

CANADA

DEPARTMENT OF MINES AND TECHNICAL SURVEYS

MINES BRANCH INDUSTRIAL MINERALS DIVISION

INDUSTRIAL WATER RESOURCES OF CANADA

WATER SURVEY REPORT NO. 8

MACKENZIE RIVER AND YUKON RIVER DRAINAGE BASINS IN CANADA, 1952-53

BY

J. F. J. THOMAS

Price \$1.00 928-2,500-1957 No. 856

.

CONTENTS

PAGE

Introduction	5
Mackenzie River drainage basin	7
Yukon River drainage basin in Canada	8
Survey procedure	8
Analytical procedure	9
Description of municipal water systems in the Mackenzie River and Yukon River drainage basins in Canada	56
Discussion	74
Summary	75
Appendix A—Surface water sampling locations	
(a) Mackenzie River drainage basin	76
(b) Yukon River drainage basin in Canada	77
Appendix B—Municipal water systems within the Mackenzie River and Yukon River drainage basins in Canada	78

TABLES

I—Area and population distribution in the Mackenzie and Yukon River drainage basins in Canada	6
II—Chemical analyses of surface waters in the Mackenzie River drainage basin	14
III—Chemical analyses of surface waters in the Yukon River drainage basin in Canada	54
IV—Chemical analyses of municipal water supplies within—	
A. Mackenzie River drainage basin	62
B. Yukon River drainage basin in Canada	72
V—Municipal water supplies within the Mackenzie River and Yukon River drainage basins in Canada—summary of data on systems, treatment and population served	73
VI—Municipal water supplies within the Mackenzie River and Yukon River drainage basins in Canada—summary of data on municipal water hardness	73

FIGURES

Fig. 1.	Map showing major drainage areas studied and under study in western Canadafacing	5
Fig. 2.	Map showing the location of surface water sampling stations and municipal water supplies (in poch	cet)
Fig. 3.	Chart showing change in water hardness along the Mackenzie River system	10
Fig. 4.	Relationship between mineral content and river flow, Athabasca River at Athabasca, Alta	11
Fig. 5.	Seasonal variation in chemical quality, Mackenzie River at Fort Simpson, N.W.T	12
Fig. 6.	Relationship between mineral content and river flow, Liard River at Watson Lake, Y.T	13

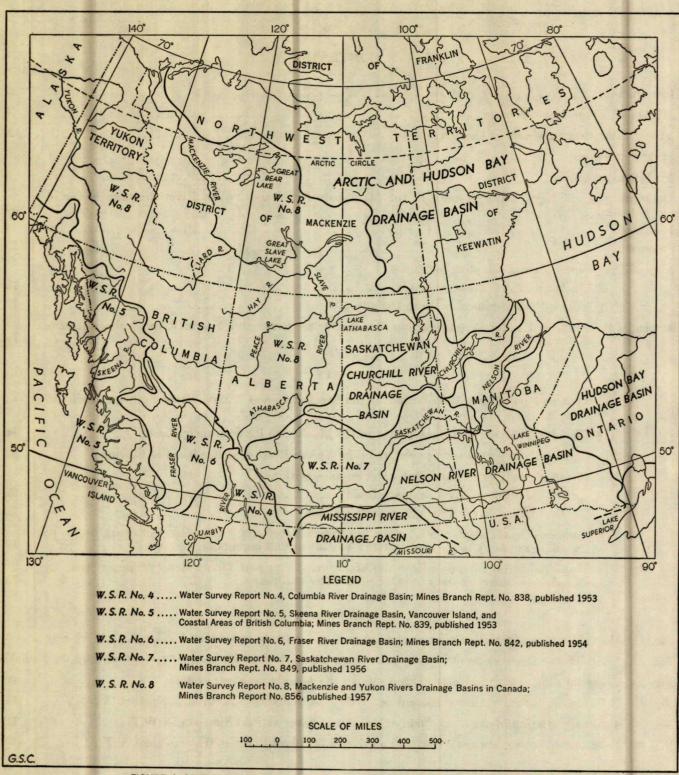


FIGURE 1. MAP SHOWING DRAINAGE BASINS UNDER STUDY IN WESTERN CANADA

INDUSTRIAL WATER RESOURCES OF CANADA

Chemical Quality of Surface and Municipal Water Supplies in the Mackenzie River and Yukon River Drainage Basins in Canada, 1952-53

INTRODUCTION

This report, the eighth in the series on the chemical quality of surface and municipal waters available for industrial and domestic use in Canada, covers the large area drained by the Mackenzie and Yukon Rivers and their tributaries.

Water Survey Report No. 1¹ outlines the aim, scope and procedure of the country-wide survey begun in 1947 and discusses with the assistance of graphs and tables the interpretation of analytical results to be recorded in the subsequent reports.

Water Survey Reports Nos. 2² and 3³ give in detail the results of studies on water quality in the drainage basins of the Ottawa River, and of the Upper St. Lawrence River-Central Great Lakes, respectively.

Figure 1 shows the area covered by this report and its relationship to other major drainage areas or basins in western Canada. It also shows the basins already reported in Water Survey Reports Nos. 4 to 7 inclusive. Similar reports for the remaining basins shown in Figure 1 are in progress.

Table I tabulates the approximate area of the drainage basins shown in Figure 1, and the ratios of population (1951 Census) and area in these basins to each other and to all of Canada.

The drainage basins covered by this report, except for the most southerly part of the Mackenzie River basin (Peace and Athabasca River basins in northern Alberta) are very sparsely settled, generally inaccessible by road and, at this date, of minor industrial importance. Therefore water quality studies were limited compared with studies carried out in many other drainage basins. In recent years appreciation of the natural resources of this large area of Canada is rapidly opening up the country, especially to mining and hydro-electric development. As a result there is an increasing need for knowledge on water resources and it is probable that more detailed studies on water quality, at least in certain parts of these river basins, may be required in the future.

The method of presentation of data in this report is essentially similar to that of previous reports of the series, no attempt being made to discuss in detail all the information recorded during the survey, although some statistics on water use and quality are presented and briefly discussed.

Tables II and III report in detail the analytical results on surface waters collected in 1952-53 and Figure 2 (in pocket) shows the location of the sampling points, listed alphabetically in Appendix A.

Figure 3 shows graphically the variation in water hardness in the Mackenzie River system as determined by these studies.

Figures 4, 5 and 6 show the variation found in chemical quality of the waters of the Athabasca River at Athabasca, Alta., Mackenzie River at Fort Simpson, Northwest Territories and the Liard River at Watson Lake, Yukon respectively. These figures illustrate the type of information that can be obtained from data supplied in Tables II and III.

Table IV reports the chemical quality of the waters supplied by organized systems to municipalities in both basins; these systems are listed alphabetically in Appendix B and their locations are shown on Figure 2 in such a manner as to classify them as to water hardness.

Table V summarizes the available information on source of water, treatment of water and population served in 1951 by organized systems and Table VI presents statistics on these systems with regard to water hardness and population served with different types of water.

A description of the few organized water systems operating up to 1952 in the basins is given under the headings, population served, ownership of system, source of water, treatment of water, storage capacity of the system, consumption of water and industrial use of the water.

Survey studies in this relatively inaccessible area of Canada were greatly facilitated by the cooperation of federal, provincial and municipal officials who by correspondence or personal contact with engineers of the department, supplied samples of the waters and information on the systems.

The assistance of the Department of Northern Affairs and National Resources, particularly district engineers, E. P. Collier and W. C. Warren, in supplying the writer with data on river and lake stage and river discharge, is gratefully acknowledged.

Acquisition of information on many of the waters in the far northern parts of the basins was made possible through the cooperation of members of the RCMP who collected and forwarded the samples.

Industrial Water Resources of Canada, Department of Mines and Technical Surveys, Ottawa, Ontario. ¹ Water Survey Report No. 1. Scope, Procedure and Interpretation of Survey Studies. Mines Branch Report No. 833, 1952. ² Water Survey Report No. 2. Ottawa River Drainage Basin. Mines Branch Report No. 834, 1952. ³ Water Survey Report No. 3. Upper St. Lawrence River-Central Great Lakes Drainage Basin in Canada. Mines Branch Report No. 837, 1954.

\mathbf{TABLE}	Ι
------------------	---

Area and Population Distribution in Mackenzie and Yukon River Drainage Basins

Drainage basins		Ар		area drair e miles)	Ied¤		Pe	r cent of t territori			or	Estin	nated poj		n hundre Census)	ds in bas	in area		provincia populatio		ritorial sin ares	
	У.Т.	N.W.T.	B.C.	Alta.	Sask.	Total	Y.T.	N.W.T.	в.с.	Alta.	Sask.	Ү.Т.	N.W.T.	в.с.	Alta.	Sask.	Total	·Y.T.	N.W.T.	B.C.	Alta.	Sask.
Yukon River in Canada	120,500	_	8,500	-	_	129,000	58-2	_	2.3	_	-	88.0	_	0			88-0	96•7		-	-	
Mackenzie River	68,260	298,770	116,000	162,855	50,815	696,700	33.0	22.9	31.6	63•8	20-2	2.3	97•9ª	138-0	1,180-9	11-1	1,430.2	2.6	61.2	1.2	12.6	0.1
Coastal Arctic	7,246	264,900	-			272, 146	3.5	20.3	-		-	0.3	8.4.		_		8-7	0.3	5-3	_		
Archipelago ⁵	-	541,083				541,083		41-5	-	-			34.31	_	_		34-3		21-4		-	
Hudson Bay	_	200, 150			2,105	202,255		15.3			8.4		19-40	_		0'	19-4		12.1		-	
Coastal Pacific	11,070		89,260¢			100,330	5-3		24.3			0.3		2,531 · 1		_	2,531.4	0.3		21.7		
Total	207,076	1,304,903	366,255	255,285	251,700		100-0	100-0	58.2	63+8	28.6	91-0 ¹	160.0	11,652.0	9,395.4	8,317•3	4,112.0	100 ·0	100.0	22.9	12.6	0.1
Per cent of Total, Canada	5•4	33.9				-					_	_									_	_

6

Includes fresh water.
District of Franklin, except for part on mainland.
Includes Vancouver Island and other coastal islands.
About 50% White, 39% Indian, 11% Eskimo.

• Only about 5% White, remainder Eskimo. About 3% White, remainder Eskimo.

About 7% White, remainder Eskimo.
 About 9% White, remainder Eskimo.

.

THE MACKENZIE RIVER DRAINAGE BASIN

The Mackenzie River system drains about 696,700 square miles of Canada, almost 43 per cent of which lies in the Northwest Territories.

It drains the following proportions of adjacent provinces:

Yukon Territory	
British Columbia	
Alberta	
Saskatchewan	
Northwest Territories (exclusive of the northern archipelago)	39%

The river, discovered by Alexander Mackenzie in 1789, forms one of the eight great river systems of the world and in North America is exceeded only by the Mississippi River system.

The drainage area and length of the Mackenzie River system are slightly greater than those of the St-Lawrence River-Great Lakes system, extending 2,635 miles in length from the mouth of the Mackenzie River in Northwest Territories, to the headwaters of the Finlay River in British Columbia. This large basin covers an area of about 16 degrees of latitude by 36 degrees of longitude, extending about 1,350 miles north to south, and varying in width from 900 miles near its centre to 100 miles near the Mackenzie River mouth.

A detailed description of the basin is given in "The Mackenzie River Basin" by Charles Camsell and Wyatt Malcolm, Memoir 108, of the Geological Survey of Canada, 1919. Much of the geological data that follow have been extracted from this report.

The Mackenzie River proper is only the northern portion of the system, about 1,000 miles in length from Great Slave Lake to the Arctic Ocean. At its source in Great Slave Lake the river is 7 to 8 miles wide, but overall has an average width of 1 mile with a gradient of 6 inches to the mile and an average flow of 500,000 cu. ft. per second. It is navigable throughout its length. South of Great Slave Lake, the Great Slave River, still part of the system, is navigable to Fort Smith, an additional 200 miles.

The entire drainage area is a large basin, its western side dipping steeply northeast and its eastern side more gently westward to a central depression, the whole tilted with a long, easy slope (2 feet to the mile) northward to the Arctic Ocean.

The eastern side of the basin lies in the Canadian Shield which extends northeast from the west end of Lake Athabasca along the valley of the Slave River to Great Slave Lake, then some 800 miles to MacTavish Bay on Great Bear Lake and then outside the basin to the Arctic Ocean. This Precambrian region varies from 80 to 250 miles wide in the basin and is made up of crystalline or metamorphic rocks. In the south, the Shield merges gradually into the Central Plains area of flat-lying Palæozoic, sedimentary rocks, but elsewhere there is a welldefined line that occurs as an escarpment north of Great Slave Lake. North of Great Bear Lake the Shield becomes lake country, the lakes being usually shallow rock basins with smooth rocky shores and few sand beaches. Rivers of the Shield have no defined valleys or graded profiles but show level stretches followed by rapids and falls; hence their importance for future water power development. The few hills rising above the Shield are never more than 1,000 feet in elevation.

There is little soil within the Shield portion of the basin although in some areas there are deposits of glacial drift or boulder clay. The area is wooded except for the extreme eastern edge and a portion lying north of the eastern end of Great Slave Lake in the basins of Clinton, Alymer and MacKay Lakes.

The western portion of the drainage basin lies in the Cordilleran region, an area varying from 20 to 200 miles wide. A definite break occurs between this area and the Central Plains region, crossing Peace River about Hudson Hope and Liard River at 125 degrees latitude. Up to this point the Cordilleran region is known as the Rocky Mountains. Northwest from the Liard River the area is known as the Mackenzie Mountains. This range touches the Mackenzie River near the mouth of the Nahanni River then follows the Mackenzie north and west around the Peel River basin and dies out at the headwaters of the Peel. From here a lower range known as the Richardson Mountains continues to the Arctic Ocean.

Several rivers of the Mackenzie River system, notably Peace and Liard Rivers, cut through the mountain ranges with headwaters on the western plateau in northern British Columbia and Yukon Territory. The Peace River flows in a wide valley at maximum elevation of about 2,000 feet through the Rocky Mountains. Such major tributary rivers as the Nahanni, Root, Gravel, Carcajou, Arctic Red and Peel rise in the Mackenzie Mountains and have relatively steep gradients to the Mackenzie. The Peel River flows at an elevation some 1,200 feet lower than the Bell River, a tributary of the Yukon River, on the other side of the mountain range.

Between the Cordilleran region and the Canadian Shield lies the Central Plains area. In this broad, level and forested plain flow the Mackenzie River and its continuing tributaries, the Slave, Athabasca, etc. This lowland area varies in width from 420 miles at Fort Vermilion to 200 miles at latitude 63 degrees. Here the river gradients are very low, the flow is slow, and there are extensive areas of lake and muskeg. In the southern part of the basin the plain is, in reality, a plateau sloping northeastward and bounded by a series of escarpments facing a lowland extending to the sea; the plateau reaches to about the northern boundary of Alberta. A somewhat similar plateau occurs again in the Peel River basin and elsewhere several irregular hills or plateaux break the lowland regions.

The Mackenzie River system includes several large lakes besides the major tributary rivers, among which are Great Bear Lake, 12,000 square miles, Great Slave Lake, 11,170 square miles and Lake Athabasca, 3,058 square miles in area. The size of these lakes is better understood when their areas are compared with well known lakes of other systems—Lake Superior, 31,820 square miles, Lake Ontario, 7,540 sq. miles and Lake Winnipegosis, 2,086 square miles in area.

Although there is considerable variation in climate within the Mackenzie River basin it has in the main a milder climate than those parts of Ontario, Manitoba and Quebec lying in the same latitude. Midsummer temperatures may rise to 85°F. but the nights are cool and frost may occur at almost any time of the year. In the northern parts of the basin the ground is permanently frozen. The summer season is short, June to September, but varies with the latitude. Precipitation is higher than on the prairies and fairly uniform (15 inches to 20 inches a year) with a snowfall of about 2 feet. Agriculture is possible in the Central Plains area and in parts of the Cordilleran region, mainly in the river valleys. Most of the northern lowland area, however, is not suited to agriculture because of muskeg and permanent frost. It is in the southern portion, in the basins of Athabasca and Peace Rivers, that extensive areas (about 10 million acres) suitable for farming are found; this is prairie and slightly-wooded land and in recent years much of the prairie land has been settled.

Because of lack of transportation, this huge basin has been little explored until recent years when the wide use of aircraft has brought about major changes and drawn to the attention of many Canadians the important resources of the area. Until recently the main activity of the basin was fur-trading and most of the settlements were developed for this purpose. Recent important finds of minerals such as lead, zinc, copper and uranium together with increasing transportation facilities will doubtless open up the basin to further development.

YUKON RIVER DRAINAGE BASIN

The Yukon River basin is about half the size of the Mackenzie River basin, and the river itself drains about 330,000 square miles, 129,000 square miles in Canada, 93 per cent of which is in Yukon Territory, the remainder in British Columbia. This system, the fifth largest in North America, has its headwaters in the Pacific coastal range in northern British Columbia, about 18 miles from tide water, yet the rivers continue about 2,300 miles (714 miles in Canada) before emptying into the Bering Sea. The system has no large lakes in Canada and the main tributary rivers are the Yukon (formerly Lewes) and Teslin Rivers.

The Canadian part of the drainage basin lies entirely within the Cordilleran region, mostly on the high plateau between the Pacific coastal ranges and the Dawson and Selwyn Mountains, which lie parallel and west of the Rocky and Mackenzie Mountains. This plateau area is one of wide valleys and rolling hills separated by deeply cut rivers. The coastal ranges are high and include Mount Logan, one of the highest mountains in North America.

Because of terrain and climate there is little farming in the area, although at one time there was considerable agricultural activity near Whitehorse and Dawson. The area is forested, usually up to 4,000 feet above sea level but growth is slow and what lumbering is done is for local uses.

As in the Mackenzie River basin, climate, distance from populated areas and lack of transportation have slowed development of this basin. One railway runs from Whitehorse 110 miles southwest to Skagway, Alaska. The Alaska Highway connects settled areas of northern British Columbia and Alberta with Whitehorse and another road runs north to Mayo, Dawson and several newer mining communities.

In recent years important finds of base metals and developments of water power have occurred. Fur-trading is also important and some gold mining is still carried on in the older goldfields of the Klondike.

SURVEY PROCEDURE

Survey studies in these and other basins were carried out where possible by the procedures detailed in Water Survey Report No. 1.

During the summer of 1951 when field studies were being made on water quality in the Saskatchewan River drainage basin¹, most of the Upper Mackenzie River basin that was accessible by road was visited, and a number of sampling locations established.

In the rest of the Mackenzie River basin and in the Yukon River basin similar sampling locations were established prior to 1952, by correspondence with municipal officials and with the cooperation of other governmental agencies, in particular the RCMP. The number of stations established in these relatively inaccessible

¹ Industrial Water Resources of Canada (Water Survey Report No. 7): Saskatchewan River Drainage Basin, Mines Branch Report No. 849, Dept. Mines and Technical Surveys, Ottawa, 1956.

areas was necessarily limited because of the high cost and difficulty of collection and shipment of samples, especially during the winter period. At certain locations samples collected during this period were sealed and held until shipment could be made after the spring break-up. Consequently, the quality data available in these basins are limited in comparison with those of previous reports in this series.

Only the southern part of the Mackenzie River basin—that portion accessible by road—was visited with the mobile laboratory when field work was carried out in the summer of 1952. At this time samples of many surface waters, not already being sampled in the monthly survey, were obtained and field-tested. These samples are reported in Tables II, III and IV, with some of the field results reported in brackets. The field tests indicate significant changes, if any, in water quality because of storage prior to complete analysis.

During the 1952 field season most of the incorporated municipalities with organized water systems were visited, and information on the operation of the systems and samples of raw and finished municipal waters were collected. Any information on new systems or changes made since then have been obtained by correspondence with municipal or provincial government officials. However it is probable that additional changes in some of the older systems as well as new installations will have occurred by the time this report is available.

Additional data on surface water quality in these basins and in the drainage basins already reported are continually being obtained. It is planned to make such information available as soon as possible in supplements to this series.

ANALYTICAL PROCEDURE

The methods of analyses and of recording analytical results during studies in these basins were essentially the same as those outlined in Water Survey Report No. 1, although some changes in the number of and method of analyses have since been made and reported in Water Survey Reports up to and including No. 7.

Experience has shown that many field tests with normal field equipment are not accurate enough. To carry out these tests satisfactorily in the field would require the use of elaborate equipment in a larger and specially designed mobile laboratory. It has been found that when certain tests can be carried out within a few days, as is now the policy, there is little significant change in most surface waters. This is also true of many ground waters with the exception of those high in iron or manganese. With the latter, collection of a separate acidified sample permits determination of the iron and manganese in solution at the time of sampling. The amount of field testing has, therefore, been cut to a minimum and now only pH, alkalinity, colour and turbidity are usually determined in the field, although at times such tests as total hardness, dissolved oxygen and iron content are carried out.

As pointed out in previous reports in this series the amount of analytical study on each water is governed to a large extent by the number of samples received, the area covered, and the laboratory personnel available to carry out the analytical work.

Because of the demand for information, each succeeding report attempts to present more information on water quality. This is made possible by the use of more sensitive and rapid analytical methods and techniques. However, the methods used are still those published in editions of "Standard Methods"¹ and A.S.T.M. Manual on Industrial Water².

As in previous reports no attempt has been made to determine weighted averages on surface waters in these basins, because flow records are not available at many sampling locations. At sampling stations where monthly samples were collected, arithmetical means have been reported for many constituents and per cent sodium, sum of constituents and saturation index calculated for these "average" waters. It is pointed out, however, that these "averages" must be used with caution since they have little meaning for waters which show very wide and rapid variations in flow and quality over the year. Inclusion of abnormal spring run-off water in the calculation will often significantly alter the average reported. The reader is referred to Water Survey Report No. 1 for interpretation of per cent sodium, saturation index and other values reported in Tables II, III and IV.

¹ Standard Methods for the Examination of Water, Sewage and Industrial Waters, 9th Edition (1946)—American Public Health Association, 1790 Broadway, New York 17, N.Y.

² Manual on Industrial Waters; 1953—American Society for Testing Materials, 1916 Race Street, Philadelphia 3, Pa.

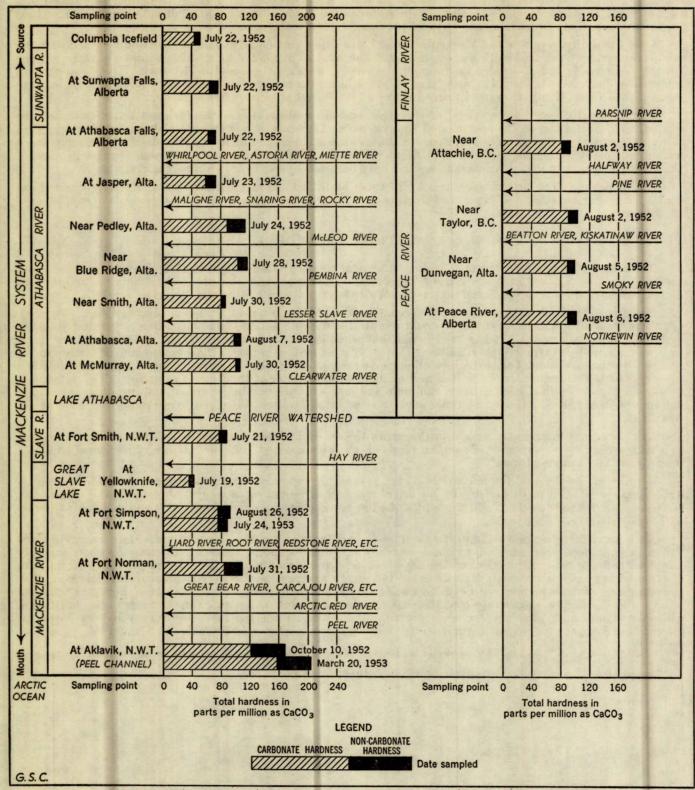
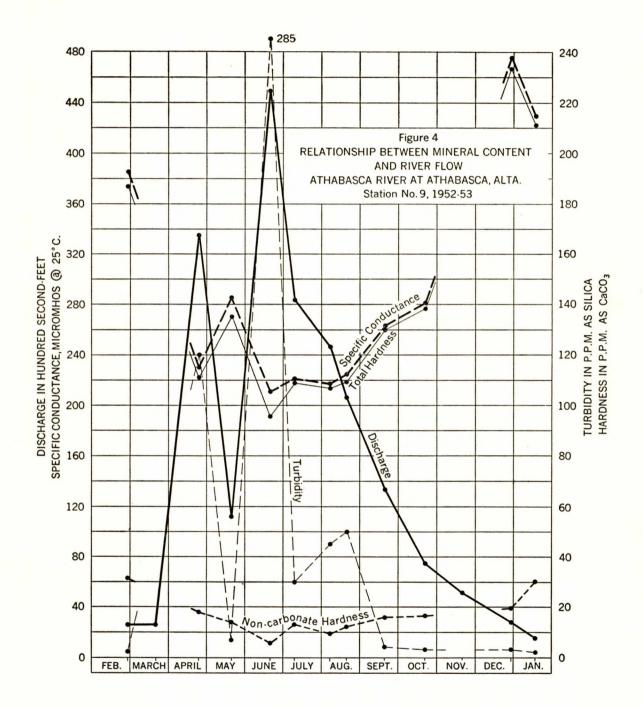
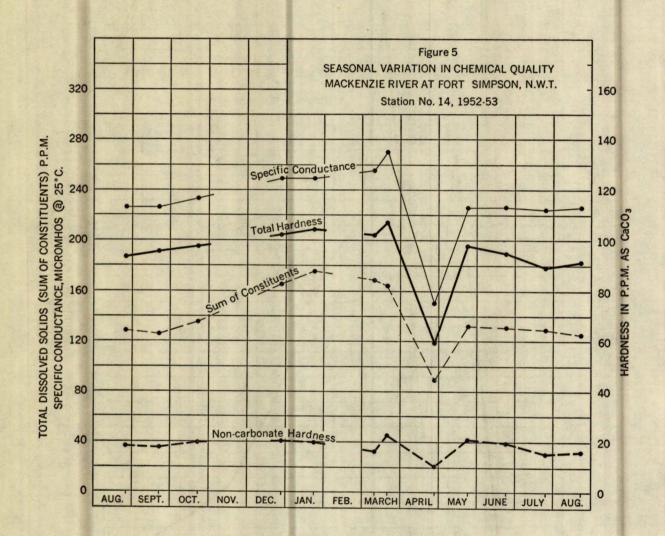
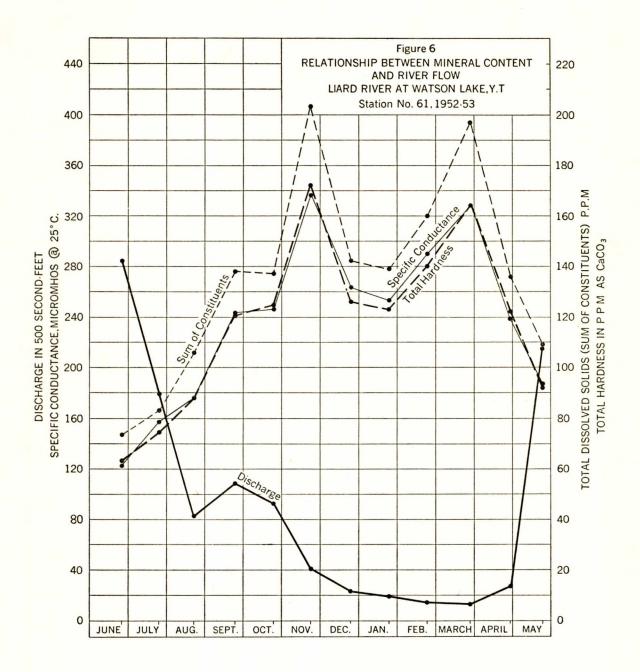





FIGURE 3. GRAPH SHOWING CHANGE IN WATER HARDNESS ALONG MACKENZIE RIVER SYSTEM

TABLE II

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin

		'Stream discharge Burnended Residue on evaporation														
-	•		rg	Stream (Secon	discharge id-feet)	Water	[[Suspa	ended tter	Specific	d d	ue on evap ried at 105° issolved sol	°C.	Loss
No.] co	Date of ollection	(afactor) (afactor) (afactor)	On sampling date	Monthly mean	tem- pera- ture	Ħď	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	K x 10 ^s at 25°C.	P.P.M.	Tons per acre- foot	Tons per day	on igni- tion at
•						1			 			STA	TION No.	1—ATHA	BASCA G	LACIER
1	July	21/51		174††	201††								, 			
2	July	22/52	8:8*	32-4	58.6	39	8.1	0	35	37	35	102	63-2	0-086	5.5	12.4
3	April	6/56	-:20	less than 0.05		32	(8·5) 8·1	(5) 5	(50) 0	••••		217	123	0-167		18-0
4		scharge at At	8:8			45	7.8	0	-30	4	40	151	STATION	No. 2—S	UNWAPT	A RIVE
5	July	22/52	8:13			47	7.9	5	25	59	57	8 143	STATION	No. 3—A7	THABASC	A RIVE:
			I	1	1	1	(8.0)	(15)	(40)	<u> </u>	I	l â	I STATION	No. 4A3	HABASC	A RIVE
6	Feb.	19/52	7:7	low‡		32	7.9	2	3			213	133	0.181		12.6
7		11 19*	8:8 7:8	low "	·····	33 34	8·0 7·8	5 5	4			215 407	• • • • • • • • • • • • •			• •,• • • • • • • •
9		12	9:11	и		36	7.6	5	1			202			•••••	••••
10	,	12	4:10	u		38	8∙0	25	15	23	22	157	102	0.139		18.8
11	June	14	10:23	high		45	8.2	10	15			136				
12	July	9	5:6	"		51	8.1	10	60	124	110	131	77-2	0.105		9.6
13 14		23* 12	8:12 8:28	"		49 52	8.0 (8.1) 8.1	5 (15) 10	35 (35) 250	53	48	141 126	85.2	0.116		28.6
			1						1	[```````						

(In parts per million)

Sept. 11.....

17 Nov. 19.....

Oct. 11...

15

16

* Not included in average. ‡ Estimate of river level or flow by sample collector.

6:14

5:9

9:21

normal

low

low

48

43

33

7-9

8.0

8.1

5

5

10

4

7

1

14

155

164

344

211

0 287

19.5

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

(In parts per million)

			alis	Iron (Fe)								Silica (SiO ₁)		dness s CO3		Ħ	index	
Calcium	Magnesium	Sodium	Potassium	Dissolved	Sulphate	Chloride	Nitrate	Fluoride	Boron	Bicarbonate	Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodiu	Saturation	No.
(Ca)	(Mg)	(Na)	(K)		(SO4)	(Cl)	(NO3)	(F)	(B)	(HCO3)	(CO3)	J					+ + -	1

COLUMBIA ICEFIELD

]								 	1
13.8	4.2	0-9	0.2	0.05	8.9	0.1	0.2	trace		47-8	2.9	1.7	7.7	51.7	56-5	3.6	 0.5	2
23.7	11-1	0.7	0.5	0.0	25.5	0.3	0.8	0.0		97-6	0	2.6	24.8	105	113	1.4	 0.1	3

at SUNWAPTA FALLS, ALTA.

19•7	6-6	1.3	0-2	0.09	13•4	0-2	0-4	0.10	 78-1	0	4.0	12.3	76-3	84.5	3.6	 0.5	4

at ATHABASCA FALLS, ALTA.

20.0	5.4	0.7	0.3	0.07	11.1	1.8	0.2	0.05		0	3.4	9·9	72.3	80.3	2.1	 1.7	5

at JASPER, ALTA.

27.2	9.3	1.0	0-2	0.07	16.2	0.7	o	0.60	 109	0	4.2	17.1	106	113				6
25.5	9.5	1.6	0.2		20.6	0.1	0.4		 107	0	5.3	14.7	103	116				7
53.6	14.6	8.8	1.2		46.9	1.3	0		 196	0	5.1	32.8	194	228				8
27.8	8.9	2.0	0.3		28.8	1.6	0		 97+6	0	5.3	26.0	106	123				9
21.7	6.8	1.0	1.3	0.11	12.3	1.0	0.2	0.10	 86.6	0	4.6	11-1	82-1	92.9			 	10
17.0	5.8	1.0	0.3		12.8	1.4	0.3		 61.7	2.4	4.8	11.6	66.2	76-6				11
17.5	5.1	0.8	0.3	0.10	12.2	0.1	0.2	trace	 64.7	0.6	4.4	10-6	64.6	72.9				12
19•4	5.8	0.9	0.3	0-06	11.9	1.1	0.10	0.0	 72.7	0	4.1	12.7	72-3	79-5	·····			13
19.0	4.0	0.4	0.2		7.8	0.4	0.3		 66.1	1.2	3-2	· 7.7	63.9	69-1				14
20.9	6-5	0.9	0.4		19•1	0-8	trace		 74.7	0	4.6	17.6	78-8	90.0				15
21.0	6.8	0.6	0.2		17.5	2•4	0.2		 76.9	0	6.2	17.3	80-3	92-8				16
45.3	12.6	9.3	1.8	0.23	35-0	1.1	0.3	0.10	 162	9.6	4.6	15-8	165	200	l	l	l	17

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

						(In	parts	per mil	lion)		•				
		rg	Stream (Secon	lischarge id-feet)	Water		1		Susp	ended itter	Specific	մ	ue on evapo ried at 105° ssolved sol	c.	Loss
No.	Date of collection	(Days)	On sampling date	Monthly mean	tem- pera- ture (°F.)	Н ^с	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	conduct- ance K x 10 ^s at 25°C.	P.P.M.	Tons per aere- foot	Tons per day	on igni- tion at 550°C.
				•							E	TATION	No. 4—AI	HABASC.	A RIVER
- 1	Dec. /52-No s	ample tak	en.									1		1	
2	Jan. /53—Nos	- ample tak	en.												
3	Feb. 4	9:36	low		35	8.5	3	1	. <i></i>		195	117	0.159		12.6
4	Mar. 4	9:23	u		33	8.2	5	1			207				
5	Apr. 4*	6:49	"		35	8.2	3 ·	5	•••••		210				
6	Average (12 samples)	7:16			40	8-1	8	30		·····	187		• • • • • • • • • • • • • •		
-	* Not included in	average.	·	·		·	•		•		S'	FATION	No. 5—АТ	HABASCA	BIVER.
-	1		1]]	1		,
7		5:129	••••••		47	7.8 (8.2)	7	10 (20)		dioxide (fie			0.144	•••••	33-6
8	Sept. 26/51	13:33		•••••	35	7.7	1	8	8.5	5.4	162	104	0.141	•••••	16.2
	* At bridge, east (of Jasper, A	Alta.								£	TATION	No. 6-AI	HABASC	A RIVER
9	July 24/52	7:14			53	8·0 (8·2)	5 (15)	25 (25)			222	140	0.190		22.2
								•	· · ·	· ·	s	TATION	NO. 7	HABASC	A RIVER
			Gauga hai	yht in feet‡			 		1]					
10	Sept. 27/51†	12:34			33	8.1	2	7	8.2	7.2	289	183	. 0.249		57.0
11		9:9	12'		33	7.6	Б	4	2.0	1.5	440	279	0.379		20.4
12		7:7	11′4″		33	8.0	Б	3	 		434		•••••		
13	Apr.—No sample t	aken.		No											
14	May 7	7:8	8′	discharge	45	7•9	20	1			287	182	0.248		30.6
15	June 12	8:25	14′	records	50	7.8	15	50			210		• • • • • • • • • • •		
16	July 11	11:18	15'	available.	60	8.0	10	25			208		• • • • • • • • • •		
17	July 28††	9:14		••••••	65	8·1	30 (25)	20 (20)	44	41 [·]	229	149	0.203	•••••	37.8
18	Aug. 18	7:18	15′	• • • • • • • • • • • • •	52	(8·1) 8·0	10	45		54	217	137	0+186	•••••	21.8
19	Sept. 12	10:17	14'	•••••	49	8.1	20	7			263			•••••	
20	Oet. 13	18:43	14'	• • • • • • • • • • • • • • •	45	8.1	5	4	8	6	290	173	0.235		14.0
21	Nov. 9	16:26	12'		33	8.2	10	3		l	349	l			

(In marts mar million)

† At ferry, 3 miles north of Blue Ridge; sample not included in average. †† From highway bridge near Blue Ridge; sample not included in average. ‡ Sample collectors report.

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

(In parts per million)

		Alk	alis	Iron (Fe)					:			Silica (SiO2)		dness Is CO3			1	Tanti	Ī
(b) (a) (a)	(Mg)	(Na)	R Potassium	Dissolved	Sulphate	(C) (D) (D)	©ON)	É Fluoride	Boron	(COOH) Bicarbonate	Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodium	+		No.
at JASI	PER, AI	LTA.—C	oncluded																
																			1 2
25•4	8.6	1.0	0.4	0.06	21.4	0.0	0.4	0.0		96.1	2.9	4.9	15.3	98-9	112				. 3
27.3	8.9	1.1	0.4		21.8	0.3	0.6			105	0	4.7	18•9	105	117				. 4
27.0	9.0	3.5	0.8		21.2	0-6	0.4		0.00	109	0	5.1	14.9	105	121				. 5
24.6	7.7	1.7	0.5		18.8	0.8	0.2			92.3	1.4	4.7	15.2	93-2	163	3.3		0-5	6
near SN	ARINO	i*, ALT.	А.														·		
23.0	5.9	0.4	0.4	0.10	22.4	0.0	0.4	0.0		83.0	0	3.3	14.0	82.0	97.3	2.3		0.5	7
22.7	7.3	1.3	0.2	0.02	17.0	1.8	0.0	0.10		83.0	0	1.8	18.6	(86•0) 86•6	93.2	3.1		0.6	8
near PI	EDLEY,	ALTA,	<u>. </u>				•			l		1		ļ	!	<u> </u>	l	1	<u> </u>
30.5	9.0	1.9	0.6	0.08	24.7	0.2	0.2	0.10		108	1.4	3.6	24.0 (24.3)	113 (116)	126	3.5		0.0	9
near BI	LUE RI	DGE, A	LTA.											· · · · · · · · · · · · · · · · · · ·					
									,										Γ
42.4	11.3	4.5	0.5	0.04	32.3	1.8	0.2	0.13		152	1.2	7.5	25.5	152	177	6.0	0.3		. 10
62.3	17.8	4.5	0.4	0.02	69.4	2.7	0.4	0.20		203	0	5.5	62.2	229	263				. 11
60.8	17-4	6.3	0.4		62.1	0+6	0.4			205	0	7.0	55.3	223	256				. 12
																			13
40.1	10.4	6-6	1.4	0.08	20.8	3.0	0.0	0.10	•••••	149	0	3.6	20.8	143	168				. 14
29.2	8.2	2.6	0.5		22.0	0-5	0.4			110	0	5-2	16.8	107	123				. 15
29+2	8.2	2.2	0-4		19.0	0.8	trace		•••••	110	0	5.2	16.7	107	119				. 16
33.0	8.3	3.3	0.5	0.09	16.7	1-0	0.2	0.20		123	2.4	7.7	12·1 (10·8)	117 (117)	133				. 17
31.0	7.1	1.9	0.5	0.10	20.8	0.2	trace	0.0		111	0	4.7	15.8	107	121				. 18
37-6	9-6	3.1	0.4		27.8	0.4	trace			128	4.1	5.6	21.6	133	152				. 19
39.0	11.0	3.6	0.6	0.20	33•4	0.5	0.3	0.0		144	0	4.4	24.5	143	164				. 20
47.9	13.7	5.0	0.5		45.7	0.3	0-4	l		163	5-5	8.0	33.2	176	207	l		l	. 21

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

			··· · · ·			(11)	parts	per mil	lion)						
		70	Stream (Seco	discharge id-feet)	Water				Susp ma	ended atter	Specific	d	lue on evap ried at 105 issolved so	Ċ.	Loss
No.	Date of collection	Storage period	On sampling date	Monthly mean	tem- pera- ture	Ħď	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	Specific conduct- anco K x 10 ⁶ at 25°C.	P.P.M.	Tons per acre- foot	Tons per day	on igni- tion at 550°C.
	·		- <u></u>	•	1 (20)	<u> </u>	<u> </u>		1 100 0.	1 000 0.					·······
. –	1	<u>-</u>]	1	1	1	1	1	ء 	STATION	No, 7A'		A RIVER
			Gauge hei	ght in feet‡											
1	Dec. 11/52	25:61	13'6"‡		32	8.4	10	2			466				
2	Jan. 13/53	10:45	12′		33	8.2	10	2			458	283	0.385		26-4
3	Average (11 samples)	12:25		·····	42	8.0	11	13			329		· · · · · · · · · · · · · · · · · · ·		
_	‡ Collectors repor	t.				·	·	<u>. </u>	<u> </u>	I	<u>ر</u> 8	TATION	No. 8-AI	THABASC	A RIVER
4	July 30/52	8:14		•••••	67	7·8 (7·9)	55 (100)	15 (25)	45	41	182	129	0.175		38.0
	• Sampled just be	low junetic	on of Slave R	iver; water n	nay be n	nostly Sla	ave Rive	r water.		·	ŝ	TATION	No. 9—A1	HABASC	A RIVER
5	Feb. 29/52	13:14	2,540†	2,623†	34	8.0	б	2		· · · · · · · · · · · · · · · · · · ·	385	234	0.318	1,602	26.0
6				2,561							••••••••••••••••••••••••••••••••••••••			•••••••••	
7	Apr. 23 May 19	17:20 10:18	33,430 11,150	17,800 15,140	39 62	7.5 8.2	40 20	129 7	15		230 285	182		· · · · · · · · · · · · · · · · · · ·	
9	_	11:18	44,870	41,340	60	7.9	60	285	10	14	200	182	0.248	5,463	30-8
10		10:27	28,370	37,400	66	8.0	20	30			221		· · · · · · · · · · · · · · · · · · ·		
11	Aug. 7*	13:26	24,610	21,280	67	8.1	30	45	64	58	217	144	0.196	9,524	19•4
12	Aug. 19	10:17	20, 580	21,280	61	(8·2) 8·1	(35) 20	(50) 50		70	224	139	0.189	7,697	31.8
13	Sept. 19	5:14	11,300	13,070	54	8.3	20	4			263				
14	Oct. 20	14:31	, 7,460	8,893	42	8.1	б	3			281				
15	NovNo sample	taken		5,108											
16	Dec. 19	17:41	2,770	2,289	32 • 5	8.7	15	3			475			· • • • • • • • • • • • •	· · · · · · · · · · · · · · · ·
17	Jan. 17/53	9:46	1,510	2,108	32 • 5	8.0	15	2			429	267	0.363	1,084	27 · 4
18	Average (10 samples)	12:25	16,398	16,194	48	8.1	22	50	· · · · · · · · · · · · · · · · · · ·	 	300	•••••	-		

(In parts per million)

† Ice conditions Oct. 22/51 to April 19/52; Nov. 6/52 to April 30/53.

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

(In parts per million)

		Alk	alis	Iron (Fe)								Silica (SiO ₂)		dness ¹⁸ CO3		g	index	
Calcium	Magnesium	Sodium	Potassium	Dissolved	Sulphate	Chloride	Nitrate	Fluoride	Boron	Bicarbonate	Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodi	Saturation	No.
(Ca)	(Mg)	(Na)	(K)		(SO4)	(Cl)	(NO3)	(F)	(в)	(HCO ₃)	(CO3)			Ì			+ 1 -	.

near BLUE RIDGE, ALTA .-- Concluded

66 • 1 63 • 5	18•1 18•0	6.5 6.0	0·8 0·7	0.05	62.3 64.3	0·8 0·6	0.3 0.6	0.15	0-00	221 223	8.0 0	8·7 6·2	44•7 49•9	240 233			·····
46.1	12.7	4.4	0.6		41.5	0.9	0.3			161	1.6	5.8	32•3	167	193	5.4	 0•4

near SMITH*, ALTA.

24.6 6.3	4.7	1.3	0.16	14.0	1-1	0.2	0.40	97·6 (95·2)	0 (0)	6-9	7·1 (8·9)	87·1 (86·9)	108	10.3		0.3	4
----------	-----	-----	------	------	-----	-----	------	----------------	-------	-----	--------------	----------------	-----	------	--	-----	---

at ATHABASCA, ALTA.

51.1	14.5	8.0	1.2	0.02	46.7	1.2	0.6	0.20		190	0	4.7	31.1	187	222]]		. 5
•••••			• • • • • • • • •																. 6
33.9	6.3	3.0	1.8		26.0	0.8	1.4			112	0	5.8	18.5	111	134				. 7
38.9	9.2	7.5	1.7	0.04	27-9	1.4	0.1	0.30	0.02	145	1.2	5.8	13.7	135	166				. 8
29.0	5.6	4.3	1.4		12.6	1.6	0.6			110	0	6.5	5.6	95.6	\$16				. 9
31.2	7.6	3.3	0.6		17.1	0.2	0.0	0.20		113	2.4	6.4	12.9	109	125				. 10
31.2	7.0	4.0	1.1	0.15	17.6	0.4	0.3	0.20		114	2.4	8.0	9.9	107	128				. 11
31.2	7-6	3.4	0.8	0.08	18.6	0.3	0.2	0.10	0.00	112	3.1	5.9	12.0	109	127				. 12
37.4	9.0	4.7	0.9		24.3	0.7	0-2			129	5.0	4.8	15.8	130	151				. 13
38.3	10.3	5.1	1.0		25.1	1.4	0.4			138	4.8	3.4	16.8	138	158				. 14
																			15
64.6	17.4	10.8	1.8]	45.9	1.0	0.7			260	0	6.7	19-9	233	277				. 16
57.7	16-2	8.8	1.7	0.10	50.5	1.3	0.7	0.15	0.00	220	0	6.0	30.1	211	252				. 17
41.3	10.4	5-9	1.3		29.5	1.0	0.5			153	1.7	5.6	17.6	146	173	8.0		0.4	18
11 0																			

* Not included in average.

TABLE II---Continued

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

		g	Stream of (Secon	lischarge d-feet)	Water				Suspa ma	ended tter	Specific	dı	ue on evap ried at 105° ssolved sol	°C.	Loss
No.	Date of collection	Storage perio (Days)	On sampling date	Monthly mean	tem- pera- ture (°F.)	Щď	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	K x 10 ⁶ at 25°C,	P.P.M.	Tons per acre- foot	Tons per day	on igni- tion at 550°C.

(In parts per million)

STATION No. 10-ATHABASCA RIVER †

				levations feet										
1	May 31/52	2:425	790-13		63	8.1	10	40	61	56	245	152	0.207	 29.2
2	June-No sample	taken												
3	July 30	8:16	791-12		71	8.1	50	40			219	•••••	· · · · · · · · · · · · · · · · · · ·	
4	Aug.	•												
5	Sept. No sampl	es taken.												
6	Oct.			l										
7	Nov. 13/52	11:15	no re	cord	43	8.2	25	4	5+4	4.0	3 5 2	216	0.294	 29.0
8	Dec. 13	10:35	'	"	33	8.5	20	2	·····		452			
9	Jan. 27/53	10:59		"	32	8.1	10	2		[·····	456	[[······.

Maximum water elevation, June 26/53.

Minimum water elevation, Oct. 31/53. † Sometimes called Snye River at this location.

STATION No. 11-SLAVE RIVER

					levations feet										
10	Mar.	31/52	259;294	no reco	ord, ice	32.5	7.8		0	••••		523			
11	Apr.	30	229:264	587.12†		33	7.7		heavy	· <i>·</i> ······		302			
12	June	1	198:233		•••••	52	7.8	0	u			213			
13	June	23	10:14	592.70†		56	7.7		500			205	138	0.188	 59.4
14	July	21	8:25	591·92†	91.92† 61		7.8	30	60			191			
15	Aug.	18	11:22	589 ·72 †	89·72† 61		7.7	20	35			182			
16	Sept.	19	5:19	587.96†	589•72†		7.9	15	25	60	55	193	118	0.160	 15.6
17	Oct.	20	11:25	no rec	ord, iee	34	7.9	20	40			208			
18	Nov.	. 19	8:16		u	33	7.7	10	10			235			
19	Dec.	19	17:57		u	32	7.8	15	15	19	17	216	129	0.175	 19-2
20	Jan.	20/53	8:28	658-50††	658•50††		8.3	15	15			329			
21	Fcb.	18	9:37	656-56††		33	7.8	15	. 8			353			
22	Mar.	18*	14:66	655-93††		34	8.1	15	10	14	11	378	226	0.307	 25.6

 † Records above Mountain Rapids,

 †† Records at Fitzgerald: at Fitzgerald (Maximum water elevation, June 15/53-665.06 feet.

 * Not included in avorago.

 Minimum water elevation, March 30/53-655.76 feet.

TABLE II—Continued Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin—Continued (In parts per million)

		Alk	alis	Iron (Fe)								Silica (SiO ₂)	Haro A Cao	lness s CO3		Ħ		XaDur	
Calcium	Magnesium	Sodium	Potassium	Dissolved	Sulphate	Chloride	Nitrate	Fluoride	Boron	Bicarbonate	Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodium	ξ	Asturation Mook	No.
(Ca)	(Mg)	(Na)	(K)		(SO4)	(Cl)	(NO3)	(F)	(B)	(HCO3)	(CO3)				<u> </u>		+	<u> </u>	
•+ FOR	ጥ አልሮ	MURRA	V ALT	• 4															
				1			I	1		1		<u> </u>		I				1	<u> </u>
31.6	9.1	6.4	1.2	0.07	21.7	1.6	0.4	0.20	0.03	124	1.2	4.1	12-2	116	138	10.6	0.2		1
																			2
32.9	7.0	5.1	1.0		12.6	0.9	0.2	0.40		117	2.4	6.6	6.0	106	127	9-4	0.2		3
																			4
																			5
																			6
44.5	12 • 4	11.0	1.7	0.03	32.9	3.5	0.2	0.15		178	3.1	5.4	11.0	162	203	12.7	0.5		7
59.0	16-4	16.4	2.0		46.3	2.8	0.6			224	11-3	5.1	12-3	215	270	14.1	1.1	. .	8
59·3	17.2	14.8	2.1		50.2	1.4	1.1			241	0	6.7	21.2	219	271	12.7	0.7		9

at FORT SMITH, N.W.T.

																			-
52.0	11.9	35.4	1.0		60.0	42.2	1.8			169	0		40.5	179	287		•••••		10
37.4	8.2	10.0	2.4		37.0	6.8	3.2			124 ·	0		25.2	127	166			• • • • • • • • •	11
29.2	5.2	0.0	0.8		18.7	7.6	0.8			103	0		9.5	94-1	122				12
31.5	5.4	3.4	1.7	0.20	13.8	3.3	0.4			111	0	3.1	9.8	101	118				13
25.7	5.7	4.8	1.1		15.0	4.2	0.3	0.20		93·2	0	5-0	11.1	87.5	108				14
29.4	5.1	5.4	0.9		13.2	5.0	0-6		0.00	87.8	0	5.8	10.0	82.0	104				15
23.8	5.3	6.7	1.4	0.04	16.7	8.9	0.3	0.05		85-4	0	4.8	11.2	81.2	110				16
25-9	6.1	6.4	1.2		16.9	7.0	0.4			95.6	0	4.3	11.4	89.8	115		· • • • • • • • • •		. 17
26.3	6.4	10.1	1.7		18.3	11.7	0.3			98.6	0	3.7	11.2	92.0	127				. 18
24.7	5.9	9.9	1.0	0.04	18.6	10.8	3.0	0-20		92.7	0	5-1	9.8	85-8	125				. 19
					1	15.8	0.6			138	0	6.7	14.6	128	181				20
36.3	8.0	17.5	1.1		26.0	10.9	0.0												
38.9	9.7	18-2	1.2		28.0	22.1	0.6	·····	•••••	142	0	6.3	21.2	137	195		•••••		. 21
43.6	9.1	25.7	1.9	0.04	30.9	26.8		0.05		159	0	6.4	15.7	146	223	[l	l	22

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

Residue on evaporation dried at 105°C. (Dissolved solids) Stream discharge (Second-feet) Suspended matter Specific conduct-ance Water tem-pera-ture Storage period Loss on igni-tion Date of collection Turbidity Tons per acre-foot On sampling date Dried Ignited Monthly Colour Tons per day P.P.M. at at at mean ů. Щ K x 10⁶ at 25°C. (Days) (°F.) 105°C, 550°C, 550°C.

(In parts per million)

STATION No. 11-SLAVE RIVER

		1	Water elevation in feet										
1	Apr. 22*	10:45	656.0511	32.5	8.0	10	8			707	• • • • • • • • • • • • •	 	· · · · · · · · · · · ·
2	May 15*	12:28 {	591·35† 663·56††		7.6		1,400	· • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • •	546		 	
3	A verage (12 samples)	04:80		43	7.8	16				263	•••••	 •••••	•••••

† Records above Mountain Rapids.

t Records at Fitzgerald: at Fitzgerald Maximum water elevation, June 15/53-665.06 feet.

* Not included in average. Minimum water elevation, March 30/53-655.76 feet.

STATION No. 12-GREAT SLAVE LAKE

4	June 15/56†	18:53		 68	7.8	120	0.3			264	201	0.273	 48.0
5	Oct. 23/50†	10;19		 32	7.8	160	18		· · · · · · · · · · · · · · · ·	391			 · · · · · · · · · · · · · · · · · · ·
6	Sept. 19/51*	35:42	520‡	 48	7.6	3	20	20	19	234	146	0.199	 36-8

† Sampled from reservoir at Army installation. * Four miles out in lake.

‡ Elevation at Resolution, N.W.T.-- (Maximum water elevation Aug. 22/51-570 feet.

Minimum water elevation, May 12/51-370 feet.

STATION NO. 12A-GREAT

7	June 14/50	18:56	low	47	7.9	10	0.9	 	174	103	0.140	 69.9
8	Nov 22/56	7:47	······	34	8.1	40		 	272			

STATION NO. 12B-GREAT

9	Aug. 23/56	47:90	Very low	54	6-9	20	0.8	·····	 26.48	24•4	0.033	 9.2

STATION No. 13-GREAT SLAVE

			Gauge heig	tht in feet											
10	July 19/52	31:32	493.60	493·57	58	7•4	5	0.6	· · · · · · · · · · · ·		107	71.6	0.097	•••••	25-8
11	Aug.—No sample	taken.		493.76				i		}		l			
12	Sept. 11	11:18	493.57	493 • 54	52	7.6	15	0.7			207	{ 			

† Maximum gauge height, Aug. 28-29/53-493.46. Minimum gauge height, May 9/53-491.76.

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

(In parts per million)

		Alk	alis	Iron (Fe)								Silica (SiO2)	Haro a Ca	s		dium	lder	
Calcium	Magnesium	Sodium	Potassium	Dissolved	Sulphate	Chloride	Nitrate	Fluoride	Boron	Bicarbonate	Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sod	Saturation in	No.
(Ca)	(Mg)	(Na)	(K)	l	(SO4)	(Cl)	(NO3)	(F)	(B)	(HCO3)	(CO ₃)	l				J	<u> + -</u>	

at FORT SMITH, N.W.T.-Concluded

61·9 56·8	13·3 7·7	68•4 52•7		114 88·1]		0	6·8 5·0	87•5 74•8	209 174				1_
31.8	7.0	11.4	 	 12·1	1.1	 	 112	0	5.0	16.5	108	147	18.4	 0.2	3

near HAY RIVER SETTLEMENT, N.W.T.

33-3	7.5	7.9	2.6	0.43	59.8	4.1	4.8	0.00	 79-2	0	3.5	48-9	114	158	12.6		0.3	4
51-1	12.0	14•4	1.5		94-4	4.7	0.8		 124	0	6.1	75.2	176	246	14.7	0		5
30.0	6•4	8.5	1.3	0.05	26.0	10.5	0.4	0.15	 95-2	0	3.4	23.2	101	134	15 • 2		0.5	6

SLAVE LAKE at FORT RESOLUTION, N.W.T.

21.6	3.9	6.3	0.8	trace	17.4	7.7	2.0	0.00	 65.9	0	2.7	15.8	69.9	95-3	15.8	0.4	 7
35.1	6.7	11.7	1.2		28.7	11.7	0.8	•••••	 116	0	5.2	23.6	115	156	17.9	0.2	 8

SLAVE LAKE (McLEOD BAY) at FORT RELIANCE, N.W.T.

2.2	0.9	0.5	0.4	0.00	0.8	0.6	0.8	0.00	 11.0	0	0.5	0.2	9.2	12.2	9.6	 3.1	9
															<u>l</u>		

LAKE at YELLOWKNIFE, N.W.T.

12.3	2.9	3.8	0.8	0.09	11.1	5.0	0.3	0.10	 42.2	0	3.6	7.9	42.5	60.8				10
											ŀ							11
25 • 4	4.8	7.1	1.0	[20.8	8.7	0.4	l	 83.7	0	4.1	14.7	83.3	114	.	. .]	12

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

		iod	Stream c (Secon	lischarge d-feet)	Water				Suspe ma	ended tter	Specific	d di	ue on evapo ried at 105° ssolved sol	C.	Loss
Date collecti	on	Days)	On sampling date	Monthly mean	tom- pera- ture (°F.)	щ	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	K x 10 ⁵ at 25°C.	Р.Р.М.	Tons per acre- foot	Tons per day	on igni- tion at 550°C.

(In parts per million)

STATION NO. 13-GREAT SLAVE

				Gauge heig	ght in fcet†											
1	Oct.	20	14:39	493.11	493·03	87	7.8	5	2	•••••		167	103	0•140		36.4
2	Nov.	19	8:21	492·61	492.54	33	7.3	10	0.6			46.7	32.8	0.045		12.2
3	Dec.	26	11:40	492-25	492.37	33	7.6	10	2			45-4	32 • 8	0.045	.	13.6
4	Jan.	20/53	8:28	492-18	492 • 22	32	7.3	10	1			45.5		•••••		· • • • • • • • • • • • • • • • • • • •
5	Feb.	19	8:36	492 · 18	492-18	32	7.1	10	1			55+6	37.2	0.051		14.2
6	Mar.	18	9:58	492.03	492.05	32	7.0	15	1		 .	· 60·1			· • • • • • • • • • • •
7	Apr.	20	12:47	491.93	491.95	. 34	7.4	5	0		. <i>.</i>	48.2				
8	Мау	23	5:14	492.03	491.97	40	7.0	10	0			48-1	31.6	0.043		13.8
9	June	17	9:28		492-41	55	7.5	10	4			91.8				
10		nge samples)	12:33	492.55	492.63	40	7.4	10	1			83.9			 ·····	· · · · · · · · · · · · · ·

†{Maximum gauge height, Aug. 28-29/53-493.46 Minimum gauge height, May 9/53-401.76.

STATION NO. 13A-

11 Aug. 21/56	66:92	low	46	8.1	10	6	10-2	5.8	230	151	0.205	 23 • 2

STATION No. 14-MACKENZIE RIVER

				levations feet											
12	Aug. 26/52	64:67	10.03		58	8∙0	5	9	14	12	226	137	0.186		18•8
13	Sept. 22	37:53	9.00		50	8.0	10	20	· • • • • • • • • • • • • • • •		227				
14	Oct. 22	127:176	ice, no	rccord	38	8.0	_0	slight	•••••		233				
15	Nov.—No sample	taken.													
16	Dec. 27	41:90	'	"		7.7	0	consider-			249		· • · · · • • • • •		
17	Jan. 23/53	14:36		"		7.9		able		· • • • • • • • • • • • • • •	249	186	0.253		52.8
18	Feb.—No sample	taken.													
19	Mar. 10	167:220	· ·	"		7.9	10	2		•••••	256				•••••
20	Mar. 20	167:233		u	32	7.6	10	7	·····	· • • • • • • • • • • • • • • • • • • •	270				
21	Apr. 27	160:172		4 (32	7.0	10	6			151				

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

(In parts per million)

		Alk	alis	Iron (Fe)								Silica (SiO2)	Haro a Ca	lness s CO3		ß	1	T T	Ī
Calcium	Magnesium	Sodium	Potassium	Dissolved	Sulphate	Chloride	Nitrate	Fluoride	Boron	Bicarbonate	Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodium	Control 1	Davidavion mod	No.
(Ca)	(Mg)	(Na)	(K)	1	(SO4)	(C1)	(NO3)	(F)	(B)	(HCO3)	(CO3)						+		
LAKE	at YEL	LOWKN	IFE, N	.w. T .— <i>C</i>	oncluded		1]]		1		1	1	1		
20.8	4.3	5.7	0.8	0.03	16.6	7.0	0.7	0.15	0.00	68•6	0	3.0	13.6	69.8	92-9			••••	1
4.9	1.7	1.8	0.9	0.07	5-0	1.9	0.3	0.05		19.5	0	0-8	3.2	19-2	27.1			• • • • • • • • •	2
4.5	1.6	1.8	0.8	0.04	4.7	2.0	2.0	0.15	0.02	18.8	0	1.2	2.4	17.8	28.1				3
4.9	1.4	3.4	0.0		3.1	5.8	0.4			18-1	0	0.7	3-0	17-8	29.5			·	4
4.6	1.6	2.4	1.2	0.06	5.1	1.8	0.9	0.10		19.8	0	1.3	2.0	18.2	28.7			• • • • • • • • •	б
5.0	1.8	2.3	1.6		4.9	1.4	1.2			22.9	0	0-8	1.0	19.8	30.3				6
4.9	2.1	2.1	1.1		5.3	1.6	0.8		0.00	22.0	0	1.3	2.8	20.8	30.0	[7
5.8	0.9	2.0	1.3	0.04	4.4	0.8	0.3	0.03	0-00	21.9	0	0.3	0	18.0	26.7				8
9.2	2.7	5.0	1.2		9.3	3.3	0.4			36.8	0	1.5	3.8	34.0	50.7		•••••		9
7.7	2.3	3•4	1.1		8.2	3.6	0.7			34.0	0	1.7	0.8	28.7	45.5	19.7		1.6	10

MACKENZIE RIVER at FORT PROVIDENCE, N.W.T.

	28.8	5.7	8-5	1.1	0.00	20.8	9.3	1.2	0.00		100	0	4.5	13.3	95-3	129	16.0		0	11
--	------	-----	-----	-----	------	------	-----	-----	------	--	-----	---	-----	------	------	-----	------	--	---	----

at FORT SIMPSON, N.W.T.

	~														•				
27.4	6.1	7.9	1.1	0.02	23.9	10.1	0.3	0.20	0.03	86.6	2.4	5.3	18-6	93-6	128				. 12
27-8	6.3	7.6	1.1		23.0	9-5	0.4		•••••	94·7	0	3.3	17.7	95-3	126				. 13
27.6	7.0	8.5	1.2		23.9	10.0	0.9		•••••	95.2	0	10	19.7	97.7	136				. 14
																			15
29•1	7.2	11.4	1.2		24.3	11.6	1.0		•••••	100	0	30	20.1	102	165				. 16
29.7	7.2	13.3	1.4	0.18 (total)	28.3	11.8	0.6			102	0	33	19.9	104	176				. 17
																			18
34.9	3.6	11.0	1.7		26.1	10.5	2.4			105	0	26	16.1	102	168				. 19
31.6	6.8	12.0	2.1		24.3	17.1	1.8		• • • • • • • •	103	0	17	22 • 1	107	164				. 20
17.8	3.7	6.2	1.8		15.8	6.7	0.6		••••••	60.3	0	7.2	10.4	59.8	89-8	 	[. [21

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

		iod	Stream ((Secon	discharge id-feet)	Water				Susp ma	ended tter	Specific	Resid dı (Di	ue on evap ried at 105° ssolved sol	oration °C. lids)	Loss
No.	Date of collection	Storage per	On sampling date	Monthly mean	tem- pera- turo (°F,)	Hď	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	K x 10 ^s at 25°C.	Р.Р.М.	Tens per acre- foot	Tons per day	on igni- tion at 550°C.

(In parts per million)

STATION No. 14-MACKENZIE RIVER

			Water ele in f	-										-
1	May 23	104:159	no rec	cord	51	7.9	10	6			226			
2	June, 23	73:115	>10.18 .		55	8.1	10	8	13	11	223	152	0.207	 34.6
3	July 24/53	109:166	14.00 .		63	8.2	10	5	•••••		224			
4	Aug. 22*	80:152	8.90 .		66	8.2	10	8	12	9.1	. 226	142	0.193	 23.8
5	May 28/56*	30:72	very	low	59	7+6	60	75	74	46	179	145		 33-2
6	Average (11 samples)	97:135			43	7.8	8				230			

* Not included in average. Water elevations { Maximum-July 3/52-16.58; July 28/53-15.65, Minimum-Oct. 15/52-8.43; June 9/53-6.43.

.

STATION No. 15-MACKENZIE RIVER near

].	Water elevations in feet†											
7	July 31/52	. 7:13	267.22	58	7.9	30	65	143	134	239	153	0.208		52.0
8	Aug. 30	. 23:30		46	8.0	30	20		••••••	251	· <i>• •</i> • • • • • • • • •			
9	Sept. 27	. 13:23	264-40	47	7.9	20	10	•••••		256				
10	Oct.—Lost in tr	ansit.												
11	Nov.—No samp	le taken.		•••••										
12	Dec. 26	. 26:53	ļ	35	8.2	20	slight		••••	309	•••••			
13	Jan./53	,												
14	Feb.													
15	Mar. No sam	ples taken.	ice, no records									. ·		
16	Apr.	,												
17	May													
18	June 7	. 11:25	265.30	55	8.2	10	6	7.9	6.2	158	99•6	0.135		26.6
19	June 29	. 14:43	266.00	57	8-1		285			228		•••••••		• • • • • • • • • • •
20	June 11/56	. 22:57		60	8∙0	30	18	9.1	2.3	233	180	0.245		43.2

† Records at Norman Wells Maximum water elevations—July 5/52—271.58; July 21 to 22/53—268.41. Minimum water elevations—Aug. 12/52—264.35; Oct. 5/53—262.84.

TABLE 11—Continued

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

(In parts per million)

		Alk	alis	Iron (Fe)								Silica (SiO2)	Hard Ca	lness s CO3		dium	ı index	
S Calcium	(agnesium	Sodium (Na)	(X) Potassium	Dissolved	Sulphate	G Chloride	oZ) ©OX Nitrate	Eluoride	uorod (B)	©OOH) Bicarbonate	O Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sod	- + Saturation	No.

at FORT SIMPSON, N.W.T.-Concluded

29.7	5.6	8.5	1.5		25.2	8.9	0.4			93-2	0	6.4	20.9	97.3	132				1
33.0	3.0	8.8	1.5	0.03	24.1	9.2	0.6	0.15		91.5	0	5.3	19.8	94.8	131]			2
26.3	5-8	9.0	1.5		22.6	9.9	0.4		0.07	90.8	0	9-2	15-2	89.6	129				3
26.7	6.0	9-0	1.5	0.02	24.9	5.1	0.4	0.10		91.7	0	6.2	16.0	91.2	125				4
28.0	5-6	1.8	1.1	0.06	16.2	1.8	4.0	0.00		92.0	0	4.6	17.4	92.9	109	4.0	. 	0.5	5
28.6	5.7	9.5	1.5		23.8	10.5	0.9			92.9	0.2	14	18.4	94.9	141	17.6		0.3	6

FORT NORMAN, N.W.T.

······				1		1		· · · · · ·		·		1			1	1	1	1	ī
31.5	7.3	5.7	0.8	0.12	27.9	6.6	0.0	0-20		103	0	3.0	24.5	109	134	10.2		0.1	7
33.4	7.5	6.4	0.7		29.4	7.6	trace			108	0	4.6	25.7	114	143	10.8		0.1	8
						9-4	0.3			108	0	4.6	25.2	114	148	13.3		0.1	9
33.3	7.5	8.1	0.8		30.7	9.4	0.9			100	Ū	4.0	20.2		110				
																			10
																			11
37.9	8.9	13.0	1.3		36.6	12.3	1.2			134	0	6.3	21.4	131	184	17.7	0.4		. 12
					_										ľ				13
																			14
]				15
																			16
															-			ľ	17
			ļ				l	ļ											
17.2	5.6	6.3	1.2	0.03	15.5	6-2	0.8	0.00	• • • • • • • • • •	69-3	0	2.0	9-2	66• 0	88.9	16.9		0.2	18
28.5	6.8	15-8	1.2		27.8	6.2	0.1		0.00	124	0	4.0	0.0	99.0	151	25-4	0.1		. 19
29.2	7.6	6.6	1.1	0.11	23.3	8.4	4.0	0.00		97.3	0	3.7	24.3	104	132	11.8	0.1		. 20
	l	1					I		1		l 		[l	1	[l	\square

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

(In parts per million) ĩ

=				Stream (Secor	discharge 1d-feet)		t			Susp	ended utter		d	ue on evap ried at 105 issolved so	°C.	
No.	co	Date of Illection	Storage period	On sampling date	Monthly mean	Water tem- pera- ture (°F.)	рН	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	Specific conduct- ance K x 10 ⁵ at 25°C.	P.P.M.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.
													STA	rion No.	15A—MA	CKENZI
1	June	13/56	26:57	hi	gh		7.8	40	11	8.8	3.9	219	134	0.182	 	39-2
2	Nov.	9/56	20:49	lc	w	34	8.2	20				290	 · · · · · · · · · · · · ·			
	•		<u> </u>	·	<u> </u>	·		•	•	•	(1		T- 10 3T		
		-						1	1	1	1			 	ACKENZI	
3		4/49	:30	• • • • • • • • • • • • • • • • • • •		32	7.5	12	1			388	244	0.332		38.2
4		20/52	318:361	low‡ "	•••••	32	8.0	10	15			342				
5		20	287:343	"		32	7.8	10	7			399				
6		20	258:300	u	•••••	32	8.3	5	2			401	258	0.351		39.4
7		20/53	225:282	ĺ.	· · <i>· · ·</i> · · · · · · · · · · · · · ·	32	7.6	10	2			460	• • • • • • • • • • • •			••••••
8 9		20 20/53	196:251 166:210	normal	•••••	32 32	7·6 7·9	5	3			424	••••••			
	mai.	20/00	100:210	normal‡		82	1.9	5	0	2.9	0.7	403	253	0.344		43.4
	‡ Coll	lecto r' s estir	nate of rive	er flow or lev	el.						`				STATION	I NO. 164
10	Sept/5	56†				50	8.3	10 .	50			267				
11	Sept./	56††				50	8-8	10	40		•••••	268		•••••		••••
		pled at half pled at cent			epth, opposite	wharf.	·	, , , , , , , , , , , , , , , , , , ,			STA	TION No), 17—WH	IRLPOOL	RIVER a	t highwa
12	July :	22/52	8:13			47	7-9 (8-1)	0 (10)	10 (15)	28	27	123	80.0	0.109		30.6
						<u> </u>	/				<u> </u>	STATION	No. 18-4	ASTORIA	RIVER a	t highway
13	July 2	22/52	8:13			47	7.5	5	7	12.5	12•4	90.3	64-2	0.087		18.2
,l		<u>l</u>			[(7-8)	(15)	(10) ·				STL & TULO M	No 10 7	MIETTE 1	TUED
		<u> </u>		Ī	1						I	ì	JIATION	140. 181		талық а
11	Inly 9	22/52	8:13	· .		49	7.6	5	7	16	15	123	80-2	0-109		45.0

Carbon disxide (field test)-0.5 p.p.m.

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

(In parts per million)

Ch.0 (Rd)																				_
Chap (Nk) (TC) (GO) (CD) (ND) (D) (D) (CD) (•		Alk	alis	Iron (Fe)		_						Silica (SiO2)	Haro B Ca	Iness s COs		un a	dex		
RIVER at FORT GOOD HOPE, N.W.T. 27.4 6.8 6-1 1.0 0.40 21-7 7.5 4-0 0.40 0.1-8 0 4-0 21-5 95-8 125 117.7 0.3 30-7 12-6 8-8 1.3					Dissolved								Colori- metric	car-	Total	Sum of constituents	Per cent sodi			No.
27.4 6.5 6.1 1.0 0.00 21.9 7.5 4.0 0.00 $$ 91.8 0 4.0 21.5 96.8 125 11.7 0.3 $$ GPEEL CHANNEL) at AKLAVIK, N.W.T. 31.7 10.2 0.8 $$ 126 0 6.3 24.5 128 163 12.9 0.2 $$ GPEEL CHANNEL) at AKLAVIK, N.W.T. 56.9 3.6 0.4 0.20 $$ 147 0 11 48.1 1002 288 8.3 0.4 $$ 147 0 11 48.1 1002 288 3.8 1.2 $$ 176 0 12 224 0.5 $$ 0.1 48.0 1.5 8.0 1.8 $$ 0.65 3.6 0.4 0.20 $$ 116 0 3.5 303 421 8.3 0.4 $$ 0.1 3.0 3.17 30.5 7.5 0.0 0.05 $$	(Ca)	(Mg)	(Na)	(K)]]	(SO4)	(Cl)	(NO3)	(F)	I (B) I	(HCO ₃)	[(CO3)]	<u>.</u> .		1				<u>,</u>
30.7 12.6 8.6 1.3 31.7 10.2 0.8 126 0 5-3 24.6 128 163 12.9 0.4 (PEEL CHANNEL) at AKLAVIK, N.W.T. 50.9 3.6 0.4 0.20 118 0 11.4 12.9 234 6-5 0.1 48.9 11.3 7.2 1.8 51.9 2.1 0.8 1147 0 11 48.1 100 218 8.3 0.4 0.1 54.0 15.1 8.0 1.8 61.8 2.2 0.05 118 0 8.0 3.2 6.1 0.3 67.4 8.1 2.4 124 0 8.6 113 215 302 7.5 0 10.4 11.2 0.42 6.3 11.4 0 8.6 133 2.4 8.1 12.5 302 7.5 0 10.4 1.4 1.0	RIVEF	R at FOI	RT GOO	D HOP	E, N.W.	г.														
CPEDEL CHANNEL) at AKLAVIK, N.W.T. B0-0 17-0 0.8 0.7 0.48 50-0 3.6 0.4 0.20 108 0	27.6	6.8	6-1	1.0	0.09	21.9	7.5	4.0	0.00		91.8	0	4.0	21.5	96-8	125	11.7	0.3	•••••	1
66.0 17.0 6.8 0.7 0.08 50.0 3.6 0.4 0.20 108 0 74.6 212 234 6.5 0.1 48.0 11.3 7.2 1.6 61.0 2.1 0.8 147 0 11 48.1 109 218 8.3 0.4 61.6 0.1 54.0 15.1 8.0 1.8 62.8 3.8 1.2 176 0 12 52.9 197 246 8.0 0.3 57.4 17.4 8.1 2.4 57.7 80.0 124 0 8.6 113 215 302 7.5 0 67.4 18.0 6.0 1.3 5.7 80.0 1.0 0.65 198 0 6.9 54.8 217 251 5.6 0.2 55.0 10.1 1.6 0.4 1.11 0 3	30.7	12.6	8.8	1.3		31.7	10.2	0.8			126	0	5.3	24.5	128	163	12-9	0.2	•••••	2
10 10 <td< td=""><td>(PEEL</td><td>CHAN</td><td>NEL) at</td><td>AKLA</td><td>VIK, N.V</td><td>V.T.</td><td></td><td></td><td></td><td>·</td><td></td><td></td><td>·</td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td></td<>	(PEEL	CHAN	NEL) at	AKLA	VIK, N.V	V.T.				·			·		<u> </u>					
$54 \cdot 0$ $15 \cdot 1$ $8 \cdot 0$ $1 \cdot 8$ $62 \cdot 8$ $3 \cdot 8$ $1 \cdot 2$ 170 0 12 $52 \cdot 0$ 197 246 $8 \cdot 0$ $0 \cdot 3$ $57 \cdot 2$ $15 \cdot 7$ $6 \cdot 1$ $1 \cdot 2$ $0 \cdot 02$ $60 \cdot 3$ $4 \cdot 2$ $2 \cdot 0$ $0 \cdot 05$ $8 \cdot 0$ $8 \cdot 0$ $53 \cdot 5$ 203 242 $6 \cdot 1$ $0 \cdot 8$ $6 \cdot 1$ 138 215 392 $7 \cdot 5$ 0 \ldots $57 \cdot 4$ $18 \cdot 0$ $6 \cdot 0$ $13 \cdot 3$ $57 \cdot 8$ $0 \cdot 0$ $8 \cdot 6$ 113 215 392 $7 \cdot 5$ 0 \ldots \ldots $55 \cdot 0$ $16 \cdot 1$ $0 \cdot 0$ $16 \cdot 1$ $0 \cdot 0$ $16 \cdot 1$ $0 \cdot 0$ $53 \cdot 5$ 204 241 $0 \cdot 1$ $5 \cdot 0$ $0 \cdot 2$ $5 \cdot 0$ $0 \cdot 0$ $0 \cdot 0$ $16 \cdot 1$ $0 \cdot 0$ 1111 0 $3 \cdot 0$ $23 \cdot 5$ 117 149 $12 \cdot 0$ $0 \cdot 1$	56.9	17.0	6.8	0.7	0.03	59-9	3.6	0.4	0.20		168	0		74.6	212	234	6.5		0.1	3
55.2 15.7 6.1 1.2 0.02 60.3 4.2 2.0 0.05 182 0 8.0 53.5 203 242 6.1 0.8 87.4 17.4 8.1 2.4 61.3 5.7 80.0 124 0 8.6 113 215 302 7.5 0 87.4 18.0 0.0 1.3	48.9	11.3	7.2	1.8		61.9	2.1	0.8			147	0	11	48.1	169	218	8.3	0.4		. 4
57.4 17.4 8.1 2.4 61.3 5.7 80.0 124 0 8.6 113 215 392 7.5 0 57.4 18.0 6.0 1.3 56.4 4.4 2.4 198 0 6.9 51.8 217 251 5.6 0.2 55.0 16.1 1.2 0.62 53.3 4.9 1.6 0.65 198 0 7.2 45.5 204 241 0.1 0.5 MACKENZIE RIVER at NEW AKLAVIK, N.W.T. 30.7 0.5 0.0 0.00 111 0 3.6 24.8 116 148 12.6 0.4 33.6 8.0 8.1 1.0 0.62 30.7 0.5 0.0 0.00 1111 0 3.6 24.8 116 148 12.6 0.4 3.6 <	54·0	15-1	8.0	1.8		62.8	3.8	1.2			176	0	12	52-9	197	246	8.0	0.3		. 5
Ar. A	55.2	15.7	6.1	1-2	0.02	69.3	4.2	2.0	0.05		182	0	8.0	53.5	203	242	6.1	0.8		. 6
55-0 16-1 0-1 1-2 0-02 53-3 4-9 1-6 0-05 193 0 7-2 45-5 204 241 6-1 0-5 MACKENZIE RIVER at NEW AKLAVIK, N.W.T. 3-5 7-8 7-7 0-9 0-02 30-7 9-5 0-0 0-00 111 0 3-6 24-8 116 148 12-6 0-4 33-6 7-8 7-7 0-9 0-02 30-7 9-5 0-0 0-00 111 0 3-6 24-8 116 148 12-6 0-4 33-6 8-0 8-1 1-0 0-04 29-7 9-6 0-0 0-00 114 0 3-0 23-5 117 149 12-9 0-4 bridge near ATHABASCA FALLS, AL/TA. 14-0 1-0 0-0 0-00 66-6 0 5-1 7-0 61-6 71-4 4-4 0-5 bridge neare	57-4	17.4	8.1	2.4		61.3	5.7	80-0			124	0	8.6	113	215	392	7.5	0		. 7
MACKENZIE RIVER at NEW AKLAVIK, N.W.T. 33.6 7.8 7.7 0.9 0.02 30.7 0.5 0.0 0.00 111 0 3.6 24.8 116 148 12.6 0.4 33.6 8.0 8.1 1.0 0.04 29.7 9.6 0.0 0.00 114 0 3.0 23.5 117 149 12.9 0.4 bridge near ATHABASCA FALLS, ALTA. 17.1 4.6 1.3 0.2 0.9 0.1 0.00 66.6 0 5.1 7.0 61.6 71.4 4.4 0.5 bridge south of JASPER, ALTA. 9.2 4.5 1.1 0.2 0.07 14.6 1.0 0.0 0.00 34.2 0 4.1 13.5 516 5.4 1.4 bridge near JASPER, ALTA. 34.2 0 4.1 13.5 516 5.4 1.4 bridge near JASPER, ALTA.	57 • 4	18.0	6.0	1.3		56.4	4.4	2.4			198	0	6.9	54.8	217	251	5.6	0.2		. 8
33.6 7.8 7.7 0.9 0.02 30.7 9.5 0.0 0.00 111 0 3.6 24.8 116 148 12.6 0.4 33.6 8.0 8.1 1.0 0.04 29.7 9.6 0.0 0.00 114 0 3.6 24.8 116 148 12.6 0.4 bridge near ATHABASCA FALLS, ALTA. 17.1 4.6 1.3 0.2 0.05 9.2 0.9 0.1 0.00 65.6 0 5.1 7.0 61.6 71.4 4.4 0.5 bridge south of JASPER, ALTA. 9.2 4.6 1.0 0.0 0.00 34.2 0 4.1 13.5 41.5 516 5.4 1.4 bridge neat JASPER, ALTA. 1.4 0.07 14.6 1.0 0.0 0.00 34.2 0 4.1	55.0	16.1	6.1	1.2	0.02	53.3	4.9	1.6	0.05		193	0	7.2	45.5	204	241	6.1	0.5	•••••	. 9
33.6 8.0 8.1 1.0 0.04 29.7 9.6 0.0 0.00 114 0 3.0 23.5 117 149 12.9 0.4 bridge near ATHABASCA FALLS, ALTA. 17.1 4.6 1.3 0.2 0.05 9.2 0.9 0.1 0.00 66.6 0 5.1 7.0 61.6 71.4 4.4 0.5 bridge south of JASPER, ALTA. 9.2 4.5 1.1 0.2 0.07 14.6 1.0 0.0 34.2 0 4.1 13.5 41.5 516 5.4 1.4 bridge near* JASPER, ALTA.	MACK	ENZIE	RIVER	at NEW	AKLA	VIK, N.	W.T.					· · · · · · · · · · · · · · · · · · ·		·			•		<u> </u>	<u></u>
bridge near ATHABASCA FALLS, ALTA. 17.1 4.6 1.3 0.2 0.05 9.2 0.9 0.1 0.00 66.6 0 5.1 7.0 61.6 71.4 4.4 0.5 bridge south of JASPER, ALTA. 9.2 4.5 1.1 0.2 0.07 14.6 1.0 0.0 0.00 34.2 0 4.1 13.5 41.5 516 5.4 1.4 bridge neat [*] JASPER, ALTA. 1.4 1.4 1.4	33.5	7.8	7.7	0.9	0.02	30.7	9.5	0.0	0.00		111	0	3.6	24.8	116	148	12.6	0.4	• • • • • • • • •	. 10
17.1 4.6 1.3 0.2 0.05 9.2 0.9 0.1 0.00 66.6 0 5.1 7.0 61.6 71.4 4.4 0.5 bridge south of JASPER, ALTA. 9.2 4.5 1.1 0.2 0.07 14.6 1.0 0.0 0.00 34.2 0 4.1 13.5 41.5 516 5.4 1.4 bridge near* JASPER, ALTA. Image: south of the second	33.0	8.0	8.1	1.0	0.04	29.7	9.6	0.0	0.00		114	0	3.0	23.5	117	149	12.9	0.4	•••••	. 11
bridge south of JASPER, ALTA. 9.2 4.5 1.1 0.2 0.07 14.6 1.0 0.0 0.00 34.2 0 4.1 13.5 41.5 516 5.4 1.4 bridge near* JASPER, ALTA.	bridge	near AT	HABAS	I CA FAL	LS, ALT	'A.	1	l	l	<u> </u>			L	<u>.</u>	<u> </u>		<u>.</u>		<u> </u>	<u>_</u>
9.2 4.5 1.1 0.2 0.07 14.6 1.0 0.0 0.00 34.2 0 4.1 13.5 41.5 516 5.4 1.4 bridge near* JASPER, ALTA.	17.1	4.6	1.3	0-2	0.05	9•2	0.9	0.1	0.00		66.6	0	5.1	7.0	61.6	71.4	4•4	<u> </u>	0.5	12
bridge near JASPER, ALTA.	bridge	south of	JASPEI	R, ALTA	L.															
	9.2	4.5	1.1	0.2	0.07	14.6	1.0	0.0	0.00		34-2	0	4.1	13.5	41.5	516	5.4		1.4	13
12.6 0.5 1.1 0.2 0.06 22.3 0.6 0.1 0.10 45.6 0 4.1 20.9 58.3 70.2 3.9 1.1	bridge	near JA	SPER, A	LTA.																
	12.6	6.5	1.1	0.2	0.06	22.3	0.6	0.1	0.10		45.6	0	4.1	20.9	58.3	70-2	3.9]	1.1	14

٠.-

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued (In parts per million)

11		ođ	Stream (Seco	discharge nd-feet)	Water				Susp ma	ended atter	Specific	Resid d (Di	ue on evap ried at 105 issolved so	oration C. lids)	Loss
No.	Date of collection	Storage Period	On sampling date	Monthly mean	tem- pera- ture (°F.)	Ħď	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	K x 10 ⁵ at 25°C.	Р.Р.М.	Tons per acre- foot	Tons per day	on igni- tion at 550°C.
_										· · · · · · · · · · · · · · · · · · ·	S	TATION 1	No. 20—M	ALIGNE 1	RIVER at
1	July 23/52	8:12]	45	7.6 (7.8)	5 (10)	0.6			198	121	0.165		45•4
	Carbon dioxid	e (field test)-	-1.0 p.p.m.	•	I		(10)	<u> </u>	ι	I	s:	CATION 1	No. 21—SI	ARING 1	RIVER at
2	July 23/52	8:12			46	8·0 (8·1)	0 (5)	3 (5)			167	104	0.141		36.4
-	<u> </u>		······································		•		ì.,í	<u> </u>	•	<u> </u>	<u>. </u>	STATI	ON No. 2	2-ROCK	Y RIVER
3	July 23/52	8:12			46	8·1 (8·2)	0 (15)	60 (>50)	117	112	292	184	0.250		61.6
	* At bridge, ea	ist of Jasper,	Alta.	·	·			(<u> </u>	<u>.</u>	•	STATI	ON No. 23	-McLEO1	O RIVER
4	July 24/52	7:74			52	8·1 (8·3)	5 (15)	4 (5)		18	303	179	0-243		23.4
									·	·	·	ST	'ATION N	Io. 24—EM	BARRAS
5	July 24/52	7:14			56	8.0 (8.3)	40 (50)	2 (<5)			226	160	0.218		31.6
												STATI	ON No. 25	-McLEOI	O RIVER
6	Sept. 25/51	9:34			38	8.3	5	2			312	192	0.261		72.2
7	July 25/52	6:13		•••••	56	8·1 (8·1)	40 (60)	9 (5)	•••••	••••••	226	132	0.180		11.4
												STA	TION No.	26-WOL1	7 RIVER
8	July 25/52	6:13		• • • • • • • • • • • • •	58	7-8 (8-0)	60 (70)	13 (10)	•••••	25	193	142	0 · 193		35.8
_												STATIC)N No. 27	-McLEOI) RIVER
9	Sept. 27/51*	12:34	>normal†		35	8∙0	Б	3			322	207	0.282		81.6
	Feb, 15/52		normal		34	7.5	2	2	•••••	•••••	450	275	0.374	· · · · · · · · · · · · · · ·	30.8
	Mar. 15 Apr. 15		•••••	•••••	33 84	7.9 7.7	5 40	5 85	380		458	145		•••••••••••••••••••••••••••••••••••••••	
	* Not included	-			~~ 1		~~ 1	00	000		208	145	0.197	•••••	29.0

* Not included in average. † Collector's estimate of river level or flow.

i

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

(In parts per million)

	1				, ,						1	·····			,				=
		Ail	calis	Iron (Fe)								Silica (SiO2)	Har Ca	dness is CO3		Ę		index	
(Ca)	(gW) Magnesium	(Na)	(F) Potassium	Dissolved	Sulphate	D Chloride	Nitrate	 Fluoride 	moroad (B)	©OOH) Bicarbonate	Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodium		- Saturation index	No.
	near JA	<u> </u>											-	<u>.</u>			·	<u> </u>	<u> </u>
24.1	9.4	1.7	0.7	0.09	16.7	1.1	0.3	0.05		103	0	6.5	15.0	99.0	111	3.6		0.5	1
bridge	east of J	ASPER,	ALTA.	• • • • • •	·	·	•			·			. <u>.</u>	<u></u>			<u> </u>	<u>. </u>	'
22.6	6.7	1.3	0.4	0.17	15.0	1.4	0.1	0.05		86.4	0	3·8 (3·2)	13.0	83.8	94.2	3.4		0.2	2
near P(OCAHO]	NTAS*,	ALTA.															·	<u> </u>
41.7	12.3	1.1	0.4	0.02	37.0	2.3	0.2			138	2.4	4.5	37.7	155	170	1.5	0.3		3
near C	ADOMI	I, ALTA	ι.									·.		<u>` .</u>		•		·	
39.7	12.5	5.6	0.9	0.05	27.1	1.1	0.2	0.15		150	6.0	6-1	17.2	150	174	7.4	0.4		4
RIVEI	R near W	EALD,	ALTA.				·												<u> </u>
33-6	6.6	5.9	0.6	0.30	4-1	0.7	0.2			139	2.4	11	0.0	111	134	10.3	0.1		5
at brid	ge, east	of EDSC	ON, ALI	ſĂ.															-
47.1	10.5	9.1	0.7	0.06	14.8	1.0	0.1	0.10		187	3.8	7.8	0-6	161	187	10.9	0.7		6
33.1	7.7	4.7	0.6	0.12	6•9	0.4	0.2	·····		135	2.4	10	0.0	114	133	8-2	0.2		7
at brid	ge, east (of EDSC	ON, ALI	YA.															
29.2	6.5	3.8	0.5	0.14	6-4	0.3	0.3			121	o	10	0·4 (0·0)	99•8 (100)	117	7.6]	0-2	8
at WHI	ITECOU	RT, AL	TA.																
47.0	10.8	10.5	0.9	0.01	12.8	2.0	0.1	0.20		203	o	9.0	0	162	193	12.3	0.4		9
60.5	14.8	15.0	0.5	0.10	7.0	0.8	0.0		····	287	0	6.0	0	212	255	·····			
61 • 5 27 • 5	14·0 6·4	17·9 7·0	0·9 3·4	0.11	14·0 7·9	0•4 0•8	0·6 1·2		· · · · · · · · · · ·	284 133	0	9·6 9-7	0 0	211 95-4	259 129	· • • • • • • • • • • • • • • • • • • •	 		11 12
															-				

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

_						[170	puns	per mii							
		•ਰ [`]	Stream (Secor	discharge 1d-feet)	Water				Susp ma	ended tter	Specific	Resid d (D	ue on evap ried at 105° issolved sol	oration C. lids)	T
l No.	Date of collection	(Days)	On sampling dato	Monthly mean	tem- pera- ture (°F.)	рĦ	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	K x 10 ⁴	P.P.M.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.
												STATI(ON No. 27	McLEO	D RIVER
1	May 15	6:15	low		62	8.4	10	0.9			275]		
2	June 15	9:10	high		52	7.9		350	133	123	171	147	0.200		46-2
3	July 15	7:14	medium		65	8-4	25	2	[281				
4	July 28	9:14			67	8·1 (8·2)	45 (70)	9 (10)	23	20	241		<i>.</i>		
5	Aug.—Sample lost	; in transit.				(0*4)	(10)	(10)							
6	Sept. 15	9:14	medium		57	8.2	30	3			277				
7	Oct. 15	6:17	low		43	8.3	10	0.9		 	357	217	0.295		31.2
8	Nov. 15	15:20	u		33	8.3	20	5			418				
0	Dec. 16	20:38	и		· 33	8.1	15	2			557				
10	Jan. 15/53	8:47	"a"		33	8.0	15	3			605	302	0.411		49.6
11	Average (12 samples)	10:18			46	8.1	20	40			358				
-											81	ATION N	. 28—FR	EEMAN	RIVER at
12	July 30/52	7:12			63	7·7 (8·0)	80 (125)	8 ()	25	22	156	125	0-170		38.0
			· · · · · · · · ·	·							·	STATIO	N No. 29-	-PEMBIN	A RIVER
	July 25/52	6:13			61	7·8 (8·0)	100 (125)	65 (>50)		128	174	150	0.204		45•4
		-									81	ATION N	Io. 30—LO	BSTICK 1	RIVER at
14	July 25/52	6:13			63	7-5 (8-0)	150 (200)	20 (20)		36	181 (180)	168	0.228		60.0
												STATIO	N No. 31-	-PEMBINA	A RIVER
15	Sept. 27/51*	12:34			35	7.9	8	15	13	11	271	176	0.239		53.6
16	Feb. 15/52	11:11	low†		33	7.3	10	4	4.9	2-5	416	270	0-367		56• 6

(In parts per million)

Mar. 15.....

18 Apr. 15.....

17

* Not included in average. † Collector's estimate of level.

11:12

11:14

low

7

235

423

399

449

172

133

0.181

39-2

33

7.7

7.8

20

55

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

(In parts per million)

											-								_
		Alk	alis	Iron (Fe)								Silica (SiO2)	Har B Ca	dness s CO3		m		xanır	
(a) Calcium	(gM) (gM)	Sodium (Na)	R Potassium	Dissolved	Sulphate	G Chloride	°ON)	E Fluoride	Horoa (B)	CCO3H) Bicarbonate	© Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodium	+		No.
-		RT, AL		<u> </u>		(2)	1 (· · · · ·		<u> </u>			<u> </u>	<u></u>		<u> </u>		-
38•6	9.7	9.8	0.8		6.6	3.0	trace			167	4.8	7.4	0	136	163				1
24.9	5.7	4.7	1.1	0.10	9·0	0.2	0-1	0.60		103	0	6.0	1.8	85-6	103				2
40.5	9.7	7.0	0.8		7.2	2.0	trace			166	4.8	10	0	141	164				3
34.9	8.5	5.7	0.8	0.03	10.1	0.8	0.3	0.30		146	2.4	13	0	122	148				4
40•4	8-5	6.6	0.7		8-2	0.7	trace			162	5.5	10	0	136	160				5 6
51.4	11.4	10.5	1.0	0.06	13.9	0.5	0.2	0.15		210	9.6	11	0	175	213				7
58-1	14.0	15-0	1.0		12.6	0.4	0.3			253	9·1	5.6	0	203	241	. .			8
79 •0	18.7	23.3	1.3		18.7	0.9	0.2			363	6.0	10	0	274	337			. . .	9
82.9	20.5	23.4	1.4	0.04	18-8	0 .9	0.8	0.06	0.00	401	0	9 ·3	0.	291	356				10
50.0	11.8	12.2	1.1	•••••	11-2	1.0	0.4			223	3.5	9.0	0	173	210	13.2	0.7		11
bridge,	near FO	RT ASS	INIBOI	NE, AL	FA.		<u> </u>	<u>.</u>											
22.5	4.5	5.3	0.4	0.22	4.6	1.1	trace			92·4 (92·7)	0 (0)	12	0 (0)	74·8 (74·2)	95-6	13.3		0.5	12
at bridg	ge at EV	ANSBU	RG, AI	/ТА.															
25.6	5-7	4.5	0.8	0.16	4.8	0.8	0.5			106	0	9.0	0.5	87.5	104	10.0		0.3	13
				l				l	l		l	I	.	l	I	<u> </u>	I	l	L
bridge,	near EV	ANSBU	RG, AL	/TA.				.							,				<u>. </u>
22.5	6-4	8.6	2.3	0-19	8.2	1.8	1.2			107 (105)	0 (0)	8.5	0 (0)	82-6 (85-6)	111	18-0		0.6	14
near SA	NGUD), ALTA																	
37.1	9.0	11.8	1.3	0.05	6.9	1.2	0.6	0.30		174	0	6.5	0	130	160	15.8		0.1	15
53 • 1	13.3	18.0	2.1	0.11	9·8	1.6	0.0	0.00		264	0	3.3	0	187	240				16
55.4	14.0	19-0	2.0		12 • 4	1.5	0.1			281	0	6.4	0	196	249				17
22.0	4.5	7.0	3.9	0.24	7.5	1.1	1.4			103	0	6.7	0	73.3	105				18

77913---3

×.

.

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

						,1011)	per mil	paris	(110	<u></u>					
Lose	°C.	ue on evap ried at 105° issolved sol	d di	Specific	ended tter	Susp ma				Water	discharge nd-feet)	Stream (Secon	pq		
on igni- tion at 550°C	Tons per day	Tons per acre- foot	P.P.M.	K x 10 ⁶ at 25°C.	Ignited at 550°C.	Dried at 105°C.	Turbidity	Colour	Ħď	tem- pera- ture (°F.)	Monthly mean	On sampling date	(Days)	Date of collection	No.
A RIVI	-PEMBIN.	N No. 31-	STATIO							·					
				250			7	30	8.3	45		normal	6:15	Мау 15	1
				172			••••••		7.8	54		high	18:22	June 15	2
68.0		0.258	190	249	609	646	375		7.7	54		normal .	14:15	July 15	3
55-1		0.211	155	192	69	76	. 35	100	7.8	67			9:14	July 28*	4
71.8		0-243	179	247	12		(50) 6	(125) 40	(8·2) 8·0	62		normal	13:20	Aug. 16	5
			•••••	243			10	45	8.0	55		"	7:12	Sept. 17	6
45-8		0.265	195	304	13	21	.15	30	7.9	43		"	15:40	Oct. 16	7
· · · · · · · · · ·				341			8	35	8.0	33		low	12:20	Nov. 15	3
	·	•••••		445			15	40·	8-0	32		"	20:44	Dec. 16	
70-8		0.432	318	472	5.3	10.3	20	50 .	7.8	33		u	11:44	an. 15/53	
		·····	•••••	313	•••••	•••••	65	35	7.8	43			12:22	Average (12 samples)	l
E RIVE	PADDLI	N No. 32	STATIO	=	<u> </u>								average.	• Not included in	
79-2		0.382	281	362	14	17	10 (10)	150 (250)	7·9 (8·3)	69			7:12	uly 30/52	2
A RIVE	-PEMBINA	N No. 33-	STATIO					•							
74.4		0.250	184	211 .	178	200	85 (>50)	(175)	7·8 (8·0)	71	••••••		7:12	uly 30/52	
E RIVE	' PRAIRII	84WEST	ION No. :	STAT	Ŧ										
86.2		0.287	211	218	12	15	10 (10)	240 (350)	7.5 (7.8)	73			13:18	.ug. 7/52	
r slav	5—LESSEI	ON No. 31	STATI												
	1	1		·							tion in feet	Water eleva			Ī
£0.0		0.226	166	252			2	5	7.7	48		1,891.41	12:32	oct, 7/51	,
52-2	•••••	0.220	100	N 04			(<5)	(25)	(7.9)					uly 31/52	
54.8		0-199	146	222			6	30	7.8	72	cord I	no rec	7:13	uiy 01/04	1 4

(In parts per million)

1

† Sampled from wharf. Maximum water elevation-1,891.91, Aug. 6/51; minimum water elsvation-1,891.40 at various times in Sept. and Oct./51.

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

(.	ln	parts	per	million)	
----	----	-------	-----	----------	--

Grad Orga (Wa) (Wa) <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>										-										
Ch M Ch M Ch Ch <td></td> <td></td> <td>All</td> <td>calis</td> <td>Iron (Fe)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Silica (SiO1)</td> <td>Har Ca</td> <td>dness as CO3</td> <td></td> <td>E .</td> <td></td> <td>rder</td> <td>Ì</td>			All	calis	Iron (Fe)								Silica (SiO1)	Har Ca	dness as CO3		E .		rder	Ì
Near SANGUDO, ALTA. 28-0 8-3 10-4 1.4 4-1 3-0 timeo 158 0 6-0 0 110 144 27-7 4-0 6-4 2-4 7-4 2-3 0-4 103 0 6-4 5-3 80-2 107 38-1 8-0 8-1 1-0 0-11 8-1 0-9 1-2 0-20 156 0 6-4 6-3 30-2 107 156 0 6-4 0 121 140 157 16 0 94-0 11 0 114 104 147 3-6 0-0 111 158 168 16 10 132 141 175 17 14 10 152 14 <td< td=""><td></td><td></td><td></td><td></td><td>Dissolved</td><td></td><td></td><td></td><td></td><td></td><td>. Bicarbonate</td><td></td><td>Colori- metric</td><td>саг-</td><td>Total</td><td>Sum of constituents</td><td>Per cent sodiı</td><td> </td><td>Caturation 1</td><td>No.</td></td<>					Dissolved						. Bicarbonate		Colori- metric	саг-	Total	Sum of constituents	Per cent sodiı		Caturation 1	No.
8-0 8-2 10-4 1-4 4-1 3-0 trace 158 0 6-0 0 116 144 153 0 6-4 5-3 89-3 167 163 0 6-4 5-3 89-3 167 163 0 6-4 5-3 89-3 167 163 0 6-4 0 131 144 177 0 16-5 0 6-6 15 16 0 64 0 131 144 177 0 16-5 0 64 14 110 16 0 64 <td>(Ca)</td> <td>(Mg)</td> <td>(Na)</td> <td>(K)</td> <td> </td> <td>(SO4)</td> <td>(C1)</td> <td>((NO₃)</td> <td>(F)</td> <td>(B)</td> <td>(HCOs)</td> <td>(COs)</td> <td>[</td> <td></td> <td></td> <td> </td> <td> </td> <td> +</td> <td>1 -</td> <td><u> </u></td>	(Ca)	(Mg)	(Na)	(K)		(SO4)	(C1)	((NO ₃)	(F)	(B)	(HCOs)	(COs)	[+	1 -	<u> </u>
27.7 4.0 5.4 2.4 7.4 2.8 0.4 100 0 0.4 5.3 89.3 107 38.1 8.0 8.1 1.5 0.11 8.1 0.4 1.2 0.20 165 0 9.4 0 121 149 <td>near SA</td> <td>ANGUD</td> <td>00, ALT</td> <td>А.</td> <td></td>	near SA	ANGUD	00, ALT	А.																
38.1 8.0 8.1 1.0 0.11 8.1 0.9 1.2 0.20 155 0 9.4 0 121 149 117 0 10.6 0 94.0 118 117 0 10.6 0 94.0 118 117 0 10.6 0 94.0 118 117 0 10.6 0 94.0 118 117 0 10.6 0 94.0 117 142 117 12.2 11 12.2 11.1 0.0 15.7 16.1 16.5 16.0 11.1 16.8 16.0 11.1 16.8 16.0 11.1 16.8 16.0 11.1 16.5 16.0 11.1 16.5 16.0 11.1 16.4 12.0 16.0 11.1 16.1 16.2 16.0 11.1 16.1 16.1 16.1 16.1	33·0	8-2	10-4	1.4		4.1	3.0	trace			158	0	6.0	0	116	144				<u> </u>
28:5 5.6 5.7 1.1 0.23 5.7 2.3 0.6 117 0 10.5 0 94.0 118 117 0 10.5 0 94.0 118 111 0 110 144 1 117 0 10.5 0 94.0 118 111 0 110 144 111 0 110 144 1 111 0 112 142 111 0 112 142 111 0 112 142 111 118 0 111 115 116 114 177 178 123 124 0 111 0 114 120 121 124 0 111 0 114 120 123 122 120.0 0.3 1	27.7	4.9	5.4	2.4	<u>.</u>	7.4	2.3	0.4			103	0	6.4	5.3	89-3	107				. s
38.4 7.4 7.3 1.3 0.05 5.6 0.5 0.5 0.00 140 2.0 11 0 119 144 145 34.5 7.6 7.9 1.3 4.5 0.7 0.4 147 3.6 0.0 0 117 142 191 0 5.2 0 141 175 191 0 5.2 0 141 175 191 0 5.2 0 141 175	35.1	8.0	8.1	1.6	0.11	8-1	0.9	1.2	0.20		155	0	9•4	0	121	149				. 3
34.5 7.0 7.0 1.2 4.5 0.7 0.4 147 3.6 9.0 0 117 142 141 175 141 175 191 0 5.2 0 141 175 110 0 5.2 0 141 175 110 0 5.2 0 141 175 110 0 5.2 0 141 175 110 0 5.2 0 141 175 110 0 163 0 055 201 110 0 163 0 055 201 110 0 181 0 132 255 110 144 180 15.3 0.2 11 0 144 180 15.3 0.2 11 0 144 180 15.3 0.2 14	28.5	5-6	5.7	1.1	0.23	5-7	2.3	0.6			117	0	10.5	0	94.0	118				. 4
40.4 0.7 11.0 1.8 0.63 7.2 1.1 1.2 191 0 8.2 0 141 176 191 0 8.2 0 141 176 191 0 8.2 0 141 176 191 0 8.2 0 141 176 1 191 0 8.2 0 141 176 1 191 0 8.2 0 141 176 1 191 0 8.2 0 141 176 1 11 0.5 1 12.9 0 15 106 100 155 106 11 11 0 11 0 144 180 15.3 0.2 11 11 0 144 180 15.3 0.2 11 11 0 144 180 15.3 0.2 11 11 0 144	35.4	7.4	7.3	1.3	0.05	5.6	0.2	0.5		0.00	149	2.9	11	0	119	144				. 5
444 10-8 14-0 2-0 8-0 1-1 0-6 207 2-0 0-1 0 165 106 68-0 14 17.7 2-3 0.4 1-1 0-6 200 2-0 0-1 0 165 106 14 7.7 2-3 10-0 120 200 4-2 0-03 12-0 3-2 4-0 10-0 10 0 213 286 11 0 11 0 144 180 15-3 0-2 11 11 0 144 180 15-3 0-2 11 11 0 144 180 15-3 0-2 11 14 180 15-3 0-2 11 11 0 111 10 111 12 0 131 13-1 11 14 10-4 103	34.5	7.6	7.9	1.2		4.5	0.7	0.4			147	3.6	9·0	0	117	142				. 6
68-0 14.1 17-7 2-3 0-4 1-1 0-5 288 0 18 0 205 201 14 00-8 14-8 20-0 4-2 0-65 12-0 3-2 4-0 0-01 3022 0 16 0 213 285 1 1 14 41-7 0-8 12-2 2-3 7.8 1-5 1-0 101 0-8 0-1 0 144 180 15-3 0-2 1 4 12-2 2-3 7.8 1-4 101 0.8 0-1 0 144 180 15-3 0-2 1 4 512-3 19-0 3-6 0-39 17-9 3-2 1-4 124 0 11 0 161 22 20-0 0-3 1 4-3 12-3 19-0 3-6 11-2 2-0	40-4	9.7	11.0	1.8	0.03	7.2	1.1	1.2	·····		191	0	8-2	0	141	175				. 7
60-8 14-8 20-9 4-2 0-63 12-9 3-2 4-0 0-01 302 0 16 0 213 285 1 1 41-7 9-8 12-2 2-2 7.8 1-5 1-0 191 0-8 9-1 0 144 180 15-3 0-3 1 4 13-3 19-0 3-6 0-39 17-9 3-2 1-4 221 0 11 0 161 222 20-0 0-3 1 4-3 13-3 19-0 3-6 0-39 17-9 3-2 1-4 221 0 11 0 161 22 20-0 0-3 1 4-5 13-8 0-26 11-2 2-0 0-6 124 0 11 0 161 12 20-0 0-3 18 4-6 bridge at HIGH PRAIRIE, ALTA. 22-0 0-6 11	44•4	10.8	14.0	2.0		8.0	1.1	0-8	 		207	2.9	9.1	0	155	195				. 8
41.7 9-8 12-2 2-2 7-8 1-5 1-0 191 0-8 0-1 0 144 180 15-3 0-2 1 4 BARRHEAD, ALTA. 44-3 12-3 19-0 3-6 0-39 17-9 3-2 1-4 221 0 11 0 101 222 20-0 0-3 1 4 3 12-3 19-0 3-6 0-39 17-9 3-2 1-4 221 0 11 0 101 222 20-0 0-3 1 4 bridge at JARVIE, ALTA. 22-0 0-6 1124 0 11 0 100 131 13-1 0-2 1 4 bridge at HIGH PRAIRIE, ALTA. 32-0 5-7 8-7 1-8 0-8 114 0 14 10-4 103 140 15-2 0-4 1 AKE† at FAUST, ALTA. 32-0 5-4 0-0<	58.9	14.1	17.7	2.3		6-4	1.1	0.5			288	0	18	0	205	261				. 9
t BARRHIEAD, ALTA. 44-3 12-3 19-0 3-6 0-30 17-9 3-2 1-4 221 0 11 0 161 222 20-0 0-3 1 44-3 12-3 19-0 3-6 0-30 17-9 3-2 1-4 221 0 11 0 161 222 20-0 0-3 1 at bridge at JARVIE, ALTA. 20-0 6-8 7-1 1-8 0-26 11-2 2-0 0-6 124 0 11 0 100 151 13-1 0-2 1 4 bridge at HIGH PRAIRIE, ALTA. 32-0 5-7 8-7 1-8 0-77 18-7 1-8 0-8 114 0 14 10-4 103 140 15-2 0-4 1 sAKE† at FAUST, ALTA. 29-0 5-4 0-9 29-5 2-9 2-0 0-20 118 0 1-1 10-4 103 144 16-4 <td>60-8</td> <td>14.8</td> <td>20.9</td> <td>4.2</td> <td>0.03</td> <td>12.9</td> <td>3.2</td> <td>4∙0</td> <td></td> <td>0.01</td> <td>302</td> <td>0</td> <td>16</td> <td>0</td> <td>213</td> <td>285</td> <td></td> <td>••••••</td> <td></td> <td>. 10</td>	60-8	14.8	20.9	4.2	0.03	12.9	3.2	4∙0		0.01	302	0	16	0	213	285		••••••		. 10
44·3 12·3 19·0 3·6 0·39 17·9 3·2 1·4 221 0 11 0 161 222 20·0 0·3 1 at bridge at JARVIE, ALTA. 29·0 6·8 7·1 1·8 0·25 11·2 2·0 0·6 124 0 11 0 100 131 13·1 0·2 1 4t bridge at HIGH PRAIRIE, ALTA. 3·2 1·4 114 0 14 10·4 103 140 15·2 0·2 1 4t bridge at HIGH PRAIRIE, ALTA. 3·2 0·8 114 0 14 10·4 103 140 15·2 0·4 1 AKE† at FAUST, ALTA. 3·4 0·9 29·6 2·9 2·0 0·20 118 0 1·1 12·0 109 148 16·4 0·3 1 29·0 8·9 10·3 5·4 0·90 29·5 2·9 2·0 0·20	41 • 7	9.8	12.2	2.2		7.8	1.5	1.0			191	0-8	9.1	0	144	180 ·	15.3	0.2		11
4. bridge at JARVIE, ALTA. 29.0 6.8 7.1 1.8 0.25 11.2 2.0 0.6 124 0 11 0 100 131 13.1 0.2 1 29.0 6.8 7.1 1.8 0.25 11.2 2.0 0.6 124 0 0 11 0 100 131 13.1 0.2 1 t bridge at HIGH PRAIRIE, ALTA. 32.0 5.7 8.7 1.8 0.77 18.7 1.8 0.8 114 0 14 103 140 15.2 0.4 1 AKE† at FAUST, ALTA. 22.0 8.9 10.3 5.4 0.09 29.5 2.9 2.0 0.20 118 0 1.1 12.0 109 148 16.4 0.3 14 23.0 8.2 8.8 4.1 0.11 30.8 1.0 0.0 0.40 1.1 12.0 109 148 16.4 0.3 14	at BAR	RHEAI	D, ALTA	L.						<u> </u>	·	·				<u> </u>		·	·	<u> </u>
29.0 6.8 7.1 1.8 0.25 11.2 2.0 0.6 124 0 11 0 100 131 13.1 0.2 1 t bridge at HIGH PRAIRIE, ALTA. 32.0 5.7 8.7 1.8 0.77 18.7 1.8 0.8 114 0 14 103 140 15.2 0.4 1 AKE† at FAUST, ALTA. 29.0 8.9 10.3 5.4 0.00 29.5 2.9 2.0 0.20 118 0 1.1 12.0 109 148 16.4 0.3 14 29.0 8.9 10.3 5.4 0.00 29.5 2.9 2.0 0.20 118 0 1.1 12.0 109 148 16.4 0.3 14 29.0 8.2 8.8 4.1 0.11 30.3 1.0 0.0 0.40 1.1 12.0 109 148 16.4 <td< td=""><td>44.3</td><td>12.3</td><td>19.0</td><td>3.6</td><td>0.39</td><td>17.9</td><td>3.2</td><td>1.4</td><td></td><td></td><td>221</td><td>0</td><td>11</td><td>0</td><td>161</td><td>222</td><td>20.0</td><td>0-3</td><td></td><td>12</td></td<>	44.3	12.3	19.0	3.6	0.39	17.9	3.2	1.4			221	0	11	0	161	222	20.0	0-3		12
1 1 123 (9) (0) (100) 1 1 <	at brid	ge at JA	RVIE, A	LTA.																
t bridge at HIGH PRAIRIE, ALTA. 32.0 5.7 8.7 1.8 0.77 18.7 1.8 0.8 114 0 14 103 140 15.2 0.4 1 AKE† at FAUST, ALTA. 29.0 8.9 10.3 5.4 0.09 29.5 2.9 2.0 0.20 118 0 1.1 12.0 109 148 16.4 0.3 14 29.0 8.9 10.3 5.4 0.09 29.5 2.9 2.0 0.20 118 0 1.1 12.0 109 148 16.4 0.3 14 23.6 8.2 8.8 4.1 0.11 30.3 1.0 0.0 0.40 104 0 3.8 7.8 92.8 131 16.4 0.3 14	29.0	6.8	7.1	1.8	0.25	11.2	2.0	0.6					11			131	13-1		0-2	13
AKE† at FAUST, ALTA. 29.0 8.9 10.3 5.4 0.09 29.5 2.9 2.0 0.20 118 0 1.1 12.0 109 148 16.4 0.3 14 23.6 8.2 8.8 4.1 0.11 30.3 1.0 0.0 0.40 104 0 3.8 7.8 92.8 131 16.4 0.3 14	at bridg	ge at HI	GH PR	AIRIE,	ALTA.							<u> </u>	<u> </u>		*			<u>.</u>	·	<u> </u>
29.0 8.9 10.8 5.4 0.00 29.5 2.9 2.0 0.20 118 0 1.1 12.0 109 148 16.4 0.3 14 23.0 8.2 8.8 4.1 0.11 30.3 1.0 0.0 0.40 104 0 3.8 7.8 92.8 131 16.4 0.3 14	32.0	5.7	8.7	1.8	0.77	18.7	1.8	0.8					14	10.4	103	140	15.2		0.4	14
29.0 8.9 10.8 5.4 0.09 29.5 2.9 2.0 0.20 118 0 1.1 12.0 109 148 16.4 0.3 14 23.6 8.2 8.8 4.1 0.11 30.3 1.0 0.0 0.40 104 0 3.8 7.8 92.8 131 16.4 0.3 14	LAKE†	at FAU	IST, AL	га,	<u> </u>								L		I	L	<u></u> .	I	<u>.</u>	4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,								·									· · · ·		Ē
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	29.0	8.9	10.3	5.4	0.09	29.5	2.9	2.0	0.20		118	0	1.1	12.0	109	148	16.4		0.3	15
	23.6												(1)	7.8	(107) 92·8					16
			· ·		<u> </u>					l				(9•7)			<u> </u>	I		L

77913-31

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

(In parts per million)

		ġ.	Stream of (Secon	discharge nd-feet)	Water				Susp ma	ended tter	Specific	Residu dr (Di	ue on evapo ried at 105° ssolved sol	oration C. ids)	Loss
Date o collectio	of on	(Days)	On sampling date	Monthly mean	tem- pera- ture (°F.)	Hď	Colour	Turbidity	Dried at	Ignited at 550°C.	K x 10 ^s at 25°C,	Р.Р.М.	Tons per acre- foot	Tons per day	on igni- tion at 550°C.
												STA	TION No.	. 36—SWA	N RIVEI
1 July 31/52		7:13			65	7.3 (7.5)	140 (200)	20	5 3	49	126	136	0.185		63-2
								5	•		STAT	FION No.	37—LESS	ER SLAV	E RIVE
2 Oct. 7/51		12:32			47	7.6	2	10	14	9-6	186	119	0.162		29.8
3 July 30/52		8:14			68	(8+4) 7+9 (8+1)	(25) 20 (30)	(10) 4 (7)	15	14	186	126	0.171		36-2
												STATIO	N No. 38-	-FAWCET	T RIVE
4 Aug. 7/52		13:26			70	7·8 (8·4)	60 (100)	1.2 (1.5)		·····	134	116	0-158		43.8
				<u></u>				· ·		<u></u>		STAT	ION No. 8	9—LAC L	A BICH
			Water eleve	ation in feet)							
5 Aug. 8/52	2	13:25	. 96-84†		69	8-0 (8-6)	10 (25)	3 (algae)			302	204	0.277		47•8
† Gauge ze	ero—91•4	4.		-							5	TATION	No. 40V	OLLAST(ON LAR
			Water elev	ation in feet											
6 Aug. 12/53	3	13:96		91.98*	65	7.9	5	3			35-4	·····			
* Record a	t Tradi	ng Post.									STATION	No. 41—]	PEACE R	IVER abo	ve juncti
		10:13	49,500††		68	8·0 (8·1)	20 (15)	15 (15)			185				
7 Aug. 2/52			•	<u></u>	<u></u>					<u></u>				•	<u>`</u>
7 Aug. 2/52 †† Record a	t Hudso	n Hope.										STATIO	No. 42—	HALFWA	Y RIVE

•

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

C(b) (Rfg) (Rb) (Gb) (GD) (CD) (RD) (P) (B) (HGO) (CO) (HGO)			_						_			-								
G H K A K G Z K			Alk	alis	Iron (Fe)				·	}			Silica (SiO ₂)	Hard Ca	lness s COa		đ	nder		Ī
at bridge at KINUSO, ALTA. 15-9 5-7 3-6 1-9 1-0 0-9 0-7 0-2 60-5 0 15 0-0 65-0 85-2 12-0 1-1 at bridge near SLAVE LAKE, ALTA. 22-8 5-2 7-6 3-1 0-63 12-0 0-7 0-2 102 0 1-0 0-0 67-0 14-1 1-1 at bridge near SLAVE LAKE, ALTA. 22-8 5-2 7-6 3-1 0-63 12-0 0-7 0-2 0-10 102 0 1-0 0-6 16-8 0-6 21-8 5-8 7-7 3-2 0-65 14-6 0-6 0-3 0-7 0-4 0-10 07-1 0 2-2 0-0 16-4 0-0 0-8 0-7 0-2 0-0 0-8 0-8 0-6 0-3 0-6 0-6 0-6 0-8 0-6 00 00-9 81-3 14-2 0-6 0-8 0-6 <t< td=""><td>1</td><td></td><td></td><td></td><td>Dissolved</td><td></td><td></td><td></td><td></td><td>(</td><td></td><td>1</td><td>Colori- metric</td><td>car-</td><td>Total</td><td>Sum of constituents</td><td>Per cent sodi</td><td></td><td></td><td>No.</td></t<>	1				Dissolved					(1	Colo ri- metric	car-	Total	Sum of constituents	Per cent sodi			No.
15-9 5-7 5-6 1-9 1-0 6-9 0-7 0-2 69-5 0 18 0-0 55-0 85-2 12-0 1-1 at bridge near SLAVE LAKE, ALTA. 22-8 5-2 7-7 3-2 0-65 14-5 0-0 10 102 0 1-0 0-0 77-9 104 16-8 0-5 21-8 5-8 7-7 3-2 0-65 14-5 0-6 0-3 0-30 07-1 0 17-1 0 21-2 0-0 78-1 104 16-8 0-6 21-8 5-8 7-7 3-2 0-66 18 0-3 0-30 0 4-5 0.0 78-1 104 16-8 0-6 34-8 13-4 2-2 0-16 8-7 0-8 0-8 78-4 0 4-5 0.0 60-0 60-0 60-0 12-2 16-5 34-8 11-4 13-0 0-37 0-	(Ca)	(Mg)	(Na)	(K)		(SO4)	(Cl)	(NO3)	(F)	(B)	(HCO3)	(CO3)	l	[+ 1		<u> </u>
at bridge near SLAVE LAKE, ALTA. 22-8 5-2 7-6 3-1 0-05 13-0 0-7 0-4 0-10 102 0 1.0 0.9 77.9 104 15-8 0-5 21-8 5-8 7-7 3-2 0-05 14-5 0-6 0-3 0-30 102 0 1.0 0.9 77.9 104 15-8 0-5 at bridge near SMITH, ALTA. 18-0 3-7 4-8 2-2 0-15 8-7 0-8 0-8 75-4 0 4-5 0-0 60-0 (02-2) 81-8 14-2 0-6 at LAC LA BIOHE, ALTA. 3-8 11-4 13-0 3-3 0-07 11-7 3-2 1-8 0-10 173 2-4 11 0-0 154 170 17-0 0-8 at LAC LA BIOHE, ALTA. 3-8 0-10 117 3-2 1-8 0-10 117 0-0 154 170 17-0 0-8 at LAC LA BIOHE, ALTA. <t< td=""><td>at bridg</td><td>go at KI</td><td>NUSO, 4</td><td>LTA.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.</td></t<>	at bridg	go at KI	NUSO, 4	LTA.																.
22.8 5.2 7.0 3.1 0.06 13.0 0.7 0.4 0.10 102 0 1.0 0.0 77.9 104 16.8 0.5 31.8 5.8 7.7 3.2 0.05 14.5 0.6 0.3 0.30 07.1 0 2.2 0.0 78.1 104 16.8 0.3 at bridge near SMITH, ALTA. 18.0 3.7 4.8 2.2 0.18 8.7 0.8 0.8 76.4 0 4.5 0.0 60.0 60.0 60.0 60.3 0.5 at LAC LA BICHE, ALTA. 11.4 13.0 8.7 0.8 0.8 173 2.4 11 0.0 134 170 17.0 0.4 34.8 11.4 13.0 8.3 0.07 11.7 3.2 1.8 0.10 173 2.4 11 0.0 134 170 17.0 0.3 at LAC LA BICHE, ALTA. 2.6 1.8 <td>15.9</td> <td>3.7</td> <td>3.6</td> <td>1.9</td> <td>1.0</td> <td>6•0</td> <td>0.7</td> <td>0-2</td> <td>•••••</td> <td></td> <td>69-5</td> <td>0</td> <td>18</td> <td>0.0</td> <td>55.0</td> <td>85-2</td> <td>12.0</td> <td></td> <td>1•1</td> <td>1</td>	15.9	3.7	3.6	1.9	1.0	6•0	0.7	0-2	•••••		69-5	0	18	0.0	55.0	85-2	12.0		1• 1	1
21.8 5.8 7.7 3.2 0.05 14.5 0.6 0.3 0.30 97.1 0 (1) (2-0) 78.1 104 16-9 0.3 at bridge near SMITH, ALTA. 18-0 3.7 4.8 2.2 0.16 8.7 0.8 0.8 76.4 0 4.5 0.6 0.3 14.2 0.6 at bridge near SMITH, ALTA. 18-0 3.7 4.8 2.2 0.16 8.7 0.8 0.8 76.4 0 4.5 0.6 0.0 60-0 60-0 81.3 14.2 0.5 at LAC LA BIOHE, ALTA. 34.8 11.4 13-0 3.3 0.07 11.7 3.2 1.8 0.10 173 2.4 11 0-0 134 179 17-0 0-3 near north end in SASKATOHEWAN. 2.6 0.60 5-8 0.4 0.8 19-5 0 0-0 138 1-9 with HALFWAY RIVER near ATTACHIE, B.C.	at bridg	ge near f	LAVE I	AKE, A	ALTA.								·	·				······ •		
21.8 5.8 7.7 3.2 0.06 14.6 0.6 0.3 0.50 07.1 0 2.2 0.0 78.1 104 10.9 0.3 at bridge near SMITH, ALTA. 18.0 3.7 4.8 2.2 0.16 8.7 0.8 0.8 76.4 0 4.5 0.0 60.0 81.3 14.2 0.5 at bridge near SMITH, ALTA. 13.0 3.7 4.8 2.2 0.16 8.7 0.8 76.4 0 4.5 0.0 60.0 81.3 14.2 0.5 at LAC LA BICHE, ALTA. 3.3 0.07 11.7 3.2 1.8 0.10 173 2.4 11 0.0 134 179 17.0 0.3 as north end in SASKATCHEWAN. 2.6 0.05 5.8 0.4 0.8 19.5 0 0.0 138 1.9 with HALEWAY RIVER near ATTACHIE, B.C. 2.6 1.4 0.4 0.2 <td>22.8</td> <td>5-2</td> <td>7.6</td> <td>3.1</td> <td>0.03</td> <td>13.0</td> <td>0.7</td> <td>0.4</td> <td>0.10</td> <td> </td> <td>102</td> <td>0</td> <td></td> <td></td> <td></td> <td>104</td> <td>16.8</td> <td></td> <td>0.6</td> <td>2</td>	22.8	5-2	7.6	3.1	0.03	13.0	0.7	0.4	0.10		102	0				104	16.8		0.6	2
18-0 3.7 4.8 2.2 0.16 8.7 0.8 0.8 76.4 0 4.5 0.0 60.0 61.3 14.2 0.6 at LAC LA BICHE, ALTA. 34.8 11.4 13.0 3.3 0.07 11.7 3.2 1.8 0.10 173 2.4 11 0.0 134 179 17.0 0.3 near north end in SABKATCHEWAN. 2.6 1.8 2.5 0.06 5.8 0.4 0.8 19.5 0 1.9 1.9 with HALFWAY RIVER near ATTACHIE, B.C. 2.7.2 6.2 1.4 0.4 0.2 0.0 0.29 95.4 1.2 6.7 12.3 93.3 1.03 3.1 0.1 mear moth, near ATTACHIE, B.C.	21.8	5-8	7.7	3.2	0.05	14.5	0.6	0.3	0.30							104	16.9		0.3	3
(0) (62-2) at LAC LA BICHE, ALTA. 34-8 11-4 13-0 3-3 0-07 11-7 3-2 1-8 0-10 173 2-4 11 0-0 i34 179 17-0 0-3 near north end in SASKATCHEWAN. 2-6 1-8 2-5 0-06 5-8 0-4 0-8 19-5 0 1-9 with HALFWAY RIVER near ATTACHIE, B.C. 27-2 6-2 1-4 0-4 12-3 0-2 0-0 0-20 96-4 1-2 6-7 12-3 96-3 103 3-1 0-1 near mouth, near ATTACHIE, B.C.	at brid	ge near S	MITH,	ALTA.				r						<u>.</u>	1		1			
34.8 11.4 13.0 3.3 0.07 11.7 3.2 1.8 0.10 173 2.4 11 0.0 i34 179 17.0 0.3 near north end in SASKATCHEWAN.	18.0	3.7	4.8	2-2	0.16	8.7	0.8	0.8			76-4	0	4.5			81.3	14.2		0.2	4
near north end in SASKATCHEWAN. 2.6 1.8 2.5 0.06 5.8 0.4 0.8 19.5 0 0.0 138 1.9 with HALFWAY RIVER near ATTACHIE, B.C. 27.2 6.2 1.4 0.4 0.2 0.0 0.20 0.4 1.2 6.7 12.3 93.3 103 3.1 0.1 near mouth, near ATTACHIE, B.C. 1.2 6.7 12.3 93.3 103 3.1 0.1	at LAC) LA BI	CHE, A	LTA.	1			1	1			1	1	1	1	1	1	1		
2.6 1.8 2.5 0.06 5.8 0.4 0.8 19.5 0 0.0 138 1.9 with HALFWAY RIVER near ATTACHIE, B.C. 27.2 6.2 1.4 0.4 0.2 0.0 0.20 0.4 1.2 6.7 12.3 93.3 103 3.1 0.1 near mouth, near ATTACHIE, B.C.	34-8	11.4	13.0	3.3	0.07	11.7	3.2	1.8	0.10		173	2.4	11	0.0	Í34	179	17.0	0.3		. 5
with HALFWAY RIVER near ATTACHIE, B.C. 27.2 6.2 1.4 0.4 12.3 0.2 0.0 0.20 96.4 1.2 6.7 12.3 93.3 103 3.1 0.1 near mouth, near ATTACHIE, B.C.	near no	orth end	in SASK	ATCHE	EWAN.															
27.2 6.2 1.4 0.4 12.3 0.2 0.0 0.20 96.4 1.2 6.7 12.3 93.3 103 3.1 0.1 near mouth, near ATTACHIE, B.C.	2.6	1.8		2.5	0.06	5.8	0•4	0.8			19-5	0		0.0	138				1.9	6
near mouth, near ATTACHIE, B.C.	with H	IALFWA	Y RIVE	R near	ATTAC	HIE, B.(o.		<u> </u>			<u></u>								
near mouth, near ATTACHIE, B.C.	27.2	6.2	1.4	0.4		12-3	0.2	0.0	0.20				6.7	12.3		103	3.1	·····	0-1	7
50.5 13.4 2.2 0.6 0.11 28.6 0.9 0.1 0.20 173 7.2 4.6 27.2 181 194 2.6 0.7	near m	iouth, ne	ar ATTA	CHIE,	B.C.		<u> </u>													
	50-5	13.4	2.2	0.6	0.11	28.6	0.9	0.1	0.20		173	7.2	4.6	27.2	181	194	2.6	0.7		.] 8

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

			Stream of (Secon	lischarge .d-feet)	Water				Suspe ma	ended tter	Specific	í dı	ue on evapo ied at 105% ssolved sol	C.	Loss
No.	Date of collection	Storage period	On sampling date	Monthly mean	tem- pera- ture	Ħď	Colour	Turbidity	Dried at	Ignited at	Conduct- ance K x 10 ⁵ at	P.P.M.	Tons per acre- foot	Tons per day	on igni- tion at
		(Days)			(°F.)	Å.		6	105°C.	550°C.	25°C.				550°C.
												STA	TION No	». 43—PIN	E RIVER
1	Apr. 5/52	28:33			40	7.9	10.	65	150	. 143	240	152	0.207	•••••	21.8
2	Мау 2	19:20			38	8.1	15	0.6			280	169	0.230		42·0
3	June-No sample	taken.		i											
4	July 1	28:45	r	10	46	7-9	25	30			198				
5	Aug. 4†	10:15	discl	harge	63	8.1	10	· 10	18	12	261	155	0.211	•••••	46-4
6	Sept. 4	28:42	reco	ords	42	8.2	Б				286			•••••	• • • • • • • • • • • • • • • • • • • •
7	OctNo sample	ta k en.]							
8	Nov. 1	76:95			86	8.5	10	4	5.6	3.2	297	178	0.242	 • • • • • • • • • • • • •	15-6
9	Dec. 1.,	46:71			32	8.6	15		• • • • • • • • • •		341				
10	Jan. 1/53	15:40			34	8-1	15	7			301				•••••
11	Average (8 samples)	31:76			41	8.2	13	20			276				

(In parts per million)

† Above junction with Murray River.

STATION No. 44-MURRAY

12	May 15/52	6:7		38	7.9	25	810	 590	552	208	138	0.188		52 • 2
13	June-No sample	taken.			ĺ									
14	July 1	28:45	no	. 46	7.9		15			191.				
15	Aug. 4†	10:15	discharge	65	8·1 (8·1)	40 (25)	90 (>50)	167	146	215 (220)	136	0.185		24.8
16	Sept. 18	14:15	records	42	8.1	10	6	• • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •	244				
17	Oct. 1	17:27		34	8.0	10	1			253				••••••
18	Nov. 1	76:95		36	7.9	40	7	4.7	2.8	247	149	0-203		20.2
19	Dec. 1	46:71		32	8.3	10	3			363				•••••
20	Jan. 1/53	19:47		83	7-6	15	10			316				•••••
21	Average (8 samples)	27:40		41	8.0	20	55		••••••	255				

† Above junction with Pine River.

STATION No. 45-PEACE RIVER near TAYLOR,

22	Oct.	5/51†	11:31		12,900	47	8·0 (8·4)	2 (15)	5 (5)	8.4	1.7	246	147	0.200		28.8
23	Aug.	2/52††	.12:17.	60,900	42,400	67.	7·8 (8·1)	10 (15)	· 20 (15)	38	80	206	125	0.170	20,462	47.6
24	Aug.	16	13:20	41,200	42,400	· 60	8.0	5	1 18		23	213	131	0.178	14,502	11.6

† Not included in average; sampled from highway bridge; ice conditions Oct. 23/51 to May 9/52; Nov. 12/52 to May 4/53.

tt Sampled from north shore; not included in average.

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

(In parts per million)

`,

7

		Alka	lis	Iron (Fe)								Silica (SiO2)	Harc a Ca(Iness s CO3		ium	1 index		
Calcium	Magnesium	Sodium	Potassium	Dissolved	Sulphate	Chloride	©N) Nitrate	E Fluoride	Boron (B)	©ODH) Conste	Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodium	+ Saturation index		No.
(Ca) at EAS	(Mg) (r pine	(Na) ((K)		(SO4) ((01)	(1(03)	_(r) ((1100%)	(000)				·				
37.7	8.4	2.3	0.5	0.16	5-6	1.4	1.8			148	0	4.1	7.6	129	135				l I
40.4	10.7	2.8	0.9	0.13	16.0	2.7	0.6	0.20		168	0	3.3	6.8	145	161			•••••	2
																			3
30-5	6.3	1.3	0.3		6.6	0.4	0.1	0.10	0.02	115	1.2	4-6	5.3	102	108			•••••	4
40.3	8.9	1.8	0.7	0.07	13.6	1.1	0.1	0.10		149	3.6	4.1	9.2	137	148				5
44.5	8.9	2.3	0.4		16.7	1.4	0.1			156	4.1	4.8	12.7	148	160			• • • • • • • • • •	6
45.2	10.5	2.4	0.7	0.03	18.7	1.7	0.6	0.10	0.04	161	7.2	5.1	12-5	156	171				8
48.0	10-5	3.7	0.5		23.5	1.8	0.4			173	8.4	5-2	13.4	169	189				9
49.4	10.6	3-2	0.9		20•4	2.1	0.4			190	0	4.3	11-0	167	185				10
42.0	9.5	2.5	0.6		15.1	1.6	0.5			158	3.1	4.4	9.3	144	157	3.6	0.5		11
				<u> </u>	l	l	<u>I</u>	·	<u>.</u>	1		<u> </u>	<u> </u>	L	<u> </u>	<u> </u>			<u></u>
HIVER	t at EAS		а, в.с. 	1		1	1 .	1	1			1		1 101		 	1	1	12
30.6	7.5	2.3	1.8	0.28	9.2	3-5	1.2	0.10		124	0	2.8	5-8	107	135				13
28.2	7.0	1.3	0.4		7-4	0.5	0-6	0.10	0.00	114	0	4.3	6-0	99·0	106				. 14
31-2	8.0	1.9	0.9	0.41	14.3	0.9	0.1			119	2.4	3-6	9.0	111	122				. 15
36.0	8.3	2.2	0.5		14-6	0.7	0.4			131	2.9	3.7	11.6	(114) 124	134				. 16
39.0	7-7	2.4	0.6		13.9	1.4	0.4			151	0	2.7	5.0	129	143				. 17
86-8	7-9	· 3•0	1.0	0.07	15.7	1.3	0.5			142	0	3.6	7.8	124	140		.		. 18
55.1	12-9	3-5	0.6		22.2	1.8	0-2			199	7.7	5.2	14.5	191	207				. 19
48.4	10.5	3.4	0.7		17.7	1.6	1.2			185	0	4.4	12.8	164	179				. 20
38.2	8.7	2.5	0.8		14-4	1.5	0.6			146	1.6	3.8	9-0	131	144	4.0	0.3	·····	. 21
<u></u>	Drainage	area, 38	,300 equ	are mile:	3														
38-9	9.0	1.9	1.0	0.04	18-4	1.6	0.0	0.00		. 144	0	5.5	16.1	134	148	3.0	0.2		. 22
29.7	7.1	2.0	0.9	0.05	17.6	(1·3) 1·4	0.1	0.05		. 111	0	(5) 5-8	12.4	(135) 103	119				. 23
	1	1	1	1	1	1	1	1		1		1	15.9	100	199		1	1	24

0.2 trace 0.10 0.00 110

7.2 1.5 0.6 0.04 17.5

31.9

122

2.4 6.1 15.2 109

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

_															
		period	Stream (Secon	lischarge id-feet)	Water				Suspe	ended tter	Specific conduct-	Resid d (D	ue on evanc ried at 105° issolved sol	oration C. ids)	Loss
No.	Date of collection	(Days)	On sampling date	Monthly mean	tem- pera- ture (°F.)	рН	Colour	Turbidity	Dried at 105°C.	Ignited at	ance K x 10 ^s at 25°C.	P.P.M.	Tons per acre- foot	Tons per day	on igni- tion at
		(Days)		I	([.)				105 ().	550°C.	25 0.		I	1	550°C.
_												STAT	ION No.	45—PEAC	E RIVER
1	Sept. 16	8:22	25,100	30,100	50	8.1	5	4	7.3	6.1	223	133	0.181	8,986	8-2
2	Oct. 16	13:29	30,200	33,300	40	8.0	5	5			206				
3	Nov. 2††	11:26	23,900	14,700	36	7.7	10	3	 		207	126	0.171	8,102	45.4
4	Nov. 16	12:19	13,300	14,700	33	8.1	10	2			214				
5	Dec. 16	20:56	5,200	5,400	32	8-2	10	3			245				
8	Jan. 16/53	10:45	8,900	8,480	32	8.1	10	3			251	148	0.201	3,542	13.2
7	Feb. 16	11:39	7,500	7,640	32	8.2	7	1			257				
8	Mar. 16	9:68	7,050	7,050	32	8∙1	10	0	0	0	260	159	0.218	3,017	11•4
9	AprNo sample	ə taken		10,600										1	× .
10	Мау 22	20:21	283,300	160,000	43	8.0	50	300	285	269	176	117	0.159	89,240	31.6
11	Average	13:35	46,855	34,341	39	8.1	12	37			227				
	tt Sampled from	north sho	re; not includ	ed in average	·		1	<u> </u>		,	<u> </u>		I	I	<u> </u>
_											87	TATION N	Vo. 46—BE	ATTON 1	RIVER at
12	Aug. 2/52	10:17			71	7·6 (8·0)	(175)	500	434	378	234	230	0.313		73.8
											ST.	ATION N	o. 47—KIS	KATINA	W RIVER
13	Feb. 18/52	15:15			37	8.2	8	6	5.4	4.1	596	350	0.476		36-0
14	Mar. 14	12:13			36	7.8	15	6			608				
15	Apr. 18	15:20	flood††	по	37	7.9		900	1,039	963	181	219	0.298		48-8
16	Мау 16	13:14	normal	discharge	55	8-2	· · · · · · · · ·	· 5			267				
17	June 17	9:20	u	records	56	8.0		1,300			265				
18	July 22	7:8	"		60	7-6		80	11.4	7.0	390	268	0.364		64-4
19	Aug. 4†	10:36			70	8.3	50	30			350				
20	Aug. 15	11:25	normal		62	(8·2) 7·7	(50) 60	(50) 15		•••••	397				
21	Sept. 18	9:15	> "	•••••	54	8.1	60	25			391				
22	Oct. 17	12:15	normal ^{††}	•••••	43	8.3	35	15	15	11	450	279	0.379	•••••	39.0
23	Nov. 18	9:17	u	·····	38	8.3	40	20			526				
<u></u>		·	·	······	i		·		·				<u> </u>		L.,

(In parts per million)

† From highway hridge, east of Dawson Creek—heavy rain; not included in average, †† Collector's estimate of river flow or level.

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

(In parts	per	million)	
-----------	-----	----------	--

		Alk	alis	Iron (Fe)								Silica (SiO2)	Harc a Ca(Incss s CO3		E I	der der	4	
e) Calcium	(aW) (agnesium	mipos (Na)	H Potassium	Dissolved	Sulphate	Chloride	©M) Nitrate	Huoride	(B)	(cO3H) Bicarbonate	O Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodium	+ 		No.
		B.CC		<u> </u>	(504)		(1103)	((1)		(11003)			· · · · · · · · · · · · · · · · · · ·	'	1	<u>.</u>			<u></u>
33.6	7.6	1.6	0.4	0.02	19.0	1.0	0.1	0.05		117	2.4	8.4	15-2	115	132				
30.0	7.0	1.4	0.5		16.9	0.2	0.3			110	0	4.9	13.6	104	115			· • • • • • • • •	. :
30.3	7.3	1.5	0.4	0.05	17.4	0-6	0.3	0.10	0.00	112	0	5.4	13.8	106	119				
31.0	7.0	1.8	0.5		16.7	0-3	0.4			103	6.0	4.6	11.7	106	119				·
36.0	8.4	2.0	0.5		17.8	0.4	0.4			137	0	7.9	12.3	124	142				·
36.8	8.7	1.8	0.5	0.02	16.9	0.5	0.5	0.05		141	0	6.7	12.4	128	142				·
37.0	9.2	1.8	0-4		18-1	0.3	0.8			142	0	6.9	14-4	130	144				·
38-1	9.3	3.5	1.8	0.07	17.8	0.3	0-6	0.00	0.00	146	0	11	13-2	133	155				·
28.9	5.2	2.2	0.6	0.36	8.1	0.1	0.6		0.00	109	0		4.0	93.6	99.9				. 1 -
33.7	7.7	2.0	0.6		16.5	0.4	0.4			124	1.2	7.1	12.4	116	131	3.6	0.2		. 1
bridge	near FO	RT ST.	JOHN,	в.С.															
25-4	7.4	14.3	2.0	1.1	51.2	2.6	trace		0.00	83·0 (85·4)	0 (0)	5-3	25·7 (24·0)	93.7 (94.0)	150	24.4		0-6	1
near D.	AWSON	CREEK	, в.с.																
93.8	22.2	10.8	0.8	0.02	18.6	0.9	0.3	0.10		383	8.4	7.9	0.3	325	353	<u>]</u>			. 1
88.5	22.0	12.3	0.6		26-3	0.8	0.0			384	0	6.9	0.0	311	347		.		. 1
31.4	3.5	1.6	6.8	4-2	7.7	2.1	0.4			115	0		0:0	93.0	114		.		. ı
40· 3	8.7	4.3	1.0	. 	6-6	1.0				162	2.4		0.0	136	149				
39.8	9.5	4.3	1.4		6.5	2.5	0.4			166	0	6.2	2.1	139	153		.		ŀ
58 .5	14-1	6.9	1.7	0.14	30.2	2.9	0.4	0-20	·····	227	0	5.6	17.9	204	234		.]	•
54·1	13.2	5.8	0.8		9-8	1.0	0.6			218	6.7	6-3	0.0	189	206		.		.
60-5	14.5	6.2	1.1		9.0	2.2	0.2			256	0	7.2	0.6	211	227	·····			. 2
61.3	14.4	6.4	1.0	·····	8.8	0.7	0-5			244	6.0	5.0	1.9	212	224		.		
66 • 6	17.0	7-9	1.2	0.07	14.5	1-3	0.3			263	15-1	7.0	0.0	236	261		.		. 2
79.4	19.6	10.5	1.2	1	15-6	0.6	0.2	1	1	330	11.3	6.8	0.0	279	308	1			1.

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin--Continued

_						[17	paris	per mil	(1011)						
=			Stream (Secon	discharge id-feet)					Suspe	ended atter	Specific	l di	ue on evapo ried at 105° issolved sol	C.	Loss
No.	Date of collection	Storage period (skorage period	On sampling date	Monthly mcan	Water tem- pera- ture (°F.)	편	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	K x 10 ⁸ at 25°C.	P.P.M.	Tons per acre- foot	Tons per day	on igni- tion at 550°C.
				<u> </u>								ATION N	0, 47—KIS	KATINA	
1	Dec. 17	19:43	low		38	8.1	25	25			708				
2	Jan. 16/53	12:43	"	· · · · · · · · · · · · · · · ·	35	8.1	20	15	12	8.3	972	584	0.794		92-4
3	Avcrage (12 samples)	12:21			46	8.0		200			479				
						i					ST	ATION N	o. 48—KIS	KATINA	W RIVEI
4	Oct. 5/51	11:31			41	8·4 (8·3)	5 (25)	15 (7)	14.1	7.4	426	276	0.375	 	59•6
		,	• • • • • • • • • • • • • • • • • • • •		•		((-0)				l	STAT	ION No.	49—POUC	E COUPI
5	Aug. 1/52	11:18			68	7.7 (8.1)	150 (225)	10 (10)	18	12	313 (310)	258	0.351		82.4
	 			·					·			STAT	ION No.	50—PEAC	E RIVE
6	Oct. 4/51	12:32			44	8.0	2	7	1.7	1.5	310	195	0.265		13-2
7	Aug. 5/52	14:16			68	(8·2) 8·1 (8·2)	(15) 10 (25)	(clear) 25 (35)	41	37	195	119	0.162		42.6
												STATIO	N No. 51-	-WAPITI	RIVER a
8	Aug. 1/52	11:12			68	8·2 (8·5)	15 (25)	4 (5)	9.4	7.5	256	151	0.205		48-2
		<u></u>		<u> </u>				•	··· .			STA	TION No	. 52—BEA	R RIVEI
9	Oot. 4/51	12;32			44	7.7 (8.0)	25 (50)	4 (15)	19	13	255	205	0.279		60-0
_										·	•	STAT	ION No. 1	53—SMOK	Y RIVEI
10	Oct. 6/51*	13:33		no	46	8·1	5	10	10.7	7.3	294	179	0.243		32.0
11	Feb. 18/52	15:15	very low†	discharge	. 34	(8·4) 7·7	(25) 2	(7) 3			451	287	0.390		20.4
12	Mar. 17	9:10	low	-	33	7.7	5	. 2	<i>.</i>		483				
13	Apr. 18	15:20	>normal	records	35	· 7•8	40	910	1,809	1,698	- 198	158	0.215	· · · · · · · · · · · · · · · · · · ·	34-4
	Мау 21	8:28	u		52	7.9		150		· ·	185				

(In parts per million)

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

(In parts per million)

<u></u>		Alk	alis	Iron (Fe)								Silica (SiO2)		iness S CO3		a			
(Calcium	(g Magnesium	Hinipog Sodium (Na)	Ю Potassium	Dissolved	Solphate	G Chloride	©ON) Nitrate	E Fluoride	Horon (B)	COH) Bicarbonate	O) Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodium			No.
near D.	AWSON	CREEI	с, в.с	-Conclude	d														
107	26.9	14.6	1.4		9.3	0.5	0.1		<u> </u>	488	0	9.2	0.0	378	409				1
149	40.9	19-2	1.7	0.02	27.7	0.8	0.4	0.00		697	0	11	0.0	540	593				2
73.0	17.8	8.8	1.7		15.0	1.4	2.9			310	3.6	7.2	0.0	255	284	6•9	0.8		3
at brid	ge near f	SWEETY	VATER,	B.C.															-
59.6	17.5	9.6	1.6	0.04	21.4	0.6	0.0	0.10		248	11-3	4·1 (4)	0.0	221	248	8.0	1.0		4
RIVER	t near P	OUCE C	OUPE,	B.C.	-														
40.5	11.4	10-1	2.8	0.42	49.1	1.9	1.0			134 (132)	0 (0)	6-1	38·3 (41·0)	148 (149)	189	12.7		0.1	5
from fe	rry at I	UNVEG	AN, A	LTA.															
45.5	10.3	6.8	1.2	0.02	38-7	1.9	0.0	0.00		151	0	5.4	32.1	156	184	8.6	0.3		6
29.2	6-4	1.6	0.6	0.14	14.6	1.5	0.0	0.10		104 (105)	2.4	(5) 4·7	10.4	99•4	112	3.4	0.1		7
ferry ne	ear GRA	NDE P	RAIRIE	e, alta.		•												<u> </u>	
38.2	9.0	3.6	0.7	0.05	17.0	0.9	0.1	0.20		137	4.8	4.4	12.3	132	146	5.5	0.4		8
near G	RANDE	PRAIR	IE, AL	ГА.															-
24.8	7.0	15.0	7.3	0.28	42.8	1.3	0.8	0.30		102	0	4.2	7.1	90.7	147	24.6		0.5	9
near G	RANDE	PRAIR	EE, AL	TA.															_
44.1	10.0	5.1	0.4	0.05	28.6	0.5	0-2	0.30		157	1.9	4.1	23.3	155	173	6.7	0.4		10
66•3	16.4	7.5	0.7	0.07	73.3	1.5	0.2	0.20		210	0	4.1	60-9	233	274				11
66.5	17.0	8-8	0.4		76.1	1.1	0.0			217	0	5-2	57-8	236	282				12
31.9	5.3	4.0	4.2	0.84	15.6	1.4	1.6			114	0		8.0	101	121				13
26-2	6.4	2.0	0.9	1	11-9	0-8		ll	0-05	101	0	4.9	8.7	91.7	103	.	[I	I	14
									43										

. .

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

	<u> </u>		1	ł				1	1	1		1		
Loss	oration C. lids)	due on evapo dried at 105° Dissolved sol	Resi	Specific	ended tter	Šusp ma			×	Water	discharge 1d-feet)	Stream (Secor	ođ	
on igni- tion at 550°C.	Tons per day	Tons per acre- foot	Р,Р.М.	conduct- ance K x 10 ^s at 25°C.	Ignited at 550°C.	Dried at 105°C.	Turbidity	Colour	ЪЦ	tem- pera- ture (°F.)	Monthly mean	On sampling date	(Days)	Date of collection
	MOKY RI	I No. 53-51	TATION				· · ·	· <i>··</i> ,						
29.0		0.185	136	207	96	103	70		8.0	50		high	7:8	June 17/52
38.(0.200	147	233	44	46	35	15	7.9	64	no	normal	11;12	July 18
41.0		0.207	152	237	44	49	35	30	8.2	70	discharge		7:13	July 31*
•••••				256			(50) 25	(25) 10	(8·4) 8·1	64	records	low	12:23	Aug. 17
				308		 	7	10	8-1	50		u	9:15	Sept. 19
16.		0.246	181	309	2.7	4.8	4	5	8-1	44		u	12;15	Oct. 17
•••••		•••••		390			2	10	8.1	33	× .	u	9;17	Nov. 18
• • • • • • • •		•••••	<i>.</i>	528			2	10	8.4	32		u	18:53	Dcc. 19
		0.382	281	439			3	3	8-0	32		u	8:42	Jan. 29/53
21.					1	.l								
				332			100	11	8.0	44	rel.	ver flow or lev		Average (12 samples) • Not included in † Collector's estin
? RIVE	E SMOKY	54—LITTL 0·269	ION No.	1	2.3	5.9	9	15	8+2	44	rel.	ver flow or lev	avorage.	(12 samples) • Not included in
21+; 7 RIVE 63+	Æ SMOKY			STAT	2.3	5·9 82		<u> </u>	· ·		rel.	/er flow or lev	average. nate of riv	(12 samples) * Not included in † Collector's estir
63.4			198	STAT: 311			9 (10) 50	15 (40) 140	8·2 (8·1) 7·6	48	rel.	ver flow or lev	average. nate of riv —:33	(12 samples) • Not included in † Collector's estir Oct. 6/51
RIVE		0.269	198	STAT: 311			9 (10) 50	15 (40) 140	8·2 (8·1) 7·6	48	rel.	/er flow or lev	average. nate of riv —:33	(12 samples) • Not included in † Collector's estir Oct. 6/51
63-0 63-0 7 RIVE 9-1	5SMOKY	0.269 FION No. 5	198 STAT 158	STAT: 311 173	73	82	9 (10) 50 (50) 75	15 (40) 140 (170) 40	8·2 (8·1) 7·6 (8·1) 8·1	48 75	rel.	/er flow or lev	average. nate of riv —:33 13:19	(12 samples) • Not included in † Collector's estin Oct. 6/51 July 31/52
7 RIVE 63 7 RIVE 9	5SMOKY	0.260 FION No. 5 0.215	198 STAT 158	STAT: 311 173	73	82	9 (10) 50 (50) 75 (50) 20	15 (40) 140 (170) 40 (50) 5	8-2 (8-1) 7-6 (8-1) 8-1 (8-2) 8-2	48 75	rel.	/er flow or lev	average. nate of riv —:33 13:19	(12 samples) • Not included in † Collector's estin Oct. 6/51 July 31/52
rive 63. 7 RIVI 9. 2 RIVI	5SMOK Y	0.269 FION No. 5 0.215 TION No.	198 STA7 158 STA	STAT: 311 173 244	73	52	9 (10) 50 (50) 75 (50)	15 (40) 140 (170) 40 (50)	8·2 (8·1) 7·6 (8·1) 8·1 (8·2)	48 75 70			avorage. nate of riv -:33 13:19 13:18	(12 samples) * Not included in † Collector's estir Oct. 6/51 July 31/52 Aug. 7/52
 ? RIVE 63. ? RIVI 9. 9 RIVI 20 	5SMOK ¥	0.269 FION No. 5 0.215 TION No. 0.276	198 STA7 158 STA 203	STAT: 311 173 244 326	73 41	52	9 (10) 50 (50) 75 (50) 20 (10)	15 (40) 140 (170) 40 (50) 5 (20)	8-2 (8-1) 7-6 (8-1) 8-1 (8-2) 8-2 (8-2)	48 75 70 47	12,900†		avorage. nate of riv -:33 13:19 13:18 13:33	(12 samples) * Not included in † Collector's estin Oct. 6/51 July 31/52 Aug. 7/52 Oct. 3/51*
 ? RIVE 63. ? RIVI 9. 9 RIVI 20 	5SMOK ¥	0.269 FION No. 5 0.215 TION No. 0.276	198 STA7 158 STA 203	STAT: 311 173 244 326 326	73 41	52	9 (10) 50 (50) 75 (50) 20 (10) 1	15 (40) 140 (170) 40 (50) 5 (20) 2	8-2 (8-1) 7-6 (8-1) 8-1 (8-2) 8-2 (8-2) 8-0	48 75 70 47 34	12,900† 6,550	6,300†	avorage. nate of riv -:33 13:19 13:18 13:33 10:10	(12 samples) * Not included in † Collector's estir Oct. 6/51 July 31/52 Aug. 7/52 Oot. 8/51* Feb. 23/52
? RIVI 63. ? RIVI 9. ? RIVI 20.	5SMOK ¥	0.269 FION No. 5 0.215 TION No. 0.276	198 STA7 158 STA 203	STAT: 311 173 244 326 326 299	73 41	52	9 (10) 50 (50) 75 (50) 20 (10) 1 2	15 (40) 140 (170) 40 (50) 5 (20) 2 5	8.2 (8.1) 7.6 (8.1) 8.1 (8.2) 8.2 (8.2) 8.0 8.0 8.0	48 75 70 47 34 35	12,900† 6,550 6,100	6,300† 6,000	avorage. nato of riv -:33 13:19 13:18 13:18 13:33 10:10 14:80	(12 samples) * Not included in † Collector's estin Oct. 6/51 July 31/52 Aug. 7/52 Oot. 3/51* Feb. 23/52 Mar. 24
 ? RIVI 63. ? RIVI 9. 2 RIVI 20. 21. 	5SMOK Y 56PEACE 3,270	0.269 FION No. 5 0.215 TION No. 0.278 0.262	198 STAT 158 STA 203 193 	STAT: 311 173 244 326 326 299 268	73 41 8-6	82 52 7.5	9 (10) 50 (50) 75 (50) 20 (10) 1 2 2 (10) 1 2 2 (10) 1 2 2 (10) 50 (50)	15 (40) 140 (170) 40 (50) 5 (20) 2 5	8-2 (8-1) 7-6 (8-1) 8-1 (8-2) 8-2 (8-2) 8-0 8-0 7-6	48 75 70 47 34 35 35	12,900† 6,550 6,100 9,700	6,300† 6,000 10,900 182,000	avorage. nato of riv -:33 13:19 13:18 13:33 10:10 14:80 12:17 9:17	(12 samples) * Not included in † Collector's estir Oct. 6/51 July 31/52 Aug. 7/52 Oot. 3/51* Feb. 23/52 Mar. 24 Apr. 21
7 RIVH 63. 7 RIVH 9. 2 RIVH 20. 21. 21.	5SMOK Y 56PEACE 3,270	0.269 FION No. 5 0.215 TION No. 0.278 0.262	198 STAT 158 STA 203 193 	STAT: 311 173 244 326 326 299 268	73 41 8-6	82 52 7.5	9 (10) 50 (50) 75 (50) 20 (10) 1 2 2 (10) 1 2 2 (10) 1 2 2 (10) 50 (50)	15 (40) 140 (170) 40 (50) 5 (20) 2 5	8-2 (8-1) 7-6 (8-1) 8-1 (8-2) 8-2 (8-2) 8-0 8-0 7-6	48 75 70 47 34 35 35	12,900† 6,550 6,100 9,700 106,000		avorage. nato of riv -:33 13:19 13:18 13:33 10:10 14:30 12:17 9:17 taken	(12 samples) * Not included in † Collector's estin Oct. 6/51 July 31/52 Aug. 7/52 Oct. 3/51* Feb. 23/52 Mar. 24 May 20

(In parts per million)

* From south bank below town intake; not included in average. †† From north shore at bridge.

s:

-

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

.

(In parts per million)

		Alk	alis	Iron (Fe)								Silica (SiO ₂)	Hard A CaC	lness 3 2O3		E I I	der		
(calcium	ar B Magnesium	unipos (Na)	H Potassium	Dissolved	Sulphate	G Chloride	«ON) (SON)	E Fluoride	Boron	COOH) Bicarbonate	O Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodium	+ + Saturation index		No.
		AIRIE, A	ALTA.—	-Concluded	1														_
28.9	8.0	3.2	0.6	0.20	13 · 1	1.7	0.2	0.20	0.07	113	0	3.4	12.4	105	115				1
33.3	8.5	3.2	0.5	0.08	21.4	0.5	0.2			122	1.2	4.4	16.0	118	133			•••••	2
34.3	8.5	3.2	0.9	0.17	24.2	0.4	0.1	0.20	.	118	3.1	3.6	18.4	120	137				3
37.0	8.6	3.5	0.4		27.1	0.4	0.2			120	4.6	3.3	(14·0) 21·7	(122) 128	144			•••••	4
43-5	11.2	4.7	0.8		38.1	0.1	0.2			146	3.1	3.3	29.7	155	177			•••••	5
41.7	11.0	4.2	0.7	0.01	38.5	0.8	trace	0.10		142	4.8	4.1	25.3	149	176			•••••	6
53·1	14.1	7.0	1.0		54.7	0.8	0-2			189	0	3.7	35.2	190	228	ļ			7
75.7	20.4	8.0	0.8		90-1	1.0	0.2			241	3.4	6.5	70-3	273	324	·		• • • • • • • • •	8
61.6	17.1	6.6	0.7	0.07	79.6	0.8	0.6	0.10		188	0	4.6	70.0	224	264			•••••	8
47.1	12.0	5.2	1.0		45.0	0.9	0.3			159	1.4	4.3	34.6	167	196	6.3	0.4		10
near H 46-3 25-9	IGH PF 9-5 5-7	AIRIE, 13-0 6-0	ALTA. 1.5 1.1	0·05 0·10	15•9 12•6	0.7 1.8	0.6	0.30		189 101	2·2 0	5.9 8.4	0·0 4·9	155 87-9 (86-6)	189 113	15·6 12·7	0.6		11
at ferry	v at WA'	TINO, A	LTA.																
35.9	7.3	4.3	0.9	0.11	21.9	0.9	0.4	0.10		117	4.8	7.4	15.0	120	142	7.2	0.3		13
at PEA	CE RI	VER, AI	TA.	<u>, , , , , , , , , , , , , , , , , , , </u>															-
47.8	12.1	6.8	0.8	0.04	44-4	1.2	0.0	0.10		166	2.4	4·3 (3)	29.0	169 (169)	201	8.0	0.5	 	14
47.1	10.6	6-0	0.5	0.10	25.3	4.8	0.2	0.05		(170) 176	(0·0) 0	8.7	16.5	161	190				15
40 •6	9.9	7.3	0.5		14.8	7.5	0.0			159	0	3.5	12.0	142	162				16
39.1	7.5	3.0	7.8		59.9	1.8	2.4			93-9	0		51 • 4	128	168				17
25.8	4+2	1.7	1.1	0.30	9.5	0.9	1.6			92 • 7	0	4-2	5.8	81.8	95-1				18 19 20
29.6	6.6	3.0	0.6	0.09	13.6	2.9	0.2	0.05		104	2.4	4.8	11.6 (15.1)	101 (104)	115				21

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

_						[170	puns	per mu	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
		bd	Stream (Secon	discharge 1d-feet)	Water				Suspe ma	ended tter	Specific conduct-	i di	ue on evapo ried at 105° ssolved sol	C.	Loss
No.	Date of collection	(Days)	On sampling date	Monthly mean	tem- pera- ture (°F.)	Ħď	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	ance K x 10 ⁶ at 25°C.	P.P.M.	Tons per acre- foot	Tons per day	on igni- tion at 550°C.
												STATIO	N No. 56-	-PEACE I	RIVER at
1	Sept./52—No san	plo taken.		30,100†]		
2	Oct. —No sam	plo taken.		33,300							~				
3	Nov. 20	7:20	9,300†	14,700	35	8.1	10	3			253	153	0.208	3,832	16-6
4	Dec. 9	8:45	4,600	5,400	32	8-4	15	5			286				
5	Jan. 17/53	6:31	8,900	8,480	33	8.3	15	3			321	 - <i>-</i>			
6	Feb. 7	6:48	8,100	7,640	33	8+4	10	3			. 380	231	0.314	5,090	30.0
7	Average (9 samples)	9:26	32,178	22,997	40	8.1	10	210			278				• • • • • • • • • • • • • • • • • • • •
,	† Discharge recor	ds at Tayl	or, B.C.	<u> </u>	<u> </u>		·					<u>.</u>			
							······					STATIO	N NO. 56	A-CLEAI	RWATER
8	June 11/56	28:59	· · · · · · · · · · · · · · · · · · ·		62	79	70	10	2.8	1.7	239	166	0.220		43.2
						,					87	ATION N	to. 57—NC	TIKEWII	N RIVER
9	Aug. 6/52	13:19			71	8·1 (8·4)	20 (50)	6 (7)	14	12	365	249	0.339	•••••	55•8
					<u></u>				<u>.</u>			STAT	ION No. 5	8HAY I	RIVER at
10	July 19/52	12:19	high		66	7.6	120	4		4.7	411	332	0.452		82•4
11	Oot. 17/52	14:15			33	7.9	160	6	· 8.7	1.4	360	287	0.390	•••••	76.4
12	Jan. 19/53	193:231	• • • • • • • • • • • • • • • •		32	7.7	100	8			531			· · · · · · · · · · · · · · ·	
13	Apr. 29/53	93:131			33	7.5	80	2	•••••		413			•••••	•••••
	4				,							ATION N	Io. 59—SN	ARE RIV	ER (BIG
14	May 22/52*	14:15			40	7.1	10	2			35.8	37.0	0.051		26.0
	June 8, June 22†		725·3‡		56	8.8	10		•••••		62.8				
16	July-No sample	taken.	Ţ	į		ĺ									
17	Aug.—No sample	taken.													
18	Sept. 18†	14:20			50	7.1	10	0.6			25.0	23•4	0.032		13•2
19	Sept.13, Sept.26††	14:38	726+33		48	7-9	10				37.2				

(In parts per million)

TABLE II—Continued Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin—Continued (In parts per million)

		Alk	alis	Iron (Fe)								Silica (SiO2)	Hard B Cal	iness S CO3		B	1.3	THURS
Calcium	Magnesium	Sodium	Potassium	Dissolved	Sulphate	Chloride	Nitrate	Fluoride	Boron	Bicarbonate	Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodium		1079 011 0 00
(Ca)	(Mg)	(Na)	(K)		(SO4)	(C1)	(NO3)	(F)	(B)	(HCO3)	(CO3)						+	
PEAC	E RIVE	R, ALTA	Concl	uded					· · ·····						1		1	, , , , , , , , , , , , , , , , , , ,
														9 4 5				
34.9	7.8	4.3	0.8	0.27	19-5	3.2	0.3	0.05		132	0	4.6	11.0	119	141			
40.6	9.8	3.5	0.7		23.7	1.4	0.5			152	2.4	6.7	13-2	142	164			
45-8	11.3	3.8	0.4		33-6	1.9	0.5			161	3.6	6.0	23.0	161	186			
52.5	14.3	6.2	1.1	0.12	30.6	5.0	0.7	0.05		204	2.6	10	18-3	190	224			
39.6	9.1	4.3	1.5		25.6	3.3	0.4			142	1.2	6.1	18.1	136	161	6-3	0.4	
19.3 	5.6 ge at MA	22.0	1.7 3, ALTA	0.15	8-2	27.0	4.0	0.00		91.4	0	6.7	0.0	70-8	141	38.8		0.4
47.0	10.7	13.5	1.9	0.04	60-3	1.1	0.4	0.20		148	2.9	3.6	34-8	161	215	15-2	0.4	
······														11071				
HAY	RIVER S	SETTLE	MENT,	N.W.T.										(167)			 	<u> </u>
HAY 1 	RIVER S	SETTLE 12.7	MENT, 2·0	N.W.T. 0.19	109	4.8	0.7			113	0	5-2	95.3	(167) 188	256	12.7		0.2
					109 83•3	4·8 6·0	0.7 0.6		0.00	113 113	0	5·2 5·0	95·3 72·0			12.7		0.2
52.2	13.9	12.7	2.0	0.19					0.00					188	256		0.1	
52·2 46·0	13.9 12.0	12.7 11.5	2·0 1·4	0·19 0·32	83.3	6.0	0.6		0.00	113	0	5.0	72.0	188 164	256 222	13-1	0.1	0
52.2 46.0 64.9 48.1	13•9 12•0 16•7	12.7 11.5 22.5 15.9	2·0 1·4 3·0 2·9	0.19 0.32 0.08 0.35	83•3 13•0 96	6-0 8-2 4-2	0.6 1.0		0.00	113 163	0 0	5.0	72•0 96•8	188 164 231	256 222 326	13·1 17·3	0.1	0
52.2 46.0 64.9 48.1	13.9 12.0 16.7 13.6	12.7 11.5 22.5 15.9	2·0 1·4 3·0 2·9	0.19 0.32 0.08 0.35	83•3 13•0 96	6-0 8-2 4-2	0.6 1.0	0.02	0.00	113 163	0 0	5.0	72•0 96•8	188 164 231	256 222 326	13·1 17·3	0.1	0
52.2 46.0 64.9 48.1 SPRU	13.9 12.0 16.7 13.6 CE LAK	12.7 11.5 22.5 15.9 E) at po	2.0 1.4 3.0 2.9 wer plan	0.19 0.32 0.08 0.35 t near 7	83.3 13.0 96 AE, N.V	6-0 8-2 4-2 V.T.	0.6 1.0 1.0	0.02		113 163 130	0 0 0	5·0	72.0 96.8 69.4	188 164 231 176	256 222 326 250	13·1 17·3	0.1	0
52.2 46.0 64.9 48.1 SPRU4 4.3	13.9 12.0 16.7 13.6 CE LAK	12.7 11.5 22.5 15.9 E) at po	2.0 1.4 3.0 2.9 wer plan	0-19 0-32 0-08 0-35 t near 28 0-1	83·3 13·0 96 AE, N.V	6.0 8.2 4.2 V.T.	0.6 1.0 1.0			113 163 130 12-2	0 0 0	5·0 	72·0 96·8 69·4 2·2	188 164 231 176 12-2	256 222 326 250 19-0	13·1 17·3	0.1	0
52.2 46.0 64.9 48.1 SPRU4 4.3	13.9 12.0 16.7 13.6 CE LAK	12.7 11.5 22.5 15.9 E) at po	2.0 1.4 3.0 2.9 wer plan	0-19 0-32 0-08 0-35 t near 28 0-1	83·3 13·0 96 AE, N.V	6.0 8.2 4.2 V.T.	0.6 1.0 1.0			113 163 130 12-2	0 0 0	5·0 	72·0 96·8 69·4 2·2	188 164 231 176 12-2	256 222 326 250 19-0	13·1 17·3	0.1	0.3

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued

_						<u>[</u> 1 <i>n</i>	parts	per mil							
		ۍ تو	Stream (Secon	lischarge d-feet)					Suspe	ended tter	Specific	Resid di (Di	ue on evapo ried at 105° issolved sol	oration C. lids)	Loss
No.	Date of collection	. Storage period (afa)	On ^{·sampling} date	Monthly mean	Water tem- pera- ture (°F.)	Ħď	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	K x 10 ⁶ at 25°C.	P.P.M.	Tons per acre- foot	Tons per day	on igni- tion at 550°C.
				······································	<u>.</u>						<u> </u>	ATION N	40. 59—SN	IARE RIV	
1	Oct. 13	85:108	726-85	no	38	9.1					58.5				
2	Oct. 29*	69:92	726-8	discharge	36	9.0					53.0				
3	Nov. 12	55:78	726-70	records	34	8.8					50.0		. 		
4	Nov. 26*	41:64	726.8		32	9.3]			ļ	60-6	. <i>.</i>]	
5	Dec. 24	114:150	726-8		32	· 8-8	15	medium			53-1			· · · · · · · · · · · · · · · · · · ·	
6	Jan., 1953—No san	ple taken.												r	
7	Feb. 16/53	60:96	726-3		32	9.2	10	medium			· 59•4			. <i>.</i>	
8	Mar. 4	13:49	726-0		32	7.7	10	slight			40.7				
9	Mar. 26	22:58	725-0		32	·7•6	15	slight			41.2				
10	May 10*	107:159	724-15		35	7.5	10	4			47.0				
11	May 22	103:147	724 • 15	•	- 38	7.0	Б	1 ·			46-2				
12	June-No sample	taken.		-											
13	July 16	48:92	726·0		61	9.0	5	1			52-6	 		 	
14	Aug. 4	29:72	725.7		65	9·0	5	2			53.7				
15	Average (10 samples)	54:87			41	8.3			•••••		48.0				 • • • • • • • • • • • •
	* Not included in	average.	"! <u></u>										STATI	ON No. 6	EMILE
16	Sept. 14/52	18:24			50	7.3	Б	0.7			40.7	29.6	0.040		11.4
·	- • • •									STATI	ON No. 61	-LIARD	RIVER a	t WATSO	N LAKE,
17	June 24/52	28:30	142,000e	114,000	50	7.7	20	8	30	27	123	81-8	0.111	31,240	11.8
18	July 23	22:23	89,500	108,000	58	7.8	20	2			157				

(In parts per million)

21:27 Aug. 21.... 41,400 46,800 19 $\mathbf{52}$ 7.0 5 0.9 176 115 0.156 12,793 11.2 Sept. 23..... 17:27 54,200 20 54,000 46 7.8 10 0-9 243 21 Oct. 23..... 21:33 46,500 48,800 83 8.0 15 0.9 246 147 **0**•200 18,368 17.8 22 215:216 20,300 23,900 Nov. 22.... 33 7.8 10 337

e Estimated. Ice conditions Oct. 21/51 to May 9/52; Nov. 26/52 to May 13/53.

13,100

32

7.4

10

11,200

23 Dec. 23.....

184:185

TABLE II—Continued Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin—Continued

(In parts g	oer million)
-------------	--------------

										1 1111110		_							
		Alk	alis	Iron (Fe)								Silica (SiO2)	Hard Ca	lness S CO3		m	der		
(Calcium	هر) هر Magnesium	(Na)	A Potassium	Dissolved	Sulphate	Chloride	©UX) Nitrate	E Fluoride	Boron (B)	(sOOH) Bicarbonate	O Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodium	+ - Saturation index		No.
SPRUC	E LAK	E) at por	ver plant	t near RA	E, N.W.	T.													
7.5	1.4	2.5	0.8		2.5	0.2				12-2	9.6		0.0	24.4	30.5				1
6.6	1.5	2.0	0.6		2.5	0.2				16.1	6·7		0.0	22.8	28.0				2
6.5	1.3	2.0	0.8		3.3	0.6				16.1	5.5		0.0	21.5	27.9				3
6.3	2.1	3.5	0.6		2.5	0.8				17.5	8.0		0.0	24.4	32.4				4
5.5	2.1	9·0	3.5		5.3	0.3		••••		48.8	1.2		0.0	22.2	50.9			•••••	5
6.1	2.2	10.8	2.4		4.1	0.3				46.1	5.5		0.0	24-2	54-1				6
4.7	1.9	3.0	2.4		3.3	0.1				29-3	0		0.0	19•4	29.8			· · · · · · · · · ·	8
4.7	2.2	2.0	1.0		3.3	0.6				25.6	0	 .	0.0	20.6	26.4				9
5-9	1.6	3.5	1.8			1.0	1.6			22.2	0		0.0	21.2	· · · · · ·				10
4-0	2.5	3.0	1.7			0.8	1.2			24.4	0		0-3	20.3					11
																			12
7.9	0.9	4.5	1.6	0.05		0.8	1.2			18-1	6.2		0.0	23.2					13
6-1	1.3	4.0	1.8			0.8	$1 \cdot 2$			17.3	6-2		0.0	20.7					14
5.7	1.6	4.2	1.7		3.8	0.0				24.8	3.4		0	20.8	33	30.3		0.9	15
DIVER	l near R	410 N W	/ TT	• • • •			•	·		·									
							I	1				1			1	1			Γ
4.8	1.1	1.2	0.8	0.02	4.7	1.0	0-1	0.05	0.00	17.3	0	1.6	2.2	16-4	23.9	12.9		2.2	16
Y.T	Drainage	area at	Lower C	Crossing,	38,800 sq	uare mil	es												
18•9	4.1	1.0	0.4	0.05	8.8	0.5	0.3	0.30		66·1	0	6.2	9.7	63.9	73.6				17
22.1	4.7	1.0	0.3		8.8	0.1	0.0	0.20		83·0	0	5.4	6.5	74.5	83.5			•••••	18
26-3	5.6	1.0	0.4	0.06	9.5	0-7	trace	0.10		98.0	0	14	8.1	88-9	106			· · · · · · · · ·	19
34.8	8.4	1.9	0.4		10.3	1.7	0.2			143	0	9.8	4.4	121	138				20
34.5	9.3	2.0	0.8	0.07	8-4	0.9	0.3	0.10		147	0	8.2	3.9	124	137				21
45.1	14.4	2.0	0.6		22.2	0.1	0.4			199	0	20	8.6	172	203				22
35.1	9-1	1.6	0.8	 	20-2	0.1	0.6		l	132	0	9+4	18-0	126	142	l	. 		13

...

_							F								
			Stream (Secon	discharge id-feet)	Water				Suspe	ended tter	Specific	Resid di (Di	ue on evapo ried at 105° ssolved sol	oration C. ids)	
No.	Date of collection	(af Storage period	On sampling date	Monthly mean	tem- pera- ture	Ħ	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	K x 10 ⁸ at 25°C.	Р.Р.М.	Tons per acre- foot	Tons per day	Loss on igni- tion at 550°C.
		(===)=)	<u>.</u>		. (·	•			·	<u> </u>	<u>.</u>	•	<u> </u>
•							·····		·····	STATIO	ON No. 61	LIARD	RIVER a	t WATSO	N LAKE,
1	Jan. 23/53	159:173	9,700	10,200	33	8-1	10	3			253	92•4	0.126	2,415	29.8
2	Feb. 23	122:123	7,300	7,790	33	8.0	5				290	·····		•••••	
3	Mar. 26	91:92	6,850	6,970	33	7.6	10				328				
4	Apr. 28	59:78	13,200	8,780	34	7.8	20	3	4.2	1.4	239	148	0.201	5,254	61.4
5	May 23	32:53	107,000	65,000	47	7.8	40	4	9•4	8+4	187	116	0.158	33,384	47.2
6	Average (12 samples)	81:88	45,785	42,280	40	7.8	15	3			237				
		<u></u>	~ <u>~</u>									STAT	ION No.	62—LIARI	D RIVER
7	Aug. 26/52	64:67			54	8.0	30	430	425	393	265	167	0.227		20.4
8	Sept. 22	37:53			48	8.1	20	15			253	·····			
9	Oct. 21	108:142			33	8.2					270	208	0.283		62.0
10		71:120		No	32	8-2	0	heavy			353				
11	Dec. 26	42:91		discharge	32	7.8	0	slight			406				
12				records	32	7.8	5	2			404				
	FebNo sample			10001015	0.			Ĩ			101		••••••		
14	Mar. 10				32	8.0	10	15			416				
15		167:223			32	7.6	5	2			433				
													•••••	•••••	•••••
16	-	129:185			32	7.1	10	7	· · · · · · · · · · · · · · · ·		223			•••••	•••••
		104;159	low		58	7.9	[·····	. 65	•••••	• • • • • • • • • • •	194	• • • • • • • • • • • • •	•••••		
18	June 23	73:115	low		58	8.1		heavy	250	225	216	174	0.237	•••••	44.0
19	July 24	109:181			60	8.2	30	80	194	184	225	144	0.196	• • • • • • • • • • • • • •	38-2
20	Aug. 22*	80:137	low		62	8.2	20	50			268		·····	·····	
21	Average (12 samples)	108:153			42	7.9	12	80			305		•••••		
	* Not included in	average.				_						STAT	TION No.	63—GRE/	AT BEAR
22	1946	•••••				7.5						96·0	0.131		
23	Aug. 24/52	6:23	normal†	No record	41	7.6	3	0.5			154	96.0	0.131		24.0
24	Nov. 24/52Sam	ole lost in t	transit.												
25	Mar. 24/53	129;153	normal†	No record	32	8.9	10	6				20.0	0.027		6-4
26	June 25/53	36:60	normal†	387-93††	35	7.7	100	5	1.1	0	177	104	0.141		26.8

TABLE II-Continued Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Continued (In parts per million)

† Collector's estimate of river flow. †† Water elevation.

50

								(In po	irts per	r millio	n)								
		Alk	alis	Iron (Fe)								Silica (SiO2)	Hara B Ca	lness S CO3		E E	der		
Calcium	Magnesium	Sodium	Potassium	Dissolved	Sulphate	Chloride	S Nitrate	Fluoride	Boron	Bicarbonate	Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodium	- Saturation index		No.
(Ca)	(Mg)	(Na)	(K)	1 1	(SO4)	(Cl)	(NO3)	(F)	(B)	(HCO3)	(CO3)				1	<u>.</u>	+ 1	-	<u> </u>
¥.T.—I	Jrainage	area at 1	Jower Ci	rossing, 38	8,800 squ	are miles	3								1				— I
41.2	4.8	6.0	2.0	0.15	6.8	1.3	0.6			154	0		0.0	123	139		·····	•••••	1
39•9	9.8	2.7	0.8		13.6	0.1	0.8			163	0	12	6.4	140	160			•••••	2
45.9	12.0	1.7	0.6		10.1	0.2	0.8			193	0	30	5.8	164	197			• • • • • • • • •	. 3
33 • 4	9-4	2.8	$1 \cdot 2$	0.02	7.5	0.2	0.8	0.00	0 .00	149	0	7.2	0.0	122	136	• • • • • • • • • •		• • • • • • • • • •	4
26.6	6.2	2.5	1.4	0.08	8.3	1.2	0.6	0.10		111	0	7.4	1.4	92.0	109				5
33.7	8-2	2.2	0۰8		11.2	0.0	0.5			137	0	12	5.7	118	137	3.9	0.0	••••••	. 6
·		·		·	i i														
at FOI	T SIMF	PSON, N	.w.T.	1		1	1	1	1		1	1			1	1			 1
37 • 1	10.0	2.4	1.4	0.05	31.3	1.2	0.5		0.05	122	3.0	5.5	27 · 4	134	153			• • • • • • • •	7
35.8	9.2	2.3	0.7		30.5	0.7	0.4		[127	0	5.3	23.4	127	147		• • • • • • • • •	• • • • • • • • •	. 8
38.1	10.7	4.0	0.6	0.79 (total)	33.1	1.4	0.6	•••••		134	0	10	29.6	139	164		•••••		. 9
49.3	14.1	3.8	1.0		39•3	2.2	0.6			182	0	21	32.4	181	224			••••••	. 10
56.6	15-8	7.2	1.1	· · · · · · · · · · · ·	44.0	2.3	6.0			212	0	11	32.8	206	248			••••	. 11
57.6	13.6	10.0	2.0		40.1	9.9	0.8			200	0	24	36.0	260	257				. 12
																			13
52.8	14.0	16.6	2.3	0.68	40.7	10.8	2.4			206	0		20.9	190	300				. 14
57.4	15.5	11.5	2.0	(total)	37.7	13.7	0.8			209	0	23	35.8	207	265		. .	•••••	. 15
29.7	7.7	4.5	1.8		21-4	3.4	1.2			105	0	10	19.3	106	132				. 16
29.9	5.3	2.5	1.0		18.9	0.6	1.2			97.8	0	7.3	16-1	96.3	115				. 17
32.6	6.0	3.0	1.5	1.09	27.1	0.7	0.7			105	0	7.5	26.5	109	131				. 18
30 · 1	7.8	2.7	1.6	0.22	23.7	0.5	0.4			109	0	6.9	18-4	107	127				. 19
37.0	10.3	2.9	1.2		27.9	1.0	0.2			123	5.6	7.4	24.5	135	154				. 20
42.3	10.9	5.9	1.4		32.3	4.0	1.3			151	0.3	12	26.5	150	185	7.8	0.2		. 21
.	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		I	I	<u> </u>	!	I	<u> </u>	<u>l</u>	<u>l</u>	1	<u> </u>	I	1	L
LAKE	near PO	RT RA	DIUM,	N.W.T.														. <u> </u>	
17.5	8.5	7.1 as Na.		0.12	14.0	5.5	0.7				0	4.0 (grav.)	19.8	78.6	92.7				22
16.7	6.5	4.0	0.7	0.02	14.3	5.9	0.5	0.20		65.9	0	4.5	14.5	68.5	85.7	11.1		0.9	23
	l			1		1	1	1	1		1	1		1	1	1		ł	24

TABLE II—Continued Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin—Continued (In parts per million)

 $77913 - 4\frac{1}{3}$

2.9

15.4

1.4

6.6

3.8

6.2

51

0.00

15-8

72.0

2.9

0

16

13

1.2

5.1

1.6

2.0

0.04

4.9

0.05 16.3

0.0

0.2

0.8 25

0.8 26

42.7

12.9

65.6 100

0.0

6.6

35.6

.

16.5

TABLE II—Concluded

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Concluded

_						(10	parto	por nuu							
1			Stream of (Secor	lischarge 1d-feet)					Suspe ma	ended tter	Specific	Resid dı (Di	ue on evapo ried at 105° ssolved sol	oration C. ids)	Loss
No.	Date of collection	(Storage period	On sampling date	Monthly mean	Water tem- pera- ture (°F.)	Ħq	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	Specific conduct- ance K x 10 ^s at 25°C.	P.P.M.	Tons per acre- foot	Tons per day	on igni- tion at 550°C.
				·				··							·
-			1	i			1		1	1		ATION NO	5. 64GR.	LAT BEA	
1	July 31/52	7:13	low†		46	7-9	0	6			154	94.4	0.128		33.0
2	Aug. 30	23:30	medium		38	7.6	15	3			157		• • • • • • • • • • • •		• • • • • • • • • • • •
3	Sept. 27	13:23	"	No	40	7.8	30	4			158		· · · · · · · · · · · · · · · ·		••••
4	OctLost in tran	sit.		discharge											
5	Nov.—No sample	taken.		records											
6	Dec. 27	27:52	low		34	8.0	10	slight			170				
7	Jan., 1953)														
8	Feb. No sa	mples t ak	en;												
9	Mar. ico o	onditions.													
10	April														
11	Мау											ļ			
12	June 7/53	9:25	high		45	7.4	30	105	98	88	225	156	0.212		53-8
13	June 29	14:43	"		47	7.9	10	3			161				
	† Collector's estir	nate of riv	er flow or lev	rel.		·	1		<u>}</u>	<u>I</u>	<u> </u>	I STA	rion no	. 64A—BO	SWORTH
14	Mar./56			1		8.5	5			.	554	368	0.500		
15	Oct. 11/56					8.1	20	•••••	•••••		619	308	0.200		66.4
<u> </u>			<u> </u>		••••••		20				019				
			+				.		•		ST	ATION N	0. 65—AR	TIC REI	D RIVER
16	Sept. 3/52	29:35			46	7.6	60	55	84	76	310	209	0.284		30.8
17	Dec. 1/52	211:220			32	7.8	40	10	5.4	2.6	977	643	0.874		133
18	Mar. 1/53	121:136	low†		34	7.4	10	8			357				
19	June 3/53	27:69	high		54	7.6		190			185				
<u></u>	1		(spring flood)	I <u></u>			[I	<u> </u>	1	1	<u>і</u> 8та	TION No	66PEE	L RIVER
20	Sept. 3/52	16:17	medium†		47	7.8	35	35	67	62	307	216	0.294		
20	Dec. 3/52	264:317	low		33	7-8	10	2			403	410	0.794	•••••	41.6
22		173:239	low		33	7.7	10	2			423				
23	June 1/53	95:137	high		46	7.8		very	495	456	199	149	0.203		33+4
			<u> </u>				1	high					- 200		

(In parts per million)

† Collector's estimate of river flow or level.

TABLE II—Concluded

Chemical Analyses of Surface Waters in the Mackenzie River Drainage Basin-Concluded

(In parts per million)

		Alk	alis	Iron (Fe)								Silica (SiO2)	Hard B Ca	dness Is CO3		un	dar		
Calcium	(M) Magnesium	Sodium Sodium (Na)	H Potassium	Dissolved	Sulphate	() Chloride	(sON) (sold)	E Fluoride	(B)	(COH) Bicarbonata	Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodium	+ - Soturetion index		No.
.	outh, at	FORT 1	NORMA	N, N.W.	т.														
15.3	6.8	4.2	0.3	0.11	14.7	5.8	0.4	0.05		63.4	0	4.2	14-1	66.1	83.1	12.1		0.6	1
16.5	6.5	4.3	0.5		14.2	5.5	0.8			68-3	0	3.7	11.8	67.8	85-6	12.0		1.0	2
18.1	6.1	4.1	0.8		16-5	5.8	0.8			67.8	0	3.8	14.8	70-4	89.4	11-1		0.7	3
17-0	7.6	5-4	0.8		17.2	6.2				73•2	0	7-8	13.6	73-6	98.0	13.6		0-4	4 5 6 7 8 9
29•4 15•8 CREE	6-3 6-6 X at NO	5-2 5-5 RMA N	1.9 1.0 WELLS	0.09	23-8 16-0	7·4 5·8	30 0-6	0.00	0.00	88-6 70-3	0	3·8 4·4	26•6 8•9	99-2 66-5	125 90•3	10·1 15·0		0-7 0-6	10 11 12 13
·				1				0.10	1	195	6.5	4.8	108	279	340	8-8	1.1		. 14
68·8 75·3	26-2 26-9	12.6 16.5	1.0 1.0	0.02 0.04	110 130	12.6 16.3	0·4 0·8	0·10 0·20		216	0	3.8	121	299	379	10.6	0.8		. 15
	20-8	10.0																<u> </u>	L
near Al	RCTIC 1	RED RI	VER S	ETTLEN	IENT		······	1	,		1		<u>.</u>	1		1	1	1	-
39 •0	13.2	3.7	0.8	0.53	69.8	1.0	0.6		0.05	108	0	3.1	63.0	152	185	5.0		0.3	16
144	28.1	38.5	4.2	0.32	132	19.4	1.2			431	0	18	123	476	597	14.8	1.1		. 17
44.5	7.2	14.5	1.7		50.6	18.3	0.0			114	0	14	47.0	141	207	18.1		0.4	18
22.8	7.0	3.4	1-4		34.0	1.4	0.4			70.3	0	2.3	27.9	85-5	107	7.8	·····	0.7	19
at FOI	T McPI	HERSON	1, N.W.	т.															-
42.3	12.4	2.8	0.4	0.09	50.3	2.5	0.7			127	0	3.3	52.4	156	177	3.7		0	20
54.5	16.2	6.8	2.0		58.6	3.4	3.2			181	0	30	54.3	203	264	6.7	0.2		21
56-3	15.8	8.6	1.6		53.1	4.6	1.0			201	0	15	40.8	206	255	8.3	0.2		22
26.7	6.6	3.4	1.5	0.79	35.6	1.4	0.6			77.1	0	4.4	30.7	93.9	118	7.1	0.3		23

TABLE III

Chemical Analyses of Surface Waters in the Yukon River Drainage Basin in Canada

(In parts per million)

			rp r		discharge id-feet)	Water					ended tter	Specific conduct-	di di	ue on evapo ried at 105° issolved sol	с.	Loss
No.		Date of Dilection	(Days)	On sampling date	Monthly mean	tem- pera- ture (°F.)	рĦ	Colour	Turbidity	Dried at 105°C.	Ignited at 550°C.	ance K x 10 ^s at 25°C.	P.P.M.	Tons per acre- foot	Tons per day	on igni- tion at 550°C.
	1		-										STATIO	N No. 1Y	-MAYO	RIVER at
1	Mar.	23/53	23:28			,	7.5	15	slight			194	109	0.148		12.4
							<u>. </u>				<u>.</u>	st	ATION N	o. 2Y—ST	'EWART I	RIVER at
2	July	3/52	5:14	37,200	26,500	53	8.0	30	50	106	81	175	119 .	0.162	11,904	20.4
3	Oct.	15/52	23:41	13,800	16,100	35	8.0	20	20	20	16	260	165	0.224	6,127	20.4
4	Feb.	7/53	151:185	1,340	1,360	32	8.1	5	7	8.3	6.8	378	101	0.137	364.5	9-0
5	June	5/53	33:67	31,300	29,700	55	9.3	20	50	54	49	221	71.0	0.097	5,978	9.6
'	· Ice c	onditions Oc	tober 27, 19	951 to April 3	, 1952; Novei	mber 15,	1952 to N	Iay 11, 19)53.		<u>،</u>	STATION	No. 3Y-	YUKON (LEWES)	RIVER at
6	Aug.	20/52	17:28	17,100	16,900	46	7.5	0	2			87-2	55.4	0.075	2,548	6.6
7	Sept.	29	18:29	15,900	16,800	31	7-6	5	0.6			90-1			 - 	
8	Oct.	21	17:35	14,800	15,600	36	7.8	5	0.7			90-02	54·4	0.074	2,161	. 7•6
9	Nov.	24	12:78	9,060	11,000	31	8.0	5	3			96.3	· · · · · · · · · · · · · · · · · · ·		 	
	. Ice c	onditions Oc	tober 31, 1	951, to May 2	8, 1952; Dece	mber 3, 1	1952 to M	lay 22, 19	53.		87	TATION N	10. 4Y—Y	UKON RJ	VER at I	DAWSON,
10	June	25/52	33:35	155,000	164,000	59	7.8	20	95	161	156	175	121	0.165	50,375	24.0
11	July	24	19:22	156,000	163,000	61	7.9		560			189				
12	Aug.	6—No ват	ple taken.		112,000											
13	Sept.	3	21:26	104,000	109,000	49	7.9	20	30			195			<i>.</i>	
• ¹	Ice c	onditions, Oo	ctober 7, 19	51, to May 2	2, 1952.			<u> </u>			· ,		ST	ATION N	o. 5Y—Mc	INTYRE
14	Jan.	1955					7.8		2	7.2			212	0.288		
15	May	25/55			· ·	36	8.6	10	. 6			360				
16	Oct.	12/55	13:19				8.3	10				272				
1 7	Nov.	30/55	19:29			40	8.3	5			 	261				
18	Jan.	3/56	20:28			· · · · · · ·	8.7	5			; 	274				
19	Feb.	7/56	20:27				8.3	5				264				.
20	Aug.	26/56	65:87			50	8-3	20	3			272	179	0.243		32 • 4
		· · · · · · · · · · · · · · · · · · ·		•	•			·	54							· · · · · · · · · · · · · · · · · · ·

TABLE III

Chemical Analyses of Surface Waters in the Yukon River Drainage Basin in Canada

(In parts per million) -----

.

								1200 20	po										_
		Alk	alis	Iron (Fe)								Silica (SiO2)	Hare 8 Cat	dness SO3		H		1	
eD Calcium	a Magnesium	mibos (Na)	(H) Potassium	Dissolved	Sulphate	G Chloride	©OX) vitrate	Huoride	E) Boron	COOH) Bicarbonate	Carbonate	Colori- metric	Non- car- bonate	Total	Sum of constituents	Per cent sodium	+		No.
		r MAYO		·												·			
28.8	5.5	6•4	2.4	0.11	22.6	1.2	0.2			90•8	0		20.8	94-4	112	12.5	 	0.6	1
MAYO,	, Y.T.—	Drainage	area, 12	2,600 squa	are miles	<u>-</u>	<u>.</u>			<u> </u>									
23.1	5.8	1.3	0.4	0.13	26.1	1.2	0.2	0.10	0.02	69.8	0	4.4	24.4	81.6	96-1	3.3		0.2	2
33.0	11.4	3.4	0.9	0.09	43.6	1.2	0.4			107	0	4.4	41-3	129	151	5.4	0-2		3
55-4	11.5	8.5			45.4	1.3	0.6	0.00		183	0	16	35.7	186	229		0.5		4
26.9	7.7	8.8	2.4	0.02	27.8	1.2	0.4	0.02		81.0	12.0	19	12.6	99.0	146	15.8	1.2		5
WHITE	EHORSI	Е, Ү.Т.–	-Drainag	e area, 7	,500 squa	are miles	 I	·											-
13.4	1.8	1.3	0.7	0.05	5.8	0.9	0.0	0.15		46-4	0	3.8	3.0	41.0	50.7	6.3		1.5	6
13.7	2.0	1.3	0.8		6.0	1.4	trace			47.1	0	6.5	3.9	42.5	53.9	6.1		1.1	7
13.6	2.2	1.3	0.9	0.08	5.9	0.4	trace	0.10		47.8	0	3.5	3.9	43-1	51.5	6.0		0.9	8
13.3	2.2	1.5	0.8		7.2	0.4	0.2			45-9	0	3.2	4.7	42.3	51.4	7.0		0.8	9
I	Drainage	area, 10	l Ipa 000,81	l lare mile	s		1	<u> </u>	J	<u>.</u>]	1	ı <u>.</u>	J	1	I <u> </u>	<u></u>	I	<u>'</u>
24.1	6.0	2.1	1.1	0.13	20.8	0.6	0.4	0.10		81.3	0	6.4	18.2	84.8	102	5-0		0.4	10
25.6	6.8	2.3	1.0		23.0	0.2	0.1	0.20		89·1	0	6.4	19.0	92.0	110	5.0		0.2	11
																			12
26.8	6.5	2.1	1.3		27.2	0.5	trace			87.1	0	7.0	22.3	93.7	114	4.6		0.3	13
CREE	K near V	HITEF	IORSE,	у.т.	. <u>.</u>	<u> </u>	<u> </u>	1	·			<u>!</u>	1			<u> </u>	1	<u>.</u>	<u>.</u>
48.8	13.1				7.5	4				186	1	14	0	176					14
48.8	13.1	3.0	1.5		4.9	0.3	0.8			210	6.6	13	0	178	196		1.2		
49·0 38·9	9.3	3.2	1.0		9.3	0.3	1.6			166	0	16	0	135	162	4.8	0.5		
						0.3	2.4			162	0	16	0	133	158	5.9	0.6		
37•4	9.8	3.9 4.5	1·1 1·1		6.5	0.4	0.8			151	12.0		0.6	144	211	6.3	1.0		1
38.8	11.5				8.0	0.3				156	0	22	5.8	134			0.5		
37.8	9.6	3.5	1·1 1·0	0.00	7.4	0.3	1.2	0.00		175	0	13	0	141	163	5.3	0.7		
41.0	9.3	3.7	1.0	0.00		0.4	1.7	0.00		1/0		1.0		*** 				<u> </u>	<u> </u>
									58										

(A. Mackenzie River Drainage Basin)

Municipality	AKLAVIK, N.W.T.	ATHABASCA, ALTA.
	1953	1951
Population served:		1,200 (1,068 °)
In municipality	••••	••••
Outside municipality		
Total	500-700†	1,200
Date(s) of survey Ownership	Dec. 1954 ^{††} Owned by Dept. of Northern Affairs and National Resources; operated by local com- mittee.*	October 2, 1951 Municipally owned and operated
Source of supply	Amuskeg pond: site of Aklavik is being moved in 1954-56 and new source of water (Mackenzie River) and system will then be installed.	Athabasca River
Treatment	Alum added prior to filtration through diato- maceous earth; chlorinated (sodium hypo- chlorite).	Chlorination (sodium hypochlorite) as river water pumped to reservoir on hill; water then enters system by gravity.
Storage capacity (thousand gallons) Consumption (average in m.g.d.)	Pressure tank2 No information (pumping capacity 40 g.p.m.)	One covered reservoir1,250 1951
· · · · · · · · · · · · · · · · · · ·		0.04
	No industrial use	No industrial use; a lumbering and farming centre.
Remarks	System installed in 1951. † Wide fluctuations. †† Data from Dept. of Northern Affairs and National Resources. * A summer system only; pipes etc. removed	System installed in 1949.
• Population according to Ninth Census of Canada, 1951.	during winter.	· · · · · · · · · · · · · · · · · · ·
Municipality	EDSON, ALTA.	FAIRVIEW, ALTA.
Population served: In municipality	<u>1951</u> <u>1953</u> 2,000 (1956°) 2,345	<u>1951</u> 924 (929°)
Outside municipality		270
Total	2,000 2,345	1, 194
Date(s) of survey Ownership Source of supply	September 25, 1951; 1953† Municipally owned and operated Three wells, 108, 120 and 145 feet deep.	Sept. 1951; Aug. 6, 1952† Municipally owned and operated Water from several lakes which are fed by spring run-off.
Treatment	No treatment; well water pumped to ground reservoir and then to elevated tank and system.	No treatment in 1951; in 1952 water flows by gravity to system from dam reservoir with chlorine dioxide treatment.* Dam reservoir is fed by ditches from small lakes.
Storage capacity (thousand gallons)	Concrete ground reservoir	One dam reservoir 30,000
Consumption (average in m.g.d.)	1951 1953	1951 1952
Industrial uso	0.07 (approx.) 0.08 A C.N.R. divisional point. The district is a farming and lumbering community with coal mining nearby.	Not known An agricultural school; a farming community with six grain elevators.
Remarks	System installed during 1950-51.	Original system installed in 1950; a treatment plant was under consideration in 1952.
Kemarks		* CuSO4 and activated carbon added periodically

(A. Mackenzie River Drainage Basin)-Continued

BARRHEAD,	ALTA.	BEAVERLODG	E, AL/TA.	DAWSON CREEK, B.C.		
1951	1952	1951	1955	1951	1952	
1,243° 0		509 (514°) 0	400 0	3,589° 1,000	4,000 1,000	
1,243	1,300	509	400	4,589	5,000	
uly 30, 1952 Municipally owned and oper		September, 1951†, 1954; Feb Municipally owned and oper		October 5, 1951; August 195 Municipally owned and ope		
Swo wells, 120 feet deep		Two wells—210 and 250 ft 210 feet deep.	. deep; in 1955 well	Kiskatinaw River, 14 mile	s distant	
In 1952, no treatment; pur direct to system; from ot then to system. In 1953, a occasional chlorination.	ther well to tank and three deep wells with	No treatment; pumped to re		River water pumped to to (settling basins), alum pressure-filtered (sand) pumped to system and o voir on nearby hill.	and lime treated,), chlorinated and	
Elevated tank No data		Reservoir 1954		3 ground reservoirs 1951	3,000 total 1952	
		0.010 Plant capacity—21,600 g.p.d	0.010	0.2	$0.25 \{ \max. 0.3 \\ \min. 0.18 \}$	
A farming community.		No major industrial user. growing; six grain elevato	Main industry is seed	No major industrial user. I	A farming and lumber-	
Original system installed in	1948.	† Data from the Dept. of Alberta.	Economic Affairs of	River very turbid at tir during spring breakup an		
		System installed in 1951.				
FORT NELSO)n, B.C.†		I, N.W.T.	GRANDE PRAI		
	ON, B.C.†	System installed in 1951.	1, N.W.T. 1953			
FORT NELSO		System installed in 1951. FORT SMITH	-	GRANDE PRAI 1951	. (2,664°)	
		System installed in 1951. FORT SMITH	1953	GRANDE PRAI 1951	 . (2,664°) 	
FORT NELSO No data December, 1955 Owned and operated by D Previously Muskwa River	Dept. Nat. Defr and treated water	System installed in 1951. FORT SMITH <u>1951</u>	1953 400* 60. leral government.	GRANDE PRAI 1951	- . (2,664°) 0 -	
FORT NELSO No data December, 1955 Owned and operated by D	Dept. Nat. Def r and treated water ie 1955, wells. d in central plant,	System installed in 1951. FORT SMITH 1951 1951: system installed in 198 Owned and operated by fee	1953 400* io. leral government. rapid-sand filtered, chlorinated (sodium d to system which is	GRANDE PRAI 1951 3,000 October 4, 1951 Municipally owned and ope Bear Creek From impounding reserved with alum treatment, settling basins, then filtered, chlorinated and	- . (2,664°)	
FORT NELSO No data December, 1955 Dwned and operated by D Previously Muskwa River from RCAF base: In lat Well water, lime-softened	Dept. Nat. Def r and treated water te 1955, wells. d in central plant, to system. 	FORT SMITH 1951 1951 1951: system installed in 190 Owned and operated by fee Slave River.† Water coagulated (alum), treated with soda ash, hypochlorite) and pumpe buried 13 ft. deep. Underground concrete tank	1953 400* 60. leral government. rapid-sand filtered, chlorinated (sodium d to system which is	GRANDE PRAI 1951 3,000 October 4, 1951 Municipally owned and ope Bear Creek From impounding reservor with alum treatment, settling basins, then filtered, chlorinated and tank and system. Impounding reservoir Elevated tank	. (2,664°)	
FORT NELSO No data December, 1955 Owned and operated by D Previously Muskwa River from RCAF base: In lat Well water, lime-softened chlorinated and pumped t Elevated tank	Dept. Nat. Def r and treated water te 1955, wells. d in central plant, to system. no data ""	System installed in 1951. FORT SMITH 1951 1951: system installed in 199 Owned and operated by fet Slave River.† Water coagulated (alum), treated with soda ash, hypochlorite) and pumpe buried 13 ft. deep.	1953 400* 50. leral government. rapid-sand filtered, chlorinated (sodium d to system which is 	GRANDE PRAI 1951 3,000 October 4, 1951 Municipally owned and ope Bear Creek From impounding reserved with alum treatment, settling basins, then filtered, chlorinated and tank and system. Impounding reservoir Elevated tank 1951	. (2,664°)	
FORT NELSO No data December, 1955 Dyned and operated by D Previously Muskwa River from RCAF base: In lat Vell water, lime-softened chlorinated and pumped t Elevated tank Underground reservoir	Dept. Nat. Def r and treated water ize 1955, wells. d in central plant, to system. no data ""	FORT SMITH 1951 1951 1951 1951: system installed in 199 Owned and operated by fee Slave River.t Water coagulated (alum), treated with soda ash, hypochlorite) and pumpe buried 13 ft. deep. Underground concrete tank 1953 1953	1953 400* 60. leral government. rapid-sand filtered, chlorinated (sodium d to system which is 	GRANDE PRAI 1951 3,000 October 4, 1951 Municipally owned and ope Bear Creek From impounding reserved with alum treatment, settling basins, then filtered, chlorinated and tank and system. Impounding reservoir Elevated tank 1951	- (2,664°) 	

(A. Mackenzie River Drainage Basin)-Continued

Municipality	GRIMSHAW, ALTA.	HIGH PRAIRIE, ALTA.			
	1951	1951	1952	1954	
Population served: In municipality Outside municipality	568 (564°) 0	1,141° 0	· · · · · · ·	·····	
Total	568	1,141	1,140	1,402	
Date(s) of survey	September 1951†; August 6, 1952	February 6, 1952;	May 1955†		
Ownership	Municipally owned and operated	Municipally owned	d and operated	·····	
Source of supply	Spring, 2¼ miles distant	One well; in 1955 t	wo wells, 560 a	nd 571 ft. deep.	
Treatment	No treatment: water from spring is collected in reservoir from whence it flows to the system by gravity.	Water is pumped then to system. Aeration of water			
Storage capacity (thousand gallons)	Concrete reservoir1.5	Ground reservoir.	· · · · · · · · · · · · · · · · · · ·		
Consumption (average in m.g.d.)	No data-(only 25 services in use at time of		1952		
	survey).		0.207		
Industrial use	A farming community; one concrete plant; six grain elevators.	No major industr was only 7,000 g		strial use in 1952	
Remarks	System installed in late 1951. † Dept. of Economic Affairs of Alberta.	† Dept. of Econor	mia Affairs of	Alberta	
• Population according to Ninth Census of Canada, 1951.	Dept. of Economic Artains of Arberta.	I Dept. of Liconol	Inte Analis of	Alberta.	
Municipality	NORMAN WELLS, N.W.T.	PEAC	E RIVER, A	LTA.	
Population served:	1951 1953		1951	•	
In municipality Outside municipality	No data		2,000 (1,6 ⁴ 0	72°)	
Total	100-150		2,000		
Date(s) of survey	December 1954†, February 1955	September 1951†,	October 3, 1951	ι	
a 11		Municipally owned	d and operated		
Uwnership	Owned and operated by the Imperial Oil Co.	in an orphang of the		• • • • • • • • • • • • • • • • • • • •	
Ownership	Owned and operated by the Imperial Oil Co. Ltd. Bosworth Creek	Peace River	• • • • • • • • • • • • • • • • • • • •		
Source of supply	Ltd.	Peace River River water is pu is coagulated v	umped to plant vith alum, set hlorinated; it	·····	
Source of supply	Ltd. Bosworth Creek Water pumped from behind dam on creek to system with chlorination (sodium hypo- chlorite). Water heated in winter by being	Peace River River water is pu is coagulated v filtered and cl	umped to plant vith alum, set hlorinated; it em.	on nearby hill, tled, rapid-sand then flows by	
Source of supply Treatment Storage capacity (thousand gallons)	Ltd. Bosworth Creek Water pumped from behind dam on creek to system with chlorination (sodium hypo- chlorite). Water heated in winter by being buried alongside steam lines. Small dam on creek.	Peace River River water is pu is coagulated v filtered and el gravity to syste	umped to planf vith alum, set blorinated; it em. 	on nearby hill, tled, rapid-sand then flows by	
Source of supply Treatment Storage capacity (thousand gallons) Consumption (average in m.g.d.)	Ltd. Bosworth Creek Water pumped from behind dam on creek to system with chlorination (sodium hypo- chlorite). Water heated in winter by being buried alongside steam lines. Small dam on creek. Tank reservoir	Peace River River water is pu is coagulated v filtered and el gravity to syste	umped to planf vith alum, set hlorinated; it em. <u>1951</u> <u>0.065</u> tannery, a mes	on nearby hill, tled, rapid-sand then flows by 50	
• .	Ltd. Bosworth Creek	Peace River River water is pu is coagulated v filtered and el gravity to syste Clear well	umped to planí vith alum, set hlorinated; it em. <u>1951</u> <u>0.065</u> tannety, a mes feed mill. in 1950.	on nearby hill, tled, rapid-sand then flows by 50	

JASPER, ALTA.	LAC LA BI	CHE, ALTA.	MERCOAL, ALTA.	
1951	1951	1954	1953	3
1,800† (1,899°)*	905 ° 0	1,200	1,20	 00 0
1,800	905	1,200	1,20	00
September 26, 1951	. September, 1954		March 16, 1954	
Dept. of Northern Affairs and Nations Resources.	Municipally owned and o	perated.	Owned and operated by Ltd.	7 Canadian Collierie
Cabin Lake, 2½ miles distant.	Lac La Biche.		Mercoal Creek	
Water flows by gravity from Cabin Lake t two reservoirs, is then chlorinated and flow to system by gravity.		rination direct from lake	No treatment; water flow from reservoir.	s by gravity to system
Cabin Lake 145,940 Two reservoirs (concrete) 600 total	None		Ground reservoir	
1951	195	4	No data	
1.0	30,0	 00 g.p.d.		
Major area activity is tourist trade. (Jaspo National Park).	r No major industrial user		A coal mining community	·
System installed prior to 1940.				
System installed prior to 1940. * In summer, population rises to 5,000. † Dept. of Economic Affairs of Alberta.				: • • • • • • • • • • • • • • • • • • •
* In summer, population rises to 5,000.	SPIRIT RIV	/ER, ALTA.	WESTLOCK	, АLТА.
* In summer, population rises to 5,000. † Dept. of Economic Affairs of Alberta.	SPIRIT RIV 1951	/ER, ALTA. 1953	WESTLOCK 1951	ALTA. 1952
* In summer, population rises to 5,000. Dept. of Economic Affairs of Alberta. RYCROFT, ALTA.		-		
* In summer, population rises to 5,000. Dept. of Economic Affairs of Alberta. RYCROFT, ALTA. <u>1951</u> <u>1953</u> <u>1953</u> <u>428</u>	<u> </u>	1953	<u>1951</u> 1,111°	<u>1952</u> 1,400
* In summer, population rises to 5,000. † Dept. of Economic Affairs of Alberta. RYCROFT, ALTA. <u>1951</u> <u>1953</u> 372 <u>428</u> 0 0 <u>372</u> <u>428</u>	1951 553 ° 0	1953 491	<u>1951</u> 1,111° 0	1952 1,400 0 1,400
* In summer, population rises to 5,000. † Dept. of Economic Affairs of Alberta. RYCROFT, ALTA. <u>1951</u> <u>1953</u> 372 <u>428</u> 0 0 <u>372</u> <u>428</u> 	1951 553 ° 0 553 . September 1951†; Februa	1953 491 xry 26, 1954	1951 1,111° 0 1,111	1952 1,400 0 1,400
* In summer, population rises to 5,000. † Dept. of Economic Affairs of Alberta. RYCROFT, ALTA. 1951 1953 372° 428 0 0 372 428	1951 553 ° 0 September 1951†; Februa	1953 491 ary 26, 1954	<u>1951</u> <u>1,111</u> ° <u>0</u> <u>1,111</u> 1950†; July 30, 1952	1952 1,400 0 1,400 erated
* In summer, population rises to 5,000. † Dept. of Economic Affairs of Alberta. RYCROFT, ALTA. <u>1951</u> <u>1953</u> <u></u> 372° <u>428</u> <u></u> 0 <u>0</u> <u>372</u> <u>428</u> 1953*. Municipally owned and operated	1951 553 ° 0 553 . September 1951†; Februa . Municipally owned and c . Wells and spring run-off, 2	1953 491 ary 26, 1954 perated	<u>1951</u> <u>1,111</u> <u>0</u> <u>1,111</u> 1950†; July 30, 1952 Municipally owned and op	1952 1,400 0 1,400
* In summer, population rises to 5,000. † Dept. of Economic Affairs of Alberta. RYCROFT, ALTA. <u>1951</u> <u>1953</u> <u></u> 372 <u>428</u> <u></u> 0 0 <u>372</u> <u>428</u> 1953* Municipally owned and operated Small creek Chlorination; water is hauled by truck to con	1951 553 ° 0 553 September 1951†; Februa Municipally owned and c Wells and spring run-off, Water is pumped to the sy	1953 491 ary 26, 1954 perated 13 miles distant stem with chlorination.	<u>1951</u> <u>1,111</u> <u>0</u> <u>1,111</u> 1950†; July 30, 1952 Municipally owned and op Six wells, 240 ft. deep No treatment; water pum	1952 1,400 0 1,400 nped to elevated tan
* In summer, population rises to 5,000. † Dept. of Economic Affairs of Alberta. RYCROFT, ALTA. <u>1951</u> <u>1953</u> 372° <u>428</u> 0 0 <u>372</u> <u>428</u> 1953* Municipally owned and operated Small creek Chlorination; water is hauled by truck to consumers.	1951 553 ° 0 553 ° 0 553 . September 1951†; Februe . Municipally owned and c . Wells and spring run-off, f . Water is pumped to the sy . One dugout reservoir 19	1953 491 ary 26, 1954 perated 1 ¹ miles distant stem with chlorination.	<u>1951</u> <u>1,111</u> <u>0</u> <u>1,111</u> 1950†; July 30, 1952 Municipally owned and op Six wells, 240 ft. deep No treatment; water pun and system.	1952 1,400 0 1,400 merated
* In summer, population rises to 5,000. † Dept. of Economic Affairs of Alberta. RYCROFT, ALTA. <u>1951</u> <u>1953</u> 372 • 428 0 0 <u>372</u> 428 1953 9 1953 0 0 1953 0 0 1953 1953 0 0 1953 1953 1953 1953 1953 1953 1953 1953 1953 1953 1953 1953 1953 1953 1953 1953 1955	1951 553 ° 0 553 ° 0 553 . September 1951†; Februe . Municipally owned and c . Wells and spring run-off, f . Water is pumped to the sy . One dugout reservoir 19	1953 491 ary 26, 1954 perated 14 miles distant stem with chlorination.	1951 1,111 ° 0 1,111 1950†; July 30, 1952 Municipally owned and op Six wells, 240 ft. deep No treatment; water pun and system. One elevated tank	1952 1,400 0 1,400
* In summer, population rises to 5,000. Dept. of Economic Affairs of Alberta. RYCROFT, ALTA. <u>1951</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1953</u> <u>1955</u> <u>1955</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>1956</u> <u>195</u>	1951 553 ° 0 553 0 553 0 553 0 553 0 553 0 553 0 553 0 553 0 553 0 0 0 0 0 0 0 0 0	1953 491 ary 26, 1954 perated 14 miles distant stem with chlorination.	1951 1,111 ° 0 1,111 1950†; July 30, 1952 Municipally owned and op Six wells, 240 ft. deep No treatment; water pun and system. One elevated tank 1950 0 1950 0 0 1950 0 1950 0 0 1950 0 0 1951 0 0 0	<u>1952</u> <u>1,400</u> <u>0</u> <u>1,400</u> merated
* In summer, population rises to 5,000. † Dept. of Economic Affairs of Alberta. RYCROFT, ALTA. <u>1951</u> <u>1953</u> <u></u> 372° <u>428</u> <u></u> 0 <u>0</u> <u>372</u> <u>428</u> Municipally owned and operated Small creek Chlorination; water is hauled by truck to consumers.	1951 553 ° 0 553 0 553 0 553 0 553 0 553 0 553 0 553 0 553 0 553 0 0 0 0 0 0 0 0 0 19 0 19 0 10 11 12 13 14 14 15 16 17 18 19 19 10 10 11 12 13 14 15 16 17 18 <	1953 491 ury 26, 1954 perated 14 miles distant stem with chlorination. 53 16 g community; no major 53.	1951 1,111 ° 0 1,111 1950†; July 30, 1952 Municipally owned and op Six wells, 240 ft. deep No treatment; water pun and system. One elevated tank 1950 0 1950 0 0 1950 0 1950 0 0 1950 0 0 1951 0 0 0	<u>1952</u> <u>1,400</u> <u>0</u> <u>1,400</u> merated

(A. Mackenzie River Drainage Basin)-Continued

``

(I	١.	Macke	enzie	River	Drainage	Basin)—C	lone	lud	lec	
----	----	-------	-------	-------	----------	-------	-----	------	-----	-----	--

Municipality	YELLOWKNIFE, N.W.T.	
	1951 1953	
Population served: In municipality Outside municipality	2,724 ° 0	
Total	2,724 2,000††	
Date(s) of survey	December 1954†	•••••
Ownership	Municipally owned and operated	••••
Source of supply	Great Slave Lake, Yellowknife Bay	
Treatment	Water pumped with chlorination (sodium h chlorite) to system which is buried in gro water heated and recirculated in winter.	upo- ound;
Storage capacity (thousand gallons)	Inside tank 5,000 ge	ıls.
	1953	
Consumption (average in m.g.d.)	70,000 g.p.d. (summer)*	••••
Industrial use	No major industrial user.	
Remarks	System installed in 1948. † Data from Dept. of Northern Affairs Nat. Resources. †† Average; winter population is less than sum population. * In winter 300,000 g.p.d. are pumped	amer
• Population according to Ninth Census of Canada, 1951.	recirculating water.	

(B. Yukon River Drainage Basin)

Municipality	DAWSO	N, Y.T.	WHITEHORSE, Y.T.		
Population served:	1951	1954	1951	1954	
In municipality Outside municipality	783 °	500 0	2,954 ° Military camp	2,500 Military camp	
Total		500			
Date(s) of survey	1954		December 1954; Decemb	er 1955	
Ownership	Privately owned and op Water and Power Co.		Owned and operated 1 Defence (Army).	by Dept. of Nationa	
Source of supply	Wells		McIntyre Creek; in late 1955 another small cree diverted into McIntyre Creek near intake.		
Treatment	No treatment; pumped t	o system	Water pumped to storage chlorination (sodium capacity 3 m.g.d.		
Storage capacity (thousand gallons)	None		Underground reservoirs. Two ground level reservo		
Consumption (average in m.g.d.)	19	54	195	j4	
	No d	ata	1.	$\begin{array}{c} 0 \\ \text{Max. } 1.6 \\ \text{Min. } 0.8 \end{array}$	
Industrial use	No major industrial user		No industrial user; milit user.	ary camp is the larges	
Remarks					
• Population according to Ninth Census of Canada, 1951.					

TABLE IV Chemical Analyses of Municipal Water Supplies

A. MACKENZIE RIVER DRAINAGE BASIN

	Municipality	Arlavik, N.W.T.	New Arlavik, N.W.T.	Атнавая	са, Аілта.	BARRHEAD, ALTA.
	Source(s)	MUSKEG POND North lot 64	MACKENZIE RIVER	, Атнаразо	CA RIVER	Two Wells
		Raw and finished water	-	Raw and fin	ished water	Raw and finished water
	Sampling point			Town	n tap	Town tap
1	Date of collection	Dec. 4/49	June 13/56*	**	Oct. 2/51	July 30/52
2	Storage period (days)	About 30	26:57		14;34	7:12
3	Sampling temperature, °C				11-1	7.8 .
4	Test temperature, °C	21.0	23.5		22.5 (12)	24.3 (16)
5	pH	7-2	7.5		7.9 (7.9)	7.9 (8.0)
6	Colour	45	50	30	2 (15)	20
7	Turbidity	6	20		7 (5)	2 (<5)
8	Suspended matter, dried at 105°C		9.8		2.8	
9	Suspended matter, ignited at 550°C		4.9		1.5	
10	Residue on evaporation, dried at 105°C	306	107	220	175	1,236
11	Ignition loss at 550°C	79.4	24.0	40	18.8	40.6
12	Specific conductance (micromhos at 25°C)	456	167		281	1,870
13	Calcium (Ca)	55.2	20.9	38	40.5	77
14	Magnesium (Mg)		58	16	10.3	0.5
15	Iron (Fe) Total	0.46		2.2	0.1	
16	Dissolved		0.40		0.07	0.13
17	Sodium (Na)	7.1	2.3	ſ.	5.5	508
18	Potassium (K)	32	2.0	1 as Na	1.0	2.0
19	Carbonate (CO3)		0	0	0 (0)	13.2 (0)
20	Bicarbonate (HCO3)	242	73.0	116	151 (142)	1,266 (1,293)
21	Sulphate (SO4)	43.3	13.2	64	32.4	37-2
22	Chloride (Cl)	3.7	3.7	2	0.8	2.7
23	Fluoride (F)		0.00		. 01	0 25
24	Nitrate (NO ₃)		4.8	0	0	trace
25	Silica (SiO2), Colorimetric	6.0	2.2	2	3.8 (4)	12.5
26	Carbonate hardness, as CaCO2	198	59.9	95	124 (116)	21-4
27	Non-carbonate hardness, as CaCO ₂	45-9	16.1	. 67	19.4 (33.8)	0
28	Total hardness, as CaCO3	244	76.0	162	143 (150)	21.4
29	Sum of constituents	264	92.3	182	168	1,207
30	Saturation index	-0.3	+0.8		+0.1	+0.3
L	Remarks		*See also Station No. 18A,	**See also Athabasca River at Station No. 9, Table III.		· · · · · · · · · · · · · · · · · · ·

TABLE IV—Continued Chemical Analyses of Municipal Water Supplies A. Mackenzie River Drainage Basin

WELLS Raw and finished water			KISKATINAW RIV			1		1	
Raw and finished 1 water	1			'E16		Wei	.TS	SMALL	LAKES
	Raw water	Finished water Raw and finished water						Raw and fin	ished water
Town tap			ToT	wn tap		Town	ı tap	Тоw	1 tap
t			Feb. 12/51 9:31 4·4	Oct. 5/51 11:34 13·3	Aug. 5/52 9:14 14·4 (58)	t	Sept. 25/51 9:34 11:1	t .	Aug. 6/52 13:15 13·9
		7.8	22·0 7·7	22.3 (11) 8.2 (8.2)	27.7 (16) 8.3 (8.2)		23·3 7·8	•••••	24.7 (22) 7.1 (7.1)
	Sec	10 	10 3	5 (25) 5 (clear)	40 (50) 10 (5) 7-4	••••••	1 0·4	•••••	100 (125) 2 (<5)
	tation No. 47 Table II, page 40	370 36·0	361 44+4	· · · · · · · · · · · · · · · · · · ·	3.0 251 110	476	442 44·0	365	289 112
		90.7	594 90-7	385 58•2	376 56•9	60·1	725 51 · 1	63+6	393 (385) 52+6
• • • • • • • • • • • • • • • • • • • •		24.8 trace	23 · 8	14.3	14·2 0·4 0·14	28.6	20•5 0•02	17.6 trace	12·4 0·61
		{ 2·5 as Na	12·4 1·0	5·4 1·2	5·2 1·0	{ 85·2 as Na	98·0 2·8	{ 2 as Na	4-5 16-0
0 1098 200		0 476 17·3	0·0 397 17·8	4·8 (0) 222 (234) 30·9	5-3 (0-7) 204 (204) 29-3	35-2	0 478 25•7	0 158 97	0 (0) 178 (190)
9		trace	0.0	2.5 (2.1)	25·5 2·6 0·2	6·1	2.8 0.1	2	44-2 6-6
		trace 7.2	0·0 6·3	0 2.8 (2)	0·2 3·6	0	0·1 8·5	0 3	1·0 8·9
60 0 60		328 0 328	324 0 324	190 (192) 14·0 (14·8) 204 (207)	176 (178) 24·3 (26·5) 200 (205)	267	211.5 0 211.5	130 130 260	146 (156) 36·2 (31·2 182 (187)
		377 +0·9	348 ++0∙7	230 +-0+8	220 +0·9		443 +0.6		234·5 0·4

TABLE IV—Continued Chemical Analyses of Municipal Water Supplies

A. MACKENZIE RIVER DRAINAGE BASIN

	Municipality		÷		Fort Smit	н, N.W.T.				
_	Souree(8)				SLAVE	River*				
	Sampling point	Raw water								
No.	combine bour			From river diree	et		From su	mp well alongsid	le river*	
	Date of collection. Storage period (days). Sampling temperature, °C. Test temperature, °C. pH. Colour. Turbidity. Suspended matter, dried at 105°C. Residue on evaporation, dried at 105°C. Ignition loss at 550°C. Specific conductance (micromhos at 25°C). Calcium (Ca). Magnesium (Mg). Iron (Fe) Total. Dissolved. Sodium (Na). Potassium (K). Carbonate (GO ₃). Bicarbonate (HCO ₃). Sulphate (SO ₄). Chloride (C1). Fluoride (F). Nitrate (NO ₄). Silica (SiO ₂) Colorimetric. Carbonate hardness, as CaCO ₃ . Non-carhonate hardness, as CaCO ₃ .	See Station No. 11, Tablo II, page 20.	** Nov. 13/48 	Oct. 1/49 123 19.0 9.0 10 20 70 62 147 18.0 240 29.4 5.8 	July 7/50 17	Oet. 23/51 18 0 23·3 7·7 10 65 81 73 125 12·8 214 25·4 6·3 0·09 8·5 1·4 0 86·9 18·0 10·9 0·30 0·2 4·3 71·2 18·1 89·3	July 7/50 17	April 7/51 131:132 1 · 1 24 · 0 8 · 2 10 1 	July 9/51 38:44 17·2 24·0 7·5 25 25 119 106 147 58·4 234 31·1 5·8 0·20 5·8 1·7 0 114 17·0 4·3 0·30 1·2 3·8 93·0 8·5	
29 30	Sum of constituents			141 +0·9		118 0.5		409 933 -+-0-9	102 127 0-5	
	REMARKS: * Slave River water usually mixed at sump well with ground water.		**Not a Dept'l. analysis.	-		Low flow.		Very low river flow.	Medium river flow,	

TABLE IV—Continued Chemical Analyses of Municipal Water Supplies

A. MACKENZIE RIVER DRAINAGE BASIN

(In pa	ırts per	million)
--------	----------	----------

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						SLAVE RIV	VER*					
$10 \ \text{sturp}$ with indiged it it 1 res it is it		Raw water						Finished water	•			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	For su	mp well alongsid	e river		After filters			Plant tap			Plant tap†	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	23:24 19•4	18 1·1	7:7 2·8	37:38 12•8	23:24	15:40 1-7	368:400 3 • 3	338:370 4•4	308:346 4+4	259:294 0	229:264 0•6	June 1/52 198:233 12•2 19•8
30 75 7 1 0 -7 2 31 gight 0 31 gight 0	7.1	7.6	7.1	7.8	7.3	7.6	7.6	7.5	7.5	7.7	7.3	7•4
176 171 774 440 1.01 <td>30 83</td> <td>75 119</td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>slight</td>	30 83	75 119										slight
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	176	171										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1							-				501 43•6
$4 \cdot 8$ $16 \cdot 2$ 284 100 $57 \cdot 0$ 125 $70 \cdot 7$ 128 162 $34 \cdot 0$ $91 \cdot 0$ $41 \cdot 0$ $0 \cdot 6$ $1 \cdot 4$ $29 \cdot 2$ $2 \cdot 6$ $0 \cdot 5$ $0 \cdot 3$ $2 \cdot 0$ $2 \cdot 4$ $2 \cdot 0$ $1 \cdot 0$ $6 \cdot 0$ $0 \cdot 8$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 114 $89 \cdot 1$ 212 132 115 127 120 126 164 160 108 $82 \cdot 0$ $17 \cdot 2$ $23 \cdot 5$ 186 $92 \cdot 6$ $68 \cdot 3$ 104 $87 \cdot 2$ 114 147 $61 \cdot 7$ 128 $69 \cdot 1$ $6 \cdot 0$ $27 \cdot 6$ 573 230 119 207 151 259 323 $46 \cdot 0$ 139 $72 \cdot 0$ $2 \cdot 4$ $0 \cdot 2$ $0 \cdot 2$ $0 \cdot 0$ $0 \cdot 15$ $0 \cdot 15$ $0 \cdot 15$ $0 \cdot 8$ $1 \cdot 2$ $0 \cdot 8$ $0 \cdot 6$ $3 \cdot 3$ $3 \cdot 6$ $6 \cdot 3$ $6 \cdot 8$ $4 \cdot 1$ $4 \cdot 2$ $0 \cdot 8$ 103 134 131 $88 \cdot 2$ $67 \cdot 2$ $93 \cdot 6$ $73 \cdot 0$ 174 108 $94 \cdot 0$ 104 98 103 134 131 $88 \cdot 2$ $67 \cdot 2$ $14 \cdot 8$ $30 \cdot 0$ 383 167 109 140 122 197 249 $41 \cdot 6$ 117 $72 \cdot 1$ 108 103 557 275 203 244 220 300 383 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>11.4</td> <td>7-4</td>								-			11.4	7-4
$4\cdot8$ $16\cdot2$ 224 109 109 010 110 110 110 110 110 110 110 110 100 100 0 $0\cdot6$ $1\cdot4$ $29\cdot2$ $2\cdot6$ $0\cdot5$ $0\cdot3$ $2\cdot0$ $2\cdot4$ $2\cdot0$ $1\cdot0$ $6\cdot0$ 0.8 0 0 0 0 0 0 0 0 0 0 0 0 0 114 $89\cdot1$ 212 132 115 127 120 126 164 160 108 $82\cdot0$ $17\cdot2$ $23\cdot5$ 186 $92\cdot6$ $68\cdot3$ 104 $87\cdot2$ 114 147 $61\cdot7$ 128 $69\cdot1$ $6\cdot0$ $27\cdot6$ 573 230 119 207 151 259 323 $46\cdot0$ 139 $72\cdot0$ $$ $0\cdot30$ $0\cdot20$ $0\cdot10$ $0\cdot15$ $$ $$ $0\cdot8$ $1\cdot2$ $0\cdot8$ $0\cdot6$ $3\cdot3$ $3\cdot6$ $6\cdot3$ $6\cdot8$ $4\cdot1$ $4\cdot2$ $$ $0\cdot8$ $1\cdot2$ $0\cdot8$ $0\cdot6$ $3\cdot3$ $3\cdot6$ $6\cdot3$ $6\cdot8$ $4\cdot1$ $4\cdot2$ $$ $0\cdot8$ $1\cdot2$ $0\cdot8$ $0\cdot6$ $3\cdot3$ $3\cdot6$ $6\cdot3$ $6\cdot8$ $4\cdot1$ $4\cdot2$ $$ $0\cdot8$ $1\cdot2$ $0\cdot8$ $0\cdot6$ $3\cdot3$ $3\cdot6$ $6\cdot3$ $6\cdot8$ $4\cdot1$ $4\cdot2$ $0\cdot81\cdot21\cdot61\cdot77\cdot73\cdot410894\cdot0104<$	0.90	0.14		0.03	0.06							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
11488-1212152116127128160160161161161161 $17\cdot 2$ 23.518692.668.310487.211414761.712869.1 $6\cdot 0$ 27.657323011920715125932346.013972.0 2.4 0.20.200.100.150.10.81.20.80.6 3.3 3.66.36.84.14.20.81.20.80.6 93.6 73.017410894.01049810313413188.267.214.830.038316710914012219724941.611772.11081031541,3896023795294586748552844932751301541,389602379529458674855284493275	-								-			82.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-						69-1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		27-6	573	230	119							72-0
93.6 73.0 174 108 94.0 104 98 103 134 131 88.2 67.2 14.8 30.0 383 167 109 140 122 197 249 41.6 117 72.1 108 103 557 275 203 244 220 300 383 172 205 139 130 154 1,389 602 379 529 458 674 855 284 493 275		0-2	0.2	0.0					0-8	1-2	0.8	0.8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							98	103	134	131	88.2	67-2
108 103 557 275 203 244 220 300 383 172 205 139 130 154 1,389 602 379 529 458 674 855 284 493 275					-					41-6	117	72-1
130 154 1,389 602 379 529 458 674 855 284 493 275 130 154 1,389 602 379 529 458 674 855 284 493 275			1				1		383	172	205	139
						529	458	674	855	284	493	275
	0-9		+0.1				-0.2	-0.1	+0.1	+0.1	-0.4	-0.7

.

(In parts per million)

	MUSKWA	River
Source(s)		
	Raw and fin	ished water
Sampling point	Att	ар
Date of collection	Feb. 1955*	April 6/55
Storage period (days)		27:35
Sampling temperature, °C		1.7
Test temperature, °C	room	24.4
рН	7.4	.8.0
Colour		. 0
Turbidity		10
Suspended matter, dried at 105°C	tracs	4.9
Suspended matter, ignited at 550°C		2.1
Residue on evaporation, dried at 105°C	281	314
Ignition loss at 550°C		36-8
Specific conductance (micromhos at 25°C)		515
Calcium (Ca)	63-2	66-2
Magnesium (Mg)	18.5	17-4
Iron (Fe) Total		
Dissolved		0.08
Sodium (Na)		15.0
Potassium (K)		1.0
Carbonate (CO3)		0
Bicarbonate (HCO3)		246
Sulphate (SO4)	1	68.5
Chloride (Cl)		1.3
Fluoride (F)		0.00
Nitrate (NO ₃)		0.00
Silica (SiO ₂) Colorimetric		4.8
Carbonate hardness, as CaCO3		202
Non-carbonate hardness, as CaCO ₃	. 64-0	135
Total hardness, as CaCO ₁	234	337
Sum of constituents		296
Saturation index.		-+0·7
Copper (Cu).	}	0·0
Aluminum (Al).		0.06
Manganese-(Mn).		0.08
Development		·····
REMARKS: † Army Camp.	*Data supplied by water- treatment firm,	

(In parts per million)

			Wells							
Ra	w water			Finished water**	k	k				
A	t wells	· At Central Heating Plant tap								
Jan. 1956	April 25/56	Sept. 22/55 7:54	Dec. 15/55	Jan . /56	April 25/56	June 4/56 29:64				
0.6		1.04				16.7				
24.1	24.1	22.3	21.8	24.2	24.1	23.3				
7.3	6.9	8.2	8-3	8.1	8.3	8.0				
5	10	5	10	5	10	5				
high ∆ 140	1	••••••••••••••••••••••••••••••••••••••		1		0.9				
		•••••	••• •••••••		•••• •••					
1,295				819	••••••	754				
86				86-0	1 110	80.8				
1,640	1,457	1,006	1,142	1,039	1, 119	943.9				
332	286	184	194	164	180	132				
50.4	44+9	22.1	40.6	41.0	51 • 2	40.5				
43		• • • • • • • • • • • • • • • • • • • •	••••		•••••	0.20				
0.09		0.05		0.08	H 0	0.18				
8.3	7.0	7.3	8.3	8.3	7.0	7.0				
3.0	2.7	3.0	3-2	30	2.7	2.7				
0	0	0	0	0	0	0				
684	615	145	208	132	263	130				
472	372	445	488	475	376	381				
0.7	0•4	0.2	1.0	0.7	0.6	0-8				
0.00		0.10		0.15		0.00				
1.2	2.4	1.2	1.6	1.6	3.2	4.0				
11	11	7.7	5.2	4.1 .	6.7	3.9				
561	505	119	170	108	216	106				
475	393	130	481	471	442	390				
1,036	808	549	651	579	658	496				
1,217	1,029	742	844	763	757	636				
+1.0	+0.4	+1.0	+1.2	+0.8	+1.4	+0.6				
0.0		0.0		0.0		0.0				
0.0		0.03		0.28		0.25				
1.1	high	0.02		0.05	·····	0.04				

 $77913 - 5\frac{1}{2}$

.

Municipality		GRANDE PE	RAIRIE, ALTA.		Grimsha	W, ALTA.		
Source(s)		BEAR CREE	ek (River)	Spring				
	Raw water		Raw and finished water					
Sampling point			Town tap	-	_	Town tap		
1 Date of collection 2 Storage period (days) 3 Sampling temperature, °C 4 Test temperature, °C	Oct. 4/51 12:32 6·7	Oct. 4/51 12:32 11·1 22·3 (15·0)	Nov. 16/53†		**	Aug. 6/52 13:19 11·1 24·7		
5 pH	7·7 (8·0) 25 (50)	7·3 (7·0) 2 (15)	7.8	7.0		7·4 (7·0) 5 (15)		
7 Turbidity 8 Suspended matter, dried at 105 °C	4 (15) 19	3	2	2		10 (δ) 28 23		
Suspended matter, ignited at 550°C Residue on evaporation, dried at 105°C Ignition loss at 550°C	13 205 60·0	188 69·2	250	280	414	23 442 62•6		
Specific conductance (micromhos at 25°C) Calcium (Ca)	255 24·8	280 25·5				653 (660 77•1		
Magnesium (Mg) Iron (Fe) Total	7.0	6.8	9·7 0·2	9·8 0·1		26·2 3·0		
Dissolved	0·28 15·0	0·08 15·0				0·04 18·4		
Potassium (K) Carbonate (CO3)	7·3 0	7·3 0 (0)	0		0	10·2 0		
Bicarbonate (HCO3) Sulphate (SO4)	102 42•8	68·0 (61·0) 73·5	122 63	159 71	238 80	266 124		
Chloride (Cl) Fluoride (F)	1.3 0-30	2·1 (2·0) 0·30	1.2	trace	3	6·1 0·25		
 Nitrate (NO₃) Siliea (SiO₂), Colorimetric 	0·8 4-2	0.2	5.2	2.2	0.3	1.4		
Sinca (clos), coordination Carbonate hardness, as CaCOs	83.6 7.1	56·0 32·3	100	130	195 125	218 (217) 82.5 (98.4)		
Total hardness, as CaCO3 Sum of constituents	90.7 147	88·3 166	140	160	320	300 (315) 413		
Saturation index,	-0-4	-1.0	· · · · · · · · · · · · · · · · · · ·			+0.15		
Remarks :	·		Carbon dioxide 1.8 p.p.m. (field det'n.)	Carbon dioxide— 15.8 p.p.m. (field det'n.)	**Analysis by J. A. Kelso, Provincial Analyst.			
			†Data supplied by A Ontario,	lehem Ltd., Burlington,				

(In parts per million)

.

	HIGH PRAI	RIE, ALTA.		JASPER, ALTA.	LAC LA I	Зісне, Алта.		
	Wel	6	CABIN LAKE	LAC LA BICHE				
Raw	water	Finish	ed water	Raw and finished water	Raw water	Finished water		
Atv	vell	Atre	servoir	Town tap	At intake	Town tap		
March 3/54	April 27/54	March 3/54 April 27/54		August 26/51	April 9/53	April 9/53		
9:29	10	9:29	10	13:33	8:26	8:26		
7.2	7-2	6.7	7.8	10.0	1-1	2-2		
22.2		22.2		19-2	21.7	21.7		
8.0	8.4	7.8		7.6	7.9	8.3		
120		110		5	15	10		
10		7		3	0.5	0.5		
18		6.7						
7.1		3.6						
879		871		103	215	221		
161		164		35.0	59 - 2	70-0		
1,123		1, 127		155	334	336		
36.0	35.5	35-3		19.3	35-4	36-5		
20.3	20.6	20.2		7.2	13.5	12.5		
	3.8		1.66					
				0.01	0-11	0.09		
200		202		3.3	16.0	18.0		
7.2		7.2		0.7	4.1	4.3		
0	9.1	0		. 0	0	0		
557	529	552		82-7	180	199		
3.1		3.3		15.0	15-2	13-4		
115		130		1.8	3.7	5.2		
				. 0.10	0.05	0.15		
0+0		3.2		0.0	0.6	0.6		
8.8		9-3		6-2	2.6	1.7		
173	174	171		. 67.8	144	143		
0	0	0		. 10.0	0	0		
173	174	171		77.8	144	143		
665		682		94-2	185	191		
+0.7		4-0-5			+0.15	+0.0		
anganese (Mn)=0.0		Mn=0.0						

TABLE IV—Continued Chemical Analyses of Municipal Water Supplies

A. MACKENZIE RIVER DRAINAGE BASIN

	Iunicipality	MERCOAL, ALTA.		Norman Wei	1.18, N.W.T.	
ŀ	Source(s)	MERCOAL CREEK		Bosworte	I CREEK*	
		Raw and finished water		Raw and fin	ished water	
	Sampling point	Town tap		Town tap, old	l Canol camp	
1	Date of collection	Mareh 16/54	March 17/54	Feb./56	May 4/56	Oet. 11/56
2	Storage period (days)	9:51	11:20	•••••	20	46:40
	Sampling temperature, °C		4.4			
	Test temperature, °C	21.7	16.4	24.0	21.4	28.4
	pH	8•2	8-1	8.5	8.5	8.2
	Colour	10	б	5	. 0	20
1	Turbidity	0.9	0		. 0	
	Suspended matter, dried at 105°C					
	Suspended matter, ignited at 550°C					
	Residue on evaporation, dried at 105°C	194	825	368	621	
	Ignition loss at 550°C	21-4	114	66+4	198	
	Specific conductance (micromhos at 25°C.)	326	1,202	554	863	623
	Calcium (Ca)	39-3	137	68+6	105	74.9
	Magnesium (Mg)	8•8	42.7	26.2	37.6	27-4
	Iron (Fe) Total					
l	Dissolved	0-04	0.02	0.02	0.02	0.00
	Sodium (Na)	20.2	58-4	12.6	30.0	16.5
3	Potassium (K)	1.6	1.7	1.0	1.5	1.0
	Carbonate (CO3)	0	0	6.5	2.4	0
	Bicarbonate (HCO2)	214	302	195	258	216
	Sulphate (SO4)	5-2	298	110	212	128
2	Chloride (Cl)	0.2	69-9	12.6	26.8	16.5
	Fluoride (F)	0.00	0-20	0.10	0.20	0.20
Ì	Nitrate (NO2)	0.8	0•4	0-4	1.6	0.8
L	Silica (SiO2), Colorimetric	15	5.6	4.8	7.0	4.7
	Carbonate hardness, as CaCO3	135	248	141	215	177
L	Non-carbonate hardness, as CaCO2	0	270	108	202	122
	Fotal hardness, as CaCO3	135	518	279	417	299
L	Sum of constituents	196	763	340	551	376
E	Saturation index	- 1 -0 <i>•</i> 5	+0.1	+1.1	+1.2	+0:0
	Remarks:	Manganese (Mn)=0	Aluminum (Al)0.17 Manganese (Mn)0.01 Copper (Cu)0.00	0-39 0-0 0-06	0.17 0.0 slight trace	0.19 0.0 trace
l			*Sometimes a mixtu	re with Mackenze River w		

TABLE IV—Continued Chemical Analyses of Municipal Water Supplies A. Mackenzie River Drainage Basin

(In parts per million)

	PEACE RIVER, ALTA.		RYCROFT, ALTA.	Spirit River, Alta.	WESTLOCE	, Арта.	Yellowknife, N.W.T.
	Peace River			Spring Run-off	Wel	LS	GREAT SLAVE LAKE
Raw water	Finished	water	Raw and finished water	Raw and finished water	Raw and fini	shed water	Raw and finished water
Near plant intake	Town	tap	Town tap	Town tap	Town	tap	_
	t	Oct. 3/51	May 26/54	Mar. 6/54	t	July 30/52	Feb./19/53
		13:33	16:27	11:61		7:12	8:36
		10.0	10.0	4 · 4		10.6	0
		22.5 (12)	23 · 2	21.8		24.3 (24)	25.3
	7.9	8.0 (8.2)	7.9	8.6	8.5	8-2 (8-3)	7.1
	15	3 (15)		20	40	50	10
	0	6 (clear)	30	12	0	0.5 (<5)	1
		1.7	59	$7 \cdot 4$			
		0.8	26	4.8	•••••		
	173	218	219	454	869	996	37-2
	18	21.0	66.8	60.4	64	49.4	14.2
		356	269	682		1,509	55.6
	34.0	50.3	32 · 1	40.3	0	4.6	4.6
	8	12.0	0.0	26.2	0	0.3	1.6
		0.1	0.40	0.53	0 · 4	· · · · · · · · · · · · · · · · · · ·	
See	trace	0.05		0.07		0.19	0.06
Station No. 56		10.3	9-2	64 • 1	{ 345 as Na	400	2.4
Table II,	{ 10 as Na	0.9	6-8	11.3	1 949 88 148	1.5	1.2
page 44	0	0 (0)	0	9.6	0	21.6	0
	118	178 (173)	133	195	858	925	19.8
	35	42.4	31.1	174	0	29.0	5.1
	6	2.6 (2.5)	1.6	3.0	32	$24 \cdot 2$	1.8
		0.00		0.30			0.10
	0	0.0	2.4	1.6	0	0.2	0.9
	3	2.7	5.0	3-6	5	9.5	1.3
	97	146 (142)	109	176	0	12.7	16-2
	23	28.9 (32.6)	8.4	32-8	0	0	2.0
	120	175 (175)	117	208	0	12.7	18.2
		209	164	429	807	947	28.7
		+0. 4	0	+0.9		+0.25	-2.3
	†Dept. of Economic Affairs of Alberta, (1951 report).		Manganese (Mn)=0.18	Manganese (Mn)=0.0	†Dept. of Economic Affairs of Alberta, (1950 report).		See also Station No. 13, Table II page 22.

TABLE IV—Concluded Chemical Analyses of Municipal Water Supplies B. Yukon River Drainage Basin in Canada

Municipality	DAWSON, Y.T.				WHITEHORSE, Y.	r.	· .			
Source(s)	Wells		МсІлтуі	e Creek†	mixed w	McINTYRE CREEK mixed with small tributary creek				
	Raw and finished water		Raw and fi	nished water		Raw and finished water				
Sampling point	Town tap		Fown taps and ta	ups in Army Can	1p	Tap in Central	Heating Plant,	at Army Camp		
Date of collection	June 7/56	Mar. 27/43*	Jan. 1/55	Mar. 9/55	May 5/55	Oct. 12/55	Nov. 30/55	Jan. 3/56		
Storage period (days)	10:20	17	15:42	13:47	12:33	12:21	13:29	12:28		
Sampling temperature, °C	3.9		17	1.1	2.2]	4-4]		
Test temperature, °C	26.4		17.3	20.6	25.4	21.1	23.1	24.6		
pH	7.9	7.9	8-3	8-0	8.6	8-3	8.3	8.7		
Colour	10		10	0	10	10	5	5		
Turbidity			0	0	. 6		0	0		
Suspended matter, dried at 105°C	1		 							
Suspended matter, ignited at 550°C		1								
Residue on evaporation, dried at 105°C	-		209	198						
Ignition loss at 550°C			22.4	15.6				1		
Specific conductance (micromhos at 25°C)	1		328	353	360	272	261	274		
Calcium (Ca)	1	54.8	49.3	50.1	49.5	38.9	37.4	38.8		
Magnesium (Mg)	1	13-9	12-5	12-9	13.3	9.3	9.8	11.5		
	1	10 0	120	10.0	10-0	,	-			
Iron (Fe) Total Dissolved	0.0		0	0-05	•	• • • • • • • • • • • • • • • • • • • •	••••••			
Aluminum (Al)	0.05		0.0	0.03				 		
Manganese (Mn)	0-0		0.0	trace						
Sodium (Na)	2.4		4.7	3.9	3.0	3-2	3.9	4.5		
Potassium (K)	0.5		1.2	1.1	1.5	1.0	1.1	1.1		
Carbonate (CO3)	0	0	0	0	6.6	0	0	12.0		
Bicarbonate (HCOs)	86-5	229	215	222	210	166	162	151		
Sulphate (SO4)	34-4	5-1	8.3	8.0	4.9	9.3	7.3	6.5		
Chloride (Cl)	0-1	1.3	0-2	0.1	0.3	0.3	0.4	0.5		
Fluoride (F)	0.05			0.10						
Nitrate (NO2)	ł	0.6	1.0	0.8	0.8	1.6	2.4	0.8		
Silica (SiO ₂), Colorimetric		13	15	17	13	16	16	0.0		
Carbonate hardness, as CaCO.		18-8	174	178	178	135	133	143		
Non-carbonate hardness, as CaCO2	30.0	5.7	0	0	0	0	0	0.6		
Total hardness, as CaCOs	101	194	174	178	-178	135	133			
Sum of constituents	126		198	203	196	162	158	144		
Saturation index	-0.2		+0.7	+0.4	+1.2	102 +0.5	108 +0.6	211 +1·0		
Remarks:	Copper (Cu)-trace	*Not a Dept'l. analysis.	Cu-trace	Cu—0·0		Cu-0.0				
	Total ammonia-0·1	analysis. †See also Station No. 5y, page 54.				· · ·	· · · · ·			
		10, 0y, page 94.								

TABLE V Municipal Water Supplies Within the Mackenzie and Yukon River Drainage Basins Summary of data on systems, treatment and population served, 1951

				nicipal studiec		Sources of water for municipal systems				Treatment of water in municipal systems			Appr	oximat with v	e popu vater i	lation se n 1951	rved ^b	Percentage of total population of basin area served with water in 1951.						
Drainage basins	N.W.T.	Y.T.	в.с.	Alta.	Total		N.W.T.	Ү.Т.	B.C.	Alta.	Total	None	Chlori- nation	Addi- tional or other treat- ment	N.W.T.	Y . T.	в.с.	Alta.	Total	N.W.T.	ү.т.	B.C.	Alta.	Total
			_			Ground				5(1)	5(1)	5		0(1)				5,436 (1,141)°	5,436 (1,141)					
Mackenzie River	4	0	1	12(3)*	17(3)	Surface.	4				12(1) 0(1)	2	5(1) 0(1)	5 	3,850		ļ	10,542 (905) (553)	18,981 (905) (553)	39	0	33	13.5	17-1
Yukon River in Canada	0	2	0	0	2	Ground. Surface. Mixed		1 1			1 1 0	1		1		783 2,594			783 2,594		38			38
 Total	4	2	1	12.3	19.3	Ground.	4	1	1		6(1) 13(1)	6	6(1)	0(1) 5	3,850	3,777	4,589	15,987 (2,599)	27,794 (2,599)					
			.			Mixed	 			0(1)	0(1)		0(1)											

^a Values in brackets refer to additional systems installed in 1952 and 1953.
^b Does not include all military personnel served in the Territories.
^c Values in brackets refer to population served by systems installed in 1952 and 1953.

TABLE VI

Municipal Water Supplies Within the Mackenzie and Yukon River Drainage Basins

Summary of da	ata on municipal	water hardness
---------------	------------------	----------------

Drainage basin	Number of municipal	Numbers of systems served with waters classed as						Approximate population served ^o in 1951 with waters classed as				ent popula 51 that is waters cl	served	with	Woighted average hardness (1951) of waters in			
	systems	Туре	Soft	Medium hard	Hard	Very hard	Soft	Medium hard	Hard	Very hard	Soft	Medium hard	Hard	Very hard	N.W.T.	Ү.Т.	B.C.	Alta.
		Ground	3		0(1)*	3	2,868		(1,141) ^b	2,568								
Mackenzie River	17(3)*	Surface	1	2	4(1)	4	2,725	2,271	7,072 (905)	6,913	23	9	29	39	102		257	127 (170)
		Mixed				0(1)				(553)				•••••				
		Ground		1				783										
Yukon River in	2	Surface									0	23	0	77		160		
Canada	4	Mixed				1				2,594								
		Ground	3	1	0(1)	3	2,868	783	(1,141)	2,568								
Total	19(3)	Surface	1	2	4(1)	4	2,725	2,271	7,072 (905)	6,913	20	11	25.5	43.5				
		Mixed				1(1)				2,594 (553)								

^a Values in brackets refer to additional systems installed in 1952 and 1953.

^b Values in brackets refer to population served by systems installed in 1952 and 1953.

^c Does not include all military personnel in army camps.

DISCUSSION

It is not proposed to discuss in detail all the data recorded in this report, especially the analytical data tabulated in Tables II, III and IV as the interpretation and usefulness of the information varies so widely with reader interest. However, most surface waters in the basins, although not highly mineralized, do contain more dissolved matter than is found in waters from many other areas of Canada, such as the coastal area of British Columbia and the Canadian Shield. This mineralization is essentially carbonate hardness and the waters range generally from medium hard to the lower limit of very hard when classified as follows:

Soft water	Below 61 p.p.m. total hardness as CaCO ₃
Medium hard water	.61-120 p.p.m. total hardness as CaCO ₃
Hard water	121-180 p.p.m. total hardness as CaCO ₃
Very hard water	Greater than 180 p.n.m. total hardness as CaCO ₃

Tables II and III show that those rivers with headwaters in the calcareous Rocky Mountains or northern extensions of them, are generally medium hard in character. In many there is a notable seasonal variation that is probably caused by the rapid run-off from melting mountain snows and glaciers. Some sections of these rivers periodically carry considerable sediment, as indicated by their high turbidity.

Drainage from the east or from the Canadian Shield is not extensive but is generally a softer water, low in mineralization and typical of surface waters found on the Shield. The larger lakes of this region are usually soft and clear unless, like Lesser Slave Lake, they are situated in or fed by drainage from the lowlands or plains region.

Waters of the Yukon system show considerable variation, mainly in carbonate hardness, ranging from soft to hard waters with an estimated average total hardness range of 60 to 90 p.p.m. as $CaCO_3$.

Table I and Figure I clearly show the large size and undeveloped nature of the basins covered by this report. These basins together drain about 91 percent of Yukon Territory and about 23 per cent of Northwest Territories, an area almost one-quarter the area of Canada. However only about 151,820 persons inhabit this area, a little over 1 per cent of Canada's population; 87 per cent of them live in the northern parts of British Columbia, Saskatchewan and Alberta, mostly in the Peace River district of Alberta. Of the 25,000 persons living in these river basins in the Territories, only about one-quarter are white, the remainder being Eskimos and Indians.*

Tables II and III and Figure 2 emphasize the incomplete coverage of water quality in these basins. However, it is believed that these studies are sufficient to show the general chemical quality of the river waters at present most important, and to indicate the quality of water in many lakes and rivers nearby which have not yet been studied.

Figure 3 is a graphical presentation of summer water hardness along the Mackenzie River system. Similar plotting of "average" hardness at various points usually shows a higher hardness but the trend is, in general, similar to the values plotted from data obtained from the summer water samples. There is an increase in hardness as the medium hard waters from the Cordilleran region flow through the lowlands and Alberta plateau. Those rivers flowing just north of the North Saskatchewan River basin show similar changes, but the main Mackenzie River system does not maintain or increase hardness; rather there is a decrease in hardness in the Slave and Mackenzie Rivers caused probably by the inflow of softer waters from the Canadian Shield and by the effect of the large soft-water lakes.

Rivers rising in the Cordilleran region such as Liard, Nahanni etc., do not greatly increase the main river hardness. It is not until the harder waters of the far northern rivers, Arctic Red and Peel, enter the flow that significant changes occur, and at its mouth, waters of the Mackenzie River become quite hard. The wide variability, not only in waters from different rivers but from season to season in most rivers, coupled with the limited data available, confuse the interpretation of effects of each on the main river. Rivers such as McLeod and Pembina, rising in the same locale as the North Saskatchewan, do show hardness characteristics similar to the North Saskatchewan but these harder waters are somewhat balanced by the Peace River which, rising in the interior plateau of British Columbia, is in general a softer water throughout its length, even though it does have some southern tributaries with high hardness, viz; Kiskatinaw River.

From the limited data available on the Yukon River system, it appears to increase slightly in hardness as it flows through the interior plateau, probably because of the inflow of harder water (Stewart River) from the eastern mountain ranges. It is assumed that waters of the Bell River and other northern tributaries are similar in quality to those of Arctic Red and Peel Rivers.

^{*} Since survey work was started in these basins, a considerable increase in population has doubtless occurred because of new defence installations. A survey of water quality at a number of these bases is now under way.

Figure 4, the graphical presentation of changing mineralization in the Athabasca River shows relationships which are typical of many other rivers in these basins. The specific conductance (total dissolved solids content) is paralleled almost identically by total hardness, illustrating that the principal dissolved salts are hardness salts. Deviations in this curve are generally due to an increased sodium sulphate content. The variation in mineral content is quite marked with a peak (higher solids and total hardness) in May and an extreme high in December. The curve of river discharge almost mirrors the curve for conductivity, although there is a lag because a rapid drop in flow is not immediately shown by an increased solids content. High discharge is noted in June after a low in May as conductivity increases. The discharge decreases fairly constantly to a low in January when high conductivity is again noted. This indicates that there may be a local discharge in April followed by decreasing flow until melting snow and ice fields in the mountains cause increased flow of a lower mineralized water around June. From then on, flow steadily decreases to a low around December and January. Turbidity follows generally the curve of discharge, being highest in June but never abnormally high.

Figure 5 shows the variability in chemical quality of the Mackenzie River at Fort Simpson. Discharge records at this point were not available. Despite the many tributaries entering the main river, the Mackenzie maintains a surprisingly constant quality, the only major change being a rapid decrease in total mineral matter in late April when, presumably, spring break-up occurs and the river is affected by run-off from melting snow and ice. Once again carbonate hardness is the main mineral constituent, as evidenced from the similarity of the curves for total hardness, conductivity, sum of constituents and non-carbonate hardness.

Figure 6 shows the relationship between flow and mineral content in the large tributary river, Liard River at Watson Lake, Yukon Territory, at a location well upstream within the Cordilleran region. This river shows increasing mineralization with decreasing discharge to a peak in November. The discharge continues low until its rise with the spring run-off in late April and May at which time total mineralization correspondingly decreases. However, during December and January of 1952-53, there was a decided drop in mineralization which was not reflected in increased discharge. This may be due to some local condition of melting ice and snow; for example, flow from harder tributary streams perhaps decreased in proportion to inflow from melting snow, or from a softer tributary stream. The drop may not be common to all years.

Table V, which summarizes some of the data on municipal systems, illustrates again the heavy settlement in the Alberta part of the basin. Although there is a greater municipal use of surface waters than ground waters, this is not as great as would be expected from the ready availability of surface waters. However, the smallness of many of the systems and the necessity for chlorination or treatment for turbidity or colour in the surface waters, is no doubt the major reason for use of ground waters.

Table VI indicates that a large proportion of these ground waters are soft, or at least as soft as the surface waters. Treatment of supplies is generally by chlorination, although a number of surface waters require treatment for turbidity and colour removal and several should be softened for many industrial uses. The population served is small but considering the extent of the area, a relatively large percentage is served, partly because population is centered in a few areas. This table clearly shows the increased hardness of waters in these basins; of 12 surface water systems, 9 are supplied with hard to very hard water, and 68 per cent of the population served receives hard to very hard water. In the Yukon basin the larger system, at Whitehorse, uses a hard water and greatly influences the limited data. However, the weighted average hardness of waters, served in all areas except British Columbia (one system only) is not excessively high.

SUMMARY

The large area of Canada covered by this report is at present of minor industrial importance but does have available adequate supplies of surface waters suitable for most industrial and municipal uses without extensive treatment.

Many waters of the area have not yet been studied but surface water quality in the areas studied varies rather markedly with location and season; in general, these waters are medium hard to hard. Many will require treatment for turbidity during times of high discharge, and others should be softened for certain uses. Available information on ground waters indicates many of these may be more suitable than surface waters for use by smaller communities.

Municipal use and also industrial use of waters in more northern areas of the basins is complicated by the low winter temperatures and the permanently frozen condition of the ground which necessitates location of systems on the surface with heating of the water during the winter months. In other more southern areas the systems must be deeply buried.

It is expected that additional information on water quality within these basins will be obtained, particularly information on trace elements and heavy metals that may be of assistance in locating mineral deposits.

APPENDIX A

Surface Water Sampling Locations

A. Mackenzie River Drainage Basin

Page

			TUUL
S_{i}	tation	ı No.	
		Arctic Red River at Arctic Red River Settlement, N.W.T Astoria River near Jasper, Alta Athabasca River at Athabasca Glacier, Columbia Icefield. " " at Athabasca Falls, Alta " " at Athabasca, Alta " " at Jasper, Alta " " at Jasper, Alta " " near Snaring, Alta " " near Pedley, Alta " " at Fort MacMurray, Alta	$52 \\ 28 \\ 14 \\ 14 \\ 18 \\ 16 \\ 14 \\ 16 \\ 16 \\ 18 \\ 20$
	52 46 64A	Bear River near Grande Prairie, Alta Beatton River near Fort St. John, B.C Bosworth Creek at Norman Wells, N.W.T	42 40 52
	56A	Clearwater River at Fort MacMurray, Alta	46
	24 60	Embarras River near Weald, Alta Emile River near Rae, N.W.T	$\begin{array}{c} 30\\ 48\end{array}$
	38 28	Fawcett River near Smith, Alta Freeman River near Fort Assiniboine, Alta	$\begin{array}{c} 36\\ 32 \end{array}$
	63 64 12 12A 12B 13	Great Bear Lake near Port Radium, N.W.T. Great Bear River near Fort Norman, N.W.T. Great Slave Lake near Hay River Settlement, N.W.T. Great Slave Lake at Fort Resolution, N.W.T. Great Slave Lake (McLeod Bay), at Fort Reliance, N.W.T. Great Slave Lake at Yellowknife, N.W.T.	50 52 22 22 22 22 22
	$\begin{array}{c} 42 \\ 58 \end{array}$	Halfway River near Attachie, B.C Hay River at Hay River Settlement, N.W.T	$\begin{array}{c} 36\\ 46\end{array}$
	$\begin{array}{c} 47 \\ 48 \end{array}$	Kiskatinaw River near Dawson Creek, B.C	$\begin{array}{c} 40\\ 42\end{array}$
	39 62 35 37 54 30	Lac La Biche at Lac La Biche, Alta. Liard River at Fort Simpson, N.W.T. Liard River at Watson Lake, Y.T. Lesser Slave Lake at Faust, Alta. Lesser Slave River near Slave Lake, Alta. Little Smoky River near High Prairie, Alta. Lobstick River near Evansburg, Alta.	$36 \\ 50 \\ 48 \\ 34 \\ 36 \\ 44 \\ 32$
	16 16A 15A 15 14 13A 20 23 25 27 19 44 57	Mackenzie River at Peel Channel, at Aklavik, N.W.T " " at New Aklavik, N.W.T " " at Fort Good Hope, N.W.T " " near Fort Norman, N.W.T " " at Fort Simpson, N.W.T	30 30 30 28 38
	01	Troubonth Larver av Hamming, Maan	46

APPENDIX A—Concluded

•

Surface Water Sampling Locations-Concluded

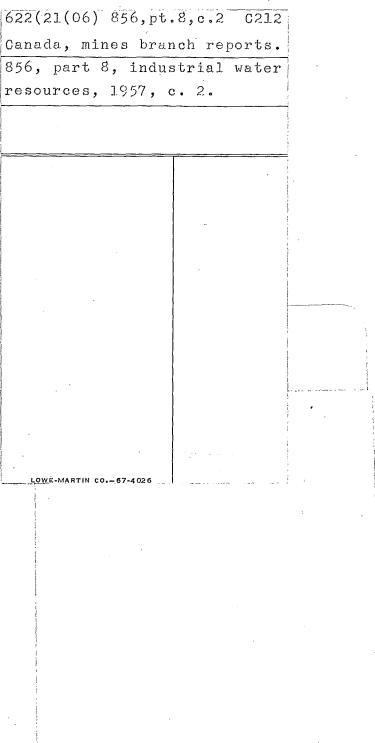
Station 3	Vo.
32	Paddle River at Barrhead, Alta
50	Peace River near Dunvegan, Alta
41	" " above Halfway River junction, near Attachie, B.C
56	" " at Peace River, Alta
45	$\operatorname{Hear} \operatorname{Iay10r}, \operatorname{D.U} \operatorname{Iear} Ie$
66	
29	I OMOMIA INTO AN LITAMONALE, ILLANDOUTO TOTATO TOTATO TOTATO
33	
31	Pembina River near Sangudo, Alta.32Pine River at East Pine, B.C.38
$\begin{array}{c} 43\\ 49\end{array}$	Pouce Coupé River near Pouce Coupe, B.C
τŋ	
22	Rocky River near Pocahontas, Alta
$11 \\ 53 \\ 59$	Slave River at Fort Smith, N.W.T.20Smoky River near Grande Prairie, Alta.42Snare River (Big Spruce Lake), near Rae, N.W.T.46
55	Smoky River at Watino. Alta
21	Snaring River near Jasper, Alta
2	Sunwapta River at Sunwapta Falls, Alta 14
36	Swan River at Kinuso, Alta
51	Wapiti River near Grande Prairie, Alta
$\overline{34}$	West Prairie River at High Prairie, Alta
17	Whirlpool River near Athabasca Falls, Alta
26	Wolf River near Edson, Alta
40	Wollaston Lake, Sask

B. Yukon River Drainage Basin

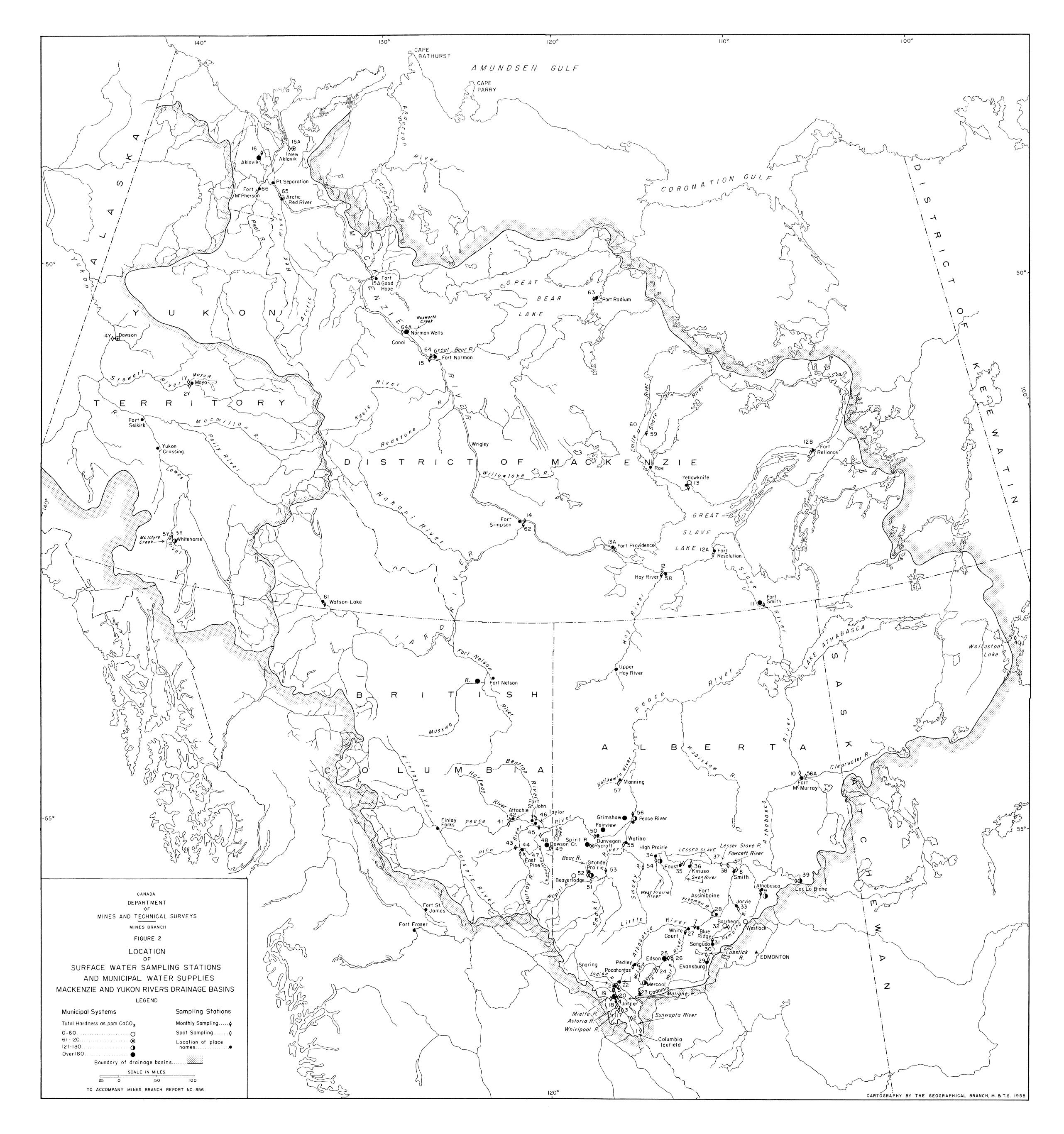
$1 \mathbf{Y} \\ 5 \mathbf{Y}$	Mayo River near Mayo, Y.T	$\begin{array}{c} 54 \\ 54 \end{array}$
2 Y	Stewart River at Mayo, Y.T	54
3Y 4Y	Yukon (Lewes) River at Whitehorse, Y.T Yukon River at Dawson, Y.T	$\frac{54}{54}$

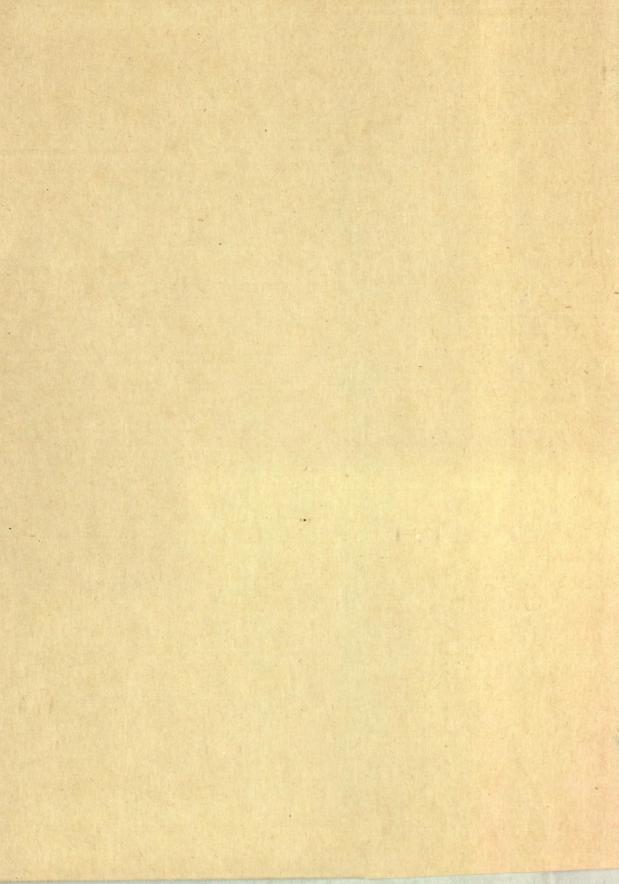
ERRATA

Page 76,	delete lines 7	to 15,	and substitute:	
1	Athabasca	Glacie	er, Columbia Icefield	14
9	Athabasea	River	at Athabasca, Alta.	18
3	"	"	at Athabasca Falls, Alta	14
7	"	"	near Blue Ridge, Alta	16
10	"	"	at Fort MacMurray, Alta	
4	"	"	at Jasper, Alta	14
6	"	"	at Pedley, Alta	
8	**	"	near Smith, Alta	18
5	"	"	near Snaring, Alta	16
Page 76,	delete lines 8	to 13	(from bottom) and substitute:	
154	A Mackenzie	River	at Fort Good Hope, N.W.T	28
15	"	"	near Fort Norman, N.W.T	26
134	A "	"	at Fort Providence, N.W.T.	24
14	"	"	at Fort Simpson, N.W.T	24
164	¥ "	"	at New Aklavik, N.W.T	
16	"	"	at Peel Channel at Aklavik, N.W.T	


- -- --

APPENDIX B


Municipal Water Systems in the Mackenzie River and Yukon River Drainage Basins


		Data Page	Analysis Page
A. Ma	ckenzie River Basin.		
$ \begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ *9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 14 \\ 12 \\ 13 \\ 14 \\ 14 \\ 12 \\ 13 \\ 14 \\ 14 \\ 12 \\ 13 \\ 14 \\ 14 \\ 12 \\ 13 \\ 14 \\ 14 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 14 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 14 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 14 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 12 \\ 11 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 11 \\ 12 \\ 13 \\ 14 \\ 14 \\ 12 \\ 13 \\ 14 \\ 14 \\ 12 \\ 12 \\ 13 \\ 14 \\ 12 \\ 13 \\ 14 \\ 14 \\ 14 \\ 11 \\ 11 \\ 12 \\ 13 \\ 14 \\ 14 \\ 11 \\ 1$	Aklavik, N.W.T., (and New Aklavik)Athabasca, AltaBarrhead, AltaBeaverlodge, AltaDawson Creek, B.CEdson, AltaFairview, AltaFort Smith, N.W.TFort Nelson, B.CGrande Prairie, AltaGrimshaw, AltaHigh Prairie, AltaJasper, AltaLac La Biche, Alta.	56 56 57 57 56 56 56 56 56 56 58 58 59 59	$\begin{array}{c} 62 \\ 62 \\ 62 \\ 63 \\ 63 \\ 63 \\ 63 \\ 64 \\ 66 \\ 68 \\ 68 \\ 68 \\ 69 \\ 69 \\ 69 \\ 69$
15 16 17 18 19 20 21	Mercoal, Alta. Norman Wells, N.W.T. Peace River, Alta. Rycroft, Alta. Spirit River, Alta. Westlock, Alta. Yellowknife, N.W.T.	59 59 58 58 59 59 59 60	70 70 71 71 71 71 71 71
B. Yu	kon River Basin.		
$1 \ \dagger 2$	Dawson, Y.T Whitehorse, Y.T	61 61	72 72

* Military system not included in statistics. † Also supplies military camp.

аланданаа — иноники тики **тики — ин**о дой

