CANADA
 DEPARTMENT OF MINES AND RESOURCES

MINES AND GEOLOGY BRANCH

 bureau of mines
THE PHYSICAL PROPERTIES OF GANADIAN STRUCTURAL TILE
 (Made from Clay or Shale)

BY
J. G. Phillips and G. A. Kirkendale

OTTAWA
EDMOND CLOU'TIER, C.M.G., B.A., L.Ph.,

CONTENTS

Page
Introduction 1.
The Collection of Samples 1.
Plan for collection of samples. 1
Types of samples collected and number of each type. 1
Number of plants that contributed samples 1
Method of Testing 2
Compressive strength tests. 2
Absorption and absorption ratio 2
Freezing and thawing tests. 3
Results of Tests 3
Mean and extreme results of compressive strength determinations 3
Mean and extreme results of absorption determinations 3
Discussion of results of freezing and thawing tests 4
The relation of absorption data to ability to withstand the freezing and thawing tests. 4
Summary 6
Analysis of results of tests 6
TABLES
I. Mean and extreme results of compressive strength determinations 3
II. Mean and extreme results of absorption determinations 4
III. Composite table giving results of all tests (averages of tests on at least three individual samples) 7
IV. Table giving individual results of freezing and thawing tests, arranged in accordance with increasing percentage absorption 12
ILLUSTRATIONS
Photographs
Plate I A. Compressive strength: failure of web 13
B. Compressive strength: failure due to shear 13
II A. Compressive strength: failure due to shear 14
B. Compressive strength: failure due to collapse 14
III. Tile before freezing and thawing tests 14
IV A and B. Selected specimens of tile after freezing and thawing tests, showing examples of failures 15
Graphs
Figure 1. Showing relation between freezing and thawing resistance and absorption data. 5
2. Ranges of $\mathrm{C}_{48} / \mathrm{B}_{5}$ ratios plotted against the percentage of tile that withstood fifty cycles of freezing and thawing 6

The Physical Properties of Canadian Structural Tile (Made from Clay or Shale)

INTRODUCTION

This report is a sequel to the report on the "Physical Properties of Canadian Building Brick". The investigation was started in 1939 and completed in 1941, but, as in the case of the brick report, its publication was postponed owing to restrictions on the printing of reports during the war.

The prime purpose of this investigation was to assist the individual manufacturers by giving them a basis for evaluating their own products. However, it is hoped that the report will prove of value to architects, contractors, and others concerned with the use of structural tile, and possibly serve as a means of formulating more appropriate specifications.

The investigation embraced the complete testing of representative samples from all structural tile plants in Canada that were operating and could supply samples, but for obvious reasons efforts were made to avoid any indication as to the source of the individual samples.

THE COLLECTION OF SAMPLES

After consultations with manufacturers, architects, etc., the tile samples to be used in the investigation were collected in accordance with the following plan. At each plant an endeavour was made to select that kind and size of tile for which there was the greatest demand, and which was most likely to be used in exterior walls. Throughout Ontario and Quebec, visits were made to the various plants for the purpose of selecting the samples and obtaining information relative to their manufacture. In Western Canada and in the Maritime Provinces, instructions for selecting and submitting representative tile specimens were forwarded to the plants and the samples were shipped to Ottawa. In most cases each sample lot consisted of fifteen individual specimens that were selected to represent the average product marketed. For samples of tile manufactured specially for use in exterior or exposed walls, precautions were taken to exclude those specimens showing cracks or other defects.

The sample lots collected for investigation were as follows:

Thirty-six Canadian plants manufacturing structural tile (made from clay or shale) contributed samples.

METHOD OF TESTING

COMPRESSIVE STRENGTH

Compressive strength determinations were made in accordance with the method prescribed by the American Society for Testing Materials. The design of the tile governed the direction in which the load was applied, that is, the tiles were placed in the testing machine in such manner that the load was applied in the same direction that it would be applied when the tiles are laid up in walls. The tiles were capped on both bearing surfaces to provide level and parallel surfaces. The capping was kept between $\frac{1}{16}$ and $\frac{1}{8}$ inch in thickness, and consisted of a mixture of 75 per cent Portland cement and 25 per cent plaster of Paris. These tests were made with an Amsler compression machine; the rate of application of load being constant for all tests.

In general, the type of failure under load fell into one of three classes:
(1) Web Failure. In this class the webs failed first, usually along the contact with one wall. This failure, accompanied by a drop in the pressure reading on the dial, would often occur at a pressure considerably below that at which complete failure of the tile took place. As the load was applied the side walls tended to bulge outward and thus placed the webs under tension. After the webs had failed, the side walls continued to take the load until final failure occurred; due to the side walls shearing from the top or base, or completely collapsing. (See Plate IA.)
(2) Failure Due to Shear. In such cases one or both side walls failed in shear, as illustrated in Plates IB and IIA.
(3) Failure by Complete Collapse and Shattering of the Tile. Hard-burned and brittle tile, which would suddenly collapse at maximum load and break into numerous pieces, fell into this class. Failure was not due to weak sections in the tile giving way, but rather to the whole tile breaking up at ultimate load. Plate IIB shows a typical tile of this class.

ABSORPTION AND ABSORPTION RATIO

Percentage absorption was determined after soaking in cold water for 5 hours and 48 hours, and after subsequent boiling for 5 hours. The figures appearing under ratio " A " were obtained from the ratio:

$$
\frac{5 \text { hrs. cold absorption }}{5 \text { hrs. boil absorption }}
$$

The figures under ratio " B " were obtained from the ratio:
$\frac{48 \mathrm{hrs} \text {. cold absorption }}{5 \mathrm{hrs} \text {. boil absorption }}$
These ratios are important since it has been found, in the case of brick at least, that they give an indication of weather resistance. Ratio $B\left(\mathrm{C}_{48} / \mathrm{B}_{5}\right.$ ratio) is the more important indicator. In general, the lower this ratio is, the more resistant the tile should be to frost action. A tile having a " B " ratio of 0.85 or higher is likely to give trouble in damp walls exposed to repeated freezing and thawing. ${ }^{1}$ Ratio " A^{\prime} " ($\mathrm{C}_{5} / \mathrm{B}_{5}$ ratio) is supposed to give some indication of rate of absorption.

[^0]
FREEZING AND THAWING

For convenience of handling in the freezing and thawing tests, samples approximately 6 inches long were cut from whole tile. Fifty sample lots of three tile each were subjected to fifty cycles of alternate freezing and thawing. The samples were first soaked in water for 48 hours and the per cent absorption determined. They were then set in a shallow pan containing from $1 \frac{1}{4}$ to $1 \frac{1}{2}$ inches of water and placed in a refrigeration chamber maintained at $20^{\circ} \mathrm{F}$. for 16 hours. The frozen tile were taken from the freezer and completely submerged in a tank of water at room temperature for 8 hours, after which they were carefully inspected, and the cycle was repeated. At the end of each ten cycles the wet tile were weighed, dried at $110^{\circ} \mathrm{C}$, reweighed, and the per cent absorption calculated. Tile losing 1 per cent or more in weight were considered as having failed in freezing and thawing.

RESULTS OF TESTS

COMPRESSIVE STRENGTH

Average results of the compressive strength determinations are shown in Table III. The different sizes and designs of tile included in the entire number of samples were grouped, and averages and extremes in compressive strength for each group are given in Table I.

TABLE I
Compressive Strength, lb./sq. in. (Gross area)

Size	Average	Maximum	Minimum	Number of sample lots in average
$4 \times 12 \times 12$.	963	2,135	470	19
$8 \times 5 \times 12 .$	2,622	2,885	2,166	5
$4 \underset{2 \text {-cell...... }}{8}$	750	986	592	5
$\begin{array}{r} 5 \times 8 \times 12 . \\ 2 \text {-cell....... } \end{array}$	596	757	390	7
$5 \underset{3-\text { cell....... }}{ } \times 12 .$	688	1,351	415	9
Interlocking tile.	896	1,052	604	4

ABSORPTION AND ABSORPTION RATIO

The averages and extremes in absorption data for the several groups are given in Table II. Table III is a composite table giving the average results of determinations of absorption properties, the average results of all other tests made, and other pertinent information. In Table IV, absorption data obtained on individual specimens are given with the results of the freezing and thawing tests. The data in Table IV are directly comparable, since the freezing and thawing tests were carried out on the same individual specimens from which the absorption data were taken.

TABLE II
Absorption Properties

Size	-	5 hrs . cold	48 hrs . cold	5 hrs . boil	Ratio A	Ratio B
$4 \times 12 \times 12$	(Average. .	11.12	11.95	$13 \cdot 78$	$0 \cdot 78$	$0 \cdot 85$
	Highest. . . .	$18 \cdot 29$	$19 \cdot 03$	$21 \cdot 60$	0.90	$0 \cdot 93$
	Lowest. . . .	$5 \cdot 58$	6.83	$8 \cdot 22$	$0 \cdot 61$	$0 \cdot 73$
$8 \times 5 \times 12$ Speed tile.	Average... .	${ }^{6} \cdot 22$	7.01	8.56	$0 \cdot 67$	$0 \cdot 78$
	$\{$ Highest. . .	13.65	$14 \cdot 20$	$15 \cdot 64$	0.87	0.91
	(Lowest. .	1.76	$2 \cdot 73$	$3 \cdot 95$	$0 \cdot 44$	$0 \cdot 68$
	Average....	$17 \cdot 25$	$18 \cdot 58$	21.97	$0 \cdot 76$	$0 \cdot 82$
	\{Highest. . . .	$23 \cdot 76$	25.97	$27 \cdot 64$	$0 \cdot 86$	$0 \cdot 94$
	Lowest. .	$9 \cdot 27$	$10 \cdot 21$	$13 \cdot 50$	$0 \cdot 65$	$0 \cdot 70$
$5 \times \underset{2 \text {-cell. }}{ } \times 8$.	Average. . .	$15 \cdot 60$	$16 \cdot 92$	$19 \cdot 97$	0.76	0.83
	Highest. . .	28.50	$30 \cdot 40$	$33 \cdot 00$	$0 \cdot 90$	0.94
	Lowest. .	$8 \cdot 90$	$10 \cdot 00$	$13 \cdot 10$	$0 \cdot 65$	$0 \cdot 75$
$\underset{3 \text {-cell. }}{5 \times 12}$	(Average. .	$12 \cdot 59$	$13 \cdot 69$	$15 \cdot 92$	$0 \cdot 78$	0.85
	Highest.	$19 \cdot 19$	$20 \cdot 70$	$23 \cdot 29$	$0 \cdot 83$	$0 \cdot 89$
	Lowest.... .	$7 \cdot 00$	7.95	8.91	$0 \cdot 63$	$0 \cdot 77$
Interlocking tile	Average.	$10 \cdot 85$	$12 \cdot 05$	$14 \cdot 16$	$0 \cdot 70$	$0 \cdot 81$
	Highest. . .	$22 \cdot 70$	$24 \cdot 20$	$26 \cdot 20$	$0 \cdot 87$	0.93
	LLowest.	$4 \cdot 15$	$5 \cdot 78$	$8 \cdot 11$	$0 \cdot 48$	$0 \cdot 67$

FREEZING AND THAWING

As mentioned under "Absorption and Absorption Ratio", the results of the freezing and thawing tests are given, with other pertinent data, in Tables III and IV. Table III gives average results obtained on at least three specimens; and Table IV gives individual results in accordance with increasing percentage absorption. Figure 1 was plotted from the data given in Table IV, and shows the relation between absorption data and resistance to freezing and thawing. In Figure 2, ranges of $\mathrm{C}_{48} / \mathrm{B}_{6}$ ratios are plotted against the percentages of tile that withstood fifty cycles of freezing and thawing.

The behaviour of the tile under conditions of freezing and thawing is seen to be very closely related to its absorption properties. No tile with an absorption of 10 per cent or less failed in fifty cycles of freezing and thawing. Of those tile with an absorption between 10 and $12 \frac{1}{2}$ per cent, only 16 per cent failed to stand fifty cycles; and of all tile with an absorption of $12 \frac{1}{2}$ per cent or more, 93 per cent failed in freezing and thawing. The relationship between $\mathrm{C}_{48} / \mathrm{B}_{5}$ ratio and freezing and thawing is also illustrated in Figure 1. No tile with a $\mathrm{C}_{48} / \mathrm{B}_{5}$ ratio less than 0.72 failed, and only 22 per cent of those that failed had a $\mathrm{C}_{48} / \mathrm{B}_{5}$ ratio less than $0 \cdot 85$; whereas two-thirds of those that withstood fifty cycles of freezing and thawing had a $\mathrm{C}_{48} / \mathrm{B}_{5}$ ratio less than 0.85 .

Figure 2-Ranges of $\mathrm{C}_{4} \mathrm{~B}_{5}$ ratios plotted against the percentages of tile that withstood fifty cycles of freezing and thawing.

SUMMARY

Fifty-nine sample lots of building tile were tested for compressive strength, absorption properties, and ability to withstand repeated freezing and thawing. Various designs of tile and raw materials were represented in the tests. Compressive strengths ranged from a minimum of 390 pounds to a maximum of 2,885 pounds per square inch. Absorption after a 48 -hour cold immersion and a 5 -hour boil varied from a low of 3.95 per cent to a high of 33 per cent, and the $\mathrm{C}_{48} / \mathrm{B}_{5}$ ratio varied from a low of 0.58 to a high of 0.96 . All tile with an absorption of 10 per cent or less after a 48 -hour immersion in water at room temperature withstood fifty cycles of freezing and thawing; and all those with an absorption of 17 per cent or greater failed. Of the tile with an absorption between 10 and 17 per cent, thirty-three individual samples withstood fifty cycles and thirtysix individual samples failed.

TABLE III
Average Results of Determinations of Absorption Properties, Compressive Strength, and Freezing and Thawing
(All data given are average results obtained on at least three specimens.)

$\begin{aligned} & \text { Sample } \\ & \text { No. } \end{aligned}$	Description and raw material	Absorption data Per cent absorption			Absorptionratio		Compressive strength		Freezing and thawing		Remarks
					$\mathrm{C}_{5} / \mathrm{B}_{5}$	$\mathrm{C}_{48} / \mathrm{B}_{5}$	$\begin{gathered} \text { Gross } \\ \text { area; } \\ \text { lb. } / \mathrm{sq} . \mathrm{in} . \end{gathered}$	$\left\|\begin{array}{c} \text { Net } \\ \text { area, } \\ \mathrm{lb} . / \mathrm{sq} \\ \hline \text { in } \end{array}\right\|$	$\begin{gathered} \text { Initial } \\ \text { failure, } \\ \text { cycle No. } \end{gathered}$	$\left\|\begin{array}{c} \text { Final } \\ \text { failure } \\ \text { cycle No. } \end{array}\right\|$	
		5 hours cold	48 hours cold	5 hours boil							
1	$3 \times 12 \times 12 .$	$8 \cdot 37$	9.08	11.72	0.71	0.77	2,135	5,048	O.E.	O.K.	Medium hard, good structure
2	$\begin{array}{r} 4 \times 12 \times 12 \text {. } \\ \text { Porous partition tile made } \\ \text { with sawdust............ } \end{array}$	$24 \cdot 07$	25.55	$35 \cdot 53$	0.68	0.72	520	1,376	2	50	
3	$4 \times 12 \times 12 .$	$8 \cdot 63$	$9 \cdot 28$	$10 \cdot 29$	$0 \cdot 84$	0.90	732	2,757	O.K.	O.K.	Medium hard, good structure
4	$\begin{aligned} & 4 \times 12 \times 12 . \\ & \text { Surface clay and sand..... } \end{aligned}$	$7 \cdot 97$	$8 \cdot 65$	10-56	0.66	0.75	1,262	3,812	29	50	Medium hard, laminated
5	$\begin{gathered} 4 \times 12 \times 12 \\ \text { Shale...... } \end{gathered}$	15.00	15.93	17•34	0.86	0.92	1,113	2,903	8	40	Medium hard, fair structure
6	$4 \times 12 \times 12 .$	12.39	13.02	$15 \cdot 16$	$0 \cdot 82$	0.86	871	2,152	11	25	Medium hard, laminated
7	$4 \times 12 \times 12 .$	$14 \cdot 87$	15.84	17-20	0.86	0.92	470	1,639	4	18	Soft, laminated
8	$4 \times 12 \times 12 .$	$18 \cdot 29$	19.03	20.38	0.90	0.93	495	1,434	4	23	Soft, laminated
9	$4 \times 12 \times 12 .$	11.09	11.77	13.78	0.80	0.85	649	1,888	5	50	Medium hard, brittle
10	$4 \times 12 \times 12 .$	7.71	8.63	$10 \cdot 15$	0.76	0.85	879	3,183	O.K.	O.K.	Hard
11	$4 \times 12 \times 12 .$	9.72	10.18	12.76	$0 \cdot 75$	0.79	887	2,839	20	50	Hard, good structure.......

TABLE III-Continued
Average Results of Determinations of Absorption Properties, Compressive Strength, and Freezing and Thawing

$\begin{gathered} \text { Sample } \\ \text { No. } \end{gathered}$	Description and raw material	Absorption data Per cent absorption			Absorption ratio		Compressive strength		Freezing and thawing		Remarks
					$\mathrm{C}_{5} / \mathrm{B}_{5}$	$\mathrm{C}_{48} / \mathrm{B}_{5}$	$\begin{gathered} \text { Gross } \\ \text { areas, } \\ 1 \mathrm{~b} . / \mathrm{sq} . \mathrm{in} . \end{gathered}$	Net area, lb./sq.in	$\left\lvert\, \begin{gathered} \text { Initial } \\ \text { failure, } \\ \text { cycle No. } \end{gathered}\right.$	$\begin{gathered} \text { Final } \\ \text { failure } \\ \text { cycle No. } \end{gathered}$	
		5 hours	48 hours	$\begin{aligned} & 5 \text { hours } \\ & \text { boil } \end{aligned}$							
12	$4 \times 12 \times 12 .$	12.82	$13 \cdot 26$	$15 \cdot 01$	$0 \cdot 85$	$0 \cdot 88$	1,221	3,980	17	40	Hard, good structure
13	$4 \times 12 \times 12 .$	$8 \cdot 42$	9-60	11.35	0.74	0.84	1,058	3,193	O.K.	O.K.	Hard
14	$4 \times 12 \times 12 .$	$17 \cdot 72$	18.89	$21^{\circ} \cdot 60$	$0 \cdot 82$	0.87	704	2,324			Soft, laminated
15	$4 \times 12 \times 12 .$	9.87	$10 \cdot 66$	13.50	$0 \cdot 66$	0.73	680	2,161			Medium hard, laminated
16	$4 \underset{\text { Surface clay................. }}{ } \times 12 \times 12 .$	$12 \cdot 28$	$13 \cdot 30$	14.88	$0 \cdot 83$	$0 \cdot 90$	1,049	3,324	12	40	Medium hard, good structure
17	$4 \times 12 \times 12 .$	9.83	10.45	11.85	0.83	0.88	1,174	3,849	O.K.	O.K.	Medium hard, good structure
18	$4 \times 12 \times 12 \ldots \ldots \ldots .$.	$5 \cdot 58$	6.83	8.22	0.67	0.83	876	2,934	O.K.	O.K.	Hard, fair structure
19	$4 \times 12 \times 12 \ldots \ldots \ldots \ldots$.	$6 \cdot 15$	$7 \cdot 13$	$8 \cdot 67$	$0 \cdot 61$	0.78	1,128	3,919	29	48	Medium hard, fair structure
20	$4 \times 12 \times 12 .$	$14 \cdot 60$	$15 \cdot 50$	17-40	0.84	0.89	915	2,299	50	50	Fair structure
21	$8 \times 5 \times 12 .$	6.31	$7 \cdot 34$	8.85	0.71	0.83	2,166	5,014	O.K.	O.K.	Medium hard
22	$8 \times 5 \times 12 .$	4.68	$5 \cdot 05$	$6 \cdot 64$	$0 \cdot 70$	0.76	2,821	7,518	O.K.	O.K.	Hard
23	$8 \times 5 \times 12 .$	13.65	14.20	$15 \cdot 64$	$0 \cdot 87$	0.91	2,404	6,259	O.K.	O.K.	Medium hard
24	$8 \times 5 \times 12 .$	$4 \cdot 68$	$5 \cdot 75$	7.74	$0 \cdot 61$	0.74	2,835	6,961	O.K.	O.K.	Hard, fair structure

25	$\mid 8 \times 5 \times 12$	1.76	2.73	$3 \cdot 95$	0.44	0.68	2,885	6,992	O.K.	O.K.	Hard, fair structure
26	$\begin{aligned} & 4 \times 8 \times 12,2 \text {-cell. } \\ & \text { Buff-burning, high-lime } \\ & \text { surface clay................. } \end{aligned}$	23.76	$25 \cdot 97$	$27 \cdot 64$	0.86	0.94	600	1,880	3	25	Very soft
27	$4 \times 8 \times 12,2 \text {-cell. }$	$9 \cdot 27$	10.21	13.50	$0 \cdot 66$	0.73	843	2,644	O.K.	O.K.	Medium hard, fair structure
28	$4 \times 8 \times 12,2 \text { cell. }$	20.21	21-20	$25 \cdot 41$	0.80	0.84	728	1,770	8	35	Soft, porous, made with sawdust
29	$\begin{array}{\|} 4 \times 8 \times 12,2 \text {-cell. } \\ \text { Surface clay..... } \end{array}$	$22 \cdot 60$	24-40	$27 \cdot 40$	0.83	0.89	592	1,562			Soft
30	$\mid 4 \times 8 \times 12,2 \text {-cell. }$	$10 \cdot 40$	11-10	15.90	0.65	0.70	986	2,600			Medium hard, good structure, lime pebbles
31	$5 \times 8 \times 12$, 2-cell. Surface clay....	10.10	11.04	13.70	0.74	0.81	679	2,668	O.K.	O.K.	Medium hard, fair structure
32	$\begin{array}{\|c} 5 \times 8 \times 12,2 \text {-cell. } \\ \text { Buff-burning surface clay.... } \end{array}$	$20 \cdot 10$	21.80	27.70	0.73	0.79	666	1,977	20	50	Soft, poor structure, stony
33	$5 \times 8 \times 12,2$-cell. Surface clay.	$18 \cdot 10$	19.00	$20 \cdot 30$	0.90	0.94	442	1,744	3	9	Soft
34	$5 \times 8 \times 12,2$-cell. Surface clay.................	28.50	$30 \cdot 40$	33:00	0.87	0.92	390	1,027	6	24	Soft, stony, poor structure
35	$5 \times 8 \times 12,2$-cell. Surface clay	14.10	15.50	18.20	0.77	0.85	757	2,364	40	50	Medium hard, fair structure
36	$5 \times 8 \times 12,2$-cell. Soft shale and clay.	$8 \cdot 90$	10.00	- 13.10	$0 \cdot 68$	0.76	626	2,172	O.K.	O.K.	Medium hard, good structure, lime pebbles
37	$5 \times 8 \times 12,2$-cell. Soft shale and clay.	$9 \cdot 30$	10.70	$13 \cdot 80$	$0 \cdot 65$	0.75	610	2,280			Medium hard, good structure
38	$5 \times 8 \times 12,3$-cell. Surface clay....	19-19	20.70	$23 \cdot 29$	0.83	0.89	521	2,026	10	40	Medium hard, laminated
39	$5 \times 8 \times 12,3$-cell. Surface clay..	16.50	17.85	20.13	0.82	0.89	506	1,731	14	45	Medium hard, laminated
40	$5 \underset{\text { Surface clay..... }}{\times 8 \times 12,3 \text {-cell. }}$	16.22	17.29	19.51	0.83	0.89	571	2,232	20	50	Medium hard

TABLE III-Concluded
Average Results of Determinations of Absorption Properties, Compressive Strength, and Freezing and Thaving

$\begin{gathered} \text { Sample } \\ \text { No. } \end{gathered}$	Description and raw material	Absorption data Per cent absorption			Absorption ratio		Compressive strength		Freezing and thawing		Remarks
		5 hours cold	48 hours cold	$\begin{gathered} 5 \text { hours } \\ \text { boil } \end{gathered}$	$\mathrm{C}_{5} / \mathrm{B}_{5}$	$\mathrm{C}_{48} / \mathrm{B}_{5}$	$\begin{gathered} \text { Gross } \\ \text { area, } \\ \mathrm{lb} . / \mathrm{sq} . \mathrm{in} . \end{gathered}$	Net area, lh./sq.in.	Initial failure, cycle No.	Final failure, cycle No	
41	$5 \times 8 \times 12,3$-cell. Surface clay.	9.80	$10 \cdot 70$	13.31	0.74	0.80	717	2,648	O.K.	0.K.	Medium hard, good structure
42	$5 \times 8 \times 12$, 3-cell. Surface clay.	14-46	15.96	18.76	0.76	0.84	415	1,639	10	25	Medium hard, laminated
43		$7 \cdot 40$	7.95	$8 \cdot 81$	0.83	0.89	1,351	4,846		Hard, fair structure
44	$5 \times 8 \times 12,3$-cell. Clay.	9.90	11.00	13.00	$0 \cdot 76$	0.84	667	2,626	O.K.	O.K.	Medium hard, fair structure
45	$\begin{aligned} & 5 \times 8 \times 12,3 \text {-cell. } \\ & \text { Silty surface clay........... } \end{aligned}$	$12 \cdot 80$	$13 \cdot 30$	$15 \cdot 40$	0.81	0.84	848	2,863	9	35	Soft
46	$5 \times 8 \times 12,3$-cell. Soft shale and clay........	$7 \cdot 00$	$8 \cdot 50$	11.00	0.63	0.77	593	2,548			Fair structure, slightly laminated
47	$\left\|\begin{array}{c} 4 \times 8 \times 12,3 \text {-cell. } \\ \text { Buff-burning, high-lime } \\ \text { surface clay................ } \end{array}\right\|$	21.38	$23 \cdot 10$	$24 \cdot 83$	0.86	0.93	982	2,407	10	50	Soft
48	$\underset{\text { Surface clay..... }}{6 \times 8 \times 12, \text {-cell. }}$	12.70	$13 \cdot 10$	14.60	0.86	0.89	588	2,284	10	25	Medium hard, poor structure, laminated
49	$4 \times 5 \times 12,2$-cell. Surface clay....	16.88	17.94	20.90	0.81	0.86	442	1,319		Soft
50		$8 \cdot 89$	9-56	10.55	$0 \cdot 84$	0.91	1,055	4,186		Hard, laminated
51	$8 \times 5 \times 12$, Special shape. Surface clay.	$9 \cdot 17$	9.86	$12 \cdot 63$	0.72	0.78	942	2,944	O.K.	O.K.	Medium hard, laminated

52	$\begin{aligned} & 6 \times 12 \times 12,3 \text {-cell. } \\ & \text { Surface clay....................... } \end{aligned}$	11.78	11.81	13.79	$0 \cdot 80$	0.85	978	2,402			Medium hard, good structure
53	$\begin{aligned} & 8 \times 8 \times 12,4 \text { cell. } \\ & \text { Shale............................. } \end{aligned}$	13.18	14.04	$15 \cdot 42$	$0 \cdot 86$	0.91	1,748	7,414	23	50	Medium hard
54	$8 \times 8 \times 12$, speed tile. Clay and shale..............	11.93	12.99	14.66	0.81	0.88	1,634	5,668	O.K.	O.\%.	Medium hard
55	$\begin{aligned} & 8 \times 12 \times 12, \text { 6-cell. } \\ & \text { Soit shale and clay } \end{aligned}$	10.50	$12 \cdot 10$	$15 \cdot 00$	0.72	0.81	579	3,610			Medium hard, fair structure, laminated
56	Interlocking tile. Surface clay................	11.09	11.81	13.79	0.80	0.85	978	2,402	O.K.	O.\%.	Medium hard, slightly laminated
57	Interlocking tile.	$4 \cdot 15$	5.78	8.55	0.48	0.67	949	2,657	O.K.	O.K.	Hard, good structure
58	Interlocking tile.	$5 \cdot 48$	$6 \cdot 43$	$8 \cdot 11$	0.67	0.79	1,052	2,856	O.K.	O.K.	Medium hard
59	Interlocking tile. Surface clay................	22.70	24.20	26.20	0.87	0.93	604	1,476	1	15	Soft

TABLE IV
Individual Results of Freezing and Thawing Tests

$\begin{aligned} & \text { Sample } \\ & \text { No. } \end{aligned}$	Per cent absorption	$\underset{\text { ratio }}{\mathrm{C}_{48} / \mathrm{B}_{5}}$	$\left\|\begin{array}{c} \text { Number } \\ \text { of } \\ \text { oycles } \end{array}\right\|$	Per cent loss of weight, 50 cycles	$\begin{aligned} & \text { Sample } \\ & \text { No. } \end{aligned}$	Per cent absorption	$\underset{\substack{\text { ratio }}}{\mathrm{C}_{48} / \mathrm{B}_{5}}$	Number of cycles	Per cent loss of weight, 50 cycles
25-7	$2 \cdot 1$	0.79	50	0.00	23-8	12.7	0.90	50	0.43
4-6	$2 \cdot 5$	0.69	50	0.02	11-6	12.8	0.85	50	$1 \cdot 29$
18-6	$2 \cdot 6$	0.65	50	0.00	23-7	$12 \cdot 8$	0.00	50.	$0 \cdot 44$
19-8	$2 \cdot 6$	0.66	50	$0 \cdot 00$	56-7	$12 \cdot 8$	0.85	50	$14 \cdot 68$
25-8	2.7	0.76	50	0.00	16-6	$12 \cdot 8$	0.84	50	$4 \cdot 56$
25-6	3.9	0.74	50	0.00	48-6	12.8	0.88	50	$4 \cdot 42$
57-8	4:4	$0 \cdot 63$	50	0.00	$54-7$	13.0	$0 \cdot 89$	50	1.18
22-7	$4 \cdot 6$	0.73	50	0.08	9-8	13.1	0.87	43	T
11-8	4.6	0.64	50	0.25	6-6	13.2	0.88	20	F
22-8	4.9	0.76	50	0.08	4-8	13.4	0.88	50	1.46
50-8	$4 \cdot 9$	0.58	50	$0 \cdot 19$	12-7	13.5	0.92	40	F
57-6	$4 \cdot 9$	$0 \cdot 61$	50	$0 \cdot 00$	6-8	$13 \cdot 6$	$0 \cdot 89$	28	F
57-7	$5 \cdot 1$	$0 \cdot 64$	50	0.00	54-6	13.6	0.90	50	0.48
22-6	5.8	0.83	50	$0 \cdot 10$	48-7	$13 \cdot 7$	0.88	27	$\stackrel{\text { F }}{ }$
24-7	$5 \cdot 9$	0.74	50	0.00	6-7	13.9	0.90	20	F
24-8	6.1	0.77	50	0.00	20-4	14.0	0.89	50	1.03
45-6	6.1	0.74	50	$0 \cdot 13$	35-4	14.0	0.78	50	$2 \cdot 56$
10-8	6.4	0.87	50	0.22	35-5	14.2	0.81	50	$\stackrel{3}{ } 15$
24-6	6.4	0.76	50	$0 \cdot 12$	10-8	14.5	0.86	18	F
58-7	7.0	$0 \cdot 83$	50	$0 \cdot 22$	16-7	14.6	0.86	40	F
27-7	7.2	$0 \cdot 63$	50	0.00	53-8	14.7	0.94	38	F
10-6	$7 \cdot 4$	0.84	50	0.30	53-9	$14 \cdot 8$	0.93	50	4.25
10-7	$7 \cdot 4$	0.87	50	0.27	39-7	14.8	0.86	50	$0 \cdot 00$
18-10	7.5	0.84	50	$0 \cdot 14$	53-10	15.0	0.92	50	$6 \cdot 14$
58-6	7.5	0.86	50	$0 \cdot 31$	61-6	15.1	$0 \cdot 83$	50	3.21
21-7	$7 \cdot 6$	0.86	50	$0 \cdot 40$	$40-8$	15.4	0.87	50	3.95
1-8	$7 \cdot 7$	0.77	50	$0 \cdot 08$	40-7	15.5	$0 \cdot 87$	50	0.58
58-8	$7 \cdot 8$	0.83	50	0.36	48-8	15.7	0.95	11	F
60-3	$7 \cdot 8$	0.69	50	$0 \cdot 20$	20-5	$15 \cdot 8$	0.86	50	$1 \cdot 37$
13-7	8.1	0.79 0.70	50 50	0.28 0.00	5-7	16.2 16.3	${ }_{0}^{0.94}$	29	
42-6	$8 \cdot 2$	0.70	50	$0 \cdot 00$	7-7	16.3	0.91	18	F
3-7	$8 \cdot 9$	0.87	50	$0 \cdot 70$	5-8	16.5	0.93	50	14.90
3-10	$9 \cdot 1$	0.92	50	0.72	5-6	16.8	0.92	40	F
27-8	$9 \cdot 2$	0.73	50	$0 \cdot 00$	33-10	16.8	0.96	8	F
18-11	$9 \cdot 2$	0.85	50	0.32	40-6	16.9	0.86	50	$1 \cdot 38$
44.7	$9 \cdot 2$	0.82	50	$0 \cdot 30$	9-6	17.0	$0 \cdot 83$	50	0.51
21-6	$9 \cdot 3$	0.87	50	0.84	33-6	17.0	$0 \cdot 93$	15	F
3-6	$9 \cdot 4$	0.92	50	0.69	30-8	17.4	0.87	43	F
21-10	$9 \cdot 4$	0.91	50	$0 \cdot 68$	$7-9$	17.5	0.92	4	F
$60-1$	$9 \cdot 4$	0.74	50	0.15	45-10	17.5	$0 \cdot 89$	40	F
7-6	$9 \cdot 5$	$0 \cdot 86$	50	0.05	$61-4$	17.5	0.92	46	F
$36-9$ $31-6$	9.7 10.0	0.71 0.78	50 50	0.44 0.00	$45-9$ $61-5$	17.9 17.9	0.93 0.80	36 33	$\stackrel{\mathrm{F}}{\mathrm{F}}$
$31-6$ $60-2$	10.0 10.1	0.78 0.75	50 50 50	0.00 0.33	$61-5$ $30-6$	17.9 18.0	0.86 0.89	33 50	$\stackrel{\mathrm{F}}{1.52}$
13-8	$10 \cdot 3$	0.83	50	0.45	8-6	$18 \cdot 6$	0.93	23	F
51-6	10.4	0.80	50	0.22	38-6	$19 \cdot 6$	$0 \cdot 89$	50	$3 \cdot 19$
10-9	$10 \cdot 4$	0.86	46	F	28-7	$19 \cdot 6$	0.79	50	14.32
17-8	$10 \cdot 4$	$0 \cdot 84$	50	0.27	33-9	$19 \cdot 8$	0.94		F
51-8	10.5	0.76	50	0.00	38-7	$20 \cdot 1$	0.89	44	F
44-8	10.5	0.89	50	0.41	47-6	$20 \cdot 3$	$0 \cdot 93$	50	$3 \cdot 40$
36-7	10.5	0.73	50	$0 \cdot 64$	42-7	$20 \cdot 3$	$0 \cdot 87$	50	${ }^{6.58}$
13-6	$10 \cdot 6$	0.86	50	0.39	$42-8$	$20 \cdot 6$	0.90	13	F
- $\begin{gathered}17-6 \\ 36-6\end{gathered}$	10.6 10.6	0.87 0.77	50 50	0.36 0.56	$47-8$ $38-8$	20.7 20.8	0.92 0.88	50 30	${ }_{\text {F }}^{2 \cdot 51}$
$36-6$ $1-6$	10.6 10.7	0.77 0.85	50 50	0.56 0.17	$38-8$ $47-7$	20.8 21.5	0.88 0.91	30 50	F ${ }_{2}$
41-7	10.7	0.75	50	$0 \cdot 26$	32-7	21.7	0.74	50	$1 \cdot 85$
19-10	10.7	0.88	49	F	28-6	21.8	0.77	30°	F
27-6	$10 \cdot 9$	0.74	50	0.00	32-6	21.8	0.78	50	$1 \cdot 34$
41-6	11.0	0.77	50	$0 \cdot 18$	8-8	$22 \cdot 0$	0.93	50	$5 \cdot 50$
31-8	11.0	$0 \cdot 80$	50	0.15	8-7	22.8	0.94	29	F
50-6	11.2	0.83	50	$0 \cdot 44$	32-10	$23 \cdot 1$	0.75	50	$1 \cdot 26$
11-7	$11 \cdot 4$	0.83	50	$4 \cdot 34$	59-10	23.5	0.92	13	F
9-7	11.5	0.83	50	$2 \cdot 29$	$59-6$	$23 \cdot 8$	0.91	22	F
17-7	11.5	0.88	50	$0 \cdot 25$	$59-8$	24.0	0.90	15.	F
1-7	11.6	$0 \cdot 86$	50	$0 \cdot 15$	$20-6$	$24 \cdot 1$	0.92	50	9.88
44-6	11.6	0.88	50	0.68	$26-7$	$24 \cdot 3$	0.93	50	18.75
12-6	11.9	$0 \cdot 90$	50	0.78	$20-8$	24.7	0.92	25	F
$4-7$ $12-8$	$12 \cdot 2$	0.87	50	$0 \cdot 27$	28-8	$25 \cdot 9$	0.79	35	F
12-8	$12 \cdot 2$	0.88	50	14.7	34-7	$26 \cdot 1$	0.92	22	F
31-7	12.2	0.81	50	0.21	2-6	26.5	0.72	50	1.85
41-8	12.4	$0 \cdot 80$	50	$0 \cdot 13$	2-7	$26 \cdot 9$	0.76	50	$2 \cdot 74$
54-8	$12 \cdot 5$	0.87	50	0.68	2-8	26.9	0.76	8	$\stackrel{\mathrm{F}}{\mathrm{F}}$
51-7	12.6	$0 \cdot 80$	50	0.37	34-8	29.0	0.91	24	$\stackrel{F}{\text { F }}$
23-6	12.7	0.90	50	0.40	34-10	$29 \cdot 1$	0.91	40	F

Note. Findicates failure. Tile showing a loss in weight of 1 per cent or moro also indicates failure.

A. Compressive strength: web failure

B. Compressive strength: failure due to shear.

Specimens of tile before freezing and thawing tests.

A. Specimens of tile after freezing and thawing tests: showing examples of failures.

B. Specimens of tile after freezing and thawing tests: showing examples of failures.

622(21) 822,c.1 C212r
SER
Canada, mines branch reports.
822, physical properties of
Canadian structural tile,
1947, c. 1.

[^0]: ${ }^{1}$ McBurney, J. W.: "The Relation of Freezing and Thawing Resistance to Physical Properties of Clay and Shale Building Brick'; Prec. A.S.T.M., vol. 35, Pt. I, p. 247 (1935).

 Butterworth, B.: "The Correlation of Laboratory Tests with the Weathering Properties of Brick'; Trans. Ceram. Soc. (England), vol. 33, p. 405 (Nov. 1934).

 MeBurnoy, J. W., and J. C. Richmend: "Strength, Absorption and Resistance to Laboratory Freezing and Thawing of Building Bricks Produced in the United States'; Building Materials aud Structures Report, BMS 60. (Nov. 1940.)

