of city; Spruce I Lake supplies the high elevations the city. Big Indian Lake is an em- gency supply not used since 1947.				
Water flow reservoir with chlor	s by gravit; (dam) from rination to	y via brook which it is system.	to pumped	No treatment; system; pum	water flows ps are availa	by gravity to ble if needed.	Waters are intakes un 6.9 to 7.2, fluoride** system by used on lo Robie pum Lake wate to augmen the bigh l	lime-treate der automa chlorinate (1p.p.m.to gravity. Bo w level sy ping statio rs are pum t Spruce H evel system	d (av. 6.27 ppm) at the pH control to p ed and treated with tal) and supplied to boster pumps are stems and at the on. Long and Chain ped into reservoir ill Lake supply for n ***		
Reservoir (<i>see als</i> o 1 19	eservoir (dam)1,300 <i>ee als</i> o Reserve Mines) 1954 1958			Open earth re Unknown	servoir	200	Concrete reservoir 3,640 Elevated tank 50 1954 1958				
1.	38	3.17†		r.			3.79 - Sprud 5.93 - Long	e Hill Lak and Chair	ce 9.98 1 Lakes 75)		
The major industrial users are a fish processing plant and coal mines using in 1954 about 46 per cent of total pumpage of 3.0 to 3.8 m.g.d.			a fish es using tal	No major industrial users			Major industrial users are C.N. Rys.; shipyards; fish plants; ice storage plants; beverage plants; shipping; a candy factory. Most industrial use, which is 50 per cent of total pumpag is from Long and Chain Lakes, i.e. t low level system.				
*Reserve M outside G † Glace B Dominio Reserve	lines, Domin lace Bay c ay - 2.96 m on - 0.109 n Mines - 0.	nion and 256 ity limits .g.d. n.g.d. 101 m.g.d.) persons				* Metropoli mouth, Ari Eastern Pi etc. had a 1956. ** Fluorida *** See als September	tan Halifax ndale, Fain assage, Imp population tion starte so Municipa , 1953, p.	x, including Dart- rview, Cole Harbou peroyal, Bedford, h of 164,200 in d in late 1956. al Utilities 23.		

C	NOVA	sco	TIA	· (Con	tinued
 ······					

.

	C. NOVA SCOTIA	- (Continued)				
Municipality	HANTSB	ORDER]	HANTSPORT	i	
Population served:			1951	1954	1956	
In municipality Outside municipality			1,131c	1,300 500*	1,298d No data	
Total				1,800		
Date(s) of survey Ownership Source of supply	see Hants	sport	August 20, 19 Municipally ov Davison Lake artesian well	54 wned and ope (8 miles dist s	rated ant) and two	
Treatment	•••••		No treatment; to reservoir a pumped to lan	lake water fl and system. W rge reservoir.	ows by gravity /ells are **	
Storage capacity (thousand gallons)			Open reservoi Open stone re (not	r servoir in use)		
Consumption (average in m.g.d.)			$\frac{1954}{0.10}$			
Industrial use			The main industrial users are lumber paper mills, a gypsum company, car and candy factories and a pressed f company. Industrial use is estimate about 20 per cent of total pumpage.			
Remarks:			 * Hantsborder ** Only one well is normally used and the water supply is usually 60 per ce lake, 40 per cent well water. 			
Municipality	LEQU	ILLE		LIVERPOOL		
Population served:	1951	1956	1951	1954	1956	
In municipality Outside municipality	476c 0	481d 0	3,535c 0	4,000	3,500d 0	
Total	476	481*	3,535*	4,000*	3,500*	
Date(s) of survey Ownership Source of supply	Supplied partly from	Annapolis Royal	August 23, 1954 Municipally owned and operated Spring-fed lake in mountains, 3 miles distant			
Treatment	 • • • • • • • • • • • • • • • • • • •		Water flows by chlorination	y gravity to s ½ mile from 1	ystem with ake.	
Storage capacity (thousand gallons) Consumption (average in m.g.d.)			None but lake	1954 0.50	163,000	
Industrial use	· · · · · · · · · · · · · · · · · · ·		Major industri ing plant, sto bottling plant use is estima pumpage.	al users are a eel and engin t and a dairy, ated at 33 per	a fish process- e mfg., a . Industrial r cent of total	
Remarks:	* Not all served wit 1954.	h water: only 248 in	* Town popula cent served v	ation is only with water.	about 90 per	
^c Population according to ninth census of d Population according to tenth census of	Canada, 1951. Canada, 1956.					

I	NVERNESS		k	CENTVILLE		LAW	RENCETOWN	1		
1951	1954	1956	1951	1954	1956	1951 .	1954	1956		
2,360c	2,300	2,026d	4,240c	4,200	4,937d	689c	800	787d		
0	0	0		1,300*	·	0	0	0		
2,360	2,300	2,026		5,500		689	800	787		
August 31, 195	4		August 20, 19	54		August 21, 195	August 21, 1954			
Springs, 2 ¹ / ₂ mil	les distant .	ated	Municipality ov Magee Lake a distant	nd Mill Brook	, 7 miles	Springs and surface run-off. A well is a standby supply.*				
No treatment; s reservoirs, flo	pring water ws by gravit	collected in y to system.	Lake water flo alum-and lime sand-filtered ment, then by systems with	ws by gravity e-treated, sett (2),additional gravity to rese chlorination a	to plant, cled, rapid l lime treat- rvoirs and treservoirs.**	No treatment; water from surface run- off and springs, collected behind dam, flows by gravity to system.				
Two earth rese	rvoirs1	,000 and 750	Two earth rest Two open con reser	ervoirs2,00 crete rvoirs	00 and 1,000 1,000 each	Dam reservoir		600		
Not known			1954	Lank	1958	19	54			
The main inductrial years are the C N			0.575 (Ma	.x. 0.60)	0.650	0.	10 (est.)			
The main indus Rys. and coal estimated at 2	strial users a mines.Indu: per cent o	re the C.N. strialuse is f total use.	The major indus a food plant, perimental st 50 per cent o	strial users an army camp an ation, all usi of the total co	e C.P. Ry., nd an ex- ng about nsumption.	No major industrial users				
			* Aldershot a. torium; see a No. 12. ** Fluoridatio	rmy camp and Iso Water Sur on was begun	a sana- vey Report in 1956.	* This reserve seldom used.	e well supply	is very		
L	OUISBURG	· · · · · · · · · · · · · · · · · · ·		LUNENBURG		M	HONE BAY			
1951	1954	1956	1951	1954	1956	1951	1954	1956		
1,120°	1,200	1,314d	2,816°	2,800	2,859d	1,019c	1,019	1, 109d		
0	0	0	100	150	150	0	0	0		
1,120	1,200	1,314	2,916	2,950*	3,009*	1,019	1,019*	1,109*		
September 3, 1 Municipally ow Kelly Lake, 3	954 med and ope miles distan	rated t*	December, 199 Municipally o Cantelope Lal	51 and Augus wned and ope ke, 3 miles di	t 25, 1954 rated stant	August 21, 19 Municipally or Oakland Lake	54 wned and open , $1\frac{1}{4}$ miles dis	ated		
Water, chlorina gravity to sys	ated at lake, tem.	flows by	No treatment; voir and syst	water is pum tem.**	ped to reser-	Water from spr with chlorina	ring-fed lake i tion to reserv	s pumped oir and		
None	<u>1954</u>	•••••	Open earth re 1951	servoir 1		Open rock res	ervoir 954	3,000		
The only large i	(Max. 0.15)	reares fish	0.24	0.26	(Max. 0.30)	0	.074			
processing pla and Steel Corp about 15 per c	ant, and the D Ltd. Indus ent of total	ominion Coal strial use is pumpage.	Rys., fisheri yard. In 1954 mated at 44	ustrial users les, a foundry i industrial us per cent of to	are the C.N. and a ship- se is esti- tal use.	No major indu building plan (6,000 g.p.m	strial user. A nt has its own . capacity).	boat well		
* Gull, Peter, Lakes can be give a total s	Morrison and joi ned to K upply of 8 m	Stewart elly Lake to .g.d.	 * Town population is about 97 per cent served with water. ** Chlorination was started during 1957-58. 			* Town population is about 50 per cent served with water.				

>

	<u></u>						
Municipality	1	MIDDLETON			MULGR AVE		
Population served:	1951	1954	1956	1951	1954	1956	
In municipality	1,506°	1,800	1,769 ^d	1,212¢	1,000	1,227 ^d	
Outside municipality	0	0	0	0	0	0	
Tot al	1,506	1,800	1,769	1,212	1,000*	1,227	
Date(s) of survey Ownership	August 21, 195 Municipally ow	vned and open	rated	August 31, 19 Owned and op Railways Lt	954 perated by Can :d.	adian National	
Source of supply	Lily Lake, 2 m	niles distant'	•	Chain-of-Lak miles distar	es Brook, spri nt ,	ng-fed, 4 to 5	
Treatment	Water from dan by gravity, w voir and syst	n on spring-fe ith chlorinati em.	ed lake flows ion, to reser-	No treatment; hypochlorite brook to res	except chlorin ; water flows ervoir and sys	ation (sodium by gravity via tem.	
Storage capacity (thousand gallons)	Open reservoir		500	Open earth re	eservoir (dam)	1,000	
Consumption (average in m.g.d.)	1954		1958		1954		
Industtial use	0.200 The main indu and an apple	strial users processing p	0.18) are a cannery Dlant.	The major ind and shippin per cent of	dustrial users g; they togethe total water use	are C.N. Rys., er use over 95 ed.	
Remarks:	* There is one very seldom	e standby we used.	ll which is	* Only 20 pe with water i	r cent of popul n 1954.	ation served	
Municipality		OXFORD			PARRSBORG	 >	
Population served:	1951	1954	1956	1951	1954	1956	
In municipality	1,466c	1,400	1,545d	1,906¢	2,000	1.849d	
Outside municipality	0	0	0	. 0	0	0	
Total	1,466	1,400	1,545	1,906	2,000	1,849	
Date(s) of survey Ownership	September 10, Municipally ov	1954; 1958 . wned and ope	rated	August 19, 1 Municipally o	954 owned and oper	ráted	
Source of supply	Three deep we	ells.*	••••••••••••	Streams and	spring, 4½ mi	les distant	
Treatment	No treatment; spring water voir and syst	well water is flows by grav em.	s pumped, vity, to reser-	Water flows h system. Spr	by gravity with ing water may	chlorination to also be pumped	
Storage capacity (thousand gallons)	Two open eart	h reservoirs	400 and 300	Two reservoi	rs	3,000 (total)	
Consumption (average in m.g.d.)		1954 0.085		No data	• • • • • • • • • • • • • •	•••••••••••••	
Industrial use	The main indu a furniture fa woollen mills ted at 13 per	strial users ctory, a crea Industrial u cent of total	are a foundry, mery and se is estima- pumpage.	No data		•••••	
Remarks:	*In 1958 suppl time to time 1 from Philip R	ly was suppl by springs ar iver.	emented from nd by pumpage				
^c Population according to ninth census of ^d Population according to tenth census of	 Canada, 1951. Canada, 1956.						

			• · · · · · · · · · · · · · · · · · · ·			·			
NE	W GLASGOW		NE	W WATERFO	RD	NO	RTH SYDNEY	7	
1951	1954	1956	1951	1954	1956	1951	19 5 4	1956	
9,933c	10,000	9,998d	10,423°	10,000	10,381d	7,354°	7,500	8,125d	
	150	No data		4,000*	No data		7,850*	No data	
	10,150			14,000			15,350		
September 7, 19 Municipally own	954 ned and opera		September 3, 1 Owned and ope Utilities Co. Eastern Light	954 rated by the Ltd., a subsi and Power (Dominion diary of the Co. Ltd.	September 1, 1 Municipally ov	954 vned and oper	ated	
Forbes Lake, 6 springs and a	miles distan small watersl	t fed by ned.*	Waterford Lake into Waterford from Seaboard ford Lake.	; Killkenny I Lake. Water Power Corp	Lake is pumped is purchased . Ltd. at Water-	Potter's Lake, ¾ mile distant			
Water flows by with chlorinat In 1958 fluori being planned	gravity to the ion and thence dation of the •	e reservoir to system. water was	Water is pumpe standpipe and	d with chlori system.	nation to	Water from spring-fed lake is pumped with chlorination to reservoir and system.			
Open earth rese	ervoir 1954	2 , 000	Standpipe	1954	300	Open rock reservoir2;000 1954			
2.03	3 (Max. 2.48)		1	.18 (Max. 1.	3)	2.2	2 (Max. 2.4)	.1. 0	
The major indu companies, C. Trenton Car C paint plant, a dustrial use i pumpage.	strial users a N.Rys., a con Co., a woodwo nd a beverage s about 40 pe	re two steel ncrete plant, rking and plant. In- r cent of	The major industrial use, 31 per cent of total pumpage, is by three coal mines. N. Rys., a medicinal oil cold storage plant and a railway.					re the C. lant, a arine	
* Two small lakes also in watershed. In an emergency, Stellarton can supply low-lying areas of New Glasgow.			* Includes New population.	v Victoria - 1	,000	* Includes Flo Centreville (Sydney Mines Sydney Mines plies Centrev	prence (150 pc 100 population s (7,600 popul s buys water a ville.	opulation) n) and ation). nnd sup-	
	PICTOU		P	ORT WILLIA	MS	RES	SERVE MINES	3	
1951	1954	1956	1951	1954	1956	(DISTRIC 1951	UT OF RESEL	3VE) 1956	
4.259c	4 260	4 564d	6569	800	805d	2 8170	3 300	2 780d	
0	4,200 0	4,504 0	0	0	0	0	0,500	2,7894	
4,259	4,260*	4,564	656	800*	805**	2,817	3,300	2,789	
September 8, 1	954		September 9. 1			September 2.	1954		
Municipally ow	ned and opera	ated	Owned and operated by Mrs. Harvey			Glace Bay and Dominion Coal and Steel Corp. Ltd. each pay one half the cost of pumping.			
13 artesian wel wells in town	lls, 2 miles d	istant; 2	Springs and on	e deep well.	•••••	Supplied by G	lace Bay, N.S		
Water from well chlorinated (N standpipe and	ls, except 2 i laOCl) and pu system.	n town, is mped to	No treatment; tem or reservo reservoir; wat reservoir to s	well water is bir. Springs a ter flows by y ystem.	pumped to sys- lso feed the gravity from	<i>see</i> Glace Bay	y, N.S	• • • • • • • • • •	
Standpipe		500	Open teservoit	••••••••••	1,000	Standpipe		90	
0.25	<u>1954</u> (Max. 0.325)		Not known	••••••		$\frac{1954}{0.107}$	1950 0.10	5	
The main indus a canning fact pany and ship use is about 3 sumption.	strial users ar tory, a biscui yards. Total b per cent of t	e C.N. Rys., t mfg. com- industrial total con-	The two main to packing plant	users are a n and shipping	neat and fish g.	No data			
*Only about 95 water.	per cent serv	red with	*Only about 50 water. ** Presumably water.) per cent ser only partly s	rved with served with				

	C. NOVA SCOTIA (Continued)						
Municipality	S	PRINGHILL*			STELLA	RTON	
Population served:	1951	1954	1956	1951	1954	1956	1958
In municipality	7,138¢	7,500	7,348 ^d	5,575°	6,000	5,445 ^d	5,600
Outside municipality	0	0	0	0	0	0	0
Total	7,138	7,500	7,:348	5,575	6,000	5,445	5,600
Date(s) of survey Ownership	August 18, 19 Municipally o	954 wned and opera	ated	September 8 Municipally	, 1954 owned and	d operated	
Source of supply Treatment	Springs, 7½ m No treatment; spring-fed, fl pipe and sys	iles distant water from bel lows by gravity tem.	nind dam, v to stand-	East River, Water is pur tion to res gravel filte	½ mile ab nped from ervoir and er was use	ove town . river with system. Ir d.	chlorina- n 1958 a
Storage capacity (thousand gallons)	Standpipe	•••••	155	Open reserv	oir	•••••	1,500
Consumption (average in m.g.d.)		1954		1954		1958	
	·	0.34 (Max. 0.)	375)	0.750) 	1.0	- N. D
Industrial use	dairy, using consumption	about 5 per cen.	nt of total	a coal min County Ho per cent of	ndustrial u e, lumber i ne. Indust total pum	nsers are (mill, dairie rial use is page.	about 50
Remarks:	* A shut dowr creased the t water use in	* A shut down of mines in 1958-59 de- creased the town population and water use in this community.					es part of
Municipality		TRURO			WESTV	ILLE	
Population served:	1951	1954	1956	1951	195	4	1956
In municipality	10,756c	10,000	12,250d	4,301	4,3	00	4,247 ^d
Outside municipality	0	0	0	0		0	0
Total	10,756	10,000*	12,250	4,301	4,3	00*	4,247
Date(s) of survey	August 19,19	54		September 8	, 1954		
Ownership	Municipally o	wned and oper	ated	. Municipally owned and operated			
Source of supply	Lepper Brook artesian wel	, 1½ miles dist Is and Salmon	tant; four River.**	Middle River in town and three artesian wells, 3 miles distant.			
Treatment	Water from da fed) is chlor by gravity. W	m on Lepper B inated and flow Vell water is n	rook (spring- vs to system ot treated.	g-River water, naturally-filtered through sand and gravel (changed yearly) is pumped to reservoir and system. Wells also supply the reservoir by gravity.**			hrough ly) is n. Wells avity.**
Storage capacity (thousand gallons)	Reservoir (ea	rth dam)	100,000	Open rock r	eservoir .		. 1,500
Consumption (average in m.g.d.)	,	1954 1.3 (Max. 1.5)			$\frac{1954}{0.140}$		
Industrial use	The main ind Rys., a wood plants and a about 50 per	ustrial users a d working plan creamery, tog cent of total o	re C.N. t, textile ether using consumption.	The only m Industrial cent of tot	ajor indust use is est al consum	try is a co imated at ption.	al mine. 20 per
Remarks:	*About 85 per ** Artesian w not used sin an additiona	*About 85 per cent served with water ** Artesian wells are a standby supply, not used since 1952. Salmon River is an additional emergency supply.					:vey.
^C Population according to ninth census of ^d Population according to tenth census of	Canada, 1951 Canada, 1956	:					

			C. NO 71 0C		taged)		·····		
	SYDNEY		SY	DNEY MINES		ר	RENTON		
1951	1954	1956	1951	1954	1956	1951	1954	1956	
31,317°	35,000	32,162d	8,410c	8,600	8,731d	3,0890	3,200	3,240d	
0	0	0		No data	No data*	0	0	0	
31,317	35,000*	32,162*				3,089	3,200*	3,240	
September 3, 19 Municipally own	954 ned and oper	ated	August, 1954 Municipally ow Purchased from	ned and opera	ated	September 7, 1954 Municipally owned and operated			
Water is pumpe chlorinated at is treated with	d from lake to d thence to h CuSO ₄ in s	to reservoir, system. Lake ummer.	see North Sydr	ney, N.S	y, N.S	No treatment; each well is pumped alter- natively to system.			
One reservoir (dam)	200,000	Reservoir	•••••	1,200	Open concrete	reservoir	1,000	
4	1954 4.16 (Max. 5.	0)	<u>1956</u> 0.850			$\frac{1}{0}$	954 .233		
The main indus Rys., using al age.	trial user is bout 5 per ce	the C.N. ent of pump-	Industrial use per cent of to	is estimated tal use.	at about 41	The only majo age plant. In cent of total	r industrial us dustrial use is pumpage.**	er is a bever about 3 per	
* About 95 per ** Dumeresq L about 2,300 ac	cent served ake feeds Mi cres in size.	with water iddle Lake,	* Supplies Cer 1954.	ntreville, abou	nt 100 in	* About 90 per ** Municipalit tectionto a st and a steam j	r cent served y also supplie eel works, Eas plant.	with water. s fire pro- stern Car Co.,	
WINDSOR				WOLFVILLE			YARMOUTH		
1951	1954	1956	1951	1954	1956	1951	1954	1956	
3,439°	3,500	3,651d	2,313c	2,300	2,497d	8,106°	7,000	8,095d	
No data	100	110(est	.) 0	0	0	0	0	0	
	3,600	3,761	2,313	2,300*	2,497*	8,106	7,000*	8,095	
August 20, 195	4		August 20, 19	54; 1955		August 24, 19	54		
Municipally ow	med and ope	rated	. Municipally owned and operated			Municipally or	wned and oper	at ed	
Mill Lake, 6 m	iles distant	•••••	Streams and artificial lake in South			Lake George, 8½ miles distant			
Lake, fed by s flows by grav system.	prings and s ity with chlo	urface run-off, prination to	Noticeating, I integration to the second			Lake, fed by run-off, flows by gravity with chlorination at town limits.**			
Open concrete	reservoir	5,000	Two reservoir	s6,00	0 and 7,000	Open earth re	servoir		
1	1954			1954			1954	-	
0.58 (1	Max. 0.65)		0.3	50 (est.)		The main indu	0.4/ (Max. 0.)	U)	
a gypsum plan textile plants cent of total	nt, and fertil s. These use consumption	are C.P. Ry., lizer and about 10 per	., The main industrial users are a wood- working plant and an apple processing plant.			The main industrial users are C.N. Rys C.P. Ry., a fish processing plant, a creamery, a beverage plant, a cold storage plant and a cotton mill. Indus- trial use is about 27 per cent of total pumpage.			
			*About 750 st for ¾ of the ** In 1955 mu m.g. reservo tion; fluorida planned.	udents are al: year. nicipality wa ir and beginni ation of the wa	so supplied s adding a 5 ng chlorina- ater is also	* 95 per cent ** In 1958 pH addition.	served with w I was controlle	ater ed by lime	
									

C. NOVA SCOTIA - (Concluded)

D.NEW BRUNSWICK

	D.NEW	BRUNSWICK	•				
Municipality		ALBERT		, ,,,,,,,, _	ANDOVER		
Population served:		1955		1951	1954	1956	
In municipality		300		851c	775	827d	
Outside municipality		0		0	0	0	
Total		300		851	775	827	
Date(s) of survey Ownership	March 30, 1955 Municipally own	ned and opera	ated	August 1, 1954 Municipally ow Utilities Com	í vned; operated mission.	l by a Public	
Source of supply	Several springs No treatment; w gravity to cond tem.	s vater is suppl crete reservo	ied by ir and sys -	Brook and spri Water flows by dam with chlo chlorite).	ngs, 1½ miles gravity to sy prination (sod	s from town stem from ium hypo-	
Storage capacity (thousand gallons)	Concrete reserv	70ir	500	Dam1,000			
Consumption (average in m.g.d.)	Not known	• • • • • • • • • • • •		<u>1954</u> 0.050 (est.)			
Industrial use	No major indust	trial users .		No major industrial users			
Remarks:							
Municipality	CA	MPBELLTO	N	 	СНАТНАМ		
Population served:	1951	1954	1956	1951	1954	1956	
In municipality Outside municipality	7,754°	8,500 150	8,389d No data	5,223°	5,200 0	6,332d 0	
Total	l	8,650		5,223	5,200	6,332	
Date(s) of survey Ownership Source of supply	September 15, Municipally ow Surface run-off	1954 ned and oper (impounding	ated reservoirs)	August 17, 1954 Municipally owned and operated) Three deep wells; two only in use*			
Treatment	Water from imposed by gravity to	ounding researcy system with a	rvoirs flows chlorination.	No treatment; pipe and sys	water is pump tem.	ped to stand-	
Storage capacity (thousand gallons)	Four open eart 5,000, 100,00	h reservoirs . 00, 125,000 a	nd 340,000	Standpipe	• • • • • • • • • • • • • • • •	420	
Consumption (average in m.g.d.)		<u>1954</u> 1.3 (Max. 1.	5)		$\begin{array}{c} 1954\\ \hline (Max. \ 0.52\\ (Min. \ 0.35\end{array}$	5) 8)	
Industrial use	Major industria a beverage pla the C.N. Rys. estimated at 8 age.	l users are a ant, dairies, h Industrial u per cent of	lumber mill, ospitals and se in 1954 is total pump-	Major industri beverage pla about 5 per c	al users are a nt and lumber ent of total p	foundry, mill using umpage.	
Remarks:				* Reserve sup a brook. The pected to be	oply is from ol third and nev in operation i	ld wells and v well is ex- in 1955.	
c Population according to ninth census of d Population according to tenth census of	Canada, 1951. Canada, 1956.						

D.NEW BRUNSWICK - (Continued)	

A	THOLVILLE			ВАТН			BATHURST		
1951	1955	1956	1951	1954	1956	1951	1954	1956	
2,185°	3,000	2,275d	756°	1,000	895d	4,453c	4,400	5.267d	
0	0	0	0		0	No data	800	400	
2,185	3,000	2,275	756	1,000	895		5,200	5,667	
January 19, 19 Municipally ov	vned and operate		August 9, 1954 Municipally ow	i ned and oper	ated	September 14, 1 Municipally ow	1954; May 31, ned and opera	, 1957 ated	
Artesian well, No treatment; to system.	47 feet deep . water flows by g	gravity	Springs and sur No treatment; y from dam in hi	rface run-off water flows b ills, one mile	y gravity from town.	Carter's Brook and Middle River Carter's Brook, fed by springs, is pumped to standpipe and system with chlorina- tion. Middle River is pumped into Carter's			
One reservoir		300	Reservoir (eart	h dam)	1,000	One standpipe Two open earth	n reservoirs • 3.000	and 40,000	
	$\frac{1954}{0.084}$		Not known			1954 0.70 Plant capacity	0.6 (- 1.5mgd. (1956 Min. 0.5) Max. 1.0)	
No data			No data		•••••	Main industrial a creamery, C paper plant and per cent of pum	users are ma .N. Rys., a pu l shipping. In page was use	chine shops, ulp and 1956 about 20 ed industrially.	
		••••••				In 1956 the Uni own well. Midd about once evo increase after from the Nipis considered.	versity starte dle River sup ery two years 1957. An ind iquit River is	d using its ply is used but use will ustrial pipeline also being	
	CLAIR				DALHO	USIE			
	1955		1951		1954	4	1956		
	No data*		4,939	c	5,00	 0*	5,468d		
			0	l 	 ,	0	0		
			4,939)	5,00	0	5,468		
March 23, 1955 Clair Water Co. Thompson Lake	. Ltd e	• • • • • • • • • •	September 14, Municipally ow Charlo Lake, 9 A well is a st	1954 ned and oper miles distan andby supply	ated† at; spring-fed l	brook (McNeish'	s Dam), 2 mile	es distant.**	
No treatment; w small system.	water flows by g	ravity to	Charlo Lake is system. Brook to town pumph	gravity-fed t is gravity-fe louse.	o the paper m ed from behind	ill where it is c McNeish's Dam	hl orinated an with chloring	d pumped to ation (NaOCl)	
One concrete d	am	50	Standpipe Open earth rese	 ervoir	•••••••••••			425	
	1954		^	1954		1958		1,900	
6,000 g.p.	d. (Max. 9,000 g d. (Min. 3,000 g	g.p.d.) g.p.d.)	1	Domestic - (Industrial - 1	0.25 5 5 25	0.30			
No major indus	trial users		The only indus	trial user is	a paper comp	any, using 98.5	per cent of p	umpage.	
							-		
* Probably abo	ut 100 served		*About 98 per o †System is part	ent served w ly owned by	vith water. the New Bruns	swick Internatio	nal Paper Co		
		ŗ	**About 60 per used.	cent Charlo	Lake and 40 p	er cent McNeish	Damwater is	s normally	

,

Municipality		DIEPPE			EDMU	NDSTON	
Population served:	1951	1954	1956	1951	1954	1956	1958
In municipality	3,402°	4,500	3,876 ^d	10,753¢	11,450	11,997	12,000
Outside municipality	0	0	0	0	0	0	500
Total	3,402	4,500	3,876	10,753	11,450	11,997	12,500
Date(s) of survey	1954			Aug. 6, 19	954; June,	1958; Ap	ril 28, 1959
Ownership Source of supply	Municipally Purchased f	owned and ope rom Moncton, 1	rated	In 1954 th River; in In late 19 River val In 1954 nd enters pi pipe and waska H chlorinat 1959 dire	If owned iree wells 1958 and 259 three lley used. o treatmen umphouse system. 1 liver was tion. New ect to sys	and operat on bank of 1959 Mada wells in lu t; water fi and is pu During 195 pumped to wells pun tem with r	of Madawaska waska River; coquois com wells mped to stand- i8-59 Mada- o system with oped in late no treatment.
Storage capacity (thousand gallons)				Two stan	dpipes	••••••	500 and 875
Consumption (average in m.g.d.)					1954		1958
				1.0	(Max. 1.2 (Min. 0.9) 95)	1.5
Industrial use				Major ind company a shirt f cent of t	ustrial us , the C.N actory, us the total p	ers are a j . Rys. and ing in 195 oumpage.	pulp and paper I C.P. Ry., and 14 about 30 per
Municipality		GRAND FALL	LS		HAR	TLAND	
Population served:	1951	1954	1956	1951	<u>1</u> ;	954	$\frac{1956}{1}$
In municipality	2,365°	2,400 0	3,672d1	1,000	- 1,0	000	1,022d 0
	$\frac{-1}{2.365}$	2.400	3.672	1,000		000	1,022
Date(s) of survey Ownership	August 6, 1 Municipally	.954; 1957 owned and op	erated	August 9 Municipa	, 1954 11y owned	and opera	
Source of supply	In 1954, a l	brook and Littl	e River. In	Springs n	ear Saint	John Rive	£
Treatment	No treatmen by gravity tem. Little rinated (se	nt on brook wat from dam rese River is pump odium hypochlo	er which flows rvoir to sys- ped and chlo- rite).	No treatr reservoi	nent; wate ir and flov	r pumped vs by grav	from spring to ity to town.
Storage capacity (thousand gallons)	Dam		2,000	One conc	rete reser	voir	
Consumption (average in m.g.d.)	19	54	1957		1	.954	
Industrial use	0.25 () No industri	Max. 0.30) al users	0.40	Major ind plant an	0. lustrial us id starch f ed at 33 IV	.15 Sers are a factory, In	potato chip dustrial use total pumpage.
Remarks:	* Little Ri Replacem water was	ver is a supple ent of surface being conside	mentary supply water with well red in 1957 -5 8.		·····		
c Population according to ninth census of d Population according to tenth census of † Boundary change since 1951.	Canada, 19 Canada, 19	51. 56.					

D. NEW BRUNSWICK - (Continued)

.

			D. NEW BRU	NSWICK - (Co	ontinued)				
	FAIRVILLE				FREDE	RICTON			
1951	1950	5	1951	1954	1	956	1958	В	1959
406c	1,193	d	16,018¢	16,000	18	3,303d	18,00	_ DO	18,016
0	0)	0	0		0		0	0
406	1,193	<u>.</u>	16,018	16,000	18	3,303	18,0	00	18,016*
Included in L	ancaster, N.B	••••	August 12, 195 Municipally ow In 1954, Saint	4; August 31, ned and opera John River and	1957; July, ted d two wells.	1958; Augu In 1956 th	ist, 1959 tee wells w	ith river v	water as
see Lancaste N.B.	r, N.B. and Saint	John,	supplementary 6 test wells d In 1954, river v basins (alum)	v or standby su rilled, of whic water was pum , rapid sand-fi	pply." In 19 th at least of ped with chl ltered (5), p	orination from the second seco	9 five well used. rom intake ated, lime a	ls.** In la well to co added to c	te 1959, pagulating control pH
			to 7.0 to 7.4, voirs and then pumped to res wells on the s treated, chlor side (3) are pum	and repumped nee to system ervoirs and th south side (2) inated and rep mped with peri	to reservoir by gravity w ence by grav are pumped umped to res odic chlorin	s and syste vith no treat vity with cl with aerati servoir and nation to re	em. Wells w tment. In 19 nlorination on into clea system. We servoirs an	vere pumpe 956, wells to system ar well, li ells on the d system.	ed to reser- were In 1959, me north 300
			3 covered conc 2 open concret In 1958, an add	rete reservoirs e reservoirs . litional reserv	s oir			35, 100 an 190	and 230 1,000
•••••••	•••••	••••	$\frac{1954}{11-9}$	1956	$\frac{19}{1}$	58	<u>1959</u> A	$\frac{Max}{10}$. <u>Min.</u>
			river 1.3	1.0) (Max	, 1.2) 1.	.) 5 1	north side (0.25 0.3	0.2
			Plant capacity	(1959) -3.3 m	.g.d. + 1.5 m (origin	n.g.d. nal filter pl	ant)	1.65 2.1	1.2
• • • • • • • • • • • • • • •	•••••	•••••	Major industria and apple and	l users are da potato factor	iries, cold s ies.	storage, bev	verage plan	ts, air-con	ıditioning,
			* Only about ** In 1954 rive of city; wells In 1956, one v 1959 twograve Saint John Ri the city north John River wa Bridge St.well	17,500 served sr water suppli- supplied 4,00 well supplied (el-wall wells (ver and 3 dril of the Saint J ter, remains lis expected to	with water. ied 11,000 or 0 or 100 per south side a 149 and 225 f led rock wel ohn River. J as a standb oreplace Kill	r 90 per ce cent of po nd two sup eet deep) si ls (200, 30 The origina y supply fo arney and]	nt of popula pulation on plied north upplied the 0 and 400 f 1 filtration r the city s Range wells	ation on s north sid side. In 1 city south eet deep) plant, usi south of th s on the n	outh side e of city. 958 and of the supplied ng Saint he river. orth side.
	LANCASTER		N	ARYSVILLE			MILLT	OWN	
1951 12,320¢*	<u>1954</u> 12,000	1956 12,371d	1951 2,152¢	<u>1954</u> 2,200	1956 2,539d	1951 2,267°	$\frac{1954}{2,250}$	<u>1956</u> 1,975d	<u>1958</u> 2,250
Q	No data	2,244*	0	0	0	0	0	0	0
12,320		14,615	2,152	2,200	2,539	2,267	2,250	1,975	2,250
1954-1956 Municipally c	owned and operate	d	August 13, 195 Municipally ow	4 ned and opera	ted	August 10 Calais Wat), 1954 ter and Pov	ver Co., C	alais,

.

.

	LANCASTED								
	LANCASIER				MILL	IOWN			
1951	1954	1956	1951	1954	1956	1951	1954	1956	1958
12,320¢*	12,000	12,371d	2,152°	2,200	2,539d	2,267°	2,250	1,975d	2,250
0	No data	2,244*	0	0	0	0	0	0	0
12,320		14,615	2,152	2,200	2,539	2,267	2,250	1,975	2,250
1954-1956 Municipally o	wned and operat	ed	August 13, 19 Municipally o	August 10, 1954 Calais Water and Power Co., Calais, Maine U.S.A. and municipality					
Spruce Lake	water from Saint	John,	Two wells	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • •	Purchased	d from St.	Stephen, N	.́В.*
Distribution a Saint John.	and treatment by	city of	No treatment; water pumped to elevated see St. Stephen, N.B tank and system.						
<i>see</i> Saint Joh	n, N.B	• • • • • • • • • • •	Elevated tan	One reservoir in Milltown2,0					
				1956					
···· <i>·</i> ·····		• • • • • • • • • •	No major ind	0.11 (Max. 0 ustrial users).125)	A textile purposes	0.25 mill uses	this water	for domestic
* Parish ** Well suppl	y in reserve		Can. Cottons Ltd. previously used town water and water from a nearby brook but this plant was not operating at time of survey.				rgency sup River thr Maine, U.S and chlorin	pply is ava ough a filto .A. where nated.	ilable from er plant in water is

DESCRIPTION OF MUNICIPAL WATER SUPPLIES

	D. NEW BRUNS	SWICK – (C	ontinued)						
Municipality			MONC	TON					
Population served:	1951	<u>.</u>	1954	1956	195	8			
In municipality	27,33	4c	32,000	36,003 ^d	40,	000			
Outside municipality	17,94	49	7,000*	14,015	No	data			
Total	45,28	33**	39,000	50,018 **					
Date(s) of survey Ownership	August 17, 195 Municipally ow	4 ned and ope	erated						
Source of supply Treatment	Surface run-off in reservoirs, 4 miles distant. Reserve supply is 7 wells Water from impounding reservoirs flows by gravity to city pumphouse where it i pumped with chlorination to system. Wells are pumped direct to system. Two impounding reservoirs (Irishtown and McLaughlin)1,300,000 (total)								
Consumption (average in m.g.d.)	1 . o mpounding	5 reber tom	1954		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(/			
	4.6 (Max. 5.2; Min. 3.8)								
Industrial use	The major indu C.N. Rys., us	strial users ing about 2	are a meat pac 0 per cent of to	cking plant, a l stal pumpage.	viscuit factor	y and the			
Remarks:	* Served in Sun established or study of devel ** Not all serv of Cloverdale	ny Brae an riginally in lopment of f ed with wat and Moncto	d Dieppe who p 1878. In 1953- I'urtle Creek as ter; includes to on.	ourchase water 54, because of another sourc wns of Dieppe	from Moncton water shorta e was carried Sunny Brae	. System ges, a out. and parishes			
Municipality	PL	ASTER ROO	CK	I	OTHESAY*				
Population served:	1951	1954	1956	1951	1954	1956			
In municipality	1,368°	1,500	1,403 ^d	896°	900	802 ^d			
Outside municipality	0	0	0		0				
Total	1,368	1,500	1,403	896	900**	802			
Date(s) of survey Ownership	August 7, 1954 Municipally ow	ned and op	erated	August 14, 195 Municipally ov	74 ned and oper	ated			
Source of supply Treatment	Tobique River Water is pumpe tion(sodium b	d from rive ypochlorite	r with chlorina-) at pumps.	Brook Water is pumpe brook with ch system.	ed from dam re lorination (10	eservoir on) lb/m.g.) to			
Storage capacity (thousand gallons)	Elevated tank	(wood)	135	Reservoir (ear	th dam)	1,000			
Consumption (average in m.g.d.)		1954			1954				
Industrial use	The main indus Fraser Pulp a C.P. Ry.	strial users and Paper C	are the Co. and the	No major indus	strial users .				
Remarks:	System organiz	zed in 1948		* Considered Saint John ** Only 66 per	a part of the area. cent served.	Metropolitan			
^C Population according to ninth census of ^d Population according to tenth census of	Canada, 1951. Canada, 1956.								

-1

DESCRIPTION OF MUNICIPAL WATER SUPPLIES

D. NEW BRUNSWICK - (Continued)

١

				DINE # DIOI			1			
			NEWC	CASTLE				PERTH		
	1951		19	54	1950	6	1951	1954	1956	
	4,248c		4,2	250	4,67	0d	835c	700	 893d	
	0	_		0		0	0	0	0	
	4,248		4,	250 *	4,67	70	835	700	893	
August 17, Municipall	, 1954 y owned a	nd op erat e	ed	· · · · · · · · · · · · · · · · · · ·	·····		August 7, 195 Municipally ov Public Utilit	4 vned and oper ies Commissio	ated by a	
4 artesian No treatme	wells, 3 t nt; water ;	ogether an pumped ma	nd one nea ainly from	r reservoir whi one well to sys	ch is mostly s stem	used.**	Had's Brook (spring-fed) No treatment; water supplied by gravity to system			
Covered co	oncrete res	servoir	1954	· · · · · · · · · · · · · · · · · · ·			Covered concr Unknown	ete reservoir	8 	
The main industrial users are a creosote plant and C.N. Rys							No major indu	strial users .		
* Only 60 ** One we other w	per cent ll which h ells only u	served as softer 1sed when	water, sup this soft	olies 75 to 80 j water well can	per cent of the not meet the	e demand; demand.		•••••	•••••	
							£		· · · · · · · · · · · · · · · · · · ·	
	SACKV	LLE		s	ST. ANDREWS	5		ST. GEORGE		
1951	1954	1956	1958	1951	1954	1956	1951	1954	1956	
2,873°	3,000	2,849d	2,900	1,458¢	1,450*	1,534d	1,263c	1,250	1,322 ^d	
700	800*	700	No data	0	0	0	0	0	0	
3,573	3,800	3,549		1,458	1,450	1,534	1,263	1,250*	1,322	
August 18, Municipally	1954 y owned as	nd operate		August 11, 19 Municipality a Railway **	54 and Canadian	Pacific	August 11, 199 Municipally ov	54 vned and opera	ated	
3 artesian No treatme voirs and Pumps av	wells, 3 m nt; water f wells by j ailable if	iles dista flows from gravity to required.	nt teser- system.	Chamcook Lak Water is pump chlorination.	ce, 2 miles di ed to system	stant with	Two artesian y No treatment; pipe and syst	wells in town water is pump eem.	ed to stand-	
Two earth	reservoirs	11,00	0 (each)**	Two open, con	ncrete reservo	irs 50 and 210	Standpipe	• • • • • • • • • • • • • • • • • • • •	19	
	1958			0.006	$\frac{1954}{1000}$		0.04	$\frac{1954}{1000} = 0.050$	`	
The major foundry, p university	industrial paper box o	users are company a	a nd the	0.096 (Max.0.16) The two major industrial users are the C.P. Ry. and an ice factory.			The only majo and paper con per cent of to	r industrial us npany using a tal pumpage.	ser is a pulp bout 20	
* Middle Sackville (500 served) ** Dams near wells form the reser-							-	· · · · · · · · · · · · · · · · · · ·		
<pre>voirs. *** Water is supplied to 1,000 students at the university for 9 months each year.</pre>				 * Increases to 2,200 in summer ** The municipality purchases water from the C. P. Ry. 			* Town is abo tem organized	ut 50 per cent 1 in 1950.	served; sys•	
							•			
							• • • • • • • • • • • • • • • • • • • •			

.

			,				
Municipality			SAINT	' JOHNt†			
Population served:		1951	19	54	1956		
In municipality		50,779C*	68,	 500**	52,491d*		
Outside municipality		26,662	15,	000	32,722		
Total		77,441	83,	500	85,213		
Date(s) of survey Ownership	August 13, 195 Municipally ow	4 ned and oper	ated	 • • • • • • • • • • • • • • • • •	·····		
Source of supply	Loch Lomond, Lomond suppl John River); S	10 miles dist lies Saint Joh Spruce Lake s pply.	ant; Spruce L in and Saint J supplies Saint	ake, 6 miles dist ohn East, (everyt John West and L	ant and a well. Loch hing east of Saint ancaster with a well		
Treatment	Water from lake Lomond part v	es flows by ga way to city. S	avity with ch pruce Lake s	lorination; Spruce upply is pumped t	e Lake at Lake, Loch to some areas.		
Storage capacity (thousand gallons)	Standpipe (Spru Spruce Lake w Loch Lomond	atershed watershed	ply)				
Consumption (average in m.g.d.)	1954 1954 (Loch Lomond supply) (Spruce Lake) 8.93 (Max. 10.0) 9.5 (Min 5.0)						
Industrial use	Industrial use brewery, and Loch Lomond	for shipping, a ugar refinery uses					
Remarks:	 Incorporated Presumably Metropolitan of Lancaster, 	city includes Lan area include Rothesay, Si	ncaster and R es city of Lar monds and W	othesay. acaster, town of F estfield. Total po	lothesay and parishes pulation in 1956 - 86,015		
		SHEDIAC	_,	SUN	NY BRAE		
Population served:	1951	1954	1956	1951	1956		
	2.0100	2.000	2.173d	2.048¢	2.080d*		
Outside municipality	0	0	0	0	0		
Total	2.010	2,000	2,173	2,048	2,080		
Date(s) of survey Ownership	September 13, Municipally ow Two wells, 200	1954 ned and oper feet and 400	ated	 	 N.B		
Tractment	No. 2 well, 4 used.	00 feet deep,	is normally	,			
Treatment	and system.	, attr 10 p and					
Storage capacity (thousand gallons)	Elevated tank	•••••	40		•••••		
Consumption (average in m.g.d.)	$\frac{1954}{0.14}$	$\frac{1958}{0.20}$	-				
Industrial use	No major indu	strial users .					
Remarks:			•••••	*Annexed to Mon	cton city by 1956		
c Population according to ninth census of d Population according to tenth census o	f Canada, 1951. f Canada, 1956.						

D. NEW BRUNSWICK - (Continued)

							J					
	ST. 1	LEONARD	1		ST. QUENTIN			ST. SI	EPHEN			
1951	1954	1956	1958	1951	1955	1956	1951	1954	1956	1958		
1,419c	1,500	1,593d	1,600	1,514c	1,500	1,935d	3,769°	3,760	3,491d	3,750		
0	0	0	0	0	0	0		6,250*	No data	No data		
1,419	1,500	1,593	1,600	1,514	1,500	1,935		10,010				
August 6, Municipal	, 1954 . lly owned	d and oper	ated	January 25, 1 Municipally	January 25, 1955 October 8, 1954 Municipally owned and operated Municipally owned and operate Public Utilities Commission							
Big Brool	k, 3 mile	s distant	•••••	. Range 14 La	ke		Well, 4 m through standby	Well, 4 miles distant. St. Croix River through filter plant in Calais, Me., as standby supply**				
Water is p and syste	pumped f em with (rom behin chlorinatio	d dam to tank m (NaOCl)	No treatment tem. Someti summer.	; water is pumj mes CuSO4 trea	ped to sys- atment in	No treatm then flow	ment; pump ws by grav	ed to reserv ity to syster	oir and n.		
Elevated	tank		100	Reservoir	• • • • • • • • • • • • • • • • • • • •	50	Covered of Standby c (Milltown	concrete re concrete re	servoir servoir	.1,200 .2,000		
<u>195</u> 0.03	54 25	$\frac{19}{0.1}$	58 05	No data		•••••		1954 0.960	ı			
No major	industri	al users .	• • • • • • • • • • • • • • •	No data			The majo candy pl mill and	r industria lant; a can the C.P. 1	l users inclu ning factory Rv.	ide a ; a textile		
							 Milltow purchase ** Plant but has 1938-40 	n (2,250) a e water fro maintained not been u	nd Calais, 1 m St. Stephe l by all 3 mu sed since al	Me. (4 ,000) en. micipalities bout		
·	s	USSEX	<u> </u>	}	WOODSTOCK							
1951	1954	1956	1958		1951	1	954	1956				
3,225c	3,000	3,403	3d 3,400		3,996°	4	,000	4,308	- 3d			
0	. () (0 0		0	-	0	0)			
3,225	3,000	3,40	3 3,400		3,996	4	,000	4,308	<u>8</u>			
August 1 Municipa Ward's C	4, 1954 lly owne reek ••	d and oper	ated	August 9, 19 Municipally Saint John R	owned and oper iver and wells	rated				• • • • • • • • • • • •		
Water is p addition sins, th treated	pumped to coag en rapid to pH 7.2	with alum ulating an sand-filte 2 to 7.4 an	and carbon d settling ba- red (2), lime- id chlorinated	In 1954 river water was pumped to reservoir with alum addition, rapid sand-filtered (2) and repumped with chlorination to system. In 1955, one well only being used wit no treatment and river water as a standby supply.*						and-filtered ing used with		
at clear Concrete	teservoi	r repumped	1 to system.	Concrete res	servoir					200		
201010		1054		Standpipe	105 /		1056			400		
	0.36 (1954 Max, 0.40)		0.30		0.40					
The majo lumber	or industr mill, bev	rial users erage plan	are a dairy, at and a silk	The major in and C.P. R	dustrial users y.	are a dairy,	a woodwor	king plant	and the C.N	l. Rys.		
			••••	. * In 1958 tw on Island	o wells, capac Park in the cer	ity 1 m.g.d. atre of the Sa	were being int John R	used. The iver.	ese two well	s are		

D.NEW BRUNSWICK - (Concluded)

.

E. SAINT JOHN RIVER DRAINAGE BASIN IN QUEBEC

E. SAL							
Municipality		AMQUI			BAR	RE	
Population served:	1951	1955	1958				
In municipality Outside municipality	2,599c 0	5,200 (3,247) 0	1 3,300 0		see St.	Cyprien	
Total	2,599	5,200*	3,300				
Date(s) of survey Ownership Source of supply Treatment	July 8, 1955 Municipally Pearson Cree Water from de is pumped v voir and sy	; 1958 owned and opera ek am on creek, 1 n with chlorination stem.	nile distant to reser-		· · · · · · · · · · · · · · · · · · ·		• • • • • • • • • • • • • • • • • • •
Storage capacity (thousand gallons)	Impounding of Concrete res Elevated tan	lam reservoir ervoir			•••••		•••••
Consumption (average in m.g.d.)	1955	5	1958		••••	• • • • • • • • • • • •	• • • • • • •
Industrial use	0.21 (Ma Main users a ture factory	ax, U.234) re a saw mill an	0.60 Id a furni-				••••
Remarks:	* About 96 p	er cent served.				• • • • • • • • • • • • •	• • • • • • •
Municipality	NOT	RE-DAME-DU-L	.AC		RIVIÈRE	BLEUE	
Population served:	1951	1954	1956	1951	1954	1956	1958
In municipality	1,364°	1,200	1,512d	1,334c	1,500	1,481d	2,500
Outside municipality	0	0	0	0	0	0	0
Total	1,364	1,200*	1,512	1,334	1,500	1,481	2,500
Date(s) of survey Ownership	August 5, 19 Municipally	54; 1959 owned and opera	ated	August 4, Municipall	1954 y owned an	d operated .	•••••
Source of supply Treatment	Springs and No treatment to system.	surface run-off** ; water supplied	l by gravity	Five sprin No treatme system.	gs, ½ mile nt; water f	distant lows by grav	rity to
Storage capacity (thousand gallons)	None			Concrete r	eservoir	• • • • • • • • • • • •	45
Consumption (average in m.g.d.)		$\frac{1954}{0.072}$			$\frac{1954}{0.025}$		
Industrial use	No major use	25		No major u	ser		• • • • • • • •
Remarks:	* About 50 p ** A new sy consideration water with was in open	er cent served stem to serve 1, on to use Lac T chlorination. Th ration in 1959.	000 under emiscouata is system				•••••
c Population according to ninth census of d Population according to tenth census of	Canada, 1951 Canada, 1950	L. 5.					

E. SAINT JOHN RIVER	DRAINAGE	BASIN IN	QUEBEC -	- (Continued)

							4		
	CABAN	10			CAUSAPSCAI		L	AC-AU-SAU	JMON
1951	1954	1956	1958	1951	1955	1958	1951	1955	1958
2,594c	2,800	2,350d	3,000	2,609	4,000 (2,957)d 3,200	1,622¢	1,800	1,700
0	0	0	0	0	0	0	0	0	0
2,594	2,800	2,350	3,000	2,609	4,000	3,200	1,622	1,800*	1,700
August 4, 1954; 1958 Municipally owned and operated Three deep wells No treatment; pumped to tank and system Elevated tank				July 8, 1955 Municipally Two artesia No treatmen Plant capac	; 1958 owned and oper n wells, 12 feet t; pumped to sys ity - 750,000 g.p	ated apart stem p.d.	July 7, 1955 Municipally o Lac Angus, No treatment reservoir an	owned and o 1½ miles dis ; water flow id system.	peratedstants by gravity to
Elevated tank 116 One under					ound reservoir		One concrete	reservoir	168
1 0 No data	<u>954</u> .050	$\begin{array}{c c} \underline{1958} \\ 0.100 \\ \hline \end{array} \\ \begin{array}{c} \underline{1955} \\ 0.250 \\ \hline \end{array} \\ \begin{array}{c} \underline{1958} \\ 0.175 \\ \hline \end{array} \\ \begin{array}{c} \underline{1958} \\ 0.075 \\ \hline \end{array} \\ \begin{array}{c} \underline{1958} \\ 0.075 \\ \hline \end{array} \\ \begin{array}{c} \underline{1958} \\ 0.075 \\ \hline \end{array} \\ \begin{array}{c} No \text{ major user.} \\ \hline \end{array} \\ \begin{array}{c} About 95 \text{ per cent served.} \end{array}$							
ST. (CAMILLE-I	DE-LELLI	S		ST. CYPRIEN		S	T. ELEUTH	IERE
1951	1956	1	.957	1951	1956	1957	195	6	1958
560¢	639	1	,690	128¢	353d	1,030	1,03	33c	1,870*
0	0	_	0	0	0	0		0	0
560	639	1	,690*	128	353	1,030*	1,03	33	1,870*
March 6, 195 Privately ow A. Audet Spring and w No treatment voirs and sy Two tanks . One reservoi No data No major ind * 800 served ** Spring is t	8 ned and op ell ^{**} ; water is p ystem. 400 r (fire prote ustrial user 	oumped to and 500 ection only rs	reser- gallons y)60	February 2, Municipally Artesian we No treatmen No data No data * Not data set	1958 owned and oper Ils t; water is pump	ated	March 19, 19 Privately own Théberge Spring No treatment system. None No data No data No major ind * Only 750 st	58 ned and ope ; water flow ustrial user erved	rated by Wilbrod

Municipality	STF4	ABIEN-DE-PA	NET	STJOSE	EPH-DE-LA-RF	VIÈRE BLEUE
Population served:		1958				
In municipality		1,559				
Outside municipality		0			See Rivière I	Bleue
Total		1,559*				
Date(s) of survey Ownership	April 15, 1958 Municipally owned and operated					
Source of supply	Well near vill	age				
Treatment	No treatment; system.	water is pump	ped to	•••••		
Storage capacity (thousand gallons)	Onetank		14			
Consumption (average in m.g.d.)	About 15,000 (Plant capacit	to 18,000 g.p. ty2	d. 5,000 g.p.d.)			
Industrial use	No major indu	strial user				
Remarks:	* About 500 s	erved with wa	ter			
Municipality	STE I	ROSE-DU-DÉG	GELÉ		STESABINI	E
Population served:	1951	1954	1956	1951	1956	1957
In municipality	1,017¢	2,605	1,764d	382¢	453d	1,060
Outside municipality	0	0	0		No data	0
Total	1,017	2,605*	1,764			1,060*
Date(s) of survey Ownership	August 5, 195 Municipally o	wned and oper	ated	January 21, Privately or Laureat an	1958 wned and opera id Justin Mercie	ted by Messis. er
Source of supply	Springs Water is pump system.	ed, with chlo	ination, to	Spring or ar No treatmer	tesian well at; by gravity to	o system
Storage capacity (thousand gallons)	. Concrete reservoir 145			Reservoir	1050	13
Consumption (average in m.g.d.)	No data				$\frac{1908}{2000} \sim 1000$	nd
Industrial use Remarks:	No data * About 51 per cent served with water.			No major us * About 450	ser	p.d.
^c Population according to ninth census of ^d Population according to tenth census of	Canada, 1951. Canada, 1956.			1		

E. SAINT JOHN RIVER DRAINAGE BASIN IN QUEBEC -- (Continued)

STEJUSTINE STMAGLOIRE-DE-BELLECHASSE	STPAMPHILE			
	STPAMPHILE			
<u>1954</u> <u>1956</u> <u>1958</u> <u>1951</u> <u>1956</u> <u>1958</u> <u>1956</u>	1957			
2,000 884 ^d 1,800 580 ^c 2,000 (777) ^d 1,800 3,300 (4,534) ^d 3,700			
0 0 0 0 0	0			
2,000* 1,800* 580 2,000* 1,800** 3,300	3,700*			
August 3, 1954 July 23, 1956; Jan. 21, 1958 July 20, 195	i6; Jan. 28, 1958			
La Societe d'Aqueduc de Ste. Justine, Langevin, Que. Municipally owned and operated Owned and o operatif d'A	perated by Syndicate Co- Aqueduc			
Spring	1 13 feet deep. Spring being con new source.			
No treatment; water is pumped to system No treatment; pumped to reservoir and system. No treatment	; water is pumped to system.			
Two concrete reservoirs50 and 43 One tank (steel)				
Not known $\frac{1956}{10000}$ 10 $\frac{1957}{10000}$	1956			
Plant capacity	6,000 g.p.d.			
No major user	lustrial user			
* About 95 per cent served. Includes Ste. Justine Station. * Only 650 served. * About 400 * 800 served	served with water			
SAYABEC VAL-BRILLANT				
<u>1951 1955 1958 1951 195</u>	55			
2,220° 2,400 (2,281) ^d 2,500 867° 1,0	000 (939)d			
<u> 0 0 0 0 </u>	0			
2,220 2,400 2,500 867 1,0	000			
July 8, 1955 January 8, 1955 Municipally owned and operated Municipally owned and operated				
Lac Malfaix, 4 ¹ / ₂ miles distant No treatment; water flows by gravity via Sauvage River to system.	to system			
None One underground concrete reservoir 1955 1958	One underground concrete reservoir			
Not known 0.160 (est.)				
No major user No data	•••••••••••••••••			

E. SAINT JOHN RIVER DRAINAGE BASIN IN QUEBEC - (Concluded)

TABLE III

Chemical Analyses of Civic Water Supplies

A. ISLAND OF NEWFOUNDLAND (In parts per million)

In	paris	per	m14110n)
			_ <u></u>

÷

	Municipality	BELLEORAM	BOTWOOD	BUCH	ANS
	Source(s)	Rabbit's Pond	Peter's Pond River	Sandy	Lake
No.		Raw and finished water	Raw and finished water	Raw water	Finished water
	Sampling point	Town tap	Town tap		Town tap
$\begin{array}{c}12\\3\\4\\5\\6\\7\\8\\9\\1\\1\\1\\2\\1\\4\\5\\6\\7\\8\\9\\0\\1\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2$	Date of sampling Storage period (days) Sampling temperature, ⁰ C. Test temperature, ⁰ C. Oxygen consumed by KMnO ₄ Carbon dioxide (CO ₂), (calculated) pH Colour Turbidity Suspended matter, dried at 105 ^o C. Suspended matter, ignited at 550 ^o C. Residue on evaporation, dried at 105 ^o C. Ignition loss at 550 ^o C. Specific conductance, micromhos at 25 ^o C. Calcium (Ca) Magnesium (Mg) Iron (Fe) Total. Dissolved Manganese (Mn) Aluminum (Al) Copper (Cu) Zinc (Zn) Sodium (Na) Potassi um (K) Ammonia (NH ₃) Carbonate (CO ₃). Bicarbonate (SO ₄) Chloride (Cl)	July 16/56 87:92 25.6 12 6.0 5.7 70 5 7.2 4.1 42.8 26.8 32.4 0.8 0.3 0.08 0.01 0.44 0.0 0.01 0.44 0.0 0.0 4.1 0.2 0.2 0 4.0 2.4 6.0	July 3/56 10:14 23.8 10.0 2.2 7.0 50 0 	Sept. 1/56 18:23 17.8 18.8 14.5 2.7 6.6 45 0.3 	Sept. 1/56 18:23 18:7 13 3.7 6.2 40 0
29 30 31 32 33 34 35 36 37 38 39	Chorde (Cl) Fluoride (F) Nitrate (NO ₃) Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃ Total hardness' as CaCO ₃ Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature Remarks:	0.0 0.4 2.3 3.2 0.0 3.2 19.0 59.4 -5.4 16.5	0.0 4.0 3.8 11.7 7.1 18.8 30.9 18.2 -2.5 12.0	0.0 0.2 2.4 6.8 1.7 8.5 13.6 21.6 -3.6 14.0	0.0 1.6 2.8 2.7 4.8 7.5 16.3 19.4 -4.4 15.0

Chemical Analyses of Civic Water Supplies A. ISLAND OF NEWFOUNDLAND

(In parts per million)

CARBONEAR	CHANNEL- PORT AUX BASQUES		CORNER BROOK							
Little Island Pond	A small river (dammed lake)		Cornerbrook River (Lake)							
Raw and finished water	Raw and finished water		Raw and finished water							
Town tap	Town tap		Town tap				nile dam reserve	oir		
Nov. 16/56 10:13	June 27/56 20:28	Sept. 15/53 34:120	Aug. 8/55 15:29 16.1	June 11/56 9:16 7.8	July 3/56 15:20 11.1	July 26/56† 12	Mar. 23/54† 10	Nov. 2/56† 19	1 2 3	
27.2 1.2 7.0	23.6 15 1.0 7.1	22.6 2.4 6.6	26.2 1.0 7.7	24.2 13 1.4 7.4	24.2 8.4 2.3 7.3	16 6.5	8 6.8	8.8 7.3	4 5 6 7	
30 0.7	120 0.2	20 9 1.2	35 0	40 0	35 0	20 2	3	45 2	8 9 10	
35.6 16.0	50.4 29.6	0.4 29.4 12.8		40.8 8.4	57.6 36.8	70	40	36	11 12 13	
33.8 1.5 0.6	44.0 3.5 0.6	32.5 2.7 0.6 0.09	98.1 10.1 1.7	58.77 7.4 1.0	67.0 8.7 1.2	8.8 1.5 0.2	9.6 1.4 0.2	6.4 2.4 0.2	14 15 16 17	
0.05 0.01 0.23 0.02	0.18 Trace 0.05 0.0	0.05	· · · · · · · · · · · · · · · · · · ·	0.06 0.0 0.09 0.0	0.04 0.0 0.08 0.0	0.0	0.0	0.0	18 19 20 21 22	
0.2 3.5 0.2 0.1	0.0 4.0 0.4 0.2	2.4 0.7	2.3 0.4 0.1	0.1 2.4 0.4 0.2	0.0 2.4 0.4 0.2	0.1	0.0	0.2	23 24 25	
0 7.6 2.6 5.2	0 7.6 3.8 7.3	0 5.9 4.9 4.2	32.5 3.5 3.9	21.9 3.2 4.4	28.0 2.6 4.2	31.7 2.7 9.7	31.7 0 6.1	26.8 0 7.3	27 28 29 30	
0.05 0.4 1.6 4.5 1.7	0.0 2.4 2.0 6.2 5.0	0.1 0.2 2.2 4.8 4.4	0.2 1.5 26.7 5.5	5.2 2.1 18.0 4.6	1.6 2.0 23.0 3.6	2.0 26 2	4.4 26 4 20	2.3 22 4 26	31 32 33 34	
6.2 20.0 46.9 -3.3 13.6	11.2 27.9 41.4 -2.9 12.9	9.2 21.0 34.1 -3.6 13.8	32.2 39.7 13.2 -1.2 10.1	22.6 37.2 17.7 -1.8 11.0	37.0 15.6 -1.8 10.9	-2.5 11.5	-2.2 11.2	-1.9 11.1	36 37 38 39	
						† Data suppl Ltd., Burlin	ied by Alchem ngton, Ont.			

Chemical Analyses of Civic Water Supplies

A. ISLAND OF NEWFOUNDLAND

(In parts per million)

Municipality	CUR	LING	DEER LAKE	FORT	UNE
Source(s)	Cornerbro (2nd pond	ook River reservoir)	Grand Lake	Fortune Brook	
			Raw and finished water	Raw finished	and water
Sampling point	_ At res	servoir	Town tap	Town	tap
Date of sampling	Sept. 13/56 40:42 16.1 24.4 7.1 4.5 6.4 40 6 4.9 0.3 53.6 32.8 57.1 3.6 1.1 0.10 0.0 0.3 4.3 0.6 0.1 0 7.1 6.7 7.8 0.0 1.2 0.7 5.8 7.7 13.5 30.0 38.1 -3.6 13.6 13.6 13.6 13.6 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.6 13.5 15.5 15	see also Corner Brook	$\begin{array}{c} \text{Sept. 27/56} \\ 14:19 \\ 9.6 \\ 25.4 \\ 12 \\ 1.4 \\ 7.2 \\ 20 \\ 4 \\ 3.2 \\ 0.6 \\ 42.0 \\ 12.0 \\ 39.7 \\ 4.0 \\ 0.7 \\ 0.01 \\ 0.0 \\ 0.7 \\ 0.01 \\ 0.0 \\ 0.2 \\ 2.6 \\ 0.3 \\ 0.15 \\ 0 \\ 14.3 \\ 1.7 \\ 3.2 \\ 0.0 \\ 1.4.3 \\ 1.7 \\ 3.2 \\ 0.0 \\ 1.2 \\ 3.6 \\ 11.7 \\ 1.2 \\ 12.9 \\ 24.3 \\ 29.9 \\ -2.4 \\ 12.0 \\ \end{array}$	Feb. 28/56† 22 2.5 6.8 40 2 20 4.0 0 0.4 0.1 0 9.8 0.0 0.8 2.7 8 2 10 -3.0 12.8	Nov. 26/56 18:43 4.4 23.3 16 2.5 6.4 50
Remarks:				[†] Analysis supplied by Alchem Limited Burlington, Ont.	7
	Municipality Source(s) Source(s) Sampling point Date of sampling Storage period (days) Sampling temperature, °C. Test temperature, °C. Carbon dioxide (CO ₂), (calculated) pH	Municipality CUR Source(s) Cornerbr. (2nd pond Sampling point At rest (2nd pond) Date of sampling Sept. 13/56 40:42 Sampling temperature, °C. 24.4 Cornerbr. (Carbon dioxide (CO.), (calculated) 4.5 pH 6.4 Colour 40 Turbidity 6.4 Suspended matter, ignited at 105° C. 4.9 Suspended matter, ignited at 105° C. 3.6 Ignition loss at 550° C. 3.6 Ignition loss at 550° C. 3.6 Magnesium (Mg) 1.1 Iron (Fe) Total. 0.0 Zine (Za) 0.3 Sodium (Na) 4.3 Portessium (Kj) 0.10 Ammonia (Nila) 0.1 Carbonate (CO) 7.1 Sodium (Na) 0.4 Portessium (Kj) 0.1 Carbonate (CO) 7.1 Calcium (Ca) 0.7 Sodium (Na) 0.4 Potassium (Kj) 0.1 Carbonate (CO) 7.7	Municipality CURLING Source(s) Cornerbrook River (2nd pond reservoir) Sampling point At reservoir Date of sampling Sept. 13/56 Storage period (days) 40:421 Sampling temperature, °C. 16.1 Test temperature, °C. 16.1 Carbon dioxide (CO ₂), (calculated) 4.5 pH 6.4 Colour 40 Turbidity 6 Suspended matter, dried at 105°C. 32.6 Ignition loss at 55°C 32.8 Specific conductance, micromhos at 25°C. 57.1 Calcium (Ca) 0.10 Maganese (Ma) 0.0 Aluminum (Mg) 1.1 Iro (Fe) Total 0.0 Dissolved 0.10 Carbon at CO ₂) 0.10 Carbonate (CO ₂) 0.10 Carbonate (CO ₂) 0.7 Stack (Ca) 0.7 Carbon at CO ₂) 0.1 Carbon at CO ₂) 0.7 Stack (Ma) 0.1 Carbonate (CO ₂)	Municipality CURLING DEER LAKE Source(s) Conserbrook River (2nd pond reservoir) Grand Lake Sampling point At reservoir Grand Lake Sampling point At reservoir Town tap Date of samplingend (daya) Sept. 13/36 40:42 14:19 16:1 14:19 12:10 Sampling temperature, °C 24:4 25:4 25:4 Colour 40 20 24:4 26:4 Colour 6:4 7:2 26:4 26:4 26:4 Suspended matter, dried at 105°C 3:6 3:0 6:6 4:0 20 Turbidity 6 3:2 0:6 4:2.0 26:4 26:4 26:4 26:4 26:4 26:4 20 20 26:5 27:7 27:7 26:5 26:5 26:5	Municipality CURLING DEER LAKE FORT Source(s) Cornerbrook River (2nd pand reservoir) Grand Lake Fortune Sampling point At reservoir Grand Lake Fortune Sampling point At reservoir Town tup Town Date of sampling - Sept. 13/56 Sept. 27/56 Feb. 28/561 Storage period (days) 16.1 9.6 2.3 Corner double (CQ), Calculated) 6.4 1.4 2.5 Colow 6.4 1.4 2.6 3.2 Suppended matter, interd at 109°C 9.6 3.2 3.2 3.2 Suppended matter, interd at 109°C 52.6 4.0 3.2 3.2 Suppended matter, interd at 109°C 53.6 4.0 3.2 3.2 Suppended matter, interd at 109°C 53.6 4.0 3.2 3.2 Suppended matter, interd at 109°C 53.6 4.0 3.2 3.2 Suppended matter, interd at 109°C 53.6 4.0 3.2 3.2 Suppended matter, interd at 109°

Chemical Analyses of Civic Water Supplies A. ISLAND OF NEWFOUNDLAND

(In parts per million)

FRESHWATER	GANDER AIRPORT	GANDER TOWNSITE	GRAND BANK		(GRAND FALLS		
Larkin's Pond*	Gander Lake	Gander Airport System	Grand Bank Brook			Exploits River		, o
Raw and finished water	Raw and finished water		Raw and finished water		Raw water	Finished water		z
Town tap	At tap Bldg. 64		Town	tap		Town tap		
Nov. 20/56 7:22 3.6 6.7 4.4 1.0 6.2 6.2 1.6 9.3 5.8 15.1 24.5 47.2 -3.0 12.7 * See also Placentia, Nfld	July 5/56 8:12 10.0 23.8 10 1.2 6.3 40 0 	see Gander Airpott	July 3/56 10:14 7.2 23.5 7.4 30 0.9 74.0 43.2 3.6 1.4 0.2 0.02 0.09 0.0 5.4 0.3 3.1 3.1 3.5 3.1 3.5 3.1 3.5 3.1 3.5 3.1 3.5 3.1 3.5 3.5 3.5 3.6 3.5 3.6 3.1 3.6 3.1 3.5 3.6 3.6 3.6 3.6 3.6 3.1 3.6 3.6 3.1 3.5 3.1 	Aug. 6/56 22:30 22.4 14 4.2 6.4 30 0 	Oct. 4/55 13:49 9.4 23.9 6.9 1.6 6.8 35 2 	Sept. 17/53 20:118 19.9 1.6 7.4 30 2 42.6 12.2 55.4 5.9 1.5 0.03 0.03 3.6 0.9 0.2 2.4 18.9 1.9 20.8 34.2 26.3 -2.0 11.4	Oct. 17/56 9:13 11.7 24.2 14 3.0 6.6 40 2 30.4 16.4 32.5 2.9 0.7 0.05 0.01 0.07 0.0 0.15 1.9 0.3 0.2 0 7.4 4.6 3.2 0.0 0.7 7.4 4.6 3.2 0.0 0.4 2.4 6.1 4.0 10.1 20.4 26.0 -3.5 13.6	1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 13 14 5 16 7 8 9 10 11 2 13 14 5 6 7 8 9 10 11 2 13 14 5 6 7 8 9 10 11 2 22 22 22 22 22 22 22 22 3 3 3 23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

٠

Chemical Analyses of Civic Water Supplies

A. ISLAND OF NEWFOUNDLAND

(In parts per million)

	Municipality	GREENSPOND	HARBOUR GRACE	JERSEYSIDE	LEWISPORTE
	Source(s)	Pond	Bannerman Lake	Larkin's Pond	Stanhope Lake
No		Raw and finished water	Raw and finished water		Raw and finished water
	Sampling point	Town tap	Town tap		Town tap
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\0\\1\\1\\2\\1\\3\\1\\4\\5\\6\\7\\8\\9\\0\\1\\1\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2\\2$	Date of sampling	Jan.2/57 29:37 24.2 25 12 6.3 120 10 23.4 12.4 106 50.4 119 5.7 1.4 0.83 0.04 0.14 0.0 0.8 12.7 1.6 0.1 0 13.8 7.6 20.3 0.0 0.4 4.4 11.3 8.7 20.0 0.4 4.4 11.3 8.7 20.0 0.5 1.6 -3.3 12.9	July 11/56 7:12 14.1 24.1 5.4 0.9 7.0 10 0.3 35.2 14.8 29.0 1.7 0.3 0.03 0.0 0.03 0.1 0.0 3.3 0.2 0.1 0 0.3 3.3 0.2 0.1 0 0.3 3.3 0.2 0.1 0 0.3 3.3 0.2 0.1 0 0.3 3.3 0.2 0.1 0 5.9 1.9 4.3 0.0 0.6 1.1 4.8 0.7 5.5 16.5 52.9 -3.4 13.8	See Placentia	Nov. 20/56 10:22 1.7 20.9 14 2.3 7.0 30 0

Chemical Analyses of Civic Water Supplies

A. ISLAND OF NEWFOUNDLAND

(In parts per million)

PLACENTIA	ST. ANTHONY	ST. JOHN'S						
Larkin's Pond	I.G.A. Resetvoir		Petty Harbour Long Pond and Windsor Lake					
Raw and	Raw and	Long Pc	Long Pond Wi		sor Lake	Long Pond and/o	r Windsor Lake	Ň
Town tap	Town tap	At ta	.p	Raw and f At p	ump	At tap Whitewag St., St. John's	At tap at Fort William	
July 23/56 23:28	Sept. 11/56 37:44	Dec. 6/56 12:33	Apr. 28/58 15:28	June 5/56 8:17	Apr. 28/58 17:30	Apr. 28/58 17:30	Apr. 30/58 15:28	1 2 3
5.9 25.4 12 1.9 7.0 30 0	12.8 25.1 19 4.0 7.0 70 5 2.6	23.0 15 1.3 6.2 30 3	26.7 5.3 1.4 6.1 25 0.8	5.0 24.6 5.9 1.8 6.2 10 0.7	26.7 3.7 0.5 6.6 10 0.3	26.8 3.2 1.2 6.6 10 0.3	26.7 3.6 0.8 6.8 15 2	4 5 6 7 8 9 10
50.8 13.2 70.8 4.6 1.0	0.6 68.8 32.4 69.3 5.5 1.8	34.4 0.8 0.5	28.4 10.4 32.8 0.6 0.5	34.0 8.0 36.4 0.9 0.5	27.6 8.4 35.7 0.8 0.5	32.0 22.0 37.1 1.0 0.6	31.6 21.2 35.7 0.9 0.6	11 12 13 14 15 16 17
0.01 0.0 0.11 0.10 0.0 7.0 0.3 0.1 0 12.2 3.8 11.2 0.0 0.8 2.0 10.0 5.6 15.6 36.9 47.6 -2.7 12.4	$\begin{array}{c} 0.17\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$	0.03 0.0 0.12 0.01 0.0 3.8 0.5 0.2 0 1.5 2.5 6.5 0.0 0.8 1.3 1.2 2.9 4.1 17.4 58.0 -5.1 16.4	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 3.8\\ 0.4\\ 0.1\\ 0\\ 1.2\\ 2.9\\ 6.5\\ 0.0\\ 0.1\\ 0.8\\ 1.0\\ 2.6\\ 3.6\\ 16.2\\ 67.0\\ -5.2\\ 16.5\\ \end{array}$	$\begin{array}{c} 0.03\\ 0.0\\ 0.01\\ 0.0\\ 0.0\\ 4.3\\ 0.3\\ 0.2\\ 0\\ 1.8\\ 2.7\\ 7.1\\ 0.0\\ 1.6\\ 1.6\\ 1.6\\ 1.5\\ 4.4\\ 5.9\\ 19.9\\ 59.2\\ -4.9\\ 16.0\\ \end{array}$	$\begin{array}{c} 0.02\\ 0.0\\ 0.02\\ 0.0\\ 0.02\\ 0.0\\ 1.3\\ 3.8\\ 6.9\\ 0.0\\ 0.2\\ 1.2\\ 1.1\\ 3.0\\ 4.1\\ 18.7\\ 66.7\\ -4.6\\ 15.8\\ \end{array}$	$\begin{array}{c} 0.0\\ 0.0\\ 0.24\\ 0.08\\ 4.3\\ 0.3\\ 0.05\\ 0\\ 3.0\\ 4.0\\ 6.7\\ 0.0\\ 0.3\\ 1.5\\ 2.5\\ 2.5\\ 2.5\\ 5.0\\ 20.5\\ 61.5\\ -4.3\\ 15.2\\ \end{array}$	0.07 0.01 Trace 0.0 0.2 4.3 0.2 0.05 0 3.0 4.5 6.5 0.0 0.1 1.7 2.5 2.2 4.7 20.6 63.3 -4.1 15.0	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

1

88095-5---7

٠

Chemical Analyses of Civic Water Supplies

A. ISLAND OF NEWFOUNDLAND

(In parts per million)

	Municipality	ST. JOHN'S EAST	ST. LAWRENCE
No.	Source(s)	Windsor Lake	Deep well
			Raw and finished water
	Sampling point		Town tap
$\begin{array}{c}1234567890123345678901234567890123345678901233456789012334567890123345678901233456789012232222222222222222$	Date of sampling	See St. John's	$\begin{array}{c} Sept. 8/56\\ 18:24\\ 3.3\\ 23.4\\ 9.2\\ 1.4\\ 8.1\\ 0\\ 0\\ \end{array}$
	Remarks:		

.

Chemical Analyses of Civic Water Supplies

A. ISLAND OF NEWFOUNDLAND

(In parts per million)

SPRINGDALE		STEPH	STEPHENVILLE		
Sullivan's Pond		Island	Island Pond		
Raw and finished water		Raw and fir	Raw and finished water		
Town tap	At town pump	At reservoir	At tap	Direct from river at Grand Falls	
Sept. 16/53 21:119	July 6/56 7:11	Dec. 11/56 24:37	Jan. 30/59 6:12 7 2	Mar. 23/56 48:63	1 2 3
19.9 5.5 6.9 30 10* 14.7* 9.2 44.4 15.4 54.9 7.1 1.1 1.3* 0.06 	23.4 6.2 2.6 7.0 20 0.2 	$\begin{array}{c} 23.0\\ 20\\ 3.4\\ 7.7\\ 80\\ 0\\ \end{array}$	23.5 6.1 3 7.7 35 0 144 103 226 30.0 7.1 0.07 0.0 0 0 0 0 109 4.7 13.4 0.0 0 109 4.7 13.4 0.0 0 109 4.7 13.4 0.0 0 109 4.7 13.4 0.0 0 109 4.7 13.4 0.0 0 109 4.7 13.4 0.0 0 109 14.4 10.4 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	$ \begin{array}{c} 11\\ 1.4\\ 6.9\\ 40\\ 0\\ \\ 40.8\\ 19.6\\ 30.6\\ 3.1\\ 0.3\\ \\ \hline 0.3\\ \\ \hline 0.3\\ \\ \hline 0.3\\ \\ \hline 0.2\\ 1.9\\ 0.3\\ 0.0\\ 0\\ 6.8\\ 3.3\\ 2.5\\ 0.0\\ 0\\ 6.8\\ 3.3\\ 2.5\\ 0.0\\ 0\\ 2.4\\ 3.4\\ \hline 9.0\\ 20.0\\ 30.1\\ -3.2\\ 13.3\\ \hline \hline See also Station$	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 223 24 25 26 27 28 29 30 34 35 36 37 38 39
* Probably from corroding iron pipe.				See also Station No. 111, Table No. II	

Chemical Analyses of Civic Water Supplies

B. PRINCE EDWARD ISLAND

(In parts per million)

	Municipality		CHARLOTTETOWN				
	Source(s)	Wells					
ž			Raw and finisbed water				
-	Sampling point	At Brackley S (18 wel	tation pumps lls)	At Main Station pumps (1 well)			
12345678901123456789011232222222222222333333333333333333333	Date of sampling point Storage period (days) Sampling temperature, °C. Test temperature, °C. Carbon dioxide (CO ₂), (calculated) pH. Colour. Turbidity Suspended matter, dried at 105°C. Suspended matter, dried at 105°C. Suspended matter, ignited at 50°C. Residue on evaporation, dried at 105°C. Specific conductance, micromhos at 25°C. Calcium (Ca). Magnesium (Mg). Iron (Fe) Total Dissolved Manganese (Mn) Aluminum (Al). Copper (Cu). Zinc (Zn). Sodium (Na) Pot assium (K). Ammonia (NH ₃) Carbonate (HCO ₃). Bicarbonate (HCO ₃). Bicarbonate (HCO ₃). Sulphate (SO ₄). Chl oride (CI) Fluoride (F) Nitrate (NO ₃). Sillica (SiO ₂), colorimetric Carbonate bardness as CaCO ₃ . Non-carbonate hardness as CaCO ₃ . Non-carbonate hardness as CaCO ₃ . Suu of constituents. Per cent sodium . Saturation index at test temperature Stability index at test temperature. Remarks: † Analyses supplied by Department of N †† Calculated value. * At 600°C.	(18 wel July 5/54† 3.4 7.7 < 5 0.5 136 62* 23 12 0.0 13t† 0.0 1.1 12 0.0 1.1 12 0.0 1.1 12 0.0 1.1 12 0.0 1.1 12 0.0 1.1 <t< td=""><td>$\begin{array}{c} \text{Sept. 11/54} \\ 45:157 \\ 7.8 \\ 22.6 (16) \\ 4.3 \\ 1.8 \\ 8.0 (7.4) \\ 5 \\ 0 \end{array}$ $\begin{array}{c} 132 \\ 35.2 \\ 232 \\ 22.0 \\ 12.2 \end{array}$ $\begin{array}{c} 0.03 \\ 0.01 \\ 0.21 \\ 0.0 \end{array}$ $\begin{array}{c} 0.03 \\ 0.01 \\ 0.21 \\ 0.0 \end{array}$ $\begin{array}{c} 0 (0) \\ 110 (109) \\ 8.0 \\ 9.5 \\ 0.05 \\ 8.8 \\ 4.5 \\ 90.6 (89.0) \\ 14.4 (16.5) \\ 105 (106) \\ 125 \\ 8.0 \\ -0.2 \\ 8.4 \end{array}$</td><td>(1 well) Sept. 11/54 46:157 8.3 23.2 (15) 3.1 1.8 8.1 (8.0) 5 0 178 40.4 298 20.1 10.6 0.03 0.01 0.19 0.0 148 (152) 13.9 8.9 0.3 3.2 6.1 93.7 0.0 93.7 163 36.9 0.0 8.1</td></t<>	$\begin{array}{c} \text{Sept. 11/54} \\ 45:157 \\ 7.8 \\ 22.6 (16) \\ 4.3 \\ 1.8 \\ 8.0 (7.4) \\ 5 \\ 0 \end{array}$ $\begin{array}{c} 132 \\ 35.2 \\ 232 \\ 22.0 \\ 12.2 \end{array}$ $\begin{array}{c} 0.03 \\ 0.01 \\ 0.21 \\ 0.0 \end{array}$ $\begin{array}{c} 0.03 \\ 0.01 \\ 0.21 \\ 0.0 \end{array}$ $\begin{array}{c} 0 (0) \\ 110 (109) \\ 8.0 \\ 9.5 \\ 0.05 \\ 8.8 \\ 4.5 \\ 90.6 (89.0) \\ 14.4 (16.5) \\ 105 (106) \\ 125 \\ 8.0 \\ -0.2 \\ 8.4 \end{array}$	(1 well) Sept. 11/54 46:157 8.3 23.2 (15) 3.1 1.8 8.1 (8.0) 5 0 178 40.4 298 20.1 10.6 0.03 0.01 0.19 0.0 148 (152) 13.9 8.9 0.3 3.2 6.1 93.7 0.0 93.7 163 36.9 0.0 8.1			

Chemical Analyses of Civic Water Supplies

B. PRINCE EDWARD ISLAND

(In parts per million)

CHARLOTTETOWN (Concluded)		SUMMERSIDE					
		Wells					
weiis		600' deep wells	250' deep well	500' deep well	deep well Mixed supply		
Raw and finisl	ned water	Raw and finished water					
At Malpeque Road Station pumps	At Union Station pumps (10 wells)	At pun	ap		At tap		
Feb. 24/55 12:15 9.0 20.5 1.9 1.3 8.2 5.0 0.8	Sept. 11/54 45:157 8.9 22.6 (16) 2.6 1.7 8.1 (7.6) 5 0	Sept. 11/54 46:157 9.4 23.2 (14) 2.9 2.0 8.0 (7.7) 5 0	Sept. 11/54 46:157 11.1 23.2 (16) 2.9 2.0 8.0 (7.6) 5 0		July 7/54†	Aug. 9/56 14:20 21.7 1.1 8.3 0	1 2 3 4 5 6 7 8 9 10
131 24.8 235 16.5 10.1	140 10.0 244 24.3 13.0	211 27.2 345 45.7 2.1	197 34.8 314 52.6 1.5	Not producing at time of survey	22.2 80* 45 1.0 0.0 	11 279 48.2 0.7 13 279 14 48.2 0.7 16 17 0.01 18 0.01 19 0.07 20 0.07 20 0.07 20 0.0 19 0.07 21 0.05 22 0.05 0.05 22 0.05 0.0	11 12 13 14 15 16
0.04 0.0 0.44 0.0	0.06 0.0 0.30 0.02	0.09 0.01 0.32 0.18	0.03 Trace 0.28 0.0				17 18 19 20 21 22
14.8 2.0	4.2 1.1	18.6 0.9	6.6 0.8			7.2 0.7 0.1	23 24 25
0 126 5.8 5.6 0.05 3.2 6.4 82.7 0.0 82.7 127 27.5 -0.1 8.4	0 (0) 124 (121) 7.6 9.3 0.0 6.3 5.0 102 (99.4) 12.3 (15.2) 114 (115) 132 7.2 0.0 8.1	0 (0) 120 (121) 15.6 27.8 0.08 12 10 98.7 (99.4) 24.0 (24.1) 123 (124) 193 24.3 +0.2 7.4	0 (0) 129 (129) 20.2 13.0 0.0 14 8.3 106 (106) 31.7 (34.4) 137 (140) 181 9.3 +0.3 7.4		0.0 0 55.9 16 24.0 0.2 2.2 16 94 28 122 267 0.0 7.8	0 120 14.4 11.6 12 8.9 98.4 24.7 123 164 11.2 +0.5 7.3	26 27 28 29 30 31 32 33 34 35 36 37 38 39

١,

.

Chemical Analyses of Civic Water Supplies

C. NOVA SCOTIA

(In parts per million)

	Municipality	АМ	ANNAPOLIS ROYAL	
		Nappan R	First Pond Lake (Surface run-off)	
No.		Raw and Nappan River*	finished water Wells	Raw and finished water
	Sampling point	At pumps		Town tap
1234567890112314567189012222222222233333333333333333333333333	Sampling point Date of sampling	At Aug. 18/54 18:159 18:3 23.2 (23)	Aug. 18/54 16:198 7.5 23.2 (18) 1.6 8.2 (7.9) 5 0 181 21.0 290 28.4 7.8 0.08 Trace 0.21 0.0 21.8 1.9 0 21.8 1.9 0.03 0.02 7.8 103 0.03 0.02 7.8 103	Aug. 23/54 18:220 17.8 18.6 (21)

Chemical Analyses of Civic Water Supplies

C. NOVA SCOTIA (In parts per million)

ANTIGONISII BADDECK BIRCH GROVE BRIDGETOWN Brook and springs Clydesdale Rivee* Springs and surface ten-old MacDonald's Lake Cosskill Lake Raw and finished water Raw and finish			· · · ·	-		
Brook and springs Clydesdale River* Springs and surface canoff MacDonald's Lake Crockill Lake Raw and finished water Town tap At pump Town tap At pump Town tap Aug.30/54 Aug.30/54 Sept.1/54 Sept.2/54 Aug.30/54 Jac.22,23 18.6/23 12.2 15.0 17.2 15.216 18.22 12.6 15.0 17.2 15.6 14.6 3.2 16.6/23 14.6 25.0 3.3 15.0 17.7 4.6 14.6 5.6 3.2 15.0 17.7 5.5/5.4 15.6 13.0 16.6 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 17.7 16.5.0 17.7 16.5.0 17.7 16.5.0 17.7 16.5.0 16.0 17.7 16.5.0 16.0 12.0 11.1 13.0 10.0 12.2 13.2<	ANTIGONISH Brook and springs Clydesdale River*		BADDECK	BIRCH GROVE	BRIDGETOWN	
Raw and finished water Raw and finished water			Springs and surface run-off	MacDonald's Lake	Croskill Lake	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Raw and f	inished water	Raw and finished water	Raw and finished water	Raw and finished water	ž
Aug. 30/54 18:213 Aug. 30/54 18:213 Sept. 1/54 17:217 Sept. 1/54 13:216 Aug. 23/54 18:22 1 18:22 1 2:3 1 18:22 1 18:22 1 2:3 1 18:23 1 18:23 1 18:23 1 18:23 1 2:3 1 10 1 11 1 10 1 10 <th1 10</th1 	Town tap	At pump	Town tap	At pump	Town tap	<u> </u>
	Aug. $30/54$ 18:213 15.6 21.8 (21) 7.0 3.0 6.9 (7.0) 8 0 49.4 7.6 82.6 4.4 1.0 Trace 0.0 0.03 0.02 0.4 4.1 12.1 (15.5) 3.0 (1.5) 15.1 (17.0) 44.3 52.0 -3.5 13.0 13.0	Aug. $30/54$ 18: 213 22.2 21.8 (25) 5.6 2.8 7.0 (7.4) 8 0 54.8 8.0 93.1 4.8 1.1 Trace 0.0 0.0 0.0 10.0 0.7 0 (0) 16.7 (20.3) 3.6 16.6 0.04 0.6 3.8 13.7 (16.6) 2.8 (2.5) 16.5 (19.1) 49.6 55.5 -2.6 12.2 • An auxiliary supply.	$\begin{array}{c} \text{Sept. } 1/54\\ 17:217\\ 15.0\\ 21.8 (23)\\ 11\\ 1.7\\ 7.4 (7.3)\\ 45\\ 4\\ .2.6\\ 0.7\\ 48.4\\ 18.0\\ 58.8\\ 5.3\\ 1.3\\\\ 0.45\\ 0.01\\ 0.54\\ 0.0\\\\ 3.2\\ 0.5\\\\ 0 & (0)\\ 24.5 (24.0)\\ 2.6\\ 5.1\\ 0.1\\ 0.6\\ 1.4\\ 18.6 (19.1)\\ 0.0 (0.0)\\ 18.6 (19.1)\\ 33.2\\ 23.2\\ -1.9\\ 11.2\\ \end{array}$	$\begin{array}{c} \text{Sept. 2/54} \\ 15:216 \\ 17.2 \\ 21.8 (22.5) \\ 4.5 \\ 6.0 \\ 5.5 (5.4) \\ 10 \\ 0.8 \\ \hline \\ \hline \\ \hline \\ 24.8 \\ 6.4 \\ 44.3 \\ 1.1 \\ 0.9 \\ \hline \\ $	Aug. 23/54 18:22 19.0 18.6 (23) 1.4 7.6 (6.5) 10 0 48.0 8.2 70.0 7.6 1.2 0.04 0.0 0.0 0.0 4.1 0.4 0 (0) 29.7 (31.6) 3.6 5.3 0.05 Trace 5.6 23.9 (25.1) 0.0 (0.0) 23.9 (25.1) 0.0 (0.0) 24.0 (25.1) 0.0 (0.0) 0.0 (1 2 3 4 5 6 7 8 9 10 11 12 3 14 15 16 7 8 9 10 11 12 3 14 15 16 20 21 22 23 4 25 26 7 28 29 30 33 34 35 36 37 38 39

103

Chemical Analyses of Civic Water Supplies

C. NOVA SCOTIA

(In parts per million)

	Municipality	BRIDGEWATER Hebbs Lake					
	Source(s)						
No.		Raw and finished water					
_	Sampling point	Town tap					
1234567890112345678901123456789011232222222222223333333333333333333333	Sampling point Date of sampling Storage period (days) Sampling temperature, °C. Test temperature, °C. Carbon dioxide (CO ₂), (calculated) pH Colow Turbidity Suspended matter, dried at 105°C. Suspended matter, ignited at 550°C. Residue on evaporation, dried at 105°C. Ignition loss at 550°C. Specific conductance, micromhos at 25°C. Calcium (Ca) Magnesium (Mg) Iron (Fe) Total. Dissolved Manganese (Mn) Aluminum (Al) Copper (Cu) Zinc (Zn) Sodium (Na) Potassium (K) Ammonia (NH ₃) Carbonate (CO ₃) Sulphate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Silica(SiO ₂), colorimetric Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃ Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature	Aug. 21/54 19:214 20.0 21.2 (24) 7.8 5.8 (6.3) 15 (25) 0.9 25.0 13.0 29.6 1.2 0.5 0.04 0.02 0.17 0.3 2.6 0.2 0.0 2.9 (5.0) 3.8 4.9 0.0 0.0 0.4 (4.1) 2.7 (1.2) 5.1 (5.3) 15.5 45.4 -5.1 16.0	Town ta Apr. 28/58 11:22 26.5 (26) 4.1 1.2 6.5 25 4 	p June 19/58 15:25 26.1 6.0 4.9 25 0.8 32.0 16.0 35.4 0.9 0.7 0.18 0.10 0.09 0.5 0.2 2.3 0.2 2.3 0.2 0.05 0 0 0 0 0.5 0.2 2.3 0.2 2.3 0.2 0.05 0 0 0 5.4 5.4 16.5 41.4 -6.4 17.7	Sept. 4/58 8:20 21.2 2.4 3.4 5.8 15 0.8 		

Chemical Analyses of Civic Water Supplies

C. NOVA SCOTIA

(In parts per million)

.

CANNING		CENTREVILLE	DARTMOU	TH	DIGBY	DOMINION		
Brook and springs		Supplied by Sydney Mines	Lamont and Topsail Lakes		Lily Lake	Supplied by Glace Bay		
Raw and finished water			Raw and finished water		Raw and		ţz	
Brook	Springs				finished water		4	
Pump at dam	At reservoir		At pump	Town tap	Town tap			
Sept. 9/54 35:244 12.8 22.3 (18.5) 3.1 1.8 7.8 (7.5) 10 0.7	Sept. 9/54 35:244 19.4 22.3 (20) 4.3 1.3 7.7 (8.4) 13 0		Aug. 27/54 20:34 19.7 20.9 (23) 4.5 1.5 6.8 (7.3) 3 0	Oct. 30/54 10:23 24.1 2.0 0.8 7.2 15 2	Aug. 24/54 17:219 18.3 18.6 (19) 1.8 6.9 (6.2) 10 (20) 3	-	1 2 3 4 5 6 7 8 9 10	
148 32.0 219 31.0 2.2	161 22.8 200 25.9 3.2	See Sydney Mines and North Sydney, N.S.	Sydney Mines and North Sydney, N.S.	29.2 7.4 44.8 2.7 0.9	34.0 6.6 54.6 4.5 0.5	42.6 13.6 61.0 2.5 1.4	See	11 12 13 14 15 16 17
0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.02 0.0			0.02	0.21 0.0 0.0	0.09 0.01 0.0 0.0	Glace Bay	18 19 20 21 22
7.1 1.9	7.1 0.5		3.4 0.4	3.8 0.5	5.3 0.2		23 24 25	
$\begin{array}{c} 0 & (0) \\ 70.1 & (70.0) \\ 19.6 \\ 11.2 \\ 0.0 \\ 16 \\ 12 \\ 57.5 & (58.0) \\ 28.9 & (28.4) \\ 86.4 & (86.4) \\ 135 \\ 14.8 \\ -0.4 \\ 8.6 \end{array}$	$\begin{array}{c} 0 & (0) \\ 39.5 & (42.9) \\ 51.6 \\ 4.6 \\ 0.05 \\ 0.2 \\ 15 \\ 32.4 & (35.2) \\ 45.4 & (44.4) \\ 77.8 & (79.6) \\ 122 \\ 16.4 \\ -0.8 \\ 9.3 \\ \end{array}$		0 (0) 5.5 (7.6) 8.0 4.7 0.05 Trace 0.9 4.5 (6.2) 6.1 (4.6) 10.6 (10.8) 29.2 40.1 -3.5 13.8	0 7.7 7.0 6.0 0.1 0.4 1.5 6.3 7.0 13.3 28.3 37.3 -2.7 11.6	$\begin{array}{c} 0 & (0) \\ 8.4 (7.6) \\ 5.8 \\ 10.9 \\ 0.02 \\ 0.2 \\ 1.6 \\ 6.9 (6.2) \\ 5.1 (6.5) \\ 12.0 (12.7) \\ 32.1 \\ 48.1 \\ -2.8 \\ 12.5 \end{array}$		26 27 28 29 30 31 32 33 34 35 36 37 38 39	
Chemical Analyses of Civic Water Supplies

C. NOVA SCOTIA (In parts per million)

	Municipality			FAIRVIEW	
			Spring fed Lake		
.oN		Raw water	Finished	water	
	Sampling point	At lake	At standpipe	Town tap	
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\9\\21\\22\\23\\24\\25\\26\\27\\28\end{array}$	Date of sampling Storage period (days) Sampling temperature, ⁰ C Oxygen consumed by KMnO ₄ Carbon dioxide(CO ₂), (calculated) pH Colour Turbidity Suspended matter, dried at 105 ^o C Suspended matter, ignited at 550 ^o C Residue on evaporation, dried at 105 ^o C Ignition loss at 550 ^o C Specific conductance, micromhos at 25 ^o C Calcium (Ca) Magnesium (Mg) Iron (Fe) Total Dissolved Aluminum (Al) Copper (Cu) Sodium (Na) Potassium (K) Ammonia (NH ₃) Carbonate (ICO ₃) Bicarbonate (ICO ₃) Sulphate (SO ₄) Chloride (Cl)	Sept. 2/54 15:238 20.3 21.2 17 3.3 6.5 160 6 9.0 4.5 68.4 20.4 93.9 3.6 1.4 1.3 0.55 0.0 0.20 0.0 10.0 0.5 0 6.3 8.0 16.7	Sept. 2/54 15:242 13.9 21.2 (20) 14 1.3 7.0 (5.8) 100 (120) 2 	Sept. 7/55 7:28 22.8 21 3.3 6.5 80 103 4.1 1.5 1.4 Trace 0.0 0.0 0.0 11.2 0.5 0.2 0 6.5 9.0 18.7	See Halifax, N.S.
30 31 32 33 34 35 36 37 38 39	Fluoride (F) Fluoride (F) Nitrate (NO ₃) Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃ Total hardness as CaCO ₃ Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature	0,6 1.4 5.2 9.5 14.7 46.1 55.4 -3.6 13.7	0.6 1.3 5.8 (8.3) 11.8 (9.7) 17.6 (18.0) 50.3 48.1 -3.0 13.0	0.4 1.5 5.3 11.1 16.4 51.5 55.4 -3.6 13.7	
	Remarks:		Note high copper probably due to piping		

;

Chemical Analyses of Civic Water Supplies C. NOVA SCOTIA

FLORENCE	GLACE BAY	GRANVILLE FERRY		HALII	AX		
	Sand Lake	Springs		Chain and/or l	Long Lake		ō
	Raw and finished water	Raw and finished water		Raw	water		z [*]
	At pumps	Town tap		At ir	itake		
FLORENCE	Sept. 2/54 17:217	Sept. 9/54 47:244 17 5	April 11/57 14:20	June 10/57 22:45	Sept. 10/57 15:29	Nov. 27/57 8:19	1 2 3
	21.8 (22) 8.9 16 5.8 (4.8) 15 2	22.6 (19) 3.5 1.2 7.5 (8.0) 15 0	24.3 4.9 6.5 5.1 25 6	22.4 3.9 1.3 5.3 5 0	21.6 3.6 4.1 5.3 10 0.3	24.9 5.9 5.0 5.3 25 0.3	4 5 6 7 8 9 10
	39.2 11.6 62.8 1.4 1.1	50.4 13.2 67.6 5.5 1.1	44.0 20.4 42.6 1.1 0.6	30.8 18.0 42.3 0.8 0.8	40.8 16.8 39.8 0.8 0.7	35.2 15.6 41.8 1.2 0.6	11 12 13 14 15 16 17
	0.07 0.03 0.19 0.01 	Trace Trace 0.0 0.0 5.9	0.07 0.04 0.26 0.0 0.01 3.8	Trace 0.02 0.0 0.0 0.0 4.0	0.06 0.04 0.09 0.0 0.0 3.6 0.4	0.02 0.04 0.11 0.0 0.0 4.3	18 19 20 21 22 23
	0.5 0.5 0 5.9 4.5 11.9 0.05 0.2 0.7 4.8 3.2 8.0 (8.9) 30.0 58.8 -4.8 15.4	$\begin{array}{c} 0.4 \\ 0 & (0) \\ 22.8 (25.3) \\ 3.8 \\ 5.6 \\ 0.0 \\ 0.8 \\ 11 \\ 18.3 (19.1) \\ 0.0 (0.0) \\ 18.3 (19.1) \\ 45.7 \\ 40.6 \\ -2.9 \\ 13.3 \end{array}$	$\begin{array}{c} 0.4\\ 0.05\\ 0\\ 0.5\\ 5.1\\ 7.1\\ 0.0\\ 0.0\\ 2.8\\ 0.4 (1.3)\\ 4.8\\ 5.2\\ 21.6\\ 52.3\\ -6.2\\ 17.5\end{array}$	0.5 0.05 0 0.5 5.5 (5.7) 6.9 (7.0) 0.0 0.1 3.8 0.4 4.9 5.3 22.7 58.8 -6.1 17.5	0.4 0.05 0 0.6 4.9 6.4 0.0 0.1 1.8 0.5 4.4 4.9 19.2 55.8 -6,1 17.5	0.4 0.05 0 0.7 5.2 7.8 0.0 0.1 3.2 0.6 4.9 5.5 23.4 57.7 -5.9 17.1	24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Chemical Analyses of Civic Water Supplies

C. NOVA SCOTIA

	Municipality	HALIFAX (Cont'd)				
	Source(s)	Ch	Chain and/or Long Lake (Cont'd)			
Ňo			Raw water		Raw water	
	Sampling point		At intake		At intake	
1 2 3	Date of sampling Storage period (days) Sampling temperature, ⁹ C.	Feb. 24/58 16:28	May 23/58 18:33	Sept. 3/58 12:21	Aug. 27/54 19:34 17 2	
456	Test temperature, °C. Oxygen consumed by KMnO ₄	24.4 5.4	22.9 4.6	23.6 3.0	21.3 (22) 6.1	
7 8 9 10	pH Colour. Twbidity Suspended matter, dried at 105 ⁰ C.	5.0 30 0.3	5.0 25 0	5.4 20 0	4.9 (5.3) 15 0	
11 12 13 14 15 16	Suspended matter, ignited at 550°C Residue on evaporation, dried at 105°C. Ignition loss at 550°C. Specific conductance, micromhos at 25°C. Calcium (Ca) Magnesium (Mg).	39.6 23.2 44.5 0.8 0.9	34.8 20.0 41.2 1.0 0.5	42.0 15.2 37.0 0.8 0.6	22.6 9.8 30.65 0.4 0.4	
107 118 102 212 223 225 227 229 312 223 325 227 229 312 333 335 357 320 332 334 356 378 300 312 334 356 378 300 312 320 312 320 312 320 320 320 320 320 320 320 320 320 32	Iron (Fe) Total Dissolved Manganese (Mn) Aluminum (Al) Copper (Cu) Zinc (Zn) Sodium (Na) Potassium (K) Ammonia (NH ₃) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulphate (SO ₄) Chloride (Cl) Fluoride (F). Nitrate (NO ₃) Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃ Total hardness as CaCO ₃ Sum of constituents Per cent sodium Saturation index at test temperature	0.06 0.05 0.12 0.0 0.0 4.1 0.3 0.1 0 0.0 6.2 7.3 0.05 0.2 2.5 0.0 5.7 5.7 22.7 55.3 -6.3 17.6	Trace 0.02 0.13 0.0 0.0 3.8 0.3 0.2 0 0.0 4.7 7.0 0.0 4.7 7.0 0.0 2.3 0.0 4.6 4.6 19.8 59.2 -6.4 17.8	0.03 0.11 0.17 0.0 0.0 3.4 0.3 0.1 0 0.0 5.0 0.0 5.0 0.0 0.0 5.0 0.0 4.5 4.5 19.5 55.0 -6.0 17.4	0.05 0.05 0.07 0.0 0.0 0.0 3.4 0.01 0 0.5 3.6 4.4 0.1 Trace 1.2 0.4 (3.1) 2.2 2.6 (5.3) 14.5 69.8 -5.4 15.7	
	Remarks:				Lead = 0.01	

Chemical Analyses of Civic Water Supplies

C. NOVA SCOTIA

(In parts per million)

٩,

· · · · · · · · · · · · · · · · · · ·			HALIFAX (Cont'd)	· · · · · · · · · · · · · · · · · · ·		
			Spruce Hill Lake (Cor	ıt'd)		
			Raw water			
			At intake			
Apr. 11/57 14:20	June 10/57 22:45	Sept. 10/57 15:29	Nov. 27/57 6:12	Feb. 24/58 16:28	May 23/58 18:33	Sepr. 3/58 12:21
24.1 5.5	22.5 4.5	21.6 3.6	22.8 4.8	23.6 6.3	22.9 5.4	23.6 4.3
5.1 25 5 3.3	5.4 10 0	5.8 5 0.8	5.2 25 0.3	5.3 40 0.3	4.8 30 0.8	5.3 25 0.8
0.7 37.2 12.4 37.3 0.5 0.7	26.4 14.0 34.7 0.9 0.6	30.8 15.6 36.7 1.0 0.5	22.4 3.2 36.6 0.6 0.8	38.4 18.4 48.2 0.9 0.7	31.2 17.2 37.5 0.5 0.6	21.6 14.8 34.3 0.5 0.5
0.06 0.04 0.22 Trace 0.0 3.4 0.4 0.0 0 0.6 5.1 5.9 0.0 0.0 0.0 2.2 0.5 3.6 4.1 18.8 55.0 -6.2 16.5	Trace 0.02 0.08 0.0 3.3 0.3 0.05 0 1.8 3.8 6.0 0.1 0.2 1.6 1.5 3.2 4.7 18.0 55.3 -5.8 17.0	0.02 0.04 0.07 0.0 3.6 0.5 0.0 2.4 4.3 6.3 0.0 0.05 1.1 2.0 2.6 4.6 18.2 57.9 -5.3 16.4	$\begin{array}{c} 0.07\\ 0.02\\ 0.06\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.1\\ 0\\ 0.4\\ 5.3\\ 0.1\\ 0\\ 0.4\\ 5.3\\ 6.5\\ 0.0\\ 0.1\\ 1.8\\ 0.3\\ 4.5\\ 4.8\\ 19.3\\ 59.4\\ -6.2\\ 17.2\\ \end{array}$	0.11 0.04 0.11 0.0 0.0 4.5 0.3 0.1 0 0.0 3.5 7.8 0.35 0.15 2.1 0.0 5.1 20.7 59.5 -6.0 17.3	$\begin{array}{c} 0.06\\ 0.02\\ 0.10\\ 0.0\\ 3.4\\ 0.3\\ 0.15\\ 0\\ 0.0\\ 4.7\\ 5.9\\ 0.0\\ 0.0\\ 4.7\\ 5.9\\ 0.0\\ 0.0\\ 1.7\\ 0.0\\ 3.7\\ 17.3\\ 60.6\\ -6.6\\ 18.0\\ \end{array}$	$\begin{array}{c} 0.02\\ 0.11\\ 0.04\\ 0.0\\ 0.0\\ 3.3\\ 0.15\\ 0\\ 0.0\\ 5.0\\ 6.2\\ 0.0\\ 5.0\\ 6.2\\ 0.0\\ 0.1\\ 1.1\\ 0.0\\ 3.3\\ 3.3\\ 17.2\\ 63.4\\ -6.0\\ 17.3\\ \end{array}$

TABLE III - (Continued) Chemical Analyses of Civic Water Supplies C. NOVA SCOTIA (In parts per million)

١

.

	Municipality		HALIFAX (Co	ont'd)	
	Source(s)	Spruce Hill Lake	С	hain or Long Lake	s
°N N		Finished water		Finished water	
	Sampling point	At tap	At c	ity tap or at main j	plant
1 2 3 4 5 6 7 8 9	Date of sampling Storage period (days) Sampling temperature, ⁰ C. Test temperature, ⁰ C. Oxygen consumed by KMnO ₄ Carbon dioxide (CO ₂), (calculated) pH Colour Turbidity	Aug. 27/54 20:34 19.4 20.8 (22) 7.9 0.8 7.0 (7.0) 15 0	Aug. 27/54 20:34 18.3 20.9 (23) 7.3 	Sept. 18/56 10:15 18.0 25.0 10.4 1.1 6.8 5 0	Jan. 24/57 7:14 23.6 13.5 2.6 6.6 20 0
10 11 12 13 14 15 16	Suspended matter, dried at 10 ⁵ C Suspended matter, ignited at 550° C Residue on evaporation, dried at 105° C Ignition loss at 550° C Specific conductance, micromhos at 25° C Calcium (Ca) Magnesium (Mg).	33.2 13.6 41.8 3.5 0.1	36.2 15.0 44.5 3.2 0.5	37.6 21.6 47.2 3.6 0.4	41.2 12.8 59.5 4.8 0.6
10 17 18 19 20 21 22 23 24	Iron (Fe) Total Dissolved Manganese (Mn). Aluminum (Al). Copper (Cu) Zinc (Zn) Sodium (Na) Potassium (K).	0.08 0.02 0.03 0.13 3.4 0.4	0.08 0.02 0.04 0.04 	0.07 0.05 0.19 0.0 0.0 3.8 0.3	0,12 0,04 0,10 0,05 4,0 0,4
25 26 27 28 29 30 31	Ammonia (NH ₃) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulphate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃)	0 4.6 4.4 6.4 0.1 Trace 1.9	0 4.1 6.0 6.8 0.1 Trace 2.0	0.1 0 4.3 5.0 6.2 1.5 0.0 2.6	0.2 0 5.6 5.3 8.8 1.0 0.4 3.9
32 33 34 35 36 37 38 39	Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃ Total hardness as CaCO ₃ Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature	3.8 (8.3) 5.4 (2.9) 9.2 (11.2) 22.7 43.4 -2.4 12.7	3.4 (6.2) 6.6 (5.0) 10.0 (11.2) 24.5 42.2 -3.8 14.2	3.6 7.0 10.6 25.9 40.2 3.4 13.6	4.6 9.8 14.4 32.2 34.6 -3.4 13.4
	Remarks:	High pressure service. Lead -0.0 p.p.m.	Lead -0.0 p.p.m.		Low pressure service,

Chemical Analyses of Civic Water Supplies

C. NOVA SCOTIA

(In parts per million)

<u>}</u>

	HALIFAX (Cont'd)						
			Chain or Long La	hkes			. <u>.</u>
			Finished wate	r			z
		At	city tap or at ma	in plant			
Mar. 25/57 17:23	June 6/57 22:45	Sept. 10/57 15:29	Nov. 27/57 8:19	Feb. 24/58 17:28	May 23/58 18:33	Sept. 3/58 12:21	1 2 3
25.3 5.3 7.5 5.9 20 3	22.3 3.8 1.9 6.6 5 0.3	21.7 3.0 1.2 6.9 10 0.9	25.0 5.2 1.5 6.7 20 0.8	23.8 5.0 3.3 6.9 30 0	23.0 4.0 1.3 6.5 20 0	23.7 2.8 0.9 6.9 20 0	4 5 6 7 8 9 10
34.8 11.6 53.3 2.6 1.1	48.0 16.0 56.5 4.3 0.7	51.6 16.0 54.4 3.9 0.8	41.6 16.8 52.6 3.6 0.8	49.2 22.0 59.8 4.5 0.8	43.6 20.4 53.9 3.9 0.8	54.8 21.6 53.8 4.3 0.7	11 12 13 14 15 16 17
$\begin{array}{c} 0.06\\ 0.02\\ 0.37\\ 0.0\\ 0.0\\ 4.2\\ 0.3\\ 0.05\\ 0\\ 3.9\\ 4.6\\ 9.5\\ 0.5\\ 0.5\\ 0.2\\ 3.4\\ 3.2\\ 7.8\\ 11.0\\ 28.8\\ 39.9\\ -4.5\\ 14.9\end{array}$	Trace 0.02 Trace 0.0 4.1 0.3 0.05 0 4.8 5.9 8.7 1.0 0.2 3.0 3.9 9.7 13.6 30.6 38.6 -3.6 13.8	$\begin{array}{c} 0.08\\ 0.02\\ 0.03\\ 0.0\\ 0.0\\ 4.0\\ 0.4\\ 0.0\\ 0\\ 4.3\\ 6.1\\ 8.2\\ 0.5\\ 0.05\\ 2.5\\ 3.5\\ 9.5\\ 13.0\\ 28.7\\ 38.5\\ -3.3\\ 13.5\\ \end{array}$	$\begin{array}{c} 0.10\\ 0.04\\ 0.06\\ 0.0\\ 0.0\\ 0.0\\ 4.9\\ 0.3\\ 0.05\\ 0\\ 4.6\\ 7.2\\ 9.0\\ 0.5\\ 0.1\\ 3.3\\ 3.8\\ 8.5\\ 12.3\\ 32.2\\ 44.3\\ -3.5\\ 13.7\\ \end{array}$	$\begin{array}{c} 0.12\\ 0.02\\ 0.09\\ 0.0\\ 0.0\\ 4.5\\ 0.3\\ 0.1\\ 0\\ 5.4\\ 5.3\\ 8.8\\ 0.9\\ 0.1\\ 2.8\\ 4.4\\ 10.1\\ 14.5\\ 31.0\\ 38.1\\ -3.2\\ 13.3\\ \end{array}$	$\begin{array}{c} 0.06\\ 0.01\\ 0.06\\ 0.0\\ 0.0\\ 4.2\\ 0.3\\ 0.1\\ 0\\ 2.6\\ 4.9\\ 8.6\\ 0.9\\ 0.1\\ 2.8\\ 2.1\\ 10.9\\ 13.0\\ 27.9\\ 39.7\\ -3.9\\ 14_{\bullet}3 \end{array}$	0.08 0.02 0.18 0.0 0.0 3.8 0.3 0.05 0 4.5 5.3 8.0 1.0 0.2 2.2 3.7 9.9 13.6 28.3 35.2 -3.2 13.3	18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

-

Chemical Analyses of Civic Water Supplies

C. NOVA SCOTIA

(1	n	parts	p er	million)
----	---	-------	-------------	----------

	Municipality	HALIFAX (Cont'd) . Spruce, Chain or Long Lakes Mixed waters - city supply				
	Source(s)					
No.						
	Sampling point	At various taps				
1 2 3 4 5 6 7 8 9 10	Date of sampling Storage period (days) Sampling temperature, ⁰ C. Test temperature, ⁰ C. Oxygen consumed by KMnO ₄ Carbon dioxide (CO ₂), (calculated) pH Colour Turbidity Suspended matter, dried at 105 ⁰ C.	Aug. 27/54 20:34 18.9 20.9 (21.5) 6.2 3.0 6.6 (7.6) 8 0	July 18/55 16:22 16.7 29.0 11 1.3 6.7 20 2	Nov. 19/55 24.0 1.4 7.1 30	Jan. 10/56 16:23 6.1 22.5 1.4 6.9 30	
11 12 13 13 15 16 17	Suspended matter, ignited at 550°C. Residue on evaporation, dried at 105°C. Ignition loss at 550°C. Specific conductance, micromhos at 25°C. Calcium (Ca) Magnesium (Mg) Iron (Fe) Total.	38.8 13.8 45.3 3.5 0.5	42.8 16.0 49.9 3.5 0.6	62.1 4.3 0.9	51.2 4.3 0.5	
18 19 20 21 22	Dissolved Manganese (Mn) Aluminum (Al) Copper (Cu)	0.08 0.02 0.03 0.06	0.42 0.06 0.06 0.03	0.67 0.02 0.0 Trace	· · · · · · · · · · · · · · · · · · ·	
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	Zinc (Zn) Sodium (Na) Potassium (K) Ammonia (NH ₃) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulphate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ . Non-carbonate hardness as CaCO ₃ . Total hardness as CaCO ₃ . Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature.	3.4 0.3 0 7.1 5.0 6.7 0.1 Trace 2.0 5.8 5.0 10.8 25.1 39.9 -3.2 13.3	$\begin{array}{c} 2.8\\ 0.4\\ 0.2\\ 0\\ 4.3\\ 5.3\\ 7.6\\ 0.0\\ 0.4\\ 1.8\\ 3.5\\ 9.4\\ 12.9\\ 25.3\\ 32.0\\ -3.4\\ 13.5\\ \end{array}$	$\begin{array}{c} 3.4\\ 0.4\\ 0.4\\ 0.0\\ 0\\ 10.4\\ 2.8\\ 7.2\\ 0.0\\ 0.8\\ 2.4\\ 8.5\\ 5.9\\ 14.4\\ 28.0\\ 31.4\\ -2.7\\ 12.5\\ \end{array}$	3.2 0.4 0.0 0.0 0 6.6 3.6 7.3 0.8 2.7 5.4 7.4 12.8 26.0 34.3 -3.1 13.1	
	Remarks:	Lead – 0.0 p.p.m.		Lithium — 0.0 p.p.m.		

Chemical Analyses of Civic Water Supplies C. NOVA SCOTIA

(In parts per million)

			(In parso per mi				
HA	LIFAX (Concluded	1)	HANTS	SPORT	INVERNESS	KENTVILLE	
Spruce	, Chain or Long La	akes	Davison Lake	Artesian Wells	Springs	Magee Lake	
Mixed	ł waters - city suj	oply	Raw and	finished water*	Raw and finished water	Raw water	Z
A	t various taps		From lake	At pump	Town tap	At intake	
Apr. 10/56 16:23 9.4 23.4 6.8 35 0	May 10/56 6:15 11.1 23.0 4.8 2.4 6.7 20 0.2	July 3/56 10:14 23.4 6.3 Trace 7.9 30 0	Aug, 20/54 19:173 14.4 21.8 (23) 1.6 7.0 (7.1) 55 (80) 1	Aug. 20/54 20:168 11.2 21.8 (22) 2.5 8.1 (7.6) 2 3	Aug. 31/54 17:218 14.6 21.8 (20) 5.6 1.4 7.4 (7.2) 8 0.8	Apr. 16/56 56:85 7.2 22.9 7.0 0 8.8 0 2	1 2 3 4 5 6 7 8 9
42.4 17.6 52.4 5.1 0.4	48.8 17.6 43.0 4.1 0.3	48.0 17.6 56.2 6.1 0.5	28.0 16.0 29.8 0.4 0.8	211 18.8 373 28.3 16.0	54.0 7.6 88.7 4.8 1.8	94.8 18.8 135 3.9 0.4	11 12 13 14 15 16
0.29 0.02 0.07 0.4 0.1 0 8.0 4.6 6.5 1.2 2.8 6.6 7.8 14.4 28.6 30.6 -3.0 12.8	0.24 0.04 0.28 Trace 0.1 2.7 0.3 0.0 0 7.2 3.6 6.4 0.0 1.2 1.9 5.9 5.6 11.5 24.5 29.7 -3.3 13.3	$\begin{array}{c} 0.07\\ 0.02\\ 0.31\\ 0.0\\ 0.3\\ 3.3\\ 0.4\\ 0.1\\ 0\\ 11.1\\ 2.8\\ 7.4\\ 0.9\\ 2.8\\ 4.8\\ 9.1\\ 8.2\\ 17.3\\ 34.9\\ 26.8\\ -1.7\\ 11.3\\ \end{array}$	$\begin{array}{c} 0.8\\ 0.0\\ 0.24\\ 0.0\\ \end{array}$	$\begin{array}{c} 0.8\\ 0.0\\ 0.25\\ 0.05\\ \end{array}\\ \begin{array}{c} 26.8\\ 1.9\\ \end{array}\\ \begin{array}{c} 1.9\\ \end{array}\\ \begin{array}{c} 0 \ (0)\\ 199 \ (202)\\ 31.5\\ 5.0\\ 0.05\\ 1.0\\ 9.5\\ 136 \ (140)\\ 0.0 \ (0)\\ 136 \ (140)\\ 219\\ 29.1\\ +0.3\\ 7.5\\ \end{array}$	$\begin{array}{c} 0.01\\ 0.0\\ 0.02\\ 0.0\\ \end{array}\\ \begin{array}{c} 8.0\\ 0.9\\ \end{array}\\ \begin{array}{c} 0 \ (0)\\ 19.9 \ (22.7)\\ 6.8\\ 11.2\\ 0.1\\ 0.6\\ 6.3\\ 16.3 \ (18.6)\\ 3.1 \ (2.6)\\ 19.4 \ (21.2)\\ 50.3\\ 45.6\\ -2.1\\ 11.6\\ \end{array}$	0.10 0.0 Trace 0.0 21.0 2.4 0.0 3.6 49.4 3.3 6.5 0.2 0.8 11 11.4 76.4 75.7 -0.4 9.6	17 18 19 20 21 22 23 24 25 26 27 28 29 30 32 33 34 35 36 37 38 39
			*Town supply us lake, 40 per cer	ually 60 per cent t wells.		<i>See also</i> Station No. 74, Table II.	

١

Chemical Analyses of Civic Water Supplies C. NOVA SCOTIA

(In	parts	þe r	million,
•	F	E .	

	Municipality		KEN	TVILLE		
	Source(s)	Magee Lake				
No			Finish	led water		
	Sampling point		At army	v camp		
123456789011234567890122322222222222333333333333333	Date of sampling	Aug. 20/54 20:196 17.8 21.2 (23) 0.9 7.4 (7.0) 15 (30) 0 53.2 14.4 60.7 7.0 1.3 Trace Trace 0.40 0.0 0 14.7 14.0 2.9 0.4 0.25 0.0 2.2 12.1 10.7 22.8 (23.4) 38.7 19.8 -2.2 11.8	Apr. 16/56 56:85 5.6 23.8 7.7 1.9 6.8 5 3 13.3 3.4 57.6 15.2 74.1 7.8 1.2 0.05 0.01 0.58 0.0 0.0 0.0 2.8 0.5 0.1 0 7.4 16.0 4.4 1.0 1.2 3.8 6.1 18.3 24.4 43.1 17.7 -2.9 12.6	Aug. 8/56 7:12 10.6 25.6 9.8 1.7 6.9 10 0 	Dec. 13/56 46:167 5.6 23.6 14 2.9 6.7 40 1 	

TABLE III – (Continued) Chemical Analyses of Civic Water Supplies C. NOVA SCOTIA

(In parts per million)

.

LAWRENCETOWN	LEQUILLE	LIVER	POOL	LOUISBURG	LUNENBU	JRG	
Springs and surface run-off		Spring-f	Spring-fed lake		Cantelope Lake		
Raw and finished water		Raw and fi	inished water	Raw and finished water	Raw and finished water		Z
Town tap		Tow	n tap	Town tap	Town tap		[
Town tap Aug. 21/54 19:214 18.3 21.2 (24) 1.9 6.9 (6.9) 15 (20) 0 45.2 15.6 41.0 2.0 0.7 0.02 0.0 0.24 0.45 9.0 4.1 4.9 0.2 Trace 3.6 7.4 0.5 7.9 25.0 44.4 -3.3 13.5	Supplied from Annapolis Royal	Oct. 9/50† 17 	Aug. 23/54 18:200 19.4 18.6 (23) 7.9 5.8 (5.8) 10 2 23.2 6.2 36.3 1.6 0.4 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05 7.1 0.09 0.2 0.9 2.4 (2.1) 3.2 5.0 19.7 65.4 -5.2 16.2 plied by The of Canada.	Sept. 3/54 18:257 15.9 21.0 (20.5) 7.6 2.1 6.9 (6.0) 45 (40) 0 	Nov. 21/51 7:21 4.4 24.0 1.4 6.7 5 3 2.6 2.0 37.8 9.0 37.8 2.5 1.0 0.18 0.03	P Aug. 21/54 19:214 18.3 21.1 (22.5) 	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 24 33 34 35 36 37 38 39 30 31 32 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 33 34 35 36 37 38 39 30 31 32 38 39 30 31 32 38 39 30 31 38 39 30 31 31 38 39 30 31 31 38 39 30 31 38 38 39 30 31 37 38 39 30 31 38 38 39 30 31 38 38 38 38 37 38 38 39 30 31 38 38 37 38 38 37 38 38 39 30 31 38 38 37 38 38 39 30 31 38 38 37 38 38 37 38 38 37 38 38 37 38 38 39 30 37 38 38 37 38 38 39 30 31 37 38 38 38 37 38 38 39 30 31 37 38 38 39 30 31 31 31 31 31 31 31 31 31 31

115

Chemical Analyses of Civic Water Supplies

C. NOVA SCOTIA (In parts per million)

In po	urt s	per	mil	lion
-------	-------	-----	-----	------

	Municipality	MAHONE BAY	MIDDLE	TON	MULGRAVE
	Source(s)	Oakland Lake	Lily Lake	and well	Chain of Lakes Brook
No.		Raw and finished water	Lily Lake Raw and finit	Well shed water	Raw and finished water
	Sampling point	Town tap	Town tap	Well	Town tap
1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 4 5 6 7 8 9 0 1 1 2 3 3 4 5 6 7 8 9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date of sampling Storage period (days) Sampling temperature, ⁰ C Test temperature, ⁰ C Oxygen consumed by KMnO ₄ Carbon dioxide (CO ₂), (calculated) pH Colour Turbidity Suspended matter, dried at 105 ^o C Suspended matter, ignited at 550 ^o C Residue on evaporation, dried at 105 ^o C Ignition loss at 550 ^o C Specific conductance, micromhos at 25 ^o C Calcium (Ca) Magnesium (Mg) Iton (Fe) Total Dissolved Aluminum (Al) Copper (Cu) Sodium (Na) Potassium (K) Ammonia (NH ₃) Sulphate (SO ₄) Chloride (Cl) Nitrate (NO ₃) Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ Sun of constituents Per cent sodium Staturation index at test temperature Stability index at test temperature Remarks:	Aug. 21/54 20:214 18.6 21.1 (22) 2.4 6.4 (6.4) 35 (35) 2 44.8 20.0 37.1 1.4 0.6 0.03 0.0 0.1 0.17 3.7 0.3 0 3.8 5.1 5.7 0.4 Trace 0.4 3.1 2.9 6.0 (6.8) 19.8 52.8 -3.3 14.0	Aug. $21/54$ 19:214 17.8 21.2 (24) 1.9 7.2 (6.8) 55 (80) 3 70.4 25.2 72.3 6.5 1.6 0.15 0.0 0.16 0.3 4.3 0.4 0.4 0.3 2.1 15.8 7.0 22.8 (23.4) 40.6 27.3 -2.2 11.6	No data	Aug. $31/54$ 17:212 14.4 21.8 (21) 6.5 2.2 7.4 (6.6) 8 0

Chemical Analyses of Civic Water Supplies C. NOVA SCOTIA

NEW GLASGOW	NEW WATERFORD	NORTH SYDNEY	OXFORD	PARRSBORO	PICTOU	L
Forbes Lake	Waterford Lake	Potter's Lake	Wells and springs	Streams and spring	Wells	10 .
Raw and finished water	Raw and finished water	Raw and finished water	Raw and finished water	Raw and finished water	Raw and finished water	4
Town tap	Town tap	Town tap	Town tap	Town tap	Town tap	
Sept. 7/54 17:237 18.3 21.2 (20) 3.4 1.7 7.3 (7.6) 20 0	Sept. 3/54 18:241 21.7 21.0 (25.5) 5.8 1.9 6.5 (6.0) 10 (20) 0	Sept. 1/54 17:217 20.6 21.8 (23.5) 8.2 0.4 7.5 (7.4) 10 2	Sept. 10/54 46:158 12.8 22.6 (18) 3.0 1.3 7.9 (6.3) 5 1	Aug. 19/54 15:197 14:4 23.2 (22) 1.3 7.4 (6.5) 30 0.7	Sept. 8/54 16:245 10.0 19.9 (17) 2.0 11 7.3 (7.1) 20 4 4.0	1 2 3 4 5 6 7 8 9 10
56.4 16.4 96.5 10.6 0.7	63.2 21.6 93.8 5.3 1.5	39.6 11.2 50.7 2.4 0.9	115 9.6 191 11.8 4.0	51.6 18.0 53.6 5.3 0.8	0.3 174 13.2 280 35.3 4.5	11 12 13 14 15 16 17
0.0 Trace 0.01 0.04	0.02 Trace 0.17 0.0	0.0 0.0 0.05 0.0	0.14 0.0 0.39 0.1	0.03 Trace 0.0 0.0	1.1 0.01 0.27 0.0	18 19 20 21 22
2.8 0 . 7	6.5 0.8	4.6 0.5	18.4 1.5	3.3 0.5	15.6 1.9	23 24 25
$\begin{array}{c} 0 & (0) \\ 19.4(22.7) \\ 14.3 \\ 4.0 \\ 0.05 \\ 0.8 \\ 2.0 \\ 15.9 & (18.6) \\ 13.4 & (13.2) \\ 29.3 & (31.8) \\ 45.6 \\ 16.7 \\ -1.9 \\ 11.1 \end{array}$	0 3.8 14.1 13.1 0.1 0.8 1.1 3.1 16.3 19.4 45.4 40.0 -3.7 13.9	0 9.9 3.1 7.8 0.1 0.4 1.0 8.1 1.6 9.7 25.8 47.5 -2.6 12.7	$\begin{array}{c} 0 & (0) \\ 60.8 & (64.4) \\ 10.8 \\ 21.0 \\ 0.05 \\ 0.0 \\ 9.5 \\ 45.9 & (44.6) \\ 0.0 & (0) \\ 45.9 & (44.6) \\ 108 \\ 44.3 \\ -0.8 \\ 9.5 \end{array}$	$\begin{array}{c} 0 & (0) \\ 20.8 & (22.7) \\ 1.1 \\ 3.3 \\ 0.0 \\ 0.6 \\ 4.4 \\ 16.5 \\ 0.0 \\ 16.5 \\ 29.6 \\ 29.4 \\ -2.0 \\ 11.4 \end{array}$	$\begin{array}{c} 0 & (0) \\ 127 & (127) \\ 25.1 \\ 8.7 \\ 0.1 \\ 1.6 \\ 13 \\ 104 & (104) \\ 2.6 & (2.7) \\ 107 & (107) \\ 170 \\ 23.1 \\ -0.7 \\ 8.7 \end{array}$	26 27 28 29 30 31 32 33 34 35 36 37 38 39

,

Chemical Analyses of Civic Water Supplies

C. NOVA SCOTIA

	Municipality	PORT WI	LLIAMS	SPRINGHILL	STELLARTON
	Source(s)	Well and	springs	Springs	East River
Ň		Well	Springs	Raw and	Raw and
		Raw and finis	shed water	finished water	finished water
	Sampling point	At pump	At reservoir	Town tap	Direct from river
1 2 3 4 5 6	Date of sampling Storage period (days) Sampling temperature, ⁰ C. Test temperature, ⁰ C. Oxygen consumed by KMnO ₄ Carbon dioxide (CO ₂), (calculated)	Sept. 9/54 28:244 8.9 21.7 (17) 2.1 8.0 (7.4)	Sept. 9/54 28:244 16.7 21.7 (19) 0.9 8 9	Aug. 18/54 16:198 15.0 23.2 (20) 	Sept. 8/54 16:236 16.4 21.2 (20) 2.5 1.3 7.5 (7.5)
8	Colour	0	3	8	10 10
.9	'Turbidity	0	0	1	0
10	Suspended matter, dried at 105°C				
12	Residue on evaporation, dried at 105° C	169	148	45.2	90.8
13	Ignition loss at 550° C	21.6	35.6 207	16.0	22.4
15	Calcium (Ca)	43.8	27.2	1.8	16.7
16	Magnesium (Mg)	2.0	1.8	1.6	2.2
17	Iron (Fe) Total	0.08	0.0	Trace	0.0
ĩ9	Manganese (Mn)	0.0	0.0	0.01	0.0
20	Aluminum (Al)	0.21	0.04	Trace	0.0
22	Zinc (Zn)				
23	Sodium (Na)	4.7	7.7	3,1	5.2
24	Ammonie (NU)	1.7	1.2	0.5	
26	Carbonate (CO_3)	0	2.4	0 (0)	0 (0)
27	Bicarbonate (HCO_3)	123	36.0 27.8		26.6 (27.9)
28	Chloride (Cl)	10.6	22.1	2.4	6.7
30	Fluoride (F)	0.0	0.0	0.01	0.1
31	Nitrate (NO ₃)	4.0	7.5	5.1	4.4
33	Carbonate hardness as CaCO ₃	101	33.5	11.1	21.8 (22.8)
34	Non-carbonate hardness as CaCO ₃	16.7	41.8		28.9 (28.1)
35	Sum of constituents	118 (119)	117	26.5	80.4
37	Per cent sodium	7.8	17.9	36.5	17.9
38 39	Saturation index at test temperature	+0.2 7.6	*0.4 8.1	12.5	10.3
	Remarks:				
			1		
				1	
				1	

Chemical Analyses of Civic Water Supplies C. NOVA SCOTIA (In parts per million)

SYDNEY		SYDNEY MINES TRENTON		RENTON		
Dumeresq and Middle Lakes			Purchased from North Sydney		Wells	
B	aw and finished water			Park St. well	7th St. well	⁸
				Raw and	finished water	ļ
	Town tap			At pump	At pump	
Nov. 3/50†	Nov. 14/52 †	Sept. 3/54 14:121 17.8 21.2 (23) 7.7 6.0 5.8 (4.8) 45 (50) 2 36.0 16.0 43.1 1.4 0.8 0.15 0.08 0.56 3.3 0.6 0 2.3 3.3 7.8 0.1 0.6 1.8 1.9 4.9 6.8 21.6 24.7 -5.2 16.2	See North Sydney, N.S.	4 7.7 3	3 7.8 15 44.0 10.2 2.9 0.1 0.9 (6.4 as Na (6.4 as Na (132 42 7.1 0.2 15 109 43 152 190 8.4 0 7.8	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

.

Chemical Analyses of Civic Water Supplies

C. NOVA SCOTIA (In parts per million)

(In parts per	r m1[[10n]
---------------	------------

	Municipality	TRENTON (Concl'd)	TR	URO	
		Wells	Lepper Brook and wells		
	Source(s)	Mixed wells	Lepper Brook	Wells*	
No.		Raw and finished water	Raw and fi	nished water	
	Sampling point	Town tap	Town tap	At wells	
1 2 3 4 5 6 7 8 9 10 11 12	Date of sampling Storage period (days) Sampling temperature, ⁰ C. Test temperature, ⁰ C. Oxygen consumed by KMnO ₄ Carbon dioxide (CO ₂), (calculated) pH Colour Turbidity Suspended matter, dried at 105 ⁰ C. Suspended matter, ignited at 550 ⁰ C. Residue on evaporation, dried at 105 ⁰ C.	Sept. 7/54 17:246 15.6 21.2 (18.5) 3.3 3.4 7.8 (7.3) 0 0	Aug. 19/54 15:158 17.2 23.2 (22) 2.6 7.0 (6.5) 60 1 48.8	Aug. 19/54 19:158 10.3 21.9 (17) 0.8 8.4 (7.0) 0 0	
13 14 15 16	Ignition loss at 550°C. Specific conductance, micromhos at 25°C. Calcium (Ca) Magnesium (Mg)	29.6 335 43.3 10.7	14.8 50.9 3.6 1.5	17.2 370 23.4 7.9	
18 19 20 21 22	Dissolved Manganese (Mn) Aluminum (Al) Copper (Cu)	0.51 0.0 0.37 0.0	0.30 0.02 0.0 0.08	Trace 0.0 0.06 0.0	
23 24 25	Sodium (Na) Potassium (K) Ammonia (NH.)	8.1 1.6	2.9 0.4	38.8 1.0	
26 27 28 30 31 32 33 35 37 38 37 38 39	A minofila (NT ₃) Carbonate (CO ₃) Sulphate (SO ₄) Chloride (Cl) Fluoride (Cl) Nitrate (NO ₃) Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃ Total hardness as CaCO ₃ Sum of constituents. Per cent sodium. Saturation index at test temperature Stability index at test temperature	$\begin{array}{c} 0 & (0) \\ 138 & (139) \\ 44.5 \\ 9.8 \\ 0.15 \\ 0.2 \\ 19 \\ 113 & (114) \\ 39.0 & (38.0) \\ 152 & (152) \\ 206 \\ 10.0 \\ -0.0 \\ 7.8 \end{array}$	0 (0) 16.5 (17.7) 1.9 4.2 0.0 0.8 3.8 13.5 1.7 15.2 27.6 27.8 -2.7 12.4	$\begin{array}{c} 2.6 & (0) \\ 109 & (116) \\ 40.0 \\ 30.5 \\ 0.1 \\ 3.2 \\ 16 \\ 90.9 & (93.4) \\ 0 & (0) \\ 90.9 & (93.4) \\ 209 \\ 47.7 \\ +0.2 \\ 8.0 \end{array}$	
	Remarks:			* Auxiliary supply,	

TABLE III - (Continued) Chemical Analyses of Civic Water Supplies C. NOVA SCOTIA (In parts per million)

WESTVILLE		WINDSOR		WOLFVILLE	YARMOUTH	
Middle Rive	er and wells		1	Brooks and streams		T
Middle River	Wells	- Mill La	ake	(artificial lake)	Lake George	
Raw and fin	ished water	Raw and fir	nished water	Raw and finished water	Raw and finished water	Z
At intake pump		Town t	ap	Town tap	Town tap	
Sept. 8/54 16:236 17.8 21.2 (21) 2.7 2.9 7.1 (7.5) 8 0		Dec. 21/46 8:34 	Aug. 20/54 18:173 18.3 21.9 (24.5) 0.7 6.9 (7.5) 35 (55) 0	Aug. 20/54 19:173 18.3 21.8 (24) 1.3 7.2 (6.9) 35 (40) 0	Aug. 24/54 20:219 17.8 19.4 (18) 19.0 12 5.6 (5.9) 120 2.7	1 2 3 4 5 6 7 8 9
128 24.8 215 10.2 2.8		35.0 16.0 1.3 1.0	30.0 15.6 24.8 1.0 0.3	40.8 13.2 52.8 3.6 1.5	27.8 8.0 46.3 1.7 0.6	11 12 13 14 15 16
0.0 0.0 0.0 0.0 0.0	No data*	0.01	0.12 0.0 0.05 0.05	0.24 0.0 0.13 0.23	0.03 Trace 0.04 0.04	17 18 19 20 21 22
25.6 0.8)3.2 as Na)	2.2 0.2	3.1 0.5	4.9 0.6	23
0 22.1 10.5 45.1 0.05 0.8 3.9 18.1 18.9 37.0 (38.2) 111 60.1 -2.1 11.3		$ \begin{array}{c} 0\\ 5.1\\ 4.0\\ 4.3\\ \\ 1.8\\ 1.3\\ 4.2\\ 3.1\\ 7.3\\ 19.4\\ \\ -4.5\\ 14.1\\ \end{array} $	0 3.2 2.0 2.6 0.1 0.4 1.4 2.6 1.1 3.7 12.0 51.2 -4.1 15.1	$\begin{array}{c} 0 & (0) \\ 14.4 & (17.7) \\ 5.5 \\ 4.3 \\ 0.1 \\ 0.4 \\ 3.0 \\ 11.8 \\ 3.4 \\ 15.2 \\ 29.7 \\ 28.0 \\ -2.6 \\ 12.4 \end{array}$	0 2.9 4.0 8.9 0.1 0.6 1.1 2.4 (4.4) 4.3 (5.5) 6.7 (9.6) 24.0 57.5 -5.2 16.0	25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
	* Wells dry at time of survey.					

١

Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK (In parts per million)

(1n)	paris	per	million)	

	Municipality	ALBERT	ANDOVER	ATHOLVILLE	BATH
	Source(s)	Springs	Brook and springs	Artesian well (Well No. 1)	Springs and surface run-off
No.		Raw and finished water	Raw and finished water	Raw and finished water	Raw and finished water
	Sampling point	Town tap	Town tap	Town tap	Town tap
1 2 3 4 5 6 7 8 9 10 11 12	Date of sampling Storage period (days) Sampling temperature, ⁰ C. Test temperature, ⁰ C. Oxygen consumed by KMnO ₄ Carbon dioxide (CO ₂), (calculated) pH Colour Turbidity Suspended matter, dried at 105 ^o C. Suspended matter, ignited at 550 ^o C. Residue on evaporation, dried at 105 ^o C.	Apr. 6/55 14:19 7.2 24.8 5.8 1.4 6.9 5 0 	Aug. 7/54 10:129 12.8 23.5 (20) 2.7 8.0 (8.0) 0 0.7	Jan. 17/55 11:18 4.4 17.3 1.4 1.9 8.0 5 0	Aug. 9/54 9:133 12.8 22.9 (21) 2.0 8.0 (7.4) 20 3
13 14 15 16	Ignition loss at 550°C. Specific conductance, micromhos at 25°C. Calcium (Ca) Magnesium (Mg)	7.6 37.0 2.9 0.8	20.0 288 52.7 3.7	20.0 220 29.6 3.1	20.0 212 38.0 3.0
17 18 19 20 21	Iron (Fe) Iotal Dissolved Manganese (Mn) Aluminum (Al) Copper (Cu)	0.02 Trace 0.02 0.0	0.0 0.0 0.0 0.0 0.0	0.01 0.0 0.05 0.0	0.01 0.0 0.05 0.0
23 24	Sodium (Na) Potassium (K)	2.0 0.2	2.6 0.7	9.6 0.3	1.3 0.3
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	Ammonia (NH ₃) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulphate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃ Total hardness as CaCO ₃ Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature	0 7.2 3.5 3.6 Trace 1.1 4.7 5.9 4.6 10.5 22.3 28.3 -3.2 13.3	$\begin{array}{c} 0 & (0) \\ 165 & (161) \\ 10.2 \\ 3.7 \\ 0.05 \\ 3.2 \\ 6.9 \\ 136 & (133) \\ 11.4 & (17.4) \\ 147 & (150) \\ 165 \\ 3.7 \\ +0.4 \\ 7.2 \end{array}$	0 103 7.5 12.0 0.0 0.6 7.6 84.8 1.8 86.6 121 19.3 -0.2 8.4	$\begin{array}{c} 0 & (0) \\ 121 & (129) \\ 8.5 \\ 0.7 \\ 0.05 \\ 0.8 \\ 6.1 \\ 99.2 & (106) \\ 7.9 & (3.7) \\ 107 & (109) \\ 118 \\ 2.6 \\ +0.1 \\ 7.9 \end{array}$
	Remarks:				

Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK (In parts per million)

,

					·····	
	BATHURST		CAMPBELLTON	CHATHAM	CLAIR	
Carter's Brook and Middle River		Surface run-off	Wells*	Thompson Lake	ċ	
Carter's	Brook	Middle River*	Raw and finished water	Raw and finished water	Raw and finished water	z
At pump	house	From river	Town tap	Town tap	Custom House tap	
Sept. 14/54 24:155 11.3 23.2 (18.5) 13 2.0 7.8 (6.4) 75 (80) 6 6.8 2.4 115 40.8 140 24.1	May 22/57 5:16 8.9 24.2 8.8 2.3 7.7 20 6	May 22/57 5:16 12.2 24.2 7.6 1.8 7.2 35 5 	Sept. 15/54 23:245 13.3 22.8 (16) 6.7 1.9 7.6 (6.4) 15 5 15.9 11.7 98.0 20.4 91.1 13.8	Aug. 17/54 13:171 11.1 22.9 (17) 1.1 8.2 (7.7) 0 (0) 131 30.8 192 22.8	Mar. 23/55 8:78 25.1 3.0 3.7 7.4 20 2 	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1.8 0.04 0.0 0.03 0.0	0.9 0.0 0.0 Trace	0.4 0.03 0.0 0.0 Trace	1.6 0.07 Trace 0.0 0.0	4.0 0.2 0.0 0.34 0.0	1.8 0.22 0.0 0.06 0.01	16 17 18 19 20 21
2.0 0.5	0.0 2.2 0.7	0.0 1.4 0.5	2.5 0.4	9.9 1.6	1.5 0.6	22 23 24 25
$\begin{array}{c} 0 \\ 74.8 \\ 5.2 \\ 3.4 \\ 0.04 \\ Trace \\ 4.2 \\ 61.4 \\ 6.1 \\ 67.5 \\ (68.0) \\ 78.2 \\ 6.0 \\ -0.4 \\ 8.6 \end{array}$	$\begin{array}{c} 0.0 \\ 0 \\ 71.2 \\ 5.4 \\ 1.9 \\ \hline \\ 0.4 \\ 4.8 \\ 58.4 \\ 2.4 \\ 60.8 \\ 74.2 \\ 7.2 \\ -0.6 \\ 8.9 \\ \end{array}$	0.5 0.05 0 19.9 4.7 1.1 0.2 3.8 16.3 2.6 18.9 28.9 13.4 -2.1 11.4	$\begin{array}{c} 0 & (0) \\ 46.3 & (49.2) \\ 5.0 \\ 2.1 \\ 0.0 \\ 7.2 \\ 12 \\ 38.0 & (40.3) \\ 3.0 & (0) \\ 41.0 & (40.3) \\ 61.6 \\ 11.5 \\ -2.0 \\ 10.7 \\ \end{array}$	$\begin{array}{c} 0 & (0) \\ 100 & (101) \\ 10.6 \\ 4.1 \\ 0.15 \\ 0.3 \\ 17 \\ 73.3 & (74.3) \\ 0 & (0) \\ 73.3 & (74.3) \\ 120 \\ 21.7 \\ 0 \\ 8.2 \end{array}$	0 57.9 4.5 0.4 0.05 1.2 5.9 47.5 1.6 49.1 61.4 6.1 -1.1 9.6	25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
After heavy rains	High water e	High water . * An auxiliary supply,				

Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK

(In parts per m	illion)
-----------------	---------

	Municipality		DALHC	USIE	
	Source(s)	Ch	arlo River, spring-fed	brook and surface run-	off
No.			Charlo River		Brook and surface run-off
			Raw and fin	ished water	
	Sampling point		At nump intake		At NcNeish dam
—				1	intake
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\7\\18\\9\\20\end{array}$	Date of sampling Storage period (days) Sampling temperature, ⁰ C. Test temperature, ⁰ C. Carbon dioxide (CO ₂), (calculated) pH Colour Turbidity Suspended matter, dried at 105 ⁰ C. Suspended matter, ignited at 550 ⁰ C. Residue on evaporation, dried at 105 ⁰ C. Ignition loss at 550 ⁰ C. Specific conductance, micromhos at 25 ⁰ C. Calcium (Ca) Magnesium (Mg) Iron (Fe) Total Dissolved Manganese (Mn) Aluminum (Al)	Sept. 14/54 24:239 11.3 22.8 (14) 16 2.3 7.5 (7.4) 70 (120) 6 13.3 11.8 88.8 34.0 81.0 14.2 1.2 Trace 0.0 0.0	Jan. 24/56† :3 2.6 7.8 0 2 Trace 75 27.0 2.4 Trace 	July 10/56† :13 8.2 10 2 Trace 110 19.2 1.5 0.0	Sept. 14/54 24:239 10.6 23.2 (16) 7.5 1.4 7.5 (7.2) 40 (40) 5 6.7 2.8 71.6 24.8 69.3 7.5 1.8 0.02 Trace 0.12
21 22 23	Copper (Cu) Zinc (Zn) Sodium (Na)	0.0 1.6			0.14 3.2
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39	Potassium (K) Ammonia (NH ₃) Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulphate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃ Total hardness as CaCO ₃ Total hardness as CaCO ₃ Per cent sodium Saturation index at test temperature Stability index at test temperature	0.4 0 45.4 3.5 1.0 0.0 1.2 7.3 37.2 3.2 40.4 (40.3) 52.8 7.9 -1.2 9.9	0.0 0 63.4 6.8 7.3 5.0 52 18 70 -0.5 8.8	0.2 0 65.9 4.1 3.6 3.9 54 0 54 -0.2 8.6	$\begin{array}{c} 0.4 \\ 0.4 \\ 0.6 \\ 26.0 \\ 27.7 \\ 7.4 \\ 2.2 \\ 0.0 \\ 0.4 \\ 14 \\ 21.3 \\ 22.8 \\ 4.8 \\ 4.4 \\ 26.1 \\ 27.2 \\ 49.8 \\ 20.2 \\ -1.7 \\ 10.9 \\ \end{array}$
	Remarks: † Analyses supplied by Alchem Limited, Burlington, Ont.	After heavy rains.			After heavy rains

Chemical Analyses of Civic Water Supplies D. NEW BRUNSWICK

		EDMUN	DSTON		
		Wel	ls		
Supplied by Manager N.B.		Old we	ll No. 1*	New well No. 1	1
Moncton, N.B.	· · · · · · · · · · · · · · · · · · ·	Raw and fini	shed water		t
		At pu	imps	At well	1
	Dec. 12/55 7:17	Dec. 28/55 8:14	Jan. 4/56 6:14	Oct. 23/58 7:13	
	23.2	25.5	25,8	23.0	
	43	41	5.6		
	1.8	1.2	2.7	11	
	60	55	25	5	ł
		0			
	5.8			• • • • • • • • • • • • • • • • • • • •	ł
		262	87.8	• • • • • • • • • • • • • • • • • • • •	
	129	96.4	6.8		
	286	302	123	74.3	
	45.1	46.9	20.5	8.7	
500	8.2	9.5	2.0	1.8	
Moncton, N.B.	0.11	0.42	0.12	0.01	
	7.4*	8.7*	Trace*	0.0	
	0.51	0.45	0.0	0.03	
	0.0	0.0	0.0	0.0	
	2.5	2.9	1.7	2.9	1
	0.6	0.5	0.7	0.5	
	0.3			0.1	
	139	153	65.8	28.5	
	33.8	16.2	6.7	5.7	
	10.3	10.3	1.5	1.7	
		. 0.0	0.0	0.0	
	11	4.0	4.2	7.4	
	114*	125 *	54.0	23.4	
	32.3	30.7	5.4	5.7	
	146	156	59.4	43.6	
	3.3	3,5	5.8	17.4	
	+0.4	+0.6	-0.7	-2.6	
	7.3	7.1	9.0	11.7	
	* Note varying quality content.	of water, particularly the mar	nganese	Phosphate as PO4 =0.0 ppm,	-
	content.			=0.0 ppm ,	

•

Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK

	Municipality		EDMUNDSTO	N (Continued)	
	Source(s)	Well			
No.		New well No. 1	Old well No	o, 2*	New well No. 2
			Raw and fini	shed water	· · · · · · · · · · · · · · · · · · ·
	Sampling point	At pump		At pumps	
1234567890112345678901223456789012334567	Sampling point	At pump Oct. 19/59 21:30 7.8 25.9 7.5 6.8 0 0 56.8 23.6 74.0 9.3 1.7 0.05 0.02 0.20 7.3 25.0 5.2 30.2 45.9 13.4	Dec. 28/55 8:14 25.4 12 1.1 8.3 20 0 	At pumps Nov. 13/56 13:29 28.3 28.3 28.3 28.3 194 31.5 3.7 0.13 Trace 0.0 0.24 Slight trace 0.0 0.24 Slight trace 0.0 0.24 Slight trace 0.0 0.24 Slight trace 0.0 0.24 Slight trace 0.0 0.24 Slight trace 0.0 0.24 Slight trace 0.0 0.24 Slight trace 0.0 112 6.8 1.6 0.0 1.2 9.4 91.9 1.9 93.8 112 4.5	Oct. 19/59 21:30 7.8 26.0 4 7.2 0 0 52.4 15.6 84.7 11.0 2.2 0.10 0.04 0.01 0.01 0.01 0.01 0.01 0.01
39 	Stability index at test temperature Remarks: † Analyses supplied by Alchem	Phosphate as	7.1 * Note varying quality	8.3 y of water, particularly	10.4 Phosphate as
	Limited, Burlington, Unt.	₽0 4 = 0.0 ppm.	the manganese cont	ent.	PO 4 = 0.0 ppm.

Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK

	EDI	MUNDSTON (Concluded	1)		FAIRVILLE (now Lancaster)	
		Well*				
Old well No. 3	New well	No. 3	Mixed w	ells (old)		
i	Ra	aw and finished water	.		······	ž
	At pumps	- <u></u>	Town	tap		
Dec. 28/55 8:14	Nov. 13/56 13:29	Oct. 19/59 25:30	Aug. 6/54 6:116	Jan. 10/56† :6		1 2 3
25.3	28.0	24.7	22.6 (21)	••••••		4
32 1.3 8.2 60 0	7.5 7.3 20	3.5 7.2 5 0	5.1 7.5 (7.0) 10 2	27 6.8 60 2 Trace		5 6 7 8 9
206 64.8 260 39.7 7.6 0.99 4.5 0.29 Trace 0.2 2.5 0.4 0 134 18.3 6.8 0.0 0.4 11 110 20.3 130 159 3.7 +0.4 7.4	180 23.3 6.3 1.8 0.03 0.91 0.15 Trace 0.2 2.1 0.4 0.2 0 99.5 7.6 1.7 0.0 1.2 11 81.6 2.4 84.0 104 4.9 -0.8 8.9	$\begin{array}{c} 48.8\\ 25.6\\ 73.7\\ 9.6\\ 1.9\\ 0.06\\ 0.06\\ 0.06\\ 0.0\\ 0.06\\ 0.0\\ 0.0\\$	$\begin{array}{c} 172 \\ 62.4 \\ 174 \\ 27.5 \\ 4.3 \\ 0.02 \\ 0.0 \\ 0.09 \\ \end{array}$	Trace 170 32 7.3 0.2 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.14 0.15 0 97.6 26 12 10 80 30 110 1.2 9.2	See Lancaster and Saint John, N.B.	10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 37 38 39

Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK .

()	n	parts	per	million)	
----	---	-------	-----	----------	--

	Municipality	· · · · · · · · · · · · · · · · · · ·	FREDE	RICTON	
	Source(s)	Saint John	River	Mixed wells or main	nly Wilmot Park well
No.		Raw water*	Finished water	Raw and fi	nished water
	Sampling point	At intake pump	At filter plant	At city tap, pu	mp or well reservoir
1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10	Date of sampling Storage period (days) Sampling temperature, ⁰ C. Test temperature, ⁰ C. Oxygen consumed by KMnO ₄ Carbon dioxide (CO ₂), (calculated) pH Colour Turbidity Suspended matter, dried at 105 ^o C. Suspended matter, ignited at 550 ^o C. Residue on evaporation, dried at 105 ^o C. Ignition loss at 550 ^o C. Specific conductance, micromhos at 25 ^o C. Calcium (Ca) Magnesium (Mg).	Aug. 12/54 13:50 17.2 22.2 1.6 7.3 (6.9) 45 (70) 8 	Aug. 12/54 13:139 17.5 22.7 (23) 0.3 8.4 (7.4) 25 (35) 4 (10) 10.8 3.9 98.8 23.2 133 22.0 1.5	Aug. 30/55 3:20 24.0 10 2.2 7.6 0 0 0 167 30.0 257 29.6 3.7	Feb. 13/56 14:21 8.3 22.4 2.1 7.6 5 0 141 25.6 223 24.1 3.5
17 18 19 20 22 22 22 22 22 22 22 22 22 22 22 22	Iron (Fe) Total. Dissolved. Manganese (Mn). Aluminum (Al). Copper (Cu) Zinc (Zn) Sodium (Na). Potassium (K). Ammonia (NH ₃) Carbonate (CO ₃) Bicarbonate (HCO ₃) Bicarbonate (HCO ₃) Sulphate (SO ₄). Chloride (Cl). Fluoride (F). Nitrate (NO ₃). Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ . Non-carbonate hardness as CaCO ₃ . Total hardness as CaCO ₃ . Sum of constituents. Per cent sodium. Saturation index at test temperature. Stability index at test temperature.	$\begin{array}{c} 1.5\\ 0.9\\ \end{array}\\ \begin{array}{c} 0 & (0)\\ 18.8(22.7)\\ 24.8\\ 3.9\\ \end{array}\\ \begin{array}{c} 0.6\\ 3.9\\ 15.4\\ 28.6\\ 44.0\\ (43.5)\\ 60.6\\ 5.8\\ -1.8\\ 10.9\\ \end{array}$	0.03 0.0 0.8 0.0 1.6 0.3 1.2 (0) 41.8 (42.9) 25.3 4.3 0.0 0.6 4.1 35.3 (35.2) 25.8 (27.0) 61.1 (62.2) 81.7 5.2 -0.1 8.9	0.01 0.01 0.23 0.0 9.3 3.2 0.0 0 56.1 31.0 13.0 0.0 24 9.5 46.0 43.1 89.1 157 17.6 -0.7 9.0	0.01 Trace 0.01 Trace 0.0 11.2 2.9 0.0 0 51.2 29.6 14.5 0.0 12 10 42.0 32.5 74.5 133 23.7 -0.9 9.4
	Remarks:	* After pre- chlorination. <i>See also</i> Table II, Station No. 8,			

.

Chemical Analyses of Civic Water Supplies D. NEW BRUNSWICK

FREDERICTON							
	Mixed wells or mainly Wilmot Park well						
		Raw and fini	shed water			Z	
		At city tap, pump	or well reservoir				
Mar. 15/56 33:41 7.8 23.0 1.3 7.8 5 0	Apr. 14/56 20:26 8.3 23.7 3.4 0.9 8.0 5 0	May 15/56 3:10 8.3 22.4 8.8 7.0 0 0 0	July 16/56 8:16 8.9 23.8 7.5 7.0 7.1 0 0 0 	Sept. 10/56 9:14 8.3 18.9 7.2 7.1 0 0 0 	June 7/57 7:12 10.0 25.6 7.1 0 5 139 18.4 199 20.2 3.0	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
3.7 	2.9 Trace 0.0 0.0 12.9 2.8 0.0 0 52.3 26,1 14.5 0.0 10 9.9 42.9 23.9 66.8 127 28.5 -0.5 9.0	3.0 Trace 0.04 0.0 12.8 2.6 0.0 52.4 27.4 13.0 8.0 9.7 43.0 23.2 66.2 124 28.6 -1.5 10.0	5.4 Trace Trace 0.15 0.0 0.2 12.2 2.9 0.1 0 53.4 27.7 13.3 0.0 12 11.1 43.8 27.6 71.4 132 25.9 -1.3 9.7	Trace 0.01 0.18 Slight trace 0.0 11.8 2.6 0.1 0 53.0 25.6 12.8 0.0 6.0 10 43.5 21.1 64.6 119 27.1 -1.5 10.1	0.02 0.02 0.16 12.0 2.4 0 58.6 22.8 11.2 0.0 4.8 9.6 48.1 14.6 62.7 115 28.1 -1.3 9.7	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 36 37 38 39	

Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK

(In parts per million)

-+-

	Municipality		FREDERICI	CON (Continued)	
	Source(s)	Mixed wells (Cont'd)		South side of S	aint John River
No.	30mcc(a)		Raw and fir	wilmot Par	к well
	Sampling point	At city tap o	r pump	At p	imps
$\begin{array}{c}1234567890\\111234567890\\1112341567890\\1112341567890\\22222222222223333333$	Date of sampling Storage period (days) Sampling temperature, ⁰ C. Test temperature, ⁰ C. Oxygen consumed by KMnO ₄ Carbon dioxide (CO ₂), (calculated) pH Turbidity Suspended matter, dried at 105 ^o C. Suspended matter, ignited at 550 ^o C. Residue on evaporation, dried at 105 ^o C. Ignition loss at 550 ^o C. Specific conductance, micromhos at 25 ^o C. Calcium (Ca) Magnesium (Mg). Iron (Fe) Total Dissolved Aluminum (Al) Copper (Cu) Zinc (Zn) Sodium (Na) Potassium (K) Ammonia (NH ₃) Carbonate (HCO ₃) Sulphate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Silica(SiO ₂), colorimetric Carbonate hardness as CaCO ₃ Sum of constituents Per cent sodium Saturation index at test temperature	$\begin{array}{c} \text{Sept. 16/57} \\ 4:10 \\ 8.9 \\ 23.6 \\ 1.8 \\ 1.4 \\ 7.9 \\ 5 \\ 0.3 \\ \end{array}$	Jan. 21/58 6:13 7.2 27.4 1.8 2.6 7.6 5 0.3 128 14.8 205.5 19.7 3.2 0.02 0.02 0.05 0.0 10.9 2.4 0.0 0.0 10.9 2.4 0.0 0.0 10.9 2.4 0.0 0.0 10.9 2.4 0.0 0.0 10.9 2.4 0.0 0.0 10.9 2.4 0.0 0.0 10.9 2.4 0.0 0.0 10.9 2.4 0.0 0.0 10.9 2.4 0.0 0.0 10.9 2.4 0.0 0.0 10.9 2.4 0.0 0.0 0.0 10.9 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Aug. 30/55 3:20 7.8 23.9 10 10 6.8 5 0 150 28.0 235 26.1 3.0 0.03 Trace 0.27 0.04 0.0 9.6 3.1 0.0 40.5 33.5 12.9 0.0 24 9.5 33.2 44.3 77.5 142 20.1 -1.7 10.2	Feb. 13/56 14:21 7.8 22.2
	Remarks:				

Chemical Analyses of Civic Water Supplies D. NEW BRUNSWICK

		FREDERICTO	N (Continued)		
	South side of Sai	nt John River		North side of	Saint John River
	Wilmot Par	k well		Rang	e well
		Raw and fin	ished water		
	At pu	imps		At town tap	At pump
Mar. 15/56 19:22 7.8 25.3 4.1 7.3 5 0	Apr. 14/56 20:26 7.8 23.9 3.5 1.1 7.9 5 0	May 15/56* 3:10 8,3 22.5 8,8 7.0 0 0	July 16/56 8:16 8.9 23.8 7.8 8.8 7.0 0 0	Aug. 12/54 13:152 14.2 22.7 (23) (1.9)* 8.2 (7.5) 0 (5) 0.6	Aug, 30/55 3:20 8.3 23.9 9.9 2.6 7.8 0 0
217 23.3 3.0	212 21.9 2.8	215 21.7 3.0	144 28.4 216 23.3 3.3	109 7.8 166 24.6 1.8	124 14.8 195 27.4 1.5
11.7 2.8 0.0 51.4 28.8 14.3 	Trace 0.04 Trace 0.0 12.9 2.8 0.0 0 53.3 25.4 14.2 0.0 10 9.8 43.7 22.5 66.2 126 28.6 -0.6 9.1	0.02 0.03 0.0 0.0 12.4 2.7 0.0 0 53.1 26.9 13.2 8.0 9.8 43.6 22.9 66.5 124 27.8 -1.5 10.0	Trace Trace 0.05 0.04 0.05 12.0 2.8 0.1 0 53.6 27.9 13.0 0.0 12 10 44.0 27.7 71.7 131 25.6 -1.4 9.8	Trace 0.0 0.1 0.0 8.9 0.4 0 (0) 98.6 (93.3) 7.3 0.7 0.1 0.4 12 68.8 (68.5) 0 (0) 68.8 (68.5) 105 21.7 +0.7 8.1	0.04 Trace 0.0 Slight trace 9.9 0.5 0.0 101 11.7 1.8 0.0 0.4 12 74.5 0.0 74.5 115 22.3 -0.3 8.4
		*Sampled after aeration .		*Field test at 17°C.	

.

Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK illio

(In pa	rts per	million)
--------	---------	----------

	Municipality		FREDERICTO	ON (Continued)	
			South side of Sai	nt John River	<u></u>
	Source(s)	Killarney well	Bridge St. well* (Rock well)	Saunders St. we (Gravel wa	ll - well No. 2** all well)
ž		······································	Raw and finish	ed water	
	Sampling point		At pumps		
123456789011234567890112345678901222222222222233333333333333333	Sampling point Date of sampling Storage period (days) Sampling temperature, °C Crest temperature, °C Oxygen consumed by KMnO ₄ Carbon dioxide (CO ₂), (calculated) pH Colour Turbidity Suspended matter, dried at 105°C Suspended matter, ignited at 550°C Specific conductance, micromhos at 25°C Specific conductance, micromhos at 25°C Calcium (Ca) Magnesium (Mg) Iron (Fe) Total Dissolved Sodium (Na) Potassium (K) Ammonia (NH ₃) Carbonate (CO ₃) Sulphate (SO ₄) Chloride (Cl) Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature Remarks:	Aug. 30/55 3:20 7.2 24.0 9.6 3.3 7.7 5 0 	At pumps Nov. 5/58 16:21 8.9 25.0 1.8 8.0 0 0.9 428 48.4 3.0 0.01 0.0 0.06 0.0 0.06 0.0 0.05 0 111 101 12.4 0.2 0.2 11 91.4 41.7 133.1 246.6 37.0 +0.2 7.6 * Drilled 1956 to replace Range and Killarney wells,	July 1958 26.6 2.4 6.8 7.1 5 	Sept. 22/58 35:36 9.5 24.3 24

Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK (In parts per million)

	(174	paris	per	million)
**				-

FREDERICTON (Concluded)		GRAND FALLS			HARTLAND	
South side o Saunders St. well	f Saint John River Test hole well 2-59	Brook	We	lls (new)	Springs	
(cont'd) Raw and f	inished water	Řa	w and finished water	<u></u>	Raw and finished water	Å
At	pumps	Town tap	At pu	ımps	Town tap	
Oct. 15/58	about Mar. 10/59	Aug. 6/54 6:130	Sept. 21/57	Dec. 4/57	Aug. 9/54	1
9.5	24.4	15.6 22.6 (19.5)	21.7	24.8	10.0 22.9 (19.5)	3
	1.3 2 8.0	2.8 8.0 (7.7) 30 (25)	1.9 1.9 8.2 5	1.8 2.5 8.1 5	1.0 8.3 (8.0) 0	5 6 7 8
	0	2	Clear	Clear	0.7	9
147.8	189 9.2 294 34.3 5.1	240 39.6 367 67.4 4.4	263 46.1 4.9	245 36.4 415 54.6 17.1	133 15.2 230 38.9 3.0	12 13 14 15
0.12 0.0 2.2	0.05 0.03 0.08 0.05 0.0	0.01 0.0 0.0 0.0 0.0	Trace Trace 0.02 0.0	Trace 0.01 0.07 0.0	0.01 0.0 0.01 0.01 0.0	17 18 19 20 21
0	0.0 21.6 1.1 0.0 0	2.7 0.5 0 (0)	0.0 1.8 0.6 0.0 0	0.0 6.2 3.0 0.0 0	2.5 0.5 0 (0)	22 23 24 25 26
47.4	129 36.0 5.5 0.0 Trace	175 (177) 27.6 10.4 0.1 6.0	150 10.4 3.5 0.0 1.2	213 25.8 10.7 0.0 5.0	118 (121) 10.3 2.9 0.05 8.0	27 28 29 30 31
38.9 12.3 51.2	0.2 106 0.8 107 175	5.7 144 (145) 42.5 (45.3) 186 (190) 211	6.8 123 12.3 135 149	8.0 175 31.6 207 235	7.2 96.8 (99.4) 12.6 (10.9) 109 (110) 131	32 33 34 35 36
	30.2 +0.1 7.8	3.1 +0.5 7.0	2.8 +0.5 7.2	6.0 +0.6 6.9	4.7 +0.4 7.5	37 38 39
· · · · · · · · · · · · · · · · ·			•			

Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK

	Municipality	LANCASTER*	MARYSVILL E	MILLTOWN	MONCION
	Source(s)	Spruce Lake and well	₩ells	Purchased from St. Stephen, N.B.	Surface run-off Irishtown Reservoir
No.		Raw and finished water	Raw and finished water		Raw and finished water
	Sampling point	Town tap	Town tap	- -	At pumps
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Date of sampling Storage period (days) Sampling temperature, °C. Test temperature, °C. Carbon dioxide (CO ₂), (calculated) pH Colour Turbidity Suspended matter, dried at 105°C. Suspended matter, ignited at 550°C, Residue on evaporation, dried at 105°C. Specific conductance, micromhos at 25°C. Calcium (Ca) Magnesium (Mg) Iron (Fe) Total Dissolved Aluminum (Al) Copper (Cu) Sodium (Na) Potassium (K) Ammonia (NH ₃) Carbonate (HCO ₃) Susphate (SO ₄) Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ Non-carbonate hardness as CaCO ₃ Sourd hardness as CaCO ₃ Sum of constituents Per cent sodium Saturation index at test temperature Stability index at test temperature Stability index at test temperature Remarks: † Analyses supplied by Alchem Ltd., Burlington.	See Saint John, N.B. Previously called Fairville	Aug. 13/54 12:150 10.6 22.7 (20.5) 1.2 8.1 (7.2) 0 (0) 0 	See St. Stephen, N.B.	Mar. 20/53† -:10 0.8 7.6 Slight 9 Some 49.0 0.1 0.1 0.1 0.1 0.1 0.1
		· .			
				L	<u> </u>

TABLE III - (Continued) Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK

	MONCTON (Concl'd)			NEWCASTLE	PERTH	
	Surface run	-off			Spring-fed	1
Irishtown Reservoir	McLaughlin Reservoir			Wells	Had's Brook	i
	Raw and finis	hed water		Raw and finished water	Raw and finished water	
	At pumps	At ci	ty tap	Town tap	Town tap	
Aug. 17/54 16:176 17.8 22.3 (18)	Aug. 17/54 16:176 14.1 22.3 (16)	July 9/48†	Dec. 5/56 48:168 5.6 26.3	Aug. 17/54* 20:206 16.7 22.9 (18.5)	Aug. 7/54 10:129 19.4 23.5 (23)	1 2 3 4
3.4 6.8 (7.1) 70 (100) 3	3.3 6.9 (6.7) 60 (80) 3	14 6.5 137	4.5 6.9 40 12 7.6 4.6	0.8 8.4 (6.8) 0 (0) 0 (0)	1.5 7.5 (8.0) 10 0	5 6 7 8 9 10 11
48.4 28.0 31.9 2.9 0.6	53.2 26.4 45.4 4.7 0.9	59.0 4.4 1.9	60.4 22.0 69.3 7.5 1.4	176 277 26.8 2.9	44.4 15.2 55.1 5.5 2.3	12 13 14 15 16 17
0.36 0.0 0.0 0.04	0.23 0.0 0.03 0.0		0.19 0.0 0.43 Trace 0.0	0.04 Trace 0.13 0.03	0.01 Trace 0.02 0.0	18 19 20 21 22
1.7 0.4	2.0 0.8		3.1 0.8 0.1	27.0 1.1	1.4 0.4	23 24 25
$\begin{array}{c} 0 & (0) \\ 13.2 & (13.9) \\ 1.5 \\ 1.4 \\ 0.0 \\ 0.6 \\ 0.9 \\ 9.7 \\ 0 \\ 9.7 \\ 0 \\ 9.7 \\ 16.9 \\ 25.3 \\ -3.1 \\ 13.0 \end{array}$	0 16.5 4.3 2.0 0.0 1.2 2.1 13.5 1.9 15.4 (17.0) 26.4 20.4 -2.7 12.3	0 24.4 6.8 5.2 1.6 19.0 0.0 19.0 -2.9 12.3	0.1 0 23.3 7.4 3.6 0.0 0.8 2.4 19.1 5.4 24.5 39.2 19.1 -2.2 11.3	2.4 (0) 126 (131) 20.0 11.0 0.2 Trace 11 78.8 0.0 78.8 165 42.0 +0.4 7.6	$\begin{array}{c} 0 & (0) \\ 29.0 & (30.3) \\ 3.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 7.6 \\ 23.1 & (24.4) \\ 0.0 & (0) \\ 23.1 & (24.4) \\ 35.1 \\ 11.4 \\ -1.7 \\ 10.9 \end{array}$	26 27 28 29 30 31 32 33 34 35 36 37 38 39
				* 80% of one soft well water.		

Chemical Analyses of Civic Water Supplies D. NEW BRUNSWICK

	· · · · · · · · · · · · · · · · · · ·		·		
	Municipality	PLASTER ROCK	ROTHESAY	SACKVILLE	ST. ANDREWS
ė	Source(s)	Tobique River	Brook	Artesian wells	Chamcook Lake
N		Raw and finished water	Raw and finished water	Raw and finished water	Raw and finished water
	Sampling point	Town tap	Town tap	Town tap	Town tap
1 2 3 4	Date of sampling Storage period (days) Sampling temperature, ⁰ C. Test temperature, ⁰ C.	Aug. 7/54 11:135 18.9 22.9	Aug. 14/54 13:168 15.0 21.7 (23)	Aug. 18/54 18:159 15.6 23.2 (23)	Aug. 11/54 9:145 14.4 23.4 (21)
5 6 7 8 9 10	Oxygen consumed by KMnO ₄ Carbon dioxide(CO ₂), (calculated) pH Colour Turbidity Suspended matter, dried at 105 ^o C	1.3 7.8 (8.2) 40 (55) 2	3.2 7.2 (7.0) 90 (110) 1	0.4 8.3 (7.3) 20 0.7	1.9 6.9 15 2
11 12 13 14 15 16	Suspended matter, ignited at 550°C. Residue on evaporation, dried at 105°C. Ignition loss at 550°C. Specific conductance, micromhos at 25°C. Calcium (Ca). Magnesium (Mg)	64.4 29.2 81.8 12.5 1.4	57.2 25.2 75.3 8.7 1.1	87.6 14.8 128 12.9 2.0	32.0 14.0 42.3 4.7 0.1
17 18 19 20 21 22	Iron (Fe) Iorai Dissolved Manganese (Mn) Aluminum (Al) Copper (Cu) Zinc (Zn)	0.08 0.0 0.05 0.1	0.1 0.0 0.3 0.1	0.5 0.0 0.0 Trace	0.16 Slight trace 0.2 0.92
23 24 25	Sodium (Na) Potassium (K) Ammonia (NH ₃)	1.5 0.3	2.4 0.4	5.1 0.7	2.3 0.3
26 27 28 29 30 31 32 33 4 5 36 37	Carbonate (CO ₃) Bicarbonate (HCO ₃) Sulphate (SO ₄). Chloride (Cl) Fluoride (F) Nitrate (NO ₃) Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃ . Non-carbonate hardness as CaCO ₃ . Total hardness as CaCO ₃ . Sum of constituents Per cent sodium	$\begin{array}{c} 0 & (0) \\ 46.9 & (47.9) \\ 3.6 \\ 0.6 \\ 0.10 \\ 0.6 \\ 5.1 \\ 36.9 \\ 0.0 \\ 36.9 \\ 49.0 \\ 7.9 \end{array}$	$\begin{array}{cccc} 0 & (0) \\ 30.2 & (30.2) \\ 2.2 \\ 3.4 \\ 0.5 \\ 0.6 \\ 5.9 \\ 24.8 & (24.8) \\ 1.4 & (2.8) \\ 26.2 & (27.6) \\ 40.6 \\ 15.4 \end{array}$	$\begin{array}{cccc} 0 & (0) \\ 38.8 & (40.4) \\ 17.7 \\ 3.3 \\ 0.1 \\ 0.2 \\ 19 \\ 31.8 & (33.1) \\ 8.6 & (9.8) \\ 40.4 & (42.9) \\ 80.2 \\ 20.8 \end{array}$	0 10.6 3.9 4.0 0.05 0.8 1.1 8.7 3.4 12.1 23.7 24.6
39 	Saturation index at test temperature	-0.9 9.6	-2.1 11.4	-0.5 9.3	-2.8 12.5
	Remarks:	See also Table II, Station 27,			

Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK

ST. GEORGE		SAINT JOHN					
Artesian wells Spruce Lake*		ke*		Loch Lomond**			
Raw and finished water	Ra		aw and finished water				
Town tap	Town ta	P		Town tap			
Aug. 11/54 9:145 14.4 23.4 3.7 7.3 0	Nov. 16/50† 	Aug. 13/54 12:169 18.9 22.2 (21.5) 0.4 7.3 (6.9) 15	Oct. 15/48††	Aug. 13/54 12:169 21.1 22.7 (23) 0.5 7.7 (7.3) 20	Mar. 14/57 26:99 5.0 24.1 5.8 2.5 6.8 15 2	1 2 3 4 5 6 7 8	
83.6 13.6 117 13.9 3.0	2.4 0.2	28.8 16.8 31.9 1.5 0.7	Some . 36 	30.4 18.0 42.9 4.2 0.7	46.8 24.0 44.3 4.0 1.0	. 10 . 11 . 12 . 13 . 14 . 15 . 16	
Trace 0.0	0.2	Trace 0.01 0.08 0.1	· · · · · · · · · · · · · · · · · · ·	0.2 0.01 0.2 0.2 0.2	0.0 0.0 0.31 0.0	17 18 19 20 21	
4.7 0.6	(3.7 as Na (2.3 0.2	· · · · · · · · · · · · · · · · · · ·	1.9 0.3	0.1 2.3 0.3 0.0	22 23 24 25	
$\begin{array}{c} 0 & (0) \\ 44.0 & (47.9) \\ 8 \\ 5 \\ 5.4 \\ 0.1 \\ 6.0 \\ 14 \\ 36.1 \\ 10.9 \\ 47.0 \\ 77.9 \\ 19.3 \\ -1.6 \\ 10.5 \end{array}$	0 6.1 1.9 6.4 1.3 5.0 2.6 7.6 19.1 55.5 -3.8 14.1	$ \begin{array}{c} 0\\ 3.8\\ 1.6\\ 5.4\\ 0.0\\ 0.2\\ 2.0\\ 3.1\\ 3.5\\ 6.6\\ 16.0\\ 40.0\\ -3.4\\ 14.1 \end{array} $	0 15.9 11 4.4 0.9 13 9 22 -2.3 11.7	0 12.9 2.9 4.0 0.0 0.4 1.8 10.6 2.8 13.4 (14.0) 23.2 21.4 -1.9 11.5	0 10.1 5.8 4.3 0.0 0.5 2.4 8.3 5.8 14.1 26.1 23.4 -3.0 12.8	26 27 28 29 30 31 32 33 34 35 36 37 31 39	
	* Supplies Saint John ** Supplies Saint John † Analysis supplied b †† Analysis supplied b	West and Lancaster and Saint John Eas y The Permutit Co. o y Alchem Limited.	that is everything east o f Canada, Ltd.	f Saint John River.			

Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK

	Municipality	ST. LEONARD	ST. OUENTIN	ST. STEPHEN	SHEDIAC
	Source(s)	Big Brook	Range 14 Lake	Well	No. 1 well
Ňo.		Raw and	Raw and	Raw and	Raw and
		finished water	finished water	finished water	finished water
	Sampling point	Town tap	Town tap	Town tap	At pumps
1 2	Date of sampling Storage period (days)	Aug. 6/54 6:130	Jan. 22/55 13:18	Aug. 10/54 10:154	Sept. 13/54 25:307
3 4	Sampling temperature, °C Test temperature, °C	16.7 22.6	19.1	13.3 23.4 (17)	8.9 23.2 (15)
5 6 7	Oxygen consumed by KMnO ₄ Carbon dioxide (CO ₂), (calculated)	2.5	2.3 0.7 8.1	12 6.9 (6.4)	2.8 2.8 8.0 (7.1)
, 8 9	Colour	75 (70) 4.9	15 0	20 1	7
10 11	Suspended matter, dried at 105°C Suspended matter, ignited at 550°C.	4.7 0.5			3.8 3.1
12 13 14	Residue on evaporation, dried at 105°C Ignition loss at 550°C	90.8 30.4 109	103 12.0 264	41.6 12.0 47.7	35.2 573
15 16	Calcium (Ca) Magnesium (Mg)	17.9 1.2	51.5 1.9	5.7 0.3	62.2 14.4
17 18 19	Iron (Fe) Total Dissolved	0.05	Trace 0.0	0.02 0.01	0.5
20 21	Aluminum (Al) Copper (Cu)	0.0 0.0	0.16	0.10 0.10	0.2 Trace
22 23 24	Zinc (Zn) Sodium (Na) Perassium (K)	2.6 0.4	1.0 0.4	2.8 0.4	34.2 1.8
25 26	Ammonia (NH3) Carbonate (CO3)	0	0		0 (0)
27 28 20	Bicarbonate (HCO ₃) Sulphate (SO ₄) Chloride (Cl)	59.5 3.8 2.2	4.9	3.8 1.6	64.6 13.0
30 31	Fluoride (F) Nitrate (NO ₃)	0.2 1.2	0.05 1.4	0.0	0.2 24
32 33	Silica (SiO ₂), colorimetric	5.2 48.8 0.8	3.9 133 3.4	8.9 15.5 (17.0) 0.0 (0)	7.0 149 (149) 65 9 (65 3)
35 36	Total hardness as CaCO ₃	49.6 64.0	136 146	15.5 (17.0) 34.0	215 (214) 341
37 38	Per cent sodium	10.1 -0.9	+0.4 7.3	-2.5 11.9	25.4 +0.5 7.0
	Stability index at test temperature	7.4			
	Remarks:				Well most used.
		· ·			

Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK

:

SHEDIAC (Cont'd)	SUNNY BRAE	SUSSEX		TIDEHEAD *		
Wells		Ward's Creek	Wells			
No. 2 well	Purchased from		No. 1 well Murray Sturgeon's wel	No. 2 well Harry Flann's well	No. 3 well Walter Nichol's well	.0
Raw and finished water	Moncton, N. B.	Finished water*	Raw and finished water			
At pumps		At filter plant tap		At pumps	.	
Sept. 13/54 25:155		Aug. 14/54 13:163	July 8/57	July 6/57	July 8/57	1
8.9 23.2 (16)	8.9 23.2 (16)		25.2	25.2	25.2	3
2.5 1.7 8.1 (7.3) 3		1.4 7.9 (7.9) 0 (0)	2.0 8.0	· · · · · · · · · · · · · · · · · · ·	4.0 7.9	6
0 		0				9 10 11
176 13.6 300		95.2 19.6 151	243	382	587	. 12 . 13 14
27.0 5.3	See	2.3	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	$ 1 \\ 1 $
0.03 Trace 0.24 0.0	Moneton, N.B.	0.0 0.02 0.0		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	. 19 . 20
24.8 0.8		6.6 0.7	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		. 21 . 23 . 24
0 (0) 135 (139)	•	0 (0) 66.3 (68.2)	0 136	0 193	0 227	2
11.2 18.1 0.3		3.7 0.0	2.3	7.7	57.9	29
0.0 11		0.6 9.1	3.5	15	9.4	. 3
89.2 (91.2) 0.0 (0) 89.2 (91.2)		51.1 (53.1) 0.0 (0) 51.1 (53.1) 78.2 78.2 79.2 79.2 79.2 79.2 79.2 79.2 79.2 79.2 79.2 79.2 79.2 79.2 79.2 79.2 79.2 79.2 70.20	112 9.2 121	158 26.6 184	186 54.2 240	3
37.0 +0.1 7.9		21.6 -0.6 9.1		· · · · · · · · · · · · · · · · · · ·		. 3
		* For raw water see Station No. 38, Table II.	• System not in operat	ion: above wells being o	considered for use.	

Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK

	Municipality	. TIDEHE AD (Cont'd)					
		Wells					
Чо.	Source(s)	No. 4 well Alfred Garage well	b. 5 well hool well				
~		Ra	w and finished water				
	Sampling point		At pump				
1	Date of sampling	July 8/57	J une 6/57	July 8/57			
34	Sampling temperature, ⁰ C.	25.2	21.0	25.0			
) 6 7	Carbon dioxide (CO ₂), (calculated)	4.0 8.0	3.6 8.0	8 2			
8 9	Colour		0				
10 11	Suspended matter, dried at 105°C Suspended matter, ignited at 550°C		• • • • • • • • • • • • • • • • • • • •				
12 13 14	gnition loss at 550°C.			478			
15 16	Calcium (Ca)		75.6 5.2				
17 18 19	Iron (Fe) Total Dissolved	•••••	• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·			
20 21	Aluminum (Al) Copper (Cu)						
22 23	Zinc (Zn) Sodium (Na)		6.1				
24 25 26	Ammonia (NH ₃) Carbonate (CO ₄)	0	0.0				
27 28	Bicarbonate (HCO ₃)	251	229				
29 30 31	Chioride (CI)	7.5	8.7	13			
32 33	Silica (SiO ₂), colorimetric Carbonate hardness as CaCO ₃	206	7.7 188	• • • • • • • • • • • • • • • • • • • •			
34 35 36	Non-carbonate hardness as CaCO ₃ Total hardness as CaCO ₃ Sum of constituents	14.0 220	22.3 210 251	204			
37 38	Per cent sodium		5.9 +0.6				
39	Stability index at test temperature	•	6.8				
	Remarks:	System not in operation: above	wells being considere	d for use,			

۰,

Chemical Analyses of Civic Water Supplies

D. NEW BRUNSWICK

(In parts per million)

TIDEHEAD (Concl'd)	WOODSTOCK					
Wells No. 6 well A. Gerrard's well	Saint Joh	Well, 96 feet deep				
Raw and finished water	Raw water	Finished water	Raw and finished water	Ţ		
At pump	At filter p	lant	At pump			
July 8/5.7 25.2 1.2 8.3 355 0 170 9.6 15 139 21.0 160	See Table II, Station No. 6	Aug. $9/54$ 9:133 18.3 22.9 (21) 1.5 7.1 (7.0) 0 (30) 7 (10) 6.2 2.8 80.4 18.4 119 14.7 2.1 0.02 Trace 0.2 0.0 1.5 0.3 0 (0) 11.1 (12.6) 35.0 2.4 0.05 1.2 4.4 9.1 (10.3) 36.2 (34.3) 45.3 (44.6) 67.4 6.5 -2.2 11.5	Sept. 23/54 8:20 21.5 1.6 8.2 3 0 186 19.8 306 50.0 6.7 0.02 0.06 3.3 1.4 0 168 18.2 5.1 0.0 0 168 18.2 5.1 0.0 0 137.6 14.7 152 76.8 4.5 +0.6 7.0	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 17 28 24 25 26 6 7 7 8 9 9 10 11 12 13 3 14 15 16 20 21 22 23 24 25 26 30 31 32 33 34 35 36 37 38 39 30 30 30 31 32 33 34 35 36 37 38 39 30 30 30 30 30 30 30 30 30 30 30 30 30		

.
TABLE III - (Continued)

Chemical Analyses of Civic Water Supplies E. SAINT JOHN RIVER DRAINAGE BASIN IN QUEBEC

(In parts per million)

	Municipality	AMQUI	BARRE	CABANO	CAUSAPSCAL
	Source(s)	Pearson Creek		Wells	Artesian wells
No.		Raw and finished water		Raw and finished water	Raw and finished water
	Sampling point	Town tap		Town tap	Town tap
123456789011234567890123456789012333333333333333333333333333333333333	Date of sampling	July 8/55 19:27 17.4 27.1 (26) 1.6 8.3 (8.1) 15 0 189 27.2 331 53.4 9.3 0.0 0.0 0.0 0.08 0.0 2.1 0.7 0.2 0 203 4.8 1.9 0.0 2.4 5.1 166 5.3 171 180 2.6 +0.9 (5)	See St. Cyprien, Que.	Aug. 4/54 7:79 15.0 21.8 (15.5) 3.1 7.9 (7.3) 30 2 193 20.4 297 35.8 15.0 0.02 0.0 0.21 4.3 0.7 4.3 0.7 0 141 43.0 0.9 0.2 0.2 7.7 115 35.7 151 177 57.0 0.0 7 0	$\begin{array}{c} July 8/55\\ 19:159\\ 8.9\\ 27.0\\ \\\hline \\ 1.8\\ 8.3\\ (7.5)\\ 0\\ 0\\ \\\hline \\ 238\\ 92.8\\ 412\\ 59.4\\ 13.3\\ \\\hline \\ 59.4\\ 13.3\\ \\\hline \\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.01\\ 0.02\\ \\\hline \\ 6.4\\ 1.0\\ 0\\ 8.0\\ 7.1\\ 188\\ (190)\\ 14.7\\ 14\\ 203\\ (204)\\ 230\\ 6.4\\ +1.0\\ 6.2\\ \\\hline \end{array}$
	Remarks:		<u>.</u>		· · · · · · · · · · · · · · · · · · ·
		·			

142

TABLE III - (Continued)

Chemical Analyses of Civic Water Supplies E. SAINT JOHN RIVER DRAINAGE BASIN IN QUEBEC

(ln	parts	per	mili	lion)	
-----	-------	-----	------	-------	--

							-
LAC-AU-SAUMON	NOT RE-DAME- -DU-LAC	RIVIÈRE BLEUE	ST. CAMILLE- -DE-LELLIS	STCYPRIEN	ST. ELEUTHERE	STFABIEN - DE-PANET	
Lac Angus Springs and surface run-off		Springs	Spring and well	Artesian wells	Spring	Well	
Raw and finished water	Raw and finished water	Raw and finished water	Raw and finished water	Raw and finished water	Raw and finished water	Raw and finished water	Ž
Town tap	Town tap	Town tap	At town tap	At town tap	At town tap	At town tap	
July 8/55 19:159 13.9 27.1 (23.5)	Aug. 5/54 6:117 13.3 21.8 (17)	Aug. 4/54 7:79 13.9 21.8 (15)	Mar. 6/58 5:13 5.4 23.8	Feb. 15/58 16:25 24.4	Mar. 19/58 6:12 23.2	May, 1958	1 2 3 4
1.1 8.3 (8.0) 10 0	4.0 7.6 (7.2) 75 (80) 9 4.1	2.4 8.1 (7.3) 5 2	1.2 0.5 7.6 5 0.3	1.5 8.9 7.4 5 0	1.2 2.8 8.1 0 0.4	4.8 4.2 6.9 30 0.8	5 6 7 8 9
148 63.2 252 39.7 7.6	2.6 113 14.4 154 27.2 2.7	165 9.0 281 49.0 7.8	105 16.0 169 23.3 4.0	149 16.4 269 45.7 5.3	273 20.8 433 82.0 4.9	55.8 13.4 57.6 8.2 1.0	11 12 13 14 15 16
0.0 0.0 0.08 0.0	0.09 0.0 0.27	0.002 0.0 0.21	0.02 0.02 0.0 0.0 0.0	0.01 0.0 0.08 0.0	Trace Trace 0.09 0.0	0.04 0.0 0.0 0.0	17 18 19 20 21
$ \begin{array}{c} 1.5\\ 0.6\\ 0.0\\ 0 (0)\\ 151 (154)\\ 5.4\\ 0.8\\ 0.0\\ 2.4\\ 6.2\\ 124 (126)\\ 6.5\\ 130\\ 139\\ 2.4\\ +0.6\\ 7.1\\ \end{array} $	1.4 1.2 0 (0) 95.8 (93.5) 1.5 1.7 0.4 1.2 3.9 78.6 (76.6) 0.3 78.9 88.6 3.6 -0.5 8.6	1.6 0.4 0.0 (0) 178 (174) 7.7 0.5 0.0 1.2 7.8 146 (143) 8.4 154 164 2.2 +0.5 7.3	0.4 3.2 0.4 0.05 0 86.2 9.1 2.2 0.15 0.6 15 70.7 3.9 74.6 101 8.4 -0.6 8.8	0.3 1.6 0.5 0.0 0 150 10.9 1.4 0.0 4.8 6.7 123 12.5 136 151 2.5 -0.3 8.0	0.5 3.0 0.2 0.05 0 220 42.2 4.9 0.0 1.5 7.9 180 44.3 225 256 2.8 +0.8 6.5	0.3 1.2 0.4 0.1 0 22.2 4.8 1.7 0.0 2.0 3.2 18.2 6.4 24.6 33.8 9.2 -2.2 11.3	222 233 244 255 266 277 288 299 300 311 322 333 344 355 366 37 385 355
• Or discharge from Lac Angus,	* In 1959 Lac Temiscouata was being used. See Table II, Station No. 19,						

TABLE III - (Concluded)

Chemical Analyses of Civic Water Supplies E. SAINT JOHN RIVER DRAINAGE BASININQUEBEC

(In parts per million)

			<u> </u>				
	STPAMPHILE		STE -ROSE-DU- DÉGELÉ	STESABINE	SAYABEC	VAL-BRILLANT	
Mixed wells (2)	Wells Well No. 3	Spring No. 5*	Springs	Artesian well or spring	Sauvage Creek (Lac Malfaix)	Lauzier Creek	 .
Ra	aw and finished wate	τ	Raw and finished water	Raw and finished water	Raw and finished water	Raw and finished water	Ž
At tap		At spring	Town tap	At town tap	Town tap	Town tap	
Jan.27/58 10:17	Apr. 15/58 14:21	Feb. 10/58 8:14	Aug. 5/54 6:117 13 3	Jan,28/58 9:16	July 8/55 17:152 16.7	July 8/55 17:159 17.2	1 2 3
23.0 1.6 3.3 8.0 5 0	25.6 2.6 8.2 6.5 10 0.3	21.2 1.6 2.6 8.0 5 0	21.8 (17) 	22.5 1.4 6.3 6.7 0 0	27.5 (27.5) 1.6 7.8 (7.9) 30 0	27.5 (26) 1.2 8.3 (8.1) 10 0	4 5 6 7 8 9
282 51.6 449 65.1 11.6	96.0 44.4 120 12.6 2.4	173 25.2 260 50.8 5.0	2.0 0.9 84.4 11.6 129 20.4 2.5	51.2 19.6 57.7 6.9 1.3	87.2 17.2 127 22.0 1.0	160 65.2 280 45.0 7.6	11 12 13 14 15 16
0.03 0.01 0.03 Trace 1.0 9.6 0.5 0.0 0 198 35.0 12.3 0.0 21 9.5 162 47.7 210 264 8.9 +0.6 6.8	Trace 0.0 0.04 0.0 0.0 4.3 1.2 0.15 0.0 17.8 10.5 9.0 0.0 17 3.7 14.6 26.7 41.3 70.0 17.7 -2.6 11.7	$\begin{array}{c} 0.0\\ 0.0\\ 0.0\\ 0.05\\ 0.0\\ 0.0\\ 2.2\\ 1.7\\ 0.0\\ 0\\ 158\\ 8.9\\ 2.4\\ 0.0\\ 158\\ 8.9\\ 2.4\\ 0.0\\ 148\\ 6.3\\ 129\\ 18.0\\ 147\\ 169\\ 3.1\\ +0.3\\ 8.3\\ 8.3\\ \end{array}$	$\begin{array}{c} 0.02\\ 0.0\\ 0.03\\ \cdots\\ 1.9\\ 0.6\\ \cdots\\ 0 & (0)\\ 72.2 & (70.8)\\ 3.4\\ 1.7\\ 0.2\\ 1.3\\ 4.6\\ 59.2 & (58.0)\\ 1.5 & (1.4)\\ 60.7 & (59.4)\\ 72.3\\ 6.3\\ -0.9\\ 11.3\\ \end{array}$	0.01 0.01 0.02 Slight trace 0.0 1.4 0.2 0.0 0 19.6 5.9 0.7 0.0 2.0 6.5 16.1 6.5 22.6 34.6 11.7 -2.6 11.9	$\begin{array}{c} 0.01\\ 0.0\\ 0.0\\ 0.04\\ 0.0\\ \end{array}$	$\begin{array}{c} 0.01\\ 0.0\\ 0.07\\ 0.02\\ \dots\\ 1.7\\ 0.5\\ 0.15\\ 0\\ 170\\ 3.7\\ 1.3\\ 0.0\\ 1.6\\ 6.6\\ 140\\ 3.8\\ 144\\ 152\\ 2.5\\ +0.7\\ 6.9\\ \end{array}$	17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
* Possible new so	urce of supply,	L					

DISCUSSION

The drainage basins covered by this report (Table I) represent only 2.6 per cent of Canada, even though they include four provinces and a small part (0.8 per cent) of a fifth. The entire 98,670 square miles drained, is about midway in size between the Fraser River drainage basin and that of the Churchill River system.

This drainage area includes some of the oldest settled parts of Canada and in 1956 about 11 per cent of Canada's population dwelt here, 1 per cent less than it was in 1951. The percentage population served with water by organized systems is relatively small in comparison with the percentage so served in many of the other basins studied: this is due to the rural nature of most of the area, the percentage of population dwelling in incorporated communities being relatively low. Table I shows that in 1956, 40 per cent of the population was served with water from organized systems, an increase of about 1 per cent over that of 1951. Only in Nova Scotia and in the Saint John River basin'in New Brunswick was the percentage of the population served higher than this average.

The chemical quality of the larger and industrially important rivers of the area is reported in Table II. It is believed that most surface waters not studied are similar in chemical character to nearby waters dealt with in this Table (see also Figure 2). Since the entire area lies within the same major geological region – the Appalachian – and has essentially the same climate, most rivers should be generally similar in character. Table II does show, however, sufficient differences in some watersheds to indicate significant variations in local geological and climatic conditions. Generally, surface waters range from very soft to the upper limit of medium hard although most are very soft when classified as follows:

Soft water	– up to 60 p.p.m. total hardness as CaCO ₃
Medium hard water	- 61 to 120 p.p.m. total hardness as CaCO3
Hard water	- 121 to 180 p.p.m. total hardness as CaCO3
Very hard water	- Greater than 180 p.p.m. total hardness as CaCO3
Very soft water	- Up to and including 30 p.p.m. total hardness as CaCO ₃

Mineralization in waters of this area is mostly due to the hardness salts, principally the bicarbonates of calcium and magnesium. Since waters are low in these hardness salts, or soft, they are correspondingly low in total mineral content. However, the relative content of sodium chloride is often high, especially in waters near the coast: this is believed due to the pick-up of sea water spray by rain and wind. Other rivers, especially those of Prince Edward Island, are tidal for most of their courses and their industrial usefulness is at present almost nil.

Rivers and streams of the basin rising along the south shore of the St. Lawrence River and in the Gaspé Peninsula'-the Matapedia, Restigouche, and Madawaska, for example-are harder and more mineralized than the short coastal rivers and those rising farther south in the central plateau of New Brunswick, such as the Miramichi and Salmon.

Figure 3 shows graphically the variation in water hardness of the Saint John River and its tributaries in August, 1954. Although this variation is appreciable it remains within the range of the soft water classification. Inflow of harder waters from the north (Madawaska River, etc.) and from the United States (Presquile River) is reflected in an increase in the hardness of the main Saint John River. However, the appreciable inflow from the central plateau of New Brunswick, from rivers such as the Nashwaak and Salmon quickly lowers the hardness of the main river so that near its mouth it is very soft - 25 to 30 p.p.m. hardness - even though slightly upstream the Kennebecasis River adds a somewhat harder water.

The rivers of mainland Nova Scotia are even softer than those of New Brunswick, most having a hardness of less than 10 p.p.m. as CaCO₃. Most are very short and pick-up or solution of minerals is therefore small. Once again the influence of the sea is noted in the higher ratio of sodium chloride to other salts in these very soft waters. Annapolis River, flowing for some distance through a fertile cultivated valley and protected from the sea, is characteristic of the rivers of New Brunswick, being higher in hardness and mineral content than the very soft coastal waters of eastern Nova Scotia. The rivers of Cape Breton Island also resemble closely in chemical quality those of New Brunswick.

The short rivers or streams of Prince Edward Island are tidal for much of their courses and have very little industrial application; one of the larger rivers of this area, even though sampled well upstream was still found to be tidal at all periods of the year (station No. 104).

Quality studies of surface waters on the island of Newfoundland were limited because parts of the island are difficult of access. However, it is believed that enough of the larger rivers in the more settled regions have been included (*see* Figure 2) to assume that those not studied will be generally similar in character. The surface waters studied were all very soft and low in mineralization, being very similar in quality to rivers along the east coast of mainland Nova Scotia. The relative amount of sodium chloride in these waters varies widely but it is believed that the higher ratio is again due to the influence of wind-borne sea spray.

Surface waters of the report area are of considerable interest because of their very low mineral content and consequently their very soft character. While many are highly coloured, few carry appreciable amounts of suspended matter. Tidal rivers and those flowing through heavily cultivated areas, especially in the Chignecto Isthmus and on Prince Edward Island, may at times be excessively turbid. Because of their very low mineral content, high carbon dioxide and low pH, surface waters of the area are very corrosive.

Figure 4 graphically illustrates the relationship between mineral content and discharge in the Saint John River at Hawkshaw, N.B. (Station No. 7) during the period July, 1954 to July, 1955. Spring run-off (high discharge) occurred from late March to late June, 1955, reaching a peak about early May. A corresponding drop in total hardness and mineralization occurred with rising discharge. As expected, a peak in mineralization and hardness was found in midwinter (February) when river discharge was low. In mid September, 1954 an even higher discharge occurred but was not accompanied by a corresponding decrease in mineralization. A turbidity increase paralleled this flash flood in September but no marked increase in turbidity was noted during the major spring runoff. Except for the short period of high turbidity in September, 1954, turbidity was below 10 units at all other periods studied. It is pointed out, however, that many smaller flash floods of short duration could have occurred and not been noted in the monthly sampling program; at such flood periods turbidity may have risen higher than 10 units.

Spring run-off in the Saint John River appears to be mainly due to melting snow and other run-off from streams which contain very little dissolved or suspended matter, hence low turbidity and mineralization. On the other hand floods such as that which occurred in September are probably due to heavy rainfall over much of the basin; this rapid run-off flowing over cultivated and probably freshly plowed lands picks up appreciable amounts of sediment without having time to dissolve it, and thus produces high turbidity with little change in mineralization. The extent of such rainfall is noted from Table II, where rises in turbidity and discharge are noted elsewhere on Saint John and tributary rivers. As expected, total hardness generally follows changes in total mineralization or conductivity since mineralization is due mainly to the hardness salts. The divergence of the curves in February, when discharge is low, indicates that at this period the ratio of other salts principally the alkali chlorides, has increased. While seasonal variations in hardness and mineralization are appreciable, the former ranging from 37 to 56 p.p.m. as CaCO₃, the water still remains at all times a soft water and for many industrial purposes such variations are of minor importance.

Figure 5 shows the relationship between discharge and mineralization of a typical coastal river in Nova Scotia, St. Mary's River at Stillwater (Station No. 90). Again the variations noted in hardness and mineralization are significant for most industrial and domestic uses, water hardness for example ranging only from 4 to 8 p.p.m. as CaCO₃. Divergences from, and crossing of the curves for conductivity and total hardness clearly show the effect of the solution of sodium chloride from wind-laden sea spray.

Discharge in this river from July, 1954 to late June, 1955 was variable, with peaks in October and December 1954, and in late March, 1955. Such peaks are to be expected, considering the smallness of the watershed and the consequent influence of heavy rain and snowfall. According to the data here reported, turbidity in this river is never appreciable but it is again evident that somewhat higher turbidities are found during flash floods in the fall rather than during the major spring run-off, when melting snow is the major contributor.

St. Mary's River differs from the Saint John at Hawkshaw in that mineralization was greatest during the late fall rather than midwinter. This, however, is just after the period of lowest discharge and so agrees with the relationship found between discharge and mineralization in most rivers. It will be noted that discharge, disregarding the several flash floods above-mentioned, rose from a low in September, 1954, to a peak about April, 1955. The lag in the decrease of mineralization with rising discharge in October, 1954, may be due to several factors, one being that first run-off comprises more or less concentrated waters from swamp areas.

Figure 5 indicates appreciable variation in quality, but such variations are relatively small and insignificant in so far as the usefulness of, or the need for, treatment of the water is concerned.

Figure 6 is a similar graphical presentation of a typical Newfoundland river, Gander River at Glenwood (Station No. 113). Discharge was again highest in April and May, 1955 at the period of spring run-off. Another peak in discharge occurred in mid-January 1955, rising from a low in September, 1954. Turbidity, in contrast to most other rivers, was appreciable only during the period of low discharge and remained low, as in Saint John River at Hawkshaw, during the spring run-off when melting snows caused the major rise in discharge. The rise in discharge with low turbidity in January, 1955 was doubtless due partly to a January thaw and a run-off of melting snow carrying very little suspended matter. It is difficult to account for the marked rise in turbidity in late July, 1954 unless due to some local condition which did not materially affect discharge. Hardness and conductivity again follow essentially the same curve, indicating that mineralization is essentially due to the hardness salts. However, there is sufficient variation, particularly at times of high discharge to show that run-off is a softer water, probably melted snow.

Similar graphs can be plotted for other rivers from the data of Table II and variations in quality can generally be readily related either to general or local climatic or watershed conditions.

TABLE IV

Municipal Water Supplies in the Drainage Basins

Summary of data on systems, treatment and population served in 1951 and 1956

. ~		Ser by o	ved with wa rganized sy	ater stem	Number o of	f and differe water sourc	ent types es	Estimated population in hun- dreds served with waters classed as:			
Drainage basin of	Census Year	No. of commu- nities	No. of systems	No. of sources	ground	surface	mixed	ground	surface	mixed	
Island of Newfoundland	1956	24	23	21	1.	20	0	18	1,286	0	
	1951	24	23	21	1	20	0	15	1,130	0	
Nova Scotia	1956	48	45	40	8	28	. 4	286	2,993	59	
	1951	48	45	40	8	28	4	281	2,723	43	
Prince Edward Island	1956	2	2	2	2	0	0	236	0	0	
	1951	2	2	2	2	0	0	221	0	0	
New Brunswick Saint John River	1956	18	16	15	5	8	2	382	968	17	
	1951	18	16	15	5	8	2	340	872	16	
Remainder	1956	15	14	14	8	5	1	257	230	430	
	1951	15	14	14	8	5	1	241	207	340	
Quebec Saint John River	1956	10	10	10	9	0.	1	92	0	8	
	1951	10	10	10	9	0	1	82	0	7	
Restigouche River, etc.	1956	5	5	5	1	4	0	30	81	0	
	1951	5	5	5	1	4	0	26	73	0	
	1956	122	115	107	34	65	8	1,301	5,558	514	
IUIALS	1951	122	115	107	34	65	8	1,206	5,005	406	

TABLE IV

Municipal Water Supplies in the Drainage Basins

No.	of sources trea as follows:	ted	Es serve	timated populat d with water tre follows:	tion ated as	Estimated served by water sy	population organized stem as:	Percentage of population served using		
None	Chlorination	Additional treatment	None	Chlorination	Additional treatment	in hundreds	in percentage hundreds of total		untreated waters	
10	12	1	203	1,040	61	1,304	38.2	98.6	15.6	
10	12	1	165	929	51	1,145	32.4	98.7	14.4	
14	20	6	333	1,649	1,356	3,338	48.0	89.7	10.0	
14	20	6	319	1,575	1,153	3,047	47.4	89.4	10.5	
1	1	0	69	167	0	236	23.7	0	29.2	
1	1	0	62	159	0	221	22.5	0	28.1	
8	6	1	398	935	34	1,367	57.9	70.8	29.1	
	6	1	356	840	32	1,228	54.9	71.0	28.9	
9	5	0	278	639	0	917	28.8	25.1	30.3	
9	5	0	256	532	0	788	27.0	26.3	32.5	
	1	0	91	9	0	100	17.8	0	91.0	
9	1	0	84	5	0	89	18.2	0	94.4	
4	1	0	79	32	0	111	31.9	73.0	71.7	
4	1	0	73	26	0	99	31.2	73.7	73.7	
55	46	8	1,451	4,471	1,451	7,373	40.0	75.4	19.7	
55	46	8	1,315	4,066	1,236	6,617	39.1	83.2	19.9	

Summary of data on systems, treatment and population served in 1951 and 1956

TABLE V

.

Municipal Water Supplies in the Drainage Basin

Summary of data on water hardness, 1951 and 1956

			Number of systems using waters classed as		Estimated population served with waters classed as			Percentage of total population served in each basin with waters classed as				Weighted aver-			
Drainage basin of	Census Year	Number of sources considered	soft	medium hard	hard	very hard	soft	medium hard	hard	very hard	soft	medium hard	hard	very hard	age hardness (1956) of waters (p.p.m. as CaCO ₃)
Island of Newfoundland	1956	21	20	0	0	1	1,286	0	0	18	98.6	0	0	1.4	18.5
	1951	21	20	0	0	1	1,130	0	0	15	98.7	0	0	1.3	
Nova Scotia	1956	40	36	4	0	0	3,187	151	0	0	95.5	4.5	0	0	12.9
	1951	40	36	4	0	0	2,902	145	0	0	95.2	4.8	0	0	
Prince Edward Island	1956	2	0	1	1	0	0	167	69	0	0	70.8	29.2	0	109
	1951	2	0	1	1	0	0	159	62	0	0	61.9	28.1	0	
New Brunswick Saint John River	1956	15	8	5	1	1	974	348	8	37	71.3	25.4	0.6	2.7	39.6)
	1951	15	8	5	1	1	889	307	8	24	72.4	25.0	0.7	1.9) 38.7
Remainder	1956	14	8	5	1	0	687	211	19	0	74.9	23.0	2.1	0) 37.4)
	1951	14	. 8	5	1	0	587	186	15	0	74.5	23.6	1.9	0	
Quebec Saint John River	1956	10	3	3	3	1	20	23	42	15	20.0	23.0	42.0	15.0	104) 128
	1951	10	3	3	3	1	17	17	41	14	19.1	19.1	46.1	15.7)
Restigouche River	1956	5	1	0	3	1	23	0	59	29	20.7	0	53.2	26.1) 148)
	1951	5	1	0	3	1	22	0	51	26	22.2	0	51.5	26.3	
Torale	1956	107	76	18	9	4	6,177	900	197	99	83.8	12.2	2.7	1.3	
1 / ~ 13	1951	107	76	18	9	4	5,547	814	177	79	83.8	12.3	2.7	1.2	

Much of the data on municipal water quality (Table III) and on the operation of these organized water systems are summarized in Tables IV and V. It is difficult to maintain the data on these systems up-to-date since the number of such systems changes and variations in operation or treatment of older systems are continually occurring. Differences between the number of people served with water, and the local population indicated by federal census in municipal reports can usually be traced to the fact that some water systems actually serve only a part of the total population or supply unincorporated communities outside the municipality. In the calculation of Tables IV and V an average value for population served was used in some instances.

In Table IV information on the source and treatment of 115 systems using 107 different water sources is summarized: about 61 per cent of the latter are surface water supplies, although in Prince Edward Island and New Brunswick a higher proportion of the population uses ground waters. This high use of surface waters is to be expected because of the low mineralization and satisfactory chemical quality of these waters, particularly in Nova Scotia and the island of Newfoundland.

Fifty per cent of all water sources are untreated, while 92 per cent of the waters are used untreated or only after chlorination. This reflects the rural nature of the area and the generally satisfactory quality of most surface waters.

The importance of surface waters for municipal use is further evident from Table IV in that 75 to 80 per cent of the total population served use such waters. In the province of Nova Scotia and the island of Newfoundland where the surface waters are particularly low in mineralization, over 90 per cent of the people served use these waters. In the entire area about 20 per cent of the population served use waters that are untreated, not even chlorinated.

Table V summarizes the information on water hardness in these municipal systems. Over 71 per cent of the systems and about 84 per cent of the population used soft waters in 1956; 88 per cent of the systems and 96 per cent of the population served used water with less than 121 p.p.m. hardness, i.e. soft and medium hard waters. During the period 1951 to 1956 the percentage of population so served has shown little change throughout the area.

The weighted average hardness of these municipal waters further illustrates their soft character; only in Prince Edward Island where the two systems in operation use ground waters, and in the area of the basin in Quebec where use of ground waters also predominates, does the weighted average hardness approach a medium hard water.

SUMMARY

Surface waters of the Atlantic Provinces and Saint John River basins are generally very soft, ranging to the upper limit of a medium hard water in certain regions. While mineralization and hardness within this range may vary seasonally and from river to river, these variations are relatively insignificant, except for occasional high turbidity, for most municipal and industrial uses. Higher turbidities are usually due to flash run-off from cultivated lands and are of very short duration. However, because of the geological nature and smallness of many of the watersheds, rapid and wide variations in discharge are common. At periods of low flow, rivers of this character are particularly suspectible to pollution and to changes within the watershed. Consequently, it is necessary to maintain careful control of waste disposal and of the use to which waters are put in much of the area covered by this report. There is a marked similarity in quality and relationship between discharge and quality in many of these rivers and those of coastal British Columbia (W.S.R. No. 5).

The rivers above tidal influence are suitable for most industrial uses without excessive treatment and often without any treatment. However, because of their very low mineralization, low pH and high carbon dioxide content they are particularly corrosive, and treatment is desirable to counteract such corrosion even for municipal use. Also, the rapid run-off and resultant low flow at other seasons requires adequate storage of this run-off on many rivers if they are to be used for major industrial purposes. In many rivers additional long-term studies of quality related to discharge are desirable in order to show the extremes that can be expected. Most municipalities use surface waters without appreciable treatment because of their ready availability and excellent quality. Ground waters are used only in areas where industry or population increase has affected the rivers, often by land cultivation. Such ground waters are necessarily used in other areas because available surface waters are tidal. In New Brunswick particularly, problems due to high manganese, iron and chloride content in ground waters has led to increasing consideration of surface waters.

These soft surface waters, more or less common to all coastal areas of Canada are of considerable importance to industry, especially when problems connected with discharge and corrosivity are anticipated. There is a need for a simple and effective means of combatting the corrosivity of these waters to make their use more attractive and economic to both industry and municipality.

APPENDIX A

Surface Water Sampling Locations — Island of Newfoundland, Maritime Provinces and the Saint John River Drainage Basin in Canada

Newfoundland Station No.

Station		
116	Black River near Black River	60
106	Corner Brook River at Corner Brook	56
118	Dunn's River east of Terrenceville	62
110	Exploits River at Badger	58
111	Exploits River at Grand Falls	58
114	Gander Lake at Gander	60
113	Gander River at Glenwood	50
107	Grand River (I aka) at Deer I aka	56
108	Humber River near Deer Lake	50
105	Lake St. George peer Corner Brook	50
112	Deterio Desidence Brook	56
112		58
11/	Piper's Hole River near Switt Current	60
115	Rocky River near Colinet	60
109	Sandy Lake near Buchans	58
Prince E	dward Island	
104	Hillsborough River at Mount Stewart	54
Nova Sco	ntia	
/5	Annapolis River at Lawrencetown	42
73	Avon River at Upper Falmouth	42
76	Bear River at Bear River	44
93	Bras d'Or Lake at Big Pond	52
91	Bras d'Or River at St. Peters	50
79	Carleton River near Carleton	44
82	Clyde River at Clyde River	46
100	East River at Stellarton	54
87A	Hebbs Lake near Bridgewater	48
84	Jordan River at Jordan Falls	46
71	Kennetcook River near Brooklyn	42
88	Lahave River near Bridgewater	50
78	Lake George near Yarmouth	44
92	Loch Lomond near Loch Lomond	52
74	Magee Lake near Kentville	42
97	Margaree River, North East Branch near N.E. Margaree	54
98	Margaree River, North East Branch near Margaree Forks	54
99	Margaree River. South West Branch near Margaree Forks	54
86	Medway River near Caledonia	48
87	Medway River near Mill Village	48
85	Mersey River at Milton	46
96	Middle River near Middle River	40
101	Middle Diver at Westville) کر بر م
101	Minute Alvei at Westville	54
74 00	Mula Nivel at Mallon Diluge	52
07 (0	Musquodobolt River at Musquodobolt narbour	50
50		42
103		54
83	Koseway River near Shelburne	46

APPENDIX A - (Continued)

Ŧ

Surface Water Sampling Locations — Island of Newfoundland, Maritime Provinces and the Saint John River Drainage Basin in Canada

X

۲

Nova Sco	otia (Continued)	Page
Station	No.	
95 69	Sand Lake at Glace Bay	52 42
70 77	Shubenacadie River at Shubenacadie	42 44
77	St. Croix Diver near Window	42
00	St. Cloix River hear windson	50
102	Tatamasoushe Diver pear Tatamasoushe	54
90) /6
00	Tusket River near Quinan	40
51		40
New Bru	nswick and Saint John River Drainage Basin	
14	Allagash River near Allagash, Maine, U.S.A.	18
25	Aroostook River near Washburn, Maine, U.S.A	22
26	Aroostook River near Aroostook, N.B.	24
13	Big Black River near St. Pamphile, Que	18
18	Cabano River at Cabano, Que	20
36	Canaan River at Coles Island, N.B.	28
64	Chamcook Lake near St. Andrews, N.B.	40
51A	Charlo River (Lake) near Dalhousie, N.B.	34
63	Digdeguash River near Lawrence, N.B.	40
46 <i>A</i>	Duff's Lake near Tidehead, N.B.	32
17	Fish River near Fort Kent, Maine, U.S.A.	20
12	Frontier Lake (Saint John River) at Frontier Lake, Que.	18
35	Grand Lake near Douglas Harbour, N.B.	28
62	Grand Lake Stream at Grand Lake Stream, Maine, U.S.A.	40
23	Grand River near St. Leonard, N.B.	22
22	Green River at Green River, N.B.	22
217	I Iroquois River near Edmundston, N.B.	22
39	Kennebecasis River at Norton, N.B.	28
40	Kennebecasis River hear Hampton, N.B.	30
19	Lac Temiscouata at Notre-Dame-du-Lac, Que.	20
42	Lauzier Creek near val-Brillant, Que.	30
23	Little Southwest Miramichi River at Red Bank, N.B.	30
20	Madawaska River at Ste. Rose-du-Degele, Que.	20
21	Madawaska River at Edmundston, N.B.	22
(0 (Magaguadavic River near Inomaston, N.B.	40
50	Magaguadavic River at St. George, N.B.	40
)U (A)	Main Southwest Miramichi River at Quarryville, N.B.	24 24
· 49	Main Southwest Miramichi River and Doaktown, N.D.	24
/3	Matanadia Diver at Caucanacal Que	24
4)	Matapedia River at Lacau-Saumon. Ove	30
-12.C A A	Matapedia River at Lac-au-Saumon, Que.	20
44 50	Manapeura Aiver near Marapeura, Que.	20
ەر دە	Miramichi River I ittle Southwest at Red Bank N R	26
ور ۵۷	Miramichi River, Little Southwest at Red Dank, N.D	26
	Miramichi River, Main Southwest at Ouarryville, N.B.	34
<i></i>		77

APPENDIX A - (Concluded)

PAGE

Surface Water Sampling Locations — Island of Newfoundland, Maritime Provinces and the Saint John River Drainage Basin in Canada

New Brunswick and Saint John River Drainage Basin (Continued) Station No. Miramichi River, Main Southwest near Newcastle, N.B. Miramichi River, Northwest Branch near Red Bank, N.B. Musquash River near Musquash, N.B. Nashwaak River near Taymouth, N.B..... Nashwaak River near Marysville, N.B. Nerepis River near Nerepis, N.B. Nipisiguit River near Bathurst, N.B..... Northwest Miramichi River near Red Bank, N.B. Oromocto River at Oromocto, N.B. Petitcodiac River at Salisbury, N.B. Presque'ile River at Centreville, N.B. Renous River near Renous, N.B. Restigouche River near Matapedia, Que. Restigouche River near Tidehead, N.B. Richibucto River near Harcourt, N.B. Saint John River at Dickey, Arcostook Co., Maine, U.S.A. Saint John River near Connors, N.B. Saint John River near Clair, N.B. Saint John River at Grand Falls, N.B. Saint John River at East Florenceville, N.B. Saint John River at Woodstock, N.B. Saint John River at Hawkshaw, N.B. Saint John River at Fredericton, N.B. Saint John River near Gagetown, N.B. Saint John River at Oak Point, N.B. Saint John River and Bay of Fundy at Saint John, N.B. Salmon River near Ortonville, N.B. Salmon River at Chipman, N.B. Spruce Lake near Lancaster (Fairville), N.B. St. Croix River at St. Croix, N.B. St. Croix River at Baileyville, Maine, U.S.A. St. Croix River at Milltown, N.B. St. Francis River near Estcourt, Que. St. Francis River near Connors, N.B. Tobique River at Plaster Rock, N.B. Tobique River at Arthurette, N.B. Tobique River near Andover, N.B. Upsalquitch River at Upsalquitch, N.B. Upsalquitch River at Robinsonville, N.B. Ward's Creek at Sussex, N.B. Atlantic Ocean

124	Atlantic Ocean at Herring Cove, N.S.	62
121	Atlantic Ocean at Irish Cove, N.S.	62
122	Atlantic Ocean at Mulgrave, N.S.	62
123	Atlantic Ocean at Pugwash, N.S.	62
119	Bay of Fundy (Atlantic Ocean) at Digby, N.S.	62
120	Bay of Fundy (Atlantic Ocean) at Hantsport, N.S	62

APPENDIX B

.

	Data Page	Analysis Page		Data Page	Analysis Page
Island of Newfoundland			Nova Scotia (Concluded)		
Belleoram	64	92	Glace Bay	73	107
Botwood	64	92	Granville Ferry	73	107
Buchans	65	92	Halifax	73	107
Carbonear	65	93	Hantsborder - see Hantsport	74	
Channel-Port aux Basques	65	93	Hantsport	74	113
Corner Brook	64	93	Inverness	. 75	113
Curling	64	94	Kentville	. 75	114
Deer Lake	65	94	Lawrencetown	. 75 ·	115
Fortune	65	94	Lequille	. 74	115
Fresh water	65	95	Liverpool	. 74	115
Gander Airport	66	95	Louisburg	. 75	115
Gander Townsite	66	95	Lunenburg	. 75	115
Grand Bank	67	95	Mahone Bay	. 75	116
Grand Falls	67	95	Middleton	. 76	116
Greenspond	67	96	Mulgrave	. 76	116
Harbour Grace	66	96	New Glasgow	. 77	117
Iersevside	66	96	New Victoria - see New		
Lewisporte	67	96	Waterford	. 77	117
Placentia	67	97	New Waterford	. 77	117
St Anthony	67	97	North Sydney	. 77	117
Contrate 2	60	97	Oxford	. 76	117
St. John's	68	98	Partshoro	. 76	117
Springdale	69	99	Picton	. 77	117
Stephenville	69	99	Port Williams	. 77	118
Windoor	. 0) 60	99	Receive Mines	. <i>, ,</i> 77	110
windsor			Springhill	. ,, 78	118
Prince Edward Island			Stellarton	. 78	118
Charlottetown	. 68	100	Sudney	. 70 70	110
Summerside	. 68	101	Sydney Mines	. 79 79	119
Nova Santia			Trenton	. 72 70	119
Ambasa	60	102	Truto	. // 78	120
Amnerst	. 09	102	Westwille	- 70 - 78	120
Antiopolis	. 09 60	102	Windsor	. 70	121
Reddeek	. 09	103	Wolfwille	· /) 70	121
Bladdeck	. 70	103	Vernouth	. 79	121
	. /0	103		. /9	121
	. /1 71 .	105	Now Drungwick		
Bridgewater	. /1	104	A lb oct	00	122
	. /1	105	Andower	. 00 QA	122
Destreville	. 70	105		. 00 Q1	122
	. 70	10)	Dash	. 01 01	122
	. /1	10) 10c		. OL 01	122
	. /1	105		. 01	123
	. /1	102		. 80	123
Fairview	. /2	100		. 80	123
Florence	. 72	107	Clair	. 81	123

Municipal Water Systems - Island of Newfoundland, Maritime Provinces and the Saint John River Drainage Basin in Canada

1

APPENDIX B (Concluded)

Municipal Water Systems — Island of Newfoundland, Maritime Provinces and the Saint John River Drainage Basin in Canada

	Data Page	Analysis Page		Data Page	Analysis Page
New Brunswick (Concluded)			Saint John River Drainage		
Dalhousie	81	124	Basin in Quebec		
Dieppe	82	125	Amqui	88	142
Edmundston	82	125	Barre - see St. Cyprien	88	142
Fairville	83	127	Cabano	89	142
Fredericton	83	128	Causapscal	89	142
Grand Falls	82	133	Lac-au-Saumon	89	143
Hartland	82	133	Notre-Dame-du-Lac	88	143
Lancaster	83	134	Riviere-Bleue	88	143
Marysville	83	134	StCamille-de-Lellis	. 89	143
Milltown	83	134	StCyprien	. 89	143
Moncton	84	134	StEleuthère	. 89	143
Newcastle	85	135	StFabien-de-Panet	. 90	143
Perth	85	135	StJoseph-de-la-Rivière		
Plaster Rock	84	136	Bleue - see Rivière Bleue	. 90	144
Rothesay	84	136	SteJustine	. 91	144
Sackville	85	136	StMagloire	. 91	144
St. Andrews	85	136	StPamphile	. 91	145
St. George	85	137	SteRose-du-Dégelé	. 90	145
Saint John	86	137	SteSabine	. 90	145
St. Leonard	87	138	Sayabec	. 91	145
St. Ouentin	87	138	Val-Brillant	. 91	145
St. Stephen	87	138			
Shediac	86	138			
Sunny Brae	86	139			
Sussex	87	139			
Woodstock	87	141			

l

