Frontispiece Domestic furnace and auxiliary test apparatus. (Water meter; and radiation, expansion, and water service tanks not shown.) A. Domestic hot-water boiler. B. Ordinary ash-pit. C. False ash-pit into which fuel is dumped for quenching. D₁, D₂. Flow and return headers. E. Thermograph recording flow and return water temperatures. G. Flue-pipe entering chimney. H₁, H₂. Draught adjustments on butterfly and flap dampers in flue-pipe. I. Draught recorder measuring over-fire draught. J₁, J₂. Draught gauges measuring over-fire and flue-pipe draughts. K. Flue gas sampling and analysing equipment. L₁, L₂. Recording pyrometers measuring temperature differential of cooling water and flue gas temperatures. M. Fire tool rack. N. Wheel-type gas burner for igniting fuels. O. Gas meter measuring gas supplied for ignition. P. Hydrograph recording indoor humidity. Q. Thermograph recording indoor and outdoor temperatures. ## CANADA DEPARTMENT OF MINES AND RESOURCES # MINES AND GEOLOGY BRANCH BUREAU OF MINES ### COMPARATIVE TESTS OF VARIOUS FUELS WHEN BURNED IN A DOMESTIC HOT-WATER BOILER 1935 to 1938 BY C. E. Baltzer and E. S. Malloch J. O. PATENAUDE, I.S.O. PRINTER TO THE KING'S MOST EXCELLENT MAJESTY 1940 Price, 25 cents No. 802 MINERAL DEVELOPMENT SECTOR LIBRARY MAR 1075 MAR 1075 #### CONTENTS | | * | PAGE | |-------------|--|---------| | Preface | | jv | | | on of the experimental heating plant | 1 | | Method o | f conducting tests | 3 | | Description | on of fuels tested | 4 | | Results of | tests | 13 | | | n of results | | | "Star | ndardizing" tests with American anthracite | 14 | | | racite coals and cokes | 15 | | | rican and Eastern Canada semi-bituminous and bituminous coals | 16 | | West | ern Canada bituminous and sub-bituminous coals, lignite, and briquetted | | | | uels | 16 | | Gene | ral discussion | 17 | | Comparis | on of economic results of old and new series of tests | 18 | | | • | | | | ILLUSTRATIONS | | | • | Photograph | | | Plate I. | Domestic furnace and auxiliary test apparatusFront | ispiece | | | Drawings | | | Figure 1. | General arrangement of experimental domestic heating plant | 2 | | Figure 2. | Illustrating procedure for handling "bulk" samples previous to burning test. | 6 | | Figure 3. | Illustrating procedure for handling "test" samples during burning test | 7 | #### PREFACE A short time after the termination of the Great War, the introduction into Central Canada of substitute domestic fuels of domestic and foreign origin to replace American anthracite, on which it was believed at that time an embargo would be placed, created the necessity for conducting a series of burning tests in order to determine the comparative value of these fuels with a standard fuel when burned in a domestic hot-water boiler. Accordingly, during the years 1923–26, one hundred and twenty-three comparative tests were carried out—termed in this report as being the 1925 series. The behaviour of these fuels when burned in a standard domestic type hot-water heater was compared with that of a typical sample of American anthracite coal, which served as the standard fuel since American anthracite was then used almost entirely for domestic heating in the chief fuel-consuming centre of Canada—the Provinces of Ontario and Quebec. Since the publication of Mines Branch Report No. 705, which contained the results of these tests, a considerable amount of new data has been secured as a result of tests and related research work which has been carried out on many additional fuels. The present publication contains the results which have been obtained during the course of the testing of these fuels. This series of tests is referred to in this report as the 1935 series and were carried out at intervals over an extended period of time mainly for the purpose of assisting various fuel producing and consuming interests which were able to make good use of the data developed by actual burning tests conducted along the lines outlined in the previously mentioned report. The results of these latter tests in the form of individual reports, each dealing with the test of the particular fuel concerned, were distributed as soon as completed to the parties interested. No attempt, however, was made to combine the results as a whole in a special publication for release to the public. In this report a comprehensive summary of all the burning tests made in these laboratories on domestic coals and domestic coal substitutes is presented. Therefore, it supersedes Report No. 705 except in so far as a complete description of equipment, method of tests, and experimental technique, are concerned. The determining factor in the selection and arrangement of the matter to be included has been the ultimate usefulness of the data to the fuel producer and consumer and since the original report contained lengthy descriptions of the equipment, methods of test, and experimental technique employed, reference to this has been eliminated or limited only to such description as is necessary for an intelligent understanding of the changes made. The major portion of the report is, therefore, devoted to tabulation of detailed data and results with explanatory matter pertaining thereto. The report is concluded with a summarized comparison of the economic results obtained for both the 1925 and 1935 series of tests which, it is considered, will be of major interest to the lay reader. The tests were carried out at Ottawa in the Fuel Research Laboratories of the Division of Fuels of the Bureau of Mines, Department of Mines and Resources, as part of the regular investigational work of that Division. The testing of the fuels, calculation of results, and preparation of the report were carried out by the regular staff of the Mechanical Engineering Section assisted by other members of the Division of Fuels. Messrs. J. R. Kirkconnell and H. P. Hudson acted in the capacity of observers; with W. H. Harper, P. B. Seely, and J. W. Custeau in the capacity of senior laboratory assistants. Acknowledgment is due to the Solid Fuel Analysis Section for the carrying out of the analyses of the many fuel and refuse samples collected during the investigation. B. F. HAANEL, Chief, Division of Fuels. OTTAWA, December 6, 1938. # Comparative Tests of Various Fuels When Burned in a Domestic Hot-water Boiler, 1935 to 1938 ## DESCRIPTION OF THE EXPERIMENTAL HEATING PLANT For the purpose of this report a lengthy description of the experimental equipment employed for the new (1935) series of tests would be out of place inasmuch as the installation was essentially the same as that described in Bureau of Mines Report No. 705 which outlined the old (1925) series of tests in detail. However, it is in order at this point to briefly describe the salient features of the apparatus in order to give the reader some idea of the layout without reference to the old report. The heating plant employed for these tests consisted of a round hotwater boiler; a radiation tank and cooling-water system; the usual equipment of scales for weighing fuel and refuse; thermometers; pyrometers; draught gauges; gas sampling and analysing apparatus; and water meter. Figure 1 shows the general arrangement of the equipment, piping, etc., and Plate I (Frontispiece) illustrates the furnace and auxiliary test apparatus located on the main floor of the laboratory. The round hot-water boiler used was of conventional design, similar in all respects to such as are installed in an average-size house of eight or nine rooms, having a nominal grate diameter of 25 inches, a grate area of 3.4 square feet, and a heating surface of 32.4 square feet. The radiation tank was an insulated box, $6\frac{1}{2}$ feet by 3 feet by $2\frac{1}{2}$ feet, containing 81 square feet of wall type radiation connected to the circulating water system of the furnace. The heat was carried away from the boiler by means of the circulating water, which in turn gave up its heat to the cooling water which flowed through the radiation tank, and the product of the weight of the cooling water and the increase of its temperature in passing through the radiation tank gave the useful heat output of the boiler or furnace. The weight of the cooling water was measured by means of an accurately calibrated water meter, and the increase in temperature was determined by carefully calibrated thermometers as well as a recording pyrograph. All fuel charged to the furnace was weighed and, knowing its calorific value, this gave the heat input, and with the heat output the thermal efficiency could be calculated directly. The only material difference between the set-up employed for the new tests and that used for the old tests, was the addition of a false or secondary ash-pit to the furnace, and the use of a removable ash-pan into which the hot residual fire remaining on the grate at the close of any test may be dumped for dry quenching with carbon dioxide gas. This procedure provided better control of stopping conditions and gave more consistent results than were formerly obtained. Figure 1. General arrangement of experimental heating plant. #### METHOD OF CONDUCTING TESTS Although the same general practice was followed in making the new series as in the old series, the experience previously obtained served as a basis for improving the operating technique as well as the starting and stopping method. Moreover, changes of a minor nature were necessary for the new series of tests inasmuch as these tests were not made as a connected whole as were the old, but at intervals over an extended period of time as part of several investigations made for various purposes. However, such changes as were made readily supplement the old methods so that a brief outline at this point is all that is necessary to elucidate the new method to the reader. Such minor departures from the standard methods described below as were made for certain
tests on particular fuels are amplified in the section of this report dealing with "Discussion of Results". The same general method of test was used for each trial so that the results are relatively comparable. From Tables A to D (in pocket) it will be noted that the complete or "standard" trial had a duration of 120 hours. This period was divided into two parts: the 4-day "observation" test (first 96 hours of trial), and the one-day "efficiency" test (last 24 hours of trial). Each of these periods was complete in itself and hence the "standard" trial served the dual purpose of providing general burning data over an extended period of observation, and precise efficiency and combustion data over a shorter interval. Each 24 hours of the 120-hour "standard" trial was considered as a complete cycle during which three firings were made, viz. at 9 a.m., 6 p.m., and 11 p.m. The rate of burning between these times was varied as follows: 9 hours at an average useful heat release of 66,000 B.T.U. per hour; 5 hours at 99,000 B.T.U. per hour; and 10 hours at 55,000 B.T.U. per hour; thus giving an average heat release for each 24-hour cycle and the trial as a whole of approximately 68,000 B.T.U. per hour. This roughly corresponds to a constant combustion rate of one-half boiler capacity or in other terms a consumption of approximately 3 tons of anthracite coal in a 30-day period which is about the maximum consumption to be expected for any house this particular furnace would heat during the coldest month of the year. During the tests, except for taking the necessary observations, the work of furnace attendance was reduced to a minimum and chiefly consisted of removing clinker, firing fresh fuel, and resetting dampers at the end of each fire period. The grates were shaken as little as possible and only sufficiently to free the excess of accumulated ash which tended to interfere with combustion conditions. In most respects the tests were conducted along similar lines to those reported in Bureau of Mines Report No. 705 previously mentioned, the only marked difference needing further comment being in the methods employed to ignite and quench the fuel at the start and end of the tests respectively. A preliminary fire was built in the furnace the evening prior to the start of the test, in order to heat up the furnace and water in the system to ordinary operating temperatures. At the end of this period—(approximately at 8.45 a.m. the next morning)—the fire was drawn, the ash-pit and furnace were thoroughly cleaned and the installation in general was made ready for the ensuing test which normally began 15 minutes later. In starting the trials a fresh charge of the raw fuel under test was placed directly on the bare grate and ignited by means of a gas (wheel type) burner; 100 cubic feet of city gas having a calorific value of 500 B.T.U. per cubic foot were burned to ensure ignition. After ignition was secured and the fire was burning briskly a measured fuel charge was fired and the "observation" part of the test continued for 96 hours. At the conclusion of this 4-day period the "observation" test was quickly ended and the "efficiency" part of the test was immediately started in the same manner as outlined above and continued for the ensuing 24 hours after which the test was ended in the manner described below. In ending the tests, the residual fire (the whole contents of the firepot) remaining at the end of both the "observation" and "efficiency" parts of the test was quickly and completely dumped, drawn, and quenched with dry carbon dioxide gas. The fuel value of the quenched residual fire was then determined and subtracted from the heat value of the fuel fired during the respective parts of each test. In addition to noting the characteristics of the refuse, i.e. ash, clinker, and unburned fuel, obtained from the "observation" part of the test, a screen examination was made of the quantities obtained during and after this part of the test. This examination was made on three separate fractions, the first of which consisted wholly of clinker which was removed through the fire-door of the furnace; the second fraction consisted of ash, small pieces of clinker, and unburned fuel which normally dropped or were shaken through the grate during the course of test; and the third fraction consisted of the residual fire (ash, clinker, and partly burned fuel) which was dumped at the end of test, i.e. after the expiration of 96 hours of burning. The refuse, in the same three fractions, obtained from the "efficiency" part of the test was sent to the Chemical Analysis Section of the Division where the various fractions were carefully and representatively sampled and analysed as was also a representative sample taken from the raw fuel fired during the test. Careful note was made of the quantities of gas consumed during the ignition period of the fuel charged during the whole test, and of the quantity, composition, and sensible heat residue of the residual fire dumped at the trial end, and these factors were taken into account when reckoning the quantity of fuel actually burned during the test. #### DESCRIPTION OF FUELS TESTED In all, forty-five different samples of fuel, ranging in rank from high-grade anthracite to low-grade lignite and peat were tested in the experimental heating plant. These samples, originating from various sources in Eurasia, the United States of America, and Eastern, Central, and Western Canada, were either secured by purchase from retail coal dealers in Ottawa, or from co-operating agencies who furnished samples gratis so that they might have a report on the relative merit of the samples so provided for domestic heating purposes. In arranging for the samples special effort was made to ensure that they would be representative of the fuel to be tested and the samples so secured were what the general public might expect to receive from the various producing sources. Table I lists and classifies the fuels that were tested and also states where and from whom they were obtained, the trade size under which they were sold, the quantity received, the date the fuels were received in storage, and finally the number of tests made on each shipment. Immediately on receipt the samples were unloaded into individual bins in a covered storage shed. Either at this time or sometime later, as time permitted, but before any test was made, a representative (bulk) sample was taken from the total quantity received into storage from which the physical and chemical properties of the fuel were determined. The method of handling the "bulk" samples is illustrated in Figure 2. Table II lists the fuels in the same order as in Table I and gives the proximate and ultimate analyses and other relative information regarding the respective fuels as they were received in Ottawa. Two to three days preceding test of any fuel, the fuel was withdrawn from storage and if not already done was sampled in accordance with the procedure illustrated in Figure 2, after which a sufficient quantity of the fuel was placed in a conical pile in a sheltered position on the laboratory floor, adjacent to the furnace. The raw fuel for test was drawn from this pile as needed. Fuel was charged to the fire in specified amounts at regular times, usually three times in 24 hours. Each time fuel was fired a small sample, 3 to 5 pounds, was taken from the charge and placed in a covered container. Immediately after the test was concluded the contents of this container were sent to the chemical laboratory for analysis, calorific value determination, ash fusion temperatures, etc. The method of handling the "test" samples is illustrated in Figure 3, and the proximate and ultimate analyses and other relative information regarding the respective fuels as fired during test are given in Tables A to D, in pocket at end of this report. Figure 2. Illustrating procedure for handling "bulk" samples previous to burning test. Figure 3. Illustrating procedure for handling "test" samples during burning test. TABLE I List of Fuels Tested¹ | | | | | | | | | | | | |--|--|---|---|---|--|--|--|---|--|--| | Shipment
and
Sample
No.2 | Kind of Fuel
 Class | A.S.T.M.* sification by rank (of coals) Group | Origin | Obtained from | Trade size | Quantity
received
tons | Date
received | Number
of tests
made | | | 3-34
24-36
2-37
17-36
16-36
1-35
11-35
12-35
27-31
9-35 | Anthracite Anthracite Anthracite Coke Coke Coke Coke Coke Coke Coke Cok | Anthracitic
Anthracitic
Anthracitic
(B)
(B)
(B)
(B)
(B)
(C)
(Low | Anthracite Semi-anthracite Anthracite y-product coke) y-product coke) y-product coke) y-product coke) y-product coke) etroleum coke) etemperature coke) temperature coke) | U.S.A.—Penna. U.K.—Wales French Indo-China Western Ontario Western Ontario Quebec Eastern Ontario Castern Ontario Ontario Nova Scotia Nova Scotia | Ottawa fuel dealer Ottawa fuel dealer C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. Ottawa fuel dealer Ottawa fuel dealer Ottawa fuel dealer Ottawa fuel dealer Onterio Oil Refinery F.R.L.—Experiment F.R.L.—Experiment | Stove
Cobbles
Stove
Range
Nut
Stove
Stove
Nut
Lump
Washed lump
Unwashed lump | 6
2
1
1
1
1
1
1
1
1
1
1 | 23/ 9/36
23/ 9/36 | Thirteen Three One One One One Two Two One | | | 4-35
15-36
17-34
16-34
7-35
6-34
12-34
8-34
10-34
11-34
2-38
6-35
3-38 | Semi'-bituminous Semi-bituminous Bituminous | Bituminous | Low-volatile Low-volatile High-volatile A High-volatile A High-volatile A High-volatile A High-volatile B High-volatile B Medium-volatile B High-volatile B High-volatile B High-volatile B High-volatile B High-volatile B High-volatile C High-volatile C High-volatile C | U.S.A.—Penna. U.S.A.—W. Va. U.S.A.—Penna. U.S.A.—Ohio Nova Scotia | C.N.R.—Fuel Dept.
C.N.R.—Fuel Dept. | Lump | 1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 24/ 4/35
23/ 9/36
1/12/34
7/ 5/35
23/10/34
23/10/34
23/10/34
23/10/34
23/10/34
23/10/34
23/10/34
26/ 8/37
7/ 5/35
26/ 8/37
23/10/34 | One | | | 14-34
15-34
1A-37
22-36
13-35
23-36
21-36
18-36 | Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous | Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous Bituminous | High-volatile A High-volatile A Medium-volatile Medium-volatile High-volatile C High-volatile B High-volatile C High-volatile C | British Columbia
British Columbia
Alberta
Alberta
Alberta
Alberta
Alberta
Alberta | C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. Ottowa fuel dealer C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. | Lump
Lump
Lump
Lump
Lump
Mine-run
Lump
Lump | 1
1
2
1
2
2
2
2 | 17/12/34
17/12/34
10/5/37
9/10/36
30/10/35
9/10/36
9/10/36
9/10/36 | One One One One One One One One One | | | 28-36
20-36
19-36
10-31
5-34
14-35
1-38
1-37
5-37
4-34 | Sub-bituminous Sub-bituminous Lignite Lignite Briquetted coal Briquetted coal Briquetted coal Briquetted coal Briquetted coal | Sub-bituminous Sub-bituminous B Sub-bituminous B Lignitic Lignite Lignite Lignite Lignite Lignite Lignite (Made from bituminous fines) (Made from bituminous fines) (Made from bituminous fines) (Made from bituminous fines) (Made from charred lignite fines) (Made from peat) | Alberta
Alberta
Saskatchewan
Ontario
Alberta
U.S.A.—Penna.
Alberta
Alberta
Saskatchewan
Imported | C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. Ontario Dept. of Mines Ottawa fuel dealer Ottawa fuel dealer C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. C.N.R.—Fuel Dept. Dominion Fuel Board | Egg
Lump
Lump
Mine-run
Stove briquettes
Stove briquettes
Stove briquettes
Stove briquettes
Stove briquettes | 2
2
2
30
1
1
2
2
2 | 29/12/36 One
 9/10/36 One
 9/10/36 One
 29/ 7/31 One
 19/ 5/34 One
 6/11/35 One
 3/ 2/38 One
 10/ 3/37 One
 13/ 12/37 One
 13/ 8/34 Two | | |---|---|--|---|--|---|--|---|--| |---|---|--|---|--|---|--|---|--| ¹ Arranged in the same order in which the respective fuels are tabulated in Tables A to D (in pocket). * These numbers were assigned to the fuel samples as they were received in storage and have been retained throughout this report for convenient reference. They have no other significance. American Society for Testing Materials. 4 Ton of 2,000 pounds. 5 Canadian National Railways. • Fuel Research Laboratories-Bureau of Mines. For experiment referred to see Bureau of Mines Report No. 721-1. 7 Also known as low-volatile or smokeless coal. TABLE II Proximate and Ultimate Analyses, etc.¹, of a Representative Sample of the Total Bulk Shipment of Each Fuel, Taken either at Time of Unloading into Bins in Covered Storage Shed or Immediately Preceding Test | Ship- | | | P | roximat | e Analysi | 8 | | Ul | timate . | Analysi | 9 | | Calorific | Caking | A | sh fusibil | ity | |------------------------------|-----------------|---------------------------------------|--------------------|--------------------|-------------------------|--------------|------------------|--------------------|--------------|-------------------|--------------------|------------------|------------------------------|---|-------------------------|--------------------------------|-----------------------| | ment
and
ample
No.* | Date
sampled | Moisture
condition
of
sample | Moist-
ure
% | Ash
% | Volatile
matter
% | Fixed carbon | Carbon
% | Hydro-
gen
% | Ash
% | Sul-
phur
% | Nitro-
gen
% | Oxy-
gen
% | value
B.T.U./lb.
gross | properties
as judged
by "coke-
button" | Initial
temp.
°F. | Soften-
ing
temp.
°F. | Fluid
temp.
°F. | | 8-34 | 13/ 8/34 | As received. | 2.8 | 9·2
9·4 | 5·2
5·4 | 82·8
85·2 | 82·5
84·8 | 2·8
2·6 | 9·2
9·4 | 0.9 | 0·9
1·0 | 3·7
1·3 | 13,250
13,620 | Non-caking | 2710 | 2865 | 2910 | | 24-36 | 2/11/36 | As received. | 2.2 | 6·4
6·5 | 8·3
8·5 | 83·1
85·0 | 84 · 8
86 · 8 | 3·3
3·1 | 6·4
6·5 | 1·2
1·2 | 1:1
1:1 | 3·2
1·3 | 13,870)
14,190∫ | Non-caking | 2040 | 2215 | 2540 | | 2–37 | 22/ 6/37 | As received. | 4.0 | 4·5
4·7 | 2·9
3·0 | 88-6
92-3 | 87-6
91-3 | 2·0
1·6 | 4·5
4·7 | 0·8
0·8 | 0·6 | 4·5
1·0 | 13,180)
13,740 | Non-caking | 2000 | 2170 | 2440 | | 17-36 | 1/10/36 | As received. | 4.9 | 9·3
9·7 | 1·3
1·4 | 84·5
88·9 | 83·2
87·5 | 1·3
0·8 | 9·3
9·7 | 0·7
0·8 | 1·0
1·1 | 4·5
0·1 | 12,090
12,710 | Non-caking | 2500 | 2650 | 2750 | | 16-36 | 30/ 9/36 | As received. | 4.4 | 8.9 | 1·2
1·3 | 85·5
89·4 | 83·9
87·8 | 1·3
0·8 | 8·9
9·3 | 0·7
0·8 | 0.9 | 4·3
0·4 | 12,170)
12,740} | Non-caking | 2460 | 2650 | 2750 | | 1-35 | 28/ 2/35 | As received. | 0-5 | 7·4
7·4 | 1.1
1.1 | 91·0
91·5 | 89·7
90·1 | 0·4
0·4 | 7·4
7·4 | 0.9 | 1·0
1·0 | 0·6
0·2 | 12,670)
12,730} | Non-caking | 2180 | 2530 | 2650 | | 11-35 | 11/10/35 | As received. | 3.4 | 9·8
10·2 | 1.2
1.2 | 85·6
88·6 | 83·8
86·7 | 0·9
0·6 | 9·8
10·2 | 0·7
0·7 | 1·3
1·3 | 3·5
0·5 | 12,170
12,590} | Non-caking | 2670 | 2780 | 2900 | | 12–35 | 23/10/35 | As received. | 7.7 | 9·7
10·5 | 1·3
1·4 | 81·3
88·1 | 80·3
86·9 | 1·2
0·4 | 9·7
10·5 | 0·7
0·7 | 1·0
1·1 | 7·1
0·4 | 11,760
12,740} | Non-caking | 2660 | 2770 | 2890 | | 27-31 | 30/ 9/35 | As
received. | 1.0 | 0·6
0·6 | 9.8 | 88·6
89·5 | 90·3
91·2 | 3·7
3·7 | 0.6
0.6 | 1.6
1.6 | 1.5
1.5 | 2·3
1·4 | 15,260
15,420} | Non-caking | | | | | 9-35 | 23/ 9/35 | As received. | 3.6 | 8·7
9·1 | 9.0 | 78·7
81·6 | 79·2
82·2 | 2·8
2·4 | 8·7
9·1 | 2·0
2·1 | 1.5
1.5 | 5·8
2·7 | 12,770
13,250 | Non-caking | 1960 | 2070 | 2210 | | 10–35 | 25/ 9/35 | As received. | 4-1 | 10·7
11·2 | 8·4
8·7 | 76·8
80·1 | 78 · 2
81 · 5 | 2·6
2·2 | 10·7
11·2 | 2·3
2·4 | 1·4
1·5 | 4·8
1·2 | 12,450
12,980 | Non-caking | 1900 | 2020 | 2150 | | 4-35 | 24/ 4/35 | As received. | | 9·5
9·5 | 15·9
16·1 | 73·9
74·4 | 80·9
81·4 | 4·3
4·3 | 9·5
9·5 | 1.5 | 1·3
1·4 | 2·5
1·9 | 14,190
14,280 | Good | 2730 | 2860 | 2860+ | | 15-36 | 25/ 9/36 | | 0.9 | 10.8 | 15.7 | 72·6
73·3 | 80·5
81·2 | 4·2
4·1 | 10·8
10·9 | 0.5 | 1.2 | 2·8
2·1 | 13,760 | Good | 2330 | 2300 | 2350 | | 17-34 | 3/ 4/35 | As received
Dry | 1.7 | 10·9
8·7
8·9 | 15·8
32·3
32·8 | 57·3
58·3 | 77·1
78·5 | 5.2 | 8·7
8·9 | 1.4 | 1.5 | 6·1
4·8 | 13,920 | Good | 2560 | 2650 | 2740 | _ | 16–34 | 25/ 8/35 | As received. | 2.5 | 8.0 | 40-5 | 49·0
50·2 | 72·3
74·1 | 5·3
5·2 | 8·0
8·2 | 4.0 | 1.4 | 9.0 | 18,110
13,450 | Good | 1900 | 2020 | 2040 | |-------|----------|----------------------|-----|--------------|------------------|--------------|------------------|------------|--------------|------------|------------|--------------|--------------------|-------------------------|------|------|------| | 7–85 | 25/ 5/85 | As received. | 2.2 | 4·9
5·0 | 38·3
39·1 | 54·6
55·9 | 78·4
80·1 | 5·8
5·7 | 4·9
5·0 | 2·2
2·2 | 1·7
1·8 | 7·0
5·2 | 14,080
14,400} | Good | 1940 | 2020 | 2205 | | 6-34 | 3/ 1/35 | As received. | 1.5 | 10·6
10·7 | 31·7
32·2 | 56·2
57·1 | 74·8
76·0 | 5·0
4·9 | 10·6
10·7 | 4·6
4·7 | 1·3
1·4 | 3·7
2·3 | 13,500
13,710 | Good | 1900 | 1980 | 2080 | | 12-34 | 20/ 2/35 | As received. | 1.9 | 9·7
9·9 | 30·5
31·1 | 57·9
59·0 | 75·8
77·3 | 5·1
4·9 | 9·7
9·9 | 1·7
1·7 | 1.9
2.0 | 5·8
4·2 | 13,520
13,780 | Good | 2100 | 2230 | 2365 | | 8-34 | 16/ 1/35 | As received. | 4.3 | 9.5 | 33·7
35·2 | 52·5
54·9 | 69·6
72·7 | 4.9 | 9·5
9·9 | 4·9
5·1 | 1·3
1·4 | 9·8
6·2 | 12,730
13,300 | Good | 1950 | 2060 | 2160 | | 10-34 | 7/ 2/35 | As received. | 1.9 | 16·8
17·2 | 24 · 9
25 · 4 | 56·4
57·4 | 70·1
71·4 | 4.5 | 16·8
17·2 | 1.0
1.0 | 1.9
1.9 | 5·7
4·1 | 12,390)
12,620} | Good | 2200 | 2430 | 2550 | | 9-34 | 23/ 1/35 | As received. | 1.6 | 16·9
17·2 | 28·4
28·9 | 53·1
53·9 | 70·8
71·9 | 4·7
4·6 | 16·9
17·2 | 0·7
0·7 | 2·0
2·0 | 4.9
3.6 | 12,620
12,810 | Good | 2270 | 2530 | 2570 | | 7-34 | 9/ 1/35 | As received. | 8.9 | 14·5
15·0 | 34·0
35·4 | 47·6
49·6 | 64 · 9
67 · 5 | 5·0
4·7 | 14·8
15·0 | 7·3
7·6 | 1·3
1·4 | 7·0
8·8 | 11,860)
12,850} | Fair | 1910 | 2060 | 2160 | | 11-34 | 13/ 2/35 | As received. | 2.7 | 16·7
17·2 | 36·1
37·1 | 44·5
45·7 | 63·7
65·4 | 4.7 | 16·7
17·2 | 6·4
6·6 | 1.9
1.9 | 6.6 | 11,680
11,990} | Fair | 1920 | 1990 | 2010 | | 2-38 | 26/ 9/38 | {As received.
Dry | 4-3 | 13·9
14·5 | 29·3
30·6 | 52·5
54·9 | 68·2
71·2 | 4·8
4·5 | 13·9
14·5 | 1·2
1·2 | 1·8
1·9 | 10·1
6·7 | 11,980)
12,510} | Poor | 2250 | 2590 | 2680 | | 6–35 | 25/ 5/35 | As received. | 5-7 | 12·2
12·9 | 37·5
39·8 | 44·6
47·3 | 62·4
66·2 | 5·2
4·8 | 12·2
12·9 | 7·8
8·3 | 1·2
1·3 | 11·2
6·5 | 11,220
11,900} | Fair | 2005 | 2100 | 2240 | | 3–38 | 13/10/38 | As received. | 4.7 | 17·7
18·6 | 33 · 6
35 · 3 | 44·0
46·1 | 58·7
61·5 | 4.7 | 17·7
18·6 | 8·4
8·8 | 1·3
1·4 | 9·2
5·3 | 10,490
11,000 | Poor | 1880 | 2000 | 2080 | | 13-34 | 27/ 2/35 | As received. | 1.0 | 19·2
19·3 | 30·7
31·1 | 49·1
49·6 | 65·7
66·4 | 4·3
4·3 | 19·2
19·3 | 7·5
7·5 | 0·8
0·8 | 2·5
1·7 | 12,100
12,230 | Good | 1950 | 2010 | 2140 | | 14-34 | 13/ 3/35 | As received. | 3.6 | 11·3
11·7 | 27·4
28·4 | 57·7
59·8 | 73·7
76·5 | 4·7
4·5 | 11·3
11·7 | 0·8
0·8 | 1·1
1·2 | 8·4
5·3 | 12,780
13,250 | Fair | 2300 | 2390 | 2520 | | 15–34 | 20/ 3/35 | As received. | 3-1 | 12·8
13·2 | 39·4
40·7 | 44·7
46·1 | 68·3
70·5 | 5·2
4·9 | 12·8
13·2 | 1·3
1·4 | 1.4 | 11.0
8.6 | 12,190
12,580 | Fair | 2150 | 2180 | 2210 | | 1A-37 | 10/ 5/37 | As received. | 0.9 | 12·6
12·7 | 23·7
23·9 | 62·8
63·4 | 76·6
77·3 | 4.5 | 12·6
12·7 | 0·2
0·2 | 1·1
1·1 | 5·0
4·3 | 13,140
13,262 | Fair | 2330 | 2410 | 2450 | | 22-36 | 21/10/36 | As received. | 1.3 | 8·4
8·5 | 28·4
28·8 | 61·9
62·7 | 79·6
80·7 | 4.9
4.8 | 8·4
8·5 | 0·3 | 1·2
1·2 | 5·6
4·5 | 13,830
14,020 | Good | 2280 | 2365 | 2450 | | 18-35 | | As received. | 8-8 | 8-0 | 33·8
37·1 | 49·4
54·1 | 65·9
72·2 | 5·0
4·4 | 8·0
8·8 | 0.8 | 1.0
1.1 | 19·8
13·2 | 11,250)
12,820) | Slightly agglomerating. | 2200 | 2255 | 2270 | ¹ Arranged in the same order in which the respective fuels are tabulated in Tables A to D (in pocket). ² These numbers were assigned to the fuel samples as they were received in storage and have been retained throughout this report for convenient reference. They have no other significance. TABLE II—Concluded Proximate and Ultimate Analyses, etc., of a Representative Sample of the Total Bulk Shipment of Each Fuel, Taken either at Time of Unloading into Bins in Covered Storage Shed or Immediately Preceding Test—Concluded | Ship- | | Moisture | F | roximat | e Analysi | 8 | | บเ | timate. | Analysi | 8 | | Calorific | Caking | Aı | h fusibil | lity | |------------------------------|-----------------------|---------------------------|----------------------|--------------|-------------------------|---------------|------------------|--------------------|--------------|-------------------|--------------------|------------------|------------------------------|---|-------------------------|--------------------------------|-----------------------| | ment
and
sample
No. | Date
sampled | condition
of
sample | Moist-
ure
. % | Ash
% | Volatile
matter
% | Fixed car bon | Carbon | Hydro-
gen
% | Ash
% | Sul-
phur
% | Nitro-
gen
% | Oxy-
gen
% | value
B.T.U./lb.
gross | properties
as judged
by "coke-
button" | Initial
temp.
°F. | Soften-
ing
temp.
°F. | Fluid
temp.
°F. | | 23-36 | 21/10/36 | As received. | 7.1 | 15·3
16·4 | 33·4
36·0 | 44·2
47·6 | 63·1
68·0 | 5·3
4·8 | 15·3
16·4 | 0·3
0·3 | 1·8
1·4 | 14·7
9·1 | 11,150
12,000} | Poor to fair | 2205 | 2360 | 2440 | | 21-36 | 20/10/38 | As received. | 9.0 | 13·5
14·8 | 33·8
37·2 | 43·7
48·0 | 59·9
65·9 | 4·9
4·3 | 13·5
14·8 | 0·2
0·2 | 0·7
0·7 | 20·8
14·1 | 10,290
11,300 | Slightly
agglomerating. | 2055 | 2160 | 2200 | | 18–36 | 13/10/36 | As received. | 7-7 | 17·1
18·6 | 31 · 8
34 · 4 | 43·4
47·0 | 58·8
63·6 | 4·7
4·1 | 17·1
18·6 | 0·3
0·4 | 0·8 | 18·3
12·4 | 9,880
10,700 | Slightly
agglomerating. | 2100 | 2240 | 2375 | | 28-36 | 4/ 1/37 | As received. | 16.1 | 10·5
12·6 | 31·1
37·0 | 42·3
50·4 | 55·9
66·6 | 8·7
4·6 | 10·5
12·6 | 0·6
0·7 | 1·1
1·3 | 26·2
14·2 | 9,450
11,260 | Non-caking | 2050 | 2150 | 2320 | | 20-36 | 19/10/36 | As received. | 17-2 | 8·0
9·6 | 31 · 6
38 · 1 | 43·2
52·3 | 57·1
69·0 | 5·9
4·8 | 8·0
9·6 | 0·6
0·7 | 1·1
1·4 | 27·3
14·5 | 9,790)
11,830) | Non-caking | 2235 | 2330 | 2430 | | 19–36 | 15/10/36 | As received. | 83 - 3 | 5·4
8·2 | 26·8
40·3 | 34·3
51·5 | 44·8
67·3 | 6·8
4·5 | 5·4
8·2 | 0·5
0·8 | 0·8
1·2 | 41·7
18·0 | 7,570)
11,390 | Non-caking | 2315 | 2420 | 2480 | | 10-31 | Re-
sampled | As received. | 21.0 | 7·8
9·9 | 36·6
46·3 | 34·6
43·8 | 50·0
63·3 | 5·5
4·0 | 7·8
9·9 | 0·9
1·1 | 0·5
0·6 | 35·3
21·1 | 8,120
10,270 | Non-caking | 2040 | 2180 | 2260 | | 5-34 | 20/10/38
No bulk s | ample taken. | See anal | ysis of te | st sample | , items 1 | 0, 11, 12, | 15, and 1 | 6, colun | n 14, T | able D, | in pock | et. | * 1 | | | 1 | | 14-35 | 6/11/35 | As received. | 1.7 | 9·4
9·5 | 11.7
11.9 | 77·2
78·6 | 81 · 6
83 · 1 | 3·6
3·5 | 9·4
9·5 | 0·7
0·7 | 1·0
1·0 | 3·7
2·2 | 13,500)
13,740 | Non-caking | 2100 | 2440 | 2550 | | 1-38 | 14/ 9/88 | As received. | 1.0 | 12·4
12·5 | 19·6
19·8 | 67·0
67·7 | 78·2
79·0 | 4·5
4·4 | 12·4
12·5 | 0·6 | 1·0
1·1 | 3·3
2·4 | 13,610
13,760} | Poor | 2850+ | 2850+ | 2850- | | 1-37 | 11/ 3/37 | As received. | 1.6 | 11·7
11·8 | 18·0
18·3 | 68·7
69·9 | 78·8
80·1 | 4·7
4·6 | 11·7
11·8 | 0·6
0·7 | 1·1
1·1 | 3·1
1·7 | 13,690
13,910 | Poor to fair | 2860+ | 2860+ | 2860- | | 5-37 | 21/ 9/38 | As received. | 6.8 | 12·4
13·3 | 17·3
18·6 | 63·5
68·1 | 73 · 1
78 · 4 | 3·3
2·7 | 12·4
13·3 | 0·7
0·8 | 1·1
1·2 | 9·4
3·6 | 11,750
12,600 | Forms
agglomerate. | 1865 | 2005 | 2115 | | 4-34 | 13/ 8/34 | As received. | 14-0 | 4·7
5·5 | 58·1
67·5 | 23·2
27·0 | 47·6
55·4 | 6·1
5·3 | 4·7
5·5 | 0·4
0·4 | 1.7
2.0 | 39·5
31·4 | 7,860
9,140 | Non-caking | | | | Arranged in the same order in which the respective fuels are tabulated in Tables A to D (in pocket). ² These numbers were assigned to the fuel samples as they were received in storage and have been retained throughout this report for convenient reference. They have no other significance. #### RESULTS OF TESTS In all, one hundred and thirteen tests were made during the period under
review, but only sixty-four of these are reported because some of the tests were made for specialized purposes having no direct connection with the work of the general investigation. The determining factor in selection of the tests included was the ultimate usefulness of the data to the general reader. The detailed data and results of the sixty-four tests reported on are given in Tables A to D (in pocket at end of this report) which form the real basis of this report. These tables alone when considered with their respective headings and footnotes probably contain sufficient information for the use of the technical reader; but inasmuch as this report has been prepared for general distribution a summary and simplication of results as well as descriptive matter related thereto has been included for the lay reader. It should be particularly noted that the arrangement of Tables A to D is in accordance with a definite plan of fuel grouping: - Table A. Presents the results of the preliminary "standardizing" tests with stove-size American anthracite coal. - Table B. Presents the results obtained for anthracite coals and cokes of various sorts. - Table C. Presents the results obtained for American and Eastern Canada semi-bituminous and bituminous coals. - Table D. Presents the results obtained for Western Canada bituminous and sub-bituminous coals, lignite, and briquetted fuels. This grouping not only gives a logical arrangement for the discussion to follow but also permits orderly review of the results as a whole. Each table contains fifty-six main items of results for each test. Moreover, the items in each table are further arranged in three sections, the first of which (Section "A", items 1 to 20 inclusive) gives the general data regarding the tests as well as the physical and chemical characteristics of the fuels used; the second section (Section "B", items 21 to 35 (c) inclusive) gives the detailed results of the "observation" part of the tests; whereas the third and final section (Section "C", items 36 to 56 (a) inclusive) gives the detailed results of the "efficiency" part of the tests. Further, and in so far as possible, the fuels themselves, exclusive of the "standard" American anthracite, within the various groupings are arranged roughly in the order of decreasing calorific value. Those particularly interested in a detailed analysis of the results for the various tests will find that a careful study of the tabulated information given in these tables will bring out the many points of interest much better than any written description can. Table III gives summarized results for all tests; eighteen of the most salient items being selected from Tables A to D for this summary. It will be noted that this table is divided into four parts, viz. A, B, C, and D, each corresponding to the similarly lettered Tables A to D previously mentioned. Likewise the item numbers in Table III are the same as the item numbers in the same main tables so that they may be readily referred to. The first three columns of Table III list the distinguishing numbers for the respective trials; the fuel sample numbers, which have no other significance other than that they have been retained throughout this report simply for convenient reference; and give the kind of fuel tested for each trial. The remaining fifteen columns under their respective item numbers are as follows: - Item No. 7. Gives the average combustion rate as a percentage of the rated capacity of the furnace and, except for the last eight tests of Part A, is quite uniform in the neighbourhood of 52 per cent for all tests. - Items Nos. 10 (a), 10 (b), 12 (a), and 16 (b). Summarize the chemical properties of the fuels tested in respect to moisture, ash content, gross heating value, and ash fusion temperature, which roughly indicated the point at which the ash and refuse begins to soften. - Item No. 40 (e). Gives the fuel used per therm (100,000 B.T.U.) of useful heat delivered and this expression is translated in, - Item No. 40 (f). Fuel used to equal one ton of the "standard" American anthracite. Item 40 (f) is the most important from an economic standpoint since, when knowing the prices of the various fuels concerned, comparisons of cost may easily be made between them. - Item No. 42 (b). Gives the total refuse recovered as a percentage of the fuel used and is indicative of the relative amounts of refuse to be handled. - Items Nos. 44 (e) and 44 (f). Give, in B.T.U., the useful heat delivered per hour and per pound of fuel used. The former is a measure of the useful heat output of the boiler, whereas the latter is a measure of the quantity of useful heat obtained from each pound of fuel fired. - Items Nos. 45 (a), 45 (b), 46, 47 (a), and 49 (b). These five items, in the order stated, give the average temperature of the flue gases and the average CO₂ content of these gases at the boiler outlet; the average excess air used during the combustion process; the average draught over the fire; and the overall thermal efficiency, i.e. the percentage that the total useful heat obtained from the boiler is of the total heat supplied to the boiler. These items are indicative of the combustion conditions prevailing during the various tests. #### DISCUSSION OF RESULTS #### "Standardizing" Tests with American Anthracite Part A, Table III and Table A (in pocket) summarize and give complete results for tests made on a composite 6-ton sample of average stove-size American anthracite, during development of the "standard" method of test. The first three trials tabulated, namely trials Nos. DS-49, 50, and 51, were made first in accordance with procedure worked out for a "standard" method. While waiting for chemical analysis of fuel and refuse samples for these trials and preliminary to work-up of results on same, eight short, 24-hour "efficiency" tests (last eight trials tabulated) were made at progressively increasing rates of combustion in order to determine if the efficiency result of tests made with the "standard" method would be comparable to the average efficiency of the boiler when worked over its entire capacity range. The average efficiency result for the first three trials was 66.6 per cent, whereas the average efficiency for the last eight trials was 66.3 per cent, a difference of only 0.3 per cent. It was, therefore, concluded that the "standard" method gave efficiency results within the practical limits of boiler operation and that the efficiencies so obtained could be safely used as a basis for comparison. Before proceeding with tests on other fuels, however, two more tests, trials Nos. DS-61 and 62 were made by the "standard" method in order to see if the results would be similar to those obtained for the first three tests previously Although the efficiencies obtained for the last two tests were a little lower than those obtained for the first three tests the results so closely approximated each other within the limits of experimental error. that the method was accepted as the basis for future testing. The results of the five tests made by the "standard" method were then averaged to give the results of the "Standard Trial" No. DS-X5 which is used throughout this report as the true basis for all comparisons. #### **Anthracite Coals and Cokes** Part B, Table III and Table B (in pocket) summarize and give complete results for tests made on various anthracite coals and cokes. For certain of these fuels, namely, Welsh and French Indo-China anthracites and petroleum coke due to their low ash content and peculiar behaviour in the fire, the furnace grate had to be modified in order to obtain consistent results comparable with the other fuels. Without this modification it was found that radiation losses through the grate and the loss due to unburned combustible matter in refuse were abnormally high with consequent abnormally low efficiencies. This, of course, indicated a definite weakness in the "standard" method of test for fuels of this nature and hence to this extent only was the "standard" procedure varied for the tests on these fuels. It should be clearly understood, however, that the modification applies only to test procedure and not to the use of these fuels, with probably the exception of petroleum coke, for ordinary domestic use. In ordinary use the time factor allows for accumulation of ash on the furnace grate and this accumulation properly regulated with shaking automatically gives positive combustion control for the average user. The modification consisted of partially sealing off the grate from the burning fuel by the introduction of a foreign substance between the grate and the fuel being tested. The first scheme tried with Welsh anthracite (see trial No. DH-144, column 2, Table B) was the use of a known quantity and quality of broken clinker. A quantity of Welsh anthracite clinker was obtained from previous firings of the same fuel, this was broken into pieces $1\frac{1}{2}$ to $2\frac{1}{2}$ inches in size, and a definite quantity of which a representative sample had been previously analysed, was placed over the grate immediately before start of the test. The fuel undergoing test was then fired on top of the broken clinker and the test proceeded in accordance with the usual "standard" method of procedure. Although this first scheme was quite successful it was very difficult to obtain the requisite quantity of clinker for the several tests on these fuels. The scheme was further complicated by the necessity of determining the quality of the several clinker samples in order to apply corrections in the calculations involved. For these reasons a second scheme was tried which consisted of the use of a definite quantity of inert broken firebrick, sized, and handled similarly to the broken clinker previously used. The second scheme gave consistent results equally as satisfactory as the first with none of the inert difficulties of handling and hence was adopted for the remaining
trials, namely trials Nos. EDH—145, 146, 149, and EDS—93, columns 3, 4, 5, and 12 of Table B. Inasmuch as the use of either broken clinker or crushed firebrick has disadvantages for continuous use as a grate protection by the home owner, a third scheme was tried for petroleum coke only. The ordinary coal grate is not at all suited to the use of this fuel, which has an extremely low ash content of about 1.5 per cent. Either the ordinary coal grate should be replaced with a new one of the pin-hole type, or a metal plate with closely spaced \(\frac{1}{4}\)-inch perforations should be laid over the existing grate. This was tried for trial No. EDS-94, column 11, Table B, and gave good results, quite similar to the results obtained with broken firebrick for the same fuel. See trial No. EDS-93, column 12, Table B. #### American and Eastern Canada Semi-bituminous and Bituminous Coals Part C, Table III and Table C (in pocket) summarize and give complete results for tests made on various American and Eastern Canada semi-bituminous and bituminous coals. The first test made, namely trial No. DS-65, column 7, Table C, with bituminous coal gave a lower efficiency result than was obtained for other bituminous coals of a like nature. For this reason this sample was retested. See trial No. EDS-77, column 8, Table C. The results of the two trials were in such close agreement that it is safe to assume that the results of the first trial are not in error and, therefore, are representative of the fuel tested. #### Western Canada Bituminous and Sub-bituminous Coals, Lignite, and Briquetted Fuels Part D, Table III and Table D (in pocket) summarize and give complete results for tests made on various Western Canada bituminous and sub-bituminous coals, lignite, and briquetted fuels. The only explanation necessary regarding these results is in regard to trial No. DH-202, column 13, Table D, which was made with Northern Ontario lignite. The only sample of this fuel available for test had been in storage for several years during which time it had become abnormally dry. The economic result for this trial is, therefore, probably higher than would obtain had freshly mined fuel been used with a moisture content of approximately 45 per cent. Due to the low calorific values of the low-rank lignite fuels and peat briquettes six firings had to be made each 24 hours for the four tests made on these fuels instead of the normal three which obtained for all other tests on higher ranking fuels. These additional firings were necessary in order to maintain the same comparative combustion rate for all the tests. The close agreement of the results obtained for trials Nos. EDS-81 and 82, columns 19 and 20, Table D, both made on the same sample of imported peat bricks, again illustrates the ability of the operating staff to duplicate results with the "standard" test procedure used throughout. #### **General Discussion** Similarly as for the old (1925) series of tests previously reported on in Bureau of Mines Report No. 705, the trend of the efficiency values for these tests when considered as a whole in relation to fuel rank is downward as the rank lowers. In other words the high-rank, low-volatile, high-carbon fuels gave highest efficiencies; whereas the low-rank, high-volatile, low-carbon fuels gave the lowest efficiencies. Thus, and generally speaking, the efficiencies varied inversely with the volatile matter content of the different fuels and hence directly with their fixed carbon contents. Consequently less fuel was required to produce the same heating effect with the higher rank fuels than with the low-rank fuels. The average thermal efficiency for the five individual tests made on the "standard" sample of American anthracite with a volatile matter content of 5 per cent was 65.8 per cent. For three tests on the same sample of Welsh anthracite with a volatile matter content of 8 per cent the average efficiency was 70.3 per cent. The increased efficiency for Welsh anthracite having a higher volatile content may be accounted for by its higher carbon content and calorific value. The efficiency obtained for the one test on French Indo-China anthracite with a volatile matter content of 4 per cent was very high in relation to American anthracite, 75.6 per cent. This is accounted for in this one test by the extremely high carbon content and the even control given during this test by the use of crushed firebrick on the grate as well as the grate seal provided by the natural tendency of the ash to form sheet clinker over the grate. For five tests on five different samples of by-product coke with less than 2 per cent of volatile matter the average efficiency was 72.4 per cent. The three tests on low-temperature coke with an average volatile matter content of 9 per cent gave an average efficiency of 70.0 per cent. The two tests on petroleum coke also with a volatile matter content of 9 per cent gave a like average efficiency of 71.1 per cent. Both of these efficiency values closely approximates that for the Welsh anthracite. The efficiency values for the semi-bituminous, bituminous, and sub-bituminous coals varied from 50 to 60 per cent with two exceptions namely, trials Nos. DS-65 and DH-134, for which the values were below 50 per cent, and may be accounted for by the physical properties and behaviour of these two coals in the fire. The variation in values for semi-bituminous, bituminous, and sub-bituminous coals even when of the same rank are accounted for by varying ash contents and varying physical properties such as average size of lump, friability or tendency to crumble during handling and burning, and caking, swelling and clinkering tendencies during the combustion process. It can be appreciated, therefore, that the efficiency values for these coals would be more irregular and not so likely to grade as closely in rank as would the higher ranking and more uniform anthracite and coke fuels previously discussed. The efficiency value obtained for Saskatchewan lignite was 48.6 per cent, whereas as previously mentioned the high value of 55.2 per cent for Ontario lignite is accounted for by the extreme dryness of the sample. Had Ontario lignite been in its state as mined, with approximately 45 per cent moisture content, the value would have been, in all probability, below 50 per cent. The briquetted fuels gave varying efficiencies of from 66.7 per cent for briquettes made from anthracite fines to 54.0 per cent for peat bricks. Here again the efficiencies, in general, grade in accordance with the rank of fuel from which the briquettes are made. Any reader who wishes to make a close study of the efficiency values for himself must not be too critical of minor contradictions in the general trend of the values unless he is prepared to weigh carefully all the supporting data in respect to physical and chemical properties and general burning characteristics of the various fuels concerned. In the writers' opinion the efficiency values by themselves are not so good a criterion of fuel value for the lay reader as is item 40 (e), Tables III, and A, B, C, and D (in pocket). This item gives the pounds of fuel used per therm (100,000 B.T.U.) of useful heat output, and is a direct measure of the quantity of fuel required to produce a specified heating result. This expression is translated, in item 40 (f), into tonnage necessary to equal one ton of the "standard" American anthracite which is most important from an economic standpoint, since, knowing the prices of the various fuels concerned, comparisons of costs may easily be made between them. Therefore, the economic results to follow are given on a basis of these values rather than on a direct efficiency basis. ## COMPARISON OF ECONOMIC RESULTS OF OLD AND NEW SERIFS OF TESTS In the interval between making the old and new series of tests a definite improvement in the average grade of American anthracite supplied to the Canadian market had been noted. This improvement in quality, as shown in an anthracite and coke analysis survey* made in the 1932-33 winter season, was the main factor prompting the retesting of American anthracite for the new series of tests. The sample used as a standard of comparison for the former tests averaged 14.5 per cent ash with a calorific value of 12,090 B.T.U. per pound as fired, whereas the "standard" sample used for the latter tests averaged 9.6 per cent ash with a corresponding higher calorific value of 13,190 B.T.U. Obviously, in any comparison between the two series of results due allowance should be made for the difference in grade between the two "standard" samples. For this reason Table IV, a reproduction of Table X, Bureau of Mines Report No. 705, is given with the addition of another column giving a recalculation of the equivalent tonnages corresponding to the ash content (9.6 per cent) and calorific value (13,190 B.T.U.) of the new "standard" sample. ^{*}Anthracite and Coke Analysis Survey Conducted at the Fuel Research Laboratories, Paper I, "Investigations of Fuels and Fuel Testing 1932"—Bureau of Mines Report No. 737. Table V, similarly to Table IV, gives the relative values of the fuels tested in the new series, compared with American anthracite, based on quantity of fuel fired to deliver 100,000 B.T.U. to the cooling water of the system. The column "equivalent tonnage to 10 tons of American anthracite", is a comparison of all the fuels with American anthracite, on a basis of heat delivery only. Although these results give merit ratings which are quite definite for the one factor commented upon, some care and discretion should be used in applying them inasmuch as other factors and fuel characteristics which the reader must interpret for himself from the data at his disposal should be taken into account before final decision is made regarding the best fuel value for a particular need. It must also be remembered that this comparison is based on tests made in a single type of furnace
and might not apply to all types of furnaces, although it is reasonably safe to take the results as being relatively comparable for the more common types of furnaces used throughout Canada for domestic heating purposes. TABLE III Summarized Results of Comparative Burning Tests Made with Various Solid Fuels in a Domestic Hot-Water Boiler | | | Item No. | 7 | 10(a) | 10(b) | 12(a) | 16(b) | 40(e) | 40(J) | 42(b) | 44(e) | 44(f) | 45(a) | 45(b) | 46 | 47(a) | 49(b) | |--|--|--|--|--|---|---|--|--|--|--|---|---|--|--|---|--|--| | | | Fuel | Com-
bustion | | Fue | l as fired | | Fuel | used | Refuse | Usefu
deliv | l heat
rered | Flue | gases | | | | | Part A.—Tes | No. | Kind | rate
per cent
of rated
capac-
ity,
% | Moist-
ure,
% | Ash, | Gross
calorific
value,
B.T.U./lb. | Ash fusion temp., °F. | Per
therm
delivered
to
cooling
water,
lb. | To equal
one ton
Ameri-
can
anthra-
cite,
tons | per
cent
of
fuel
used,
% | Per
hour,
B.T.U. | Per lb.
fuel
used,
B.T.U. | Average temp., | COs
con-
tent,
% | Excess
air,
% | Draught
over
fire,
in, W.G. | Overall
thermal
effi-
ciency, | | rt A.—' | Tests or | Stove-size America | n Anthra | cite, for | comple | te data see | Table A | (in pocke | t). | | | | | | | | | | DS-49
DS-50
DS-51
DS-61
DS-62 | 3-34
3-34
3-34
3-34
3-34 | American anthracite | 55
53
50
53
49 | 3·1
3·2
3·1
2·6
2·4 | 8.8
9.1
9.5
9.8
10.6 | 13,230
13,210
13,260
13,130
13,130 | 2850
2860
2835
2810
2900 | 11.25
11.48
11.28
11.66
11.94 | 0.98
1.00
0.98
1.01
1.03 | 16·7
17·5
17·9
19·6
21·1 | 71,657
67,729
69,328
67,913
65,559 | 8,892
8,711
8,869
8,574
8,374 | 331
307
303
310
300 | 14.9
13.5
13.4
12.4
12.8 | 27
41
40
50
48 | 0·004
0·012
0·009
0·013
0·015 | 67·2
65·9
66·9
65·3
63·8 | | DS-X5 | 3-34 | u u | 52 | 2.9 | 9.6 | 13,190 | 2850 | 11-52 | 1.00 | 18-6 | 68,437 | 8,684 | 310 | 13-4 | 41 | 0.010 | 85.8 | | DS-53
DS-54
DS-55
DS-56
DS-57
DS-68
DS-60
DS-63 | 3-34
3-34
3-34
3-34
3-34
3-34
3-34 | 66 66 66 66 66 66 66 66 66 66 66 66 66 | 37
50
63
74
87
100
113
132 | 2·7
2·8
2·7
2·4
2·5
2·5
3·0
2·5 | 9.5
11.4
9.2
9.5
9.5
10.1
9.6
10.2 | 13,210
13,110
13,300
13,250
13,150
13,190
13,090
13,080 | 2840
2840
2860
2855
2840
2855
2830
2840 | 13·34
12·11
11·57
11·34
10·94
10·91
10·97
11·20 | 1·16
1·05
1·00
0·98
0·95
0·95
0·95 | 13·9
12·7 | 49,341
66,258
82,784
97,428
114,990
132,241
149,295
174,476 | 7,495
8,256
8,646
8,820
9,141
9,170
9,116
8,930 | 210
286
337
390
436
495
525
605 | 13·3
12·4
11·9
11·9
13·6
13·5
13·8
14·1 | 39
51
54
54
30
34
33
34 | 0.003
0.009
0.027
0.021
0.040
0.046
0.053
0.072 | 56.7
63.0
65.0
66.5
69.5
69.5
69.6
68.3 | | art B.— | Tests or | Anthracite Coals a | nd Cokes | for con | nplete d | lata see Tab | le B (in | pocket). | a. | | | | | | | | | | DH-144
DH-145
DH-146
DH-149 | 24-36
24-36 | Welsh anthracite """ Indo-China anthra- | 55
52
52 | 1·7
1·7
1·7 | 4·4
4·6
4·6 | 14,290
14,290
14,290 | 2340
2330
2330 | 9·54
10·37
10·00 | 0·83
0·90
0·87 | 4·7
16·2
11·8 | 70,122
69,236
68,281 | 10,479
9,644
10,011 | 348
321
317 | 10·9
12·3
13·1 | 67
48
41 | 0.016
0.024
0.015 | 73·3
67·5
70·1 | | DH-131
DH-130
DS-89
DS-95
DS-96
EDS-94
EDS-93
DS-92
EDS-92
EDS-90
EDS-91 | 1000 | citeBy-product coke" "" "" "" "" "" "" "" "" "" "" "" " | 53
51
51
52
54
54
52
52
52
53
53 | 3.8
0.4
0.2
0.2
1.2
4.6
1.4
1.5
3.6
3.6 | 5.0
9.4
9.2
7.7
9.9
10.0
0.5
1.7
8.8
8.8 | 13, 160
12, 900
12, 850
12, 830
12, 500
12, 050
15, 210
14, 900
12, 840
12, 780
12, 510 | 2060
2760
2710
2510
2780
2780
2005
2000
2010
2090
1980 | 10.05
11.72
10.85
10.74
10.45
11.10
9.20
9.49
10.99
11.21 | 0.87
1.02
0.94
0.93
0.91
0.96
0.80
0.95
0.97 | 6.6
10.9
9.3
9.3
11.3
11.5
Nil.
2.4
12.8
12.3
14.8 | 69, 963
68, 600
67, 848
68, 470
68, 201
68, 776
68, 008
69, 228
68, 167
68, 330
68, 074 | 9,947
8,531
9,215
9,310
9,566
9,005
10,867
10,542
9,099
8,924
8,653 | 304
308
299
302
322
312
303
303
318
313 | 11.9
9.7
8.9
11.4
13.1
11.2
11.2
14.0
14.7
13.7 | 56
87
103
56
46
45
63
30
28
33 | 0.030
0.037
0.039
0.013
0.008
0.012
0.019
0.008
0.007
0.007 | 75-6
66-1
71-7
72-6
76-5
74-7
71-4
70-8
70-8
69-8
69-2 | Part C.—Tests on American and Eastern Canada Coals, for complete data see Table C (in pocket). | | | | | | | The state of s | | | | | | | - | 900 100 | | | | |-----------|-------|-----------------|----|----------|----------|--|------------|-------------|----------|---------------|---------------|-------|-----|-----------|----------|-------|--------------| | DS-78 | 4-35 | American—semi- | | | | ** *** | 0070 | | 1.05 | 10.7 | en nos | 0.051 | 360 | 10.1 | | 0.010 | EO 1 | | TO TT 400 | 45.00 | bituminous | 52 | 0.7 | 9.2 | 14,190 | 2870 | 12.12 | 1.05 | 16.7 | 68,381 | 8,251 | 373 | 10.1 | 55
65 | 0.019 | 58·1
51·9 | | DH-132 | | | 57 | 0.3 | 9.4 | 14,060 | 2280 | 13.70 | 1.19 | 27.1 | 70,359 | 7,300 | 3/3 | 10-6 | 00 | 0.018 | 91.8 | | DS-76 | 17-34 | American | | 100 1100 | 1000 000 | 1967001 1000000000 | 1000000000 | S0000 44400 | 101 1000 | Northern Tank | HOTOT HOTOTOT | | | monor non | 1000 | | | | 70 | | bituminous | 51 | 1.6 | 8.2 | 13,900 | 2700 | 13.47 | 1-17 | 16.0 | 69,500 | 7,423 | 457 | 11.0 | 51 | 0.019 | 53 - 4 | | DS-75 | 16-34 | " | 52 | 2.4 | 8.0 | 13,280 | 2045 | 14.36 | 1.25 | 12.9 | 69,019 | 6,963 | 484 | 12.7 | 30 | 0.008 | 52.4 | | DS-80 | 7-35 | N.S. bituminous | 52 | 2.3 | 4.8 | 14, 100 | 2015 | 14-18 | 1.23 | 15.0 | 70,064 | 7,050 |
450 | 12.3 | 32 | 0.012 | 50.0 | | DS-65 | 6-34 | 44 44 | 47 | 1.3 | 11.0 | 13,540 | 2025 | 15.41 | 1.34 | 27.4 | 89.549 | 6.490 | 431 | 10.4 | 65 | 0.019 | 47.9 | | EDS-77 | 6-34 | | 52 | 1.2 | 11.4 | 13.250 | 2020 | 15.42 | 1.34 | 27.0 | 68.733 | 6.484 | 402 | 10.7 | 53 | 0.018 | 48.9 | | DS-71 | 12-34 | и и | 53 | 1.6 | 9.7 | 13,440 | 2170 | 13.78 | 1.20 | 14-5 | 68,601 | 7,259 | 426 | 11.0 | 51 | 0.019 | 54.0 | | DS-67 | 8-34 | 66 66 | 51 | 3.9 | 11.4 | 12,530 | 2065 | 15-13 | 1.32 | 18-1 | 68,568 | 6,609 | 407 | 11.9 | 47 | 0.006 | 52.7 | | DS-69 | 10-34 | | 53 | 1.5 | 17.5 | 12,370 | 2440 | 13.93 | 1.21 | 22.7 | 70,436 | 7,181 | 412 | 11.5 | 47 | 0.007 | 58-1 | | DS-68 | 9-34 | и и | 52 | 1.4 | 17.9 | 12,320 | 2520 | 13.65 | 1.18 | 21-6 | 68.875 | 7,327 | 452 | 10.9 | 55 | 0.009 | 59.5 | | DS-66 | 7-34 | | 52 | 3.3 | 13.9 | 12,080 | 2000 | 15.43 | 1.34 | 21.1 | 71.060 | 6.480 | 441 | 12.8 | 32 | 0.006 | 53.6 | | DS-70 | | | | 2.4 | 15.1 | 11,880 | 2025 | 15.18 | 1.32 | 19.7 | 70,472 | 6,586 | 449 | 11.3 | 44 | 0.010 | 55 - 4 | | | 11-34 | | 54 | | | | | | 1.25 | 17.9 | | | 452 | 11.5 | 48 | 0.020 | 56.8 | | DH-200 | | " " ···· | 52 | 3.5 | 11.6 | 12,200 | 2580 | 14.43 | | | 69,953 | 6,929 | 452 | | | | | | DS-79 | 6-35 | " " | 53 | 5.8 | 11-4 | 11,300 | 2090 | 16.73 | 1.45 | 21.5 | 68,758 | 5,977 | 452 | 11.9 | 34 | 0.009 | 52.9 | | DH-201 | 3-38 | | 56 | 4.5 | 14.6 | 11,090 | 1970 | 16.78 | 1.46 | 22.2 | 70,583 | 5,961 | 413 | 9.8 | 62 | 0.017 | 53.8 | | DS-72 | 13-34 | N.B. bituminous | 52 | 1.0 | 21.5 | 11,590 | 2040 | 14.82 | 1.29 | 23.1 | 72,630 | 6,748 | 454 | 9.2 | 74 | 0.028 | 58.2 | | | | | 1 | - 1 | | | | | | | | | | l J | 1 | | | Part D.—Tests on Western Canada Coals, Lignite, and Briquetted Fuels, for complete data see Table D (in pocket). | DS-74 15-34 | " " " " " " " " " " " " " " " " " " " | 51
52
54
57
54
49
60
52
56
60 | 2·8
0·9
0·8
8·0
5·5 | 11 · 8
11 · 6
11 · 8
13 · 2
8 · 3
14 · 8
14 · 6
18 · 4
6 · 9
6 · 7 | 12,800
12,500
13,230
12,970
11,340
11,315
10,190
9,730
10,150
10,130 | 2380
2170
2300
2350
2240
2320
2190
2190
2040
2000 | 14·11
14·25
13·53
13·55
16·22
18·90
17·84
18·52
16·83
17·27 | 1·22
1·24
1·17
1·18
1·41
1·64
1·55
1·61
1·46 | 20·6
16·6
24·1
18·7
19·9
34·6
23·6
27·4
10·8 | 69.380
68,793
68,851
68,571
68,534
69,234
68,550
67,677
69,922
68,899 | 7,086
7,017
7,393
7,380
6,165
5,290
5,605
5,400
5,942
5,792 | 373
475
382
464
384
464
378
394
383
367 | 12.7
13.4
10.5
8.6
11.3
10.1
10.2
9.0
12.1
11.5 | 31
26
68
94
56
72
69
93
47
51 | 0·004
0·005
0·024
0·035
0·022
0·064
0·035
0·050
0·014 | 55.4
56.1
55.9
56.9
54.4
46.8
55.0
55.5
58.5 | |---|---|--|--|---|---|--|--|--|--|--|--|--|--|--|---|--| | DH-202 10-31
DS-84 5-34
DS-98 14-35
DH-198 1-38
DH-140 1-37
EDS-81 4-34
EDS-82 4-34 | American briquettes Alberta briquettes Sask. briquettes Peat bricks | 53
54
54 | 19·2
0·6
0·9
0·8
0·7
5·9
12·0
5·4 | 6.5
9.8
9.8
12.3
12.1
13.1
5.4
5.7 | 8,350
14,050
13,650
13,660
13,500
11,830
8,150
8,140 | 2375
2750
2420
2900+
2850+
2050
2245
2240 | 21-68
12-31
10-99
11-83
12-17
13-62
22-73
22-48 | 1.88
1.07
0.95
1.03
1.06
1.18
1.97 | 7·5
20·8
13·1
13·2
15·4
15·5
5·6
5·4 | 70,715
70,345
68,410
70,268
71,313
70,370
70,765
70,369 | 4,612
8,125
9,101
8,453
8,217
7,340
4,399
4,448 | 383
299
311
372
358
349
331
340 | 11.4
14.0
14.0
12.9
12.6
13.8
13.2
14.3 | 63
26
29
39
38
35
35
28 | 0·011
0·009
0·007
0·013
0·013
0·010
0·010
0·007 | 55·2
57·8
66·7
61·9
60·9
62·0
54·6 | ¹ Fuels are arranged in the same order in which they are tabulated in Tables A to D (in pocket). ² Trial No. DS-X5 gives the average results of the first five trials tabulated for American anthracite. These averaged results should be used for comparison with the other fuels. 22 TABLE IV** Showing the Relative Values of the Various Fuels Tested (in the old series), Compared with American Anthracite and Based on Quantity of Fuel Fired per Therm (100,000 B.T.U.) delivered to the Cooling Water of the System | | Fuel - | | Pounda | of fuel fired | per therm
the cooli | 1 (100,000 B
ing water | .T.U.) del | ivered to | | Equivalent tonnage to | Recalculated
equivalent
tonnage to
10 tons of
9.6 per cent | |----|--|------------------|-----------------|-----------------|----------------------------|---------------------------|------------|-----------|------------------|--------------------------------------|--| | | | | Values for | each of th | e tests sele
tabulation | | arting and | | Average
value | 10 tons of
American
anthracite | ash and
13,190 B.T.U
American
anthracite | | 1 | American anthracite | 10.95 | 11-44 | 10.80 | 12.36 | | [| | 11.39 | 10.00 | 10.00 | | 2 | Welsh anthracite | 9.60 | 9.78 | 9.48 | 9.35 | 9.57 | | | 9.56 | 8.39 | 9.16 | | 3 | Scotch semi-anthracite | 9.44 | 9.57 | 9.68 | 10.24 | | | ********* | 9.73 | 8.54 | 9.32 | | 4 | Gas coke By-product Coke No. 2. By-product Coke No. 3 By-product Coke No. 4 American smokeless, semi-bituminous No. 1. | 11.45 | 11.20 | 10.93 | 10.82 | 10.96 | | | 11.21 | 9.84 | 10.74 | | 0 | By-product Coke No. 2 | 10-18 | 10.34 | 10.25 | 10.57 | | | | 10.33 | 9.07 | 9.89 | | 6 | By-product Coke No. 3 | *10-50
*10-83 | 10.91 | 11·16
•11·38 | 10.83 | | | | 10.85 | 9.53 | 10.39 | | 0 | A morison amplealogs somi bitumizous No. 1 | 10.83 | *10·23
10·91 | 10.72 | ********* | | | | 10.81 | 9.49 | 10.35 | | 10 | American smokeless, semi-bituminous No. 2 | 10.79 | 11.20 | 11.03 | 11.30 | | | | 10·98
11·01 | 9·64
9·67 | 10·52
10·55 | | ii | Alberta semi-bituminous | 11.18 | 11.34 | 11.19 | | | | | 11.01 | 9.89 | 10.80 | | 2 | Alberta sub-bituminous No. 1 | 13.89 | 15.27 | 14.90 | | | | | 14.76 | 12.96 | 14.14 | | 3 | Alberta sub-bituminous No. 2. | 15.04 | 15-18 | 15.82 | | | | | 15.55 | 13.66 | 14.89 | | 4 | Alberta sub-bituminous No. 3 | 14.46 | 16.08 | 16.26 | 16-98 | | | | 15.94 | 13.99 | 15.27 | | 5 | Alberta domestic No. 1 | 16.03 | 17.30 | 16.98 | 18.25 | | | | 17.14 | 15.05 | 16.42 | | 16 | Alberta domestic No. 2 | 16.34 | 17.51 | 17.18 | | | | | 17.45 | 15.32 | 16.71 | | 17 | Alberta domestic No. 3 | 16.56 | 16.81 | 16.56 | 18-12 | | | | 17.01 | 14.93 | 16.29 | | 18 | Alberta domestic No. 4 | 16.53 | 17.34 | 17-45 | 18.73 | | | | 17-51 | 15.37 | 16.77 | | 19 | Alberta domestic No. 5 | 18.73 | 18-90 | 19-19 | 19.42 | | | | 19.06 | 16.73 | 18.26 | | 21 | Air-dried, machine peat | *25.00 | | | | | | | 25.00 | 21.95 | 23 · 95 | ^{*}Denotes tests of short duration. See page 28, paragraph 4 (Bureau of Mines Report No. 705) for explanation of short and long tests. ^{**}Reproduction of Table X—Bureau of Mines Report No. 705. | | Fuel* | P | ounds of fu
deli | el fired per
vered to th | | | J.) | Equivalent
tonnage to
10 tons of
9.6 per cent ash | |-------|---|-----------|---------------------|-----------------------------|-------------|-----------|------------------|--| | No. | Kind | Values fo | or each of t | he tests giv
inclusive | ren in Tabl | es A to D | Average
value | and
13,190 B.T.U.
American
anthracite | | 3-34 | American anthracite | 11.25 | 11-48 | 11-28 | 11-66 | 11.94 | 11-52 | 10.00 | | 24-36 | Welsh anthracite | 9.54 | 10.37 | | | | 9.97 | 8-65 | | 2-37 | French Indo-China anthracite | 10.05 | | | | | 10.05 | 8.72 | | 17-36 | By-product coke | 11.72 | | | | | 11.72 | 10.17 | | 16-36 | By-product coke | 10.85 | | | | | 10.85 | 9.42 | | 1-35 | By-product coke | 10.74 | | | | | 10.74 | 9.32 | | 11-35 | By-product coke | 10.45 | | | | | 10.45 | 9.07 | | 12-35 | By-product coke | 11.10 | | | | | 11.10 | 9.64 | | 27-31 | Petroleum coke | 9-20 | | | | | 9.35 | 8.12 | | 9-35 | Low-temperature coke | 10.99 | | | | | 11-10 | 9.64 | | 10-35 | Low-temperature coke | 11.56 | | | | | 11.56 | 10.03 |
| 4-35 | American semi-bituminous coal | 12-12 | | | | | 12.12 | 10.52 | | 15-36 | American semi-bituminous coal | 13.70 | | | | | 13.70 | 11.89 | | 17-34 | American bituminous coal | | | | | | | 11.69 | | 16-34 | American bituminous coal | 14.36 | | | | | 14.36 | 12-47 | | 7-35 | Nova Scotia bituminous coal | 14.18 | | | | | 14.18 | 12.31 | | 6-34 | Nova Scotia bituminous coal | 15-41 | | | | | 15.42 | 13.39 | | 12-34 | Nova Scotia bituminous coal | 13.78 | | | | | | 11.96 | | 8-34 | Nova Scotia bituminous coal | 15.13 | | | | | 15.13 | 13-13 | | 10-34 | Nova Scotia bituminous coal | 13.93 | | | | | 18 - 93 | 12.09 | | 9-34 | Nova Scotia bituminous coal | 13.65 | | | | | | 11.85 | | 7-34 | Nova Scotia bituminous coal | 15-43 | | | | | 15.43 | 13.39 | | 11-34 | Nova Scotia bituminous coal | 15-18 | | | | | 15-18 | 13.18 | | 2-38 | Nova Scotia bituminous coal | 14-43 | | | | | | 12-53 | | 6-35 | Nova Scotia bituminous coal | 16-73 | | | | | 16.73 | 14.52 | | 3-38 | Nova Scotia bituminous coal | 16.78 | | | | | 16.78 | 14-57 | | 13-34 | New Brunswick bituminous coal | | | | | | 14.82 | 12-86 | | 14-34 | British Columbia bituminous coal | 14-11 | | | | | 14-11 | 12.25 | | 15-34 | British Columbia bituminous coal | 14.25 | | | | | 14.25 | 12-37 | | A-37 | Alberta bituminous coal | | | | | | 13.53 | 11.74 | | 22-36 | Alberta bituminous coal | | | | | | 13.55 | 11.76 | | 13-35 | Alberta bituminous coal | 16.22 | | | | | 16-22 | 14.08 | | 23-36 | Alberta bituminous coal | 18-90 | | | | | 18-90 | 16.41 | | 21-36 | Alberta bituminous coal | | | | | | 17.84 | 15-49 | | 18-36 | Alberta bituminous coal | 18-52 | | | | | 18-52 | 16.08 | | 28-36 | Alberta sub-bituminous coal | 16.83 | | | | | 16.83 | 14.61 | | 20-36 | Alberta sub-bituminous coal | 17-27 | | | | | 17.27 | 14.99 | | 19-36 | Saskatchewan lignite | | | | | | 25.84 | 22.43 | | 10-31 | Ontario lignite | 21-68 | | | | | 21.68 | 18.82 | | | Briquettes made from Alberta coal | 12.31 | | | | | 12.31 | 10.69 | | | Briquettes made from American anthracite | | | | | | 10.99 | 9.54 | | 1-38 | Briquettes made from Alberta coal | 11-83 | | | | | 11.83 | 10.27 | | | Briquettes made from Alberta coal | | | | | | 12-17 | 10.56 | | 5-37 | Briquettes made from Saskatchewan lignite | 13.62 | | | | | 13-62 | 11.82 | | 4-34 | Imported peat bricks | 22.73 | 22.48 | | l | 1 | 22.61 | 19-6 | ^{*}Fuels are arranged in the same order in which they are tabulated in Tables A to D (in pocket). | | CALL NO. | TITLE | | |---|---------------|---------------------------------------|---| | | TN | Comparative tests of | | | | 26 | various fuels when | | | | E5f | burned in a domestic | | | | no.802 | hot-water boiler, | | | | 1940 | 1935-1938 .
AUTHOR (Book) | | | | | BALTZER, Clarence
Edwin. | | | | DATE BORROWED | VOL/NO/YR (Periodical) | | | | BORROWER: | | | | 1 | Name | | | | | Div. | | · | | | Phone | · · · · · · · · · · · · · · · · · · · | | | | Room No | | | | | 100 100 | | | . . . #### TABLE A DEPARTMENT OF MINES AND RESOURCES BUREAU OF MINES—FUEL RESEARCH LABORATORIES, OTTAWA, CANADA Detailed Data and Results of Fourteen Comparative Burning Tests Made on a "Standard" Sample of American Anthracite in a Domestic Hot-Water Boiler | Detailed Data and | d Results of Fourte | een Compai | ative Burn | | | 34, American A | Anthracite, Stove | | Anthracite | in a Dome | estic Hot-V | Vater Boile | er | | | |---|--|--|--|---|--|---|---|--|--|--|--|--|---|--|---| | Item | Type of trial, etc. | 1 , | Five 120-ho | our "Standard | ' Trials h | 5 | Average of fivo
120-hour
"Standard"
trials | 7 | Eight | 24-hour "Effic | iency" Trials I | h at Varying R | ates of Combus | stion 13 | 14 | | Section "A", Items 1 to 20 inclusive—Ge 1. Trial number | NERAL | DS-49
S
10-15/9/34 | DS-50
S
17-22/9/34 | DS-51
S
24-29/9/34 | DS-61 | DS-62
S | DS-X5 a
S
10-9 to 1-12/34 | EDS-53
E
22-23/10/34 | EDS-54
E
23-24/10/34 | EDS-55
E
24-25/10/34 | EDS-56
E
25-26/10/34 | EDS-57
E
26-27/10/34 | EDS-58
E
27-28/10/34 | EDS-60
E
16/17/11/34 | EDS-63
E
5-6/12/34 | | 3. Date of trial. 4. Duration of trial, continuous total. 5. Number of fire periods during 24-hour day. 6. Intervals between firings (24-hour day). 7. Average rate of combustion, per cent of rated capacity of fur | | 120
120
9, 5, and 10
55 | 120
120
9, 5, and 19 | 120
3
9, 5, and 10
50 | 120
120
9, 5, and 10
53 | 120 | 120
120
9, 5, and 10 | 24
9, 5, and 10
37 | 24
9, 5, and 10
50 | 24
3 | 24
9, 5, and 10
74 | 24
3
9, 5, and 10
87 | 9, 5, and 10 | 24
3
9, 5, and 10
113 | 24
9, 5, and 10
132 | | 8. Furnace: (a) Average rating, feet of water radiation | sq. It. | $\begin{array}{c} 880 \\ 3 \cdot 4 \\ 32 \cdot 4 \\ 5 \cdot 4 \end{array}$ | 880
3·4
32·4
5·4 | 880
3·4
32·4
5·4 | 880
3·4
32·4
5·4 | 880
3·4
32·4
5·4 | 880
3·4
32·4
5·4 | $880 \\ 3 \cdot 4 \\ 32 \cdot 4 \\ 5 \cdot 4$ | 880
3 · 4
32 · 4
5 · 4 | \$80
3·4
32·4
5·4 | $ \begin{array}{r} 880 \\ 3 \cdot 4 \\ 32 \cdot 4 \\ 5 \cdot 4 \end{array} $ | $\begin{array}{r} 880 \\ 3 \cdot 4 \\ 32 \cdot 4 \\ 5 \cdot 4 \end{array}$ | 880
3 · 4
32 · 4
5 · 4 | 880
3 · 4
32 · 4
5 · 4 | $\begin{array}{c} 880 \\ 3 \cdot 4 \\ 32 \cdot 4 \\ 5 \cdot 4 \end{array}$ | | | sample received for test). | | - | | | - | -chail | - | | | <u>.</u> | - | | 7 - | - | | (d) " 8" " 6" " " " " " " " " " " " " " " " | | 49·5
42·0 | 49·5
42·0 | 49·5
42·0 | 49·5
42·0 | 49·5
42·0 | 49.5
42.0 | 49·5
42·0 | 49·5
42·0 | 49·5
42·0 | -
49·5
42·0 | $\begin{array}{c} - \\ - \\ - \\ 49.5 \\ 42.0 \\ 6.5 \end{array}$ | 49·5
42·0
6·5 | -
-
49 · 5
42 · 0
6 · 5 | -
-
-
49 · 5
42 · 0
6 · 5 | | (j) (i) | %
%
% | 6.5
0.5
0.5
0.5
0.3 | 6·5
0·5
0·5
0·5
0·3
0·2 | 6.5
0.5
0.5
0.5
0.3
0.2 | 6.5
0.5
0.5
0.5
0.3
0.2 | 6.5
0.5
0.5
0.5
0.3
0.2 | 6·5
0·5
0·5
0·5
0·3
0·2 | 6.5
0.5
0.5
0.5
0.3
0.2 | 6·5
0·5
0·5
0·5
0·3
0·2 | 6·5
0·5
0·5
0·3
0·2 | 6.5
0.5
0.5
0.5
0.3
0.2 | 0·5
0·5
0·5
0·3
0·2 | $0.5 \\ 0.5 \\ 0.5 \\ 0.3 \\ 0.2$ | 0.5
0.5
0.5
0.3
0.2 | $0.5 \\ 0.5 \\ 0.5 \\ 0.3 \\ 0.2$ | | (n) " " " " " " (o) Average size of lumps. (p) "Size stability per cent" by shatter test on: (1) -4" (round hole screen) coal | | 92.8 | 2·06
-
92·8
2·06
-
92·8
- | 2·06
-
92·8 | 2.06 | 92.8 | 2·06
92·8 | | (1) 1" to 1½" (square hole screen) size | | 3·1
8·8
5·0 | 3·2
9·1
5·1 | 3·1
9·5
4·9 | 29·8
2·6
9·8
5·2 | 29·8
2·4
10·6
5·2 | 29·8
2·9
9·5
5·1 | 29·8
2·7
9·5
5·1 | $ \begin{array}{c} 29.8 \\ 11.4 \\ 5.1 \end{array} $ | 29·8
2·7
9·2
5·3 | $ \begin{array}{c} 29 \cdot 8 \\ \hline 2 \cdot 4 \\ 9 \cdot 5 \\ \hline 5 \cdot 0 \end{array} $ | 29·8
2·5
9·5
5·5 | 29·8
2·5
10·1
5·3 | 29-8
3-0
9-6
5-4 | $ \begin{array}{r} 29 \cdot 8 \\ \hline 2 \cdot 5 \\ 10 \cdot 2 \\ \hline 5 \cdot 5 \end{array} $ | | 11. Ultimate analysis: (a) Carbon (b) Hydrogen (c) Ash | 7,0
7,0
7,0
7,0 | 82·5
2·9
8·8 | 82·6
82·1
2·0
9·1 | 82·5
81·8
2·9
9·5 | 82·4
82·0
2·8
9·8 | 81·8
81·3
2·8
10·6 | 82·5
81·9
2·9
9·6 | 82·7
82·1
2·8
9·5 | 80·7
80·1
2·8
11·4 | 82·8
82·5
2·9
9·2 | 83·1
82·6
2·8
9·5 | \$2.5
\$2.5
2.8
9.5
0.8 | \$1.9
2.8
10.1 | \$2.0
\$1.8
2.9
9.6
0.9 | 81-8
81-6
2-8
10-2
0-9 | | (d) Sulphur (e) Nitrogen. (f) Oxygen (by difference) 12. Calorific value: (a) As fired, gross value. | | 0.9
0.9
4.0 | 1.0
0.9
4.0 | 0.9
0.9
4.0 | 0.9
0.9
3.6 | 0.9
0.9
3.5 | 0.9
0.9
3.8 | 1.0
0.9
3.7 | 0.8
0.9
4.0 | 0.8
0.9
3.7 | 0.8
0.9
3.4 | 0.9
3.5 | 13, 190
13, 530 | 13,090
13,500 | 0.9
3.6
13,080 | | (b) Dry, gross value (c) Gas used for kindling (assumed) | B.T.U./lb | . 13,650
500
. 16.50 | 13,640
500
16.50
28.6
Non-eaking | 13,680
500
16.75
28.5
Non-caking | 13,500
500
15.85
29.1
Non-caking | 13,500
500
15.90
29.3
Non-caking | 13,580
500
16.30
28.8
Non.eaking | 13,580
500
16·20
29·1
Non-eaking | 13,390
500
15.95
28.8
Non-caking | 13,670
500
15-60
29-0
Non-caking | 13,580
500
16.45
29.4
Non-caking | 13,490
500
15.00
29.4
Non-caking | 500
15 · 55
29 · 1 | 15,500
500
15·10
28·7
Non-caking | 13,420
500
15.00
29.1
Non-caking | | (b) Swelling index = Per cent swelling × 100 Per cent dry V.M. at 600°C. (c) Caking index by "Gray" method. 16. Ash fusibility: (a) Initial deformation temperature. | | . - | 2,780 | 2,760 | 2,680 | 2,735 | 2,745 | 2,775 | 2,770 | 2,785 | 2,780 | 2,750 | 2,750 | 2,720 | -
-
2,720 | | (a) Initial determination temperature. (b) Softening point or fusion temperature. (c) Fluid temperature or melting point. 17. Apparent specific gravity, as received in bulk. 18. Weight per cubic foot, as received in bulk. 19. Volume per ton of 2,000 pounds, as received in bulk. | *F. | 2,850
2,910 | 2,860
2,905
1.47
52.4
38.2 | 2,835
2,900
1.47
52.4
38.2 | 2,810
2,900
1-47
52-4
38-2 | 2,900
2,900+
1.47
52.4
38.2 | 2,850
2,905
1.47
52.4
38.2 | 2,840
2,920
1.47
52.4
38.2 | 2,840
2,950
1.47
52.4
38.2 | 2,860
2,940
1.47
52.4
38.2 | 2,855
2,920
1.47
52.4
38.2 | 2,840
2,945
1.47
52.4
38.2 | 2,855
2,960
1.47
52.4
38.2 | 2,830
2,940
1.47
52.4
38.2 | 2,840
2,840+
1.47
52.4
38.2 | | 20. Grindability index by Hardgrove method | BSERVATION' TEST | 28.5 | 28.5 | 28.5 | 28.5 | 28.5 | 28.5 | 28.5 | 28.5 | 28.5 | 28.5 | 28.5 | 28.5 | 28.5 | 28.5 | | 21. Duration of "observation" trial. 22. Fuel fired: (a) City gas used for kindling. (b) Fuel equivalent to gas used. (c) Quantity during trial. (d) Total, including gas equivalent. | cu. ft | 96
100
3 · 8
708
711 · 8 | 100
3.8
708
711.8 | 96
100
3·8
708
711·8 | 96
101
3.8
708
711.8 | 100
3·8
708
711·8 | 100
3·8
708
711·8 | | | - | - | | - | | -
-
- | | 23. Refuse removed: (a) Through fire-door during trial. (b) From ash-pit during trial. (c) Total, during trial. (d) As dumped residual fire at end of trial. | 1b. | Nil
65·0
65·0
71·3 | Nil
62 · 8
62 · 8
70 · 3 | Nil
63·0
63·0
82·3 | Nil
73·8
73·8
86·8 | Nil
70·0
70·0
92·5 | Nil
66 · 9
66 · 9
80 · 6 | - | - | - | - | | | | - | | SCREEN EXAMINATION OF REFUSE (a) Removed through fire-door during trial (b) On 1" square mesh screen recovered from ash-pit re (c) " 3" " " " residual fi | . lb. fuse. lb. lb. ire. lb. | Nil
4
41 | Nil
5½
4 | Nil 51/2 51/3 | Nil
3
5‡ | Nil
2½
5
4* | Nil 425
445 b | - | | • |

 | | | | idea
Idea
Idea
Idea
Idea | | (e) " ½" " " " " " " " " " (f) Total—(over ½" screen size)—recovered | lb. lb. | -
-
37 | 31 | -

4
7½ | 141
141
31 | 14
14
4
10 | 18 b
14 b | - |

 | - 1 | - | - | um
um
um
de | - | - | | (c) " 1", " " " " residual fi
(d) " ** " " " " " " " " " " " " " " " " " | ire. lb. lb. lb. lb. | 46 | 441 | - 2
41½ | 11½
42
22½
79 | 47
21½
82½ | 44½ b
21½ b
80¼ b | - |

 |
 | | | - | - | | | (b) "residual fire | lb. | - | - | - | 50½
17
67½ | 485
174
66 | 171 b
661 b | - | - | - | - | - | ~ | ~ | un | | (a) Ash c (b) Combustible c (by difference) | % | 48·3
51·7
24·4
2·0 | $49.0 \\ 51.0$ 27.5 1.7 | 49.7
50.3
23.3
1.1 | 45.9
54.1
20.5 d
1.4 d | 39·5
60·5
17·7 d
1·4 d | $46.5 \\ 53.5$ 22.7 1.5 | - | <u>-</u> | - | - | | - | - | -
- | | (b) "volstile matter. (c) "fixed carbon (by difference). (d) Dry calorific value, gross (e) Sensible heat, total estimated. (f) "coal equivalent. (Items (e) and (f) based on items 23(a) plus 23(d) (g) Portion allocated to asi-pit loss. | B.T.U./lb
B.T.U.
lb. | 73-6
10,660
36,577
2-8 | 70-8
10, 150
36, 064
2-7 | 75.6 $10,800$ $42,220$ 3.2 27.8 | 78·1 d
11,130 d
44,528
3·4
25·4 | 80·9 d
11,540 d
47,453
3·6 | 75.8
10.860
41,368
3.1 | | - | - | | - | - | | -
-
- | | (h) " not chargeable to test. (i) Fuel equivalent of portion not chargeable. 29. Equivalent fuel used: (a) Total for trial, calculated. | | 43·5
42·1
666·9
6·9 | 38·2
36·7
672·4
7·0 | 54·5
52·2
656·4
6·8 | 61 · 4
58 · 9
649 · 5
6 · 8 | $ \begin{array}{c} 22 \cdot 0 \\ 70 \cdot 5 \\ 67 \cdot 1 \end{array} $ $ \begin{array}{c} 641 \cdot 1 \\ 3 \cdot 7 \end{array} $ | 53·6
51·4
657·3
6·8 |

 | -
- | - | = | ~ | | | - | | (c) Per square foot of grate surface per hour. (d) "heating "" (e) "therm e delivered to cooling water | lb.
lb.
lb. | 2·0
0·21
9·46
58·6 | $\begin{array}{c} 2 \cdot 1 \\ 0 \cdot 22 \\ 9 \cdot 97 \\ 61 \cdot 1 \end{array}$ | $\begin{array}{c} 2 \cdot 0 \\ 0 \cdot 21 \\ 10 \cdot 57 \\ 62 \cdot 3 \end{array}$ | $ \begin{array}{c} 2 \cdot 0 \\ 0 \cdot 21 \\ 9 \cdot 21 \end{array} $ 63 · 6 | $\begin{array}{c} 2 \cdot 0 \\ 0 \cdot 21 \\ 10 \cdot 40 \\ 67 \cdot 9 \end{array}$ | 2.0
0.21
9.94
62.7 | |
-
- | - | - | | 600
488
1880
1887 | - | | | (a) For test. (b) Per cent of fuel used. (c) " ton " " General Data | | 92·8
13·9
278 | 04 · 9
14 · 1
282 | 90-8
13-8
276 | 99 · 2
15 · 3
306 | 92 · 0
14 · 4
288 | 93 · 9
14 · 3
286 | - |

 | | : | | - | - | nur
Ant | | 32. Circulating water, average temperature: (a) Flow by thermograph (b) Return 33. Cooling water: (a) Average temperature, inlet by thermograph | | 137
110 | 136
109
60 | 139
112
69 | 122
91
43 | 119
90
45 | 131
102
56 | - | | - | | - | - | - | er
en. | | | °F.
°F.
lb.
B.T.U | 105
41
171,934
73,430 | 70, 228
10, 027 | 105
36
172,473
64,677
9,459 | 82
39
173,526
70,495
10,854 | 81
36
169,803
63,676
9,535 | 94
38
172,121
68,501
10,089 | | - | - | - | ***

*** | | - | 100
700
700
801
401 | | 34. Flue gases: (a) Average temperature by recorder. (b) "carbon dioxide content f | % | 301
13·2 | 320
13·4
0·016 | 280
13·5 | 301
14·0
0·008 | 299
13·9
0·007 | 300
13-6
0-009 | un u | ************************************** | - | | | | - | - | | (b) Room temperature, by thermograph (c) Outdoor temperature, by thermograph Section "C", Items 36 to 56(a) Inclusive—One-Day | °F. | 67 64 | 63
56 | 70 65 | 70 44 | 67 38 | 53 | - | *** | 5°4 | | | ************************************** | - | Mar. | | 36. Duration of "efficiency" trial. 37. Fuel fired: (a) City gas used for kindling. (b) Fuel equivalent to gas used. (c) Quantity during trial. (d) Total, including gas equivalent. | cu, ft | | 24
100
3 · 8
247
250 · 8 | 24
103
3 · 9
247
250 · 9 | 24
100
3 · 8
247
250 · 8 | 24
100
3 · 8
247
250 · 8 | 24
101
3 · 8
247
250 · 8 | 24
100
3 · 8
215
218 · 8 | 24
100
3 · 8
260
263 · 8 | 24
100
3 · 8
305
308 · 8 | 24
101
3-8
335
338-8 | 24
100
3 · 8
380
383 · 8 | 24
100
3 · 8
425
428 · 8 | 24
100
3·8
470
473·8 | 24
100
3 · 8
509 · 5
513 · 3 | | 38. Refuse removed: (a) Through fire-door during trial. (b) From ash-pit (c) Total, during trial. (d) Dry analysis of total refuse recovered, ash | | Nil
12·3
13·3
48·3 | Nil
15·0
15·0
49·0 | Nil
12·3
12·3
49·7 | Nil
12·5
12·5
45·9 | Nil 20.0 20.0 39.5 | Nil
14·6
14·6
46·5 | Nil
14
14
31 · 2 | Nil
18·8
18·8
40·6 | Nil
18·8
18·8
45·3 | Nil
23
23
51·7 | Nil
26
26
64 · 5 | Nil
29.5
29.5
64.4 | Nil
29
29
68 · 6 | Nil
39·3
39·3
71·3 | | (f) As demped residual fire at end of trial | lb.
| 51·7
74·5 | 51.0
80.0 | 20·0
1·4 | 20.5
1.4 | 60-5
82-3
17-7
1-4 | \$3.5
80.9 | 68.8
88.3
16.5
2.2 | 18.6
1.4 | 54.7
104.5
17.9 | 48.3
98
19.9 | 35.5
101.5
19.9
0.9 | $ \begin{array}{c c} 35 \cdot 6 \\ 103 \\ 20 \cdot 1 \\ 0 \cdot 9 \end{array} $ | 31·4
102·3
22·0
0·7 | 31·8
0·6 | | (c) " " fixed carbon (by difference) | B.T.U./(i
B.T.U.
(f)). | 79·4
11.530 | 80·1
11,690
41,040
3·1
17·6 | 78.6
11,440
42,579
3.2
21.2 | 78-1
11,130
43,349
3-3
24-7 | 80.9
11,540
42,220
3.2 | 79.4
11,466
41,481
3-1
20-4 | $ \begin{array}{c c} 81.3 \\ 11,570 \\ 45,298 \\ 3.4 \\ 27.6 \end{array} $ | 80·0
11,345
48,376
3·7
22·3 | \$0.8
11,310
53,609
4.0
24.5 | 79.0
11,080
50,274
3.8
23.8 | 79-2
11,000
52,070
4-0
18-9 | 79.0
10,960
52,839
4.0 | 77.3
10,720
52,480
4.0
21.1 | 67.6
9,040
35,807
2.7
24.5 | | (h) " not chargeable to test. (i) Fuel equivalent of portion not chargeable. 40. Equivalent fuel used: (a) Total for trial, calculated. (b) Per hour. | | 55·7
54·5 | 189 · 6
7 · 8 | 187-6
7-8 | 59.8
57.4
190.1
7.9 | 187·9
7·8 | 189 · 1
7 · 9 | 158.0
6.6 | 72·0
67·5
192·6
8·0 | 229·8
9·6 | $ \begin{array}{c} 74 \cdot 3 \\ 69 \cdot 9 \\ 265 \cdot 1 \\ 11 \cdot 0 \end{array} $ | 82·6
77·9
301·9
12·6 | 346·1
14·4 | 81 · 2
76 · 8
393 · 0
16 · 4 | 45·3
41·7
468·9
10·5 | | (c) " square foot of grate surface per hour. (d) " heating " (e) " therm is delivered to cooling water. (f) To equal one ton of stove-size American anthracite 41. Total ash in fuel used, from fuel analysis. | 1b. 1b. 1b. 1b. 1b. 1f. (g ton | $ \begin{array}{c cccc} & 2 \cdot 4 \\ & 0 \cdot 25 \\ & 11 \cdot 25 \\ & 0 \cdot 98 \end{array} $ | 2·3
0·24
11·48
1·00 | 2 · 3
0 · 24
11 · 28
0 · 98 | 2·3
0·24
11·66
1·01
18·6 | 2·3
0·24
11·94
1·03 | 2 · 3
0 · 24
11 · 52
1 · 00 | 1.9
0.20
13.34
1.16 | 2 · 4
0 · 25
12 · 11
1 · 05 | 2·8
0·30
11·57
1·00 | 3 · 2
0 · 34
11 · 34
0 · 98 | 3.7
0.39
10.94
0.95 | $ \begin{array}{r} 4 \cdot 2 \\ 0 \cdot 45 \\ 10 \cdot 91 \end{array} $ | 4.8
0.51
10.97
0.95 | 5 · 7
0 · 60
11 · 20
0 · 97
47 · 7 | | 42. Total refuse: (a) For test (b) Per cent of fuel used (c) " ton " " | | $\begin{array}{c} 32 \cdot 1 \\ 16 \cdot 7 \\ 334 \end{array}$ | 32·6
17·5
350 | 33 · 5
17 · 9
358 | 37·2
19·6
392 | 39·6
21·1
422 | 35.0
18.6
371 | 41 · 6
26 · 4
528 | 41·1
21·4
428 | 43·3
18·8
376 | 46.8
17.7
354 | 44·9
14·9
298 | 48·1
13·9
278 | 50·1
12·7
254 | 63 · 8
13 · 6
272 | | (a) Flow. (b) Return. 44. Cooling water: | °F | 111 | 134
108
65·2
102·8 | 136
111
65·6
104·5 | 119
92
45·0
83·2 | 117
91
44·1
81·2 | 129
103
57·1
95·5 | 109
86
52-5
80-0 | 124
97
53 · 3
90 · 5 | 136
106
53 · 5
100 · 0 | 146
114
53 · 6
108 · 3 | 159
124
53 · 5
118 · 0 | 170
132
52·3
126·9 | 177
136
44 · 1
127 · 6 | 192
149
41 · 9
139 · 3 | | (c) " difference (d) Total used during trial, corrected. (e) Heat delivery per hour (f) " pound of fuel used 45. Flue gases: | "F
 | 106·0
40·1
42,887
71,657
U. 8,892 | 102 · 8
37 · 6
43 · 230
67 · 727
8 · 711 | 104·5
38·9
42,773
69,328
8,869 | 83·2
38·2
42,668
67,913
8,574 | 81·2
37·1
42,410
65,559
8,374 | 95·5
38·4
42,794
68,437
8,684 | 80.0
27.5
43,061
49,341
7,495 | 90.5
37.2
42,747
66,258
8,256 | 100-0
46-5
42,727
82,784
8,646 | 108:3
54:7
42,747
97,428
8,820 | 118.0
64.5
42,787
114,990
9,141 | $\begin{array}{c} 126.9 \\ 74.6 \\ 42,544 \\ 132,241 \\ 9,170 \end{array}$ | 127.6
83.5
42,911
149,295
9,116 | 139-3
97-4
42,992
174,476
8,930 | | 45. Fine gases: (a) Average temperature | °F
%
% | $\begin{array}{c} 331 \\ 14 \cdot 9 \\ 4 \cdot 6 \\ 0 \cdot 2 \\ 80 \cdot 3 \\ 12 \cdot 5 \end{array}$ | 307
13·5
6·2
0·2
80·1
13·5 | 303
13 · 4
6 · 1
0 · 1
80 · 4
13 · 6 | $\begin{array}{c} 310 \\ 12 \cdot 4 \\ 7 \cdot 1 \\ 0 \cdot 4 \\ 80 \cdot 1 \\ 14 \cdot 4 \end{array}$ | 300
12·8
6·9
0·4
79·9
13·4 | 310
13·4
6·2
0·3
80·2
13·5 | 210
13·3
6·0
0·7
80·0
11·6 | $\begin{array}{c} 286 \\ 12 \cdot 4 \\ 7 \cdot 2 \\ 0 \cdot 3 \\ 80 \cdot 1 \\ 13 \cdot 4 \end{array}$ | 337
11.9
7.5
0.2
80.4
15.0 | 390
11.9
7.5
0.1
80.5
15.5 | $\begin{array}{c} 438 \\ 13 \cdot 6 \\ 5 \cdot 0 \\ 0 \cdot 2 \\ 81 \cdot 2 \\ 14 \cdot 2 \end{array}$ | 495
13·5
5·5
0·2
80·8
14·2 | $\begin{array}{c} 525 \\ 13 \cdot 8 \\ 5 \cdot 3 \\ 0 \cdot 2 \\ 80 \cdot 7 \\ 14 \cdot 2 \end{array}$ | 605
14 · 1
5 · 4
0 · 1
80 · 4
13 · 9 | | 46. Excess air. 47. Draught average: (a) Over fire. (b) In flue. | % | 27 | 41 0.012 | 40 0.00 | 50 | 48 | 41
0 · 010 | 39 | 51 0.009 | 54
0 · 027 | 54 | 30 | 34
0 0 0 0 4 | 33
0 · 053 | 34
0·072 | | 48. Average: (a) Room temperature (b) " relative humidity (c) Outdoor temperature (d) Barometric pressure | | | 70
70
67
29-903 | 66
59
58
29 · 88 | 69
56
42
29·95 | 65
53
40
29·71 | 68
64
55
29 · 897 | 65
66
51
29·74 | 69
61
54
30·046 | 68
56
49
29 • 926 | 70
53
52
29·58 | 68
53
42
29·55 | 50
50
33
29 · 48 | 70
45
38
29-979 | 64
44
22
30-012 | | 49. Efficiency: (a) Grate (b) Overall thermal Heat Account Per Pound of Fuel Used in B.T. | U. AND PER CENT | 90.5 | 90 · 1
65 · 9 | 90 · 0
66 · 9 | 88·2
65·3 | 85 · 8
63 · 8 | 88.9
65.8 | 79·9
56·7 | 85 · 9
63 · 0 | 88·7
65·0 | 90-6
66-5 | 04 · 1
69 · 5 | 94 · 5
69 · 5 | 95 · 5
69 · 6 | 95 · 6
68 · 3 | | 50. Heat delivered to cooling water. 51. Loss due to steam formed from moisture in fuel and the hydrogen in dry fuel. 52. Loss due to hear carried away in dry fue gases. 53. " "unburned combustible matter in refuse. 54. " earbon monoxide. | | U. 305
U. 786
U. 1,259 | 8,711
302
768
1,306
108 | 8,869
303
774
1,316
55 | 8,574
292
833
1,550
226 | 8,374
292
756
1,868
211 | 8,684
299
783
1,460
140 | 7,495
281
404
2,651
325 | 8,256
289
698
1,852
162 | 8,646
306
968
1,503
121 | 8,820
301
1,190
1,245
64 | 9,141
308
1,261
770
114 | 9,170
316
1,482
722
114 | 9,116
329
1,551
584
113 | 3,930
328
1,805
571
56 | | 55. " radiation, errors, and unaccounted for | B.T. B.T. and that formed by | U. 1,889
U. 13,230 | 2,015
13,210
65·9 | 1,943
13,260
66·9 | 1,655
13,130
65·3 | 13,130
3-8 | 140
1,824
13,190
65-8 | 2,054
13,210
56-7 | 162
1,853
13,110
63·0 | 1,756
13,300
65·0 | $ \begin{array}{r} $ | 1114
1,556
13,150
69-5 | 1,386 | 113
1,397
13,090
69-6 | 1,390
13,080
63.3 | | burning hydrogen in dry fuel. 52. (a) Loss due to heat carried awey in dry flue gases 53. (a) " unburned combustible matter in refuse 54. (a) " " carbon monoxide 55. (a) " radiation, errors, and unaccounted for | | 2·3
5·9
9·5
0·8
14·3 | 2·3
5·8
9·9
0·8
15·3 | 2·3
5·8
9·9
0·4
14·7 | 2·2
6·4
11·8
1·7
12·6 | 2·2
5·8
14·2
1·6
12·4 | 2·3
5·9
11·1
1·1
13·8 | 2·1
3·1
20·1
2·5
15·5 | $\begin{array}{c} 2 \cdot 2 \\ 5 \cdot 3 \\ 14 \cdot 1 \\ 1 \cdot 3 \\ 14 \cdot 1 \end{array}$ | 2·3
7·3
11·3
0·9
13·2 | 2·3
9·0
9·4
0·5
12·3 | 2·3
9·6
5·9
0·9
11·8 | 11·2
5·5
0·9 | 2·5
11·8
4·5
0·9
10·7 | 2.5
13.8
4.4
0.4
10.6 | | 56. (a) Percentage, equivalent to total calorific value of 1 pour value | % | | 100.0 | 100·0 | | 100·0 | 100-0 | 100.0 | 100.0 | 100 · 0 | 100.0 | 100 - 0 | 100.0 | 100.0 | 100-0 | a The data given for Trial No. DS-X5 are the averaged results obtained for five repeat tests, all of which very closely approximated each other in value. b Average of two tests only; totals, therefore, are not necessarily exact. c As the normal refuse recovered during first four days of trial was not available for chemical analysis after having been screened, the values reported for items 27(a) and (b) are assumed to be the same as the values reported for items 38(d) and (e) in the "efficiency" part of the trial. d For Trials No. DS-61-62 only, the dumpings recovered at conclusion of the first four days of trial were not available for chemical analysis after having been screened, therefore, the values reported for items 28(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) in the "efficiency" part of the trial. e Therm=100,000 B.T.U. Due to the assumed analysis (see notes c and d, the values reported for item 29 (e) are approximate only, for exact values see item 40(e). f Values determined by continuously operated CO₂ recorder. g Based on the average value obtained for item 40(e) trial No. DS-X5. h For an explanation of the terms "standard" trial, "observation" trial, and "efficiency" trial see page 3. Detailed Data and Results of Fourteen Burning Tests Made on Various Anthracite Coals and Cokes in Comparison with a "Standard" Sample of American Anthracite in a Domestic Hot-Water Boiler | Detailed Data and Results of Fou | urteen Burning | | on Variou | s Anthracit | e Coals and | l Cokes in C | Compariso | a with a " | Standard" | Sample of | | | in a Dome | estic
Hot-Wa | tter Boiler | t. | |---|---|--|--|---|--|--|--|--|--|---|--|---|--|--|--|---| | Fuel | Kind Sample No. | "Standard"
Sample | | Anthracite | | | | 16-36 B | 1-35 | 11-35
By-product | Cokes | 27-31 | | | emperature Co
from | | | Item | Name or area | American
Anthracite
Stove | | Welsh h Cobbles | | French
do-China h | By-product
Western On
Range | COKE | Coke,
Quebee
Stove | Eestern Or
Stove | ntario
Nut | Petroleum C | lump | Washed b | ump | Unwashed
lump | | | Column No. | 1 | 50-lb. | 3
75-lb. breken
on grat | | 5
I-Ib, broken
irebrick on | 6 | | 8 | 9 | 10 | | 0-lb. broken
firebrick on
grate | 13 | 14 | 15 | | Section "A", Items 1 to 20 inclusive—Ge:
Trial number.
Type of trial (S-Standard, O-Observation, E-Efficien
Date of trial | ney), | DS-N5 a
S
10-9 to 1-12/34 | on grate DH-144 S 14-19/6/37 | E
29-30/6/37 30 |)-6 to 1-7/37 | E
26-31/7/37 15 | 8 | D1[-139
 8
 -16/1/87
 120 | DS-89
S-11/9/25 1- | DS-95
8
4-19/10/35
120 | DS-96
S
-10 to 2-11/35
120 | EDS-94
E
10-11/10/35
24 | EDS-93
E
8-9/10/35
24 | DS-92
S
30-9 to 5-10/35
120 | EDS-90
E,
24-25/5/35
24 | EDS-91
E
26-27/9/3
24 | | Date of trial, continuous total. Number of fire periods during 24-hour day. Intervals between firings (24-hour day). Average rate of combustion, per cent of rated capacity | hrs. | 120
9, 5, and 10
52 | 120 | 24
9, 5, and 10
52 | 24
3
0, 5, and 10 9
52 | 120
3
0, 5, and 10 9, | 3 | 3 | 3 | 3 | 3 | 3
9, 5, and 10
52 | 9, 5, and 10
52 | 9, 5, and 10 | 9, 5, and 10
52 | 9, 5, and 1
52 | | Furnace: (a) Average rating, feet of water radiation (b) Naminal grate area | sq. ft. | 880
3 · 4
32 · 4 | 880
3 · 4
32 · 4
5 · 4 | 880
3 · 4
32 · 4 | 880
3 · 4
32 · 4
5 · 4 | 880
3 · 4
32 · 4 | 889
3-4
32-4
5-4 | 850
3 · 4
32 · 4
5 · 4 | 880
3 · 4
32 · 4
5 · 4 | \$80
3 · 4
32 · 4
5 · 4 | 880
3-4
32-4
5-4 | 880
3 · 4
32 · 4
5 · 4 | \$80
3.4
32.4
5.4 | | (c) Area of heating surface. (d) Volume, grate to top of firepot. RAW FUEL as FIRED UNLESS OTHERWISE SPI Screen analysis: (Made on a representative portion) | ECIFIED | 5.4 | 5-4 | 5.4 | 3.4 | 5.4 | 9.3 | | | | | | | | | | | received for test). (a) Through 18" on 12" round hole screen (b) " 12" " 10" " " " " " " " " " " " " " " " " | | - | - | - | - | - | | - | | | - | 80-1 | -
80·1 | 6.0 | -
-
-
6 · 0 | 11.4 | | (e) (f) (f) (g) (g) (g) (g) (g) (g) (g) (g) (g) (g | 70
60
60
60
60
60
60
60
60
60
60
60
60
60 | -
49·5
42·0
6·5 | 10·0
34·9
36·5
9·9
4·3 | 10·0
34·9
36·5
9·9
4·3 | 10·0
34·9
36·5
9·9
4·3 | $\begin{bmatrix} 0.5 \\ 40.9 \\ 42.1 \end{bmatrix}$ | 20.5 | 11.4
47.2
37.8 | $ \begin{array}{c} 0.0 \\ 46.3 \\ 46.0 \\ 5.9 \end{array} $ | 1·0
32·4
38·3
23·4 | 12·4
59·7
23·0 | 4·0
2·7
3·2
4·9
2·2 | $ \begin{array}{c c} 4 \cdot 0 \\ 2 \cdot 7 \\ 3 \cdot 2 \\ 4 \cdot 9 \\ 2 \cdot 2 \end{array} $ | $\begin{array}{c c} 49 \cdot 6 \\ 33 \cdot 1 \\ 5 \cdot 1 \\ 2 \cdot 4 \\ 0 \cdot 6 \end{array}$ | $ \begin{array}{r} 49.6 \\ 33.1 \\ 5.1 \\ 2.4 \\ 0.6 \end{array} $ | 48·
28·
4·
2·
0· | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 60
60
60
60
60
60
60
60
60
60
60
60
60
6 | 0·5
0·5
0·5
0·3 | 1.0
0.7
0.7
0.6
1.4 | 1.0
0.7
0.7
0.6
1.4 | 1·0
0·7
0·7
0·6
1·4 | $ \begin{array}{c c} 5 \cdot 6 \\ 2 \cdot 3 \\ 1 \cdot 1 \\ 6 \cdot 5 \\ 1 \cdot 0 \end{array} $ | 66-9
9-6
0-6
0-2
2-2 | 1.0
0.4
0.2
0.2
0.9 | 0·6
0·3
0·1 g
0·1 g
0·7 g | 3·2
0·7
0·2 g
0·1 g
0·7 g | 2.7
0.3 g
0.1 g
1.8 g | 0.6
0.3 g
0.3 g
1.7 g
5.49 | 0.6
0.3 g
0.3 g
1.7 g
5.49 | 0-5
0-4 g
0-3 g
2-0 g
5-00 | 0-5
0-4 g
0-3 g
2-0 f
3-00 | 0.0
0.0
3.0
3.0 | | | | 0·2
2·06
-
92·8 | 2·8S
-
85·3 | 2·88
-
85·3
81·6 | 2-88
-
85-3
81-6 | 1.47 | 0·91
-
- | 1-60
-
- | 2.05 | 1.84 | 1.21 | | | - | - | - | | (3) $\frac{3}{3}$ " to $\frac{4}{4}$ " (""") ""
(q) "Friability per cent" by tumbler test on: (1) $\frac{1}{4}$ " (square hole serven) size | | 29.8 | 81·6
30·1 | 30-1 | 30-1 | _ | - | - |
_ | | - | 52.9 | 52.9 | 41·5
3·1 | 41·5
3·6 | 41. | | Proximate analysis: (a) Meisture. (b) Ash (c) Volatile matter. (d) Fixed embon (by difference). | | 2·9
9·5
5·1
82·5 | 1·7
4·4
6·7
87·2 | 1·7
4·6
8·1
85·6 | 1·7
4·6
8·1
85·6 | 3-8
5-0
3-9
87-3 | 0·4
9·4
0·6
89·6 | $ \begin{array}{c c} 0 \cdot 2 \\ 9 \cdot 2 \\ 1 \cdot 0 \\ 89 \cdot 6 \end{array} $ | $ \begin{array}{c} 0 \cdot 2 \\ 7 \cdot 7 \\ 2 \cdot 1 \\ 90 \cdot 0 \end{array} $ | 1·2
9·9
1·1
87·8 | 4 · 6
10 · 0
1 · 1
84 · 3 | 1-4
0-5
9-0
89-1 | 1-5
1-7
9-4
87-4 | 8·6
9·6
78·7 | 8-8
9-2
78-4 | 10
9
76 | | Ultimate analysis: (a) Corbon. (b) Hydrogen. (c) Ash. | | 81.9 $ 2.9 $ $ 9.6$ | \$7.6
3.3
4.4 | 87-5
3-3
4-6 | 87.5
3.3
4.6 | 87-1
2-0
5-0 | 87·5
0·8
9·4
0·7 | 87.8
0.8
9.2
0.7 | 89 · 6
0 · 4
7 · 7
0 · 9 | 85·8
0·7
9·9
0·7 | 83.0
0.9
10.0
0.6 | 90.0
3.8
0.5
1.6 | 88·5
3·8
1·7
1·7 | 70.7
2.7
8.6
2.1 | 79·1
2·7
8·8
2·1 | 78
2
10
2 | | (d) Sulphur (c) Nitrogen (f) Oxygen (by difference) | | 0.9
0.9
3-8 | 0.9
1.1
2.7 | 0·8
1·1
2·7 | 0·8
1·1
2·7 | 0·9
0·6
4·4 | 1·1
0·5 | 0·9
0·6 | 1.0
0.4 | 1·3
1·6 | $\begin{array}{c} 1 \cdot 0 \\ 4 \cdot 5 \end{array}$ | 1.5
2.6 | 1.5
2.8
14,900 | 1.5
5.4
12,840 | 1.5
5.8
12,780 | 12,510 | | Calcrific value: (if) As fired, gross value. (b) Dry, gross value. (c) Gas used for kindling (assumed) Vuol ratio, fixed carbon/volatile matter. | B.T.U./cu. ft. | | 14,290
14,540
500 | 14,290
14,540
500
10-57 | 14,290
14,540
500
10-57 | 13,160
13,680
500 | 12,900
12,950
500 | 12,850
12,880
500 | 12,850
12,850
500 | 12,640
500 | 12,630 | 15,410
500
9,90
23-9 | 15,140
500
9-30
23-7 | 13,250
500
- | 13,260
500 | 12,990
500
-
- | | Carbon-hydrogen ratio (a) Caking properties as judged by "coke button" (b) Swelling index = The cent swelling × 100 (c) Swelling index = The control of t | | Non-caking | Non-caking | 26.5
Non-caking | - | Non-caking | - | | - | - | - | - | -
-
- | | - | - | | (a) Caking index by "Gray" method | °F. | 2,745
2,850 | 2,140
2,340
9,500 | 2,175
2,330
2,550 | 2,175
2,330
2,550 | 1,980
2,060
2,485 | 2.660
2.760
2.860 | 2,450
2,710
2,800 | 2,425
2,510
2,630 | 2,670
2,780
2,960 | 2,680
2,780
2,870 | 1,900
2,005
2,040 | 1,900
2,000
2,030 | 1.920
2,010
2,150 | 2,020
2,090
2,230 | 1,900
1,980
2,120 | | (c) Fluid temperature or melting point. Apparent specific gravity, as received in bulk. Weight per cubic foot, as received in bulk. | | $\begin{array}{c c} 2,905 \\ \hline 1.47 \\ 52.4 \\ 38.2 \end{array}$ | 2,500
1-42
48-7
41-1 | 2,550
1-42
48-7
41-1 | 2,550
1.42
48.7
41.1 | 2,485
1-69
59-0
33-9 | 2,860
0.90
27.8
71.9 | 2,800
0.90
23.4
75.8 | 0·S9
26·1
76·6 | 1-05
32-0
62-5 | 1.05
85.8
55.9 | 0.71
0.821
24.8
80.6 | 0·71
0·821,
24·8
80·6 | 0·88
26·4
75·8 | 0.88
26.4
75.8 | 27
73 | | . Volume per ton of 2,000 nounds, as received in bulk Grindability index by Hardgrove method | Observation" Test | 28.5 | 50.0 | 50.0 | \$0.0 | - | - | 7.7 | 90 | 96 | 96 | Hear | | 96 | - | - | | Duration of "observation" trial. Fuel fired: (a) City gas used for kindling. (b) Fuel equivalent to gas used. (c) Quantity dering trial. | eu. ft. | 96
100
3-8
708 | 96
200
7·0
691 | - | - | - | 96
100
3-9
713
716-9 | 96
100
2.0
708
711.9 | 100
3 · 9
701
764 · 9 | 100
4 · 0
773
777 · 0 | 100
4 · 1
708
802 · 1 | -
-
- | - | 100
3.9
755
758-9 | - | | | (d) Total, including gas equivalent | | 711-8
Nil
66-9 | 698-0
Nil
15-5 | - | - | | 716-9
Nil
47-8 | Nil
48+8 | Nil
411 | Nil 672 672 672 | Nil
66 | = | -
-
- | 45
45
464 | | - | | (b) From ash-pit during trial (c) Total, during trial (d) As dumped residual fire at end of trial Screen Examination of Refuse | lb. | 80-6
80-6
66-9 | 15.5
106.8 | - | - | ~ | 47·8
65·5 | 49.8
63.5 | 41½
70‡ | 80½ | 66
81
Nil | - | - | 833
833 | _ | | | (d) "1". " " " " re | sn-put refuse lb.
" lb.
esidual fire lb. | Nil 41 47 48 b | Nil
1
12
24 | - | - | - | Nil 2½ 4 74 24 17 | Nil
325
436
215 | $\begin{array}{c c} \mathbf{Nil} & & \\ 2\frac{1}{4} & & \\ 2\frac{3}{4} & & \\ 1\frac{3}{4} & & \\ 7\frac{1}{4} & & \\ \end{array}$ | Nil
1½
4
1¾
1¾ | $\begin{array}{c} \mathbf{N} 1 \\ 2^{\frac{1}{2}} \\ 7 \\ 2^{\frac{1}{4}} \\ 14 \end{array}$ | - | | 1
1
5 ½
2 ½ | - | - | | (d) " 1" " " " " " " " " " " " " " " " " " | sh-pit refuse 1b. | 14 b 14 b 35 81 | 6 1 0 | | - | - | Nil | 114 | 7 \\ 1 \\ 2 \\ 2 \\ 5 1 | 9 8 | 3 <u>{</u>
5 } | - | - | 10 | - | - | | | esidual fire lb. | 8½
44½ b
21½ b
80¾ b | 40
24½
64¾ | | - 1 | | Nil
44
50 | 32
34
39
7
53 | 51 ²
3
581 | 434
564
837
772 | 32½
33¼
74⅓ | - | -
-
- | 364
163
561 | = = | - | | i. Refuse—(through ½" screen size); (a) Recovered from ash-pit refuse (b) (c) Total recovered. | , | 461
171 b
662 b | 123
383
514 | era
era | - | - | 35½
11
46½ | $\frac{38\frac{1}{2}}{10\frac{1}{4}}$ | 341
113
46 | 49½
12
61½ | 474
104
584 | = | - | 41
223
633 | - | - | | Estimated Corrections for Refuse, Dumped Res 7. Proximate analysis of refuse recovered during trial: (a) Ash c | % | 46·5
53·5 | 40·5
59·5 | - | - | - | 78·7
21·3 | 84·1
15·9 | 70·4
29·6 | 73 · 6
26 · 4 | 83·3
16·7 | = | - | 62-3
37-7 | - | - | | (b) Combustible c (by difference) | | 22·7
1·5 | 6-9
2-1
91-0 | - | - | - | 23·3
1·8
74·9 | 18-4
1-0
80-6 | 16-7
1-2
82-1 | 19·4
1·0
79·6 | 22-9
0·9
76-2 | - | - | 17.6
4.6
77.8
11,660 | - | | | (c) "fixed carbon d (by difference) (d) Dry catorific velue, gross d. (e) Sensible heet, total estimated. (f) "coal equivalent (Items (e) and (f) based on items 23(a)) | plus 23(d)). | 10,860
41,368
3·1 | 12,829
80,438
5.6 | - | _ | - | 9,550
33,602
2-6 | 10,970
32,576
2·5
7·8 | 11,660
36,038
2.8
10.1 | 11,250
41,297
3·3
11·8 | 10,690
41,553
3·4 | -
-
- | - | 42,964
3·3
13·6 | | - | | (g) Portion allocated to ash-pit loss. (h) "not chargeable to test | lb. | 27·0
53·6
51·4 | 7·1
90·7
91·8 | - | - | - | 52·4
45·8
668·5 | 55·7
52·9
656·5 | 60-2
60-6
701-5 | 68·7
69·0
704·7 | $67 \cdot 2 \\ 69 \cdot 2$ $729 \cdot 5$ | | - | 70·2
70·5
685·1 | Parameter (1998) - And Address of | _ | | (a) Total for trial, calculated. (b) Per hour. (c) Per square foot of grate surface per hour. (d) "heating"" (e) "therm e delivered to cooling water | Ib. | 657·3
6·8
2·0
0·21
9·94 | 600 · 6
6 · 3
1 · 8
0 · 19
8 · 46 | - | | - | 7-0
2-0
0-21
10-30 | 6.8
2.0
0.21
9.79 | 7·3
2·1
0·23
10·74 | $ \begin{array}{c} 7 \cdot 3 \\ 2 \cdot 2 \\ 0 \cdot 22 \\ 10 \cdot 27 \end{array} $ | $7 \cdot 6$ $2 \cdot 2$ $0 \cdot 23$ $10 \cdot 62$ | | - | 7·1
2·1
0·22
10·17 | - | | | 0. Total ash in fuel used, from fuel analysis | Ib, | 62·7
93·9
14·3 | 26·4
22·6
3·8 | - | - | - | 62·7
60·9
9·1 | 60·3
57·6
8·8
176 | 53·9
51·4
7·3
146 | 69·7
79·3
11·3
226 | 72-9
79-8
10-9
218 | - | - | 58·9
59·9
8·8
176 | - | - | | (b) Per cent of fuel used | | | 76 | - | - | - | 182 | | 136 | 130 | 130 | | _ | 130 | | - | | (a) Flow by thermograph | | | 133
104 | - | - | - | 115
82
- | 114
80 | 108
68 | 101 | 100 | - | - | 102 | - | | | (a) Average temperature, inlet by thermograph (b) " outlet " (c) " difference (d) Total used during trial, corrected (e) Heat delivery per hour (f) " pound of fuel used | B.T.i | J. 68,501 | 41
173,230
73,984
11,826 | | - | - | 38
170,757
67,591
9,706 | 39
1 71 , 889
69 , 830
10, 211 | 106
38
171,877
68,035
9,311 | 40
171,492
71,455
9,734 | 40
171,783
71,576
9,419 | - | - | 39
172,794
70,198
9,836 | - | | | (1) point (1) (2) (3) 4. Flue gases: (a) Average temperature by recorder | °F | . 300 | 335 | - | - | _ | 320
9.9 | 312
8·5 | 312
12-1 | 327
12·6 | 320
13·6 | 1 | - | 337
12·0 | - | | | 35. Average: (a) Draught over fire by recording gauge (b) Room temperature, by thermograph (c) Outdoor temperature, by thermograph | in. W. | G. 0.00
67
53 | 0 0 0 74 64 | 3 | - | | 0.030
72
22 | 0·032
71
31 | 0.015
65
59 | 0.018
72
51 | 0·011
76
56 | - | = | 0.02
65
47 | 22 = | | | Section "C", Items 36 to 56 (a) Inclusive—One-Da | | | 24 | 24 | 24 | 120 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | | | 37. Fuel fired: (a) City gas used for kindling. (b) Fuel equivalent to gas used. (c) Quantity during trial (d) Total, including gas equivalent. | | 247 | 232 | 232 | $\begin{array}{c} 200 \\ -7.0 \\ 232 \\ 239.0 \end{array}$ | 300
11·4
970
981·4 | 102
4·0
243
247·0 | 100
3·9
235
238·9 | 100
3.9
244
247.9 | 100
4·0
237
241·0 | 100
4·1
237
241·1 | 100
3·3
206
209·3 | 287
9 · 6
191
200 · 6 | 229 | 220 | 9 | | 38. Refuse removed: (a) Through fire-door during trial (b) From ash-pit (c) Total, during trial (d) Dry analysis of total refuse recovered, ash | 1b | 14.6
14.6 | 1.8 | 1.0 | Nil
1·3
1·3
24·3 | Nil
9·0
9·0
65·5 | Nil
6·3
6·3
78·7 | Nil
7·8
7·8
84·1 | Nil
5·0
5·0
70·4
 Nil
7·8
7·8
73·6 | Nil
10-0
10-0
83-3 | Nil 0 1 0 1 - | Nil
2·8
2·8
6·9 | 13 | Nil
12.5
12.5
62.7 | 5 | | (e) " " " " COI | mbustible (by | 53.5 | 59.5 | 78-9 | 75·7
90·5 | 34·5
171·5 | 21·3
73 | 15·9
70·5 | 29 · 6
79 · 0 | 26·4
77·8 | 16·7
64·5 | -
60 J | 93·1
43·0 | 60.3 | 47-1 | .5 | | (a) Dry analysis, ash. | · · | 6 1 1.0 | 2.1 | $2 \cdot 7$ | 8.5
3.1
88.4
13,100
84,902 | 21.5
2.3
76.2
11,220
113,630 | 23·3
1·8
74·9
9,550
37,449 | 18·4
1·0
80·6
10,970
36,167 | 16·7
1·2
82·1
11.660
40,527 | 19·4
1·0
79·6
11,250
39,911 | $ \begin{array}{r} 22.9 \\ 0.9 \\ 76.2 \\ 10,690 \\ 33,089 \end{array} $ | 1.3
4.0
94.7
14,350
30,780 | 95.6
14,040
47,581 | 4+6
77-8
11,660
30,934 | 75-
11,350
24,368 | 10
25 | | (g) Portion allocated to ash-pit loss(h) "not chargeable to test | (a) plus 38(j) j. | 20·4
60·5 | 4·9
5·7
79·8 | 5·9
26·7
63·3 | 5.9
17.9
72.6
69.4 | 8·6
46·4
125·1
128·8 | 2·9
14·6
58·4
51·1 | 2·8
8·7
61·8
59·4 | $ \begin{array}{c c} 3 \cdot 2 \\ 11 \cdot 3 \\ 67 \cdot 7 \\ 68 \cdot 2 \end{array} $ | 3·2
11·4
66·4
66·7 | 2·7
11·0
53·5
55·1 | 0
60
57·1 | 0·8
42·2 | 9·8
2 50·5 | 9.
37. | .9 | | (i) Fuel equivalent of portion not chargeable 40. Equivalent fuel used: (a) Total for trial, calculated | II | o. 189-1 | 1 160·6 | 172·3
7·2 | 163·7
6·8
2·0 | 844·0
7·0
2·1 | 193 · 0
8 · 0
2 · 4 | 176·7
7·4
2·2 | $176.5 \\ 7.4 \\ 2.2$ | $\begin{array}{c} 171 \cdot 1 \\ 7 \cdot 1 \\ 2 \cdot 1 \end{array}$ | 183·3
7·6
2·2 | 150·2
6·3
1·8 | 157·6
6·6
1·9 | 179·8
7·5
9 2·2 | 183 · 7 · 2 · 2 · | ·9
·7
·3 | | (c) "square loot of grate surface per hour. (d) ""heating "". (e) "therm e delivered to cooling water (f) To equal one ton of stove-size American s | anthracite to | o. 0-2
o. 11-5
ons 1-6 | 24 0·2
52 9·5
00 0·8 | $\begin{array}{c cccc} 1 & & & 0.22 \\ 4 & & & 10.37 \\ 3 & & & 0.90 \end{array}$ | 0-21
10-00
0-87 | 0·22
10·05 | 0·25
11·72
1·02 | 0·23
10·85
0·94 | 0·23
10·74 | 0·22
10·45
0·91
16·9 | 0.24
11.16
0.96
18.2 | 0·1
9·2
0·8 | 9 0·2
9·4
0 0·8 | 20
49
10·9
84
0·9 | 23
99
95
95
0- | ·24
·21
·97 | | 41. Total ash in fuel used, from fuel analysis | | 1 | 0 7.5 | 27.7 | 7·5
19·2
11·8
236 | 42·1
55·4
6·6
132 | 18·0
20·9
10·9
218 | 16-2
16-5
9-3
186 | 13·5
16·3
9·3
186 | 19·2
11·3
226 | 21·0
11·5
230 | 0 | 3·6
2·4
48 | 6 22.8 | 8 22- | ·4
·3 | | 43. Circulating water, average temperature: (a) Flow | • | F. 129 | 132
105 | 135
109 | 134
108 | 139
113 | 114
86 | 112
85 | 130
104 | 124
98 | 125
99 | 124
98 | 126
99 | 126
99 | 129
103 | | | (d) Total used during trial, corrected | | F. 38-
b. 42,794 | 5 106.4
4 39.0
43,152 | 110·1
39·4
42,174 | 70-8
109-0
38-2
42,899 | 75.6
114.5
38.9
215,823 | 38·0
76·9
38·9
42.324 | 38·2
75·8
37·6
43,307 | 65·2
103·2
38·0
43,244 | 54·4
92·1
37·7
43,417 | 53·5
91·7
38·2
43,210
68,776 | 93 · 2
37 · 9
43,066 | 94 · 1
38 · 3
42,932 | 1 95-7
7 38-4
42,604 | 7 101 | 1·1
3·2
) 45 | | (c) Heat delivery per hour (f) "pound of fuel used 45. Flue gases: (a) Average temperature. | B.T | 68,437
S.U. 8,684
F. 310 | 70,122
10,479 | 69,236
9,644
321 | 68,281
10,011 | 69,963
9,947
304 | 68,600
8,531
308 | 67,848
9,215
299 | 68,470
9,310 | 68, 201
9, 566 | 68,776
9,005 | 68,008
10,867 | 69,228
10,542 | 68,167
9,099 | 8,924 | 1 8 | | (b) Dry volumetric analysis, carbon dioxide (c) " " oxygen (d) " " carbon monoxic | deifference) | 76 13.
6.
77 0.
80. | 4 10.4
2 8.4
3 0.4
2 80. | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 13·1
6·2
0·0
80·7 | 11.9
7.7
0.1
80.3 | $ \begin{array}{r} 9 \cdot 7 \\ 9 \cdot 9 \\ 0 \cdot 2 \\ 80 \cdot 2 \\ 21 \cdot 5 \end{array} $ | 8.9
10.8
0.1
80.2
23.8 | 302
11·4
7·7
0·6
80·3
18·2 | $ \begin{array}{c c} 13 \cdot 1 \\ 6 \cdot 7 \\ 0 \cdot 3 \\ 79 \cdot 9 \\ 15 \cdot 6 \end{array} $ | 13·2
6·6
0·2
80·0
15·3 | 8·3
0·1
80·4 | 5.0
0
80 | 0 4 · · · · · · · · · · · · · · · · · · | 7 5
2 0
4 80 | 3.7
5.3
0.1
0.9
3.7 | | 46. Excess air | in. V | % 41
W.g. 0 | - | 48
016 0-00 | 41 0.01 | 56
0.030 | 87
0 0.03 | 103
7 0-03 | | | | | | .008 0- | 007 0 | 3
0·011
0·011 | | 40 A supposed | | PF. 68
% 64
PF. 55 | 72
64
58 | 72
55
60 | 70
64
60 | 77
69
05 | 69
28
21 | 70
31
15 | 61
49
51 | 68
41
53 | 74
49
53 | 69
45
54 | 66
36
44 | 66
40
42 | 52
53 | 7 2 3 | | (a) Room temperature. (b) "relative humidity | | Hg 29 | | 923 29-4 | 85 29-6 | 18 29·818
97·5 | 8 29.82 | | 96.9 | 96 29·73 | | 994 29. | 921 30·
0 j 97· | ·169 29·
·8 94· | ·703 30 | 0·014
4·8
9·8 | | 49. Average. (a) Room temperature. (b) "relative humidity. (c) Outdoor temperature. (d) Barometric pressure. 49. Efficiency: (a) Grate. (b) Overall thermal | | | | | 70-1 | 10.0 | 30.1 | | , | | | 1 | | 1 | 1 | 1 | | (a) Efficiency: (a) Grate (b) Overall thermal HEAT ACCOUNT PER POUND OF FUEL USED IN B 50. Heat delivered to cooling water | 3.T.U. AND PER CEI | 65
NT
T.U. 8,684 | .8 73. | | 10,011 | 9,947 | 8,531 | 9,215 | 9,310 | 9,566 | 9,005 | 10,867 | 10,542 | | | 1 | | 49. Efficiency: (a) Grate (b) Overall thermal Heat Account Per Pound of Fuel Used in B 50. Heat delivered to cooling water 51. Loss due to steam formed from moisture in fuel by burning hydrogen in dry fuel. 52. Loss due to heat carried away in dry flue gases. 53. " unburned combustible matter in ref. 44. " " " crobon monoxide." | B.T.U. AND PER CER
and that formed
B.
B.
Susc. B.
B. | F.U. 8,684 F.U. 299 T.U. 783 T.U. 1,400 T.U. 140 | 10,479
328
1,292
411
Nil | 9,644
9,644
345
914
1,864
Nil | 10,011
345
901
1,305
Nil | 207
970
332
72 | 1,233
339
17 | 1,308
218
10 | 42
1,053
384
441 | 73
951
437
188 | 94
874
281
121 | 395
1,123
0,81 | 396
865
324
243 | 283
774
704
102 | 283
803
67
58 | 3
19
1
155 | | 49. Efficiency: (a) Grate (b) Overall thermal. HEAT ACCOUNT PER POUND OF FUEL USED IN B 50. Hent delivered to cooling water. 51. Loss due to steam formed from moisture in fuel by burning hydrogen in dry fuel. 52. Loss due to heat carried away in dry flue gases. 53. " " unburned combustible matter in ref. 54. " " " carbon monoxide. 55. " " radiation, errors, and unaccounted f. 50. Total calorific value of 1 pound of fuel as fired, g. | 3.T.U. AND PER CER
 and that formed B. | 65 NT T.U. 8,684 T.U. 299 T.U. 783 T.U. 1,400 T.U. 140 T.U. 1,824 T.U. 13,190 | 10,479 10,479 328 1,292 411 Nil 1,780 | 9,644
9,644
345
914
1,864
Nil
1,523
14,299 | 10,011
345
901
1,305
Nil
1,728
14,290 | 207
970
332
72
1,632 | \$3
1,233
339
17
2,697 | 83
1,308
218 | 1,053
384
441
1,600
12,830 | 73
951
437
188
1,285 | 94
874
281
121
1,675 | 395
1,123
0
81
2,744
15,210 | 396
865
324
243
2,530
14,900 | 283
774
704
102
1,878 | 283
803
671
54
2,033
12,784 | 3
99
11
55
88
80
69 · 8 | | 49. Efficiency: (a) Grate (b) Overall thermal. Heat Account Per Pound of Fuel Used in B 50. Heat delivered to cooling water. 51. Loss due to steam formed from moisture in fuel by burning hydrogen in dry fuel 52. Loss due to heat carried away in dry fue gases. 53. " unburned combustible matter in ref 54. " " cerbon monoxide 55. " rediation, errors, and unaccounted for the cooling water in the following production of the cooling water in the following production of | B.T.U. AND PER CER and that formed B. B. B. b. fuse. B. B. gross value. B. tem 49(b)) in fuel and that | 7. U. 8,654 T. U. 209 T. U. 783 T. U. 1,400 T. U. 1,400 T. U. 1,524 T. U. 13,190 65 65 65 65 65 65 65 65 65 65 65 65 65 | 10,479 1292 11,292 11,1780 14,290 14,290 18,3 19,3 19,3 19,3 19,3 19,479
19,479 | 3 67-5 9,644 345 914 1,884 Ni1 1,523 14,299 3 67-5 3 2-4 0 0 4 9 138-7 | 10,011 345 901 1,305 Ni1 1,728 14,290 70-1 2-4 6-3 9-1 Ni1 Ni1 | 207
970
332
72
1,632
13,160
75.6
1.6
7.4
2.6
0.5 | S3
1,233
339
17
2,697
12,900
66-1
0-7
9-6
2-6
6-1 | \$3
1,308
218
10
2,016
12,850
71-7
0-6
10-2
1-7
0-1 | 42
1,053
384
441
1,600
12,830
72-6
0-3
8-2
3-0
3-4 | 73
951
437
188
1.285
12.500
76-5
0-6
7-6
3-5 | 94
874
281
121
1,675
12.059
73.
6.7.
2. | 395
1,123
0,81
2,744
15,240
7 71-
8 2,7-
3 0,0 | 396
865
324
243
2,530
14,900
4 70
6 2
4 5
0 j 2
5 1 | 283
774
704
102
1,878
12,840
-S 70
-6 2
-8 6
-8 5
-12 5 | 28:
808
677
55;
2,033
12,789
-9 69
-2 -4
-5 -5 | 3
19
11
55
88 | a The data given for trial No. DS-X5 are the averaged results obtained for five repeat tests, all of which very closely approximated each other in value. (See Table A). b Average of two tests only; totals, therefore, are not necessarily exact. (See Table A). c As the normal refuse recovered during first four days of trial was not available for chemical analysis after having been screened, the values reported for items 25(a), do (c), and (d) in the "efficiency" part of the trial. d Excepting trial No. DS-X5 (see Table A), the dumpings recovered at conclusion of the first four days of trial were not available for chemical analysis after having been screened, therefore, the values reported for items 28(a), (b), (c), and (d) in the "efficiency" part of the trial. c Therm=100,009 B.T.U. Due to the assumed analysis (see notes c and G), the values reported for items 29(a), (b), (c), and (d) in the "efficiency" part of the trial. f Value for trial No. DS-X5 only, determined by continuously operated CO₂ recorder (see Table A), remaining values determined by hand-operated Orsat making one determination per hour from 9 a.m. to 11 p.m. daily, night determinations (11 p.m. to 9 a.m.) not made except for trials prefixed with letters DHI for which one determination was made nightly on a composite sample taken from 11 p.m. to 9 a.m.) and made except for trials prefixed give the letters of the trial of the Weish and Frome Indo-China anticities and pertode the Weish and Frome Indo-China anticities and pertode the Weish and Frome Indo-China anticities and pertode the determined supports of trial No. DB-94. See page 15 for explanation. I Apparent specific gravity—S'-1' tump 0-71; hupports TABLE C Department of Mines and Resources Bureau of Mines—Fuel Research Laboratories, Ottawa Canada Detailed Data and Results of Seventeen Burning Tests Made on Various American and Eastern Canada Coals in Comparison with a "Standard" Sample of American Anthracite in a Domestic Hot-Water Boiler | Detailed Data and Result | Kind | "Standard"
Sample | Semi-bita | | Bitum | inous | | | | | | Eas | etern Canada C
Bituminous | | | | | | | |--|---------------------------------------|--|---|---|---|--|---|---|--|---|--|--|---|---|---|--|---|--|--| | Fuel | Name or area | 3-34 American Anthracite | Fulton
seam,
Pennsylvania | Pocahontas
No. 4 seam,
W. Virginia | Upper Free-
port seam,
Pennsy Ivania | Pittsburgh
No. 8 seam,
Ohio | 7-35 Sydney area, Nova Scotia | Sydney
Nova | y area,
Scotia | 12-34 Springhill area, Nova Scotia Lump | Sydney
area,
Nova Scotia | Pictou
area,
Nova Scotia | 9-34 Pictou area, Nova Scotia Lump | 7-34 Sydney area, Nova Scotia | Joggins
area,
Nova Scotia | Pictou
area,
Nova Scotia
Screened lump | Inverness
area,
Nova Scotia | 3-38 Inverness area, Nova Scotia Lump | Minto area,
New
Brunswick | | Item Section "A", Items 1 to 20 inclusive—Geni | Size, etc. Column No. | Stove 1 | Lump
2 | Egg
3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | | Trial number Type of trial (S-Standard, O-Observation, E-Efficiency, 3. Date of trial Duration of trial, continuous total. Number of fire periods during 24-hour day | hrs. | 120 | DS-78
S
29-4 to 4-5/35
120 | DH-132
S
25-30/1/37
120 | DS-76
S
8-13/4/35
120 | DS-75
S
1-6/4/35
120 | DS-80
S
10-15/6/35
120 | DS-65
S
7-12/1/35
120 | 24
3 | DS-71
S
25-2 to 2-3/35
120 | 120
3 | 120 | DS-68
S
28-1 to 2-2/35
120 | DS-66
S
14-19/1/35
120 | DS-70
S
18-23/2/35
120
3
9, 5, and 10 | DH-200
8
3-8/10/38
120 | DS-79
S
27-5 to 1-6/35
120 | DH-201
S
17-22/10/38
120 | DS-72
S
4-9/3/35
120 | | 5. Number of fire periods during 24-hour day. 6. Intervals between firings (24-hour day). 7. Average rate of combustion, per cent of rated capacity of 8. Furnace: (a) Average rating, feet of water radiation. (b) Nominal grate area. | sq. ft. | 9, 5, and 10
52
880
3.4 | 9, 5, and 10
52
880
3.4 | 9, 5, and 10
57
880
3.4 | 51
880
3·4 | 9, 5, and 10
52
880
3.4 | 9, 5, and 10
52
S80
3.4 | 9, 5, and 10
47
880
3.4 | 9, 5, and 10
52
880
3.4 | 9, 5, and 10
53
880
3-4 | 51
880
3 · 4 | 880
3·4 | 9, 5, and 10
52
880
3-4
32-4 | 9, 5, and 10
52
880
3.4 | 880
3 · 4
32 · 4 | 880
3.4
32.4 | 880
3·4
32·4 | 9, 5, and 10
56
880
3 · 4
32 · 4 | 52
880
3 · 4 | | (c) Area of heating surface. (d) Volume, grate to top of firepot. RAW FUEL AS FIRED UNLESS OTHERWISE 9. Screen analysis: (Made on a representative portion of "I | cu. ft. | 32·4
5·4 5-4 | 32·4
5·4 | 5.4 | 5.4 | 5-4 | 5.4 | 32·4
5·4 | | received for test). (a) Through 18" on 12" round hole screen. (b) " 12" " 10" " " " " " " " " " " " " " " " " | %
%
%
% | - | -
-
-
-
0.0 | -
-
-
- | -
-
-
-
1·5 | 18.5 | -
-
-
-
8.8 | -
-
-
-
6.7 | -
-
-
-
6.7 | -
-
-
-
17-6 | 8.0 | -
-
-
-
-
11·3 | -
-
-
20·3 | -
-
-
-
9·4 |
-
-
-
-
7.7 | 5.6
6.4
10.9
21.3 | -
-
-
7·0 | 2·7
9·6
7·7 | 3.3 | | (f) " 4" " 3" " " " " (f) " 3" " 2" " " " " (f) " 2" " " " " " (f) | %
 | 49·5
42·0
6·5
0·5
0·5 | 0·0
26·3
22·8
18·9
5·4
4·7 | 12·0
60·1
18·6
3·6
0·7
0·7 | $ \begin{array}{r} 13 \cdot 7 \\ 36 \cdot 5 \\ 24 \cdot 9 \\ 11 \cdot 3 \\ 3 \cdot 0 \\ 2 \cdot 5 \end{array} $ | 17·3
29·8
14·8
11·5
3·2
1·8 | 6.3 11.0 10.7 21.0 10.9 10.2 | 7·2
15·8
12·7
12·1
6·9
8·3 | $7 \cdot 2$ $15 \cdot 8$ $12 \cdot 7$ $12 \cdot 1$ $6 \cdot 9$ $8 \cdot 3$ | 5.6
11.3
12.7
21.4
7.6
6.4 | 5.6
9.6
7.7
12.9
13.5
18.4 | 4.5
10.6
13.3
24.0
12.6
8.5 | $13 \cdot 1$ $16 \cdot 8$ $11 \cdot 4$ $10 \cdot 8$ $5 \cdot 9$ $6 \cdot 2$ | $\begin{array}{c} 8.5 \\ 16.7 \\ 13.8 \\ 17.9 \\ 10.0 \\ 7.0 \end{array}$ | 6.5
10.4
10.7
17.7
13.5
10.5 | 12·2
13·2
7·3
8·2
3·8
3·6 | 8·1
16·4
13·0
18·0
10·8
9·5 | 12·7
23·6
16·9
14·3
3·7
3·0 | 3·3
5·2
15·4
16·8
21·2
12·7
10·0 | | (a) (b) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | | 0.5
0.3
0.2
2.06 | 5-3 g
5-5 g
11-1 g
1-42
76-0 | 0.7
0.7
2.9
2.31 | 1.8 g
1.5 g
3.3 g
2.10 | 1.0 g
0.7 g
1.4 g
2.73 | 7.6 g
5.6 g
7.9 g
1.60 | 8.8 g
7.9 g
13.6 g
1.55 | 8.8 g
7.9 g
13.6 g
1.55 | 5-4 g
4-4 g
7-6 g
2-00 | 11.1 g
6.0 g
7.2 g
1.44 | 5-1 g
3-6 g
6-5 g
1-72 | 5·2 g
4·1 g
6·2 g
2·36 | 5.5 g
4.3 g
6.9 g
1.83 | 8.0 g
6.2 g
8.8 g
1.53 | 3·2
1·7
2·6
4·08 | 6·1 g
4·2 g
6·9 g
1·70
89·5 | 2·4
1·2
2·2
2·87
8S·2 | 5.8 g
3.8 g
5.8 g
1.51 | | (1) -4' (round hole screen) coal (2) 2' to 3'' (round hole screen) size (3) 3'' to 4'' ("") (2) "Frieblity per cent" by tumbler test on: (1) 1" to 1\frac{1}{2}" (square hole screen) size | | 92·8
-
29·8 | 62.0 | 78·5
72·0
57·9 | 79.5
79.5
48.2 | 84·0
77·0
36·3 | 77.0

44.3 | 72.0
70.5
59.0 | 72·0
70·5
59·0 | 76.0
72.5
54.3 | 69 · 0
60 · 5
54 · 4 | 84·5
82·0
46·2 | 84 · 5
79 · 5
47 · 6 | 75·5
63·0
47·4 | 69 · 0
60 · 5
58 · 0 | 80·4
77·6
29·1 | 73 · 0
68 · 0
44 · 8 | 77 · 6
73 · 6
26 · 6 | 76.0
69.5
49.5 | | 10. Proximate analysis: (a) Moisture. (b) Ash (c) Volatile matter. (d) Fixed earbon (by difference. | % | 2·9
9·5
5·1
82·5 | 0.7
9.2
15.9
74.2 | 0·3
9·4
15·8
74·5 | 1·6
8·2
32·0
58·2 | 2·4
8·0
40·7
48·9 | 2·3
4·8
39·0
53·9 | 1·3
11·0
31·4
56·3 | $1 \cdot 2$ $11 \cdot 4$ $31 \cdot 9$ $55 \cdot 5$ | 1 · 6
9 · 7
31 · 0
57 · 7 | $ \begin{array}{r} 3 \cdot 9 \\ 11 \cdot 4 \\ 32 \cdot 6 \\ 52 \cdot 1 \end{array} $ | 1.5
17.5
25.3
55.7 | 1·4
17·9
27·6
53·1 | 3·3
13·9
34·7
48·1 | 2·4
15·1
36·3
46·2 | 3.5
11.6
30.5
54.4 | 5·8
11·4
37·7
45·1 | 4.5
14.6
34.0
46.9 | 1.0
21.5
30.1
47.4 | | 11. Ultimate analysis: (a) Carbon. (b) Hydrogen. (c) Ash. (d) Sulphur. (e) Nitrogen. | %
% | 81-9
2-9
9-6
0-9
0-9 | 81·3
4·4
9·2
1·4
1·3 | 82·2
4·2
9·4
0·7
1·2 | 78·0
5·0
8·2
1·2
1·5 | 72·6
5·4
8·0
3·7
1·4 | 78.5
5.8
4.8
2.1
1.7 | $74 \cdot 3$ $4 \cdot 9$ $11 \cdot 0$ $4 \cdot 9$ $1 \cdot 3$ $3 \cdot 6$ | 73·1
4·9
11·4
5·8
1·3 | 76-1
5-0
9-7
1-6
2-0
5-6 | 67.9
4.8
11.4
5.2
1.3
9.4 | 69-6
4-5
17-5
1-2
1-8
5-4 | 69.9
4.6
17.9
0.7
2.0
4.9 | 66.7
5.0
13.9
6.5
1.3 | 65.5
4.8
15.1
6.4
1.9
6.3 | 71·1
4·9
11·6
1·1
1·9
9·4 | 63-8
5-3
11-4
7-0
1-2
11-3 | 62·6
5·0
14·6
7·5
1·4
8·9 | 62·9
4·1
21·5
8·0
0·8 | | (c) Nitrogen (by difference) | | 3.8
13,190
13,580
500 | 2·4
14,190
14,280
500 | 2·3
14,060
14,100
500 | 6·1
13,900
14,130
500 | 8·9
13,280
13,610
500 | 7·1
14,100
14,430
500 | 13,540
13,710
500 | 3·1
13,250
13,420
500 | 13,440
13,660
500 | 12,530
13,040
500 | 12,370
12,560
500 | 12,320
12,500
500 | 12,080
12,500
500 | 11,880
12,170
500 | 12,200
12,640
500 | 11,300
12,000
500 | 11,090
11,620
500 | 11.590
11.710
500 | | 13. Fuel ratio, fixed carbon/volatile matter. 14. Carbon-hydrogen ratio. 15. (a) Caking properties as judged by "coke button". Per cent swelling × 100 Der cent dry V.M. at 600°C. | | 16.30
28.8 | 4.65
18.5
Good
2,240 | 4·70
19·4
Geod
450 | 1 · 80
15 · 4
Good
430 | 1·20
13·5
Good
224 | 1·40
13·5
Good
156 | 1·80
15·0
Good
566 | 1·75
15·1
Good
566 | 1.85
15.2
Good
1,008 | 1.60
14.2
Good
56 | 2·20
15·5
Good
85 | 1.90
15.1
Good
0 | 1.40
13.2
Fair to good
173 | 1.25
13.8
Good
137 | 1.78
14.5
Poor
-180 | 1 · 20
12 · 1
Poor
-222 | 1·38
12·5
Poor
-210 | 1.60
15.2
Good
516 | | (c) Caking index by "Gray" method 16. Ash fusibility: (a) Initial deformation temperature (b) Softening point or fusion temperature. (c) Fluid temperature or melting point. | | | 52
2,740
2,870
2,870 | 2,150
2,280
2,320 | 2,610
2,700
2,800 | 1,900
2,045
2,400 | 58
1,925
2,015
2,350 | 1,940
2,025
2,080 | 1,920
2,020
2,120 | 2,050
2,170
2,350 | 54
1,945
2,065
2,200 | 2,280
2,440
2,530 | 2,280
2,520
2,575 | 1,865
2,000
2,050 | 55
1,930
2,025
2,085 | 2,400
2,580
2,630 | 11
1,990
2,090
2,220 | 1,880
1,970
2,060 | 1,950
2,040
2,160 | | (c) Fluid temperature or melting point. 17. Apparent specific gravity, as received in bulk. 18. Weight per cubic foot, as received in bulk. 19. Volume per ton of 2,000 pounds, as received in bulk. 20. Grindability index by Hardgrove method. | lb. | 1-47
52-4
38-2
28-5 | 1·35
50·5
39·6
97·5 | 1·36
46·7
42·8
94·4 | 1·31
45·6
43·9
75·0 | 1·33
46·8
42·7
67·3 | $1 \cdot 29$ $47 \cdot 4$ $42 \cdot 2$ $65 \cdot 5$ | 1·36
53·2
37·6
76·6 | 1·36
53·2
37·6
76·6 | 1·35
49·5
40·4
81·7 | 1·34
50·2
39·8
72·4 | 1·40
50·8
39·4
79·7 | 1·36
50·6
39·5
74·9 | 1·40
51·4
38·9
70·0 | 1·42
53·6
37·3
73·6 | 1·38
47·5
42·1
59·8 | 1·40
52·6
38·0
58·8 | 1 · 44
54 · 9
36 · 4
59 · 6 | 1 · 47
53 · 5
37 · 4
70 · 1 | | Section "B", Items 21 to 35(c) Inclusive—4-Day "Obs
21. Duration of "observation" trial | ERVATION" TEST | 96 | 96
100 | 96
100 | 96
100 | 96
100 | 96
100 | 96
100 | - | 96
100 | 96
100 | 96
100 | 96 | 96
100 | 96
100 | 96
100 | 96
100 | 96
100 | 96
100 | | (a) City gas used for kindling. (b) Fuel equivalent to gas used. (c) Quantity during trial. (d) Total, including gas equivalent. 23. Refuse removed: | 1b.
1b. | 708
708
711·8 | 782
785 · 5
Nil | 3·6
781
784·6 | 3.6
833
836.6 | 3 · 8
855
858 · 8
Nil | 3·5
878
881·5 | 3.7
826
829.7
Nil | - | 3·7
893
896·7 | 918
922·0
Nil | 914
918·0 | 904
908-1
Nil | 908
912·1 | 4·2
992
996·2
Nil | 878
882·1 | 1,046
1,050-4 | 1,051
1,055·5 | 951
955·3
Nil | | (a) Through fire-door during trial. (b) From ash-pit during trial. (c) Total, during trial. (d) As dumped residual fire at end of trial. Screen Examination of Refuse | lb. | 66·9
66·9
80·6 | 81·3
81·3
100·3 | 53.8
56.3
108.5 | Nil
70
70
91 | 72.8
72.8
62.3 | Nil
79
79
78·5 | 131.8
131.8
69 | | 100·5
100·5
71 | 94
94
78 | 134
136
92·5 | 138
138
87·8 | 97·8
97·8
77·5 | 138
138
76·3 | 89·5
95·5
75·3 | 85
91 · 8
85 · 3 | 90·5
120·8
80·3 | 155
155
107·5 | | (6) | " lb. al fire lb. " lb. | Nil 427 447 h 125 b 142 b | Nil
3
0
44 | $2\frac{1}{2}$ 2 $9\frac{1}{4}$ 3 $17\frac{1}{2}$ | Nil
2
3½
2
11
83 | Nil
224
334
215
115
934 | Nil
114
214
1
114
54 | Nil
3½
4½
2½
10½ | - | Nil
2½
5½
4½
2½
14½ | Nil
12
6
42
12
142 | 2
41
121
94
4
328 | Nil
32
101
24
13
182 | Nil
3
84
154
12
274 | Nil
3½
12½
16
3½
35½ | 6
3
74
54
34
244 | 62
2
5
112
6
312 | 301
13
10
151
64
633 | Nil
51
195
222
44
512 | | (e) (f) Totul—(over ½" screen size)—recovered | refuse lb. | 2.5. | 4½
7½
54 | 5
5
51 | 2½
8
51¾
15 | 3½
8
32½
11½ | 2
152
351
182 | 8
19
36 | - | 4
121
361
13 | 2½
10½
41 | 44
11
463
153 | 31
92
591
9 | 5
5
30
14 | 124
124
24
131
52 | 2
7
234
15 | 54
54
184
154 | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1
72
392
16 | | (e) Total—(over \(\frac{4}'' \) screen size)—recovered. 20. Refuse—(through \(\frac{4}'' \) screen size): (a) Recovered from ash-pix fore. | | 80½ b
46¼
17¼ b | 161
822
651
29
941 | 17½ 73¾ 45½ 28 73½ | 771
54
21
75 | 551
551
145
694 | 712
572
221
80 | 971
161
1132 | - | 65 \\ 76 \\ 14 \\ 91 \\ \ 91 \\ \ \ | 73½
14½
88½ | 77½ 101½ 17 118½ | \$12
1102
15
1252 | 502
792
172
972 | 107 <u>1</u> 19 <u>1</u> 126 <u>2</u> | 47‡ 70‡ 28 98‡ | 713
334
1054 | 40½
74
22½
96¼ | 121½
25½
146¾ | | (b) (c) Total recovered. Estimated Corrections for Refuse, Dumfed Residu 7. Proximate analysis of refuse recovered
during trial: (a) Ash c (b) Combustible c (by difference). | JAL FIRE, ETC. | 66% b | 49·4
50·6 | 35·4
64·6 | 51·5
48·5 | 53·7
46·3 | 32·9
67·1 | 32·7
67·3 | | 56·2
43·8 | 47·5
52·5 | 75·7
24·3 | 72·3
27·7 | 67·3
32·7 | 69·8
30·2 | 71·1
28·9 | 55·7
44·3 | 66·9
33·1 | 77.5
22.5 | | 28. Dumped residual fire: (a) Dry analysis, ash d | % | 22.7 | 16·1
2·9
81·0 | 21.8
3.8
74.4 | 19·7
4·1
76·2 | 18·4
10·8
70·8
11.490 | 12.5
6.5
81.0
12.650 | 25·3
5·9
68·8
10.620 | - | 21·0
3·2
75·8
11,290 | 23·7
7·3
69·0
10,930 | 37·9
3·2
58·9
8,840 | 29·4
3·2
67·4
9.870 | 39·8
6·6
53·6
8,530 | 31·2
13·3
55·5
10,110 | 38·1
3·5
58·4
8,430 | 34·6
8·0
57·4
9 350 | 43·0
7·3
49·7
7,950 | 43.9
5.8
50.3
8,100 | | (b) "volatile matter d. (c) "fixed carbon d (by difference) (d) Dry calorific value, gross d (e) Sensible heat, total estimated (f) (c) equivalent (Items (e) and (f) based on items 23(a) plus 2 (b) (b) not chargeable to test | 23(d)). | 27.0 | 11,900
51,428
3.6
17.2
83.1
75.4 | 11,320
55,661
4·0
51·5
57·0 | 11,320
46,683
3·4
23·9
67·1 | 31,934
2·4
14·0
48·3
47·0 | 21.3
57.2
55.8 | 35,397
2·6
45·3
23·7
-22·1 | - | 36,423
2·7
17·0
54·0
51·7 | 40,014
3·2
25·9
52·1
52·5 | 47,453
3·8
32·2
60·3
57·1 | 45,041
3·7
18·2
69·6
57·9 | 39,758
3·3
37·2
40·3
40·5 | 39,116
3·3
22·1
54·1
56·6 | 33·3
42·0
41·3 | 43,759
3.9
44.0
41.3
45.9 | 56,738
5-1
43-1
37-2
39-6 | 55,148
4·8
42·8
64·7
63·1 | | (g) Portion allocated to assipit loss. (h) not chargeable to test. (i) Fuel equivalent of portion not chargeable. 29. Equivalent fuel used: (a) Total for trial, calculated. (b) Per hour. (c) Per square foot of grate surface per hour. | | 657·3
6·8
2·0 | 706·5
7·4
2·2 | 53·1
727·5
7·6
2·2 | 770·9
8·0
2·4 | 809·4
8·4
2·5 | 822·8
8·6
2·5
0·26 | 805·0
8·4
2·5
0·26 | - | 842·3
8·8
2·6
0·27 | 866-3
9-0
2-7
0-28 | 857·1
8·9
2·6
0·28 | 846-5
8-8
2-6
0-27 | 868·3
9·0
2·7
0·28 | 936·3
9·8
2·9
0·30 | 833·3
8·7
2·6
0·27 | 1,000·6
10·4
3·1
0·32 | 1,010-8
10-5
3-1
0-33 | 887-4
9-2
2-7
0-29 | | (d) " heating (e) " therm e delivered to cooling water | | 62·7
93·9 | 0.23
10.83
65.0
98.5 | 0.23
10.11
68.4
107.8 | 0·25
11·90
63·2
93·9 | 0.26
12.32
64.6
86.8 | 12·55
39·5
100·3 | 13·79
88·4
177·1
22·0 | - | 12·34
81·6
117·5
14·0 | 13.31
98.7
119.9
13.9 | 12·70
150·0
168·2 | 12·20
151·5
156·2
18·5 | 13·30
120·6
135·0
15·6 | 13.77
141.2
160.1
17.1 | 12-59
97-1
128-8
15-4 | 14·89
114·0
135·8
13·6 | 14·06
147·7
163·9
16·2 | 13.70
190.0
197.8
22.3 | | (c) " ton " General Data | 16. | 14·3
286 | 13·9
278 | 14·8
296 | 12·2
244 | 10.7 | 12·2
244 | 116 | - | 280 | 278 | 19·6
392 | 370 | 312 | 342 | 308 | 272 | 324 | 446 | | (a) Flow by thermograph (b) Return 33. Cooling water: (a) Average temperature, inlet by thermograph | ····································· | 56
94 | 119
88
48
86 | 119
86 | 117
82
40
77 | 38
76
38 | 65
103
38 | 82
42
76
34 | - | 38
78
40 | 85
39
77
38 | 38
77
39 | 87
38
77
39 | 86
37
75
38 | 38
78
40 | 99 | 58
97
39 | 102 | 82
39
77
38 | | (c) Anterest (d) Total used during trial, corrected | | 172,121
G8,501
J. 10,089 | 38
171,682
67,957
9,234 | 171,341
74,962
9,892 | 175,025
67,458
8,400 | 172,954
68,461
8,120 | 172,479
68,273
7,966 | 171, 690
60, 807
7, 252 | | 170,593
71,080
8,101 | 171,298
67,805
7,514 | 173,089
70,317
7,876 | 170,792
69,384
8,197 | 171, 852
68, 025
7, 521 | 169,946
70,811
7,260 | 174,146
68,933
7,941 | 172,369
70,025
6,718 | 167.146
74.867
7,110 | 170.414
67 456
7,297 | | 34. Flue gasses: (a) Average temperature by recorder. (b) "carbon dioxide content f". 35. Average: (a) Draught over fire by recording gauge. (b) Room temperature, by thermograph (c) Outdoor temperature, by thermograph. | | | 64 | 71 | 436
11-2
0-022
74 | 438
12-1
0-015
70
35 | 12.0 | 11.5 | | 0·02
74 | 11-8 | 12·2
0·020
78 | 12-7 | 12.5 | 11.6 | 11.3 | 0-010
74
68 | 11.6 | 9.4 | | (c) Outdoor temperature, by thermograph. Section "C", Items 36 to 56(a) Inclusive—One-Day 36. Duration of "efficiency" trial. | "Efficiency" Test | | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | | 37. Fuel fired: (a) City gas used for kindling. (b) Fuel equivalent to gas used (c) Quantity during trial. (d) Total, including gas equivalent. | cu f | t. 101
3.8 | 100
3 · 5
263
266 · 5 | 100
3·6
279
282·6 | 100
3 · 6
282
285 · 6 | 100
3·8
290
293·8 | 100
3·5
282
285·5 | 100
3·7
279
282·7 | 100
3·8
300
303·8 | 100
3·7
277
280·7 | $ \begin{array}{r} 102 \\ 4 \cdot 1 \\ 292 \\ 296 \cdot 1 \end{array} $ | 100
4·0
292
296·0 | 101
4·1
296
300·1 | 100
4·1
287
291·1 | $ \begin{array}{c} 100 \\ 4 \cdot 2 \\ 318 \\ 322 \cdot 2 \end{array} $ | 100
4·1
288
292·1 | 100
4·4
319
323·4 | 100
4·5
323
327·5 | 100
4·3
309
313·3 | | | ible (by differ- | 14·6
46·5 | Nil
18-5
18-5
49-4 | Nil
16-3
16-3
35-4 | Nil
13·8
13·8
51·5
48·5 | Nil
14·8
14·8
53·7 | Nil
14-5
14-5
32-9
67-1 | Nil
23·3
23·3
32·7
67·3 | Nil
46·3
46·3
38·0
62·0 | Nil
15·8
15·8
56·2
43·8 | Nil
22.8
22.8
47.5 | Nil
21·3
21·3
75·7 | Nil
28·8
28·8
72·3 | Nil
31·3
31·3
67·3 | Nil
26·3
26·3
69·8
30·2 | Nil
6-0
6-0
71-1
28-9 | Nil
17·5
17·5
65·7
44·3 | Nil
19·8
19·8
66·9 | Nil
25·0
25·0
77·5
22·5 | | (f) As dumped residual fire at end of trial 30. Dumped residual fire: | % | 19.1 | 85·8
16·1
2·9 | 64.6
97.5
21.8
3.8 | 19·7
4·1
76·2 | 18-4
10-8
70-8 | 12.5
6.5
81.0 | 25.3
5.9
68.8 | 19·9
7·6
72·7 | 70-3
21-0
3-2
75-8 | 23.7
7.3
69.0 | 92·0
37·9
3-2
58·9 | 29·4
3·2
67·4 | 39·8
6·6
53·6 | \$3.3
31.2
13.3
55.5 | 38·1
3·5
58·4 | 34 · 6
8 · 0
97 · 4 | 80·3
43·0
7·3
49·7 | 43.4
5.8
50.3 | | (b) " " volatile matter. (c) " " fixed carbon (by difference) (d) " calorific value, gross (e) Sensible heat, total estimated. (f) " coal equivalent. (Items (c) and (f) based on items 38(a) plu (g) Portion allocated to ash-pit loss. | B.T.U. B.T.U. lb s 38(f)). | 3.1 | 81·0
11,900
44,015
3·1
14·7 | 74·4
11,320
50,018
3·6
46·3 | 11,320
43,246
3·1
22·1 | 11,490
36,167
2-7
15-8
54-7 | 12,650
34,268
2.4
21.1
45.7 | 10,620
36,577
2.7
46.8
24.5 | 11,600
36,167
2.7
22.2
48.3 | 11,290
36,064
2.7
16.9
53.4 | 10,930
33,858
2.7
21-9
44-1 | 8,840
47,196
3.8 | 9,870
49,145
4.0
19.8
76.0 | 8,530
25,394
2-1
23-8
25-7 | 10,110
42,733
3 · 6
24 · 2
59 · 1 | $\begin{array}{c} 8,430 \\ 43,246 \\ \hline & 3\cdot 5 \\ 37\cdot 2 \\ 47\cdot 1 \\ \end{array}$ | 9,350
41,553
3.7
41.8
39.2 | $\begin{array}{c} 7,950 \\ 41,194 \\ \hline & 3\cdot 7 \\ 43\cdot 1 \\ \hline & 37\cdot 2 \end{array}$ | 8,100
44,631
3.5
34.6
52.6 | | (h) " not chargeable to test. (i) Fuel equivalent of portion not chargeable 40. Equivalent fuel used: (a) Total for trial, calculated | | 58·6
189·1
7·9 | 71·1
64·5
198·9
8·3 | 51·2
47·7
231·3
9·6 | 62·2
57·8
224·7
9·4 | 237·9
9·9 | 238·5
9·9 | 22·8
257·2
10·7 | 254-4
10-6
3-1 | 51·2
226·8 | 249·0
10·4 | 56·8
235·4 | 225 · 3
9 · 4
2 · 8 | 25·8
263·2
11·0 | 61·8
256·8 | 242·3
10·1 | 276·1
11·5
3·4 | 39·6
284·2
11·8 | 258-10- | | " square foot of grate surface per hour | ib | 5. 11.52
ns 1.00 | 12.12 | 13.70 | 13.47 | 14.36 | 14.18 | 15·41
1·34 | 0·33
15·42 | 3 0·29
13·78 | 0.33
3 15.13
1 1.33 | 2 0·30
3 13·93
1·21 | 0·29
13·65
1·18 | 0·34
15·43
1·3 | 3 15·1
4 1·3 | 3 0·31
8 14·45
2 1·26 | 0·3
16·7 | 5 0.3
3 16.7
5 1.4 | 7 8 14.
6 1.
55- | | 42. Total refuse: (a) For test (b) Per cent of fuel used (c) " ton " " | | 35-0
18-6
371 | 33 · 2
16 · 7
334 | 62-6
27-1
542 | 35.9
16.0
320 | 30-6
12-9
258 | 35-6
15-0
300 | 70·1
27·4
548 | 68·5
27·0
340 | 32·7
14·5
290 | 362 | 22·7
454 | 48·6
21·6
432 | 55·1
21·1
422 | 50·5
19·7
394 | | 59·3
21·5
430 | 62·9
22·2
444 | 59-
23-
462 | | 43. Circulating water, average temperature: (a) Flow. (b) Return. 44. Cooling water: (a) Average temperature, inlet (b) " outlet | °1 | 57.1 | 118
90
48-4
86-4 | 38-5
77-9 | 38·3
76·6 | 37.9
76.3 | 136
109
65-0
103-5 | 116
87
37·6
76-7 | 117
89
43-4
81-8 | 112
83
37.7
76.2
38.5 | | 77.3 | 38·0
76·7
38·7 | 89
37·5 | 83
37·7
77·4 | 100
59·1
97·7 | 103
59·7
97·9
38·2 | 58-2
97-5
39-3 | 86
37.
77.
40. | | (c) " " difference | B.T. | 7. 38·4
42,794
U. 68,437
U. 8,684 | 38-0
43,188
68,381
8,251 | 39·4
42,858
70,359
7,300 | 38-3
43,551
69,500
7,423 | 38·4
43,137
69,019
6,963 |
38·5
43.676
70.064
7,050 | 39-1
42,690
69,540
6,490 | 38.4
42,958
68,733
6,484 | 42,764
68,601
7,259 | 42,855
68,568
6,609 | 43,681
70,436
7,181 | 42,713
68,875
7,327 | 42,850
71,060
6,480 | 42,603
70,472
6,586 | 43,494
69,953
6,929 | 43,199
68,758
5,977 | 43,104
70,583
5,961 | 43,578
72,630
6,748 | | 45. Flue gases: (a) Average temperature (b) Dry volumetric analysis, carbon dioxide (c) " " " caygen. (d) " " carbon monoxide (e) " " " nitrogen (by differen (f) " weight per pound of fuel used | | 0 1 10.4 | 360
10·1
7·7
0·4
81·8
17·3 | 373
10·6
8·5
0·1
80·8
15·1 | 457
11·0
7·3
0·2
81·5
15·7 | 484
12·7
5·0
0·4
81·9
12·8 | | 8·5
0·2
80·9 | 402
10·7
7·5
0·1
81·7
13·0 | 7·3
0·5
81·2 | 6.9
0.3
80.9 | 6.9
0.5
81.1 | 7·7
0·2
81·2 | 5·2
0·5
81·5 | 6·7
0·1
81·9 | 7·0
0·3
81·2 | $ \begin{array}{c c} 11.9 \\ 5.5 \\ 0.5 \\ 82.1 \end{array} $ | 9.8
8.3
0.3
81.0 | 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | | (f) " weight per pound of fuel used | 9 | % 41
7.g. 0.01 | 55
0 0-01 | 65 | 51
0.01 | 30 | 32
0·0 | 65
12 0.0 | 53
19 0·0 | 51
0.0 | 47
19 0-0 | 47
0-0 | 55
07 0·0 | | | | | | | | 48. Average: (a) Room temperature. (b) " relative humidity. (c) Outdoor temperature. (d) Barometrie pressure. | oj | F. 68
64
F. 55 | 63
35
39
30-12 | 74
26
22
30-4 | 67
36
34
11 29-84 | 67
31
32
30-0 | 64
63
57
29-5 | 65
32
7
29 · 7 | 68
29
52
29 • 9 | 71
32
16
29·8 | 64
34
-8
29-8 | 77
43
30
29·4 | 72
43
14
30·0 | 64
29
0
30-3 | 70
33
0
30-3 | 69
37
43
30-2 | 68
48
61
29·9 | 05
37
38
29-1 | 69
33
11
30 | | 49. Efficiency: (a) Grate (b) Overall thermal HEAT ACCOUNT PER POUND OF FUEL USED IN B.T.I. | | % 88-9 | 91·3
58·1 | 81·9
51·9 | 91·8
53·4 | 93 · 4
52 · 4 | 50-0 | 47-9 | | 54.0 | 52.7 | 58-1 | 59-5 | 53.0 | 55-4 | 4 56-8 | 52.9 | 53. | 8 58 | | 50. Heat delivered to cooling water | that formed by B.T B.T B.T | U. 783
1,460 | 8,251
471
1,233
1,236 | 7,300
448
1,084
2,553 | 7,423
554
1,470
1,134 | 6,963
604
1,281
874
206 | 7,050
642
1,241
1,469
167 | 6,490
538
1,159
2,688
107 | 6,484
531
1,042
2,448
53 | 7,259
545
1,295
926
308 | 6,609
523
988
1,384
146 | 7,181
486
1,077
804
271 | 7,327
506
1,313
872
117 | 6,480
552
1,022
1,007
228 | 6,586
529
1,192
869
53 | 6,929
541
1,287
754
170 | 5,977
585
1,014
1,393
222 | 5,961
545
1,136
1,073
167 | 6,748
453
1,414
759
125 | | 54. " " carbon monoxide | B.T. B.T. | 1,824
.U. 13,190 | 282
2,717
14,190 | 2,658
14,060
51·9 | 3,192
13,900 | 3,352 | 3,531 | 2,558 | 2,692 | 3,107 | 2,880 | 2,551
12,370
7 58·1 | 2,185
12,320
59-5 | 2,791
12,080
53-6 | 2,651
11,880
55 | 2,519
12,200
4 56·8 | 2,109
11,300
52.9 | 2,208
11,090
53. | 2,091
11,590
8 58 | | 51. (a) Loss due to sie am formed from moisture in tuel by burning hydrogen in dry fuel. 52. (a) Loss due to heat carried away in dry flue gases 53. (a) " " unburned combustible matter in refuse to the fuel of fue | and that formed | % 2.3
% 5.9
% 11.1
% 1.1
1.3.8 | 3·3
8·7
8·7
2·0 | 3·2
7·7
18·2
0·1 | 4·0
10·6
8·1
0·9 | 9.6
6.6
1.6 | 8 · 8
10 · 4
1 · 2 | 8.6
19.8
0.8 | 7-9
18-5
0-4 | 9-6 | 7 · 9
11 · 0
1 · 1 | 8 · 7
0 6 · 5
2 2 2 · 2 | 10·7
7·1
0·9 | 8.6
8.3
1.9 | 5 10·
3 7·
9 0· | 0 10.0
3 6.5
5 1.4 | 9.0
12.3 | 0 10-
3 9-
1 1- | 2 12
7 6
5 1 | | 55. (a) " radiation, errors, and unaccounted for | | | | | | | name I | | | | | | | | , | , | 1 ' | | | a The data given for trial No. DS-X5 are the averaged results obtained for five repeat tests, all of which very closely approximated each other in value. (See Table A). b Average of two tests only; totals, therefore, are not necessarily exact. (See Table A). c As the normal refuse recovered during first four days of trial was not available for chemical analysis after having been screened, the values reported for items 27(a) and (b) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), and (d) are assumed to be the same as the values reported for items 39(a), (b), (c), a TABLE D DEPARTMENT OF MINES AND RESOURCES BUREAU OF MINES-FUEL RESEARCH LABORATORIES, OTTAWA, CANADA Detailed Data and Results of Nineteen Burning Tests Made on Various Western Canada Coals, Lignite, and Briquetted Fuels in Comparison with a "Standard" Sample of American Anthracite in a Domestic Hot-Water Boiler | Detailed Data and Results | of Ninetee: | n Burning | Tests Made | on variou | s western | | | e, and Brig | uettea Fu | els in Com | parison wi | tn a "Standard | d'' Sample of | American A | Anthracite | in a Dom | | ************************************** | | | |--|---|--|--|---|--|--|---|--|--|--|---|--|--|--|---|--|---------------------------------------|---|---|---| | Fuel Sample No. | "Standard"
Sample | 14-34 | 15-34 | Bitu
1A-37 | | Western Cang and Non-cal | unada Coals
cing) | 21-36 | 18-36 | Sub-bit 28-36 | uminous | I.ign | 10-31 | 5–34 | 14-35 | M
1-38 | Briquetted [ade by Various 1-37 | | | 9.4 | | Name or area | American
Anthracite | Telkwa
area, | Nanaimo
area,
Columbia | Mounta | in Park
ea,
erta | Saunders
area,
Alberta | Prairie
Creek area,
Alberta | Coalspur
area,
Alberta | Coalspur
area,
Alberta | Drumbe | ller area, | Estevan area,
Saskatchewan | Northern
Ontario | Bituminous
fines,
Cascade area, | Anthracite fines, Lykens | Bitumir
Norde | nous fines, | Lignite fines,
Estevan
area, | Impo
Peat I | orted | | Item Size, etc. Column No. | Stove
1 | Lump
2 | Lump
3 | Lump
4 | Lump
5 | Lump
6 | Mine-run
7 | Lump
8 | Lump
9 | Egg
10 | Lump
11 | Lump
12 | Forked lump | Alberta 14 | Valley, Pa. | A11 | berta
17 | Saskatchewan 18 | 19 | 20 | | Section "A", Items 1 to 20 inclusive—General 1. Trial number 2. Type of trial (S-Standard, O-Observation, E-Efficiency) | DS-X5 a | DS-73 | DS-74 | DH-143 | DH-133 | DS-97 | DH-134 | DH-135 | DH-136 | DH-138 | DH-137 | DH-139 | DH-202 | DS-64 | DS-98 | DH-198 | DH-140 | DH-199 | EDS-81 | EDS-82 | | 3 Date of trial 4. Duration of trial, continuous total. hrs. 5. Number of
fire periods during 24-hour day. | 10-9 to 1-12/34
120 | 120 | 25-30/3/35
120 | 7-12/6/37
120
3 | 1-6/2/37
120
3 | 4-9/11/35
120
3 | 8-13/2/37
120
3 | 15-20/2/37
120
3 | 22-27/2/37
120
3 | 8-13/3/37
120
3 | 1-6/3/37
120
3 | 15-20/3/37
120
6 | 24-29/10/38
120
6 | 17-22/12/34
120
3 | 18-23/11/35
120
3 | 19-24/9/38
120
3 | 120 | 26/9 to 1/10/38
120
3 | 8-9/5/35
24 | E
10-11/5/35
24 | | 6. Intervals between firings (24-hour day) | 9, 5, and 10
52
880 | 9, 5, and 10
51
880 | 9, 5, and 10
52
880 | 9, 5, and 10
54
880 | 9, 5, and 10
o7
880 | 9, 5, and 10
54
880 | 9, 5, and 10
49
880 | 9, 5, and 10
60
880 | 9, 5, and 10
52
880 | 9, 5, and 10
56
880 | 9, 5, and 10
60
880 | 4½; 4½; 2½; 5 & 5
49
880 | 4\; 4\; 2\; 2\; 5 & 5 53 880 | 9, 5, and 10
55
880 | 52 | 9, 5, and 10
53 | 54 | 04 | 4½; 4½; 2½; 2½; 5 & 5
54 | $4\frac{1}{2};4\frac{1}{2};2\frac{1}{2};2\frac{1}{2};5$ & 5 | | (b) Nominal grate area. sq. ft. (c) Area of heating surface. sq. ft. (d) Volume, grate to top of firepot. cu. ft. | 3·4
32·4 | 3·4
32·4
5·4 | 3·4
32·4
5·4 | 3.4
32.4
5.4 | 3·4
32·4
5·4 $3 \cdot 4$ $32 \cdot 4$ $5 \cdot 4$ | 3.4
32.4
5.4 | 880
3 · 4
32 · 4
5 · 4 | 880
3·4
32·4
5·4 | 880
3 · 4
32 · 4
5 · 4 | 880
3·4
32·4
5·4 | 880
3 · 4
32 · 4
5 · 4 | 880
3 • 4
32 • 4
5 • 4 | | RAW FUELAS FIRED UNLESS OTHERWISE SPECIFIED 9. Screen analysis: (Made on a representative portion of "bulk" sample received for test). (a) Through 18" on 12" round hole screen | | _ | _ | _ | | _ | _ | 9.7 | _ | _ | 23.0 | 24.1 | _ | _ | | | | | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | -
-
-
- | -
-
61·7
15·6 | 26-5
15·2 | -
-
42·9
12·6 | 6·2
12·0
18·6
29·3
12·8 | -
-
23·9
14·5 | $-1 \cdot 9 \\ 3 \cdot 2 \\ 2 \cdot 6 \\ 2 \cdot 8$ | 12·7
14·5
16·4
18·9
9·0 | 0·6
7·9
32·8
15·3 | -
-
-
10·7 | 13·3
15·0
25·1
15·6
1·8 | $\begin{array}{c c} 22 \cdot 7 \\ 15 \cdot 9 \\ 20 \cdot 0 \\ 7 \cdot 1 \end{array}$ | $ \begin{array}{c} 1 \cdot 8 \\ 2 \cdot 5 \\ 3 \cdot 0 \\ 14 \cdot 7 \end{array} $ | - |

 |

 | - | - | | | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 49·5
42·0
6·5
0·5 | $\begin{array}{c} 12 \cdot 6 \\ 3 \cdot 5 \\ 2 \cdot 0 \\ 0 \cdot 7 \end{array}$ | 20·1
10·4
9·2
4·7 | 17·4
10·1
17·0 | $7.5 \\ 2.5 \\ 2.1 \\ 1.0$ | 17·4
8·7
10·8
7·6 | 5·9
5·2
11·4
9·0 | $\begin{array}{c} 8 \cdot 0 \\ 3 \cdot 5 \\ 2 \cdot 2 \\ 1 \cdot 1 \end{array}$ | $ \begin{array}{r} 18 \cdot 2 \\ 8 \cdot 7 \\ 6 \cdot 9 \\ 2 \cdot 1 \end{array} $ | 25·8
20·0
23·8
10·4 | 1·8
0·9
1·0
0·5 | 2·0
2·8
1·0
1·1
0·6 | $13 \cdot 7$ $23 \cdot 7$ $11 \cdot 7$ $11 \cdot 7$ $4 \cdot 9$ | 100·0 | 100·0 | 100.0 | 100.0 | 100.0 | Size of average $7 \cdot 3'' \times 3 \cdot 2'$ volume = 3 weight = 1 | "×1.6";
37.4 cu. in. | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.5
0.5
0.3
0.2
2.06 | 0·6
0·6 g
0·6 g
2·1 g
6·43 | 4·3
3·1 g
2·4 g
4·1 g
3·01 | -
-
-
3·41 | $1.5 \\ 1.5 \\ 1.7 \\ 3.3 \\ 5.26$ | 8.8
4.5 g
1.9 g
1.9 g
2.81 | 12·4
16·3
11·4
17·9
1·25 | 1·1
1·1
0·7
1·1
6·88 | $2 \cdot 0$ $1 \cdot 9$ $1 \cdot 3$ $2 \cdot 3$ $3 \cdot 52$ | 4·3
2·5
1·0
1·5
1·80 | 0·5
0·6
0·4
0·5
8·95 | 0·7
0·8
0·5
0·7
9·48 | 3-9
3-1
1-8
3-5
2-88 | -
-
-
-
2·50 | -
-
-
2 · 25 | -
-
-
1.75 | -
-
-
- | - | Weight - 1 | .0010. | | (p) "Size stability per cent" by shatter test on: (1) -4" (round hole screen) coal (2) 2" 10 3" (round hole screen) size | 92.8 | 92-0
87-5
85-5 | 88·0
80·0
78·0 | 79·6
81·3 | -
84 · 8
79 · 7 | 88·0
78·5
76·5 | 73·9
72·2 | -
78·4
74·5 | 82·1
74·6 | -
66·8
62·3 | -
76·3
70·2 | 82·0
74·4 | | - | 97.8 | | 1·75

 | 2.25 | -
-
- | - | | (q) "Friability per cent" by tumbler test on: (1) 1" to 1½" (square hole screen) size | 29·8
2·9 | 36·2
2·3 | 48·3
2·8 | 43·4
0·9 | 48·5
0·8 | 53·6
8·0 | 41·1
5·5 | 34·6
8·0 | 44·4
7·0 | 38·8
15·3 | 29·2
16·4 | 30·4
27·7 | 19.2 | 0.6 | 94-8 | 0.8 | - 0.7 | 5.9 | 15·1
12·0 | 15-1 | | (b) Ash | 9·5
5·1
82·5 | 11.8
28.2
57.7 | 11 · 6
39 · 3
46 · 3 | 11·8
22·8
64·5 | $13 \cdot 2 \\ 27 \cdot 6 \\ 58 \cdot 4$ | $ \begin{array}{r} 8 \cdot 3 \\ 34 \cdot 1 \\ 49 \cdot 6 \end{array} $ | 14·8
33·8
45·9 | 14·6
33·3
44·1 | 18·4
32·2
42·4 | $\begin{array}{c} 6 \cdot 9 \\ 31 \cdot 3 \\ 46 \cdot 5 \end{array}$ | $6 \cdot 7 \\ 30 \cdot 9 \\ 46 \cdot 0$ | $\begin{array}{c} 6 \cdot 3 \\ 27 \cdot 9 \\ 38 \cdot 1 \end{array}$ | 6.5
37.3
37.0 | 9·8
18·6
71·0 | 9·8
12·0
77·3 | 12·3
19·7
67·2 | 12·1
18·6
68·6 | 13·1
17·0
64·0 | 5.4
56.8
25.8 | 11·4
5·7
57·5
25·4 | | 11. Ultimate analysis: (a) Carlson | 81.9
2.9
9.6
0.9 | 74·3
4·6
11·8
0·8 | $69 \cdot 9 \\ 5 \cdot 2 \\ 11 \cdot 6 \\ 1 \cdot 1$ | 77·3
4·6
11·8
0·3 | 75·3
4·6
13·2
0·3 | 66.3
4.9
8.3
0.3 | 64·8
5·2
14·8
0·3 | $59 \cdot 8$ $4 \cdot 7$ $14 \cdot 6$ $0 \cdot 2$ | 58·2
4·6
18·4
0·3 | 59·6
5·8
6·9
0·8 | 58·7
5·9
6·7
0·8 | 48·4
6·4
6·3
0·4 | 52·6
5·5
6·5
0·5 | 81·1
4·4
9·8
0·9 | 81·9
3·6
9·8
0·7 | $78 \cdot 4$ $4 \cdot 5$ $12 \cdot 3$ $0 \cdot 7$ | 79·2
4·6
12·1
0·7 | $73 \cdot 2$ $3 \cdot 2$ $13 \cdot 1$ $0 \cdot 7$ | 48·4
5·9
5·4
0-4 | $48.5 \\ 5.9 \\ 5.7 \\ 0.4$ | | (e) Nitrogen % (f) Oxygen (by difference). % | 0.9
3.8
13.190 | 1·2
7·3 | 1.4
10.8 | 1·1
4·9 | 1·1
5·5
12,970 | 1.0
19.2 | 1:4
13:5 | 0·7
20·0 | 9,730 | 25.8 $10,150$ | 1 · 2
26 · 7 | 0.8
37.7
7,970 | 0·5
34·4
8,350 | 1 · 6
2 · 2 | 1.0
3.0 | 1.0
3.1 | 1·1
2·3
13,500 | 1.1
8.7 | $\begin{array}{c c} 1 \cdot 7 \\ 38 \cdot 2 \end{array}$ | 1·7
37·8 | | (a) As fired, gross value B.T.U./lb. (b) Dry, gross value B.T.U./lb. (c) Gas used for kindling (assumed) B.T.U./cu. ft. 13. Fuel ratio, fixed carbon/volatile matter | 16.30 | 13,110
500
2.05
16.2 | 12,860
500
1.20
13.4 | 13,350
500
2.85
17.0 | 13,075
500
2-10
16-4 | 12,330
500
1.45
13.4 | 11,980
500
1.40
12.5 | 11,090
500
1.35
12.6 | 10,470
500
1.30
12.7 | $12,000 \\ 500 \\ 1 \cdot 50 \\ 10 \cdot 3$ | 12,110
500
1.50
9.9 | 11,030
500
0-73 | 10,340
500
0.99 | 14,140
500
3.85 | 13,780
500
6.44 | 13,760
500
3.41 | 13,600
500 | 11,830
12,570
500
3-76 | 8,150
9,250
500
0.45 | 8,140
9,190
500
0·44 | | 14. Carbon-hydrogen ratio 15. (a) Caking properties as judged by "coke button". (b) Swelling index = Per cent swelling × 100 Per cent dry V.M. at 600°C. (c) Caking index by "Gray" method. | Non-eaking | Poor -297 | Fair -230 | Fair to good —233 29 | | Slightly agglom.
Nil
Nil | Poor to fair -18 3 | Non-caking | Non-caking | Non-caking | Non-caking | 7·6
Non-eaking
- | 9·6
Non-caking
- | 18·4
Agglomerate | 23.0
Non-caking | 17·4
Poor
- | Poor to fair | Agglomerate | Non-caking - | 8·2
Non-caking
- | | 16. Ash fusibility: (a) Initial deformation temperature | 2,745 $2,850$ $2,905$ | 2,270
2,380
2,500 | 2,110
2,170
2,230 | 2,200
2,300
2,375 | 2,240
2,350
2,440 | $2,190 \\ 2,240 \\ 2,270$ | 2,250
2,320
2,410 | 2,100
2,200
2,300 | 2,000
2,190
2,300 | 1,940
2,040
2,070 | 1,925
2,000
2,190 | 2,120
2,200
2,280 | 2,305
2,375 | 2,630
2,750 | 2,100
2,420 | 2,900
2,900+ | 2,850+
2,850+ | 1,990
2,050 | 2,200
2,245 | 2, 190
2, 240 | | (c) Fund temperature or mercing point. 17 Apparent specific gravity, as received in bulk. 18. Weight per cubic foot, as received in bulk. 19. Volume per toon of 2,000 pounds, as received in bulk. 20. Grindability index by "Hardgrove' method. | $\begin{array}{c} 1 \cdot 47 \\ 52 \cdot 4 \\ 38 \cdot 2 \end{array}$ | 1·39
47·6
42·0 | 1·35
51·9
38·5 | 1·40
52·8 | 1.38 46.2 43.3 | 1-35
49·5
40·4 | 1·40
55·8
35·8 | $1.31 \\ 49.7 \\ 40.2$ | $1 \cdot 47 \\ 49 \cdot 9 \\ 40 \cdot 1$ | 1·34
47·5
42·1 | $1.33 \\ 46.7 \\ 42.8$ | 1·29
40·5
49·4 | $2,395$ $1 \cdot 14$ $33 \cdot 2$ $60 \cdot 2$ | $2,850$ $1 \cdot 24$ $42 \cdot 5$ $47 \cdot 1$ | 2,540
1.25
43.6
45.9 | 2,900+1.20 43.4 46.1 | 2.850+
1.22
44.2
45.2 | 2,120
1·20
41·1
48·7 | 2,270
1·25
70·0
28·6 | $egin{array}{c} 2, \overline{270} \\ 1 \cdot 25 \\ 70 \cdot 0 \\ 28 \cdot 6 \\ \end{array}$ | | 20. Grindability index by "Hardgrove' method | 28.5 | 70.8 | 75.0 | 84.7 | 73 · 6 | 61.6 | 52.8 | 45-0 | 55.2 | 39-2 | 39.3 | 53.5 | - | - | - | | | - | - | | | 21 Duration of "observation" trial hrs. 22. Fuel fired: (a) City gas used for kindling (b) Fuel equivalent to gas used (b) Fuel equivalent to gas used 10. | 96
100
3.8
708 | 96
100
3·9
911 | 96
100
4·0
938 | 96
100
3 · 8
862 | 96
100
3.9
838 | 96
100
4-4
995 | 96
100
4·4
963 | 96
100
4 · 9 | 96
100
5-1 | 96
100
4.9 | 96
100
4.9 | 96
100
6·3 | 96
100
6·0 | 96
100
3·6 | 96
100
3 · 7 | 96
100
3·7 | 96
100
3·7 | 96
100
4 · 2 | - | - | | (c) Quantity during trial. lb. (d) Total, including gas equivalent. lb. 23. Refuse removed: (a) Through fire-door during trial lb. | 711·8
Nil | 914·9
Nil | 942·0
8 |
865-8
Nil | 841.9 | 999·4
4 | 967·4
9·5 | 1,144
1,148·9 | 1,184
1,189·1
5·0 | 1,146
1,150-9
15-3 | 1,196
1,200·9 | 1,575
1,581·3
Nil | 1,414
1,420·0
Nil | 796
799-6
Nil | 768
771.7 | 744
747·7
Nil | 744
747·7
Nil | 932
936-2
Nil | - | - | | (b) From ash-pit during trial | 66 · 9
66 · 9
80 · 6 | 113·5
113·5
109·8 | 128·3
130·3
53·3 | 94·3
94·3
99·2 | 58·0
59·0
79·3 | 106·3
110·3
67·5 | 147-8
157-3
110-5 | 104 · 8
124 · 3
100 · 5 | 215·8
220·8
126·3 | 55·5
70·8
95·0 | 36·8
50·1
83·5 | 106·5
106·5
69·0 | 69
69
76·3 | 104
104
104 | 89·8
91·5
114·3 | 81
81
44·3 | 77-8
77-8
61-2 | 56·3
56·3
127·5 | - | -
-
- | | 24. Clinker: (a) Removed through fire-door during trial | Nil
41
42
42
43
45
b | Nil
3½
3½
3¾ | 8
21
61
51 | Nil
2‡
5‡
113 | $1 \\ 2 \\ 6$ | 4
1
24
44 | 9½
2
8¾
6 | 19½
3
34 | $\begin{array}{c} 5\\ 3\frac{1}{2}\\ 11\\ 12\frac{1}{2} \end{array}$ | 15 1 1 1 4 4 6 | 131
1
1 | Nil
0
0
43 | Nil
Nil
Nil
Nil | Nil | 1 a 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | Nil
14
31 | Nil
11/2 | Nil 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | - | <u>-</u>
- | | (e) " ½" " " " " " " " " " " " " " " " " " | 15 h
14 b | 11/2
9/2 | 1 1 1 2 2 3 1 2 2 3 1 2 1 2 1 2 1 2 1 2 | 25 | 3½
13 | 13½ | 302 | 3 1
29 1 | 83
40 ³ | 71
331 | 2
211 | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Nil
Nil | 28 | 24
2
8 | I ½
1
7 ½ | $1 \atop 3\frac{1}{2}$ | 15½
3½
21 | - | - | | (a) On 1" square mesh screen recovered from ash-pit refuse lb. (b) " 2" " " " " " " lb. (c) " 1" " " " " residual fire lb. (d) " 2" " " " " lb. (e) Total—(over ½" screen size)—recovered lb. | 81
441 b
217 b
803 b | 163
571
191
981 | 12 ³
17
13
46 | 21
8
431
11
641 | 31
33
102
48 | 92
83
151
341 | 71
71
141
291 | $\begin{array}{c} \text{Nil} \\ 2^{\frac{3}{4}} \\ 11^{\frac{1}{2}} \\ 17^{\frac{1}{4}} \\ 31^{\frac{1}{2}} \end{array}$ | $6\frac{1}{2}$ 15 $\frac{1}{2}$ 17 39 $\frac{1}{2}$ | $egin{array}{c} { m Nil} & 1 & & & & & & & & & & & & & & & & & $ | $egin{array}{c} ext{Nil} & 1 & 1 & 12 rac{3}{4} & 17 rac{3}{4} & 31 rac{1}{2} & \end{array}$ | Nil | $\begin{array}{c} { m Nil} & 3 & 11 & 24 rac{1}{4} & 38 rac{1}{4} & 1 \end{array}$ | $\begin{array}{c} 6\frac{6}{8} \\ 12\frac{1}{4} \\ 77 \\ 9\frac{1}{4} \\ 105\frac{1}{8} \end{array}$ | 25
55
94
67 | $\begin{array}{c} 3\frac{1}{2} \\ 5\frac{1}{2} \\ 24 \\ 5\frac{1}{4} \\ 38\frac{1}{2} \end{array}$ | 53
64
31
9 | 1
1
68
93
794 | - | - | | 26. Refuse—(through \$''\$ screen size): (a) Recovered from ash-pit refuse. lb. (b) "residual fire. lb. (c) Total recovered. lb. | 461
171 b
661 b | 87½
28¼
115¾ | 103½
16½
120 | 75½
28½
103¾ | 51½
26
77½ | 923
371
130 | 1291
781
2071 | 98½
65¼
163¾ | 194
72 1
266 1 | 491
601
1091 | 34½
46½ | 105
60½
165½ | 66
4 1 | 833
171 | 847
45½ | 671
12½
794 | 52½
63¾
19¼ | 794
524
30½
83 | - | - | | ESTIMATED CORRECTIONS FOR REFUSE, DUMPED RESIDUAL FIRE, ETc. 27. Proximate analysis of refuse recovered during trial: | 46.5 | 50.7 | 63.3 | 61-1 | 64.1 | 37.8 | - | _ | | | 80∄ | | 107 | 101 | 1301 | 794 | 83 | 83 | - | - | | (a) Ash c | 53·5
22·7 | 49·3
22·1 | 36·7
23·4 | 38·9
33·5 | 35·9
31·1 | 62·2
19·8 | 48·9
51·1
45·9 | 73·0
27·0
46·2 | 65·0
35·0
45·4 | 63·0
37·0
23·5 | $76 \cdot 7$ $23 \cdot 3$ $21 \cdot 2$ | 54·3
45·7 | 78·1
21·9 | 41·4
58·6 | 64·2
35·8 | 82·7
17·3 | 84·3
15·7
34·2 | 84·2
15·8 | - | - | | (b) " volatile matter d % (c) " fixed carbon d (by difference). % (d) Dry calorific value gross d B.T.U./lb. (e) Sensible heat, total estimated B.T.U. (f) " coal equivalent 1b. | 1.5
75.8
10,860
41,368
3.1 | 3.7
74.2
11,160
56,302
4.4 | 8.5
68.1
11,060
27,317
2.2 | 6·7
59·8
9,130
50,890
3·8 | $ \begin{array}{r} 3 \cdot 5 \\ 65 \cdot 4 \\ 9,700 \\ 40,681 \\ 3 \cdot 1 \end{array} $ | $\begin{array}{c} 11 \cdot 0 \\ 69 \cdot 2 \\ 10,990 \\ 34,628 \\ 3 \cdot 1 \end{array}$ | 10·1
44·0
7,620
56,687
5·0 | 10·6
43·2
7,100
51,557
5·1 | $ \begin{array}{c} 8 \cdot 0 \\ 46 \cdot 6 \\ 7,650 \\ 64,792 \\ 6 \cdot 7 \end{array} $ | 5·8
70·7
10,940
48,735
4·8 | $ \begin{array}{r} 3 \cdot 1 \\ 75 \cdot 7 \\ 11,480 \\ 42,836 \\ 4 \cdot 2 \end{array} $ | $\begin{array}{r} 23 \cdot 4 \\ 10 \cdot 5 \\ 66 \cdot 1 \\ 10,670 \\ 35,397 \\ 4 \cdot 4 \end{array}$ | 8·2
62·5
10,480
39,142 | 2·3
84·1
12,220
53,352
3·8 | 2·7
79·0
11,530
58,636 | $\begin{array}{c} 3.0 \\ 67.0 \\ 9,410 \\ 22,700 \end{array}$ | 1·1
64·7
9,170
31,396 | 26 · 6
6 · 9
66 · 5
10,970
65,408 | - | -
-
-
- | | (Items (e) and (f) based on items 23(a) plus 23(d)). (g) Portion allocated to ash-pit loss Ib. (h) " not chargeable to test Ib. (i) Fuel equivalent of portion not chargeable Ib. | 27·0
53·6
51·4 | 28·4
81·4
80·1 | 11·9
41·4
42·1 | 43·4
55·8
51·0 | 27·8
51·5
48·5 | 25·3
42·2
46·4 | 100·5
10·0
10·5 | 53·4
47·1
51·4 | 71·5
54·8
63·3 | 26·6
68·4
88·6 | 16·0
67·5
89·3 | 22·2
46·8
74·7 | 23·2
53·1
86·7 | 12-2
91.8
83-3 | 4·3
17·7
96·6
90·0 | $ \begin{array}{c c} 1 \cdot 7 \\ 11 \cdot 1 \\ 33 \cdot 2 \\ 28 \cdot 6 \end{array} $ | 2·3
18·7
42·5
38·5 | 23·0
104·5
113·7 | - | -
-
- | | 29. Equivalent fuel used: (a) Total for trial, calculated | 657·3
6·8
2·0
0·21 | $830 \cdot 4 \\ 8 \cdot 7 \\ 2 \cdot 5 \\ 0 \cdot 27$ | 897·7
9·4
2·8
0·29 | 811.0
8.4
2.5
0.26 | 790·3
8·2
2·4
0·25 | 949·9
9·9
2·9 | 951-9
9·9
2·9 | 1,092·4
11·4
3·3 | 1,119·1
11·7
3·4 | $1,057 \cdot 5$ $11 \cdot 0$ $3 \cdot 2$ | 1,107·4
11·5
3·4 | 1,502·2
15·6
4·6 | 1,328·6
13·8
4·1 | 712.5
7.4
2.2 | 677·4
7·1
2·1 | $717 \cdot 4 \\ 7 \cdot 5 \\ 2 \cdot 2$ | $706 \cdot 9$ $7 \cdot 4$ $2 \cdot 2$ | 817·0
8·5
2·5 | - | Ξ | | (e) "therm c delivered to cooling water. lb. 30. Total ash in fuel used, from fuel analysis . lb. 31. Total refuse: | 9·94
62·7 | 13 · 05
98 · 0 | 13·68
103·9 | 95-7 | 10·86
104·2 | 0·31
13·77
78·7 | 0·31
15·45
141·0 | 0·35
14·44
159·5 | 0·36
17·11
206·2 | 0·34
14·97
73·0 | 0·36
14·65
74·1 | 0·48
24·14
94·5 | 0-43
20-06
86-3 | 0·23
10·12
69·8 | 0·22
10·31
66·4 | 0-23
10-59
88-0 | 0·23
10·25
85·4 | 0·26
11·68 | - | - | | (a) For test. lb. (b) Per cent of fuel used. % (c) " ton " lb. General Data | 93·9
14·3
286 | 141.9
17.1
342 | 148·2
16·5
330 | 137·7
17·0
340 | 86·8
11·0
220 | 135·6
14·3
286 | 257·8
27·1
542 | 177·7
16·3
326 | $\begin{array}{c} 292 \cdot 3 \\ 26 \cdot 1 \\ 522 \end{array}$ | 97·4
9·2
184 | 66-1
6-0
120 | 128·7
8·6
172 | 92·2
6·9
138 | 116·2
16·3
326 | 109·3
16·1
322 | 92·1
12·9
258 | 96·5
13·7
174 | 79·3
9·7
194 | - | <u>-</u> | | 32. Circulating water, average temperature: (a) Flow by thermograph °F. (b) Return °F. | 131
102 | 114
78 | 115
80 | 133
105 | 119
84 | 131
101 | 112
78 | 123
88 | 115
81 | 120
86 | 123
89 | 114
82 | 113
97 | 113
80 | 123
92 | 136
103 | 129
100 | 136
103 | - | | | 33. Cooling water: (a) Average temperature, inlet by thermograph. (b) " outlet " "F. (c) " difference. "F. | 56
94
38 | 37
74
37 | 38
76
38 | -
-
40 | 42 | -
-
40 | -
36 | -
-
44 | - 38 | -
-
41 | -
-
44 | -
-
36 | -
-
39 | 39
80
41 | -
-
38·5 | -
-
39 | - | - | - | - | | (d) Total used during trial, corrected. lb. (e) Heat delivery per hour | 172,121
68,501
10,089 | 172,036
66,306
7,665 | 172,700
68,360
7,310 | 171,605
71,502
8,464 | 173,224
75,786
9,206 | 172,412
71,838
7,260 | 171,121
64,170
6,472 | 171,928
78,800
6,925 | 172,169
68,150
5,846 | 172,295
73,584
6,680 | 171,814
78,748
6,827 | 172,857
64,821
4,142 | 169, 821
68, 990
4, 985 | ** 1 | 170, 725
68, 468
9, 703 | 173,759
70,590
9,446 | 40
172,386
71,828
9,754 | 41
170,549
72,839
8,559 | -
-
- | -
-
-
- | | (a) Average temperature by recorder. °F. (b) "carbon dioxide content f % 35. Average: (a) Draught over fire, by recording gauge. in. W. G. | 300
13-6
0-009 | 337
11·8
0·016 | 381
13·6
0·010 | 390
8·9
0·040 | 467
10·1
0·038 | 382
12·7
0·024 | 424
9·3
0·030 | 410
10·1
0·043 | 362
7·7
0·043 | 380
10·9 | 380
10·6 | 372
6·6 | 393
10-4 | 297
12·3 | 314
13·4 | 350
10·5 | 350
10·2 | 362
11-4 | - | Ξ | | (b) Room temperature, by thermograph | 67
53 | 71
33 | 69
31 | 74 64 | 68 | 77 49 | 72 19 | 74 16 | 72 25 | 0·017
74
10 | 0·026
74
24 | 0·045
74
26 | 0·013
69
45 | 0·009
68
15 | 0-027
69
37 | 0·025
64
54 | 0·028
72
66 | 0·008
68
53 | - | - | | 36. Duration of "efficiency" trial | 24
101 | 24
100 | 24
100 | 24
100 | 24
100 | 24 | 24
100 | 24
100 | 24
100 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | | (b) Fuel equivalent to gas used. lb. (c) Quantity during trial. lb. (d) Total, including gas equivalent. lb. 38. Refuse removed: | 3·8
247
250·8 | 3·9
289
292·9 | 302
306·0 | 3·8
272
275·8 | 3·9
279
282·9 |
4·4
315
319·4 | 4·4
324
328·4 | 4·9
346
350·9 | 356
361·1 | 4·9
359
363·9 | 4·9
359
363·9 | 6·3
440
446·3 | 6·0
414
420·0 | 100
3 · 6
259
262 · 6 | 100
3·7
252
255·7 | 100
3·7
247
250·7 | 100
3·7
254
257·7 | 110
4 · 6
293
297 · 6 | 50
3·1
446
449·1 | 50
3·1
446
449·1 | | (a) Through fire-door during trial. 1b. (b) From ash-pit 1b. (c) Total, during trial 1b. (d) Dry analysis of total refuse recovered, ash. % (e) | Nil
14·6
14·6
46·5 | Nil
28·8
28·8
50·7 | Nil
20-0
20-0
63-3 | Nil
12·3
12·3
61·1 | Nil
9·5
9·5
64·1 | Nil
26
26
37·8 | Nil
16·0
16·0
48·9 | 1·0
14·0
15·0
73·0 | 1.5
19.5
21.0
65.0 | Nil
7·0
7·0
63·0 | Nil
11·0
11·0
76·7 | Nil
29·0
29·0
54·3 | Nil
14
14
78·1 | Nil
35·3
35·3
41·4 | Nil
9.5
9.5
64.2 | Nil
7·5
7·5
82·7 | Nil
9·3
9·3
84·3 | Nil
22·3
22·3 | Nil
12·5
12·5 | Nil
13·3
13·3 | | (f) As dumped residual fire at end of trial | 53·5
80·9 | 49·3
75·3 | 36·7
85·0 | 38·9
94·7 | 35·9
92·0 | 62·2
71·8 | 51·1
101·8 | 27·0
102·3 | 35·0
109·0 | 37·0
83·0 | 23·3
70·0 | 45·7
30·3 | 21·9
43·5 | 58·6
65·5 | 35·8
91·3 | 17·3
74·8 | 15·7
74 | 84·2
15·8
72·3 | 87·1
12·9
45·3 | 86·5
13·5
47·0 | | (b) " " volatile matter % (c) " " fixed carbon (by difference) % (d) " calorific value, gross B.T.U./lb. (e) Sensible heat, total estimated B.T.U. (f) " coal equivalent lb. | 1.5
79.4
11,466
41,481 | 22·1
3·7
74·2
11,160
38,629 | 23·4
8·5
68·1
11,060
43,605 | 33.5
6.7
59.8
9,130
48,581 | 31·1
3·5
65·4
9,700
47,196 | 19·8
11·0
69·2
10,990
36,833 | 45.9
10.1
44.0
7,620
52,223 | $ \begin{array}{c} 46 \cdot 2 \\ 10 \cdot 6 \\ 43 \cdot 2 \\ 7,100 \\ 52,480 \end{array} $ | 45·4
8·0
46·6
7,650
55,917 | 23.5
5.8
70.7
10,940
42,579 | 21·2
3·1
75·7
11,480
35,910 | $\begin{array}{c c} 23 \cdot 4 \\ 10 \cdot 5 \\ 66 \cdot 1 \\ 10,670 \\ 15,544 \end{array}$ | 29·3
8·2
62·5
10,480
22,316 | 13·6
2·3
84·1
12,220
33,602 | 18-3
2-7
79-0
11,530 | 30·0
3·0
67·0
9,410 | 34·2
1·1
64·7
9,170 | 26·6
6·9
66·5
10,970 | 22.8
9.6
67.6
11,200 | 18-5
8-7
72-8
11,790 | | (Items (e) and (f) based on items 38(a) plus 38(f)). (g) Portion allocated to ash-pit loss. lb. (h) "not chargeable to test. lb. (i) Fuel equivalent of portion not chargeable. lb. | 3·1
20·4
60·5
58·6 | 3·0
19·5
55·8
54·9 | 3·5
19·0
66·0
67·2 | 3·7
41·5
53·2
48·6 | 3·6
32·2
59·8
56·3 | 3·2
26·9
44·9
49·4 | 4·6
92·6
9·2
9·7 | 5·2
54·4
47·9
52·2 | 5·7
61·7
47·3
54·6 | 4·2
23·3
59·7
77·3 | 3·5
13·4
56·6
74·9 | 2·0
9·8
20·5 | $\begin{array}{c} 2 \cdot 7 \\ 13 \cdot 2 \\ 30 \cdot 2 \end{array}$ | 2·4
7·7
57·8 | 3 · 4
14 · 1
77 · 2 | 38,372
2·8
18·7
56·1 | 37,962
2.8
22.6
51.4 | 37,090
3·1
13·1
59·2 | 23,239
2.9
9.3
36.0 | 24, 111
3 · 0
7 · 1
39 · 9 | | 40. Equivalent fuel used: (a) Total for trial, calculated | 189·1
7·9
2·3 | 235·0
9·8
2·9 | 235·3
9·8
2·9 | 223·5
9·3
2·7 | 223·0
9·3
2·7 | 266-8
11-1
3-3 | 314·1
13·1
3·8 | 293·5
12·2
3·6 | 300·8
12·5
3·7 | 282·4
11·8
3·5 | 285·5
11·9 | 32·7
411·6
17·2 | 49·3
368·0
15·3 | 52·4
207·8
8·7 | 71·9
180·4
7·5 | 48·4
199·5
8·3 | 46-6
208-3
8-7 | 230·1
9·6 | 386·1
16·1 | 66· 4
379·7 | | (d) " " henting " " lb. (e) "therm e delivered to cooling water lb. (f) To equal one ton of stove-size American anthracite tons 41. Total ash in fuel used, from fuel analysis lb. | 0·24
11·52
1·00 | $ \begin{array}{c c} 0.30 \\ 14.11 \\ 1.22 \\ 27.6 \end{array} $ | 0·30
14·25
1·24
27·2 | $ \begin{array}{c c} 0 \cdot 29 \\ 13 \cdot 53 \\ 1 \cdot 17 \end{array} $ $ 26 \cdot 4 $ | 0·29
13·55
1·18 | 0·34
16·22
1·41
22·0 | 0.40
18.90
1.64
46.5 | 0·38
17·84
1·55
42·9 | 0·39
18·52
1·61
55·5 | 0·36
16·83
1·46 | 3·5
0·57
17·27
1·50 | $ \begin{array}{c c} 5 \cdot 0 \\ 0 \cdot 53 \\ 25 \cdot 84 \\ 2 \cdot 24 \end{array} $ | 4.5
0.47
21.68
1.88 | $ \begin{array}{c c} 2 \cdot 5 \\ 0 \cdot 27 \\ 12 \cdot 31 \\ 1 \cdot 07 \end{array} $ | 2·2
0·23
10·99
0·95 | 0·26
11·83
1·03 | 2·6
0·27
12·17
1·06 | 2.8
0.30
13.62
1.18 | 4.7
0.50
22.73
1.97 | 15.8 4.7 0.49 22.48 1.95 | | 42. Total refuse: (a) For test. lb. (b) For cent of fuel used. % (c) "ton" lb. | 35·0
18·6
371 | 48·3
20·6
412 | 39·0
16·6
332 | 53·8
24·1
482 | 41.7
18.7
374 | 52·9
19·9
398 | 108·6
34·6
692 | 69·4
23·6
472 | 82·7
27·4
548 | 19·4
30·3
10·8
216 | 19·0
24·4
8·6
172 | 25·7
38·8
9·5
190 | 23·7
27·2
7·5
150 | 20·2
43·0
20·8
416 | 17·6
23·6
13·1
262 | 24·4
26·2
13·2
264 | 25·1
31·9
15·4 | 29·9
35·4
15·5 | 20·8
21·8
5·6 | 21·6
20·4
5·4 | | 43. Circulating water, average temperature: (a) Flow | 129
103 | 110
82 | 111
83 | 129
103 | 113
85 | 124
98 | 114
86 | 113
85 | 113
85 | 115
87 | 114
86 | 111
84 | 126
99 | 112
83 | 120
93 | 131
104 | 308
129
102 | 310
129
101 | 112
121
93 | 108
121
94 | | (a) Average temperature, inlet. °F. (b) "" outlet. °F. (c) "" difference. °F. (d) Total used during trial, corrected. Ib. | 57·1
95·5
38·4
42,794 | 38·2
76·3
38·1
43,704 | 37.5
75.7
38.2
43,221 | 66·0
104·4
38·4
43,032 | 38·1
76·4
38·3
42,969 | 52·2
90·4
38·2
43,058 | 38·7
77·6
38·9
42,715 | 38·1
76·5
38·4
42,844 | 38·2
76·1
37·9
42,856 | 38·2
77·0
38·8
43.251 | 38·5
76·9
38·4
43,062 | 38·4
75·4
33·0
43 054 | 55·1
95·4
40·3 | 38-4
77-8
39-4 | 45·2
83·5
38·3 | 63·1
101·9
38·8 | 62·9
102·5
39·6 | 61·3
101·1
39·8 | 49·3
88·6
39·3 | 50·2
89·3
39·1 | | (e) Heat delivery for hour | 68,437
8,684
310 | 69,380
7,086 | 68, 793
7, 017
475 | 68,851
7,393 | 68,571
7,380
464 | 68,534
6,165 | | 68,550
5,605 | 67,677
5,400 | 69,922
5,942 | 68,899
5,792 | 43,054
66,375
3,870 | 42,113
70,715
4,612 | 70,345
8,125 | 42,868
68,410
9,101 | 43,465
70,268
8,453 | 43,220
71,313
8,217 | 42,434
70,370
7,340 | 43,215
70,765
4,399 | 39·1
43,193
70,369
4,448 | | (b) Dry volumetric analysis, carbon dioxide. | 13·4
6·2
0·3
80·2
13·5 | 12·7
5·2
0·4
81·7
12·3 | 13·4
4·5
0·5
81·6
11·6 | 10·5
8·7
0·1
80·7 | 8·6
10·4
0·2
80·8 | 11·3
7·7
0·2
80·8 | 10·1
9·0
0·1
80·8 | 378
10·2
8·8
0·2
80·8 | 394
9·0
10·3
0·1
80·6 | 383
12·1
6·9
0·1
80·9 | 367
11·3
7·3
0·2
81·2 | 389
6·3
13·2
0·0
80·5 | 383
11·4
8·2
0·4
80·0 | 299
14·0
4·4
0·5
81·1 | 311
14·0
4·8
0·2
81·0 | 372
12·9
6·0
0·2
80·9 | 358
12·6
6·0
0·2 | 349
13·8
5·5
0·2 | 331
13·2
5·6
0·4 | 340
14·3
4·7
0·7 | | 46. Excess air % 47. Draught average: (a) Over fire in. W.g. (b) In flue in. W.g. | 0.010
0.010 | 31
0·004 | 26
0·005 | 16·0
68
0·024 | 19 · 3
94
0 · 035 | 11·8
56
0·022 | 11·5
72
0·064 | 12·8
69
0·033 | 13·3
93
0·050 | 11·5
47
0·014 | 12·4
51
0·023 | 17·2
161
0·034 | 63
0-011 | 26
0-009 | 81-0
13-8
29
0-007 | 14·7
39 | 81·2
15·1
38 | 80·5
12·8
35 | 80·8
8·9
35 | 80-3
8-1
28 | | 48. Average: (a) Room temperature | 68
64 | 0·005
71
36
35 | 0·016
67
33 | 0·022
73
51 | 0-032
69
28 | 0·018
70
37 | 0·046
75
28 | 0·031
71
33 | 0·052
71
28 | 0·014
72
18 | 0·023
72
28 | 0-057
76 | 0-010
69 | 0·005
69 | 0-004 | 0·013
0·009 | 0·013
0·013 | 0.010
0.010 | 0.010
0.010 | 0·007
0·010 | | (a) Barometric pressure. in. Hg 49. Efficiency: (a) Grate. 96 | 55
29·897
88·9 | 30·045
88·4 | 33
29·716
92·9 | 64
29·978
89·7 | 12
29·851
92·4 | 34
30·001
84·0 | 34
29·803
77·2 | 27
30-174
90-8 | 21
29·704 | 18
18
30-121 | 16
29·736 | 27
33
29-701 | 41
40
30·00 | 29
7
30-067 | 27
24
30·147 | 57
59
29 · 68 | 58
63
29·736 | 43
47
29 · 87 | 39
56
30·100 | 71
39
55
29 • 736 | | HEAT ACCOUNT PER POUND OF FUEL USED IN B.T.U. AND PER CENT 50. Heat delivered to cooling water | 65-8 | 55 · 4 | 56-1 | ə5·9
 | 7,380 | 6,165 | 46-8 | 55.0 | 55.5 | 58.5 | 97·1
57·2 | 92·0
48·6 | 97·1
55·2 | 87·3
57·8 | 95·0
66·7 | 97·6
61·9 | 97·4
60·9 | 97·0
62·0 | 98·7
54·0 | 98·7
54·6 | | 51. Loss due to steam formed from moisture in fuel and that formed by burning hydrogen in dry fuel | 299
783 | 491
892
1,485
199 | 580
1,136 | 492 | 510
1,830
981 | 526
889
1,809 | 574
1,074
2,578 | 503
943
931 | 496
1,031
1,402 | 5,942
622
858
581 | 5,792
628
878
292 | 3,870
685
1,292
636 | 4,612
698
844
238 | 8,125
457
662
1,781 | 377 | 479 | 489
1,047 | 7,340
339
800
357 | 4,399
622
564 | 4,448
622
523 | | | 1,824
3,190 | 2,647
12,800 | 2,644
12,500 1 | 2,725
3,230 1 | | 95
1,856
1,340 | 1,752
1,315 1 |
104
2,104
0,190 | 54
1,347
9,730 | 2, 101
10, 150 | 2,440
10,130 | 7,970 | 1,783 | 241
2,784 | 110
2,562 | 3,226 | | 357
103
2,831
11,830 | 106
142
2,317
8,150 | 622
523
106
226
2,215 | | 51. (a) Loss due to steam formed from moisture in fuel and that formed by burning hydrogen in dry fuel | 65·8
2·3
5·9
11·1 | 55·4
3·8
7·0
11·6 | 56·1
4·6
9·1
7·1 | 55·9
3·7
9·0
10·3 | 3·9
14·1
7·6 | 54·4
4·6
7·8
16·0 | 46-8
5-1
9-5
22-8 | 55-0
4-9
9-3
9-1 | 55·5
5·1
10·6
14·4 | 58·5
6·1
8·5
5·7 | 57·2
6·2
8·6
2·9 | 48·6
8·6
16·2
8·0 | 55·2
8·4
10·1 | 57·8
3·3
4·7 | 66·7
2·8
6·0 | 61·9
3·5
7·7 | 60·9
3·6
7·8 | 62·0
2·9
7·3 | 54·0
7·6
6·9 | 54·6
7·7 | | 54 (a) " " carbon monoxide | 100-0 | 100.0 | 1·9
21·2 | 0.5
20.6 | 1·2
16·3 | 100-0 | 100.0 | 100.0 | 14·4
0·6
13·8 | 0·5
20·7 | 24.1 | 8·0
0·0
18·6 | 2·8
2·1
21·4 | 12·7
1·7
19·8 | 5.0
0.8
18.7 | 2·4
0·9
23·6 | 2·6
0·9
24·2 | 3.0
0.9
23.9 | 1·3
1·8
28·4 | 6·4
1·3
2·8
27·2 | | a The data given for trial No. DS-X5 are the averaged results obtained to | l | l | 1 | | | · · · · · · · · · · · · · · · · · · · | <u> </u> | 200.0 | 100.0 | 100-0 | 100-0 | 100-0 | 100.0 | 100.0 | 100-0 | 100.0 | 100-0 | 100-0 | 100-0 | 100-0 | a The data given for trial No. DS-X5 are the averaged results obtained for five repeat tests, all of which very closely approximated each other in value. (See Table A). b Average of two tests only, totals therefore are not necessarily exact. (See Table A). c As the normal refuse recovered during first four days of trial was not available for chemical analysis after having been screened, the values reported for items 38(d) and (e) in the "efficiency" part of the trial. d Excepting trial No. DS-X5 (see Table A), the dumpings recovered at conclusion of the first four days of trial were not available for chemical analysis after having been screened, therefore, the values reported for items 38(d) and (e) in the "efficiency" part of the trial. e Therm = 100,000 B.T U. Due to the assumed analysis (see notes c and d), the values reported for items 29(e) are approximate only, for exact values see item 40(e). f Value for trial No. DS-X5 only, determined by continuously operated CO₂ recorder (see Table A), remaining values determined by hand-operated Orsat making one determination per hour from 9 a.m. to 11 p.m. to 9 a.m.) not made except for trials prefixed with letters DH for which one determination was made nightly on a composite sample g The ½- and ½-inch screens used for trials so marked g (sub-items (l), (m), and (n) of item 9) had square mesh openings.