Frontispiece

Domestic furnace and auxiliary test apparatus. (Water meter; and radiation, expansion, and water service tanks not shown.)

A. Domestic hot-water boiler. B. Ordinary ash-pit. C. False ash-pit into which fuel is dumped for quenching. D₁, D₂. Flow and return headers. E. Thermograph recording flow and return water temperatures. G. Flue-pipe entering chimney. H₁, H₂. Draught adjustments on butterfly and flap dampers in flue-pipe.

I. Draught recorder measuring over-fire draught. J₁, J₂. Draught gauges measuring over-fire and flue-pipe draughts. K. Flue gas sampling and analysing equipment. L₁, L₂. Recording pyrometers measuring temperature differential of cooling water and flue gas temperatures. M. Fire tool rack. N. Wheel-type gas burner for igniting fuels. O. Gas meter measuring gas supplied for ignition. P. Hydrograph recording indoor humidity. Q. Thermograph recording indoor and outdoor temperatures.

CANADA DEPARTMENT OF MINES AND RESOURCES

MINES AND GEOLOGY BRANCH BUREAU OF MINES

COMPARATIVE TESTS OF VARIOUS FUELS WHEN BURNED IN A DOMESTIC HOT-WATER BOILER

1935 to 1938

BY C. E. Baltzer and E. S. Malloch

J. O. PATENAUDE, I.S.O.
PRINTER TO THE KING'S MOST EXCELLENT MAJESTY
1940

Price, 25 cents

No. 802

MINERAL DEVELOPMENT SECTOR
LIBRARY
MAR 1075
MAR 1075

CONTENTS

	*	PAGE
Preface		jv
	on of the experimental heating plant	1
Method o	f conducting tests	3
Description	on of fuels tested	4
Results of	tests	13
	n of results	
"Star	ndardizing" tests with American anthracite	14
	racite coals and cokes	15
	rican and Eastern Canada semi-bituminous and bituminous coals	16
West	ern Canada bituminous and sub-bituminous coals, lignite, and briquetted	
	uels	16
Gene	ral discussion	17
Comparis	on of economic results of old and new series of tests	18
	•	
	ILLUSTRATIONS	
•	Photograph	
Plate I.	Domestic furnace and auxiliary test apparatusFront	ispiece
	Drawings	
Figure 1.	General arrangement of experimental domestic heating plant	2
Figure 2.	Illustrating procedure for handling "bulk" samples previous to burning test.	6
Figure 3.	Illustrating procedure for handling "test" samples during burning test	7

PREFACE

A short time after the termination of the Great War, the introduction into Central Canada of substitute domestic fuels of domestic and foreign origin to replace American anthracite, on which it was believed at that time an embargo would be placed, created the necessity for conducting a series of burning tests in order to determine the comparative value of these fuels with a standard fuel when burned in a domestic hot-water boiler.

Accordingly, during the years 1923–26, one hundred and twenty-three comparative tests were carried out—termed in this report as being the 1925 series. The behaviour of these fuels when burned in a standard domestic type hot-water heater was compared with that of a typical sample of American anthracite coal, which served as the standard fuel since American anthracite was then used almost entirely for domestic heating in the chief fuel-consuming centre of Canada—the Provinces of Ontario and Quebec.

Since the publication of Mines Branch Report No. 705, which contained the results of these tests, a considerable amount of new data has been secured as a result of tests and related research work which has been carried out on many additional fuels. The present publication contains the results which have been obtained during the course of the testing of these fuels. This series of tests is referred to in this report as the 1935 series and were carried out at intervals over an extended period of time mainly for the purpose of assisting various fuel producing and consuming interests which were able to make good use of the data developed by actual burning tests conducted along the lines outlined in the previously mentioned report. The results of these latter tests in the form of individual reports, each dealing with the test of the particular fuel concerned, were distributed as soon as completed to the parties interested. No attempt, however, was made to combine the results as a whole in a special publication for release to the public.

In this report a comprehensive summary of all the burning tests made in these laboratories on domestic coals and domestic coal substitutes is presented. Therefore, it supersedes Report No. 705 except in so far as a complete description of equipment, method of tests, and experimental technique, are concerned.

The determining factor in the selection and arrangement of the matter to be included has been the ultimate usefulness of the data to the fuel producer and consumer and since the original report contained lengthy descriptions of the equipment, methods of test, and experimental technique employed, reference to this has been eliminated or limited only to such description as is necessary for an intelligent understanding of the changes made. The major portion of the report is, therefore, devoted to tabulation of detailed data and results with explanatory matter pertaining thereto.

The report is concluded with a summarized comparison of the economic results obtained for both the 1925 and 1935 series of tests which, it is considered, will be of major interest to the lay reader.

The tests were carried out at Ottawa in the Fuel Research Laboratories of the Division of Fuels of the Bureau of Mines, Department of Mines and Resources, as part of the regular investigational work of that Division. The testing of the fuels, calculation of results, and preparation of the report were carried out by the regular staff of the Mechanical Engineering Section assisted by other members of the Division of Fuels. Messrs. J. R. Kirkconnell and H. P. Hudson acted in the capacity of observers; with W. H. Harper, P. B. Seely, and J. W. Custeau in the capacity of senior laboratory assistants.

Acknowledgment is due to the Solid Fuel Analysis Section for the carrying out of the analyses of the many fuel and refuse samples collected during the investigation.

B. F. HAANEL, Chief, Division of Fuels.

OTTAWA, December 6, 1938.

Comparative Tests of Various Fuels When Burned in a Domestic Hot-water Boiler, 1935 to 1938

DESCRIPTION OF THE EXPERIMENTAL HEATING PLANT

For the purpose of this report a lengthy description of the experimental equipment employed for the new (1935) series of tests would be out of place inasmuch as the installation was essentially the same as that described in Bureau of Mines Report No. 705 which outlined the old (1925) series of tests in detail. However, it is in order at this point to briefly describe the salient features of the apparatus in order to give the reader some idea of the layout without reference to the old report.

The heating plant employed for these tests consisted of a round hotwater boiler; a radiation tank and cooling-water system; the usual equipment of scales for weighing fuel and refuse; thermometers; pyrometers; draught gauges; gas sampling and analysing apparatus; and water meter.

Figure 1 shows the general arrangement of the equipment, piping, etc., and Plate I (Frontispiece) illustrates the furnace and auxiliary test apparatus located on the main floor of the laboratory. The round hot-water boiler used was of conventional design, similar in all respects to such as are installed in an average-size house of eight or nine rooms, having a nominal grate diameter of 25 inches, a grate area of 3.4 square feet, and a heating surface of 32.4 square feet. The radiation tank was an insulated box, $6\frac{1}{2}$ feet by 3 feet by $2\frac{1}{2}$ feet, containing 81 square feet of wall type radiation connected to the circulating water system of the furnace. The heat was carried away from the boiler by means of the circulating water, which in turn gave up its heat to the cooling water which flowed through the radiation tank, and the product of the weight of the cooling water and the increase of its temperature in passing through the radiation tank gave the useful heat output of the boiler or furnace. The weight of the cooling water was measured by means of an accurately calibrated water meter, and the increase in temperature was determined by carefully calibrated thermometers as well as a recording pyrograph. All fuel charged to the furnace was weighed and, knowing its calorific value, this gave the heat input, and with the heat output the thermal efficiency could be calculated directly.

The only material difference between the set-up employed for the new tests and that used for the old tests, was the addition of a false or secondary ash-pit to the furnace, and the use of a removable ash-pan into which the hot residual fire remaining on the grate at the close of any test may be dumped for dry quenching with carbon dioxide gas. This procedure provided better control of stopping conditions and gave more consistent

results than were formerly obtained.

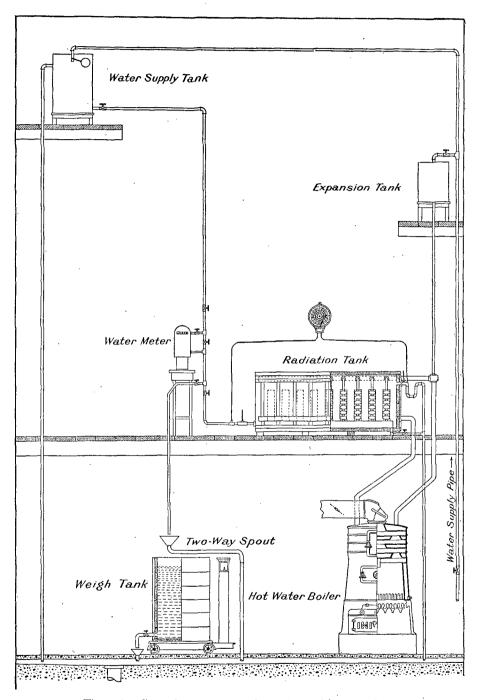


Figure 1. General arrangement of experimental heating plant.

METHOD OF CONDUCTING TESTS

Although the same general practice was followed in making the new series as in the old series, the experience previously obtained served as a basis for improving the operating technique as well as the starting and stopping method. Moreover, changes of a minor nature were necessary for the new series of tests inasmuch as these tests were not made as a connected whole as were the old, but at intervals over an extended period of time as part of several investigations made for various purposes. However, such changes as were made readily supplement the old methods so that a brief outline at this point is all that is necessary to elucidate the new method to the reader. Such minor departures from the standard methods described below as were made for certain tests on particular fuels are amplified in the section of this report dealing with "Discussion of Results".

The same general method of test was used for each trial so that the results are relatively comparable. From Tables A to D (in pocket) it will be noted that the complete or "standard" trial had a duration of 120 hours. This period was divided into two parts: the 4-day "observation" test (first 96 hours of trial), and the one-day "efficiency" test (last 24 hours of trial). Each of these periods was complete in itself and hence the "standard" trial served the dual purpose of providing general burning data over an extended period of observation, and precise efficiency and combustion data over a shorter interval. Each 24 hours of the 120-hour "standard" trial was considered as a complete cycle during which three firings were made, viz. at 9 a.m., 6 p.m., and 11 p.m. The rate of burning between these times was varied as follows: 9 hours at an average useful heat release of 66,000 B.T.U. per hour; 5 hours at 99,000 B.T.U. per hour; and 10 hours at 55,000 B.T.U. per hour; thus giving an average heat release for each 24-hour cycle and the trial as a whole of approximately 68,000 B.T.U. per hour. This roughly corresponds to a constant combustion rate of one-half boiler capacity or in other terms a consumption of approximately 3 tons of anthracite coal in a 30-day period which is about the maximum consumption to be expected for any house this particular furnace would heat during the coldest month of the year.

During the tests, except for taking the necessary observations, the work of furnace attendance was reduced to a minimum and chiefly consisted of removing clinker, firing fresh fuel, and resetting dampers at the end of each fire period. The grates were shaken as little as possible and only sufficiently to free the excess of accumulated ash which tended to interfere with combustion conditions. In most respects the tests were conducted along similar lines to those reported in Bureau of Mines Report No. 705 previously mentioned, the only marked difference needing further comment being in the methods employed to ignite and quench the fuel at the start and end of the tests respectively.

A preliminary fire was built in the furnace the evening prior to the start of the test, in order to heat up the furnace and water in the system to ordinary operating temperatures. At the end of this period—(approximately at 8.45 a.m. the next morning)—the fire was drawn, the ash-pit

and furnace were thoroughly cleaned and the installation in general was made ready for the ensuing test which normally began 15 minutes later.

In starting the trials a fresh charge of the raw fuel under test was placed directly on the bare grate and ignited by means of a gas (wheel type) burner; 100 cubic feet of city gas having a calorific value of 500 B.T.U. per cubic foot were burned to ensure ignition. After ignition was secured and the fire was burning briskly a measured fuel charge was fired and the "observation" part of the test continued for 96 hours. At the conclusion of this 4-day period the "observation" test was quickly ended and the "efficiency" part of the test was immediately started in the same manner as outlined above and continued for the ensuing 24 hours after which the test was ended in the manner described below.

In ending the tests, the residual fire (the whole contents of the firepot) remaining at the end of both the "observation" and "efficiency" parts of the test was quickly and completely dumped, drawn, and quenched with dry carbon dioxide gas. The fuel value of the quenched residual fire was then determined and subtracted from the heat value of the fuel fired during the respective parts of each test.

In addition to noting the characteristics of the refuse, i.e. ash, clinker, and unburned fuel, obtained from the "observation" part of the test, a screen examination was made of the quantities obtained during and after this part of the test. This examination was made on three separate fractions, the first of which consisted wholly of clinker which was removed through the fire-door of the furnace; the second fraction consisted of ash, small pieces of clinker, and unburned fuel which normally dropped or were shaken through the grate during the course of test; and the third fraction consisted of the residual fire (ash, clinker, and partly burned fuel) which was dumped at the end of test, i.e. after the expiration of 96 hours of burning.

The refuse, in the same three fractions, obtained from the "efficiency" part of the test was sent to the Chemical Analysis Section of the Division where the various fractions were carefully and representatively sampled and analysed as was also a representative sample taken from the raw fuel fired during the test.

Careful note was made of the quantities of gas consumed during the ignition period of the fuel charged during the whole test, and of the quantity, composition, and sensible heat residue of the residual fire dumped at the trial end, and these factors were taken into account when reckoning the quantity of fuel actually burned during the test.

DESCRIPTION OF FUELS TESTED

In all, forty-five different samples of fuel, ranging in rank from high-grade anthracite to low-grade lignite and peat were tested in the experimental heating plant. These samples, originating from various sources in Eurasia, the United States of America, and Eastern, Central, and Western Canada, were either secured by purchase from retail coal dealers in Ottawa, or from co-operating agencies who furnished samples gratis

so that they might have a report on the relative merit of the samples so provided for domestic heating purposes. In arranging for the samples special effort was made to ensure that they would be representative of the fuel to be tested and the samples so secured were what the general public might expect to receive from the various producing sources.

Table I lists and classifies the fuels that were tested and also states where and from whom they were obtained, the trade size under which they were sold, the quantity received, the date the fuels were received in storage, and finally the number of tests made on each shipment.

Immediately on receipt the samples were unloaded into individual bins in a covered storage shed. Either at this time or sometime later, as time permitted, but before any test was made, a representative (bulk) sample was taken from the total quantity received into storage from which the physical and chemical properties of the fuel were determined. The method of handling the "bulk" samples is illustrated in Figure 2. Table II lists the fuels in the same order as in Table I and gives the proximate and ultimate analyses and other relative information regarding the respective fuels as they were received in Ottawa.

Two to three days preceding test of any fuel, the fuel was withdrawn from storage and if not already done was sampled in accordance with the procedure illustrated in Figure 2, after which a sufficient quantity of the fuel was placed in a conical pile in a sheltered position on the laboratory floor, adjacent to the furnace. The raw fuel for test was drawn from this pile as needed. Fuel was charged to the fire in specified amounts at regular times, usually three times in 24 hours. Each time fuel was fired a small sample, 3 to 5 pounds, was taken from the charge and placed in a covered container. Immediately after the test was concluded the contents of this container were sent to the chemical laboratory for analysis, calorific value determination, ash fusion temperatures, etc. The method of handling the "test" samples is illustrated in Figure 3, and the proximate and ultimate analyses and other relative information regarding the respective fuels as fired during test are given in Tables A to D, in pocket at end of this report.

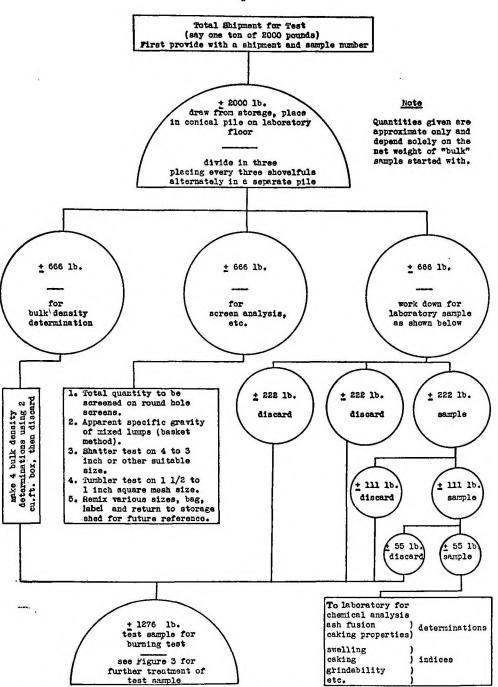


Figure 2. Illustrating procedure for handling "bulk" samples previous to burning test.

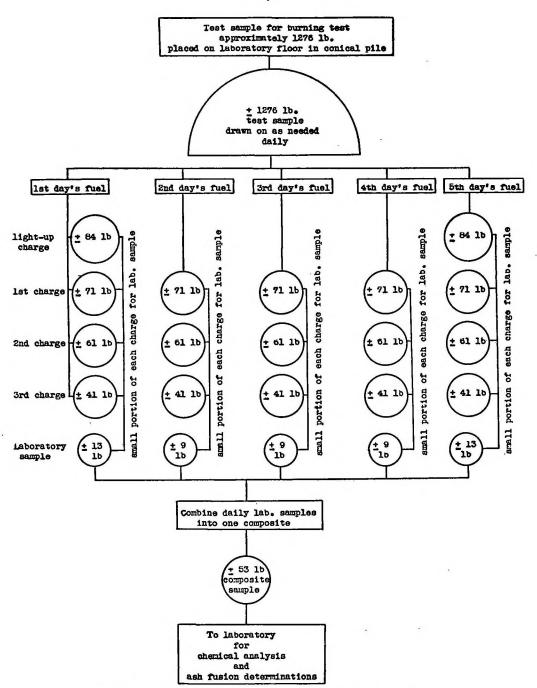


Figure 3. Illustrating procedure for handling "test" samples during burning test.

TABLE I

List of Fuels Tested¹

										
Shipment and Sample No.2	Kind of Fuel	Class	A.S.T.M.* sification by rank (of coals) Group	Origin	Obtained from	Trade size	Quantity received tons	Date received	Number of tests made	
3-34 24-36 2-37 17-36 16-36 1-35 11-35 12-35 27-31 9-35	Anthracite Anthracite Anthracite Coke Coke Coke Coke Coke Coke Coke Cok	Anthracitic Anthracitic Anthracitic (B) (B) (B) (B) (B) (C) (Low	Anthracite Semi-anthracite Anthracite y-product coke) y-product coke) y-product coke) y-product coke) y-product coke) etroleum coke) etemperature coke) temperature coke)	U.S.A.—Penna. U.K.—Wales French Indo-China Western Ontario Western Ontario Quebec Eastern Ontario Castern Ontario Ontario Nova Scotia Nova Scotia	Ottawa fuel dealer Ottawa fuel dealer C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. Ottawa fuel dealer Ottawa fuel dealer Ottawa fuel dealer Ottawa fuel dealer Onterio Oil Refinery F.R.L.—Experiment F.R.L.—Experiment	Stove Cobbles Stove Range Nut Stove Stove Nut Lump Washed lump Unwashed lump	6 2 1 1 1 1 1 1 1 1 1 1	23/ 9/36 23/ 9/36	Thirteen Three One One One One Two Two One	
4-35 15-36 17-34 16-34 7-35 6-34 12-34 8-34 10-34 11-34 2-38 6-35 3-38	Semi'-bituminous Semi-bituminous Bituminous	Bituminous	Low-volatile Low-volatile High-volatile A High-volatile A High-volatile A High-volatile A High-volatile B High-volatile B Medium-volatile B High-volatile B High-volatile B High-volatile B High-volatile B High-volatile B High-volatile C High-volatile C High-volatile C	U.S.A.—Penna. U.S.A.—W. Va. U.S.A.—Penna. U.S.A.—Ohio Nova Scotia	C.N.R.—Fuel Dept. C.N.R.—Fuel Dept.	Lump	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	24/ 4/35 23/ 9/36 1/12/34 7/ 5/35 23/10/34 23/10/34 23/10/34 23/10/34 23/10/34 23/10/34 23/10/34 26/ 8/37 7/ 5/35 26/ 8/37 23/10/34	One	
14-34 15-34 1A-37 22-36 13-35 23-36 21-36 18-36	Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous	Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous	High-volatile A High-volatile A Medium-volatile Medium-volatile High-volatile C High-volatile B High-volatile C High-volatile C	British Columbia British Columbia Alberta Alberta Alberta Alberta Alberta Alberta	C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. Ottowa fuel dealer C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. C.N.R.—Fuel Dept.	Lump Lump Lump Lump Lump Mine-run Lump Lump	1 1 2 1 2 2 2 2	17/12/34 17/12/34 10/5/37 9/10/36 30/10/35 9/10/36 9/10/36 9/10/36	One One One One One One One One One	

28-36 20-36 19-36 10-31 5-34 14-35 1-38 1-37 5-37 4-34	Sub-bituminous Sub-bituminous Lignite Lignite Briquetted coal Briquetted coal Briquetted coal Briquetted coal Briquetted coal	Sub-bituminous Sub-bituminous B Sub-bituminous B Lignitic Lignite Lignite Lignite Lignite Lignite Lignite (Made from bituminous fines) (Made from bituminous fines) (Made from bituminous fines) (Made from bituminous fines) (Made from charred lignite fines) (Made from peat)	Alberta Alberta Saskatchewan Ontario Alberta U.S.A.—Penna. Alberta Alberta Saskatchewan Imported	C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. Ontario Dept. of Mines Ottawa fuel dealer Ottawa fuel dealer C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. Dominion Fuel Board	Egg Lump Lump Mine-run Stove briquettes Stove briquettes Stove briquettes Stove briquettes Stove briquettes	2 2 2 30 1 1 2 2 2	29/12/36 One 9/10/36 One 9/10/36 One 29/ 7/31 One 19/ 5/34 One 6/11/35 One 3/ 2/38 One 10/ 3/37 One 13/ 12/37 One 13/ 8/34 Two	
---	---	--	---	--	---	--	---	--

¹ Arranged in the same order in which the respective fuels are tabulated in Tables A to D (in pocket).

* These numbers were assigned to the fuel samples as they were received in storage and have been retained throughout this report for convenient reference. They have no other significance.

American Society for Testing Materials.

4 Ton of 2,000 pounds.

5 Canadian National Railways.

• Fuel Research Laboratories-Bureau of Mines. For experiment referred to see Bureau of Mines Report No. 721-1.

7 Also known as low-volatile or smokeless coal.

TABLE II

Proximate and Ultimate Analyses, etc.¹, of a Representative Sample of the Total Bulk Shipment of Each Fuel,
Taken either at Time of Unloading into Bins in Covered Storage Shed or Immediately Preceding Test

Ship-			P	roximat	e Analysi	8		Ul	timate .	Analysi	9		Calorific	Caking	A	sh fusibil	ity
ment and ample No.*	Date sampled	Moisture condition of sample	Moist- ure %	Ash %	Volatile matter %	Fixed carbon	Carbon %	Hydro- gen %	Ash %	Sul- phur %	Nitro- gen %	Oxy- gen %	value B.T.U./lb. gross	properties as judged by "coke- button"	Initial temp. °F.	Soften- ing temp. °F.	Fluid temp. °F.
8-34	13/ 8/34	As received.	2.8	9·2 9·4	5·2 5·4	82·8 85·2	82·5 84·8	2·8 2·6	9·2 9·4	0.9	0·9 1·0	3·7 1·3	13,250 13,620	Non-caking	2710	2865	2910
24-36	2/11/36	As received.	2.2	6·4 6·5	8·3 8·5	83·1 85·0	84 · 8 86 · 8	3·3 3·1	6·4 6·5	1·2 1·2	1:1 1:1	3·2 1·3	13,870) 14,190∫	Non-caking	2040	2215	2540
2–37	22/ 6/37	As received.	4.0	4·5 4·7	2·9 3·0	88-6 92-3	87-6 91-3	2·0 1·6	4·5 4·7	0·8 0·8	0·6	4·5 1·0	13,180) 13,740	Non-caking	2000	2170	2440
17-36	1/10/36	As received.	4.9	9·3 9·7	1·3 1·4	84·5 88·9	83·2 87·5	1·3 0·8	9·3 9·7	0·7 0·8	1·0 1·1	4·5 0·1	12,090 12,710	Non-caking	2500	2650	2750
16-36	30/ 9/36	As received.	4.4	8.9	1·2 1·3	85·5 89·4	83·9 87·8	1·3 0·8	8·9 9·3	0·7 0·8	0.9	4·3 0·4	12,170) 12,740}	Non-caking	2460	2650	2750
1-35	28/ 2/35	As received.	0-5	7·4 7·4	1.1 1.1	91·0 91·5	89·7 90·1	0·4 0·4	7·4 7·4	0.9	1·0 1·0	0·6 0·2	12,670) 12,730}	Non-caking	2180	2530	2650
11-35	11/10/35	As received.	3.4	9·8 10·2	1.2 1.2	85·6 88·6	83·8 86·7	0·9 0·6	9·8 10·2	0·7 0·7	1·3 1·3	3·5 0·5	12,170 12,590}	Non-caking	2670	2780	2900
12–35	23/10/35	As received.	7.7	9·7 10·5	1·3 1·4	81·3 88·1	80·3 86·9	1·2 0·4	9·7 10·5	0·7 0·7	1·0 1·1	7·1 0·4	11,760 12,740}	Non-caking	2660	2770	2890
27-31	30/ 9/35	As received.	1.0	0·6 0·6	9.8	88·6 89·5	90·3 91·2	3·7 3·7	0.6 0.6	1.6 1.6	1.5 1.5	2·3 1·4	15,260 15,420}	Non-caking			
9-35	23/ 9/35	As received.	3.6	8·7 9·1	9.0	78·7 81·6	79·2 82·2	2·8 2·4	8·7 9·1	2·0 2·1	1.5 1.5	5·8 2·7	12,770 13,250	Non-caking	1960	2070	2210
10–35	25/ 9/35	As received.	4-1	10·7 11·2	8·4 8·7	76·8 80·1	78 · 2 81 · 5	2·6 2·2	10·7 11·2	2·3 2·4	1·4 1·5	4·8 1·2	12,450 12,980	Non-caking	1900	2020	2150
4-35	24/ 4/35	As received.		9·5 9·5	15·9 16·1	73·9 74·4	80·9 81·4	4·3 4·3	9·5 9·5	1.5	1·3 1·4	2·5 1·9	14,190 14,280	Good	2730	2860	2860+
15-36	25/ 9/36		0.9	10.8	15.7	72·6 73·3	80·5 81·2	4·2 4·1	10·8 10·9	0.5	1.2	2·8 2·1	13,760	Good	2330	2300	2350
17-34	3/ 4/35	As received Dry	1.7	10·9 8·7 8·9	15·8 32·3 32·8	57·3 58·3	77·1 78·5	5.2	8·7 8·9	1.4	1.5	6·1 4·8	13,920	Good	2560	2650	2740

_

16–34	25/ 8/35	As received.	2.5	8.0	40-5	49·0 50·2	72·3 74·1	5·3 5·2	8·0 8·2	4.0	1.4	9.0	18,110 13,450	Good	1900	2020	2040
7–85	25/ 5/85	As received.	2.2	4·9 5·0	38·3 39·1	54·6 55·9	78·4 80·1	5·8 5·7	4·9 5·0	2·2 2·2	1·7 1·8	7·0 5·2	14,080 14,400}	Good	1940	2020	2205
6-34	3/ 1/35	As received.	1.5	10·6 10·7	31·7 32·2	56·2 57·1	74·8 76·0	5·0 4·9	10·6 10·7	4·6 4·7	1·3 1·4	3·7 2·3	13,500 13,710	Good	1900	1980	2080
12-34	20/ 2/35	As received.	1.9	9·7 9·9	30·5 31·1	57·9 59·0	75·8 77·3	5·1 4·9	9·7 9·9	1·7 1·7	1.9 2.0	5·8 4·2	13,520 13,780	Good	2100	2230	2365
8-34	16/ 1/35	As received.	4.3	9.5	33·7 35·2	52·5 54·9	69·6 72·7	4.9	9·5 9·9	4·9 5·1	1·3 1·4	9·8 6·2	12,730 13,300	Good	1950	2060	2160
10-34	7/ 2/35	As received.	1.9	16·8 17·2	24 · 9 25 · 4	56·4 57·4	70·1 71·4	4.5	16·8 17·2	1.0 1.0	1.9 1.9	5·7 4·1	12,390) 12,620}	Good	2200	2430	2550
9-34	23/ 1/35	As received.	1.6	16·9 17·2	28·4 28·9	53·1 53·9	70·8 71·9	4·7 4·6	16·9 17·2	0·7 0·7	2·0 2·0	4.9 3.6	12,620 12,810	Good	2270	2530	2570
7-34	9/ 1/35	As received.	8.9	14·5 15·0	34·0 35·4	47·6 49·6	64 · 9 67 · 5	5·0 4·7	14·8 15·0	7·3 7·6	1·3 1·4	7·0 8·8	11,860) 12,850}	Fair	1910	2060	2160
11-34	13/ 2/35	As received.	2.7	16·7 17·2	36·1 37·1	44·5 45·7	63·7 65·4	4.7	16·7 17·2	6·4 6·6	1.9 1.9	6.6	11,680 11,990}	Fair	1920	1990	2010
2-38	26/ 9/38	{As received. Dry	4-3	13·9 14·5	29·3 30·6	52·5 54·9	68·2 71·2	4·8 4·5	13·9 14·5	1·2 1·2	1·8 1·9	10·1 6·7	11,980) 12,510}	Poor	2250	2590	2680
6–35	25/ 5/35	As received.	5-7	12·2 12·9	37·5 39·8	44·6 47·3	62·4 66·2	5·2 4·8	12·2 12·9	7·8 8·3	1·2 1·3	11·2 6·5	11,220 11,900}	Fair	2005	2100	2240
3–38	13/10/38	As received.	4.7	17·7 18·6	33 · 6 35 · 3	44·0 46·1	58·7 61·5	4.7	17·7 18·6	8·4 8·8	1·3 1·4	9·2 5·3	10,490 11,000	Poor	1880	2000	2080
13-34	27/ 2/35	As received.	1.0	19·2 19·3	30·7 31·1	49·1 49·6	65·7 66·4	4·3 4·3	19·2 19·3	7·5 7·5	0·8 0·8	2·5 1·7	12,100 12,230	Good	1950	2010	2140
14-34	13/ 3/35	As received.	3.6	11·3 11·7	27·4 28·4	57·7 59·8	73·7 76·5	4·7 4·5	11·3 11·7	0·8 0·8	1·1 1·2	8·4 5·3	12,780 13,250	Fair	2300	2390	2520
15–34	20/ 3/35	As received.	3-1	12·8 13·2	39·4 40·7	44·7 46·1	68·3 70·5	5·2 4·9	12·8 13·2	1·3 1·4	1.4	11.0 8.6	12,190 12,580	Fair	2150	2180	2210
1A-37	10/ 5/37	As received.	0.9	12·6 12·7	23·7 23·9	62·8 63·4	76·6 77·3	4.5	12·6 12·7	0·2 0·2	1·1 1·1	5·0 4·3	13,140 13,262	Fair	2330	2410	2450
22-36	21/10/36	As received.	1.3	8·4 8·5	28·4 28·8	61·9 62·7	79·6 80·7	4.9 4.8	8·4 8·5	0·3	1·2 1·2	5·6 4·5	13,830 14,020	Good	2280	2365	2450
18-35		As received.	8-8	8-0	33·8 37·1	49·4 54·1	65·9 72·2	5·0 4·4	8·0 8·8	0.8	1.0 1.1	19·8 13·2	11,250) 12,820)	Slightly agglomerating.	2200	2255	2270

¹ Arranged in the same order in which the respective fuels are tabulated in Tables A to D (in pocket).

² These numbers were assigned to the fuel samples as they were received in storage and have been retained throughout this report for convenient reference. They have no other significance.

TABLE II—Concluded

Proximate and Ultimate Analyses, etc., of a Representative Sample of the Total Bulk Shipment of Each Fuel,
Taken either at Time of Unloading into Bins in Covered Storage Shed or Immediately Preceding Test—Concluded

Ship-		Moisture	F	roximat	e Analysi	8		บเ	timate.	Analysi	8		Calorific	Caking	Aı	h fusibil	lity
ment and sample No.	Date sampled	condition of sample	Moist- ure . %	Ash %	Volatile matter %	Fixed car bon	Carbon	Hydro- gen %	Ash %	Sul- phur %	Nitro- gen %	Oxy- gen %	value B.T.U./lb. gross	properties as judged by "coke- button"	Initial temp. °F.	Soften- ing temp. °F.	Fluid temp. °F.
23-36	21/10/36	As received.	7.1	15·3 16·4	33·4 36·0	44·2 47·6	63·1 68·0	5·3 4·8	15·3 16·4	0·3 0·3	1·8 1·4	14·7 9·1	11,150 12,000}	Poor to fair	2205	2360	2440
21-36	20/10/38	As received.	9.0	13·5 14·8	33·8 37·2	43·7 48·0	59·9 65·9	4·9 4·3	13·5 14·8	0·2 0·2	0·7 0·7	20·8 14·1	10,290 11,300	Slightly agglomerating.	2055	2160	2200
18–36	13/10/36	As received.	7-7	17·1 18·6	31 · 8 34 · 4	43·4 47·0	58·8 63·6	4·7 4·1	17·1 18·6	0·3 0·4	0·8	18·3 12·4	9,880 10,700	Slightly agglomerating.	2100	2240	2375
28-36	4/ 1/37	As received.	16.1	10·5 12·6	31·1 37·0	42·3 50·4	55·9 66·6	8·7 4·6	10·5 12·6	0·6 0·7	1·1 1·3	26·2 14·2	9,450 11,260	Non-caking	2050	2150	2320
20-36	19/10/36	As received.	17-2	8·0 9·6	31 · 6 38 · 1	43·2 52·3	57·1 69·0	5·9 4·8	8·0 9·6	0·6 0·7	1·1 1·4	27·3 14·5	9,790) 11,830)	Non-caking	2235	2330	2430
19–36	15/10/36	As received.	83 - 3	5·4 8·2	26·8 40·3	34·3 51·5	44·8 67·3	6·8 4·5	5·4 8·2	0·5 0·8	0·8 1·2	41·7 18·0	7,570) 11,390	Non-caking	2315	2420	2480
10-31	Re- sampled	As received.	21.0	7·8 9·9	36·6 46·3	34·6 43·8	50·0 63·3	5·5 4·0	7·8 9·9	0·9 1·1	0·5 0·6	35·3 21·1	8,120 10,270	Non-caking	2040	2180	2260
5-34	20/10/38 No bulk s	ample taken.	See anal	ysis of te	st sample	, items 1	0, 11, 12,	15, and 1	6, colun	n 14, T	able D,	in pock	et.	* 1			1
14-35	6/11/35	As received.	1.7	9·4 9·5	11.7 11.9	77·2 78·6	81 · 6 83 · 1	3·6 3·5	9·4 9·5	0·7 0·7	1·0 1·0	3·7 2·2	13,500) 13,740	Non-caking	2100	2440	2550
1-38	14/ 9/88	As received.	1.0	12·4 12·5	19·6 19·8	67·0 67·7	78·2 79·0	4·5 4·4	12·4 12·5	0·6	1·0 1·1	3·3 2·4	13,610 13,760}	Poor	2850+	2850+	2850-
1-37	11/ 3/37	As received.	1.6	11·7 11·8	18·0 18·3	68·7 69·9	78·8 80·1	4·7 4·6	11·7 11·8	0·6 0·7	1·1 1·1	3·1 1·7	13,690 13,910	Poor to fair	2860+	2860+	2860-
5-37	21/ 9/38	As received.	6.8	12·4 13·3	17·3 18·6	63·5 68·1	73 · 1 78 · 4	3·3 2·7	12·4 13·3	0·7 0·8	1·1 1·2	9·4 3·6	11,750 12,600	Forms agglomerate.	1865	2005	2115
4-34	13/ 8/34	As received.	14-0	4·7 5·5	58·1 67·5	23·2 27·0	47·6 55·4	6·1 5·3	4·7 5·5	0·4 0·4	1.7 2.0	39·5 31·4	7,860 9,140	Non-caking			

Arranged in the same order in which the respective fuels are tabulated in Tables A to D (in pocket).

² These numbers were assigned to the fuel samples as they were received in storage and have been retained throughout this report for convenient reference. They have no other significance.

RESULTS OF TESTS

In all, one hundred and thirteen tests were made during the period under review, but only sixty-four of these are reported because some of the tests were made for specialized purposes having no direct connection with the work of the general investigation. The determining factor in selection of the tests included was the ultimate usefulness of the data to the general reader.

The detailed data and results of the sixty-four tests reported on are given in Tables A to D (in pocket at end of this report) which form the real basis of this report. These tables alone when considered with their respective headings and footnotes probably contain sufficient information for the use of the technical reader; but inasmuch as this report has been prepared for general distribution a summary and simplication of results as well as descriptive matter related thereto has been included for the lay reader.

It should be particularly noted that the arrangement of Tables A to D is in accordance with a definite plan of fuel grouping:

- Table A. Presents the results of the preliminary "standardizing" tests with stove-size American anthracite coal.
- Table B. Presents the results obtained for anthracite coals and cokes of various sorts.
- Table C. Presents the results obtained for American and Eastern Canada semi-bituminous and bituminous coals.
- Table D. Presents the results obtained for Western Canada bituminous and sub-bituminous coals, lignite, and briquetted fuels.

This grouping not only gives a logical arrangement for the discussion to follow but also permits orderly review of the results as a whole. Each table contains fifty-six main items of results for each test. Moreover, the items in each table are further arranged in three sections, the first of which (Section "A", items 1 to 20 inclusive) gives the general data regarding the tests as well as the physical and chemical characteristics of the fuels used; the second section (Section "B", items 21 to 35 (c) inclusive) gives the detailed results of the "observation" part of the tests; whereas the third and final section (Section "C", items 36 to 56 (a) inclusive) gives the detailed results of the "efficiency" part of the tests. Further, and in so far as possible, the fuels themselves, exclusive of the "standard" American anthracite, within the various groupings are arranged roughly in the order of decreasing calorific value. Those particularly interested in a detailed analysis of the results for the various tests will find that a careful study of the tabulated information given in these tables will bring out the many points of interest much better than any written description can.

Table III gives summarized results for all tests; eighteen of the most salient items being selected from Tables A to D for this summary. It will be noted that this table is divided into four parts, viz. A, B, C, and D, each corresponding to the similarly lettered Tables A to D previously mentioned. Likewise the item numbers in Table III are the same as the item numbers in the same main tables so that they may be readily referred to.

The first three columns of Table III list the distinguishing numbers for the respective trials; the fuel sample numbers, which have no other significance other than that they have been retained throughout this report simply for convenient reference; and give the kind of fuel tested for each trial. The remaining fifteen columns under their respective item numbers are as follows:

- Item No. 7. Gives the average combustion rate as a percentage of the rated capacity of the furnace and, except for the last eight tests of Part A, is quite uniform in the neighbourhood of 52 per cent for all tests.
- Items Nos. 10 (a), 10 (b), 12 (a), and 16 (b). Summarize the chemical properties of the fuels tested in respect to moisture, ash content, gross heating value, and ash fusion temperature, which roughly indicated the point at which the ash and refuse begins to soften.
- Item No. 40 (e). Gives the fuel used per therm (100,000 B.T.U.) of useful heat delivered and this expression is translated in,
- Item No. 40 (f). Fuel used to equal one ton of the "standard" American anthracite. Item 40 (f) is the most important from an economic standpoint since, when knowing the prices of the various fuels concerned, comparisons of cost may easily be made between them.
- Item No. 42 (b). Gives the total refuse recovered as a percentage of the fuel used and is indicative of the relative amounts of refuse to be handled.
- Items Nos. 44 (e) and 44 (f). Give, in B.T.U., the useful heat delivered per hour and per pound of fuel used. The former is a measure of the useful heat output of the boiler, whereas the latter is a measure of the quantity of useful heat obtained from each pound of fuel fired.
- Items Nos. 45 (a), 45 (b), 46, 47 (a), and 49 (b). These five items, in the order stated, give the average temperature of the flue gases and the average CO₂ content of these gases at the boiler outlet; the average excess air used during the combustion process; the average draught over the fire; and the overall thermal efficiency, i.e. the percentage that the total useful heat obtained from the boiler is of the total heat supplied to the boiler. These items are indicative of the combustion conditions prevailing during the various tests.

DISCUSSION OF RESULTS

"Standardizing" Tests with American Anthracite

Part A, Table III and Table A (in pocket) summarize and give complete results for tests made on a composite 6-ton sample of average stove-size American anthracite, during development of the "standard" method of test. The first three trials tabulated, namely trials Nos. DS-49, 50, and 51, were made first in accordance with procedure worked out for a "standard" method. While waiting for chemical analysis of fuel and refuse samples for these trials and preliminary to work-up of results on same,

eight short, 24-hour "efficiency" tests (last eight trials tabulated) were made at progressively increasing rates of combustion in order to determine if the efficiency result of tests made with the "standard" method would be comparable to the average efficiency of the boiler when worked over its entire capacity range. The average efficiency result for the first three trials was 66.6 per cent, whereas the average efficiency for the last eight trials was 66.3 per cent, a difference of only 0.3 per cent. It was, therefore, concluded that the "standard" method gave efficiency results within the practical limits of boiler operation and that the efficiencies so obtained could be safely used as a basis for comparison. Before proceeding with tests on other fuels, however, two more tests, trials Nos. DS-61 and 62 were made by the "standard" method in order to see if the results would be similar to those obtained for the first three tests previously Although the efficiencies obtained for the last two tests were a little lower than those obtained for the first three tests the results so closely approximated each other within the limits of experimental error. that the method was accepted as the basis for future testing. The results of the five tests made by the "standard" method were then averaged to give the results of the "Standard Trial" No. DS-X5 which is used throughout this report as the true basis for all comparisons.

Anthracite Coals and Cokes

Part B, Table III and Table B (in pocket) summarize and give complete results for tests made on various anthracite coals and cokes. For certain of these fuels, namely, Welsh and French Indo-China anthracites and petroleum coke due to their low ash content and peculiar behaviour in the fire, the furnace grate had to be modified in order to obtain consistent results comparable with the other fuels. Without this modification it was found that radiation losses through the grate and the loss due to unburned combustible matter in refuse were abnormally high with consequent abnormally low efficiencies. This, of course, indicated a definite weakness in the "standard" method of test for fuels of this nature and hence to this extent only was the "standard" procedure varied for the tests on these fuels. It should be clearly understood, however, that the modification applies only to test procedure and not to the use of these fuels, with probably the exception of petroleum coke, for ordinary domestic use. In ordinary use the time factor allows for accumulation of ash on the furnace grate and this accumulation properly regulated with shaking automatically gives positive combustion control for the average user.

The modification consisted of partially sealing off the grate from the burning fuel by the introduction of a foreign substance between the grate and the fuel being tested. The first scheme tried with Welsh anthracite (see trial No. DH-144, column 2, Table B) was the use of a known quantity and quality of broken clinker. A quantity of Welsh anthracite clinker was obtained from previous firings of the same fuel, this was broken into pieces $1\frac{1}{2}$ to $2\frac{1}{2}$ inches in size, and a definite quantity of which a representative sample had been previously analysed, was placed over the grate immediately before start of the test. The fuel undergoing test was then fired on top of the broken clinker and the test proceeded in accordance with the usual "standard" method of procedure. Although this first scheme

was quite successful it was very difficult to obtain the requisite quantity of clinker for the several tests on these fuels. The scheme was further complicated by the necessity of determining the quality of the several clinker samples in order to apply corrections in the calculations involved. For these reasons a second scheme was tried which consisted of the use of a definite quantity of inert broken firebrick, sized, and handled similarly to the broken clinker previously used. The second scheme gave consistent results equally as satisfactory as the first with none of the inert difficulties of handling and hence was adopted for the remaining trials, namely trials Nos. EDH—145, 146, 149, and EDS—93, columns 3, 4, 5, and 12 of Table B.

Inasmuch as the use of either broken clinker or crushed firebrick has disadvantages for continuous use as a grate protection by the home owner, a third scheme was tried for petroleum coke only. The ordinary coal grate is not at all suited to the use of this fuel, which has an extremely low ash content of about 1.5 per cent. Either the ordinary coal grate should be replaced with a new one of the pin-hole type, or a metal plate with closely spaced \(\frac{1}{4}\)-inch perforations should be laid over the existing grate. This was tried for trial No. EDS-94, column 11, Table B, and gave good results, quite similar to the results obtained with broken firebrick for the same fuel. See trial No. EDS-93, column 12, Table B.

American and Eastern Canada Semi-bituminous and Bituminous Coals

Part C, Table III and Table C (in pocket) summarize and give complete results for tests made on various American and Eastern Canada semi-bituminous and bituminous coals. The first test made, namely trial No. DS-65, column 7, Table C, with bituminous coal gave a lower efficiency result than was obtained for other bituminous coals of a like nature. For this reason this sample was retested. See trial No. EDS-77, column 8, Table C. The results of the two trials were in such close agreement that it is safe to assume that the results of the first trial are not in error and, therefore, are representative of the fuel tested.

Western Canada Bituminous and Sub-bituminous Coals, Lignite, and Briquetted Fuels

Part D, Table III and Table D (in pocket) summarize and give complete results for tests made on various Western Canada bituminous and sub-bituminous coals, lignite, and briquetted fuels. The only explanation necessary regarding these results is in regard to trial No. DH-202, column 13, Table D, which was made with Northern Ontario lignite. The only sample of this fuel available for test had been in storage for several years during which time it had become abnormally dry. The economic result for this trial is, therefore, probably higher than would obtain had freshly mined fuel been used with a moisture content of approximately 45 per cent. Due to the low calorific values of the low-rank lignite fuels and peat briquettes six firings had to be made each 24 hours for the four tests made on these fuels instead of the normal three which obtained for

all other tests on higher ranking fuels. These additional firings were necessary in order to maintain the same comparative combustion rate for all the tests. The close agreement of the results obtained for trials Nos. EDS-81 and 82, columns 19 and 20, Table D, both made on the same sample of imported peat bricks, again illustrates the ability of the operating staff to duplicate results with the "standard" test procedure used throughout.

General Discussion

Similarly as for the old (1925) series of tests previously reported on in Bureau of Mines Report No. 705, the trend of the efficiency values for these tests when considered as a whole in relation to fuel rank is downward as the rank lowers. In other words the high-rank, low-volatile, high-carbon fuels gave highest efficiencies; whereas the low-rank, high-volatile, low-carbon fuels gave the lowest efficiencies. Thus, and generally speaking, the efficiencies varied inversely with the volatile matter content of the different fuels and hence directly with their fixed carbon contents. Consequently less fuel was required to produce the same heating effect with the higher rank fuels than with the low-rank fuels.

The average thermal efficiency for the five individual tests made on the "standard" sample of American anthracite with a volatile matter content of 5 per cent was 65.8 per cent. For three tests on the same sample of Welsh anthracite with a volatile matter content of 8 per cent the average efficiency was 70.3 per cent. The increased efficiency for Welsh anthracite having a higher volatile content may be accounted for by its higher carbon content and calorific value. The efficiency obtained for the one test on French Indo-China anthracite with a volatile matter content of 4 per cent was very high in relation to American anthracite, 75.6 per cent. This is accounted for in this one test by the extremely high carbon content and the even control given during this test by the use of crushed firebrick on the grate as well as the grate seal provided by the natural tendency of the ash to form sheet clinker over the grate. For five tests on five different samples of by-product coke with less than 2 per cent of volatile matter the average efficiency was 72.4 per cent. The three tests on low-temperature coke with an average volatile matter content of 9 per cent gave an average efficiency of 70.0 per cent. The two tests on petroleum coke also with a volatile matter content of 9 per cent gave a like average efficiency of 71.1 per cent. Both of these efficiency values closely approximates that for the Welsh anthracite.

The efficiency values for the semi-bituminous, bituminous, and sub-bituminous coals varied from 50 to 60 per cent with two exceptions namely, trials Nos. DS-65 and DH-134, for which the values were below 50 per cent, and may be accounted for by the physical properties and behaviour of these two coals in the fire. The variation in values for semi-bituminous, bituminous, and sub-bituminous coals even when of the same rank are accounted for by varying ash contents and varying physical properties such as average size of lump, friability or tendency to crumble during handling and burning, and caking, swelling and clinkering tendencies during the combustion process. It can be appreciated, therefore, that the efficiency values for these coals would be more irregular and not so likely

to grade as closely in rank as would the higher ranking and more uniform anthracite and coke fuels previously discussed.

The efficiency value obtained for Saskatchewan lignite was 48.6 per cent, whereas as previously mentioned the high value of 55.2 per cent for Ontario lignite is accounted for by the extreme dryness of the sample. Had Ontario lignite been in its state as mined, with approximately 45 per cent moisture content, the value would have been, in all probability, below 50 per cent.

The briquetted fuels gave varying efficiencies of from 66.7 per cent for briquettes made from anthracite fines to 54.0 per cent for peat bricks. Here again the efficiencies, in general, grade in accordance with the rank of fuel from which the briquettes are made.

Any reader who wishes to make a close study of the efficiency values for himself must not be too critical of minor contradictions in the general trend of the values unless he is prepared to weigh carefully all the supporting data in respect to physical and chemical properties and general burning characteristics of the various fuels concerned.

In the writers' opinion the efficiency values by themselves are not so good a criterion of fuel value for the lay reader as is item 40 (e), Tables III, and A, B, C, and D (in pocket). This item gives the pounds of fuel used per therm (100,000 B.T.U.) of useful heat output, and is a direct measure of the quantity of fuel required to produce a specified heating result. This expression is translated, in item 40 (f), into tonnage necessary to equal one ton of the "standard" American anthracite which is most important from an economic standpoint, since, knowing the prices of the various fuels concerned, comparisons of costs may easily be made between them. Therefore, the economic results to follow are given on a basis of these values rather than on a direct efficiency basis.

COMPARISON OF ECONOMIC RESULTS OF OLD AND NEW SERIFS OF TESTS

In the interval between making the old and new series of tests a definite improvement in the average grade of American anthracite supplied to the Canadian market had been noted. This improvement in quality, as shown in an anthracite and coke analysis survey* made in the 1932-33 winter season, was the main factor prompting the retesting of American anthracite for the new series of tests. The sample used as a standard of comparison for the former tests averaged 14.5 per cent ash with a calorific value of 12,090 B.T.U. per pound as fired, whereas the "standard" sample used for the latter tests averaged 9.6 per cent ash with a corresponding higher calorific value of 13,190 B.T.U. Obviously, in any comparison between the two series of results due allowance should be made for the difference in grade between the two "standard" samples. For this reason Table IV, a reproduction of Table X, Bureau of Mines Report No. 705, is given with the addition of another column giving a recalculation of the equivalent tonnages corresponding to the ash content (9.6 per cent) and calorific value (13,190 B.T.U.) of the new "standard" sample.

^{*}Anthracite and Coke Analysis Survey Conducted at the Fuel Research Laboratories, Paper I, "Investigations of Fuels and Fuel Testing 1932"—Bureau of Mines Report No. 737.

Table V, similarly to Table IV, gives the relative values of the fuels tested in the new series, compared with American anthracite, based on quantity of fuel fired to deliver 100,000 B.T.U. to the cooling water of the system. The column "equivalent tonnage to 10 tons of American anthracite", is a comparison of all the fuels with American anthracite, on a basis of heat delivery only. Although these results give merit ratings which are quite definite for the one factor commented upon, some care and discretion should be used in applying them inasmuch as other factors and fuel characteristics which the reader must interpret for himself from the data at his disposal should be taken into account before final decision is made regarding the best fuel value for a particular need. It must also be remembered that this comparison is based on tests made in a single type of furnace and might not apply to all types of furnaces, although it is reasonably safe to take the results as being relatively comparable for the more common types of furnaces used throughout Canada for domestic heating purposes.

TABLE III Summarized Results of Comparative Burning Tests Made with Various Solid Fuels in a Domestic Hot-Water Boiler

		Item No.	7	10(a)	10(b)	12(a)	16(b)	40(e)	40(J)	42(b)	44(e)	44(f)	45(a)	45(b)	46	47(a)	49(b)
		Fuel	Com- bustion		Fue	l as fired		Fuel	used	Refuse	Usefu deliv	l heat rered	Flue	gases			
Part A.—Tes	No.	Kind	rate per cent of rated capac- ity, %	Moist- ure, %	Ash,	Gross calorific value, B.T.U./lb.	Ash fusion temp., °F.	Per therm delivered to cooling water, lb.	To equal one ton Ameri- can anthra- cite, tons	per cent of fuel used, %	Per hour, B.T.U.	Per lb. fuel used, B.T.U.	Average temp.,	COs con- tent, %	Excess air, %	Draught over fire, in, W.G.	Overall thermal effi- ciency,
rt A.—'	Tests or	Stove-size America	n Anthra	cite, for	comple	te data see	Table A	(in pocke	t).								
DS-49 DS-50 DS-51 DS-61 DS-62	3-34 3-34 3-34 3-34 3-34	American anthracite	55 53 50 53 49	3·1 3·2 3·1 2·6 2·4	8.8 9.1 9.5 9.8 10.6	13,230 13,210 13,260 13,130 13,130	2850 2860 2835 2810 2900	11.25 11.48 11.28 11.66 11.94	0.98 1.00 0.98 1.01 1.03	16·7 17·5 17·9 19·6 21·1	71,657 67,729 69,328 67,913 65,559	8,892 8,711 8,869 8,574 8,374	331 307 303 310 300	14.9 13.5 13.4 12.4 12.8	27 41 40 50 48	0·004 0·012 0·009 0·013 0·015	67·2 65·9 66·9 65·3 63·8
DS-X5	3-34	u u	52	2.9	9.6	13,190	2850	11-52	1.00	18-6	68,437	8,684	310	13-4	41	0.010	85.8
DS-53 DS-54 DS-55 DS-56 DS-57 DS-68 DS-60 DS-63	3-34 3-34 3-34 3-34 3-34 3-34 3-34	66 66 66 66 66 66 66 66 66 66 66 66 66	37 50 63 74 87 100 113 132	2·7 2·8 2·7 2·4 2·5 2·5 3·0 2·5	9.5 11.4 9.2 9.5 9.5 10.1 9.6 10.2	13,210 13,110 13,300 13,250 13,150 13,190 13,090 13,080	2840 2840 2860 2855 2840 2855 2830 2840	13·34 12·11 11·57 11·34 10·94 10·91 10·97 11·20	1·16 1·05 1·00 0·98 0·95 0·95 0·95	13·9 12·7	49,341 66,258 82,784 97,428 114,990 132,241 149,295 174,476	7,495 8,256 8,646 8,820 9,141 9,170 9,116 8,930	210 286 337 390 436 495 525 605	13·3 12·4 11·9 11·9 13·6 13·5 13·8 14·1	39 51 54 54 30 34 33 34	0.003 0.009 0.027 0.021 0.040 0.046 0.053 0.072	56.7 63.0 65.0 66.5 69.5 69.5 69.6 68.3
art B.—	Tests or	Anthracite Coals a	nd Cokes	for con	nplete d	lata see Tab	le B (in	pocket).	a.								
DH-144 DH-145 DH-146 DH-149	24-36 24-36	Welsh anthracite """ Indo-China anthra-	55 52 52	1·7 1·7 1·7	4·4 4·6 4·6	14,290 14,290 14,290	2340 2330 2330	9·54 10·37 10·00	0·83 0·90 0·87	4·7 16·2 11·8	70,122 69,236 68,281	10,479 9,644 10,011	348 321 317	10·9 12·3 13·1	67 48 41	0.016 0.024 0.015	73·3 67·5 70·1
DH-131 DH-130 DS-89 DS-95 DS-96 EDS-94 EDS-93 DS-92 EDS-92 EDS-90 EDS-91	1000	citeBy-product coke" "" "" "" "" "" "" "" "" "" "" "" "	53 51 51 52 54 54 52 52 52 53 53	3.8 0.4 0.2 0.2 1.2 4.6 1.4 1.5 3.6 3.6	5.0 9.4 9.2 7.7 9.9 10.0 0.5 1.7 8.8 8.8	13, 160 12, 900 12, 850 12, 830 12, 500 12, 050 15, 210 14, 900 12, 840 12, 780 12, 510	2060 2760 2710 2510 2780 2780 2005 2000 2010 2090 1980	10.05 11.72 10.85 10.74 10.45 11.10 9.20 9.49 10.99 11.21	0.87 1.02 0.94 0.93 0.91 0.96 0.80 0.95 0.97	6.6 10.9 9.3 9.3 11.3 11.5 Nil. 2.4 12.8 12.3 14.8	69, 963 68, 600 67, 848 68, 470 68, 201 68, 776 68, 008 69, 228 68, 167 68, 330 68, 074	9,947 8,531 9,215 9,310 9,566 9,005 10,867 10,542 9,099 8,924 8,653	304 308 299 302 322 312 303 303 318 313	11.9 9.7 8.9 11.4 13.1 11.2 11.2 14.0 14.7 13.7	56 87 103 56 46 45 63 30 28 33	0.030 0.037 0.039 0.013 0.008 0.012 0.019 0.008 0.007 0.007	75-6 66-1 71-7 72-6 76-5 74-7 71-4 70-8 70-8 69-8 69-2

Part C.—Tests on American and Eastern Canada Coals, for complete data see Table C (in pocket).

						The state of the s							-	900 100			
DS-78	4-35	American—semi-				** ***	0070		1.05	10.7	en nos	0.051	360	10.1		0.010	EO 1
TO TT 400	45.00	bituminous	52	0.7	9.2	14,190	2870	12.12	1.05	16.7	68,381	8,251	373	10.1	55 65	0.019	58·1 51·9
DH-132			57	0.3	9.4	14,060	2280	13.70	1.19	27.1	70,359	7,300	3/3	10-6	00	0.018	91.8
DS-76	17-34	American		100 1100	1000 000	1967001 1000000000	1000000000	S0000 44400	101 1000	Northern Tank	HOTOT HOTOTOT			monor non	1000		
70		bituminous	51	1.6	8.2	13,900	2700	13.47	1-17	16.0	69,500	7,423	457	11.0	51	0.019	53 - 4
DS-75	16-34	"	52	2.4	8.0	13,280	2045	14.36	1.25	12.9	69,019	6,963	484	12.7	30	0.008	52.4
DS-80	7-35	N.S. bituminous	52	2.3	4.8	14, 100	2015	14-18	1.23	15.0	70,064	7,050	450	12.3	32	0.012	50.0
DS-65	6-34	44 44	47	1.3	11.0	13,540	2025	15.41	1.34	27.4	89.549	6.490	431	10.4	65	0.019	47.9
EDS-77	6-34		52	1.2	11.4	13.250	2020	15.42	1.34	27.0	68.733	6.484	402	10.7	53	0.018	48.9
DS-71	12-34	и и	53	1.6	9.7	13,440	2170	13.78	1.20	14-5	68,601	7,259	426	11.0	51	0.019	54.0
DS-67	8-34	66 66	51	3.9	11.4	12,530	2065	15-13	1.32	18-1	68,568	6,609	407	11.9	47	0.006	52.7
DS-69	10-34		53	1.5	17.5	12,370	2440	13.93	1.21	22.7	70,436	7,181	412	11.5	47	0.007	58-1
DS-68	9-34	и и	52	1.4	17.9	12,320	2520	13.65	1.18	21-6	68.875	7,327	452	10.9	55	0.009	59.5
DS-66	7-34		52	3.3	13.9	12,080	2000	15.43	1.34	21.1	71.060	6.480	441	12.8	32	0.006	53.6
DS-70				2.4	15.1	11,880	2025	15.18	1.32	19.7	70,472	6,586	449	11.3	44	0.010	55 - 4
	11-34		54						1.25	17.9			452	11.5	48	0.020	56.8
DH-200		" " ····	52	3.5	11.6	12,200	2580	14.43			69,953	6,929	452				
DS-79	6-35	" "	53	5.8	11-4	11,300	2090	16.73	1.45	21.5	68,758	5,977	452	11.9	34	0.009	52.9
DH-201	3-38		56	4.5	14.6	11,090	1970	16.78	1.46	22.2	70,583	5,961	413	9.8	62	0.017	53.8
DS-72	13-34	N.B. bituminous	52	1.0	21.5	11,590	2040	14.82	1.29	23.1	72,630	6,748	454	9.2	74	0.028	58.2
			1	- 1										l J	1		

Part D.—Tests on Western Canada Coals, Lignite, and Briquetted Fuels, for complete data see Table D (in pocket).

DS-74 15-34	" " " " " " " " " " " " " " " " " " "	51 52 54 57 54 49 60 52 56 60	2·8 0·9 0·8 8·0 5·5	11 · 8 11 · 6 11 · 8 13 · 2 8 · 3 14 · 8 14 · 6 18 · 4 6 · 9 6 · 7	12,800 12,500 13,230 12,970 11,340 11,315 10,190 9,730 10,150 10,130	2380 2170 2300 2350 2240 2320 2190 2190 2040 2000	14·11 14·25 13·53 13·55 16·22 18·90 17·84 18·52 16·83 17·27	1·22 1·24 1·17 1·18 1·41 1·64 1·55 1·61 1·46	20·6 16·6 24·1 18·7 19·9 34·6 23·6 27·4 10·8	69.380 68,793 68,851 68,571 68,534 69,234 68,550 67,677 69,922 68,899	7,086 7,017 7,393 7,380 6,165 5,290 5,605 5,400 5,942 5,792	373 475 382 464 384 464 378 394 383 367	12.7 13.4 10.5 8.6 11.3 10.1 10.2 9.0 12.1 11.5	31 26 68 94 56 72 69 93 47 51	0·004 0·005 0·024 0·035 0·022 0·064 0·035 0·050 0·014	55.4 56.1 55.9 56.9 54.4 46.8 55.0 55.5 58.5
DH-202 10-31 DS-84 5-34 DS-98 14-35 DH-198 1-38 DH-140 1-37 EDS-81 4-34 EDS-82 4-34	American briquettes Alberta briquettes Sask. briquettes Peat bricks	53 54 54	19·2 0·6 0·9 0·8 0·7 5·9 12·0 5·4	6.5 9.8 9.8 12.3 12.1 13.1 5.4 5.7	8,350 14,050 13,650 13,660 13,500 11,830 8,150 8,140	2375 2750 2420 2900+ 2850+ 2050 2245 2240	21-68 12-31 10-99 11-83 12-17 13-62 22-73 22-48	1.88 1.07 0.95 1.03 1.06 1.18 1.97	7·5 20·8 13·1 13·2 15·4 15·5 5·6 5·4	70,715 70,345 68,410 70,268 71,313 70,370 70,765 70,369	4,612 8,125 9,101 8,453 8,217 7,340 4,399 4,448	383 299 311 372 358 349 331 340	11.4 14.0 14.0 12.9 12.6 13.8 13.2 14.3	63 26 29 39 38 35 35 28	0·011 0·009 0·007 0·013 0·013 0·010 0·010 0·007	55·2 57·8 66·7 61·9 60·9 62·0 54·6

¹ Fuels are arranged in the same order in which they are tabulated in Tables A to D (in pocket).

² Trial No. DS-X5 gives the average results of the first five trials tabulated for American anthracite. These averaged results should be used for comparison with the other fuels.

22

TABLE IV**

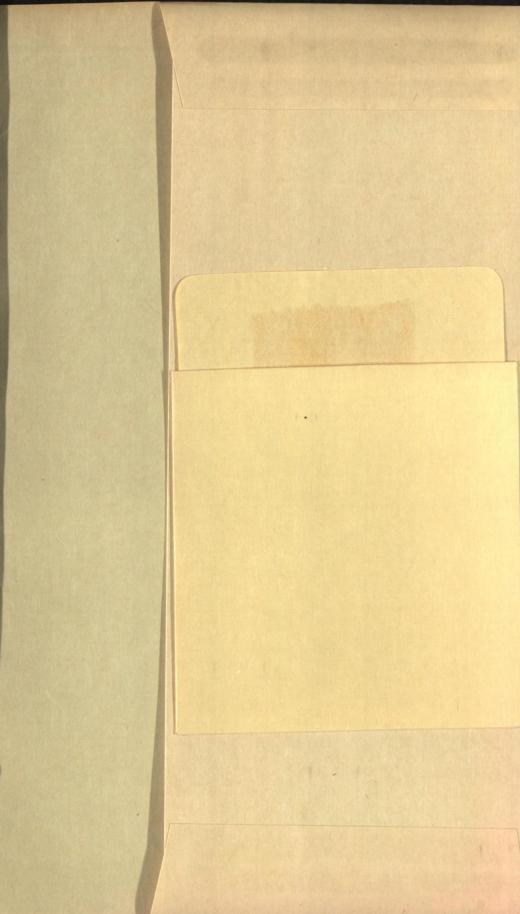
Showing the Relative Values of the Various Fuels Tested (in the old series), Compared with American Anthracite and Based on Quantity of Fuel Fired per Therm (100,000 B.T.U.) delivered to the Cooling Water of the System

	Fuel -		Pounda	of fuel fired	per therm the cooli	1 (100,000 B ing water	.T.U.) del	ivered to		Equivalent tonnage to	Recalculated equivalent tonnage to 10 tons of 9.6 per cent
			Values for	each of th	e tests sele tabulation		arting and		Average value	10 tons of American anthracite	ash and 13,190 B.T.U American anthracite
1	American anthracite	10.95	11-44	10.80	12.36	 	[11.39	10.00	10.00
2	Welsh anthracite	9.60	9.78	9.48	9.35	9.57			9.56	8.39	9.16
3	Scotch semi-anthracite	9.44	9.57	9.68	10.24			*********	9.73	8.54	9.32
4	Gas coke By-product Coke No. 2. By-product Coke No. 3 By-product Coke No. 4 American smokeless, semi-bituminous No. 1.	11.45	11.20	10.93	10.82	10.96			11.21	9.84	10.74
0	By-product Coke No. 2	10-18	10.34	10.25	10.57				10.33	9.07	9.89
6	By-product Coke No. 3	*10-50 *10-83	10.91	11·16 •11·38	10.83				10.85	9.53	10.39
0	A morison amplealogs somi bitumizous No. 1	10.83	*10·23 10·91	10.72	*********				10.81	9.49	10.35
10	American smokeless, semi-bituminous No. 2	10.79	11.20	11.03	11.30				10·98 11·01	9·64 9·67	10·52 10·55
ii	Alberta semi-bituminous	11.18	11.34	11.19					11.01	9.89	10.80
2	Alberta sub-bituminous No. 1	13.89	15.27	14.90					14.76	12.96	14.14
3	Alberta sub-bituminous No. 2.	15.04	15-18	15.82					15.55	13.66	14.89
4	Alberta sub-bituminous No. 3	14.46	16.08	16.26	16-98				15.94	13.99	15.27
5	Alberta domestic No. 1	16.03	17.30	16.98	18.25				17.14	15.05	16.42
16	Alberta domestic No. 2	16.34	17.51	17.18					17.45	15.32	16.71
17	Alberta domestic No. 3	16.56	16.81	16.56	18-12				17.01	14.93	16.29
18	Alberta domestic No. 4	16.53	17.34	17-45	18.73				17-51	15.37	16.77
19	Alberta domestic No. 5	18.73	18-90	19-19	19.42				19.06	16.73	18.26
21	Air-dried, machine peat	*25.00							25.00	21.95	23 · 95

^{*}Denotes tests of short duration. See page 28, paragraph 4 (Bureau of Mines Report No. 705) for explanation of short and long tests.

^{**}Reproduction of Table X—Bureau of Mines Report No. 705.

	Fuel*	P	ounds of fu deli	el fired per vered to th			J.)	Equivalent tonnage to 10 tons of 9.6 per cent ash
No.	Kind	Values fo	or each of t	he tests giv inclusive	ren in Tabl	es A to D	Average value	and 13,190 B.T.U. American anthracite
3-34	American anthracite	11.25	11-48	11-28	11-66	11.94	11-52	10.00
24-36	Welsh anthracite	9.54	10.37				9.97	8-65
2-37	French Indo-China anthracite	10.05					10.05	8.72
17-36	By-product coke	11.72					11.72	10.17
16-36	By-product coke	10.85					10.85	9.42
1-35	By-product coke	10.74					10.74	9.32
11-35	By-product coke	10.45					10.45	9.07
12-35	By-product coke	11.10					11.10	9.64
27-31	Petroleum coke	9-20					9.35	8.12
9-35	Low-temperature coke	10.99					11-10	9.64
10-35	Low-temperature coke	11.56					11.56	10.03
4-35	American semi-bituminous coal	12-12					12.12	10.52
15-36	American semi-bituminous coal	13.70					13.70	11.89
17-34	American bituminous coal							11.69
16-34	American bituminous coal	14.36					14.36	12-47
7-35	Nova Scotia bituminous coal	14.18					14.18	12.31
6-34	Nova Scotia bituminous coal	15-41					15.42	13.39
12-34	Nova Scotia bituminous coal	13.78						11.96
8-34	Nova Scotia bituminous coal	15.13					15.13	13-13
10-34	Nova Scotia bituminous coal	13.93					18 - 93	12.09
9-34	Nova Scotia bituminous coal	13.65						11.85
7-34	Nova Scotia bituminous coal	15-43					15.43	13.39
11-34	Nova Scotia bituminous coal	15-18					15-18	13.18
2-38	Nova Scotia bituminous coal	14-43						12-53
6-35	Nova Scotia bituminous coal	16-73					16.73	14.52
3-38	Nova Scotia bituminous coal	16.78					16.78	14-57
13-34	New Brunswick bituminous coal						14.82	12-86
14-34	British Columbia bituminous coal	14-11					14-11	12.25
15-34	British Columbia bituminous coal	14.25					14.25	12-37
A-37	Alberta bituminous coal						13.53	11.74
22-36	Alberta bituminous coal						13.55	11.76
13-35	Alberta bituminous coal	16.22					16-22	14.08
23-36	Alberta bituminous coal	18-90					18-90	16.41
21-36	Alberta bituminous coal						17.84	15-49
18-36	Alberta bituminous coal	18-52					18-52	16.08
28-36	Alberta sub-bituminous coal	16.83					16.83	14.61
20-36	Alberta sub-bituminous coal	17-27					17.27	14.99
19-36	Saskatchewan lignite						25.84	22.43
10-31	Ontario lignite	21-68					21.68	18.82
	Briquettes made from Alberta coal	12.31					12.31	10.69
	Briquettes made from American anthracite						10.99	9.54
1-38	Briquettes made from Alberta coal	11-83					11.83	10.27
	Briquettes made from Alberta coal						12-17	10.56
5-37	Briquettes made from Saskatchewan lignite	13.62					13-62	11.82
4-34	Imported peat bricks	22.73	22.48		l	1	22.61	19-6


^{*}Fuels are arranged in the same order in which they are tabulated in Tables A to D (in pocket).

	CALL NO.	TITLE	
	TN	Comparative tests of	
	26	various fuels when	
	E5f	burned in a domestic	
	no.802	hot-water boiler,	
	1940	1935-1938 . AUTHOR (Book)	
		BALTZER, Clarence Edwin.	
	DATE BORROWED	VOL/NO/YR (Periodical)	
	BORROWER:		
1	Name		
	Div.	 	·
	Phone	· · · · · · · · · · · · · · · · · · ·	
	Room No		
	100 100		

.

.

.

TABLE A DEPARTMENT OF MINES AND RESOURCES BUREAU OF MINES—FUEL RESEARCH LABORATORIES, OTTAWA, CANADA Detailed Data and Results of Fourteen Comparative Burning Tests Made on a "Standard" Sample of American Anthracite in a Domestic Hot-Water Boiler

Detailed Data and	d Results of Fourte	een Compai	ative Burn			34, American A	Anthracite, Stove		Anthracite	in a Dome	estic Hot-V	Vater Boile	er		
Item	Type of trial, etc.	1 ,	Five 120-ho	our "Standard	' Trials h	5	Average of fivo 120-hour "Standard" trials	7	Eight	24-hour "Effic	iency" Trials I	h at Varying R	ates of Combus	stion 13	14
Section "A", Items 1 to 20 inclusive—Ge 1. Trial number	NERAL	DS-49 S 10-15/9/34	DS-50 S 17-22/9/34	DS-51 S 24-29/9/34	DS-61	DS-62 S	DS-X5 a S 10-9 to 1-12/34	EDS-53 E 22-23/10/34	EDS-54 E 23-24/10/34	EDS-55 E 24-25/10/34	EDS-56 E 25-26/10/34	EDS-57 E 26-27/10/34	EDS-58 E 27-28/10/34	EDS-60 E 16/17/11/34	EDS-63 E 5-6/12/34
3. Date of trial. 4. Duration of trial, continuous total. 5. Number of fire periods during 24-hour day. 6. Intervals between firings (24-hour day). 7. Average rate of combustion, per cent of rated capacity of fur		120 120 9, 5, and 10 55	120 120 9, 5, and 19	120 3 9, 5, and 10 50	120 120 9, 5, and 10 53	120	120 120 9, 5, and 10	24 9, 5, and 10 37	24 9, 5, and 10 50	24 3	24 9, 5, and 10 74	24 3 9, 5, and 10 87	9, 5, and 10	24 3 9, 5, and 10 113	24 9, 5, and 10 132
8. Furnace: (a) Average rating, feet of water radiation	sq. It.	$\begin{array}{c} 880 \\ 3 \cdot 4 \\ 32 \cdot 4 \\ 5 \cdot 4 \end{array}$	880 3·4 32·4 5·4	880 3·4 32·4 5·4	880 3·4 32·4 5·4	880 3·4 32·4 5·4	880 3·4 32·4 5·4	$880 \\ 3 \cdot 4 \\ 32 \cdot 4 \\ 5 \cdot 4$	880 3 · 4 32 · 4 5 · 4	\$80 3·4 32·4 5·4	$ \begin{array}{r} 880 \\ 3 \cdot 4 \\ 32 \cdot 4 \\ 5 \cdot 4 \end{array} $	$\begin{array}{r} 880 \\ 3 \cdot 4 \\ 32 \cdot 4 \\ 5 \cdot 4 \end{array}$	880 3 · 4 32 · 4 5 · 4	880 3 · 4 32 · 4 5 · 4	$\begin{array}{c} 880 \\ 3 \cdot 4 \\ 32 \cdot 4 \\ 5 \cdot 4 \end{array}$
	sample received for test).		-			-	-chail	-			<u>.</u>	-		7 -	-
(d) " 8" " 6" " " " " " " " " " " " " " " "		49·5 42·0	49·5 42·0	49·5 42·0	49·5 42·0	49·5 42·0	49.5 42.0	49·5 42·0	49·5 42·0	49·5 42·0	- 49·5 42·0	$\begin{array}{c} - \\ - \\ - \\ 49.5 \\ 42.0 \\ 6.5 \end{array}$	49·5 42·0 6·5	- - 49 · 5 42 · 0 6 · 5	- - - 49 · 5 42 · 0 6 · 5
(j) (i)	% % %	6.5 0.5 0.5 0.5 0.3	6·5 0·5 0·5 0·5 0·3 0·2	6.5 0.5 0.5 0.5 0.3 0.2	6.5 0.5 0.5 0.5 0.3 0.2	6.5 0.5 0.5 0.5 0.3 0.2	6·5 0·5 0·5 0·5 0·3 0·2	6.5 0.5 0.5 0.5 0.3 0.2	6·5 0·5 0·5 0·5 0·3 0·2	6·5 0·5 0·5 0·3 0·2	6.5 0.5 0.5 0.5 0.3 0.2	0·5 0·5 0·5 0·3 0·2	$0.5 \\ 0.5 \\ 0.5 \\ 0.3 \\ 0.2$	0.5 0.5 0.5 0.3 0.2	$0.5 \\ 0.5 \\ 0.5 \\ 0.3 \\ 0.2$
(n) " " " " " " (o) Average size of lumps. (p) "Size stability per cent" by shatter test on: (1) -4" (round hole screen) coal		92.8	2·06 - 92·8	2·06 - 92·8	2·06 - 92·8	2·06 - 92·8	2·06 - 92·8	2·06 - 92·8	2·06 - 92·8	2·06 - 92·8	2·06 - 92·8 -	2·06 - 92·8	2.06	92.8	2·06 92·8
(1) 1" to 1½" (square hole screen) size		3·1 8·8 5·0	3·2 9·1 5·1	3·1 9·5 4·9	29·8 2·6 9·8 5·2	29·8 2·4 10·6 5·2	29·8 2·9 9·5 5·1	29·8 2·7 9·5 5·1	$ \begin{array}{c} 29.8 \\ 11.4 \\ 5.1 \end{array} $	29·8 2·7 9·2 5·3	$ \begin{array}{c} 29 \cdot 8 \\ \hline 2 \cdot 4 \\ 9 \cdot 5 \\ \hline 5 \cdot 0 \end{array} $	29·8 2·5 9·5 5·5	29·8 2·5 10·1 5·3	29-8 3-0 9-6 5-4	$ \begin{array}{r} 29 \cdot 8 \\ \hline 2 \cdot 5 \\ 10 \cdot 2 \\ \hline 5 \cdot 5 \end{array} $
11. Ultimate analysis: (a) Carbon (b) Hydrogen (c) Ash	7,0 7,0 7,0 7,0	82·5 2·9 8·8	82·6 82·1 2·0 9·1	82·5 81·8 2·9 9·5	82·4 82·0 2·8 9·8	81·8 81·3 2·8 10·6	82·5 81·9 2·9 9·6	82·7 82·1 2·8 9·5	80·7 80·1 2·8 11·4	82·8 82·5 2·9 9·2	83·1 82·6 2·8 9·5	\$2.5 \$2.5 2.8 9.5 0.8	\$1.9 2.8 10.1	\$2.0 \$1.8 2.9 9.6 0.9	81-8 81-6 2-8 10-2 0-9
(d) Sulphur (e) Nitrogen. (f) Oxygen (by difference) 12. Calorific value: (a) As fired, gross value.		0.9 0.9 4.0	1.0 0.9 4.0	0.9 0.9 4.0	0.9 0.9 3.6	0.9 0.9 3.5	0.9 0.9 3.8	1.0 0.9 3.7	0.8 0.9 4.0	0.8 0.9 3.7	0.8 0.9 3.4	0.9 3.5	13, 190 13, 530	13,090 13,500	0.9 3.6 13,080
(b) Dry, gross value (c) Gas used for kindling (assumed)	B.T.U./lb	. 13,650 500 . 16.50	13,640 500 16.50 28.6 Non-eaking	13,680 500 16.75 28.5 Non-caking	13,500 500 15.85 29.1 Non-caking	13,500 500 15.90 29.3 Non-caking	13,580 500 16.30 28.8 Non.eaking	13,580 500 16·20 29·1 Non-eaking	13,390 500 15.95 28.8 Non-caking	13,670 500 15-60 29-0 Non-caking	13,580 500 16.45 29.4 Non-caking	13,490 500 15.00 29.4 Non-caking	500 15 · 55 29 · 1	15,500 500 15·10 28·7 Non-caking	13,420 500 15.00 29.1 Non-caking
(b) Swelling index = Per cent swelling × 100 Per cent dry V.M. at 600°C. (c) Caking index by "Gray" method. 16. Ash fusibility: (a) Initial deformation temperature.		. -	2,780	2,760	2,680	2,735	2,745	2,775	2,770	2,785	2,780	2,750	2,750	2,720	- - 2,720
(a) Initial determination temperature. (b) Softening point or fusion temperature. (c) Fluid temperature or melting point. 17. Apparent specific gravity, as received in bulk. 18. Weight per cubic foot, as received in bulk. 19. Volume per ton of 2,000 pounds, as received in bulk.	*F.	2,850 2,910	2,860 2,905 1.47 52.4 38.2	2,835 2,900 1.47 52.4 38.2	2,810 2,900 1-47 52-4 38-2	2,900 2,900+ 1.47 52.4 38.2	2,850 2,905 1.47 52.4 38.2	2,840 2,920 1.47 52.4 38.2	2,840 2,950 1.47 52.4 38.2	2,860 2,940 1.47 52.4 38.2	2,855 2,920 1.47 52.4 38.2	2,840 2,945 1.47 52.4 38.2	2,855 2,960 1.47 52.4 38.2	2,830 2,940 1.47 52.4 38.2	2,840 2,840+ 1.47 52.4 38.2
20. Grindability index by Hardgrove method	BSERVATION' TEST	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5	28.5
 21. Duration of "observation" trial. 22. Fuel fired: (a) City gas used for kindling. (b) Fuel equivalent to gas used. (c) Quantity during trial. (d) Total, including gas equivalent. 	cu. ft	96 100 3 · 8 708 711 · 8	100 3.8 708 711.8	96 100 3·8 708 711·8	96 101 3.8 708 711.8	100 3·8 708 711·8	100 3·8 708 711·8			-	-		-		- - -
23. Refuse removed: (a) Through fire-door during trial. (b) From ash-pit during trial. (c) Total, during trial. (d) As dumped residual fire at end of trial.	1b.	Nil 65·0 65·0 71·3	Nil 62 · 8 62 · 8 70 · 3	Nil 63·0 63·0 82·3	Nil 73·8 73·8 86·8	Nil 70·0 70·0 92·5	Nil 66 · 9 66 · 9 80 · 6	-	-	-	-				-
SCREEN EXAMINATION OF REFUSE (a) Removed through fire-door during trial (b) On 1" square mesh screen recovered from ash-pit re (c) " 3" " " " residual fi	. lb. fuse. lb. lb. ire. lb.	Nil 4 41	Nil 5½ 4	Nil 51/2 51/3	Nil 3 5‡	Nil 2½ 5 4*	Nil 425 445 b	-		•	 				idea Idea Idea Idea Idea
(e) " ½" " " " " " " " " " (f) Total—(over ½" screen size)—recovered	lb. lb.	- - 37	31	- 4 7½	141 141 31	14 14 4 10	18 b 14 b	-	 	- 1	-	-	um um um de	-	-
(c) " 1", " " " " residual fi (d) " ** " " " " " " " " " " " " " " " " "	ire. lb. lb. lb. lb.	46	441	- 2 41½	11½ 42 22½ 79	47 21½ 82½	44½ b 21½ b 80¼ b	-	 	 			-	-	
(b) "residual fire	lb.	-	-	-	50½ 17 67½	485 174 66	171 b 661 b	-	-	-	-	-	~	~	un
(a) Ash c (b) Combustible c (by difference)	%	48·3 51·7 24·4 2·0	$49.0 \\ 51.0$ 27.5 1.7	49.7 50.3 23.3 1.1	45.9 54.1 20.5 d 1.4 d	39·5 60·5 17·7 d 1·4 d	$46.5 \\ 53.5$ 22.7 1.5	-	<u>-</u>	-	-		-	-	- -
(b) "volstile matter. (c) "fixed carbon (by difference). (d) Dry calorific value, gross (e) Sensible heat, total estimated. (f) "coal equivalent. (Items (e) and (f) based on items 23(a) plus 23(d) (g) Portion allocated to asi-pit loss.	B.T.U./lb B.T.U. lb.	73-6 10,660 36,577 2-8	70-8 10, 150 36, 064 2-7	75.6 $10,800$ $42,220$ 3.2 27.8	78·1 d 11,130 d 44,528 3·4 25·4	80·9 d 11,540 d 47,453 3·6	75.8 10.860 41,368 3.1		-	-		-	-		- - -
(h) " not chargeable to test. (i) Fuel equivalent of portion not chargeable. 29. Equivalent fuel used: (a) Total for trial, calculated.		43·5 42·1 666·9 6·9	38·2 36·7 672·4 7·0	54·5 52·2 656·4 6·8	61 · 4 58 · 9 649 · 5 6 · 8	$ \begin{array}{c} 22 \cdot 0 \\ 70 \cdot 5 \\ 67 \cdot 1 \end{array} $ $ \begin{array}{c} 641 \cdot 1 \\ 3 \cdot 7 \end{array} $	53·6 51·4 657·3 6·8	 	- -	-	=	~			-
(c) Per square foot of grate surface per hour. (d) "heating "" (e) "therm e delivered to cooling water	lb. lb. lb.	2·0 0·21 9·46 58·6	$\begin{array}{c} 2 \cdot 1 \\ 0 \cdot 22 \\ 9 \cdot 97 \\ 61 \cdot 1 \end{array}$	$\begin{array}{c} 2 \cdot 0 \\ 0 \cdot 21 \\ 10 \cdot 57 \\ 62 \cdot 3 \end{array}$	$ \begin{array}{c} 2 \cdot 0 \\ 0 \cdot 21 \\ 9 \cdot 21 \end{array} $ 63 · 6	$\begin{array}{c} 2 \cdot 0 \\ 0 \cdot 21 \\ 10 \cdot 40 \\ 67 \cdot 9 \end{array}$	2.0 0.21 9.94 62.7		 - -	-	-		600 488 1880 1887	-	
(a) For test. (b) Per cent of fuel used. (c) " ton " " General Data		92·8 13·9 278	04 · 9 14 · 1 282	90-8 13-8 276	99 · 2 15 · 3 306	92 · 0 14 · 4 288	93 · 9 14 · 3 286	-	 		:		-	-	nur Ant
32. Circulating water, average temperature: (a) Flow by thermograph (b) Return 33. Cooling water: (a) Average temperature, inlet by thermograph		137 110	136 109 60	139 112 69	122 91 43	119 90 45	131 102 56	-		-		-	-	-	er en.
	°F. °F. lb. B.T.U	105 41 171,934 73,430	70, 228 10, 027	105 36 172,473 64,677 9,459	82 39 173,526 70,495 10,854	81 36 169,803 63,676 9,535	94 38 172,121 68,501 10,089		-	-	-	*** *** *** ***		-	100 700 700 801 401
34. Flue gases: (a) Average temperature by recorder. (b) "carbon dioxide content f	%	301 13·2	320 13·4 0·016	280 13·5	301 14·0 0·008	299 13·9 0·007	300 13-6 0-009	un u	**************************************	-				-	-
(b) Room temperature, by thermograph (c) Outdoor temperature, by thermograph Section "C", Items 36 to 56(a) Inclusive—One-Day	°F.	67 64	63 56	70 65	70 44	67 38	53	-	***	5°4			**************************************	-	Mar.
36. Duration of "efficiency" trial. 37. Fuel fired: (a) City gas used for kindling. (b) Fuel equivalent to gas used. (c) Quantity during trial. (d) Total, including gas equivalent.	cu, ft		24 100 3 · 8 247 250 · 8	24 103 3 · 9 247 250 · 9	24 100 3 · 8 247 250 · 8	24 100 3 · 8 247 250 · 8	24 101 3 · 8 247 250 · 8	24 100 3 · 8 215 218 · 8	24 100 3 · 8 260 263 · 8	24 100 3 · 8 305 308 · 8	24 101 3-8 335 338-8	24 100 3 · 8 380 383 · 8	24 100 3 · 8 425 428 · 8	24 100 3·8 470 473·8	24 100 3 · 8 509 · 5 513 · 3
38. Refuse removed: (a) Through fire-door during trial. (b) From ash-pit (c) Total, during trial. (d) Dry analysis of total refuse recovered, ash		Nil 12·3 13·3 48·3	Nil 15·0 15·0 49·0	Nil 12·3 12·3 49·7	Nil 12·5 12·5 45·9	Nil 20.0 20.0 39.5	Nil 14·6 14·6 46·5	Nil 14 14 31 · 2	Nil 18·8 18·8 40·6	Nil 18·8 18·8 45·3	Nil 23 23 51·7	Nil 26 26 64 · 5	Nil 29.5 29.5 64.4	Nil 29 29 68 · 6	Nil 39·3 39·3 71·3
(f) As demped residual fire at end of trial	lb.	51·7 74·5	51.0 80.0	20·0 1·4	20.5 1.4	60-5 82-3 17-7 1-4	\$3.5 80.9	68.8 88.3 16.5 2.2	18.6 1.4	54.7 104.5 17.9	48.3 98 19.9	35.5 101.5 19.9 0.9	$ \begin{array}{c c} 35 \cdot 6 \\ 103 \\ 20 \cdot 1 \\ 0 \cdot 9 \end{array} $	31·4 102·3 22·0 0·7	31·8 0·6
(c) " " fixed carbon (by difference)	B.T.U./(i B.T.U. (f)).	79·4 11.530	80·1 11,690 41,040 3·1 17·6	78.6 11,440 42,579 3.2 21.2	78-1 11,130 43,349 3-3 24-7	80.9 11,540 42,220 3.2	79.4 11,466 41,481 3-1 20-4	$ \begin{array}{c c} 81.3 \\ 11,570 \\ 45,298 \\ 3.4 \\ 27.6 \end{array} $	80·0 11,345 48,376 3·7 22·3	\$0.8 11,310 53,609 4.0 24.5	79.0 11,080 50,274 3.8 23.8	79-2 11,000 52,070 4-0 18-9	79.0 10,960 52,839 4.0	77.3 10,720 52,480 4.0 21.1	67.6 9,040 35,807 2.7 24.5
(h) " not chargeable to test. (i) Fuel equivalent of portion not chargeable. 40. Equivalent fuel used: (a) Total for trial, calculated. (b) Per hour.		55·7 54·5	189 · 6 7 · 8	187-6 7-8	59.8 57.4 190.1 7.9	187·9 7·8	189 · 1 7 · 9	158.0 6.6	72·0 67·5 192·6 8·0	229·8 9·6	$ \begin{array}{c} 74 \cdot 3 \\ 69 \cdot 9 \\ 265 \cdot 1 \\ 11 \cdot 0 \end{array} $	82·6 77·9 301·9 12·6	346·1 14·4	81 · 2 76 · 8 393 · 0 16 · 4	45·3 41·7 468·9 10·5
(c) " square foot of grate surface per hour. (d) " heating " (e) " therm is delivered to cooling water. (f) To equal one ton of stove-size American anthracite 41. Total ash in fuel used, from fuel analysis.	1b. 1b. 1b. 1b. 1b. 1f. (g ton	$ \begin{array}{c cccc} & 2 \cdot 4 \\ & 0 \cdot 25 \\ & 11 \cdot 25 \\ & 0 \cdot 98 \end{array} $	2·3 0·24 11·48 1·00	2 · 3 0 · 24 11 · 28 0 · 98	2·3 0·24 11·66 1·01 18·6	2·3 0·24 11·94 1·03	2 · 3 0 · 24 11 · 52 1 · 00	1.9 0.20 13.34 1.16	2 · 4 0 · 25 12 · 11 1 · 05	2·8 0·30 11·57 1·00	3 · 2 0 · 34 11 · 34 0 · 98	3.7 0.39 10.94 0.95	$ \begin{array}{r} 4 \cdot 2 \\ 0 \cdot 45 \\ 10 \cdot 91 \end{array} $	4.8 0.51 10.97 0.95	5 · 7 0 · 60 11 · 20 0 · 97 47 · 7
42. Total refuse: (a) For test (b) Per cent of fuel used (c) " ton " "		$\begin{array}{c} 32 \cdot 1 \\ 16 \cdot 7 \\ 334 \end{array}$	32·6 17·5 350	33 · 5 17 · 9 358	37·2 19·6 392	39·6 21·1 422	35.0 18.6 371	41 · 6 26 · 4 528	41·1 21·4 428	43·3 18·8 376	46.8 17.7 354	44·9 14·9 298	48·1 13·9 278	50·1 12·7 254	63 · 8 13 · 6 272
(a) Flow. (b) Return. 44. Cooling water:	°F	111	134 108 65·2 102·8	136 111 65·6 104·5	119 92 45·0 83·2	117 91 44·1 81·2	129 103 57·1 95·5	109 86 52-5 80-0	124 97 53 · 3 90 · 5	136 106 53 · 5 100 · 0	146 114 53 · 6 108 · 3	159 124 53 · 5 118 · 0	170 132 52·3 126·9	177 136 44 · 1 127 · 6	192 149 41 · 9 139 · 3
(c) " difference (d) Total used during trial, corrected. (e) Heat delivery per hour (f) " pound of fuel used 45. Flue gases:	"F 	106·0 40·1 42,887 71,657 U. 8,892	102 · 8 37 · 6 43 · 230 67 · 727 8 · 711	104·5 38·9 42,773 69,328 8,869	83·2 38·2 42,668 67,913 8,574	81·2 37·1 42,410 65,559 8,374	95·5 38·4 42,794 68,437 8,684	80.0 27.5 43,061 49,341 7,495	90.5 37.2 42,747 66,258 8,256	100-0 46-5 42,727 82,784 8,646	108:3 54:7 42,747 97,428 8,820	118.0 64.5 42,787 114,990 9,141	$\begin{array}{c} 126.9 \\ 74.6 \\ 42,544 \\ 132,241 \\ 9,170 \end{array}$	127.6 83.5 42,911 149,295 9,116	139-3 97-4 42,992 174,476 8,930
45. Fine gases: (a) Average temperature	°F % %	$\begin{array}{c} 331 \\ 14 \cdot 9 \\ 4 \cdot 6 \\ 0 \cdot 2 \\ 80 \cdot 3 \\ 12 \cdot 5 \end{array}$	307 13·5 6·2 0·2 80·1 13·5	303 13 · 4 6 · 1 0 · 1 80 · 4 13 · 6	$\begin{array}{c} 310 \\ 12 \cdot 4 \\ 7 \cdot 1 \\ 0 \cdot 4 \\ 80 \cdot 1 \\ 14 \cdot 4 \end{array}$	300 12·8 6·9 0·4 79·9 13·4	310 13·4 6·2 0·3 80·2 13·5	210 13·3 6·0 0·7 80·0 11·6	$\begin{array}{c} 286 \\ 12 \cdot 4 \\ 7 \cdot 2 \\ 0 \cdot 3 \\ 80 \cdot 1 \\ 13 \cdot 4 \end{array}$	337 11.9 7.5 0.2 80.4 15.0	390 11.9 7.5 0.1 80.5 15.5	$\begin{array}{c} 438 \\ 13 \cdot 6 \\ 5 \cdot 0 \\ 0 \cdot 2 \\ 81 \cdot 2 \\ 14 \cdot 2 \end{array}$	495 13·5 5·5 0·2 80·8 14·2	$\begin{array}{c} 525 \\ 13 \cdot 8 \\ 5 \cdot 3 \\ 0 \cdot 2 \\ 80 \cdot 7 \\ 14 \cdot 2 \end{array}$	605 14 · 1 5 · 4 0 · 1 80 · 4 13 · 9
46. Excess air. 47. Draught average: (a) Over fire. (b) In flue.	%	27	41 0.012	40 0.00	50	48	41 0 · 010	39	51 0.009	54 0 · 027	54	30	34 0 0 0 0 4	33 0 · 053	34 0·072
48. Average: (a) Room temperature (b) " relative humidity (c) Outdoor temperature (d) Barometric pressure			70 70 67 29-903	66 59 58 29 · 88	69 56 42 29·95	65 53 40 29·71	68 64 55 29 · 897	65 66 51 29·74	69 61 54 30·046	68 56 49 29 • 926	70 53 52 29·58	68 53 42 29·55	50 50 33 29 · 48	70 45 38 29-979	64 44 22 30-012
49. Efficiency: (a) Grate (b) Overall thermal Heat Account Per Pound of Fuel Used in B.T.	U. AND PER CENT	90.5	90 · 1 65 · 9	90 · 0 66 · 9	88·2 65·3	85 · 8 63 · 8	88.9 65.8	79·9 56·7	85 · 9 63 · 0	88·7 65·0	90-6 66-5	04 · 1 69 · 5	94 · 5 69 · 5	95 · 5 69 · 6	95 · 6 68 · 3
 50. Heat delivered to cooling water. 51. Loss due to steam formed from moisture in fuel and the hydrogen in dry fuel. 52. Loss due to hear carried away in dry fue gases. 53. " "unburned combustible matter in refuse. 54. " earbon monoxide. 		U. 305 U. 786 U. 1,259	8,711 302 768 1,306 108	8,869 303 774 1,316 55	8,574 292 833 1,550 226	8,374 292 756 1,868 211	8,684 299 783 1,460 140	7,495 281 404 2,651 325	8,256 289 698 1,852 162	8,646 306 968 1,503 121	8,820 301 1,190 1,245 64	9,141 308 1,261 770 114	9,170 316 1,482 722 114	9,116 329 1,551 584 113	3,930 328 1,805 571 56
55. " radiation, errors, and unaccounted for	B.T. B.T. and that formed by	U. 1,889 U. 13,230	2,015 13,210 65·9	1,943 13,260 66·9	1,655 13,130 65·3	13,130 3-8	140 1,824 13,190 65-8	2,054 13,210 56-7	162 1,853 13,110 63·0	1,756 13,300 65·0	$ \begin{array}{r} $	1114 1,556 13,150 69-5	1,386	113 1,397 13,090 69-6	1,390 13,080 63.3
burning hydrogen in dry fuel. 52. (a) Loss due to heat carried awey in dry flue gases 53. (a) " unburned combustible matter in refuse 54. (a) " " carbon monoxide 55. (a) " radiation, errors, and unaccounted for		2·3 5·9 9·5 0·8 14·3	2·3 5·8 9·9 0·8 15·3	2·3 5·8 9·9 0·4 14·7	2·2 6·4 11·8 1·7 12·6	2·2 5·8 14·2 1·6 12·4	2·3 5·9 11·1 1·1 13·8	2·1 3·1 20·1 2·5 15·5	$\begin{array}{c} 2 \cdot 2 \\ 5 \cdot 3 \\ 14 \cdot 1 \\ 1 \cdot 3 \\ 14 \cdot 1 \end{array}$	2·3 7·3 11·3 0·9 13·2	2·3 9·0 9·4 0·5 12·3	2·3 9·6 5·9 0·9 11·8	11·2 5·5 0·9	2·5 11·8 4·5 0·9 10·7	2.5 13.8 4.4 0.4 10.6
56. (a) Percentage, equivalent to total calorific value of 1 pour value	%		100.0	100·0		100·0	100-0	100.0	100.0	100 · 0	100.0	100 - 0	100.0	100.0	100-0

a The data given for Trial No. DS-X5 are the averaged results obtained for five repeat tests, all of which very closely approximated each other in value.

b Average of two tests only; totals, therefore, are not necessarily exact.

c As the normal refuse recovered during first four days of trial was not available for chemical analysis after having been screened, the values reported for items 27(a) and (b) are assumed to be the same as the values reported for items 38(d) and (e) in the "efficiency" part of the trial.

d For Trials No. DS-61-62 only, the dumpings recovered at conclusion of the first four days of trial were not available for chemical analysis after having been screened, therefore, the values reported for items 28(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) in the "efficiency" part of the trial.

e Therm=100,000 B.T.U. Due to the assumed analysis (see notes c and d, the values reported for item 29 (e) are approximate only, for exact values see item 40(e).

f Values determined by continuously operated CO₂ recorder.

g Based on the average value obtained for item 40(e) trial No. DS-X5.

h For an explanation of the terms "standard" trial, "observation" trial, and "efficiency" trial see page 3.

Detailed Data and Results of Fourteen Burning Tests Made on Various Anthracite Coals and Cokes in Comparison with a "Standard" Sample of American Anthracite in a Domestic Hot-Water Boiler

Detailed Data and Results of Fou	urteen Burning		on Variou	s Anthracit	e Coals and	l Cokes in C	Compariso	a with a "	Standard"	Sample of			in a Dome	estic Hot-Wa	tter Boiler	t.
Fuel	Kind Sample No.	"Standard" Sample		Anthracite				16-36 B	1-35	11-35 By-product	Cokes	27-31			emperature Co from	
Item	Name or area	American Anthracite Stove		Welsh h Cobbles		French do-China h	By-product Western On Range	COKE	Coke, Quebee Stove	Eestern Or Stove	ntario Nut	Petroleum C	lump	Washed b	ump	Unwashed lump
	Column No.	1	50-lb.	3 75-lb. breken on grat		5 I-Ib, broken irebrick on	6		8	9	10		0-lb. broken firebrick on grate	13	14	15
Section "A", Items 1 to 20 inclusive—Ge: Trial number. Type of trial (S-Standard, O-Observation, E-Efficien Date of trial	ney),	DS-N5 a S 10-9 to 1-12/34	on grate DH-144 S 14-19/6/37	E 29-30/6/37 30)-6 to 1-7/37	E 26-31/7/37 15	8	D1[-139 8 -16/1/87 120	DS-89 S-11/9/25 1-	DS-95 8 4-19/10/35 120	DS-96 S -10 to 2-11/35 120	EDS-94 E 10-11/10/35 24	EDS-93 E 8-9/10/35 24	DS-92 S 30-9 to 5-10/35 120	EDS-90 E, 24-25/5/35 24	EDS-91 E 26-27/9/3 24
Date of trial, continuous total. Number of fire periods during 24-hour day. Intervals between firings (24-hour day). Average rate of combustion, per cent of rated capacity	hrs.	120 9, 5, and 10 52	120	24 9, 5, and 10 52	24 3 0, 5, and 10 9 52	120 3 0, 5, and 10 9,	3	3	3	3	3	3 9, 5, and 10 52	9, 5, and 10 52	9, 5, and 10	9, 5, and 10 52	9, 5, and 1 52
Furnace: (a) Average rating, feet of water radiation (b) Naminal grate area	sq. ft.	880 3 · 4 32 · 4	880 3 · 4 32 · 4 5 · 4	880 3 · 4 32 · 4	880 3 · 4 32 · 4 5 · 4	880 3 · 4 32 · 4	889 3-4 32-4 5-4	850 3 · 4 32 · 4 5 · 4	880 3 · 4 32 · 4 5 · 4	\$80 3 · 4 32 · 4 5 · 4	880 3-4 32-4 5-4	880 3 · 4 32 · 4 5 · 4	880 3 · 4 32 · 4 5 · 4	880 3 · 4 32 · 4 5 · 4	880 3 · 4 32 · 4 5 · 4	\$80 3.4 32.4 5.4
(c) Area of heating surface. (d) Volume, grate to top of firepot. RAW FUEL as FIRED UNLESS OTHERWISE SPI Screen analysis: (Made on a representative portion)	ECIFIED	5.4	5-4	5.4	3.4	5.4	9.3									
received for test). (a) Through 18" on 12" round hole screen (b) " 12" " 10" " " " " " " " " " " " " " " " "		-	-	-	-	-		-			-	80-1	- 80·1	6.0	- - - 6 · 0	11.4
(e) (f) (f) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g	70 60 60 60 60 60 60 60 60 60 60 60 60 60	- 49·5 42·0 6·5	10·0 34·9 36·5 9·9 4·3	10·0 34·9 36·5 9·9 4·3	10·0 34·9 36·5 9·9 4·3	$\begin{bmatrix} 0.5 \\ 40.9 \\ 42.1 \end{bmatrix}$	20.5	11.4 47.2 37.8	$ \begin{array}{c} 0.0 \\ 46.3 \\ 46.0 \\ 5.9 \end{array} $	1·0 32·4 38·3 23·4	12·4 59·7 23·0	4·0 2·7 3·2 4·9 2·2	$ \begin{array}{c c} 4 \cdot 0 \\ 2 \cdot 7 \\ 3 \cdot 2 \\ 4 \cdot 9 \\ 2 \cdot 2 \end{array} $	$\begin{array}{c c} 49 \cdot 6 \\ 33 \cdot 1 \\ 5 \cdot 1 \\ 2 \cdot 4 \\ 0 \cdot 6 \end{array}$	$ \begin{array}{r} 49.6 \\ 33.1 \\ 5.1 \\ 2.4 \\ 0.6 \end{array} $	48· 28· 4· 2· 0·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	60 60 60 60 60 60 60 60 60 60 60 60 60 6	0·5 0·5 0·5 0·3	1.0 0.7 0.7 0.6 1.4	1.0 0.7 0.7 0.6 1.4	1·0 0·7 0·7 0·6 1·4	$ \begin{array}{c c} 5 \cdot 6 \\ 2 \cdot 3 \\ 1 \cdot 1 \\ 6 \cdot 5 \\ 1 \cdot 0 \end{array} $	66-9 9-6 0-6 0-2 2-2	1.0 0.4 0.2 0.2 0.9	0·6 0·3 0·1 g 0·1 g 0·7 g	3·2 0·7 0·2 g 0·1 g 0·7 g	2.7 0.3 g 0.1 g 1.8 g	0.6 0.3 g 0.3 g 1.7 g 5.49	0.6 0.3 g 0.3 g 1.7 g 5.49	0-5 0-4 g 0-3 g 2-0 g 5-00	0-5 0-4 g 0-3 g 2-0 f 3-00	0.0 0.0 3.0 3.0
		0·2 2·06 - 92·8	2·8S - 85·3	2·88 - 85·3 81·6	2-88 - 85-3 81-6	1.47	0·91 - -	1-60 - -	2.05	1.84	1.21			-	-	-
(3) $\frac{3}{3}$ " to $\frac{4}{4}$ " (""") "" (q) "Friability per cent" by tumbler test on: (1) $\frac{1}{4}$ " (square hole serven) size		29.8	81·6 30·1	30-1	30-1	_	-	-	_		-	52.9	52.9	41·5 3·1	41·5 3·6	41.
Proximate analysis: (a) Meisture. (b) Ash (c) Volatile matter. (d) Fixed embon (by difference).		2·9 9·5 5·1 82·5	1·7 4·4 6·7 87·2	1·7 4·6 8·1 85·6	1·7 4·6 8·1 85·6	3-8 5-0 3-9 87-3	0·4 9·4 0·6 89·6	$ \begin{array}{c c} 0 \cdot 2 \\ 9 \cdot 2 \\ 1 \cdot 0 \\ 89 \cdot 6 \end{array} $	$ \begin{array}{c} 0 \cdot 2 \\ 7 \cdot 7 \\ 2 \cdot 1 \\ 90 \cdot 0 \end{array} $	1·2 9·9 1·1 87·8	4 · 6 10 · 0 1 · 1 84 · 3	1-4 0-5 9-0 89-1	1-5 1-7 9-4 87-4	8·6 9·6 78·7	8-8 9-2 78-4	10 9 76
Ultimate analysis: (a) Corbon. (b) Hydrogen. (c) Ash.		81.9 $ 2.9 $ $ 9.6$	\$7.6 3.3 4.4	87-5 3-3 4-6	87.5 3.3 4.6	87-1 2-0 5-0	87·5 0·8 9·4 0·7	87.8 0.8 9.2 0.7	89 · 6 0 · 4 7 · 7 0 · 9	85·8 0·7 9·9 0·7	83.0 0.9 10.0 0.6	90.0 3.8 0.5 1.6	88·5 3·8 1·7 1·7	70.7 2.7 8.6 2.1	79·1 2·7 8·8 2·1	78 2 10 2
(d) Sulphur (c) Nitrogen (f) Oxygen (by difference)		0.9 0.9 3-8	0.9 1.1 2.7	0·8 1·1 2·7	0·8 1·1 2·7	0·9 0·6 4·4	1·1 0·5	0·9 0·6	1.0 0.4	1·3 1·6	$\begin{array}{c} 1 \cdot 0 \\ 4 \cdot 5 \end{array}$	1.5 2.6	1.5 2.8 14,900	1.5 5.4 12,840	1.5 5.8 12,780	12,510
Calcrific value: (if) As fired, gross value. (b) Dry, gross value. (c) Gas used for kindling (assumed) Vuol ratio, fixed carbon/volatile matter.	B.T.U./cu. ft.		14,290 14,540 500	14,290 14,540 500 10-57	14,290 14,540 500 10-57	13,160 13,680 500	12,900 12,950 500	12,850 12,880 500	12,850 12,850 500	12,640 500	12,630	15,410 500 9,90 23-9	15,140 500 9-30 23-7	13,250 500 -	13,260 500	12,990 500 - -
Carbon-hydrogen ratio (a) Caking properties as judged by "coke button" (b) Swelling index = The cent swelling × 100 (c) Swelling index = The control of t		Non-caking	Non-caking	26.5 Non-caking	-	Non-caking	-		-	-	-	-	- - -		-	-
(a) Caking index by "Gray" method	°F.	2,745 2,850	2,140 2,340 9,500	2,175 2,330 2,550	2,175 2,330 2,550	1,980 2,060 2,485	2.660 2.760 2.860	2,450 2,710 2,800	2,425 2,510 2,630	2,670 2,780 2,960	2,680 2,780 2,870	1,900 2,005 2,040	1,900 2,000 2,030	1.920 2,010 2,150	2,020 2,090 2,230	1,900 1,980 2,120
(c) Fluid temperature or melting point. Apparent specific gravity, as received in bulk. Weight per cubic foot, as received in bulk.		$\begin{array}{c c} 2,905 \\ \hline 1.47 \\ 52.4 \\ 38.2 \end{array}$	2,500 1-42 48-7 41-1	2,550 1-42 48-7 41-1	2,550 1.42 48.7 41.1	2,485 1-69 59-0 33-9	2,860 0.90 27.8 71.9	2,800 0.90 23.4 75.8	0·S9 26·1 76·6	1-05 32-0 62-5	1.05 85.8 55.9	0.71 0.821 24.8 80.6	0·71 0·821, 24·8 80·6	0·88 26·4 75·8	0.88 26.4 75.8	27 73
. Volume per ton of 2,000 nounds, as received in bulk Grindability index by Hardgrove method	Observation" Test	28.5	50.0	50.0	\$0.0	-	-	7.7	90	96	96	Hear		96	-	-
Duration of "observation" trial. Fuel fired: (a) City gas used for kindling. (b) Fuel equivalent to gas used. (c) Quantity dering trial.	eu. ft.	96 100 3-8 708	96 200 7·0 691	-	-	-	96 100 3-9 713 716-9	96 100 2.0 708 711.9	100 3 · 9 701 764 · 9	100 4 · 0 773 777 · 0	100 4 · 1 708 802 · 1	- - -	-	100 3.9 755 758-9	-	
(d) Total, including gas equivalent		711-8 Nil 66-9	698-0 Nil 15-5	-	-		716-9 Nil 47-8	Nil 48+8	Nil 411	Nil 672 672 672	Nil 66	=	- - -	45 45 464		-
(b) From ash-pit during trial (c) Total, during trial (d) As dumped residual fire at end of trial Screen Examination of Refuse	lb.	80-6 80-6 66-9	15.5 106.8	-	-	~	47·8 65·5	49.8 63.5	41½ 70‡	80½	66 81 Nil	-	-	833 833	_	
(d) "1". " " " " re	sn-put refuse lb. " lb. esidual fire lb.	Nil 41 47 48 b	Nil 1 12 24	-	-	-	Nil 2½ 4 74 24 17	Nil 325 436 215	$\begin{array}{c c} \mathbf{Nil} & & \\ 2\frac{1}{4} & & \\ 2\frac{3}{4} & & \\ 1\frac{3}{4} & & \\ 7\frac{1}{4} & & \\ \end{array}$	Nil 1½ 4 1¾ 1¾	$\begin{array}{c} \mathbf{N} 1 \\ 2^{\frac{1}{2}} \\ 7 \\ 2^{\frac{1}{4}} \\ 14 \end{array}$	-		1 1 5 ½ 2 ½	-	-
(d) " 1" " " " " " " " " " " " " " " " " "	sh-pit refuse 1b.	14 b 14 b 35 81	6 1 0		-	-	Nil	114	7 \\ 1 \\ 2 \\ 2 \\ 5 1	9 8	3 <u>{</u> 5 }	-	-	10	-	-
	esidual fire lb.	8½ 44½ b 21½ b 80¾ b	40 24½ 64¾		- 1		Nil 44 50	32 34 39 7 53	51 ² 3 581	434 564 837 772	32½ 33¼ 74⅓	-	- - -	364 163 561	= =	-
i. Refuse—(through ½" screen size); (a) Recovered from ash-pit refuse (b) (c) Total recovered.	,	461 171 b 662 b	123 383 514	era era	-	-	35½ 11 46½	$\frac{38\frac{1}{2}}{10\frac{1}{4}}$	341 113 46	49½ 12 61½	474 104 584	=	-	41 223 633	-	-
Estimated Corrections for Refuse, Dumped Res 7. Proximate analysis of refuse recovered during trial: (a) Ash c	%	46·5 53·5	40·5 59·5	-	-	-	78·7 21·3	84·1 15·9	70·4 29·6	73 · 6 26 · 4	83·3 16·7	=	-	62-3 37-7	-	-
(b) Combustible c (by difference)		22·7 1·5	6-9 2-1 91-0	-	-	-	23·3 1·8 74·9	18-4 1-0 80-6	16-7 1-2 82-1	19·4 1·0 79·6	22-9 0·9 76-2	-	-	17.6 4.6 77.8 11,660	-	
(c) "fixed carbon d (by difference) (d) Dry catorific velue, gross d. (e) Sensible heet, total estimated. (f) "coal equivalent (Items (e) and (f) based on items 23(a))	plus 23(d)).	10,860 41,368 3·1	12,829 80,438 5.6	-	_	-	9,550 33,602 2-6	10,970 32,576 2·5 7·8	11,660 36,038 2.8 10.1	11,250 41,297 3·3 11·8	10,690 41,553 3·4	- - -	-	42,964 3·3 13·6		-
(g) Portion allocated to ash-pit loss. (h) "not chargeable to test	lb.	27·0 53·6 51·4	7·1 90·7 91·8	-	-	-	52·4 45·8 668·5	55·7 52·9 656·5	60-2 60-6 701-5	68·7 69·0 704·7	$67 \cdot 2 \\ 69 \cdot 2$ $729 \cdot 5$		-	70·2 70·5 685·1	Parameter (1998) - And Address of	_
(a) Total for trial, calculated. (b) Per hour. (c) Per square foot of grate surface per hour. (d) "heating"" (e) "therm e delivered to cooling water	Ib.	657·3 6·8 2·0 0·21 9·94	600 · 6 6 · 3 1 · 8 0 · 19 8 · 46	-		-	7-0 2-0 0-21 10-30	6.8 2.0 0.21 9.79	7·3 2·1 0·23 10·74	$ \begin{array}{c} 7 \cdot 3 \\ 2 \cdot 2 \\ 0 \cdot 22 \\ 10 \cdot 27 \end{array} $	$7 \cdot 6$ $2 \cdot 2$ $0 \cdot 23$ $10 \cdot 62$		-	7·1 2·1 0·22 10·17	-	
0. Total ash in fuel used, from fuel analysis	Ib,	62·7 93·9 14·3	26·4 22·6 3·8	-	-	-	62·7 60·9 9·1	60·3 57·6 8·8 176	53·9 51·4 7·3 146	69·7 79·3 11·3 226	72-9 79-8 10-9 218	-	-	58·9 59·9 8·8 176	-	-
(b) Per cent of fuel used			76	-	-	-	182		136	130	130		_	130		-
(a) Flow by thermograph			133 104	-	-	-	115 82 -	114 80	108 68	101	100	-	-	102	-	
(a) Average temperature, inlet by thermograph (b) " outlet " (c) " difference (d) Total used during trial, corrected (e) Heat delivery per hour (f) " pound of fuel used	B.T.i	J. 68,501	41 173,230 73,984 11,826		-	-	38 170,757 67,591 9,706	39 1 71 , 889 69 , 830 10, 211	106 38 171,877 68,035 9,311	40 171,492 71,455 9,734	40 171,783 71,576 9,419	-	-	39 172,794 70,198 9,836	-	
(1) point (1) (2) (3) 4. Flue gases: (a) Average temperature by recorder	°F	. 300	335	-	-	_	320 9.9	312 8·5	312 12-1	327 12·6	320 13·6	1	-	337 12·0	-	
35. Average: (a) Draught over fire by recording gauge (b) Room temperature, by thermograph (c) Outdoor temperature, by thermograph	in. W.	G. 0.00 67 53	0 0 0 74 64	3	-		0.030 72 22	0·032 71 31	0.015 65 59	0.018 72 51	0·011 76 56	-	=	0.02 65 47	22 =	
Section "C", Items 36 to 56 (a) Inclusive—One-Da			24	24	24	120	24	24	24	24	24	24	24	24	24	
37. Fuel fired: (a) City gas used for kindling. (b) Fuel equivalent to gas used. (c) Quantity during trial (d) Total, including gas equivalent.		247	232	232	$\begin{array}{c} 200 \\ -7.0 \\ 232 \\ 239.0 \end{array}$	300 11·4 970 981·4	102 4·0 243 247·0	100 3·9 235 238·9	100 3.9 244 247.9	100 4·0 237 241·0	100 4·1 237 241·1	100 3·3 206 209·3	287 9 · 6 191 200 · 6	229	220	9
38. Refuse removed: (a) Through fire-door during trial (b) From ash-pit (c) Total, during trial (d) Dry analysis of total refuse recovered, ash	1b	14.6 14.6	1.8	1.0	Nil 1·3 1·3 24·3	Nil 9·0 9·0 65·5	Nil 6·3 6·3 78·7	Nil 7·8 7·8 84·1	Nil 5·0 5·0 70·4	Nil 7·8 7·8 73·6	Nil 10-0 10-0 83-3	Nil 0 1 0 1 -	Nil 2·8 2·8 6·9	13	Nil 12.5 12.5 62.7	5
(e) " " " " COI	mbustible (by	53.5	59.5	78-9	75·7 90·5	34·5 171·5	21·3 73	15·9 70·5	29 · 6 79 · 0	26·4 77·8	16·7 64·5	- 60 J	93·1 43·0	60.3	47-1	.5
(a) Dry analysis, ash.	· ·	6 1 1.0	2.1	$2 \cdot 7$	8.5 3.1 88.4 13,100 84,902	21.5 2.3 76.2 11,220 113,630	23·3 1·8 74·9 9,550 37,449	18·4 1·0 80·6 10,970 36,167	16·7 1·2 82·1 11.660 40,527	19·4 1·0 79·6 11,250 39,911	$ \begin{array}{r} 22.9 \\ 0.9 \\ 76.2 \\ 10,690 \\ 33,089 \end{array} $	1.3 4.0 94.7 14,350 30,780	95.6 14,040 47,581	4+6 77-8 11,660 30,934	75- 11,350 24,368	10 25
(g) Portion allocated to ash-pit loss(h) "not chargeable to test	(a) plus 38(j) j.	20·4 60·5	4·9 5·7 79·8	5·9 26·7 63·3	5.9 17.9 72.6 69.4	8·6 46·4 125·1 128·8	2·9 14·6 58·4 51·1	2·8 8·7 61·8 59·4	$ \begin{array}{c c} 3 \cdot 2 \\ 11 \cdot 3 \\ 67 \cdot 7 \\ 68 \cdot 2 \end{array} $	3·2 11·4 66·4 66·7	2·7 11·0 53·5 55·1	0 60 57·1	0·8 42·2	9·8 2 50·5	9. 37.	.9
(i) Fuel equivalent of portion not chargeable 40. Equivalent fuel used: (a) Total for trial, calculated	II	o. 189-1	1 160·6	172·3 7·2	163·7 6·8 2·0	844·0 7·0 2·1	193 · 0 8 · 0 2 · 4	176·7 7·4 2·2	$176.5 \\ 7.4 \\ 2.2$	$\begin{array}{c} 171 \cdot 1 \\ 7 \cdot 1 \\ 2 \cdot 1 \end{array}$	183·3 7·6 2·2	150·2 6·3 1·8	157·6 6·6 1·9	179·8 7·5 9 2·2	183 · 7 · 2 · 2 ·	·9 ·7 ·3
(c) "square loot of grate surface per hour. (d) ""heating "". (e) "therm e delivered to cooling water (f) To equal one ton of stove-size American s	anthracite to	o. 0-2 o. 11-5 ons 1-6	24 0·2 52 9·5 00 0·8	$\begin{array}{c cccc} 1 & & & 0.22 \\ 4 & & & 10.37 \\ 3 & & & 0.90 \end{array}$	0-21 10-00 0-87	0·22 10·05	0·25 11·72 1·02	0·23 10·85 0·94	0·23 10·74	0·22 10·45 0·91 16·9	0.24 11.16 0.96 18.2	0·1 9·2 0·8	9 0·2 9·4 0 0·8	20 49 10·9 84 0·9	23 99 95 95 0-	·24 ·21 ·97
41. Total ash in fuel used, from fuel analysis		1	0 7.5	27.7	7·5 19·2 11·8 236	42·1 55·4 6·6 132	18·0 20·9 10·9 218	16-2 16-5 9-3 186	13·5 16·3 9·3 186	19·2 11·3 226	21·0 11·5 230	0	3·6 2·4 48	6 22.8	8 22-	·4 ·3
43. Circulating water, average temperature: (a) Flow	•	F. 129	132 105	135 109	134 108	139 113	114 86	112 85	130 104	124 98	125 99	124 98	126 99	126 99	129 103	
(d) Total used during trial, corrected		F. 38- b. 42,794	5 106.4 4 39.0 43,152	110·1 39·4 42,174	70-8 109-0 38-2 42,899	75.6 114.5 38.9 215,823	38·0 76·9 38·9 42.324	38·2 75·8 37·6 43,307	65·2 103·2 38·0 43,244	54·4 92·1 37·7 43,417	53·5 91·7 38·2 43,210 68,776	93 · 2 37 · 9 43,066	94 · 1 38 · 3 42,932	1 95-7 7 38-4 42,604	7 101	1·1 3·2) 45
(c) Heat delivery per hour (f) "pound of fuel used 45. Flue gases: (a) Average temperature.	B.T	68,437 S.U. 8,684 F. 310	70,122 10,479	69,236 9,644 321	68,281 10,011	69,963 9,947 304	68,600 8,531 308	67,848 9,215 299	68,470 9,310	68, 201 9, 566	68,776 9,005	68,008 10,867	69,228 10,542	68,167 9,099	8,924	1 8
(b) Dry volumetric analysis, carbon dioxide (c) " " oxygen (d) " " carbon monoxic	deifference)	76 13. 6. 77 0. 80.	4 10.4 2 8.4 3 0.4 2 80.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	13·1 6·2 0·0 80·7	11.9 7.7 0.1 80.3	$ \begin{array}{r} 9 \cdot 7 \\ 9 \cdot 9 \\ 0 \cdot 2 \\ 80 \cdot 2 \\ 21 \cdot 5 \end{array} $	8.9 10.8 0.1 80.2 23.8	302 11·4 7·7 0·6 80·3 18·2	$ \begin{array}{c c} 13 \cdot 1 \\ 6 \cdot 7 \\ 0 \cdot 3 \\ 79 \cdot 9 \\ 15 \cdot 6 \end{array} $	13·2 6·6 0·2 80·0 15·3	8·3 0·1 80·4	5.0 0 80	0 4 · · · · · · · · · · · · · · · · · ·	7 5 2 0 4 80	3.7 5.3 0.1 0.9 3.7
46. Excess air	in. V	% 41 W.g. 0	-	48 016 0-00	41 0.01	56 0.030	87 0 0.03	103 7 0-03						.008 0-	007 0	3 0·011 0·011
40 A supposed		PF. 68 % 64 PF. 55	72 64 58	72 55 60	70 64 60	77 69 05	69 28 21	70 31 15	61 49 51	68 41 53	74 49 53	69 45 54	66 36 44	66 40 42	52 53	7 2 3
(a) Room temperature. (b) "relative humidity		Hg 29		923 29-4	85 29-6	18 29·818 97·5	8 29.82		96.9	96 29·73		994 29.	921 30· 0 j 97·	·169 29· ·8 94·	·703 30	0·014 4·8 9·8
49. Average. (a) Room temperature. (b) "relative humidity. (c) Outdoor temperature. (d) Barometric pressure. 49. Efficiency: (a) Grate. (b) Overall thermal					70-1	10.0	30.1		,			1		1	1	1
(a) Efficiency: (a) Grate (b) Overall thermal HEAT ACCOUNT PER POUND OF FUEL USED IN B 50. Heat delivered to cooling water	3.T.U. AND PER CEI	65 NT T.U. 8,684	.8 73.		10,011	9,947	8,531	9,215	9,310	9,566	9,005	10,867	10,542			1
49. Efficiency: (a) Grate (b) Overall thermal Heat Account Per Pound of Fuel Used in B 50. Heat delivered to cooling water 51. Loss due to steam formed from moisture in fuel by burning hydrogen in dry fuel. 52. Loss due to heat carried away in dry flue gases. 53. " unburned combustible matter in ref. 44. " " " crobon monoxide."	B.T.U. AND PER CER and that formed B. B. Susc. B. B.	F.U. 8,684 F.U. 299 T.U. 783 T.U. 1,400 T.U. 140	10,479 328 1,292 411 Nil	9,644 9,644 345 914 1,864 Nil	10,011 345 901 1,305 Nil	207 970 332 72	1,233 339 17	1,308 218 10	42 1,053 384 441	73 951 437 188	94 874 281 121	395 1,123 0,81	396 865 324 243	283 774 704 102	283 803 67 58	3 19 1 155
49. Efficiency: (a) Grate (b) Overall thermal. HEAT ACCOUNT PER POUND OF FUEL USED IN B 50. Hent delivered to cooling water. 51. Loss due to steam formed from moisture in fuel by burning hydrogen in dry fuel. 52. Loss due to heat carried away in dry flue gases. 53. " " unburned combustible matter in ref. 54. " " " carbon monoxide. 55. " " radiation, errors, and unaccounted f. 50. Total calorific value of 1 pound of fuel as fired, g.	3.T.U. AND PER CER and that formed B.	65 NT T.U. 8,684 T.U. 299 T.U. 783 T.U. 1,400 T.U. 140 T.U. 1,824 T.U. 13,190	10,479 10,479 328 1,292 411 Nil 1,780	9,644 9,644 345 914 1,864 Nil 1,523 14,299	10,011 345 901 1,305 Nil 1,728 14,290	207 970 332 72 1,632	\$3 1,233 339 17 2,697	83 1,308 218	1,053 384 441 1,600 12,830	73 951 437 188 1,285	94 874 281 121 1,675	395 1,123 0 81 2,744 15,210	396 865 324 243 2,530 14,900	283 774 704 102 1,878	283 803 671 54 2,033 12,784	3 99 11 55 88 80 69 · 8
49. Efficiency: (a) Grate (b) Overall thermal. Heat Account Per Pound of Fuel Used in B 50. Heat delivered to cooling water. 51. Loss due to steam formed from moisture in fuel by burning hydrogen in dry fuel 52. Loss due to heat carried away in dry fue gases. 53. " unburned combustible matter in ref 54. " " cerbon monoxide 55. " rediation, errors, and unaccounted for the cooling water in the following production of the cooling water in the following production of	B.T.U. AND PER CER and that formed B. B. B. b. fuse. B. B. gross value. B. tem 49(b)) in fuel and that	7. U. 8,654 T. U. 209 T. U. 783 T. U. 1,400 T. U. 1,400 T. U. 1,524 T. U. 13,190 65 65 65 65 65 65 65 65 65 65 65 65 65	10,479 1292 11,292 11,1780 14,290 14,290 18,3 19,3 19,3 19,3 19,3 19,479	3 67-5 9,644 345 914 1,884 Ni1 1,523 14,299 3 67-5 3 2-4 0 0 4 9 138-7	10,011 345 901 1,305 Ni1 1,728 14,290 70-1 2-4 6-3 9-1 Ni1 Ni1	207 970 332 72 1,632 13,160 75.6 1.6 7.4 2.6 0.5	S3 1,233 339 17 2,697 12,900 66-1 0-7 9-6 2-6 6-1	\$3 1,308 218 10 2,016 12,850 71-7 0-6 10-2 1-7 0-1	42 1,053 384 441 1,600 12,830 72-6 0-3 8-2 3-0 3-4	73 951 437 188 1.285 12.500 76-5 0-6 7-6 3-5	94 874 281 121 1,675 12.059 73. 6.7. 2.	395 1,123 0,81 2,744 15,240 7 71- 8 2,7- 3 0,0	396 865 324 243 2,530 14,900 4 70 6 2 4 5 0 j 2 5 1	283 774 704 102 1,878 12,840 -S 70 -6 2 -8 6 -8 5 -12 5	28: 808 677 55; 2,033 12,789 -9 69 -2 -4 -5 -5	3 19 11 55 88

a The data given for trial No. DS-X5 are the averaged results obtained for five repeat tests, all of which very closely approximated each other in value. (See Table A).

b Average of two tests only; totals, therefore, are not necessarily exact. (See Table A).

c As the normal refuse recovered during first four days of trial was not available for chemical analysis after having been screened, the values reported for items 25(a), do (c), and (d) in the "efficiency" part of the trial.

d Excepting trial No. DS-X5 (see Table A), the dumpings recovered at conclusion of the first four days of trial were not available for chemical analysis after having been screened, therefore, the values reported for items 28(a), (b), (c), and (d) in the "efficiency" part of the trial.

c Therm=100,009 B.T.U. Due to the assumed analysis (see notes c and G), the values reported for items 29(a), (b), (c), and (d) in the "efficiency" part of the trial.

f Value for trial No. DS-X5 only, determined by continuously operated CO₂ recorder (see Table A), remaining values determined by hand-operated Orsat making one determination per hour from 9 a.m. to 11 p.m. daily, night determinations (11 p.m. to 9 a.m.) not made except for trials prefixed with letters DHI for which one determination was made nightly on a composite sample taken from 11 p.m. to 9 a.m.) and made except for trials prefixed give the letters of the trial of the Weish and Frome Indo-China anticities and pertode the Weish and Frome Indo-China anticities and pertode the Weish and Frome Indo-China anticities and pertode the determined supports of trial No. DB-94. See page 15 for explanation.

I Apparent specific gravity—S'-1' tump 0-71; hupports gravity—S'-1' tump 0-71; hupports

TABLE C Department of Mines and Resources
Bureau of Mines—Fuel Research Laboratories, Ottawa Canada

Detailed Data and Results of Seventeen Burning Tests Made on Various American and Eastern Canada Coals in Comparison with a "Standard" Sample of American Anthracite in a Domestic Hot-Water Boiler

Detailed Data and Result	Kind	"Standard" Sample	Semi-bita		Bitum	inous						Eas	etern Canada C Bituminous						
Fuel	Name or area	3-34 American Anthracite	Fulton seam, Pennsylvania	Pocahontas No. 4 seam, W. Virginia	Upper Free- port seam, Pennsy Ivania	Pittsburgh No. 8 seam, Ohio	7-35 Sydney area, Nova Scotia	Sydney Nova	y area, Scotia	12-34 Springhill area, Nova Scotia Lump	Sydney area, Nova Scotia	Pictou area, Nova Scotia	9-34 Pictou area, Nova Scotia Lump	7-34 Sydney area, Nova Scotia	Joggins area, Nova Scotia	Pictou area, Nova Scotia Screened lump	Inverness area, Nova Scotia	3-38 Inverness area, Nova Scotia Lump	Minto area, New Brunswick
Item Section "A", Items 1 to 20 inclusive—Geni	Size, etc. Column No.	Stove 1	Lump 2	Egg 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Trial number Type of trial (S-Standard, O-Observation, E-Efficiency, 3. Date of trial Duration of trial, continuous total. Number of fire periods during 24-hour day	hrs.	120	DS-78 S 29-4 to 4-5/35 120	DH-132 S 25-30/1/37 120	DS-76 S 8-13/4/35 120	DS-75 S 1-6/4/35 120	DS-80 S 10-15/6/35 120	DS-65 S 7-12/1/35 120	24 3	DS-71 S 25-2 to 2-3/35 120	120 3	120	DS-68 S 28-1 to 2-2/35 120	DS-66 S 14-19/1/35 120	DS-70 S 18-23/2/35 120 3 9, 5, and 10	DH-200 8 3-8/10/38 120	DS-79 S 27-5 to 1-6/35 120	DH-201 S 17-22/10/38 120	DS-72 S 4-9/3/35 120
5. Number of fire periods during 24-hour day. 6. Intervals between firings (24-hour day). 7. Average rate of combustion, per cent of rated capacity of 8. Furnace: (a) Average rating, feet of water radiation. (b) Nominal grate area.	sq. ft.	9, 5, and 10 52 880 3.4	9, 5, and 10 52 880 3.4	9, 5, and 10 57 880 3.4	51 880 3·4	9, 5, and 10 52 880 3.4	9, 5, and 10 52 S80 3.4	9, 5, and 10 47 880 3.4	9, 5, and 10 52 880 3.4	9, 5, and 10 53 880 3-4	51 880 3 · 4	880 3·4	9, 5, and 10 52 880 3-4 32-4	9, 5, and 10 52 880 3.4	880 3 · 4 32 · 4	880 3.4 32.4	880 3·4 32·4	9, 5, and 10 56 880 3 · 4 32 · 4	52 880 3 · 4
(c) Area of heating surface. (d) Volume, grate to top of firepot. RAW FUEL AS FIRED UNLESS OTHERWISE 9. Screen analysis: (Made on a representative portion of "I	cu. ft.	32·4 5·4	32·4 5·4	32·4 5·4	32·4 5·4	32·4 5·4	32·4 5·4	32·4 5·4	32·4 5·4	32·4 5·4	32·4 5·4	32·4 5·4	5-4	32·4 5·4	5.4	5.4	5-4	5.4	32·4 5·4
received for test). (a) Through 18" on 12" round hole screen. (b) " 12" " 10" " " " " " " " " " " " " " " " "	% % % %	-	- - - - 0.0	- - - -	- - - - 1·5	18.5	- - - - 8.8	- - - - 6.7	- - - - 6.7	- - - - 17-6	8.0	- - - - - 11·3	- - - 20·3	- - - - 9·4	- - - - 7.7	5.6 6.4 10.9 21.3	- - - 7·0	2·7 9·6 7·7	3.3
(f) " 4" " 3" " " " " (f) " 3" " 2" " " " " (f) " 2" " " " " " (f)	% 	49·5 42·0 6·5 0·5 0·5	0·0 26·3 22·8 18·9 5·4 4·7	12·0 60·1 18·6 3·6 0·7 0·7	$ \begin{array}{r} 13 \cdot 7 \\ 36 \cdot 5 \\ 24 \cdot 9 \\ 11 \cdot 3 \\ 3 \cdot 0 \\ 2 \cdot 5 \end{array} $	17·3 29·8 14·8 11·5 3·2 1·8	6.3 11.0 10.7 21.0 10.9 10.2	7·2 15·8 12·7 12·1 6·9 8·3	$7 \cdot 2$ $15 \cdot 8$ $12 \cdot 7$ $12 \cdot 1$ $6 \cdot 9$ $8 \cdot 3$	5.6 11.3 12.7 21.4 7.6 6.4	5.6 9.6 7.7 12.9 13.5 18.4	4.5 10.6 13.3 24.0 12.6 8.5	$13 \cdot 1$ $16 \cdot 8$ $11 \cdot 4$ $10 \cdot 8$ $5 \cdot 9$ $6 \cdot 2$	$\begin{array}{c} 8.5 \\ 16.7 \\ 13.8 \\ 17.9 \\ 10.0 \\ 7.0 \end{array}$	6.5 10.4 10.7 17.7 13.5 10.5	12·2 13·2 7·3 8·2 3·8 3·6	8·1 16·4 13·0 18·0 10·8 9·5	12·7 23·6 16·9 14·3 3·7 3·0	3·3 5·2 15·4 16·8 21·2 12·7 10·0
(a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d		0.5 0.3 0.2 2.06	5-3 g 5-5 g 11-1 g 1-42 76-0	0.7 0.7 2.9 2.31	1.8 g 1.5 g 3.3 g 2.10	1.0 g 0.7 g 1.4 g 2.73	7.6 g 5.6 g 7.9 g 1.60	8.8 g 7.9 g 13.6 g 1.55	8.8 g 7.9 g 13.6 g 1.55	5-4 g 4-4 g 7-6 g 2-00	11.1 g 6.0 g 7.2 g 1.44	5-1 g 3-6 g 6-5 g 1-72	5·2 g 4·1 g 6·2 g 2·36	5.5 g 4.3 g 6.9 g 1.83	8.0 g 6.2 g 8.8 g 1.53	3·2 1·7 2·6 4·08	6·1 g 4·2 g 6·9 g 1·70 89·5	2·4 1·2 2·2 2·87 8S·2	5.8 g 3.8 g 5.8 g 1.51
(1) -4' (round hole screen) coal (2) 2' to 3'' (round hole screen) size (3) 3'' to 4'' ("") (2) "Frieblity per cent" by tumbler test on: (1) 1" to 1\frac{1}{2}" (square hole screen) size		92·8 - 29·8	62.0	78·5 72·0 57·9	79.5 79.5 48.2	84·0 77·0 36·3	77.0 44.3	72.0 70.5 59.0	72·0 70·5 59·0	76.0 72.5 54.3	69 · 0 60 · 5 54 · 4	84·5 82·0 46·2	84 · 5 79 · 5 47 · 6	75·5 63·0 47·4	69 · 0 60 · 5 58 · 0	80·4 77·6 29·1	73 · 0 68 · 0 44 · 8	77 · 6 73 · 6 26 · 6	76.0 69.5 49.5
10. Proximate analysis: (a) Moisture. (b) Ash (c) Volatile matter. (d) Fixed earbon (by difference.	%	2·9 9·5 5·1 82·5	0.7 9.2 15.9 74.2	0·3 9·4 15·8 74·5	1·6 8·2 32·0 58·2	2·4 8·0 40·7 48·9	2·3 4·8 39·0 53·9	1·3 11·0 31·4 56·3	$1 \cdot 2$ $11 \cdot 4$ $31 \cdot 9$ $55 \cdot 5$	1 · 6 9 · 7 31 · 0 57 · 7	$ \begin{array}{r} 3 \cdot 9 \\ 11 \cdot 4 \\ 32 \cdot 6 \\ 52 \cdot 1 \end{array} $	1.5 17.5 25.3 55.7	1·4 17·9 27·6 53·1	3·3 13·9 34·7 48·1	2·4 15·1 36·3 46·2	3.5 11.6 30.5 54.4	5·8 11·4 37·7 45·1	4.5 14.6 34.0 46.9	1.0 21.5 30.1 47.4
11. Ultimate analysis: (a) Carbon. (b) Hydrogen. (c) Ash. (d) Sulphur. (e) Nitrogen.	% %	81-9 2-9 9-6 0-9 0-9	81·3 4·4 9·2 1·4 1·3	82·2 4·2 9·4 0·7 1·2	78·0 5·0 8·2 1·2 1·5	72·6 5·4 8·0 3·7 1·4	78.5 5.8 4.8 2.1 1.7	$74 \cdot 3$ $4 \cdot 9$ $11 \cdot 0$ $4 \cdot 9$ $1 \cdot 3$ $3 \cdot 6$	73·1 4·9 11·4 5·8 1·3	76-1 5-0 9-7 1-6 2-0 5-6	67.9 4.8 11.4 5.2 1.3 9.4	69-6 4-5 17-5 1-2 1-8 5-4	69.9 4.6 17.9 0.7 2.0 4.9	66.7 5.0 13.9 6.5 1.3	65.5 4.8 15.1 6.4 1.9 6.3	71·1 4·9 11·6 1·1 1·9 9·4	63-8 5-3 11-4 7-0 1-2 11-3	62·6 5·0 14·6 7·5 1·4 8·9	62·9 4·1 21·5 8·0 0·8
(c) Nitrogen (by difference)		3.8 13,190 13,580 500	2·4 14,190 14,280 500	2·3 14,060 14,100 500	6·1 13,900 14,130 500	8·9 13,280 13,610 500	7·1 14,100 14,430 500	13,540 13,710 500	3·1 13,250 13,420 500	13,440 13,660 500	12,530 13,040 500	12,370 12,560 500	12,320 12,500 500	12,080 12,500 500	11,880 12,170 500	12,200 12,640 500	11,300 12,000 500	11,090 11,620 500	11.590 11.710 500
13. Fuel ratio, fixed carbon/volatile matter. 14. Carbon-hydrogen ratio. 15. (a) Caking properties as judged by "coke button". Per cent swelling × 100 Der cent dry V.M. at 600°C.		16.30 28.8	4.65 18.5 Good 2,240	4·70 19·4 Geod 450	1 · 80 15 · 4 Good 430	1·20 13·5 Good 224	1·40 13·5 Good 156	1·80 15·0 Good 566	1·75 15·1 Good 566	1.85 15.2 Good 1,008	1.60 14.2 Good 56	2·20 15·5 Good 85	1.90 15.1 Good 0	1.40 13.2 Fair to good 173	1.25 13.8 Good 137	1.78 14.5 Poor -180	1 · 20 12 · 1 Poor -222	1·38 12·5 Poor -210	1.60 15.2 Good 516
(c) Caking index by "Gray" method 16. Ash fusibility: (a) Initial deformation temperature (b) Softening point or fusion temperature. (c) Fluid temperature or melting point.			52 2,740 2,870 2,870	2,150 2,280 2,320	2,610 2,700 2,800	1,900 2,045 2,400	58 1,925 2,015 2,350	1,940 2,025 2,080	1,920 2,020 2,120	2,050 2,170 2,350	54 1,945 2,065 2,200	2,280 2,440 2,530	2,280 2,520 2,575	1,865 2,000 2,050	55 1,930 2,025 2,085	2,400 2,580 2,630	11 1,990 2,090 2,220	1,880 1,970 2,060	1,950 2,040 2,160
(c) Fluid temperature or melting point. 17. Apparent specific gravity, as received in bulk. 18. Weight per cubic foot, as received in bulk. 19. Volume per ton of 2,000 pounds, as received in bulk. 20. Grindability index by Hardgrove method.	lb.	1-47 52-4 38-2 28-5	1·35 50·5 39·6 97·5	1·36 46·7 42·8 94·4	1·31 45·6 43·9 75·0	1·33 46·8 42·7 67·3	$1 \cdot 29$ $47 \cdot 4$ $42 \cdot 2$ $65 \cdot 5$	1·36 53·2 37·6 76·6	1·36 53·2 37·6 76·6	1·35 49·5 40·4 81·7	1·34 50·2 39·8 72·4	1·40 50·8 39·4 79·7	1·36 50·6 39·5 74·9	1·40 51·4 38·9 70·0	1·42 53·6 37·3 73·6	1·38 47·5 42·1 59·8	1·40 52·6 38·0 58·8	1 · 44 54 · 9 36 · 4 59 · 6	1 · 47 53 · 5 37 · 4 70 · 1
Section "B", Items 21 to 35(c) Inclusive—4-Day "Obs 21. Duration of "observation" trial	ERVATION" TEST	96	96 100	96 100	96 100	96 100	96 100	96 100	-	96 100	96 100	96 100	96	96 100	96 100	96 100	96 100	96 100	96 100
(a) City gas used for kindling. (b) Fuel equivalent to gas used. (c) Quantity during trial. (d) Total, including gas equivalent. 23. Refuse removed:	1b. 1b.	708 708 711·8	782 785 · 5 Nil	3·6 781 784·6	3.6 833 836.6	3 · 8 855 858 · 8 Nil	3·5 878 881·5	3.7 826 829.7 Nil	-	3·7 893 896·7	918 922·0 Nil	914 918·0	904 908-1 Nil	908 912·1	4·2 992 996·2 Nil	878 882·1	1,046 1,050-4	1,051 1,055·5	951 955·3 Nil
(a) Through fire-door during trial. (b) From ash-pit during trial. (c) Total, during trial. (d) As dumped residual fire at end of trial. Screen Examination of Refuse	lb.	66·9 66·9 80·6	81·3 81·3 100·3	53.8 56.3 108.5	Nil 70 70 91	72.8 72.8 62.3	Nil 79 79 78·5	131.8 131.8 69		100·5 100·5 71	94 94 78	134 136 92·5	138 138 87·8	97·8 97·8 77·5	138 138 76·3	89·5 95·5 75·3	85 91 · 8 85 · 3	90·5 120·8 80·3	155 155 107·5
(6)	" lb. al fire lb. " lb.	Nil 427 447 h 125 b 142 b	Nil 3 0 44	$2\frac{1}{2}$ 2 $9\frac{1}{4}$ 3 $17\frac{1}{2}$	Nil 2 3½ 2 11 83	Nil 224 334 215 115 934	Nil 114 214 1 114 54	Nil 3½ 4½ 2½ 10½	-	Nil 2½ 5½ 4½ 2½ 14½	Nil 12 6 42 12 142	2 41 121 94 4 328	Nil 32 101 24 13 182	Nil 3 84 154 12 274	Nil 3½ 12½ 16 3½ 35½	6 3 74 54 34 244	62 2 5 112 6 312	301 13 10 151 64 633	Nil 51 195 222 44 512
(e) (f) Totul—(over ½" screen size)—recovered	refuse lb.	2.5.	4½ 7½ 54	5 5 51	2½ 8 51¾ 15	3½ 8 32½ 11½	2 152 351 182	8 19 36	-	4 121 361 13	2½ 10½ 41	44 11 463 153	31 92 591 9	5 5 30 14	124 124 24 131 52	2 7 234 15	54 54 184 154	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 72 392 16
(e) Total—(over \(\frac{4}'' \) screen size)—recovered. 20. Refuse—(through \(\frac{4}'' \) screen size): (a) Recovered from ash-pix fore.		80½ b 46¼ 17¼ b	161 822 651 29 941	17½ 73¾ 45½ 28 73½	771 54 21 75	551 551 145 694	712 572 221 80	971 161 1132	-	65 \\ 76 \\ 14 \\ 91 \\ \ 91 \\ \ \	73½ 14½ 88½	77½ 101½ 17 118½	\$12 1102 15 1252	502 792 172 972	107 <u>1</u> 19 <u>1</u> 126 <u>2</u>	47‡ 70‡ 28 98‡	713 334 1054	40½ 74 22½ 96¼	121½ 25½ 146¾
(b) (c) Total recovered. Estimated Corrections for Refuse, Dumfed Residu 7. Proximate analysis of refuse recovered during trial: (a) Ash c (b) Combustible c (by difference).	JAL FIRE, ETC.	66% b	49·4 50·6	35·4 64·6	51·5 48·5	53·7 46·3	32·9 67·1	32·7 67·3		56·2 43·8	47·5 52·5	75·7 24·3	72·3 27·7	67·3 32·7	69·8 30·2	71·1 28·9	55·7 44·3	66·9 33·1	77.5 22.5
28. Dumped residual fire: (a) Dry analysis, ash d	%	22.7	16·1 2·9 81·0	21.8 3.8 74.4	19·7 4·1 76·2	18·4 10·8 70·8 11.490	12.5 6.5 81.0 12.650	25·3 5·9 68·8 10.620	-	21·0 3·2 75·8 11,290	23·7 7·3 69·0 10,930	37·9 3·2 58·9 8,840	29·4 3·2 67·4 9.870	39·8 6·6 53·6 8,530	31·2 13·3 55·5 10,110	38·1 3·5 58·4 8,430	34·6 8·0 57·4 9 350	43·0 7·3 49·7 7,950	43.9 5.8 50.3 8,100
(b) "volatile matter d. (c) "fixed carbon d (by difference) (d) Dry calorific value, gross d (e) Sensible heat, total estimated (f) (c) equivalent (Items (e) and (f) based on items 23(a) plus 2 (b) (b) not chargeable to test	23(d)).	27.0	11,900 51,428 3.6 17.2 83.1 75.4	11,320 55,661 4·0 51·5 57·0	11,320 46,683 3·4 23·9 67·1	31,934 2·4 14·0 48·3 47·0	21.3 57.2 55.8	35,397 2·6 45·3 23·7 -22·1	-	36,423 2·7 17·0 54·0 51·7	40,014 3·2 25·9 52·1 52·5	47,453 3·8 32·2 60·3 57·1	45,041 3·7 18·2 69·6 57·9	39,758 3·3 37·2 40·3 40·5	39,116 3·3 22·1 54·1 56·6	33·3 42·0 41·3	43,759 3.9 44.0 41.3 45.9	56,738 5-1 43-1 37-2 39-6	55,148 4·8 42·8 64·7 63·1
(g) Portion allocated to assipit loss. (h) not chargeable to test. (i) Fuel equivalent of portion not chargeable. 29. Equivalent fuel used: (a) Total for trial, calculated. (b) Per hour. (c) Per square foot of grate surface per hour.		657·3 6·8 2·0	706·5 7·4 2·2	53·1 727·5 7·6 2·2	770·9 8·0 2·4	809·4 8·4 2·5	822·8 8·6 2·5 0·26	805·0 8·4 2·5 0·26	-	842·3 8·8 2·6 0·27	866-3 9-0 2-7 0-28	857·1 8·9 2·6 0·28	846-5 8-8 2-6 0-27	868·3 9·0 2·7 0·28	936·3 9·8 2·9 0·30	833·3 8·7 2·6 0·27	1,000·6 10·4 3·1 0·32	1,010-8 10-5 3-1 0-33	887-4 9-2 2-7 0-29
(d) " heating (e) " therm e delivered to cooling water		62·7 93·9	0.23 10.83 65.0 98.5	0.23 10.11 68.4 107.8	0·25 11·90 63·2 93·9	0.26 12.32 64.6 86.8	12·55 39·5 100·3	13·79 88·4 177·1 22·0	-	12·34 81·6 117·5 14·0	13.31 98.7 119.9 13.9	12·70 150·0 168·2	12·20 151·5 156·2 18·5	13·30 120·6 135·0 15·6	13.77 141.2 160.1 17.1	12-59 97-1 128-8 15-4	14·89 114·0 135·8 13·6	14·06 147·7 163·9 16·2	13.70 190.0 197.8 22.3
(c) " ton " General Data	16.	14·3 286	13·9 278	14·8 296	12·2 244	10.7	12·2 244	116	-	280	278	19·6 392	370	312	342	308	272	324	446
(a) Flow by thermograph (b) Return 33. Cooling water: (a) Average temperature, inlet by thermograph	·····································	56 94	119 88 48 86	119 86	117 82 40 77	38 76 38	65 103 38	82 42 76 34	-	38 78 40	85 39 77 38	38 77 39	87 38 77 39	86 37 75 38	38 78 40	99	58 97 39	102	82 39 77 38
(c) Anterest (d) Total used during trial, corrected		172,121 G8,501 J. 10,089	38 171,682 67,957 9,234	171,341 74,962 9,892	175,025 67,458 8,400	172,954 68,461 8,120	172,479 68,273 7,966	171, 690 60, 807 7, 252		170,593 71,080 8,101	171,298 67,805 7,514	173,089 70,317 7,876	170,792 69,384 8,197	171, 852 68, 025 7, 521	169,946 70,811 7,260	174,146 68,933 7,941	172,369 70,025 6,718	167.146 74.867 7,110	170.414 67 456 7,297
34. Flue gasses: (a) Average temperature by recorder. (b) "carbon dioxide content f". 35. Average: (a) Draught over fire by recording gauge. (b) Room temperature, by thermograph (c) Outdoor temperature, by thermograph.			64	71	436 11-2 0-022 74	438 12-1 0-015 70 35	12.0	11.5		0·02 74	11-8	12·2 0·020 78	12-7	12.5	11.6	11.3	0-010 74 68	11.6	9.4
(c) Outdoor temperature, by thermograph. Section "C", Items 36 to 56(a) Inclusive—One-Day 36. Duration of "efficiency" trial.	"Efficiency" Test		24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	24
37. Fuel fired: (a) City gas used for kindling. (b) Fuel equivalent to gas used (c) Quantity during trial. (d) Total, including gas equivalent.	cu f	t. 101 3.8	100 3 · 5 263 266 · 5	100 3·6 279 282·6	100 3 · 6 282 285 · 6	100 3·8 290 293·8	100 3·5 282 285·5	100 3·7 279 282·7	100 3·8 300 303·8	100 3·7 277 280·7	$ \begin{array}{r} 102 \\ 4 \cdot 1 \\ 292 \\ 296 \cdot 1 \end{array} $	100 4·0 292 296·0	101 4·1 296 300·1	100 4·1 287 291·1	$ \begin{array}{c} 100 \\ 4 \cdot 2 \\ 318 \\ 322 \cdot 2 \end{array} $	100 4·1 288 292·1	100 4·4 319 323·4	100 4·5 323 327·5	100 4·3 309 313·3
	ible (by differ-	14·6 46·5	Nil 18-5 18-5 49-4	Nil 16-3 16-3 35-4	Nil 13·8 13·8 51·5 48·5	Nil 14·8 14·8 53·7	Nil 14-5 14-5 32-9 67-1	Nil 23·3 23·3 32·7 67·3	Nil 46·3 46·3 38·0 62·0	Nil 15·8 15·8 56·2 43·8	Nil 22.8 22.8 47.5	Nil 21·3 21·3 75·7	Nil 28·8 28·8 72·3	Nil 31·3 31·3 67·3	Nil 26·3 26·3 69·8 30·2	Nil 6-0 6-0 71-1 28-9	Nil 17·5 17·5 65·7 44·3	Nil 19·8 19·8 66·9	Nil 25·0 25·0 77·5 22·5
(f) As dumped residual fire at end of trial 30. Dumped residual fire:	%	19.1	85·8 16·1 2·9	64.6 97.5 21.8 3.8	19·7 4·1 76·2	18-4 10-8 70-8	12.5 6.5 81.0	25.3 5.9 68.8	19·9 7·6 72·7	70-3 21-0 3-2 75-8	23.7 7.3 69.0	92·0 37·9 3-2 58·9	29·4 3·2 67·4	39·8 6·6 53·6	\$3.3 31.2 13.3 55.5	38·1 3·5 58·4	34 · 6 8 · 0 97 · 4	80·3 43·0 7·3 49·7	43.4 5.8 50.3
(b) " " volatile matter. (c) " " fixed carbon (by difference) (d) " calorific value, gross (e) Sensible heat, total estimated. (f) " coal equivalent. (Items (c) and (f) based on items 38(a) plu (g) Portion allocated to ash-pit loss.	B.T.U. B.T.U. lb s 38(f)).	3.1	81·0 11,900 44,015 3·1 14·7	74·4 11,320 50,018 3·6 46·3	11,320 43,246 3·1 22·1	11,490 36,167 2-7 15-8 54-7	12,650 34,268 2.4 21.1 45.7	10,620 36,577 2.7 46.8 24.5	11,600 36,167 2.7 22.2 48.3	11,290 36,064 2.7 16.9 53.4	10,930 33,858 2.7 21-9 44-1	8,840 47,196 3.8	9,870 49,145 4.0 19.8 76.0	8,530 25,394 2-1 23-8 25-7	10,110 42,733 3 · 6 24 · 2 59 · 1	$\begin{array}{c} 8,430 \\ 43,246 \\ \hline & 3\cdot 5 \\ 37\cdot 2 \\ 47\cdot 1 \\ \end{array}$	9,350 41,553 3.7 41.8 39.2	$\begin{array}{c} 7,950 \\ 41,194 \\ \hline & 3\cdot 7 \\ 43\cdot 1 \\ \hline & 37\cdot 2 \end{array}$	8,100 44,631 3.5 34.6 52.6
(h) " not chargeable to test. (i) Fuel equivalent of portion not chargeable 40. Equivalent fuel used: (a) Total for trial, calculated		58·6 189·1 7·9	71·1 64·5 198·9 8·3	51·2 47·7 231·3 9·6	62·2 57·8 224·7 9·4	237·9 9·9	238·5 9·9	22·8 257·2 10·7	254-4 10-6 3-1	51·2 226·8	249·0 10·4	56·8 235·4	225 · 3 9 · 4 2 · 8	25·8 263·2 11·0	61·8 256·8	242·3 10·1	276·1 11·5 3·4	39·6 284·2 11·8	258-10-
" square foot of grate surface per hour	ib	5. 11.52 ns 1.00	12.12	13.70	13.47	14.36	14.18	15·41 1·34	0·33 15·42	3 0·29 13·78	0.33 3 15.13 1 1.33	2 0·30 3 13·93 1·21	0·29 13·65 1·18	0·34 15·43 1·3	3 15·1 4 1·3	3 0·31 8 14·45 2 1·26	0·3 16·7	5 0.3 3 16.7 5 1.4	7 8 14. 6 1. 55-
42. Total refuse: (a) For test (b) Per cent of fuel used (c) " ton " "		35-0 18-6 371	33 · 2 16 · 7 334	62-6 27-1 542	35.9 16.0 320	30-6 12-9 258	35-6 15-0 300	70·1 27·4 548	68·5 27·0 340	32·7 14·5 290	362	22·7 454	48·6 21·6 432	55·1 21·1 422	50·5 19·7 394		59·3 21·5 430	62·9 22·2 444	59- 23- 462
43. Circulating water, average temperature: (a) Flow. (b) Return. 44. Cooling water: (a) Average temperature, inlet (b) " outlet	°1	57.1	118 90 48-4 86-4	38-5 77-9	38·3 76·6	37.9 76.3	136 109 65-0 103-5	116 87 37·6 76-7	117 89 43-4 81-8	112 83 37.7 76.2 38.5		77.3	38·0 76·7 38·7	89 37·5	83 37·7 77·4	100 59·1 97·7	103 59·7 97·9 38·2	58-2 97-5 39-3	86 37. 77. 40.
(c) " " difference	B.T.	7. 38·4 42,794 U. 68,437 U. 8,684	38-0 43,188 68,381 8,251	39·4 42,858 70,359 7,300	38-3 43,551 69,500 7,423	38·4 43,137 69,019 6,963	38·5 43.676 70.064 7,050	39-1 42,690 69,540 6,490	38.4 42,958 68,733 6,484	42,764 68,601 7,259	42,855 68,568 6,609	43,681 70,436 7,181	42,713 68,875 7,327	42,850 71,060 6,480	42,603 70,472 6,586	43,494 69,953 6,929	43,199 68,758 5,977	43,104 70,583 5,961	43,578 72,630 6,748
45. Flue gases: (a) Average temperature (b) Dry volumetric analysis, carbon dioxide (c) " " " caygen. (d) " " carbon monoxide (e) " " " nitrogen (by differen (f) " weight per pound of fuel used		0 1 10.4	360 10·1 7·7 0·4 81·8 17·3	373 10·6 8·5 0·1 80·8 15·1	457 11·0 7·3 0·2 81·5 15·7	484 12·7 5·0 0·4 81·9 12·8		8·5 0·2 80·9	402 10·7 7·5 0·1 81·7 13·0	7·3 0·5 81·2	6.9 0.3 80.9	6.9 0.5 81.1	7·7 0·2 81·2	5·2 0·5 81·5	6·7 0·1 81·9	7·0 0·3 81·2	$ \begin{array}{c c} 11.9 \\ 5.5 \\ 0.5 \\ 82.1 \end{array} $	9.8 8.3 0.3 81.0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
(f) " weight per pound of fuel used	9	% 41 7.g. 0.01	55 0 0-01	65	51 0.01	30	32 0·0	65 12 0.0	53 19 0·0	51 0.0	47 19 0-0	47 0-0	55 07 0·0						
48. Average: (a) Room temperature. (b) " relative humidity. (c) Outdoor temperature. (d) Barometrie pressure.	oj	F. 68 64 F. 55	63 35 39 30-12	74 26 22 30-4	67 36 34 11 29-84	67 31 32 30-0	64 63 57 29-5	65 32 7 29 · 7	68 29 52 29 • 9	71 32 16 29·8	64 34 -8 29-8	77 43 30 29·4	72 43 14 30·0	64 29 0 30-3	70 33 0 30-3	69 37 43 30-2	68 48 61 29·9	05 37 38 29-1	69 33 11 30
49. Efficiency: (a) Grate (b) Overall thermal HEAT ACCOUNT PER POUND OF FUEL USED IN B.T.I.		% 88-9	91·3 58·1	81·9 51·9	91·8 53·4	93 · 4 52 · 4	50-0	47-9		54.0	52.7	58-1	59-5	53.0	55-4	4 56-8	52.9	53.	8 58
50. Heat delivered to cooling water	that formed by B.T B.T B.T	U. 783 1,460	8,251 471 1,233 1,236	7,300 448 1,084 2,553	7,423 554 1,470 1,134	6,963 604 1,281 874 206	7,050 642 1,241 1,469 167	6,490 538 1,159 2,688 107	6,484 531 1,042 2,448 53	7,259 545 1,295 926 308	6,609 523 988 1,384 146	7,181 486 1,077 804 271	7,327 506 1,313 872 117	6,480 552 1,022 1,007 228	6,586 529 1,192 869 53	6,929 541 1,287 754 170	5,977 585 1,014 1,393 222	5,961 545 1,136 1,073 167	6,748 453 1,414 759 125
54. " " carbon monoxide	B.T. B.T.	1,824 .U. 13,190	282 2,717 14,190	2,658 14,060 51·9	3,192 13,900	3,352	3,531	2,558	2,692	3,107	2,880	2,551 12,370 7 58·1	2,185 12,320 59-5	2,791 12,080 53-6	2,651 11,880 55	2,519 12,200 4 56·8	2,109 11,300 52.9	2,208 11,090 53.	2,091 11,590 8 58
51. (a) Loss due to sie am formed from moisture in tuel by burning hydrogen in dry fuel. 52. (a) Loss due to heat carried away in dry flue gases 53. (a) " " unburned combustible matter in refuse to the fuel of the fue	and that formed	% 2.3 % 5.9 % 11.1 % 1.1 1.3.8	3·3 8·7 8·7 2·0	3·2 7·7 18·2 0·1	4·0 10·6 8·1 0·9	9.6 6.6 1.6	8 · 8 10 · 4 1 · 2	8.6 19.8 0.8	7-9 18-5 0-4	9-6	7 · 9 11 · 0 1 · 1	8 · 7 0 6 · 5 2 2 2 · 2	10·7 7·1 0·9	8.6 8.3 1.9	5 10· 3 7· 9 0·	0 10.0 3 6.5 5 1.4	9.0 12.3	0 10- 3 9- 1 1-	2 12 7 6 5 1
55. (a) " radiation, errors, and unaccounted for							name I								,	,	1 '		

a The data given for trial No. DS-X5 are the averaged results obtained for five repeat tests, all of which very closely approximated each other in value. (See Table A).

b Average of two tests only; totals, therefore, are not necessarily exact. (See Table A).

c As the normal refuse recovered during first four days of trial was not available for chemical analysis after having been screened, the values reported for items 27(a) and (b) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), a

TABLE D DEPARTMENT OF MINES AND RESOURCES BUREAU OF MINES-FUEL RESEARCH LABORATORIES, OTTAWA, CANADA

Detailed Data and Results of Nineteen Burning Tests Made on Various Western Canada Coals, Lignite, and Briquetted Fuels in Comparison with a "Standard" Sample of American Anthracite in a Domestic Hot-Water Boiler

Detailed Data and Results	of Ninetee:	n Burning	Tests Made	on variou	s western			e, and Brig	uettea Fu	els in Com	parison wi	tn a "Standard	d'' Sample of	American A	Anthracite	in a Dom		**************************************		
Fuel Sample No.	"Standard" Sample	14-34	15-34	Bitu 1A-37		Western Cang and Non-cal	unada Coals cing)	21-36	18-36	Sub-bit 28-36	uminous	I.ign	10-31	5–34	14-35	M 1-38	Briquetted [ade by Various 1-37			9.4
Name or area	American Anthracite	Telkwa area,	Nanaimo area, Columbia	Mounta	in Park ea, erta	Saunders area, Alberta	Prairie Creek area, Alberta	Coalspur area, Alberta	Coalspur area, Alberta	Drumbe	ller area,	Estevan area, Saskatchewan	Northern Ontario	Bituminous fines, Cascade area,	Anthracite fines, Lykens	Bitumir Norde	nous fines,	Lignite fines, Estevan area,	Impo Peat I	orted
Item Size, etc. Column No.	Stove 1	Lump 2	Lump 3	Lump 4	Lump 5	Lump 6	Mine-run 7	Lump 8	Lump 9	Egg 10	Lump 11	Lump 12	Forked lump	Alberta 14	Valley, Pa.	A11	berta 17	Saskatchewan 18	19	20
Section "A", Items 1 to 20 inclusive—General 1. Trial number 2. Type of trial (S-Standard, O-Observation, E-Efficiency)	DS-X5 a	DS-73	DS-74	DH-143	DH-133	DS-97	DH-134	DH-135	DH-136	DH-138	DH-137	DH-139	DH-202	DS-64	DS-98	DH-198	DH-140	DH-199	EDS-81	EDS-82
3 Date of trial 4. Duration of trial, continuous total. hrs. 5. Number of fire periods during 24-hour day.	10-9 to 1-12/34 120	120	25-30/3/35 120	7-12/6/37 120 3	1-6/2/37 120 3	4-9/11/35 120 3	8-13/2/37 120 3	15-20/2/37 120 3	22-27/2/37 120 3	8-13/3/37 120 3	1-6/3/37 120 3	15-20/3/37 120 6	24-29/10/38 120 6	17-22/12/34 120 3	18-23/11/35 120 3	19-24/9/38 120 3	120	26/9 to 1/10/38 120 3	8-9/5/35 24	E 10-11/5/35 24
6. Intervals between firings (24-hour day)	9, 5, and 10 52 880	9, 5, and 10 51 880	9, 5, and 10 52 880	9, 5, and 10 54 880	9, 5, and 10 o7 880	9, 5, and 10 54 880	9, 5, and 10 49 880	9, 5, and 10 60 880	9, 5, and 10 52 880	9, 5, and 10 56 880	9, 5, and 10 60 880	4½; 4½; 2½; 5 & 5 49 880	4\; 4\; 2\; 2\; 5 & 5 53 880	9, 5, and 10 55 880	52	9, 5, and 10 53	54	04	4½; 4½; 2½; 2½; 5 & 5 54	$4\frac{1}{2};4\frac{1}{2};2\frac{1}{2};2\frac{1}{2};5$ & 5
(b) Nominal grate area. sq. ft. (c) Area of heating surface. sq. ft. (d) Volume, grate to top of firepot. cu. ft.	3·4 32·4	3·4 32·4 5·4	3·4 32·4 5·4	3.4 32.4 5.4	3·4 32·4 5·4	3·4 32·4 5·4	3·4 32·4 5·4	3·4 32·4 5·4	3·4 32·4 5·4	3·4 32·4 5·4	3·4 32·4 5·4	3·4 32·4 5·4	$3 \cdot 4$ $32 \cdot 4$ $5 \cdot 4$	3.4 32.4 5.4	880 3 · 4 32 · 4 5 · 4	880 3·4 32·4 5·4	880 3 · 4 32 · 4 5 · 4	880 3·4 32·4 5·4	880 3 · 4 32 · 4 5 · 4	880 3 • 4 32 • 4 5 • 4
RAW FUELAS FIRED UNLESS OTHERWISE SPECIFIED 9. Screen analysis: (Made on a representative portion of "bulk" sample received for test). (a) Through 18" on 12" round hole screen		_	_	_		_	_	9.7	_	_	23.0	24.1	_	_						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- - - -	- - 61·7 15·6	26-5 15·2	- - 42·9 12·6	6·2 12·0 18·6 29·3 12·8	- - 23·9 14·5	$-1 \cdot 9 \\ 3 \cdot 2 \\ 2 \cdot 6 \\ 2 \cdot 8$	12·7 14·5 16·4 18·9 9·0	0·6 7·9 32·8 15·3	- - - 10·7	13·3 15·0 25·1 15·6 1·8	$\begin{array}{c c} 22 \cdot 7 \\ 15 \cdot 9 \\ 20 \cdot 0 \\ 7 \cdot 1 \end{array}$	$ \begin{array}{c} 1 \cdot 8 \\ 2 \cdot 5 \\ 3 \cdot 0 \\ 14 \cdot 7 \end{array} $	-	 	 	-	-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49·5 42·0 6·5 0·5	$\begin{array}{c} 12 \cdot 6 \\ 3 \cdot 5 \\ 2 \cdot 0 \\ 0 \cdot 7 \end{array}$	20·1 10·4 9·2 4·7	17·4 10·1 17·0	$7.5 \\ 2.5 \\ 2.1 \\ 1.0$	17·4 8·7 10·8 7·6	5·9 5·2 11·4 9·0	$\begin{array}{c} 8 \cdot 0 \\ 3 \cdot 5 \\ 2 \cdot 2 \\ 1 \cdot 1 \end{array}$	$ \begin{array}{r} 18 \cdot 2 \\ 8 \cdot 7 \\ 6 \cdot 9 \\ 2 \cdot 1 \end{array} $	25·8 20·0 23·8 10·4	1·8 0·9 1·0 0·5	2·0 2·8 1·0 1·1 0·6	$13 \cdot 7$ $23 \cdot 7$ $11 \cdot 7$ $11 \cdot 7$ $4 \cdot 9$	100·0	100·0	100.0	100.0	100.0	Size of average $7 \cdot 3'' \times 3 \cdot 2'$ volume = 3 weight = 1	"×1.6"; 37.4 cu. in.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5 0.5 0.3 0.2 2.06	0·6 0·6 g 0·6 g 2·1 g 6·43	4·3 3·1 g 2·4 g 4·1 g 3·01	- - - 3·41	$1.5 \\ 1.5 \\ 1.7 \\ 3.3 \\ 5.26$	8.8 4.5 g 1.9 g 1.9 g 2.81	12·4 16·3 11·4 17·9 1·25	1·1 1·1 0·7 1·1 6·88	$2 \cdot 0$ $1 \cdot 9$ $1 \cdot 3$ $2 \cdot 3$ $3 \cdot 52$	4·3 2·5 1·0 1·5 1·80	0·5 0·6 0·4 0·5 8·95	0·7 0·8 0·5 0·7 9·48	3-9 3-1 1-8 3-5 2-88	- - - - 2·50	- - - 2 · 25	- - - 1.75	- - - -	-	Weight - 1	.0010.
(p) "Size stability per cent" by shatter test on: (1) -4" (round hole screen) coal (2) 2" 10 3" (round hole screen) size	92.8	92-0 87-5 85-5	88·0 80·0 78·0	79·6 81·3	- 84 · 8 79 · 7	88·0 78·5 76·5	73·9 72·2	- 78·4 74·5	82·1 74·6	- 66·8 62·3	- 76·3 70·2	82·0 74·4		-	97.8		1·75 	2.25	- - -	-
(q) "Friability per cent" by tumbler test on: (1) 1" to 1½" (square hole screen) size	29·8 2·9	36·2 2·3	48·3 2·8	43·4 0·9	48·5 0·8	53·6 8·0	41·1 5·5	34·6 8·0	44·4 7·0	38·8 15·3	29·2 16·4	30·4 27·7	19.2	0.6	94-8	0.8	- 0.7	5.9	15·1 12·0	15-1
(b) Ash	9·5 5·1 82·5	11.8 28.2 57.7	11 · 6 39 · 3 46 · 3	11·8 22·8 64·5	$13 \cdot 2 \\ 27 \cdot 6 \\ 58 \cdot 4$	$ \begin{array}{r} 8 \cdot 3 \\ 34 \cdot 1 \\ 49 \cdot 6 \end{array} $	14·8 33·8 45·9	14·6 33·3 44·1	18·4 32·2 42·4	$\begin{array}{c} 6 \cdot 9 \\ 31 \cdot 3 \\ 46 \cdot 5 \end{array}$	$6 \cdot 7 \\ 30 \cdot 9 \\ 46 \cdot 0$	$\begin{array}{c} 6 \cdot 3 \\ 27 \cdot 9 \\ 38 \cdot 1 \end{array}$	6.5 37.3 37.0	9·8 18·6 71·0	9·8 12·0 77·3	12·3 19·7 67·2	12·1 18·6 68·6	13·1 17·0 64·0	5.4 56.8 25.8	11·4 5·7 57·5 25·4
11. Ultimate analysis: (a) Carlson	81.9 2.9 9.6 0.9	74·3 4·6 11·8 0·8	$69 \cdot 9 \\ 5 \cdot 2 \\ 11 \cdot 6 \\ 1 \cdot 1$	77·3 4·6 11·8 0·3	75·3 4·6 13·2 0·3	66.3 4.9 8.3 0.3	64·8 5·2 14·8 0·3	$59 \cdot 8$ $4 \cdot 7$ $14 \cdot 6$ $0 \cdot 2$	58·2 4·6 18·4 0·3	59·6 5·8 6·9 0·8	58·7 5·9 6·7 0·8	48·4 6·4 6·3 0·4	52·6 5·5 6·5 0·5	81·1 4·4 9·8 0·9	81·9 3·6 9·8 0·7	$78 \cdot 4$ $4 \cdot 5$ $12 \cdot 3$ $0 \cdot 7$	79·2 4·6 12·1 0·7	$73 \cdot 2$ $3 \cdot 2$ $13 \cdot 1$ $0 \cdot 7$	48·4 5·9 5·4 0-4	$48.5 \\ 5.9 \\ 5.7 \\ 0.4$
(e) Nitrogen % (f) Oxygen (by difference). %	0.9 3.8 13.190	1·2 7·3	1.4 10.8	1·1 4·9	1·1 5·5 12,970	1.0 19.2	1:4 13:5	0·7 20·0	9,730	25.8 $10,150$	1 · 2 26 · 7	0.8 37.7 7,970	0·5 34·4 8,350	1 · 6 2 · 2	1.0 3.0	1.0 3.1	1·1 2·3 13,500	1.1 8.7	$\begin{array}{c c} 1 \cdot 7 \\ 38 \cdot 2 \end{array}$	1·7 37·8
(a) As fired, gross value B.T.U./lb. (b) Dry, gross value B.T.U./lb. (c) Gas used for kindling (assumed) B.T.U./cu. ft. 13. Fuel ratio, fixed carbon/volatile matter	16.30	13,110 500 2.05 16.2	12,860 500 1.20 13.4	13,350 500 2.85 17.0	13,075 500 2-10 16-4	12,330 500 1.45 13.4	11,980 500 1.40 12.5	11,090 500 1.35 12.6	10,470 500 1.30 12.7	$12,000 \\ 500 \\ 1 \cdot 50 \\ 10 \cdot 3$	12,110 500 1.50 9.9	11,030 500 0-73	10,340 500 0.99	14,140 500 3.85	13,780 500 6.44	13,760 500 3.41	13,600 500	11,830 12,570 500 3-76	8,150 9,250 500 0.45	8,140 9,190 500 0·44
14. Carbon-hydrogen ratio 15. (a) Caking properties as judged by "coke button". (b) Swelling index = Per cent swelling × 100 Per cent dry V.M. at 600°C. (c) Caking index by "Gray" method.	Non-eaking	Poor -297	Fair -230	Fair to good —233 29		Slightly agglom. Nil Nil	Poor to fair -18 3	Non-caking	Non-caking	Non-caking	Non-caking	7·6 Non-eaking -	9·6 Non-caking -	18·4 Agglomerate	23.0 Non-caking	17·4 Poor -	Poor to fair	Agglomerate	Non-caking -	8·2 Non-caking -
16. Ash fusibility: (a) Initial deformation temperature	2,745 $2,850$ $2,905$	2,270 2,380 2,500	2,110 2,170 2,230	2,200 2,300 2,375	2,240 2,350 2,440	$2,190 \\ 2,240 \\ 2,270$	2,250 2,320 2,410	2,100 2,200 2,300	2,000 2,190 2,300	1,940 2,040 2,070	1,925 2,000 2,190	2,120 2,200 2,280	2,305 2,375	2,630 2,750	2,100 2,420	2,900 2,900+	2,850+ 2,850+	1,990 2,050	2,200 2,245	2, 190 2, 240
(c) Fund temperature or mercing point. 17 Apparent specific gravity, as received in bulk. 18. Weight per cubic foot, as received in bulk. 19. Volume per toon of 2,000 pounds, as received in bulk. 20. Grindability index by "Hardgrove' method.	$\begin{array}{c} 1 \cdot 47 \\ 52 \cdot 4 \\ 38 \cdot 2 \end{array}$	1·39 47·6 42·0	1·35 51·9 38·5	1·40 52·8	1.38 46.2 43.3	1-35 49·5 40·4	1·40 55·8 35·8	$1.31 \\ 49.7 \\ 40.2$	$1 \cdot 47 \\ 49 \cdot 9 \\ 40 \cdot 1$	1·34 47·5 42·1	$1.33 \\ 46.7 \\ 42.8$	1·29 40·5 49·4	$2,395$ $1 \cdot 14$ $33 \cdot 2$ $60 \cdot 2$	$2,850$ $1 \cdot 24$ $42 \cdot 5$ $47 \cdot 1$	2,540 1.25 43.6 45.9	2,900+1.20 43.4 46.1	2.850+ 1.22 44.2 45.2	2,120 1·20 41·1 48·7	2,270 1·25 70·0 28·6	$egin{array}{c} 2, \overline{270} \\ 1 \cdot 25 \\ 70 \cdot 0 \\ 28 \cdot 6 \\ \end{array}$
20. Grindability index by "Hardgrove' method	28.5	70.8	75.0	84.7	73 · 6	61.6	52.8	45-0	55.2	39-2	39.3	53.5	-	-	-			-	-	
21 Duration of "observation" trial hrs. 22. Fuel fired: (a) City gas used for kindling (b) Fuel equivalent to gas used (b) Fuel equivalent to gas used 10.	96 100 3.8 708	96 100 3·9 911	96 100 4·0 938	96 100 3 · 8 862	96 100 3.9 838	96 100 4-4 995	96 100 4·4 963	96 100 4 · 9	96 100 5-1	96 100 4.9	96 100 4.9	96 100 6·3	96 100 6·0	96 100 3·6	96 100 3 · 7	96 100 3·7	96 100 3·7	96 100 4 · 2	-	-
(c) Quantity during trial. lb. (d) Total, including gas equivalent. lb. 23. Refuse removed: (a) Through fire-door during trial lb.	711·8 Nil	914·9 Nil	942·0 8	865-8 Nil	841.9	999·4 4	967·4 9·5	1,144 1,148·9	1,184 1,189·1 5·0	1,146 1,150-9 15-3	1,196 1,200·9	1,575 1,581·3 Nil	1,414 1,420·0 Nil	796 799-6 Nil	768 771.7	744 747·7 Nil	744 747·7 Nil	932 936-2 Nil	-	-
(b) From ash-pit during trial	66 · 9 66 · 9 80 · 6	113·5 113·5 109·8	128·3 130·3 53·3	94·3 94·3 99·2	58·0 59·0 79·3	106·3 110·3 67·5	147-8 157-3 110-5	104 · 8 124 · 3 100 · 5	215·8 220·8 126·3	55·5 70·8 95·0	36·8 50·1 83·5	106·5 106·5 69·0	69 69 76·3	104 104 104	89·8 91·5 114·3	81 81 44·3	77-8 77-8 61-2	56·3 56·3 127·5	-	- - -
24. Clinker: (a) Removed through fire-door during trial	Nil 41 42 42 43 45 b	Nil 3½ 3½ 3¾	8 21 61 51	Nil 2‡ 5‡ 113	$1 \\ 2 \\ 6$	4 1 24 44	9½ 2 8¾ 6	19½ 3 34	$\begin{array}{c} 5\\ 3\frac{1}{2}\\ 11\\ 12\frac{1}{2} \end{array}$	15 1 1 1 4 4 6	131 1 1	Nil 0 0 43	Nil Nil Nil Nil	Nil	1 a 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Nil 14 31	Nil 11/2	Nil 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	<u>-</u> -
(e) " ½" " " " " " " " " " " " " " " " " "	15 h 14 b	11/2 9/2	1 1 1 2 2 3 1 2 2 3 1 2 1 2 1 2 1 2 1 2	25	3½ 13	13½	302	3 1 29 1	83 40 ³	71 331	2 211	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Nil Nil	28	24 2 8	I ½ 1 7 ½	$1 \atop 3\frac{1}{2}$	15½ 3½ 21	-	-
(a) On 1" square mesh screen recovered from ash-pit refuse lb. (b) " 2" " " " " " " lb. (c) " 1" " " " " residual fire lb. (d) " 2" " " " " lb. (e) Total—(over ½" screen size)—recovered lb.	81 441 b 217 b 803 b	163 571 191 981	12 ³ 17 13 46	21 8 431 11 641	31 33 102 48	92 83 151 341	71 71 141 291	$\begin{array}{c} \text{Nil} \\ 2^{\frac{3}{4}} \\ 11^{\frac{1}{2}} \\ 17^{\frac{1}{4}} \\ 31^{\frac{1}{2}} \end{array}$	$6\frac{1}{2}$ 15 $\frac{1}{2}$ 17 39 $\frac{1}{2}$	$egin{array}{c} { m Nil} & 1 & & & & & & & & & & & & & & & & & $	$egin{array}{c} ext{Nil} & 1 & 1 & 12rac{3}{4} & 17rac{3}{4} & 31rac{1}{2} & \end{array}$	Nil	$\begin{array}{c} { m Nil} & 3 & 11 & 24rac{1}{4} & 38rac{1}{4} & 1 \end{array}$	$\begin{array}{c} 6\frac{6}{8} \\ 12\frac{1}{4} \\ 77 \\ 9\frac{1}{4} \\ 105\frac{1}{8} \end{array}$	25 55 94 67	$\begin{array}{c} 3\frac{1}{2} \\ 5\frac{1}{2} \\ 24 \\ 5\frac{1}{4} \\ 38\frac{1}{2} \end{array}$	53 64 31 9	1 1 68 93 794	-	-
26. Refuse—(through \$''\$ screen size): (a) Recovered from ash-pit refuse. lb. (b) "residual fire. lb. (c) Total recovered. lb.	461 171 b 661 b	87½ 28¼ 115¾	103½ 16½ 120	75½ 28½ 103¾	51½ 26 77½	923 371 130	1291 781 2071	98½ 65¼ 163¾	194 72 1 266 1	491 601 1091	34½ 46½	105 60½ 165½	66 4 1	833 171	847 45½	671 12½ 794	52½ 63¾ 19¼	794 524 30½ 83	-	-
ESTIMATED CORRECTIONS FOR REFUSE, DUMPED RESIDUAL FIRE, ETc. 27. Proximate analysis of refuse recovered during trial:	46.5	50.7	63.3	61-1	64.1	37.8	-	_			80∄		107	101	1301	794	83	83	-	-
(a) Ash c	53·5 22·7	49·3 22·1	36·7 23·4	38·9 33·5	35·9 31·1	62·2 19·8	48·9 51·1 45·9	73·0 27·0 46·2	65·0 35·0 45·4	63·0 37·0 23·5	$76 \cdot 7$ $23 \cdot 3$ $21 \cdot 2$	54·3 45·7	78·1 21·9	41·4 58·6	64·2 35·8	82·7 17·3	84·3 15·7 34·2	84·2 15·8	-	-
(b) " volatile matter d % (c) " fixed carbon d (by difference). % (d) Dry calorific value gross d B.T.U./lb. (e) Sensible heat, total estimated B.T.U. (f) " coal equivalent 1b.	1.5 75.8 10,860 41,368 3.1	3.7 74.2 11,160 56,302 4.4	8.5 68.1 11,060 27,317 2.2	6·7 59·8 9,130 50,890 3·8	$ \begin{array}{r} 3 \cdot 5 \\ 65 \cdot 4 \\ 9,700 \\ 40,681 \\ 3 \cdot 1 \end{array} $	$\begin{array}{c} 11 \cdot 0 \\ 69 \cdot 2 \\ 10,990 \\ 34,628 \\ 3 \cdot 1 \end{array}$	10·1 44·0 7,620 56,687 5·0	10·6 43·2 7,100 51,557 5·1	$ \begin{array}{c} 8 \cdot 0 \\ 46 \cdot 6 \\ 7,650 \\ 64,792 \\ 6 \cdot 7 \end{array} $	5·8 70·7 10,940 48,735 4·8	$ \begin{array}{r} 3 \cdot 1 \\ 75 \cdot 7 \\ 11,480 \\ 42,836 \\ 4 \cdot 2 \end{array} $	$\begin{array}{r} 23 \cdot 4 \\ 10 \cdot 5 \\ 66 \cdot 1 \\ 10,670 \\ 35,397 \\ 4 \cdot 4 \end{array}$	8·2 62·5 10,480 39,142	2·3 84·1 12,220 53,352 3·8	2·7 79·0 11,530 58,636	$\begin{array}{c} 3.0 \\ 67.0 \\ 9,410 \\ 22,700 \end{array}$	1·1 64·7 9,170 31,396	26 · 6 6 · 9 66 · 5 10,970 65,408	-	- - - -
(Items (e) and (f) based on items 23(a) plus 23(d)). (g) Portion allocated to ash-pit loss Ib. (h) " not chargeable to test Ib. (i) Fuel equivalent of portion not chargeable Ib.	27·0 53·6 51·4	28·4 81·4 80·1	11·9 41·4 42·1	43·4 55·8 51·0	27·8 51·5 48·5	25·3 42·2 46·4	100·5 10·0 10·5	53·4 47·1 51·4	71·5 54·8 63·3	26·6 68·4 88·6	16·0 67·5 89·3	22·2 46·8 74·7	23·2 53·1 86·7	12-2 91.8 83-3	4·3 17·7 96·6 90·0	$ \begin{array}{c c} 1 \cdot 7 \\ 11 \cdot 1 \\ 33 \cdot 2 \\ 28 \cdot 6 \end{array} $	2·3 18·7 42·5 38·5	23·0 104·5 113·7	-	- - -
29. Equivalent fuel used: (a) Total for trial, calculated	657·3 6·8 2·0 0·21	$830 \cdot 4 \\ 8 \cdot 7 \\ 2 \cdot 5 \\ 0 \cdot 27$	897·7 9·4 2·8 0·29	811.0 8.4 2.5 0.26	790·3 8·2 2·4 0·25	949·9 9·9 2·9	951-9 9·9 2·9	1,092·4 11·4 3·3	1,119·1 11·7 3·4	$1,057 \cdot 5$ $11 \cdot 0$ $3 \cdot 2$	1,107·4 11·5 3·4	1,502·2 15·6 4·6	1,328·6 13·8 4·1	712.5 7.4 2.2	677·4 7·1 2·1	$717 \cdot 4 \\ 7 \cdot 5 \\ 2 \cdot 2$	$706 \cdot 9$ $7 \cdot 4$ $2 \cdot 2$	817·0 8·5 2·5	-	Ξ
(e) "therm c delivered to cooling water. lb. 30. Total ash in fuel used, from fuel analysis . lb. 31. Total refuse:	9·94 62·7	13 · 05 98 · 0	13·68 103·9	95-7	10·86 104·2	0·31 13·77 78·7	0·31 15·45 141·0	0·35 14·44 159·5	0·36 17·11 206·2	0·34 14·97 73·0	0·36 14·65 74·1	0·48 24·14 94·5	0-43 20-06 86-3	0·23 10·12 69·8	0·22 10·31 66·4	0-23 10-59 88-0	0·23 10·25 85·4	0·26 11·68	-	-
(a) For test. lb. (b) Per cent of fuel used. % (c) " ton " lb. General Data	93·9 14·3 286	141.9 17.1 342	148·2 16·5 330	137·7 17·0 340	86·8 11·0 220	135·6 14·3 286	257·8 27·1 542	177·7 16·3 326	$\begin{array}{c} 292 \cdot 3 \\ 26 \cdot 1 \\ 522 \end{array}$	97·4 9·2 184	66-1 6-0 120	128·7 8·6 172	92·2 6·9 138	116·2 16·3 326	109·3 16·1 322	92·1 12·9 258	96·5 13·7 174	79·3 9·7 194	-	<u>-</u>
32. Circulating water, average temperature: (a) Flow by thermograph °F. (b) Return °F.	131 102	114 78	115 80	133 105	119 84	131 101	112 78	123 88	115 81	120 86	123 89	114 82	113 97	113 80	123 92	136 103	129 100	136 103	-	
33. Cooling water: (a) Average temperature, inlet by thermograph. (b) " outlet " "F. (c) " difference. "F.	56 94 38	37 74 37	38 76 38	- - 40	42	- - 40	- 36	- - 44	- 38	- - 41	- - 44	- - 36	- - 39	39 80 41	- - 38·5	- - 39	-	-	-	-
(d) Total used during trial, corrected. lb. (e) Heat delivery per hour	172,121 68,501 10,089	172,036 66,306 7,665	172,700 68,360 7,310	171,605 71,502 8,464	173,224 75,786 9,206	172,412 71,838 7,260	171,121 64,170 6,472	171,928 78,800 6,925	172,169 68,150 5,846	172,295 73,584 6,680	171,814 78,748 6,827	172,857 64,821 4,142	169, 821 68, 990 4, 985	** 1	170, 725 68, 468 9, 703	173,759 70,590 9,446	40 172,386 71,828 9,754	41 170,549 72,839 8,559	- - -	- - - -
(a) Average temperature by recorder. °F. (b) "carbon dioxide content f % 35. Average: (a) Draught over fire, by recording gauge. in. W. G.	300 13-6 0-009	337 11·8 0·016	381 13·6 0·010	390 8·9 0·040	467 10·1 0·038	382 12·7 0·024	424 9·3 0·030	410 10·1 0·043	362 7·7 0·043	380 10·9	380 10·6	372 6·6	393 10-4	297 12·3	314 13·4	350 10·5	350 10·2	362 11-4	-	Ξ
(b) Room temperature, by thermograph	67 53	71 33	69 31	74 64	68	77 49	72 19	74 16	72 25	0·017 74 10	0·026 74 24	0·045 74 26	0·013 69 45	0·009 68 15	0-027 69 37	0·025 64 54	0·028 72 66	0·008 68 53	-	-
36. Duration of "efficiency" trial	24 101	24 100	24 100	24 100	24 100	24	24 100	24 100	24 100	24	24	24	24	24	24	24	24	24	24	24
(b) Fuel equivalent to gas used. lb. (c) Quantity during trial. lb. (d) Total, including gas equivalent. lb. 38. Refuse removed:	3·8 247 250·8	3·9 289 292·9	302 306·0	3·8 272 275·8	3·9 279 282·9	4·4 315 319·4	4·4 324 328·4	4·9 346 350·9	356 361·1	4·9 359 363·9	4·9 359 363·9	6·3 440 446·3	6·0 414 420·0	100 3 · 6 259 262 · 6	100 3·7 252 255·7	100 3·7 247 250·7	100 3·7 254 257·7	110 4 · 6 293 297 · 6	50 3·1 446 449·1	50 3·1 446 449·1
(a) Through fire-door during trial. 1b. (b) From ash-pit 1b. (c) Total, during trial 1b. (d) Dry analysis of total refuse recovered, ash. % (e)	Nil 14·6 14·6 46·5	Nil 28·8 28·8 50·7	Nil 20-0 20-0 63-3	Nil 12·3 12·3 61·1	Nil 9·5 9·5 64·1	Nil 26 26 37·8	Nil 16·0 16·0 48·9	1·0 14·0 15·0 73·0	1.5 19.5 21.0 65.0	Nil 7·0 7·0 63·0	Nil 11·0 11·0 76·7	Nil 29·0 29·0 54·3	Nil 14 14 78·1	Nil 35·3 35·3 41·4	Nil 9.5 9.5 64.2	Nil 7·5 7·5 82·7	Nil 9·3 9·3 84·3	Nil 22·3 22·3	Nil 12·5 12·5	Nil 13·3 13·3
(f) As dumped residual fire at end of trial	53·5 80·9	49·3 75·3	36·7 85·0	38·9 94·7	35·9 92·0	62·2 71·8	51·1 101·8	27·0 102·3	35·0 109·0	37·0 83·0	23·3 70·0	45·7 30·3	21·9 43·5	58·6 65·5	35·8 91·3	17·3 74·8	15·7 74	84·2 15·8 72·3	87·1 12·9 45·3	86·5 13·5 47·0
(b) " " volatile matter % (c) " " fixed carbon (by difference) % (d) " calorific value, gross B.T.U./lb. (e) Sensible heat, total estimated B.T.U. (f) " coal equivalent lb.	1.5 79.4 11,466 41,481	22·1 3·7 74·2 11,160 38,629	23·4 8·5 68·1 11,060 43,605	33.5 6.7 59.8 9,130 48,581	31·1 3·5 65·4 9,700 47,196	19·8 11·0 69·2 10,990 36,833	45.9 10.1 44.0 7,620 52,223	$ \begin{array}{c} 46 \cdot 2 \\ 10 \cdot 6 \\ 43 \cdot 2 \\ 7,100 \\ 52,480 \end{array} $	45·4 8·0 46·6 7,650 55,917	23.5 5.8 70.7 10,940 42,579	21·2 3·1 75·7 11,480 35,910	$\begin{array}{c c} 23 \cdot 4 \\ 10 \cdot 5 \\ 66 \cdot 1 \\ 10,670 \\ 15,544 \end{array}$	29·3 8·2 62·5 10,480 22,316	13·6 2·3 84·1 12,220 33,602	18-3 2-7 79-0 11,530	30·0 3·0 67·0 9,410	34·2 1·1 64·7 9,170	26·6 6·9 66·5 10,970	22.8 9.6 67.6 11,200	18-5 8-7 72-8 11,790
(Items (e) and (f) based on items 38(a) plus 38(f)). (g) Portion allocated to ash-pit loss. lb. (h) "not chargeable to test. lb. (i) Fuel equivalent of portion not chargeable. lb.	3·1 20·4 60·5 58·6	3·0 19·5 55·8 54·9	3·5 19·0 66·0 67·2	3·7 41·5 53·2 48·6	3·6 32·2 59·8 56·3	3·2 26·9 44·9 49·4	4·6 92·6 9·2 9·7	5·2 54·4 47·9 52·2	5·7 61·7 47·3 54·6	4·2 23·3 59·7 77·3	3·5 13·4 56·6 74·9	2·0 9·8 20·5	$\begin{array}{c} 2 \cdot 7 \\ 13 \cdot 2 \\ 30 \cdot 2 \end{array}$	2·4 7·7 57·8	3 · 4 14 · 1 77 · 2	38,372 2·8 18·7 56·1	37,962 2.8 22.6 51.4	37,090 3·1 13·1 59·2	23,239 2.9 9.3 36.0	24, 111 3 · 0 7 · 1 39 · 9
40. Equivalent fuel used: (a) Total for trial, calculated	189·1 7·9 2·3	235·0 9·8 2·9	235·3 9·8 2·9	223·5 9·3 2·7	223·0 9·3 2·7	266-8 11-1 3-3	314·1 13·1 3·8	293·5 12·2 3·6	300·8 12·5 3·7	282·4 11·8 3·5	285·5 11·9	32·7 411·6 17·2	49·3 368·0 15·3	52·4 207·8 8·7	71·9 180·4 7·5	48·4 199·5 8·3	46-6 208-3 8-7	230·1 9·6	386·1 16·1	66· 4 379·7
(d) " " henting " " lb. (e) "therm e delivered to cooling water lb. (f) To equal one ton of stove-size American anthracite tons 41. Total ash in fuel used, from fuel analysis lb.	0·24 11·52 1·00	$ \begin{array}{c c} 0.30 \\ 14.11 \\ 1.22 \\ 27.6 \end{array} $	0·30 14·25 1·24 27·2	$ \begin{array}{c c} 0 \cdot 29 \\ 13 \cdot 53 \\ 1 \cdot 17 \end{array} $ $ 26 \cdot 4 $	0·29 13·55 1·18	0·34 16·22 1·41 22·0	0.40 18.90 1.64 46.5	0·38 17·84 1·55 42·9	0·39 18·52 1·61 55·5	0·36 16·83 1·46	3·5 0·57 17·27 1·50	$ \begin{array}{c c} 5 \cdot 0 \\ 0 \cdot 53 \\ 25 \cdot 84 \\ 2 \cdot 24 \end{array} $	4.5 0.47 21.68 1.88	$ \begin{array}{c c} 2 \cdot 5 \\ 0 \cdot 27 \\ 12 \cdot 31 \\ 1 \cdot 07 \end{array} $	2·2 0·23 10·99 0·95	0·26 11·83 1·03	2·6 0·27 12·17 1·06	2.8 0.30 13.62 1.18	4.7 0.50 22.73 1.97	15.8 4.7 0.49 22.48 1.95
42. Total refuse: (a) For test. lb. (b) For cent of fuel used. % (c) "ton" lb.	35·0 18·6 371	48·3 20·6 412	39·0 16·6 332	53·8 24·1 482	41.7 18.7 374	52·9 19·9 398	108·6 34·6 692	69·4 23·6 472	82·7 27·4 548	19·4 30·3 10·8 216	19·0 24·4 8·6 172	25·7 38·8 9·5 190	23·7 27·2 7·5 150	20·2 43·0 20·8 416	17·6 23·6 13·1 262	24·4 26·2 13·2 264	25·1 31·9 15·4	29·9 35·4 15·5	20·8 21·8 5·6	21·6 20·4 5·4
43. Circulating water, average temperature: (a) Flow	129 103	110 82	111 83	129 103	113 85	124 98	114 86	113 85	113 85	115 87	114 86	111 84	126 99	112 83	120 93	131 104	308 129 102	310 129 101	112 121 93	108 121 94
(a) Average temperature, inlet. °F. (b) "" outlet. °F. (c) "" difference. °F. (d) Total used during trial, corrected. Ib.	57·1 95·5 38·4 42,794	38·2 76·3 38·1 43,704	37.5 75.7 38.2 43,221	66·0 104·4 38·4 43,032	38·1 76·4 38·3 42,969	52·2 90·4 38·2 43,058	38·7 77·6 38·9 42,715	38·1 76·5 38·4 42,844	38·2 76·1 37·9 42,856	38·2 77·0 38·8 43.251	38·5 76·9 38·4 43,062	38·4 75·4 33·0 43 054	55·1 95·4 40·3	38-4 77-8 39-4	45·2 83·5 38·3	63·1 101·9 38·8	62·9 102·5 39·6	61·3 101·1 39·8	49·3 88·6 39·3	50·2 89·3 39·1
(e) Heat delivery for hour	68,437 8,684 310	69,380 7,086	68, 793 7, 017 475	68,851 7,393	68,571 7,380 464	68,534 6,165		68,550 5,605	67,677 5,400	69,922 5,942	68,899 5,792	43,054 66,375 3,870	42,113 70,715 4,612	70,345 8,125	42,868 68,410 9,101	43,465 70,268 8,453	43,220 71,313 8,217	42,434 70,370 7,340	43,215 70,765 4,399	39·1 43,193 70,369 4,448
(b) Dry volumetric analysis, carbon dioxide.	13·4 6·2 0·3 80·2 13·5	12·7 5·2 0·4 81·7 12·3	13·4 4·5 0·5 81·6 11·6	10·5 8·7 0·1 80·7	8·6 10·4 0·2 80·8	11·3 7·7 0·2 80·8	10·1 9·0 0·1 80·8	378 10·2 8·8 0·2 80·8	394 9·0 10·3 0·1 80·6	383 12·1 6·9 0·1 80·9	367 11·3 7·3 0·2 81·2	389 6·3 13·2 0·0 80·5	383 11·4 8·2 0·4 80·0	299 14·0 4·4 0·5 81·1	311 14·0 4·8 0·2 81·0	372 12·9 6·0 0·2 80·9	358 12·6 6·0 0·2	349 13·8 5·5 0·2	331 13·2 5·6 0·4	340 14·3 4·7 0·7
46. Excess air % 47. Draught average: (a) Over fire in. W.g. (b) In flue in. W.g.	0.010 0.010	31 0·004	26 0·005	16·0 68 0·024	19 · 3 94 0 · 035	11·8 56 0·022	11·5 72 0·064	12·8 69 0·033	13·3 93 0·050	11·5 47 0·014	12·4 51 0·023	17·2 161 0·034	63 0-011	26 0-009	81-0 13-8 29 0-007	14·7 39	81·2 15·1 38	80·5 12·8 35	80·8 8·9 35	80-3 8-1 28
48. Average: (a) Room temperature	68 64	0·005 71 36 35	0·016 67 33	0·022 73 51	0-032 69 28	0·018 70 37	0·046 75 28	0·031 71 33	0·052 71 28	0·014 72 18	0·023 72 28	0-057 76	0-010 69	0·005 69	0-004	0·013 0·009	0·013 0·013	0.010 0.010	0.010 0.010	0·007 0·010
(a) Barometric pressure. in. Hg 49. Efficiency: (a) Grate. 96	55 29·897 88·9	30·045 88·4	33 29·716 92·9	64 29·978 89·7	12 29·851 92·4	34 30·001 84·0	34 29·803 77·2	27 30-174 90-8	21 29·704	18 18 30-121	16 29·736	27 33 29-701	41 40 30·00	29 7 30-067	27 24 30·147	57 59 29 · 68	58 63 29·736	43 47 29 · 87	39 56 30·100	71 39 55 29 • 736
HEAT ACCOUNT PER POUND OF FUEL USED IN B.T.U. AND PER CENT 50. Heat delivered to cooling water	65-8	55 · 4	56-1	ə5·9 	7,380	6,165	46-8	55.0	55.5	58.5	97·1 57·2	92·0 48·6	97·1 55·2	87·3 57·8	95·0 66·7	97·6 61·9	97·4 60·9	97·0 62·0	98·7 54·0	98·7 54·6
51. Loss due to steam formed from moisture in fuel and that formed by burning hydrogen in dry fuel	299 783	491 892 1,485 199	580 1,136	492	510 1,830 981	526 889 1,809	574 1,074 2,578	503 943 931	496 1,031 1,402	5,942 622 858 581	5,792 628 878 292	3,870 685 1,292 636	4,612 698 844 238	8,125 457 662 1,781	377	479	489 1,047	7,340 339 800 357	4,399 622 564	4,448 622 523
	1,824 3,190	2,647 12,800	2,644 12,500 1	2,725 3,230 1		95 1,856 1,340	1,752 1,315 1	104 2,104 0,190	54 1,347 9,730	2, 101 10, 150	2,440 10,130	7,970	1,783	241 2,784	110 2,562	3,226		357 103 2,831 11,830	106 142 2,317 8,150	622 523 106 226 2,215
51. (a) Loss due to steam formed from moisture in fuel and that formed by burning hydrogen in dry fuel	65·8 2·3 5·9 11·1	55·4 3·8 7·0 11·6	56·1 4·6 9·1 7·1	55·9 3·7 9·0 10·3	3·9 14·1 7·6	54·4 4·6 7·8 16·0	46-8 5-1 9-5 22-8	55-0 4-9 9-3 9-1	55·5 5·1 10·6 14·4	58·5 6·1 8·5 5·7	57·2 6·2 8·6 2·9	48·6 8·6 16·2 8·0	55·2 8·4 10·1	57·8 3·3 4·7	66·7 2·8 6·0	61·9 3·5 7·7	60·9 3·6 7·8	62·0 2·9 7·3	54·0 7·6 6·9	54·6 7·7
54 (a) " " carbon monoxide	100-0	100.0	1·9 21·2	0.5 20.6	1·2 16·3	100-0	100.0	100.0	14·4 0·6 13·8	0·5 20·7	24.1	8·0 0·0 18·6	2·8 2·1 21·4	12·7 1·7 19·8	5.0 0.8 18.7	2·4 0·9 23·6	2·6 0·9 24·2	3.0 0.9 23.9	1·3 1·8 28·4	6·4 1·3 2·8 27·2
a The data given for trial No. DS-X5 are the averaged results obtained to	l	l	1			· · · · · · · · · · · · · · · · · · ·	<u> </u>	200.0	100.0	100-0	100-0	100-0	100.0	100.0	100-0	100.0	100-0	100-0	100-0	100-0

a The data given for trial No. DS-X5 are the averaged results obtained for five repeat tests, all of which very closely approximated each other in value. (See Table A).

b Average of two tests only, totals therefore are not necessarily exact. (See Table A).

c As the normal refuse recovered during first four days of trial was not available for chemical analysis after having been screened, the values reported for items 38(d) and (e) in the "efficiency" part of the trial.

d Excepting trial No. DS-X5 (see Table A), the dumpings recovered at conclusion of the first four days of trial were not available for chemical analysis after having been screened, therefore, the values reported for items 38(d) and (e) in the "efficiency" part of the trial.

e Therm = 100,000 B.T U. Due to the assumed analysis (see notes c and d), the values reported for items 29(e) are approximate only, for exact values see item 40(e).

f Value for trial No. DS-X5 only, determined by continuously operated CO₂ recorder (see Table A), remaining values determined by hand-operated Orsat making one determination per hour from 9 a.m. to 11 p.m. to 9 a.m.) not made except for trials prefixed with letters DH for which one determination was made nightly on a composite sample g The ½- and ½-inch screens used for trials so marked g (sub-items (l), (m), and (n) of item 9) had square mesh openings.