CANADA DEPARTMENT OF MINES

HON. W. A. GORDON, MINISTER

CHARLES CAMSELL, DEPUTY MINISTER

MINES BRANCH JOHN MCLEISH, Director DIVISION OF FUELS AND FUEL TESTING B. F. HAANEL, Chief of Division

Gasoline Survey for 1934

H. McD. Chantler

BY

622.19 R 764

OTTAWA J. O. PATENAUDE, I.S.O. PRINTER TO THE KING'S MOST EXCELLENT MAJESTY 1935

Price, 10 cents.

No. 764

622.19 R769

CANADA

DEPARTMENT OF MINES

HON. W. A. GORDON, MINISTER

CHARLES CAMSELL, DEPUTY MINISTER

MINES BRANCH John McLeish, Director DIVISION OF FUELS AND FUEL TESTING B. F. HAANEL, Chief of Division

Gasoline Survey for 1934

ΒY

H. McD. Chantler

OTTAWA J. O. PATENAUDE, I.S.O. PRINTER TO THE KING'S MOST EXCELLENT MAJESTY 1985

Price, 10 cents.

No. 764

GASOLINE SURVEY FOR 1934

The Division of Fuels and Fuel Testing of the Mines Branch has made at the Fuel Research Laboratories, a continuous study of the gasoline sold in Canada in the past eleven years, and annual reports have been prepared from the results obtained. This report contains the results in detail of the analyses of 117 samples of gasoline from wholesale dealers and distributors in fifteen cities during July 1934. The hearty support and co-operation of the Department of Pensions and National Health in collecting the samples is gratefully acknowledged.

It was found that the average gasoline sold in Canada was of good quality, with a higher volatility than that sold during any previous year and that the variation in quality was less than in any previous year, when judged by the volatility. The knock rating of the average gasoline sold in 1934 was 66 octane number, as compared with the average knocking ratings of 65 octane number in 1933 and the estimated 62 octane number in 1932. According to their knock ratings, the samples may be divided into three groups. These groups in 1934 would have average octane numbers of 77, 68, and 56 respectively; corresponding groups in 1933 had average octane numbers of 76, 69, and 60. The average Reid vapour pressure of the samples in 1934 was 7.5 pounds per square inch. Less than five per cent of the gasoline samples contained more than 10 milligrams of gum per 100 millilitres. All but one of the gasolines gave a negative corrosion test with a copper strip. Seventy per cent of the gasoline samples were artificially coloured. The retail price and the provincial tax at the time each sample was taken are shown in Table I. It should be noted, however, that at this time a "price war" was stated to affect the prices in Ottawa and Toronto.

METHODS OF ANALYSIS USED

The distillation range was determined according to the American Society for Testing Materials method D86-30.¹ The specific gravity was obtained by the use of the chainomatic specific gravity balance at room temperature and the result calculated to 60°F. according to the National Standard Petroleum Oil Tables.² The degrees A.P.I. were obtained by converting the specific gravity according to the above tables. The knock ratings of the gasoline were expressed in octane numbers, and were determined at 345°F. and 900 r.p.m. in a Series 30B knock-testing engine³, manufactured by the Ethyl Gasoline Corporation. The Reid vapour pressure was determined according to the A.S.T.M. tentative method D323-32T. The gum content of all of the samples collected was determined according to the A.S.T.M. tentative method D381-34T. In addition the gum content of some of the samples was determined according to the A.S.T.M. proposed⁴ method B. The corrosion test was made according to the A.S.T.M. method

358—11

D130-30. The colour was determined according to the A.S.T.M. tentative method D156-23T, except when the samples were artificially coloured, when the apparent colour is reported.

RESULTS OF LABORATORY EXAMINATION

The results of the laboratory examination of the gasoline tested in 1934 are shown by cities in Table I, and the average analyses are summarized in Table II. The average results obtained by examination of samples for the twelve years 1923 to 1934 are shown in Table III, and Figure 1 shows graphically the ranges of average distillation temperatures for the same twelve years. Table IV shows the average analysis of the three groups of gasoline sold in Canada in July 1934. In order to determine the variation in quality of the gasoline, the average of the 10 per cent of samples having the highest index numbers and the average of the 10 per cent having the lowest index numbers were calculated for 1934, and the results are given in Tables V and VI. Table VII shows the difference between the average index numbers of the maximum and minimum 10 per cent of the samples collected in the twelve years 1923 to 1934. Table VIII gives a classification of the samples collected in 1934 arranged according to arbitrary octane number groups. Table IX shows the average knock rating of 50 brands of gasoline. Table X shows the average knock rating of the samples of 21 different brands of gasoline sold by eight oil companies in 1934, arranged according to groups. Table XI gives a classification of the samples taken in 1934 according to the results of the Reid vapour pressure determination. A classification of the samples collected in 1934 according to their gum content is shown in Table XII. A comparison of the gum content of some of the 1934 samples, when determined by two different methods is recorded in Table XIII. The percentage of artificially coloured gasolines in the past eight years is shown in Table XIV.

A general discussion of the significance of the laboratory tests, together with the relationship between these tests and the actual operation of the fuel in the engine will be found in the report on Gasoline Surveys for 1930 and 1931.⁵ Owing to the rapid advancement in design and construction of new motors, the average compression ratio⁶ of automobile motors has steadily increased in recent years. This has required a corresponding change in the knock rating of the motor fuels for these new automobiles. Knock rating has, therefore, become a significant factor in the marketing of motor fuels for these new automobiles, although volatility is still the primary requisite for all automobiles. In order to meet the requirements of all automobiles, the major oil companies, generally speaking, are now marketing three grades of motor fuels and these grades differ principally in knock ratings. These three grades are usually known in the oil industry as "Premium", "Regular" brand, and "Third Grade" gasoline. Corresponding approximately to these three grades, the gasoline samples collected in Canada in 1934 have been divided into three groups. It should be noted that these groups are arbitrary octane number groups selected by the Fuel Research Laboratories and defined as:-

Group I. Gasolines with octane numbers of 75 and above.

Group II. Gasolines with octane numbers between 74 and 65.

Group III. Gasolines with octane numbers of 64 and below.

VOLATILITY

It is interesting to compare the results of the laboratory analysis obtained in 1934 with those obtained in previous years. In Table III are given the average results of the samples collected in Canada in successive years from 1923 to 1934 inclusive. When judged by the distillation range which has been the ordinarily accepted standard, it will be observed that the gasoline sold in Canada in 1934 shows an average of good quality, with a higher volatility than that sold in the past eleven years. It should be noted that the average gasoline sold in Canada in 1933 and 1934 has shown a marked increase in volatility. When compared with the average volatility of the gasoline sold in 1933, increased volatility in 1934 is shown by approximately a 4°F. drop in the average temperature of the 10, 20, 50 and 70 per cent points in the distillation range, as shown graphically in Figure 1.

Table VII shows the difference between the average index numbers of the 10 per cent having maximum index numbers and the 10 per cent having minimum index numbers, of the samples collected in Canada in the twelve years 1923 to 1934. The difference between the two averages has been used previously for the purpose of comparison, as a measure of the variation in quality. It will be observed that the variation in quality during 1934 was less than in any previous year. This decrease in the difference of the average volatility in the higher and lower groups in the past four years indicates the growing tendency towards a more uniform grade of gasoline.

In 1934, the group having the higher volatility has an average volatility greater than the corresponding groups examined in 1931, 1932, and 1933. The group having the lower volatility has an average volatility greater than the corresponding groups examined in any previous year. This indicates that there is a tendency to market a more volatile grade of gasoline.

Table IV shows the average analysis of the three arbitrary octane number groups of gasoline sold in Canada in July 1934. It will be noted that these three groups have almost the same volatility. This indicates the tendency for all grades of gasoline to have the same volatility.

KNOCK RATINGS

In 1934, the knock ratings of the gasoline were determined in a knocktesting engine known as Series 30B, manufactured by the Ethyl Gasoline Corporation. The operating conditions³ were a speed of 900 r.p.m., a jacket temperature of 345°F., and a spark advance 15 degrees below top dead centre. The knock ratings were expressed in octane numbers.

The knock ratings expressed in octane numbers for individual samples are given in Table I. The highest knock rating was 78 octane number and the lowest was 41 octane number. The average knock rating of the 117 samples was 66 octane number. The average knock rating of the gasoline collected in 1933 was 65 octane number and the average knock rating in 1932 was estimated, from knock ratings determined at 212°F. and 600 r.p.m., to be 62 octane number. This indicates a gradual improvement in the knock rating of the average gasoline being sold in Canada.

358—2

Figure 1.

`. · .

According to knock ratings only, the 1934 samples may be divided into three groups as follows:—

Group I. Gasolines of high knock ratings with octane numbers of 75 and above.

Group II. Gasolines of medium knock ratings with octane numbers between 74 and 65.

Group III. Gasolines of low knock ratings with octane numbers of 64 and below.

According to the above three arbitrary octane number groups, selected by the Fuel Research Laboratories, the group in which each sample logically falls is noted in Table I. As shown in Table VIII, 15 samples, or $12 \cdot 8$ per cent of all the samples collected, were in Group I with an average octane number of 77; 66 samples, or $56 \cdot 4$ per cent, were in Group II, with an average octane number of 68; and 36 samples, or $30 \cdot 8$ per cent, were in Group III, with an average octane number of 56. The average octane number of corresponding groups of gasoline in 1933 was 76 for Group I, 69 for Group II, and 60 for Group III. Table IX shows the average knock ratings of 50 brands of gasoline.

In Table X is given the average knock rating of 21 different brands of gasoline sold by 8 oil companies in 1934 arranged according to groups. It will be observed that the brands of gasoline sold by these major oil companies fall logically in the groups defined above. These three groups are usually known in the oil industry as "Premium", "Regular" brand, and "Third Grade" gasoline. For the gasoline sold by these 8 companies, the average octane number for Group I ("Premium") is 77 octane number, for Group II ("Regular" brand) is 67 octane number, and for Group III ("Third Grade") is 58 octane number. The average octane number of corresponding groups of gasoline sold by the same companies in 1933 was 76 for Group I, 67 for Group II, and 59 for Group III. It will be noted that the average octane number of these three groups has been fairly uniformly maintained in the past two years.

Tetra-ethyl lead was blended with the majority of the gasoline samples in Group I and Group II, in order to increase their knock ratings; benzol was added for a similar purpose to one sample in Group I, one sample in Group II, and two samples in Group III.

Gasolines burn more smoothly the higher the octane number. Knock ratings, determined by the Series 30B engine at 345°F. and 900 r.p.m., are in fair agreement with grading of fuels by automobiles.³ The petroleum industry in Canada and the United States now generally uses an engine and method⁷ developed by the Co-operative Fuel Research Committee and usually denoted by the initials C.F.R.

VAPOUR PRESSURE

The average Reid vapour pressure of the gasoline samples collected in Canada during 1934 was 7.5 pounds per square inch. This is an increase of 0.6 pound per square inch in average vapour pressure from that observed for samples collected in 1933. The average Reid vapour pressure of the gasoline samples in 1932 was 7.4 pounds per square inch, in 1933 was 6.9

358---2]

and in 1934 was 7.5 pounds per square inch. A classification of the 1934 samples according to the results of the Reid vapour pressure determination is shown in Table XI. This table shows that 7.7 per cent of the samples had Reid vapour pressures of 6 pounds or less per square inch, $65 \cdot 0$ per cent had between 8 and $6 \cdot 1$ pounds, $26 \cdot 4$ per cent had between 10 and $8 \cdot 1$ pounds, and only 0.9 per cent had over 10 pounds per square inch. The average Reid vapour pressure of the three grades of gasoline in Canada in July 1934 was 7.6 pounds per square inch for Group I, 7.5 pounds for Group II, and 7.4 pounds for Group III, as shown in Table IV. The Reid vapour pressure is used to indicate the temperatures at which vapour lock may occur. Vapour lock⁸ does not occur in all engines under similar conditions with fuels of the same vapour pressure, and on that account, in the writer's opinion, the Reid vapour pressure should not exceed 10 pounds per square inch. It is to be noted that only one of the 117 samples collected in 1934 had a Reid vapour pressure over 10 pounds per square inch.

GUM

The gum content of motor fuels is determined by evaporating a quantity of the gasoline under an air jet. Two methods were used to determine the gum content of the samples of gasoline collected in 1934. A.S.T.M. tentative method D381-34T determines the gum content by evaporating a known volume of the sample in a glass beaker under a hot air jet at 320°F. and weighing the residue. The result is expressed in milligrams per 100 millilitres. A.S.T.M. proposed method B differs from A.S.T.M. tentative method D381-34T only in that the evaporation is made at 374°F. instead of 320°F. The gum content was first determined on all samples at 320°F. and only those samples that were "oily" and had 10 milligrams or more of gum at 320°F. were, also, tested at 374°F. The determinations were made in duplicate and the average reported to the nearest five milligrams. Those samples that averaged less than 2 milligrams were reported as "nil", since that amount is considered to be negligible. The results shown in Table I are those obtained by the method, which, in the writer's opinion, gave the most accurate result for any particular sample. The results are indicative of the amount of gum that may be deposited, if the fuel is used immediately.

As shown in Table XII, the gum content of 64 samples or 54.7 per cent of the 117 samples was less than 2 milligrams per 100 millilitres and has, therefore, been reported as "nil", 53 samples, or 45.3 per cent of the total number collected, were found to contain an appreciable amount of gum. Of these, 40 samples, or 34 per cent of all samples, had 5 milligrams of gum, 8 samples, or 6.8 per cent, had 10 milligrams, 1 sample had 15; and 4 samples had residues of 20, 40, 60 and 110 milligrams respectively, and were reported as "oily" to indicate that the residues had the appearance of lubricating oil and did not dry to a hard varnish-like or gummy coating, as is usually the case. These four samples appeared to contain lubricating oil, which could not be separated from the gum by either method.

Table XIII shows the gum content, as determined by two methods, of sixteen of the 117 samples collected in 1934. It will be observed that all of these samples were "oily" after evaporation at 320°F. and that only 6 of the 16 samples remained "oily" after evaporation at 374°F. This indicates

that the oil may be separated from the gum in some samples by evaporation at a higher temperature. In the writer's opinion, 14 samples, or 12 per cent of all the samples collected in 1934 contained lubricating oil, presumably added as a "top lubricant".

The limit of tolerance for multi-cylinder engines has been stated⁴ to be not over 10 milligrams per 100 millilitres. The above results show that only 4.5 per cent of the samples tested in 1934 had a gum content above this limit of 10 milligrams.

١

CORROSION

The corrosion test for motor fuels is made by immersing a strip of polished copper for three hours in a sample of the gasoline heated to 122°F., according to A.S.T.M. method D130-30, and observing the tarnishing or corrosion that takes place. The copper strip should not show more than a "slight discoloration". The test is intended to show the possible corrosive effect of the gasoline on the metal in the fuel and induction systems of internal combustion engines. As shown in Table I all but one of the 117 samples collected in 1934 gave a negative test for corrosion, which indicates that little fear of corrosion need be felt with these gasolines at atmospheric temperatures.

The acidity of the gasoline was, also, tested, according to the U.S. Bureau of Mines method $510 \cdot 2^9$. This test involves extracting the distillation residue with water and testing the extract for acidity with an indicator. All of the gasoline samples collected in 1934 gave a negative test for acidity. This indicates that the gasolines had been properly treated at the refinery to remove free acid, such as sulphuric acid, before being released to the consumer.

The doctor test was also made on all the 1934 gasoline samples, according to the U.S. Bureau of Mines method $520 \cdot 3^9$. Gasolines are reported as "negative" or "sweet" when they pass the doctor test and "positive" or "sour" when they fail to pass. The test is essentially a very sensitive chemical test for such sulphur compounds as hydrogen sulphide and mercaptans. The test is primarily a refiner's test and probably the main reason ¹⁰ that gasolines are rendered negative to the doctor test is to improve their odour. Of the 117 samples of gasoline collected in 1934, only nine samples—namely, laboratory numbers 20, 23, 27, 56, 57, 84, 94, 95 and 96,—were positive or failed to pass the doctor test. However, in the writer's opinion, only four of the samples that failed to pass the doctor test had a very bad odour.

However, the tendency of a motor fuel to be corrosive is, in the writer's . opinion, indicated more definitely by the copper strip corrosion test than by the acidity or doctor tests, and for this reason the results of the acidity and doctor tests are not shown in Table I.

COLOUR

Many gasolines on the market have small quantities of various dyes dissolved in them, in order to make them more attractive, to distinguish readily between different brands or groups, or to indicate the presence of tetra-ethyl lead, so that the gasoline shall not be used for any other purpose than as a motor fuel. Since 1927, there has been an increasing tendency to dye the motor fuels being put on the market. As indicated in Table XIV, according to the samples examined in the annual survey, the percentage of artificially coloured gasoline sold in Canada has increased in eight years from 10 per cent in 1927 to 70 per cent in 1934. The apparent colour of the samples containing dye is reported in Table I. As shown in Table IV, of the samples collected in 1934, 100 per cent of the Group I and 89 per cent of the Group II gasolines were coloured, and only 22 per cent of the Group III gasolines were coloured. This indicates that the oil companies and distributors are colouring their motor fuels in order to distinguish between their different brands or grades. But it should be noted that the addition of a dye has no effect on the quality of the motor fuel, nor has it any effect on the operation of the engine. Deposits in the carburetor and engine parts are frequently coloured with the dye from the motor fuel; but these deposits cannot be properly attributed to the dye itself. It is very difficult to draw any clear cut distinctions between dyed motor fuels on the basis of their colour. The artificial or natural colour of a motor fuel cannot be used, at the present time, as a definite indication of quality.

GRAVITY

The specific gravity and the gravity in degress A.P.I. is shown in Table I. Gravity has been used in the petroleum industry for many years as an easy and convenient method of refinery control, but it should not be used as an indicator of quality, and it is only of value, when used in conjunction with the distillation range, to indicate the probable source of the fuel or the treatment it has received. It is reported here for comparison with the gravity obtained in previous surveys and for the information it may give. As indicated by the results of these surveys, the specific gravity of the gasoline sold in summer usually varies from about 0.720 to 0.755, with a corresponding variation in degrees A.P.I. from about 65 to 56. When motor fuels contain an appreciable amount of benzol the specific gravity may be as heavy or heavier than 0.790, equivalent to about 47 degrees A.P.I.

PRICE

The samples were collected during the first week of July, 1934 and the retail price and the provincial tax at the time each sample was taken is shown in Table I. Except in Ottawa, usually only one brand or "group" of gasoline was collected in a city from an individual company or distributor, and therefore a comparison of the price of different brands or groups of gasoline sold by an individual company cannot be made for Canada. In Ottawa all the brands or groups of gasoline sold by an individual company were collected. Generally speaking, in Ottawa, the retail price of the "Premium" or Group I gasoline was two cents higher than the retail price of the "Regular" brand or Group III gasoline, and the retail price of the "Third Grade" brand or Group III gasoline was one to two cents lower than the

retail price of the "Regular" brand gasoline. As shown in Table I, in Canada in July 1934, the highest retail price excluding tax was 28 cents and the lowest retail price was 13 cents per gallon, but it should be noted that at this time a price war was stated to affect the price in Toronto and Ottawa. The provincial tax varied from 6 to 8 cents per gallon depending on the province in which the gasoline was purchased.

SUMMARY AND CONCLUSIONS

In July 1934, 117 samples of gasoline were collected from fifteen different cities. As these cities are widely separated and are distribution centres throughout the country, the samples taken may be accepted as representative of the gasoline sold in Canada at that time. The samples consisted of 50 different brands of motor fuel sold by 32 wholesalers or distributors.

The analysis of the samples has shown that the average gasoline sold during 1934 was of good quality. The average gasoline in 1934 was more volatile than the average gasoline sold in any previous year.

The variation in quality of the average gasoline in 1934 was less than in any preceding year. This indicates a growing tendency towards a more uniform and more volatile grade of gasoline.

In 1934, as in 1933, the knock ratings of the gasoline were determined in a Series 30B engine at 900 r.p.m. and 345° F., as this method gives knock ratings which are in fair agreement with the actual ratings of gasoline in automobiles. The knock rating of the average gasoline collected in 1934 was 66 octane number. When compared on the same basis of test procedure, the knock rating of the average gasoline in 1932 was estimated to be 62 octane number and in 1933 was 65 octane number. This indicates a gradual improvement in the knock rating of the average gasoline being sold in Canada.

A table is included which shows the average knock ratings of fifty differerent brands of gasoline. There are three groups of gasoline being sold in Canada, according to the analysis of the 1934 gasoline samples. These groups differ principally in knock ratings, as the average volatility of all groups is practically the same. These groups of gasoline are usually known as "Premium" or Group I, "Regular" brand or Group II, and "Third Grade" or Group III. In 1934, the average knock rating of Group I gasoline was 77 octane number, of Group II was 68 octane number, and of Group III gasoline was 56 octane number. The average octane number of corresponding groups of gasoline in 1933 was 76 for Group I, 69 for Group II, and 60 for Group III.

Tetra-ethyl lead was blended with the majority of the 1934 gasoline samples in Groups I and II, and benzol was added to 4 samples in order to increase their knock ratings. The average Reid vapour pressure of the 1934 gasoline samples was 7.5 pounds per square inch, an increase of 0.6 pound from the average Reid vapour pressure of the 1933 gasoline samples. All but one of the samples collected in 1934 had Reid vapour pressures less than 10 pounds.

Less than five per cent of the 1934 samples contained more than 10 milligrams of gum per 100 millilitres, which is considered the usual limit of tolerance for gum in gasoline for use in automobiles. Twelve per cent of the gasoline samples contained lubricating oil, presumably added as a "top lubricant".

All but one of the 1934 gasoline samples gave a negative test for corrosion with a copper strip.

All of the clear, or "white" gasoline samples had a Saybolt colour number lighter than +19. Seventy per cent of the 1934 gasoline samples were artificially coloured.

The retail price and tax during the first week in July 1934 is shown for each sample of gasoline. The highest retail price shown is 28 cents per Imperial gallon and the lowest retail price shown is 13 cents per Imperial gallon. The provincial tax varies from 6 to 8 cents per gallon depending on the province in which the gasoline is sold. In the city of Ottawa, generally speaking, the retail price of the "Premium" gasoline was two cents higher, and the retail price of the "Third Grade" gasoline was one to two cents lower than the retail price of the "Regular" brand gasoline.

REFERENCES

- 1. Report of Committee D-2 on Petroleum Products and Lubricants and Methods of Test relating to Petroleum Products, 1932. Reprint, American Society for Testing Materials.
- 2. National Standard Petroleum Oil Tables. Circular No. 154, United States Bureau of Standards.
- 3. Instructions Concerning the Operation of the Series 30 Ethyl Knock Testing Engine at 900 r.p.m. and 345°F. Jacket Temperature. Ethyl Knock Testing Bulletin No. 7 (Jan. 1, 1933), Ethyl Gasoline Corporation, Detroit, Michigan.
- 4. Report of Section on Gum in Gasoline—Proceedings of the American Society for Testing Materials, vol. 32, 1932, pp. 407-414.
- 5. Gasoline Surveys for 1930 and 1931. H. McD. Chantler, Invest. of Fuels and Fuel Test., Mines Branch, Department of Mines, Canada, Rept. No. 725, pp. 149-162.
- 6. Relation of Fuel Octane Number to Compression Ratio. C. D. Hawley and Earl Bartholomew, National Petroleum News, vol. XXVI, No. 21 (May 23, 1934), pp. 20F-20J.
- Tentative Method of Test for Knock Characteristics, A.S.T.M. Designation D357-34T—A.S.T.M. Tentative Standards 1934, pp. 611-619.
- 8. Two Rules Govern Vapour Lock Problem. O. C. Bridgeman, H. S. White and F. B. Gary, Oil and Gas Journal, vol. 30, No. 27 (Nov. 19, 1931), pp. 22 and 101.
- 9. United States Government Master Specification for Lubricants and Liquid Fuels. Technical Paper 323B, United States Bureau of Mines.
- 10. The Significance of Tests of Petroleum Products—Proceedings of the American Society for Testing Materials, vol. 28, 1928, pp. 479-520.

							Gas	oline	Sur	vey A	naly	ses for	1934 t	y Citi	es						
Sample No.	Price, c per gal Gasoline	lon	Group*	Octane number at 345 °F. and 900 r.p.m.	1st drop °F.	10% °F.	Distil 20% °F.	1ation 50% °F.	Range 70% °F.	90% °F.	End point °F.	Recov- ery	Resi- due	Dis- tilla- tion loss	Index No. °F.	Specific gravity	De- grees A.P.I.	Vapour pressure	Gum milli- grams per 100 milli- litres	Corrosion test	Colour Saybolt
	l	Į	Į	[——	[[——-) Н		LX, N.S	•		[[I	·[[[
1 2 3 4 5 Average, .	24 22 23 22 22 22	8 8 8 8 8 8	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ \dots \end{array} $	77 70 77 71 68	105 105 105 104 104 105	151 150 149 146 151 149	177 177 176 178 175 175	250 246 246 249 242 242 242	288 286 288 285 285 280 285	350 346 346 348 342 342 346	398 398 404 404 381 397	97.5 98.0 98.0 97.5 98.0 97.8	$ \begin{array}{r} 1 \cdot 4 \\ 1 \cdot 2 \\ $	1.1 0.9 0.8 1.3 0.8 1.0	1614 1603 1609 1610 1571 1601	0.738 0.737 0.737 0.736 0.739 0.739	$60.2 \\ 60.5 \\ 60.5 \\ 60.8 \\ 60.0 \\ 60.5 \\ 60.5 \\ 60.5 \\ $	6-8 7-4 7-0 7-4 7-9 7-3	5 5 5 5 5 5 5 5	No No No No No	Red Green Red Blue Blue
<i></i>	1 <u> </u>	<u>.</u>	,	ı		·			·	SA	INT J	OHN, N	г.В.		<u>,</u>	·				·	·
6 7 8 9 10 Average	22 22 22 22 22 22	8 8 8 8 8	3 2 2 2 2 2	60 70 71 67 67	110 100 100 104 105 104	157 144 147 154 147 150	181 173 173 184 171 176	252 256 250 256 249 253	291 300 288 298 296 295	346 361 348 351 351 351	401 408 399 405 392 401	98-0 97-5 97-0 97-5 98-0 97-6	$1 \cdot 2 \\ 1 \cdot 3 \\ 1 \cdot 2 \\ 1 \cdot $	0.8 1.2 1.8 1.3 0.8 1.2	1628 1642 1605 1648 1606 1626	0-737 0-740 0-734 0-743 0-738 0-738	60.5 59.7 61.3 58.9 60-2 60-2	5.8 7.6 8.0 7.4 6.9 7.1	Nil 60 Nil 5 Nil	No No No No No	+27 Green Blue Yellow Blue
										Q	UEBE	C, QUE	•								
11 12 13 14 15 16 Average	23 23 21 25 23 23 22	6 6 6 6 6	$2 \\ 3 \\ 2 \\ 1 \\ 2 \\ 2 \\$	66 60 71 76 70 66	107 106 106 104 102 100 104	160 164 153 147 148 138 152	186 196 178 173 178 158 158 178	258 264 248 247 251 222 248	296 303 290 291 291 267 290	346 358 352 356 350 334 349	387 407 405 414 403 383 400	98.0 98.0 98.0 97.0 98.0 97.0 97.7	1.2 1.3 1.4 1.3 1.2 1.0 1.2	0-8 0-7 0-6 1-7 0-8 2-0 1-1	1633 1692 1626 1628 1621 1502 1617	0.744 0.747 0.745 0.735 0.738 0.738 0.728	58.7 57-9 58.4 61-0 60-2 62-9 59-7	5-8 5-3 7-2 7-1 7-3 7-9 6-8	5 Nil Nil 5 Nil Nil Nil	No No No No No	Green +28 Purple Red Green +30

*Group used as above and at other places in this report means an arbitrary octane number group, selected by the Fuel Research Laboratories, and may be defined as follows: Group I (1) octane number 75 and above; Group II (2), octane number 74 to 65; and Group III (3), octane number 64 and below.

11

TABLE I

Sample No.	Price, c per gal Gasoline	lon	Group*	Octane number at 345 °F. and 900 r.p.m.	lst drop °F.	10% °F.	Distil 20% °F.	1ation 1 50% ° F.	Range 70% °F.	90% °F.	End point °F.	Recov- ery	Resi- due	Dis- tilla- tion loss	Index No. °F.	Specific gravity	De- grees A.P.I.	Vapour pressure	Gum milli- grams per 100 milli- litres	Corrosion test	Colour Saybolt
	[.[I	[]		[(M	ONTE	REAL, Q	UE.			•			·	• •	
17 18 19 20 21 22 23 24 25 26 Average	20 18 20 18 23 21 21 21 21 23 21 	6 6 6 6 6 6 6 6		75 65 77 70 76 68 70 69 77 69	98 94 122 100 101 100 104 98 97 100 101	144 148 169 152 150 148 153 147 146 148 150	172 176 184 187 179 178 180 175 177 180 179	242 250 216 259 255 254 262 252 251 257 250	287 294 256 297 300 296 303 293 293 292 298 291	344 349 335 353 360 355 355 347 349 354 350	374 374 400 405 412 406 395 383 411 408 397	97.0 96.0 97.0 97.0 97.0 97.0 97.0 97.0 97.5 97.0 97.2	$ \begin{array}{r} 1 \cdot 2 \cdot \\ 1 \cdot 2 \\ $	1.8 2.8 0.8 1.8 1.7 1.8 1.0 1.8 1.2 1.2 1.8 1.2 1.8 1.2 1.8 1.2 1.8 1.2 1.8 1.2 1.8	$\begin{array}{c} 1563\\ 1591\\ 1560\\ 1653\\ 1656\\ 1637\\ 1645\\ 1597\\ 1626\\ 1645\\ 1617\\ \end{array}$	0.730 0.732 0.791 0.741 0.740 0.738 0.738 0.738 0.738 0.738 0.739 0.739	$\begin{array}{c} 62 \cdot 3 \\ 61 \cdot 8 \\ 47 \cdot 4 \\ 59 \cdot 5 \\ 59 \cdot 7 \\ 60 \cdot 2 \\ 57 \cdot 7 \\ 60 \cdot 2 \\ 60 \cdot 2 \\ 60 \cdot 2 \\ 60 \cdot 0 \\ 58 \cdot 7 \end{array}$	9-3 9-4 9-9 7-2 6-3 7-3 7-3 7-5 7-6 7-5	Nil 5 5 Nil 10 5 Nil 5 10 5	No No No No No No No	Red Green Pink Purple Red Green Blue Blue Red Green
										0'	TTAW	A, ONT	•								·
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	$14\frac{1}{2}$ $14\frac{1}{2}$ 19 17 17 15 15 15 15 15 15 15 15	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	332331231231231232123212	$\begin{array}{c} 63\\ 63\\ 72\\ 61\\ 56\\ 55\\ 57\\ 76\\ 69\\ 58\\ 77\\ 69\\ 64\\ 77\\ 69\\ 63\\ 67\\ 78\\ 66\\ 66\end{array}$	103 101 119 98 96 99 98 98 98 98 98 95 99 90 100 100 100 100 100 97	$\begin{array}{c} 155\\ 152\\ 162\\ 149\\ 149\\ 144\\ 145\\ 150\\ 141\\ 152\\ 137\\ 147\\ 148\\ 150\\ 154\\ 152\\ 147\\ 144\end{array}$	$\begin{array}{c} 182\\ 182\\ 173\\ 172\\ 180\\ 171\\ 164\\ 177\\ 167\\ 177\\ 164\\ 177\\ 164\\ 177\\ 164\\ 177\\ 181\\ 178\\ 179\\ 185\\ 178\\ 178\\ 173\\ \end{array}$	255 254 191 229 253 242 250 245 251 253 244 254 254 254 252 252 252 252 252 252	295 293 226 282 299 286 290 303 295 291 291 295 293 291 295 293 305 304 296	$\begin{array}{r} 345\\ 345\\ 342\\ 341\\ 373\\ 344\\ 348\\ 346\\ 352\\ 353\\ 355\\ 355\\ 355\\ 355\\ 355\\ 355$	$\begin{array}{c} 388\\ 387\\ 384\\ 375\\ 419\\ 377\\ 374\\ 412\\ 401\\ 375\\ 411\\ 403\\ 411\\ 405\\ 411\\ 405\\ 395\\ 389\\ 377\\ \end{array}$	97.0 97.5 98.0 97.0 97.0 97.5 97.5 97.5 97.5 97.5 98.0 98.0 98.0 98.0 98.5	$\begin{array}{c} 1 \cdot 2 \\ 1 \cdot 1 \\ 1 \cdot 0 \\ 1 \cdot 3 \\ 1 \cdot 2 \\ 1 \cdot 4 \\ 1 \cdot 1 \\ 1 \cdot 1 \\ 1 \cdot 1 \end{array}$	$\begin{array}{c} 1 \cdot 8 \\ 1 \cdot 4 \\ 0 \cdot 9 \\ 2 \cdot 9 \\ 1 \cdot 9 \\ 2 \cdot 5 \\ 1 \cdot 7 \\ 1 \cdot 9 \\ 1 \cdot 6 \\ 2 \cdot 3 \\ 1 \cdot 5 \\ 0 \cdot 6 \\ 0 \cdot 8 \\ 0 \cdot 9 \\ 1 \cdot 4 \\ 2 \cdot 4 \end{array}$	$\begin{array}{c} 1620\\ 1613\\ 1463\\ 1548\\ 1673\\ 1561\\ 1580\\ 1582\\ 1638\\ 1631\\ 1580\\ 1632\\ 1636\\ 1628\\ 1643\\ 1659\\ 1635\\ 1590 \end{array}$	$\begin{array}{c} 0.738\\ 0.738\\ 0.738\\ 0.736\\ 0.736\\ 0.736\\ 0.736\\ 0.738\\ 0.738\\ 0.738\\ 0.738\\ 0.738\\ 0.738\\ 0.739\\ 0.744\\ 0.744\\ 0.744\\ 0.749\\ 0.734\\ \end{array}$	$ \begin{array}{c} 60 \cdot 2 \\ 60 \cdot 2 \\ 47 \cdot 8 \\ 58 \cdot 7 \\ 60 \cdot 8 \\ 61 \cdot 0 \\ 60 \cdot 8 \\ 61 \cdot 0 \\ 60 \cdot 2 \\ 61 \cdot 8 \\ 60 \cdot 2 \\ 61 \cdot 8 \\ 60 \cdot 5 \\ 9 \cdot 2 \\ 61 \cdot 8 \\ 60 \cdot 5 \\ 9 \cdot 2 \\ 60 \cdot 0 \\ 59 \cdot 7 \\ 56 \cdot 9 \\ 57 \cdot 4 \\ 61 \cdot 3 \\ 61 \cdot 3$	7 45 557 880 98566 88666 97-2 894667 70-2 77-7 77-7 8-7	Nil Nil Nil Nil Nil Nil Nil Nil Nil Nil	00000000000000000000000000000000000000	+20 Blue Pink Green +30 Red Green +30 Red Green +27 Red Green +27 Red Blue Blue

TABLE I-Continued Gasoline Survey Analyses for 1934 by Cities-Continued

12

-

TABLE I-Continued

Gasoline Survey Analyses for 1934 by Cities-Continued

Sample No.	Price, cents per gallon Gasoline Ta	Group*	Octane number at 345 °F. and 900 r.p.m.	1st drop °F.	10% °F.	Distill 20% °F.	50% F.	Range 70% °F.	90% °F.	End point °F.	Recov- ery	Resi- due	Dis- tilla- tion loss	Index No. °F.	Specific gravity	De- grees A.P.I.	Vapour pressure	Gum milli- grams per 100 milli- litres	Corrosion test	Colour Saybolt
	[[1				,	0.	TTAW.	A, ON	TCond	luded								
47 48 49 50 51 52 53 Average	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} 1\\2\\2\\1\\2\\2\end{array}$	58 77 66 67 76 69 62	100 103 97 101 102 98 104 100	147 150 134 150 146 147 164 149	174 172 154 178 176 174 194 176	245 240 253 248 254 254 259 247	289 282 265 296 288 294 298 298 290	347 340 327 349 349 351 357 349	376 397 379 388 394 406 412 393	97.0 98.0 97.5 97.5 97.5 97.5 97.5 97.3	$ \begin{array}{c} 1 \cdot 0 \\ 1 \cdot 2 \\ 1 \cdot 1 \\ 1 \cdot 2 \\ 1 \cdot 4 \\ 1 \cdot 2 \\ 1 \cdot 2 \\ 1 \cdot 2 \\ 1 \cdot 2 \\ 1 \cdot 1 \end{array} $	$2.0 \\ 0.8 \\ 0.9 \\ 1.3 \\ 2.1 \\ 1.3 \\ 1.3 \\ 1.6 \\ 1.6$	$1578 \\ 1581 \\ 1479 \\ 1614 \\ 1601 \\ 1626 \\ 1684 \\ 1604$	0-733 0-742 0-728 0-741 0-739 0-738 0-738 0-736 0-740	$\begin{array}{c} 61.5\\ 59.2\\ 62.9\\ 59.5\\ 60.0\\ 60.2\\ 60.8\\ 59.7\end{array}$	7.9 7.1 7.8 7.6 7.7 8.0 6.1 7.6	5 15 Nil 5 10 Nil Nil Nil	No No No No No No	+30 Red +30 Blue Red Green +30
						•			TO	RONI	ro, on	`.								
54 55 56 57 58 59 60 61 62 63 Average.	181 181		65 66 69 42 69 69 69 66 67 70 42	104 99 104 96 99 105 98 100 102 94	$148 \\ 147 \\ 156 \\ 127 \\ 146 \\ 154 \\ 134 \\ 146 \\ 149 \\ 132 \\ 144$	$174 \\ 173 \\ 186 \\ 152 \\ 174 \\ 188 \\ 155 \\ 177 \\ 178 \\ 158 \\ 158 \\ 172 $	246 245 254 266 251 263 226 252 252 252 270 252	290 290 292 335 288 305 275 293 290 340 300	344 344 342 407 343 362 340 347 339 419 359	376 375 386 449 385 404 386 388 388 383 450 398	97.0 98.0 97.5 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0	$ \begin{array}{c} 1 \cdot 1 \\ 0 \cdot 9 \\ 1 \cdot 1 \\ 1 \cdot 5 \\ 1 \cdot 1 \\ 1 \cdot 3 \\ 1 \cdot 1 \\ 1 \cdot 2 \\ 1 \cdot 2 \\ 2 \cdot 4 \\ 1 \cdot 3 \\ 1 \cdot 3 \\ \end{array} $	$1.9 \\ 1.1 \\ 1.4 \\ 1.5 \\ 1.9 \\ 0.7 \\ 1.4 \\ 0.8 \\ 1.8 \\ 1.6 \\ 1.4$	$\begin{array}{c} 1578\\ 1574\\ 1616\\ 1736\\ 1587\\ 1676\\ 1516\\ 1603\\ 1591\\ 1769\\ 1625\\ \end{array}$	0.732 0.732 0.738 0.723 0.734 0.748 0.730 0.740 0.740 0.734 0.728 0.734	$ \begin{array}{c c} 61 \cdot 8 \\ 61 \cdot 8 \\ 60 \cdot 2 \\ 64 \cdot 2 \\ 61 \cdot 3 \\ 57 \cdot 7 \\ 62 \cdot 3 \\ 59 \cdot 7 \\ 61 \cdot 3 \\ 62 \cdot 9 \\ 61 \cdot 3 \end{array} $	7.8 8.1 6.6 10.0 7.9 6.2 8.7 8.1 8.2 9.3 8.1	Nil 5 Nil 10 5 5 5 Nil 5	N0000 NNN0000 NNNN000 NNNNN NNNNNNN	Green Green +20 Green Blue +30 Blue Green +27
	~								HA	MILT	ON, ON	г.								
64 65 66 67 68 69 70 71 72 73 Average.	175 185 205 185 185 185 185 185 185 185	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	66 62 69 77 70 65 57 66 68 68 68	98 112 95 96 98 98 99 100 106 106 106	$143 \\ 153 \\ 149 \\ 138 \\ 144 \\ 148 \\ 150 \\ 140 \\ 148 \\ 149 \\ 149 \\ 146 $	$170 \\ 168 \\ 178 \\ 164 \\ 175 \\ 176 \\ 176 \\ 162 \\ 174 \\ 178 \\ 172 \\ 172 \\ 172 \\ 172 \\ 172 \\ 172 \\ 172 \\ 170 $	246 200 250 259 250 251 247 226 254 226 254 248 248 241	291 254 288 276 289 296 289 274 296 289 289 284	344 339 337 332 338 349 344 336 352 336 341	375 376 369 381 368 378 378 378 393 369 369 376	97.5 98.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97	$ \begin{array}{c} 1 \cdot 0 \\ 1 \cdot 0 \\ 2 \cdot 0 \\ 1 \cdot 1 \\ 1 \cdot 1 \\ 1 \cdot 1 \\ 1 \cdot 2 \\ \end{array} $	$ \begin{array}{c} 1 \cdot 5 \\ 1 \cdot 0 \\ 1 \cdot 8 \\ 1 \cdot 0 \\ 2 \cdot 0 \\ 1 \cdot 9 \\ 2 \cdot 0 \\ 1 \cdot 9 \\ 2 \cdot 0 \\ 1 \cdot 5 \\ \end{array} $	1569 1490 1571 1530 1564 1598 1579 1516 1617 1569 1560	0.735 0.768 0.733 0.725 0.731 0.735 0.732 0.731 0.742 0.731 0.736	61.0 52.7 61.5 63.7 62.1 61.0 61.8 62.1 59.2 62.1 60.8	8-4 7-0 8-3 8-5 8-5 8-5 8-5 8-5 7-4 7-7 7-8 0	Nil 5 110 Nil Nil Nil Nil Nil Nil	N0000000000000000000000000000000000000	Green Green Red Green Hue H30 H30 Blue Blue

						Ga	solin	e Su	rvey .	Analy	ses I	OF 1934	i by Ca	ities—	Contin	uea			~		
Sample No.	Price, c per gal Gasoline	ents lon Tax	Group*	Octane number at 345 °F. and 900 r.p.m.	1st drop °F.	10% °F.	Distil 20% °F.	50% F.	Range 70% °F.	90% °F.	End point °F.	Recov- ery	Resi- due	Dis- tilla- tion loss	Index No. °F.	Specific gravity	De- grees A.P.I.	Vapour pressure	Gum milli- grams per 100 milli- litres	Corrosion	Colour Saybolt
	[1ł				[LO	NDO	N, ONT	•				I	.[]			
74 75 76 77 78 79 80 81 Average	205 205 205 205 18 205 18 205 205 205	6 6 6 6 6 6	2 3 2 2 3 3 2 2 2	65 52 69 55 63 68 69	106 106 96 100 112 101 105 98 103	149 162 148 149 161 151 145 145 148 152	174 188 179 182 187 173 173 175 178 179	250 248 255 252 256 239 250 250 250	295 288 293 289 300 280 296 286 291	347 343 355 338 358 337 351 334 345	375 398 419 370 397 380 390 367 387	97.5 98.0 97.0 97.5 98.0 97.0 97.0 98.0 97.5	$ \begin{array}{c} 1 \cdot 2 \\ 1 \cdot 2 \\ 1 \cdot 2 \\ 1 \cdot 2 \\ 1 \cdot 3 \\ 1 \cdot 4 \\ 1 \cdot 1 \\ 1 \cdot 3 \\ 1 \cdot 1 \\ 1 \cdot 3 \\ \end{array} $	1.3 0.8 1.2 1.2 0.6 1.8 1.6 0.9 1.2	1590 1627 1649 1580 1659 1560 1607 1563 1604	0.735 0.733 0.735 0.734 0.740 0.740 0.740 0.742 0.733 0.733	$\begin{array}{c} 61.0\\ 61.5\\ 61.0\\ 59.7\\ 59.7\\ 59.2\\ 61.5\\ 60.5\end{array}$	8.9 5.7 8.6 6.4 7.5 7.7 7.7 7.5	Nil Nil 40 Nil Nil 5 5	No No No No No No	Green +27 Green Green +30 Blue Green
<u> </u>										FORT	WIL	LIAM, C	NT.								
82 83 84 85 86 Average.	24 24 24 24 24 24 24	6 6 6 6	3 3 2 2 3	57 57 65 66 63	105 95 94 104 100 100	150 146 137 158 150 148	177 175 171 187 178 178	244 242 246 262 253 249	288 284 286 306 299 293	344 343 338 353 350 346	377 379 368 392 381 379	97.0 97.5 97.0 98.0 97.0 97.3	1.0 1.0 1.1 1.1 1.1 1.1	$2.0 \\ 1.5 \\ 1.9 \\ 0.9 \\ 1.9 \\ 1.6 $	1580 1569 1546 1658 1611 1593	0-734 0-731 0-729 0-747 0-736 0-735	$ \begin{array}{c} 61.3\\ 62.1\\ 62.6\\ 57.9\\ 60.8\\ 61.0 \end{array} $	7-9 8-5 9-6 6-2 8-1 8-1	Nil Nil Nil 5 10	No No No No No	++30 ++29 Green Blue Green
			AR	_						WIN	INIPI	EG, MAI	N.								
87 88 89 90 91 92 Average	21 25 21 21 21 21 21 26	7 7 7 7 7 7	3 3 3 3 3 3 3 3	58 59 55 48 52	96 96 102 110 102 104 104	154 144 146 163 140 148 149	180 174 171 188 163 169 174	244 243 240 250 252 236 244	287 287 284 290 309 280 290	343 344 340 341 384 338 338 348	378 378 399 386 422 384 391	98.0 97.0 98.0 98.0 97.5 98.0 97.8	$ \begin{array}{c} 1 \cdot 0 \\ 1 \cdot 2 \\ 1 \cdot 1 \\ 1 \cdot 2 \\ 1 \cdot 2 \\ 1 \cdot 2 \\ 1 \cdot 0 \\ 1 \cdot 1 \end{array} $	1.0 1.8 0.9 0.8 1.3 1.0 1.1	1586 1570 1580 1618 1670 1555 1596	0.732 0.731 0.731 0.739 0.729 0.725 0.731	$\begin{array}{c c} 61.8\\ 62.1\\ 62.1\\ 60.0\\ 62.6\\ 63.7\\ 62.1\\ 62.1\\ \end{array}$	8-1 8-4 7-4 5-9 7-3 6-8 7-3	Nil Nil 10 5 5 5 5	No No No No No No	+30 +30 +22 +28 +30 +26
											GIN	1, SASE									
93 94 95 96 97 Average	26 23 25 26 23	6 6 6 6	2 3 2 3	70 51 41 67 54	$\begin{array}{c c}103\\104\\102\\93\\101\\101\end{array}$	$148 \\ 154 \\ 156 \\ 134 \\ 156 \\ 150 \\ 150 \\$	173 178 179 156 184 174	246 243 246 228 247 242	289 284 296 273 289 286	338 338 368 330 342 343	388 386 429 377 384 393	98-0 98-0 97-0 97-5 98-0 97-7	$1.1 \\ 1.0 \\ 2.0 \\ 1.2 \\ 1.0 \\ 1.3$	$\begin{array}{c} 0.9 \\ 1.0 \\ 1.0 \\ 1.3 \\ 1.0 \\ 1.0 \\ 1.0 \\ 1.0 \end{array}$	1582 1583 1674 1498 1602 1588	0.731 0.733 0.729 0.719 0.737 0.730	$\begin{array}{c} 62 \cdot 1 \\ 61 \cdot 5 \\ 62 \cdot 6 \\ 65 \cdot 3 \\ 60 \cdot 5 \\ 62 \cdot 3 \\ 62 \cdot 3 \end{array}$	6-3 6-8 6-9 8-6 6-2 7-0	5 5 Nil Nil Nil	No No Yes No No	Green +30 Green Green +28

TABLE I-Continued

Gasoline Survey Analyses for 1934 by Cities-Continued

TABLE I—Concluded

Gasoline Survey Analyses for 1934 by Cities-Concluded

	Price, co			Octane			Distil	lation]	Range]	Recov-	Resi-	Dis- tilla-	Index	Specific	De-	Vapour	Gum milli- grams	Germin	Colour
Sample No.	Gasoline	lon Tax	Group*	at 345 °F. and 900 r.p.m.	1st drop °F.	10% °F.	20% °F.	50% °F.	70% °F.	90% °F.	End point °F.	ery	due	tion loss	No. °F.	gravity	grees A.P.I.	pressure	per 100 milli- litres	Corrosion test	Saybolt
]		·[(11-	——I				CAI	 GAR	Y, ALTA	A.							•	
98 99 100 101 102 Average	25 ¹ / ₂ 25 ¹ / ₂ 28 25 ¹ / ₂ 25 ¹ / ₂	6 6 6 6 6	$\begin{vmatrix} 2\\ 2\\ 3\\ 3\\ 2\\ \cdot \cdot \cdot \cdot \\ \cdot \\ \cdot \cdot \\ \cdot \\$	66 66 54 64 71	98 98 104 104 110 103	149 146 146 150 160 150	177 170 162 169 188 173	$\begin{array}{c} 258 \\ 241 \\ 207 \\ 241 \\ 266 \\ 243 \end{array}$	305 290 245 287 312 288	363 354 317 350 359 349	404 409 389 409 396 401	97.0 98.0 97.5 98.0 98.0 97.7	$ \begin{array}{c} 1 \cdot 0 \\ 1 \cdot 3 \\ 1 \cdot 1 \\ 1 \cdot 2 \\ 1 \cdot 2 \\ 1 \cdot 2 \\ 1 \cdot 2 \end{array} $	2.0 0.7 1.4 0.8 0.8 1.1	1656 1610 1466 1606 1681 1604	0-745 0-731 0-719 0-731 0-748 0-735	$58 \cdot 4 \\ 62 \cdot 1 \\ 65 \cdot 3 \\ 62 \cdot 1 \\ 57 \cdot 7 \\ 61 \cdot 0$	7.3 6.2 6.5 6.9 5.8 6.5	Nil Nil Nil Nil Nil	No No No No	Green Green +29 Green Yellow
										EDM	IONT	ON, ALI	FA.					<u></u>			
103 104 105 106 107 Average	21 25 25 24 25	6 6 6 6 6	3 3 2 3 2	46 57 65 46 65	89 106 100 106 99 100	126 148 143 149 151 143	148 163 163 170 182 165	214 205 232 232 264 230	292 237 288 298 304 284	464 301 356 399 366 377	540 382 412 458 402 439	97-0 98-0 98.0 98-0 97-5 97-7	$1.3 \\ 1.2 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.3 \\ 1.3$	1.7 0.8 0.8 0.6 1.3 1.0	1784 1436 1594 1706 1669 1638	0-729 0-719 0-729 0-734 0-748 0-732	62.6 65.3 62.6 61.3 57.7 61.8	10-5 6-4 7-2 6-4 7-3 7-6	Nil 5 20 5 Nil	No No No No	+28 +28 Blue Green Orange
										VAI	VCOU.	VER, B.	c.								
108 109 110 111 112 113 Average.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 7 7 7 7 7 7 7	$\begin{array}{ c c } 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\end{array}$	68 66 70 70 72 70	99 98 96 98 105 104 100	$\begin{array}{r} 155 \\ 152 \\ 142 \\ 144 \\ 164 \\ 146 \\ 150 \end{array}$	182 184 174 173 188 175 179	261 262 257 253 254 254 254 254 257	305 306 303 295 299 293 300	358 364 366 358 364 360 362	399 404 409 402 400 404 403	98.0 98.0 97.5 98.0 97.5 97.5 97.7	$1.2 \\ 1.3 \\ 1.4 \\ 1.3 \\ 1.2 \\ 1.4 \\ 1.3 \\ 1.2 \\ 1.4 \\ 1.3 $	0.8 0.7 1.1 0.7 1.3 1.1 1.0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.748 0.749 0.747 0.745 0.746 0.746 0.746 0.747	57.7 57.4 57.9 58.4 58.2 58.2 58.2 57.9	6-0 7-0 7-5 7-7 6-2 7-5 7-0	Nil 5 Nil Nil Nil Nil	No No No No No No	+28 Violet Green Green Yellow Orange
							_			vı	CTOF	IA, B.C	•								
114 115 116 117 Average.	24 24 24 24 24	77777	$\begin{vmatrix} 2\\ 2\\ 2\\ 2\\ 2 \end{vmatrix}$	70 69 68 70	97 99 100 102 100	150 151 151 146 149	179 179 182 176 179	255 252 263 247 254	300 290 307 289 297	367 348 364 354 358	413 398 401 400 403	97.5 97.5 97.5 97.5 97.5	$1 \cdot 2 \\ 1 \cdot 3 \\ 1 \cdot 1 \\ 1 \cdot 2 \\ 1 \cdot 2 \\ 1 \cdot 2 $	1.3 1.2 1.4 1.3 1.3	$\begin{array}{c c} 1664 \\ 1618 \\ 1658 \\ 1672 \\ 1640 \end{array}$	0.746 0.745 0.749 0.742 0.742 0.746	58·2 58·4 57·4 59·2 58·2	$ \begin{array}{c c} 8.1 \\ 6.8 \\ 6.1 \\ 7.9 \\ 7.2 \end{array} $	Nil Nil Nil Nil	No No No No	Green Green +27 Orange

.

TABLE II

Average of Gasoline Survey Analyses for Cities for 1934

			Distil	lation	Range					Distil-	Index	Gradific	Degrees	Tranieum	Octane
City	1st drop °F.	10% °F.	20% °F.	50% °F.	70% °F.	90% °F.	End point °F.	Recov- ery	Resi- due	lation loss	No. °F.		A.P.I.	pres- sure	at345°F. and 900 r.p.m.
Halifax, N.S. Saint John, N.B. Quebec, Que Montreal, Que. Ottawa, Ont Toronto, Ont Hamilton, Ont. London, Ont. Fort William, Ont Winnipeg, Man. Regina, Sask. Calgary, Alta. Edmonton, Alta. Vancouver, B.C. Victoria, B.C. Average (117 samples)*	104 104 101 100 100 101 103 100 102 101 103 100 100 100	149 150 152 150 149 144 146 152 148 149 150 150 143 150 149 149	177 176 178 179 176 172 179 178 174 174 173 165 179 179 179	247 253 248 250 247 252 241 250 249 244 249 244 243 230 257 254 247	285 295 290 291 290 281 293 280 286 288 284 300 297 291	346 351 349 359 345 346 348 348 348 348 349 377 362 358 351	397 401 397 393 398 376 387 391 393 401 439 403 403 395	97-8 97-6 97-7 97-2 97-3 97-3 97-3 97-3 97-3 97-3 97-7 97-7	$\begin{array}{c} 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.3\\ 1.3\\ 1.2\\ 1.3\\ 1.4\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.2\\ 1.2\end{array}$	1.0 1.2 1.1 1.6 1.4 1.5 1.4 1.5 1.6 1.4 1.5 1.6 1.1 1.0 1.1 1.3	1601 1626 1617 1617 1604 1593 1596 1583 1604 1638 1604 1638 1640 1640	0.737 0.738 0.740 0.744 0.746 0.735 0.735 0.735 0.735 0.735 0.735 0.735 0.732 0.735 0.732	60-5 60-2 59-7 58-7 59-7 58-7 60-8 60-2	7-3 7-1 6-8 7-5 7-6 8-1 8-0 7-5 8-1 7-3 7-6 7-6 7-6 7-2 7-5	

*This is the average value for all the samples tested.

...

. .

• •

.

			Distil	lation	Range				Residue and	Index	Specific	Degrees		Vapour	Octane number
Year	1st drop °F.	10% °F.	20% °F.	50% °F.	70% °F.	90% °F.	End point °F.	Recovery	Distil- lation loss	No. °F.	gravity	A.P.I.	Sulphur	pres- sure	at 345°F. and 900 r.p.m.
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1933 1933	120 113 116 110 107 107 102 101 104 102 101 101	170 173 174 164 161 153 155 157 154 152 149	193 195 199 191 189 186 181 182 186 183 183 180 175	255 249 258 259 255 255 254 258 254 258 254 252 247	296 288 299 300 304 298 300 301 304 299 295 291	358 347 359 360 366 359 363 362 366 361 351 351	423 410 412 410 416 409 411 406 406 406 396 395	97 · 1 97 · 4 97 · 0 97 · 0 97 · 0 97 · 0 97 · 0 97 · 2 96 · 9 97 · 9 97 · 5 97 · 5	2.9 2.6 3.0 2.7 3.0 2.7 3.0 2.8 3.1 2.1 2.5 2.5	$\begin{array}{c} 1695\\ 1662\\ 1701\\ 1681\\ 1693\\ 1663\\ 1663\\ 1660\\ 1677\\ 1659\\ 1626\\ 1626\\ 1608 \end{array}$	$\begin{array}{c} 0.737\\ 0.736\\ 0.739\\ 0.739\\ 0.741\\ 0.737\\ 0.736\\ 0.741\\ 0.741\\ 0.741\\ 0.742\\ 0.739\\ 0.739\\ 0.738\\ 0.738\end{array}$	$\begin{array}{c} 60 \cdot 5 \\ 60 \cdot 8 \\ 60 \cdot 0 \\ 59 \cdot 5 \\ 60 \cdot 5 \\ 60 \cdot 5 \\ 59 \cdot 5 \\ 59 \cdot 5 \\ 59 \cdot 5 \\ 59 \cdot 2 \\ 60 \cdot 0 \\ 60 \cdot 2 \end{array}$	· · · · · · · · · · · · · · · · · · ·		

TABLE III Annual Averages of Gasoline Survey Analyses for Canada

*Estimated from octane number at 212°F. and 600 r.p.m.

TABLE IV

Average Analysis of the Three Groups of Gasoline Sold in Canada in July 1934

	Num- ber	Octane number			Distil	lation	Range			Re-	Resi-	Dis- til-	In- dex	Speci- fic	De- grees	Va- pour	Artifi- cially
Group	of sam- ples	at 345° F. and 900 r.p.m.	1st drop °F.	10% °F.	20% °F.	50% °F.	70% °F.	90% °F.	End point °F.	cove-	due	la- tion loss	No. °F.	grav- ity	Ă.P.I.	pres- sure	coloured, per cent of samples
I (Octane No. 75 and above)II (Octane No. 74 to 65) III (Octane No. 64 and	15 66	77 68	102 101	147 148	174 176	246 250	288 292	348 349	399 392	97-3 97-5	$1.3 \\ 1.2$	$1 \cdot 4$ $1 \cdot 3$	1602 1607	0·741 0·739	59.5 60.0	7•6 7•5	100 89
below)		56	102	150	175	244	290	355	400	97-4	1.2	1.4	1614	0.735	61.0	7.4	22
Average for all samples.	117	66	101	149	175	247	291	351	395	97-5	1.2	1.3	1608	0.738	60.2	7.5	70

TABLE V

Ten Per Cent of Samples Having Maximum Index Number* in 1934

	In-			Distil	lation	Range					Distil-	Vapour
Sample No.	dex No. °F.	1st drop °F.	10% °F.	20% °F.	50% °F.	70% °F.	90% °F.	End point °F.	Recov- ery %	Resi- due %	lation loss %	pres- sure
$103 \\ 63 \\ 57 \\ 106 \\ 12 \\ 53 \\ 102 \\ 59 \\ 95 \\ 31 \\ 109 \\ 91$	$\begin{array}{c} 1784\\ 1769\\ 1736\\ 1706\\ 1692\\ 1684\\ 1681\\ 1676\\ 1674\\ 1673\\ 1672\\ 1670\end{array}$	89 94 96 106 106 104 110 105 102 97 98 102	$\begin{array}{c} 126\\ 132\\ 127\\ 149\\ 164\\ 164\\ 160\\ 154\\ 156\\ 149\\ 152\\ 140 \end{array}$	148 158 152 170 196 194 188 188 179 180 184 163	214 270 266 232 264 259 266 263 246 253 262 252	202 340 335 298 303 298 312 305 290 299 306 309	464 419 399 358 357 359 362 368 373 364 384	540 450 458 407 412 396 404 429 419 404 422	97.0 96.0 97.0 98.0 98.0 97.5 98.0 98.0 97.0 96.0 96.0 97.5	$1.3 \\ 2.4 \\ 1.5 \\ 1.4 \\ 1.3 \\ 1.2 \\ 1.3 \\ 2.0 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.2 \\ 1.3 \\ 1.2 $	$ \begin{array}{c} 1.7\\ 1.6\\ 0.6\\ 0.7\\ 1.3\\ 0.8\\ 0.7\\ 1.0\\ 2.9\\ 0.7\\ 1.3\end{array} $	$ \begin{array}{r} 10 \cdot 5 \\ 9 \cdot 3 \\ 10 \cdot 0 \\ 6 \cdot 4 \\ 5 \cdot 3 \\ 6 \cdot 1 \\ 5 \cdot 8 \\ 6 \cdot 2 \\ 6 \cdot 9 \\ 8 \cdot 8 \\ 7 \cdot 0 \\ 7 \cdot 3 \end{array} $
Aver	1701	101	148	175	254	308	384	432	97.4	1.4	1.2	7.5

TABLE VI

Ten Per Cent of Samples Having Minimum Index Numbers* in 1934

	In-			Distil	lation	Range					Distil-	Vapour
Sample No.	dex No. °F.	1st drop °F.	10% °F.	20% °F.	50% °F.	70% °F.	90% °F.	End point °F.	Recov- ery %	Resi- due %	lation loss %	pres-
104 29 100 49 65 96 16 71 60 67 84 30 Aver	1436 1463 1466 1479 1490 1498 1502 1516 1516 1530 1546 1548 1499	106 119 104 97 112 93 100 100 98 96 94 100	148 162 146 134 153 134 138 140 134 138 140 134 138 137 149 143	$\begin{array}{c} 163\\ 173\\ 162\\ 154\\ 168\\ 156\\ 158\\ 162\\ 155\\ 164\\ 171\\ 172\\ 163\end{array}$	205 191 207 220 228 222 226 226 239 246 229 246 229	237 226 245 254 273 267 274 275 276 286 282 282 283	301 327 317 327 339 330 334 336 340 332 338 341 332 338 341 330	382 384 389 370 376 377 383 378 386 381 368 375 380	98.0 98.0 97.5 98.0 97.5 97.0 97.0 97.0 97.0 97.0 97.0	$ \begin{array}{c} 1 \cdot 2 \\ 1 \cdot 1 \\ 1 \cdot 1 \\ 1 \cdot 1 \\ 1 \cdot 0 \\ 1 \cdot 2 \\ 1 \cdot 0 \\ 1 \cdot 0 \\ 1 \cdot 1 \\ 2 \cdot 0 \\ 1 \cdot 1 \end{array} $	$\begin{array}{c} 0.8\\ 0.9\\ 1.4\\ 0.9\\ 1.0\\ 1.3\\ 2.0\\ 2.0\\ 1.4\\ 1.0\\ 1.9\\ 2.0\\ 1.4\\ 1.4\\ 1.4\\ 1.9\\ 2.0\\ 1.4 \end{array}$	6.4 5.7 7.0 8.6 7.9 7.9 8.5 8.5 9.6 8.1

TABLE VII

Difference Between Maximum and Minimum Index Numbers*

Year	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934
Maximum, 10% Minimum, 10%	1791 1500	1806 1428	1821 1497	1815 1524	1823 1518	1791 1488	1773 1503	1787 1471	1774 1547	1760 1531	1738 1522	1701 1499
Difference	291	378	324	291	305	303	270	316	227	229	216	202

*The index number is the sum of the following points in the distillation range, 10%, 20%, 50%, 70%, 90% and the end point.

TABLE VIII

Classification of	the 1934 Samples	s According to	o Three	Arbitrary	Octane Number
	-	Groups		-	

City	Group I Octane No. 75 - and above		Group II Octane No. 74 to 65		Group III Octane No. 64 and below		Total	
Oity	Number of samples	Average octane number	Number of samples	Average octane number	Number of samples	Average octane number	of samples	
Halifax Quebec. Montreal. Ottawa. Toronto. Hamilton. London. Fort William. Winnipeg. Regina. Calgary. Edmonton. Vancouver. Victoria.	2 4 7 1 	77 76 76 77 77 	3 4 6 10 8 7 5 2 2 3 2 6 4	70 69 68 69 68 68 67 68 67 68 65 69 68 65 69	 1 10 2 2 3 3 6 3 2 3 	.0 60 61 42 60 57 59 59 59 59 50 	556071027100856655564	
Number of samples in grade	15		66		36		117	
Per cent of total sam- ples	12.8		56.4		30.8	••	100	
Average octane No. for grade		77		68		56		

TABLE	\mathbf{IX}
-------	---------------

Average *Knock Rating of 50 Brands of Gasoline

Group I Octane No. 75 and above	Group II Octane No. 74 to 65	Group III Octane No. 64 and below	Company or Distributor and Head Office Address (or city from which samples originated)
Peerless Ethyl Canadian Ethyl Sylvester Benzol Cities Service Ethyl	Nevr-Nox White Rose No Knock Champlain Purple Koolmotor Green Flash. Hi-Octane. Violet Ray	Bell. Benzogas and Commercial. British Motor. Bengal. White Rose. Cities Service.	Beach Motors, Ltd. (Ottawa). Bell Refining Co., Ltd., Calgary. Benzolene Corporation, Ltd. (Ottawa). British American Oil Co., Ltd., Toronto. Burlington Refineries, Ltd., (Hamilton). Canadian Oil Companies, Ltd., (Homilton). Champlain Oil Co., Ltd., (Montreal). Cities Service Oil Co., Ltd., (Montreal). Crown Dominion Oil Co., Ltd., (Hamilton). Dominion Oil Co., Ltd., (Vancouver). General Oil Co., Ltd., (Vancouver). Good Rich Oil Co., Ltd., (Toronto). Hi-way Refineries, Ltd., Regina.
Imperial Ethyl Irving Ethyl	Home Three Star Primrose Blue Diamond Hi-Octane	Premier.	Hi-way Keineries, Ltd., Kegina. Home Oil Distributors, Ltd., Vancouver. Imperial Oil, Ltd., Toronto. Irving Oil Co., Ltd., (Halifax). Island Pacific Oil Co., Ltd., (Vietoria). Mahoney and Rich, (Ottawa). Marquis Oil Co., Ltd., (Edmonton).
Cyclo Ethyl	Marathon Blue	Standard White Economy Electro	McColl-Frontenac Oil Co., Ltd., Montreal. North Star Oil, Ltd., Winnipeg. Prairie City Oil Co., Ltd., (Winnipeg). Putman Bros., Ltd., (Saint John).
Super-Shell Ethyl	Shell		Shell Oil Co. of Canada, Ltd., Toronto. Shell Oil Co. of B.C., Ltd., (Vancouver).
Supertest Ethyl		White**	Sun Oil Co., Ltd., Toronto. Supertest Petroleum Corp., Ltd., London. Supreme Oil Co., Ltd., (Toronto). Texas Co. of Canada, Ltd., Calgary. Union Oil Co. of Canada, Ltd., (Vancouver). White Star Refining Co., Ltd., (Hamilton).
Average	Average	Average	

*The averages are based on tests of a total of 117 samples collected in Canada in July 1934. It should be emphasized that the volatility of the individual samples in the three groups, with a few notable exceptions as shown in Table I, does not vary greatly, and, therefore, the gasolines in each group will be found satisfactory for use in gasoline engines if the compression ratio of the engine in which it is to be used is not too high. High compression engines will require either Group II or Group I gasolines. Low compression engines can use Group III gasolines. Further discussion of compression ratio of engines and octane numbers of gasolines is to be found on page 2.
**The average octane number is below 50.

TABLE X

 $\mathbf{21}$

. . ..

.

Company	Group I Octane No. 75 and above		Octane	1p II No. 74 65	Group III Octane No. 64 and below	
	Number of samples	Average octane No.	Number of samples	Average octane No.	Number of samples	Average octane No.
A B C D F. G. H.	5 1 2 1 2 1 1	77 78 75 76 77 77 77 77	13 7 9 2 4 5 3 6	69 67 68 69 65 69 68	2 5 7 1 1	61 56 57 57 62 64
Total number of samples tested	13		49		19	
verage octane No. of grade		77		67		58

Average Knock Rating (Octane Number) of 21 Different Brands of Gasoline Sold by 8 Companies in 1934, Arranged According to Groups

TABLE XI

Classification of Samples According to Results of Reid Vapour Pressure Deter-mination in 1934

		Reid va	pour pre	ssure, pou	inds per s	quare in	ch	
City	11.0 to 10.1	10.0 to 9.1	9.0 to 8.1	$ \begin{array}{c} 8 \cdot 0 \\ to \\ 7 \cdot 1 \end{array} $	$\begin{array}{c} 7 \cdot 0 \\ to \\ 6 \cdot 1 \end{array}$	$6 \cdot 0$ to $5 \cdot 1$	$ \begin{array}{c} 5.0\\ \text{to}\\ 4.1 \end{array} $	Total
Halifax Saint John. Quebec. Montreal Ottawa. Toronto. Hamilton London. Fort William Winnipeg. Regina. Calgary. Edmonton. Vancouver. Victoria.	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	··· ·· ·· ·· ·· ·· ··	$ \begin{array}{c} $	3 3 4 4 13 2 4 4 1 2 1 2 3 1	$ \begin{array}{c} 2 \\ 1 \\ \\ 5 \\ 2 \\ 1 \\ 1 \\ 1 \\ 4 \\ 3 \\ 2 \\ 2 \\ 2 \end{array} $		··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	5 5 6 10 27 10 10 8 5 5 5 5 6 4
Total	1	6	25	47	29	8	1	117
Per cent of total	0.9	5.1	21.3	40.2	24.8	6.8	0.9	100

Reid vapour pressure, average all samples, 7.5. Reid vapour pressure, highest sample, 10.5. Reid vapour pressure, lowest sample, 4.9.

	Gum content in milligrams per 100 millilitres (glass dish with air jet at 320°F. or at 374°F.)					Total			
City	110 (oily)	60 (oily)	40 (oily)	20 (oily)	15	10	5	Nil	10000
Halifax Saint John. Quebec Montreal. Ottawa. Toronto. Hamilton. London. Fort William Winnipeg. Regina. Calgary. Edmonton. Vancouver. Victoria.	··· ·· ·· ·· ·· ·· ·· ··	··· ··· ··· ··· ··· ··· ··· ···	··· ·· ·· ·· ·· ·· ·· ·· ··	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	··· ·· ·· ·· ·· ·· ··	··· ··· ··· ··· ··· ··· ··· ···	5 1 2 5 6 6 3 2 1 3 3 2 1 2 1 2 40	· 3 4 3 7 3 6 5 3 2 2 5 2 5 4 64	5 5 6 10 27 10 10 10 8 5 6 5 5 6 4 4
Total	1	• 1	1	1	1	8	40	04	111
Per cent of total	0.9	0.9	0.9	0.9	0.9	6.8	34.0	54.7	100

TABLE XII Classification of Samples According to Gum Content in 1934

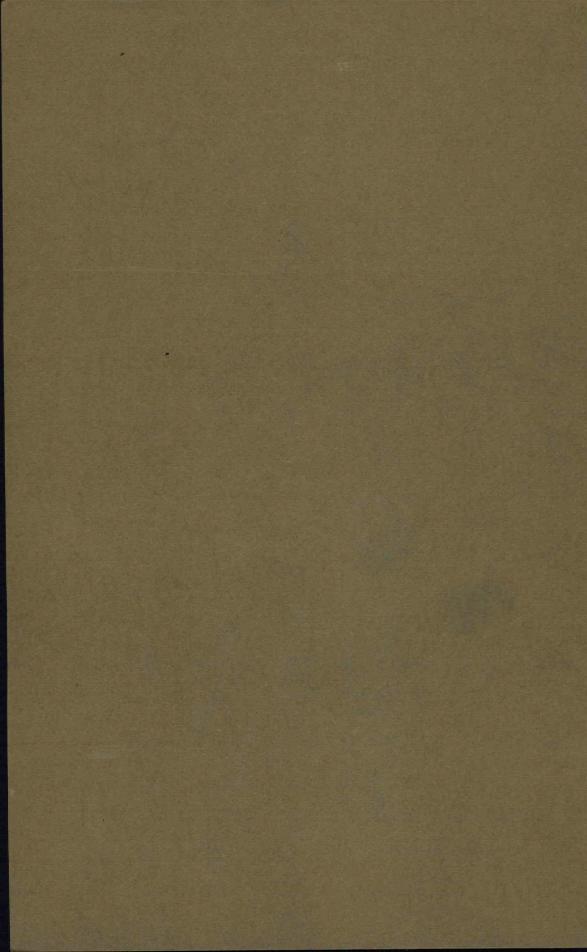
TABLE XIII

Gum Content of Gasoline Samples* in 1934 Determined by Two Methods

	Gum content in milligrams per 100 millilitres					
Sample No.	at 320°F. (A.S.T.M. Method D381-34T)	at 374°F. (A.S.T.M. Proposed Method B)				
1	10 (oily)	5				
14	10/11-5	5				
57	[] [] []	10 (oily)				
89		10 (oily)				
103		Nil				
21		10				
25		10				
35		10				
48	30 (oily)	15				
105	30 (oily)	20 (oily)				
41		10				
51		10				
38						
77	60 (oily)	40 (oily)				
7	90 (oily)	60 (oily)				
67	300 (oily)	110 (oily)				

*Only those samples that were "oily" and had 10 milligrams or more of gum at 320°F. were tested at 374°F.

TABLE XIV


Percentage of Artificially Coloured Gasolines in Different Years

Year	Artificially coloured gasolines %	Year	Artificially coloured gasolines %
1927 1928 1929 1930	18	1931	52 66 70

$\cdot 22$

622:1919 764 Chantler, H. McD. Gasoline Survey for 1934. Mines Br. Report 764. 1935

DATE	ISSUED TO
CAT. NO. 1152 L	LOWE-MARTIN CO. LIMITED

