CANADA

DEPARTMENT OF MINES

HON. W. A. GORDON, MINISTER

CHARLES CAMSELL, DEPUTY MINISTER

MINES BRANCH JOHN MCLEISH, Director DIVISION OF FUELS AND FUEL TESTING B. F. HAANEL, Chief of Division

Analyses of Coals and Other Solid Fuels, 1932, 1933, and 1934

COMPILED BY J. H. H. Nicolls and C. B. Mohr

OTTAWA J. O. PATENAUDE PRINTER TO THE KING'S MOST EXCELLENT MAJESTY 1935

No. 753

Price, 10 cents

CANADA DEPARTMENT OF MINES

HON. W. A. GORDON, MINISTER

CHARLES CAMSELL, DEPUTY MINISTER

MINES BRANCH JOHN MCLEISH, Director DIVISION OF FUELS AND FUEL TESTING B. F. HAANEL, Chief of Division

Analyses of Coals and Other Solid Fuels, 1932, 1933, and 1934

COMPILED BY J. H. H. Nicolls and C. B. Mohr

OTTAWA J. O. PATENAUDE PRINTER TO THE KING'S MOST EXCELLENT MAJESTY 1935

No. 753

. , . .

CONTENTS

,

oduction

TABLE I

nalyses of solid fuels occurring in Canada
Nova Scotia
New Brunswick
Ontario
Alberta
Northwest Territories
British Columbia
Yukon Territory

TABLE II

Analyses of coal samples submitted by the Department of Pensions and	
National Health	23

TABLE III

Analyses of miscellaneous solid fuels	28
British anthracitic coals	28
Anthracite coals from Pennsylvania, U.S.A	31
Low-volatile bituminous coals from the United States	
British bituminous coals	36
Bituminous coals from the United States	42
Cokes	48
Briquettes	49
Hardwood charcoal breeze	49
Firewoods	53

90945----13

1

.

ANALYSES OF COALS AND OTHER SOLID FUELS, 1932, 1933, and 1934

The solid fuel analyses compiled here are those of samples of general interest received during 1932 and 1933 and up to June 30, 1934, and in most cases only such data as were requested by the persons submitting the samples are shown. They are tabulated under the three following group headings:—

(1) Coals and other solid fuels occurring in Canada.

(2) Coal samples submitted by the Department of Pensions and National Health.

(3) Miscellaneous solid fuels.

The first group of fuels (Table I) contains a number of "mine" or "prospect" samples. Many of these were collected by technical officers of either the Federal or Provincial governments. The "mine" samples were procured from deposits already under development; the "prospect" samples from deposits as yet undeveloped. A number of "commercial" samples occur in the first group; each of these is considered to be indicative of the corresponding product as shipped from the mine.

As a general rule "mine" and "prospect" samples contain less ash and have higher calorific values than would the corresponding "commercial" samples. This is due to the fact that, in ordinary mining practice, it is very difficult to exclude impurities as thoroughly as would be done in collecting the small "mine" samples. Therefore, in using the following tables in connection with the sale or purchase of coal, care should be taken to note whether the samples are "mine" or "commercial" (the latter term including "slack", "run-of-mine", and the various sizes of screened coal), and to judge therefrom whether any particular coal as shipped from the mine could reasonably be expected to have as good an analysis as that given in the table. It should also be realized that, generally speaking, "slack" coal will contain more moisture and ash and have a lower calorific value than the corresponding screened coal, and that "run-of-mine" coal will be intermediate between the two.

The second group of fuels (Table II) consists entirely of bituminous coals purchased by the Department of Pensions and National Health for use in the heating plants of its various hospitals. These include both Canadian and United States coals. They are all "commercial" samples, and consist principally of "slack" coal. The samples were collected entirely by the engineers at the various heating plants, following instructions sent out by their headquarters after consultation with the staff of the Fuel Research Laboratories. According to the procedure employed in reporting these samples to the Department of Pensions and National Health, only the moisture contents (which may vary with weather conditions) are shown on the "as-received" basis, the remainder of the analyses being reported on the "dry" basis in order to simplify comparisons between the different coal samples.

The third group of fuels (Table III) consists of imported coals, such as are sold by local dealers for heating either private residences or public buildings, or for various industrial purposes. In addition, it includes a number of cokes obtained from manufacturers, importers, or dealers. These are all "commercial" samples. Finally, the third group contains some processed fuels, including petroleum coke and various kinds of briquettes (which are now available to a greater extent than previously), hardwood charcoal and various kinds of firewood.

Wherever possible, the exact date of sampling is given, or at least the month during which the sample was taken. However, in some few cases this information was not available, and the dates upon which the samples were received at the laboratory are shown.

The following notes explain abbreviations in the tables, and may be of assistance in studying them.

(a) Figures in columns "R" refer to fuels as received; in columns "AD" to air-dried fuels; and in columns "D" to those dried at 108°C. It may be generally accepted that the fuels were analysed as received, except in the instances where the "AD" columns are included. In such cases the fuels were analysed following air-drying in the standard apparatus.¹ The analyses of the high-moisture "slack" coals do not include the "AD" column, since this information was not considered to be of any particular interest, although it is obvious that the fuels could not have been ground for analyses without previous drying.

(b) The "coking properties" described were obtained by heating onegramme samples in closed platinum crucibles during the determination of volatile matter. The terms "non-coking" ("non-agglomerating"), "poor", "fair", or "good", are used to indicate general coking properties, and serve to differentiate between the non-coking or poorly coking coals, and those that will produce oven coke that will grade as fair or better. They do not necessarily predict correctly the grade of coke that can be produced commercially.

¹ Report of Scientifio and Industrial Research Council of Alberta, 1923, p. 39.

TABLE I Analyses of Solid Fuels Occurring in Canada

NOVA SCOTIA

1. .

			Domi	nion Stee Coal sa	l and Co Imples fi	al Corpo rom the S	ration, Sydney	Limited, area, supp	Montrea	11 		
	at St.	entiary Vincent ul, Que.	\mathbf{Pl}	ant, , Que.	Pla	astrial ant, a, Ont.		Depart National at Qt			of P	rtment ublic orks
Sample No	1	3229	1	1234	106	530*	1	2432	1:	2433	15	2628
Moisture condition	R	D	$\mathbf R$	D	R	D	$\mathbf R$	D	R	D	R	D
Proximate Analysis	$2 \cdot 1 \\ 8 \cdot 3 \\ 33 \cdot 4 \\ 56 \cdot 2$	$8.5 \\ 34.1 \\ 57.4$	$2 \cdot 0 \\ 8 \cdot 4 \\ 31 \cdot 9 \\ 57 \cdot 7$	8.6 32.6 58.8	2·3 5·8 35·3 56·6	5-9 36-2 57-9	4·4 7·3 32·8 55·5	$7 \cdot 6 \\ 34 \cdot 3 \\ 58 \cdot 1$	$2 \cdot 2 \\ 7 \cdot 5 \\ 32 \cdot 9 \\ 57 \cdot 4$	7.7 33.6 58.7	$2 \cdot 0 \\ 8 \cdot 2 \\ 33 \cdot 2 \\ 56 \cdot 6$	8·4 33·8 57·8
Ultimate Analysis— Carbon	 4.0 	 4·1 	 3.4 	3.5	$77 \cdot 6$ 5 \cdot 3 5 \cdot 8 1 \cdot 5 1 \cdot 7 8 \cdot 1	79.55.25.9 $1.51.76.2$	···· 2·7 ····	2·8	 2.8 	 2·9 	 2.8 	2·8
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,570 13,620	7,730 13,910	7,575 13,640	7,730 13,910	7,820 14,070	8,010 14,410	7,245 13,040	$7,575 \\ 13,640$	7,650 13,770	7,825 14,080	7,570 13,630	7,725 13,910
Fuel ratio	1	.•70	1	-80	1	-60	1	•70	1	·75	1	-70
Carbon-hydrogen ratio					14.6	$15 \cdot 4$				••••	••••	••••
Coking properties	G	ood	G	ood	F	`air	II	Pair	G	ood	G	ood
Softening temperature of ash°F.		•••			1	970	2	:000	1	.990	1	920
Designation of coal Kind of sample Taken by	Comm 200 t Depart	Commercial; 200 tons		Commercial		Prepared run-of- mine Commercial; 3 cars Staff of Fuel Research		-"Besco", Syd- ney Mines Commercial; 30 tons Departmental e		Sydney", ey Mines ercial; es	Comm	
Date of sampling	1	e e	Oct. 5,	1932	Labo	ratories	Septer	iber, 1933	 		Decem	ber, 1933

*Screen analysis of sample No. 10630 (square screen openings), per cent: On $2^{y}=10.6$, 2^{y} to $1^{y}=33.2$, 1^{y} to $\frac{3^{y}}{4}=16.2$, $\frac{3^{y}}{4}$ to $\frac{1^{y}}{2}=7.7$, $\frac{1}{2}^{y}$ to $\frac{1^{y}}{4}=12.3$, $\frac{1^{y}}{4}$ to $\frac{1^{y}}{4}=7.2$, per $\frac{1^{y}}{4}=12.8$.

ω

-

``

Analyses of Solid Fuels Occurring in Canada-Continued

NOVA SCOTIA---Continued

	"St	Dominion Steel and Coal Corporation, Limited, Montreal "Steam lump" coal from the Sydney area, supplied to the Mines Branch Laboratories, Ottawa, through the Department of Public Works												
Sample No	10	0664	11	1521	11662		12028		12567		12716		12	787
Moisture condition	R	\mathbf{D}_{\cdot}	R	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis— Moistureper cent Ash	2.8 8.7 35.8 52.7	9.0 36.8 54.2	$2 \cdot 1 \\ 8 \cdot 1 \\ 33 \cdot 6 \\ 56 \cdot 2$	8-3 34-3 57-4	2·1 8·4 35·1 54·4	8.6 35.8 55.6	2.0 8.6 32.8 56.6	8-8 33-5 57-7	$1 \cdot 9 \\ 9 \cdot 1 \\ 35 \cdot 4 \\ 53 \cdot 6$	9.3 36.1 54.6	4•0 8•7 33•0 54•3	9.0 34.4 56.6	$3.1 \\ 9.0 \\ 31.6 \\ 56.3$	9·3 32·6 58·1
Ultimate Analysis— Sulphurper cent	2.4	2.5	1.9	1-9	2.5	2.6	2.5	2-6	2.2	2.3	3.5	3.6	2.1	2-2
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,430 13,370	7,645 13,760	7,615 13,710	7,780 14,010	7,520 13,540	7,680 13,820	7,610 13,700	7,765 13,980	7,565 13,620	7,710 13,880	7,385 13,290	7,695 13,850		7,800 14,040
Fuel ratio	1	·45	1	•70	1.55		1	-75	1	-50	1.65		1	·80
Coking properties	F	Tair	G	bood	G	ood	G	ood	G	ood	G	ood	G	ood
Softening temperature of												005		
ash°F Screen analysis (square screen openings)per cent					On 2" 2 " to 1 1 ¹ / ₄ " to 1 1 " to ³ " to	$\frac{1}{2}'' = 17 \cdot 7$ $= 16 \cdot 5$ $\frac{1}{2}'' = 8 \cdot 9$ $\frac{1}{2}'' = 5 \cdot 5$	On 2"	$\frac{1}{2}'' = 14 \cdot 8$ $= 11 \cdot 4$ $\frac{3}{2}'' = 7 \cdot 3$ $\frac{1}{2}'' = 7 \cdot 8$	On 2" 2 " to 1 1 ¹ / ₂ " to 1 1 " to ¹ / ₂ " to per ¹ / ₂ "	$ \begin{array}{rcl} \frac{1}{2}' &= 20 \cdot 6 \\ &= 15 \cdot 4 \\ \frac{3}{2}' &= 8 \cdot 4 \\ \frac{1}{2}'' &= 6 \cdot 5 \end{array} $	On 2" 2 " to 1 13" to 1	$\frac{1}{2}'' = 12 \cdot 7$ = 15 \cdot 6 $\frac{1}{2}'' = 14 \cdot 6$ $\frac{1}{2}'' = 13 \cdot 2$	On 2" 2 " to 1 14" to 1	" =26·7
Kind of sample	Comm	ercial				• • • • • • • • •								• • • • • • • • • • •
Taken by	Staff of	f Fuel Re	search I	Laborato	ries	•••••		•••••		 .	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	•••••	• • • • • • • • • •
Date of sampling		to 14, 932		y Novem- er, 1932	During ary,		During 19			Novem- 1933		January, 934		March, 34

₽

Analyses of Solid Fuels Occurring in Canada-Continued

NOVA SCOTIA—Continued

					Do	ominion S C	Steel and bal sam	Coal Co les from	rporatio the Syd	n, Limite Iney area	ed, Mont supplied	real to:—					
_		Mines Branch Laboratories, Ottawa, through the Department of Public Works Central Heating Plant, Dept. of Public Works, Ottawa													Buil	incial iament Idings, to, Ont.	
Sample No	10676 11433 11584 11755 12620 12756 12546									546	116	609 *					
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D	R	D	R	D	
Proximate Analysis- Moistureper cent Ash	7.2 7.5 29.7 55.6	8·1 32·0 59·9	6·1 7·2 31·7 55·0	7-7 33-7 58-6	3.8 8.0 31.8 56.4	8-3 33-1 58-6	8.5 7.4 30.2 53.9	8·1 33·0 58·9	5.5 8.0 32.9 53.6	8·4 34·8 56·8	7.1 7.8 30.8 54.3	8-4 33-2 58-4	2.5 8.7 32-1 56.7	9.0 32-9 58-1	$5.8 \\ 7.6 \\ 31.1 \\ 55.5$	8-1 33-0 58-9	
Ultimate Analysis— Sulphurper cent	2.2	2.4	2.6	2.8	2.8	2-9	2.4	2.7	2.8	3-0	2.8	3-0	3.2	3-2	2.7	2.9	
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,155 12,880	7,710 13,880	7,255 13,060	7,730 13,910	7,435 13,380	7,725 13,900	7,060 12,700	7,715 13,890	7,290 13,120	7,715 13,890	7,275 13,100	7,830 13,100	7,580 13,650	7,780 14,000	7,265 13,080	7,710 13,880	
Fuel ratio	1	• 85	1	- 75	1	•75	1	-80	1	• 65	1	-75	1	•75	1	-80	
Coking properties	G	ood	G	ood	G	bood	G	ood	G	bood	G	ood	G	ood	G	ood	
Softening temperature of ash°F						•••••	.		. .		2	030			1	875	
Screen analysis (square openings)per cent					On 3 to 3 to 1 to 1 to 1 per 3	$= 1 \cdot ($ = 3 \cdot 1 = 18 \cdot 1 = 26 \cdot 6 = 50 \cdot 6	0 On 1' 1 1' to $\frac{3}{4}$ '' 7 $\frac{3}{4}$ '' to $\frac{1}{4}$ '' 1 1'' to $\frac{1}{4}$ '' 1 1'' to $\frac{1}{4}$ '' 1 1'' to $\frac{1}{4}$ '' 1 1'' to $\frac{1}{4}$ ''	$= 2 \cdot 2$ = 5 \cdot 4 = 23 \cdot 4 = 23 \cdot 4	On 1 1 to 1 to 1 to 1 to 1 per s	= 5.3 =10.3 =26.7	On $\frac{3}{4}$, to $\frac{1}{2}$, to $\frac{1}{4}$, to $\frac{1}{4}$, to $\frac{1}{8}$, per $\frac{1}{8}$.	$= 1.3 \\ = 3.5 \\ = 21.3 \\ = 25.5 \\ = 48.4$			On ³ ³ to ⁴ ⁴ to ⁴ ¹ to ⁴ per ¹	$= 1.0 \\ = 2.7 \\ = 19.9 \\ = 26.6 \\ = 49.8 $	
Designation of coal	Slack				•••••				•••••		• • • • • • • • •	•••••	••••••		-inch	nut slack	
Kind of sample	Comme	ercial	• • • • • • • • •	•••••	••••	•••••	••••••	••••		•••••	•••••	•••••	• • • • • • • • • •	•••••••		•••••	
Taken bỳ	Staff of	Fuel Re	search I	aborator	ies		•••••	•••••		•••••	••••	••••	Depart	mental oyees	C. E. F.R.	Baltzer, L,	
Date of sampling		16 to 30, 932	Durin emb	g Nov- er, 1932	Duri	ng Jan- y, 1933	Durin	g March, 933	During ber,	g Decem- 1933	Durin	g Febru- y, 1934		ember, 933	1		

*Ash analysis of sample No. 11609, per cent: Silica, 28.4; ferric oxide, 34.7; alumina, 15.9; calcium oxide, 7.3; magnesium oxide, 1.0; sulphur trioxide, 9.1; phosphorus pentoxide, 0.2.

٠

Analyses of Solid Fuels Occurring in Canada-Continued

NOVA SCOTIA-Continued

	Domi	nion Steel		al Corpoi itreal	ration, L	imited,		n Cove"		d'Or''		erness''
. —	12 cc Victor New W	nion No. olliery, ia seam, aterford, ey area	clea a Bay wash the ste	e coal ned in im wet ery at eel plant, dney	Washe Waterfo delive Mont	ord coal ered in		lied to th	ne Depa	rtment o	f Public	Works
Sample No	10	812*	10	902	111	106	12	2650	12	2651	1 12	2640
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis— Moistureper cent Ash Volatile matter	$2 \cdot 1 \\ 5 \cdot 3 \\ 35 \cdot 8 \\ 56 \cdot 8 \\ 56 \cdot 8$	5•4 36•6 58•0	$2 \cdot 0$ $2 \cdot 6$ $37 \cdot 4$ $58 \cdot 0$	$2 \cdot 6$ 38 · 2 59 · 2	$2 \cdot 2$ 2 \cdot 9 37 \cdot 5 57 \cdot 4	3.0 38.3 58.7	$3 \cdot 2 \\ 12 \cdot 4 \\ 36 \cdot 1 \\ 48 \cdot 3$	$12 \cdot 8$ $37 \cdot 3$ $49 \cdot 9$	$3.9 \\ 9.4 \\ 33.4 \\ 53.3$	$9.8 \\ 34.7 \\ 55.5$	5.517.534.742.3	18·5 36·7 44·8
Ultimate Analysis— Carbonper cent Hydrogen" Ash" Sulphur" Nitrogen" Oxygen"	$79.2 \\ 5.4 \\ 5.3 \\ 1.8 \\ 1.6 \\ 6.7$	81.0 5.2 5.4 1.9 1.7 4.8	$81 \cdot 3$ $5 \cdot 6$ $2 \cdot 6$ $1 \cdot 6$ $1 \cdot 7$ $7 \cdot 2$	$82 \cdot 9$ $5 \cdot 5$ $2 \cdot 6$ $1 \cdot 7$ $1 \cdot 8$ $5 \cdot 5$	···· 1·3 ····	···· ··· ···	···· ···· 7·4 ····	7.7	···· 5·6 ····	 5.8 	···· 5·3 ····	 5-6
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,860 14,150	8,040 14,470	8,110 14,600	8,280 14,900	 		6,765 12,180	6,990 12,580	7,020 12,640	7,305 13,150	5,840 10,510	6,180 11,130
Fuel ratio Carbon-hydrogen ratio Coking properties Softening temperature of ash°F.	14·7 G	.•60 15•5 ood .945	14·5 G	•55 . 15•1 ood 140	 Go	55 285		·35 Fair 470	 G	·60 00d 175	_P	·20 245
	Comm 4,000 Employ	tons	rcial, Commercial tons / rees of coal company									
Date of sampling	Summe	er of 1932		<u></u>	August,	1932	December, 1933					

*Screen analysis of sample No. 10812 (square screen openings), per cent: On $\frac{3}{4}''=9\cdot 2$, $\frac{3}{4}''$ to $\frac{1}{2}''=9\cdot 8$, $\frac{1}{2}''$ to $0\cdot 185''=39\cdot 2$, $0\cdot 185''$ to $0\cdot 065''$ (10-mesh or $\frac{1}{16}'')=22\cdot 1$, per $0\cdot 065''=19\cdot 7$.

6

~

Analyses of Solid Fuels Occurring in Canada-Continued

NOVA SCOTIA-Concluded

					Coal	ls from P	ictou are	ea						
		lford.					"Acad	ia'' coal					"Springhill" coal supplied	
	Pictor supplie Depar	d to the tment of Works	Naval Dej Na	upplied to val Service, Dept. of Supplied to Department of Public Works National Defence										
Sample No	12	2637	12	2540	12	2635	12	2638	12639		12	2641	12	642
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis— Moistureper cent Ash Volatile matter" Fixed carbon"	$4 \cdot 4$ 15 · 0 29 · 2 51 · 4	15·7 30·5 53·8	$2 \cdot 5$ 14 $\cdot 7$ 25 $\cdot 0$ 57 $\cdot 8$	$15 \cdot 1$ $25 \cdot 6$ $59 \cdot 3$	$2 \cdot 3 \\ 9 \cdot 3 \\ 32 \cdot 0 \\ 56 \cdot 4$	9-5 32-8 57-7	1.7 15.0 28.3 55.0	$15 \cdot 3$ $28 \cdot 8$ $55 \cdot 9$	$1.8 \\ 16.6 \\ 27.5 \\ 54.1$	16·9 28·0 55·1	$1.7 \\ 16.9 \\ 27.8 \\ 53.6$	$17 \cdot 2$ 28 · 3 54 · 5	$2 \cdot 3 \\ 6 \cdot 5 \\ 31 \cdot 8 \\ 59 \cdot 4$	6.6 32.6 60.8
Ultimate Analysis— Sulphurper cent Nitrogen	1·4 	1.5	0.9 1.9	0.9 1.9	1·9 	2·0	1·6	1.6 	1·1 	1·1	1.1	1·1 	1·5 	1·6
Calorific Value— Calories per grm., gross B.T.U. per lb., gross	6,515 11,730	6,820 12,270	7,020 12,640	7,200 12,960	7,450 13,410	7,630 13,730	7,045 12,680	7,170 12,900	$6,725 \\ 12,110$	6,850 12,330	6,810 12,260	$6,930 \\ 12,470$	7,670 13,810	7,855 14,140
Fuel ratio Coking properties Softening temperature of		•75 oor	Ģ	•30 ood	G	•75 food	1	-95 Fair	Ē	-95 Fair		95 Fair	Ō	-85 Food
ash°F.	2	415	2	700+	2	2125	2	420	2	430	2	580		100
Designation of coal Kind of sample Taken by	Comm	ercial		96	1	••••••			• • • • • • • • •	•••••				
Date of sampling	Dec. 1	.933	. Nov. 1	.933	Dec. 1	1933	· · · · · · · · · · · · · · · · · · ·		•••••	••••				•••••

*Probably from Milford colliery, Greenwood Coal Company, Ltd., Coalburn, Thorburn.

90945—2**i**

~7

.

. _ __ _ . _

Analyses of Solid Fuels Occurring in Canada—Continued

NEW BRUNSWICK

		ille mine, county.	Kir	ıg coal m	ines, Ch	ipman		"Minto"	coal	
_	thi Depa of I	Department of Public Works		From deep shaft		oal, or ing, coal	penite St. Vi	lied to ntiary at ncent de l. Que.	indu plaı	ied to strial nt in treal
Sample No	1	3268	12	2281	1:	2282	15	2952	12	265
Moisture condition	R	D	R	D	R	D	R	D	R	D
Proximate Analysis— Moisture	6.1 8.8 36.6 48.5	9·4 39·0 51·6	$1 \cdot 4 \\ 8 \cdot 9 \\ 36 \cdot 6 \\ 53 \cdot 1$	9.0 37.1 53.9	1.5 11.8 35.7 51.0	12-0 36-2 51-8	$0.9 \\ 17.6 \\ 30.1 \\ 51.4$	17·8 30·4 51·8	$2 \cdot 0$ 12 \cdot 8 31 \cdot 5 53 \cdot 7	13.0 32.2 54.8
Ultimate Analysis— Sulphurper cent	5.6	6.0	4.2	4 ·3	6.5	6.6	8∙6	8.7	$5 \cdot 2$	5.3
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,005 12,610	$7,460 \\ 13,430$	7,710 13,870	7,815 14,070	7,350 13,230	7,465 13,440	6,595 11,870	6,600 11,980	••••	••••
Fuel ratio	1	-35	1	·45	1	•45	1	•70		1.70
Coking properties	L 1	Fair	F	air	l I	Fair	G	boo	Fair t	o good
Softening temperature of ash°F.	2	2110	.		.					2180
Kind of sample					•••••		Comm	ercial		
Taken by		•••••]Mine operator				Departmental employees.			
Date of sampling	June, 1	934	August, 1933				March, 1934 July, 1933.			

Analyses of Solid Fuels Occurring in Canada—Continued

NEW BRUNSWICK—Concluded

				"М	into" co	al supplie	ed to the	e Depart	ment of	Public W	orks		_	
Sample No	12	2624	19	2625	15	12627		12629		12634		12636		2652
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis— Moistureper cent Ash	$1 \cdot 0 \\ 17 \cdot 9 \\ 30 \cdot 9 \\ 50 \cdot 2$	$18 \cdot 1$ $31 \cdot 2$ $50 \cdot 7$	1·1 16·8 31·7 50·4	17·0 32·0 51·0	$ \begin{array}{c} 1 \cdot 1 \\ 12 \cdot 8 \\ 32 \cdot 7 \\ 53 \cdot 4 \end{array} $	12.9 33.1 54.0	$\begin{array}{c} 0 \cdot 9 \\ 14 \cdot 5 \\ 32 \cdot 0 \\ 52 \cdot 6 \end{array}$	$14 \cdot 6$ $32 \cdot 3$ $53 \cdot 1$	$\begin{array}{c} 0 \cdot 9 \\ 16 \cdot 0 \\ 31 \cdot 0 \\ 52 \cdot 1 \end{array}$	$16 \cdot 2 \\ 31 \cdot 3 \\ 52 \cdot 5$	$ \begin{array}{c} 1 \cdot 0 \\ 12 \cdot 9 \\ 32 \cdot 7 \\ 53 \cdot 4 \end{array} $	13·1 33·0 53·9	$1 \cdot 0$ 17 \cdot 5 31 \cdot 5 50 \cdot 0	$17 \cdot 7$ $31 \cdot 8$ $50 \cdot 5$
Ultimate Analysis— Sulphurper cent	6-5	6-6	7.1	7.1	6.7	6.7	6-0	6-1	6.8	6-9	7.4	7.5	7.5	$7 \cdot 5$
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	6,925 12,470	6,995 12,590	$6,970 \\ 12,540$		7,325 13,190	7,405 13,330	$7,155 \\ 12,880$		7,025 12,650	7,085 12,760	$7,220 \\ 12,990$	$7,290 \\ 13,120$	6,830 12,290	6,900 12,420
Fuel ratio	1	. 65	1	.•60	1.65		1.65		1.70		1.65		1	- 60
Coking properties	G	bood	G	bood	G	boo	Good		Good		Good		G	ood
Softening temperature of ash°F.	1	.990	2	:050	1	950	1	950	1	950	2	040	1	975
Kind of sample	Comm	ercial												••••••
Taken by	. Departmental employees													
Date of sampling	Decem	December, 1933												

Analyses of Solid Fuels Occurring in Canada-Continued

ONTARIO

	der bet Chest and Mo	from osit ween erville rewood, s county	Beverl lot 28, Beverl ship, We	from ly bog, con. 7, y town- entworth inty	a be Muin Ox town	from og at rkirk, ford aship, county	near'	Timmins	ntjoy to s; from t 9, con.	south	Fusain selected from Onaka- wana lignite from the Abitibi river
Sample No	11	120	12	270	12	555	120	606	12	607	11386
Moisture condition	R	D	R	D	R	D	R	D	R	D	D
Proximate Analysis— Moistureper cent Ash	14.1 2.7 54.4 28.8	$3 \cdot 2 \\ 63 \cdot 3 \\ 33 \cdot 5$	68·2 6·7 	21.0 	8·9 10·3 56·3 24·5	$11 \cdot 3 \\ 61 \cdot 8 \\ 26 \cdot 9$	8-8 5-7 58-8 26-7	$6 \cdot 3 \\ 64 \cdot 5 \\ 29 \cdot 2$	$9.1 \\ 2.7 \\ 61.3 \\ 26.9$	$3 \cdot 0 \\ 67 \cdot 4 \\ 29 \cdot 6$	$9 \cdot 7$ $34 \cdot 3$ $56 \cdot 0$
Ultimate Analysis— Sulphurper cent Nitrogen"	••••	••••	0·4 0·7	$1 \cdot 4$ $2 \cdot 2$	0.3	0·3		 		 	2.3
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	4,745* 8,540	5,530 9,950			4,585 8,250	5,035 9,060		 		 	
Fuel ratio	0.	53			0	•43	0.	45	0.	44	1.65
Forms of sulphur, per cent of total sulphur											t
Kind of sample	dried		From along lines r from	43 holes cross- unning bases 7							·····
Taken by Date of sampling	Private Summe	individu r of 1932	and 8 als Season c	of 1933	l :		l 		l 		Staff of F. R. L. November, 1932

*Corrected for sulphur assumed to be 0.1 per cent. † Sulphate, 16.4; pyritic, 69.3: organic, 14.3.

Analyses of Solid Fuels Occurring in Canada—Continued

ALBERTA

.

	on res	erve, 11 Cluny, 0	miles	from I supplie partm	elieved to Drumhell ed to th ent of N ce, Winni	erarea, 1e De- ational	ited,	Collierie Hinton, t area	s, Lim- Prairie	Coke	Compan ale mine,	v. Limi	oal and ted, Car- n, Crows-
Sample No		12189			11527			11062		11	1570	11	.571
Moisture condition	R	AD	D	R	AD	D	R	\mathbf{AD}	D	R	D	R	D
Proximate Analysis— Moisture	$17.8 \\ 7.5 \\ 31.5 \\ 43.2$	$15 \cdot 8 \\ 7 \cdot 6 \\ 32 \cdot 3 \\ 44 \cdot 3$	$9 \cdot 1$ 38 · 4 52 · 5		$ \begin{array}{r} 15 \cdot 8 \\ 10 \cdot 0 \\ 30 \cdot 6 \\ 43 \cdot 6 \end{array} $	$ \begin{array}{c} 11 \cdot 9 \\ 36 \cdot 3 \\ 51 \cdot 8 \end{array} $	34.4	5.7 11.9 34.5 47.9	12·6 36·6 50·8	$24 \cdot 6$	$12 \cdot 5$ $25 \cdot 0$ $62 \cdot 5$	$2 \cdot 8 \\ 15 \cdot 2 \\ 24 \cdot 0 \\ 58 \cdot 0$	15 · 6 24 · 7 59 · 7
Ultimate Analysis— Carbonper cent Hydrogen" Ash." Sulphur." Nitrogen." Oxygen."	 0·4 	 0·4	0.5		 0.6 	0.7	$5 \cdot 2$ 11 \cdot 9 0 \cdot 4	$67 \cdot 4 \\ 5 \cdot 2 \\ 11 \cdot 9 \\ 0 \cdot 4 \\ 1 \cdot 4 \\ 13 \cdot 7$	71.54.912.60.41.59.1	$ \begin{array}{r} 4.4 \\ 12.3 \\ 0.7 \\ 1.2 \end{array} $	$76.6 \\ 4.3 \\ 12.5 \\ 0.7 \\ 1.2 \\ 4.7$	$71.0 \\ 4.5 \\ 15.2 \\ 0.6 \\ 1.2 \\ 7.5$	73.14.315.60.61.25.2
Calorific Value Calories per gramme, gross B.T.U. per pound, gross		5,435 9,780	$6,455 \\ 11,620$	$5,285 \\ 9,510$	5,345 9,620		6,680 12,020	$6,695 \\ 12,050$		7,310 13,160	$7,425 \\ 13,360$	$6,920 \\ 12,460$	7,125 12,830
Fuel ratio Carbon-hydrogen ratio Coking properties Softening temperature of ash°F	N	1.35 on-cokin	····	N	1.45 Jon-cokin 		12.8	1.40 12.9 Poor 2300	14-7	17·0 I	2·50 17·6 Fair 	15·9 1	·40 17·1 Fair ····
Designation of coal Kind of sample Location in mine	Mine Face of 1	main ent	y S.W.	"Drum Comme	lump'' rcial		Run-of Comm	-mine ercial		5 slo	pe south	, 8 ent	ry, No. 3
Taken by	Official of In	of Depar iterior, C	tment algary	Departr ees	nental e	mploy-	Forest Rail ers	ranger, I way Com	Board of mission-	f B. R. MacKay, Geological - Survey			
Date of sampling	June 20,	1933	• • • • • • •	January	, 1933	• • • • • • • • •		, 1932	•••••	August	1, 1932		· • • • • • • • • • • •

Analyses of Solid Fuels Occurring in Canada—Continued

ALBERTA—Continued

				(Canmore	e Coal Co	mpany,	Limited	, Canmo	re, Casca	de area			
Sample No	12746		12	747	1	2748	11	2749	13	3226	13	227	1:	2599
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis— Moistureper cent Ash	4.0 4 15.2 15	4·1 5·3)·6	1·4 5·8 13·4 79·4	5.9 13.6 80.5	0-9 4-3 15-1 79-7	4·4 15·2 80·4	1.1 4.1 13.4 81.4	4·2 13·6 82·2	$1 \cdot 0$ 5 \cdot 3 13 \cdot 8 79 \cdot 9	5.4 13.9 80.7	1·4 9·1 14·7 74·8	9-2 14-9 75-9	1.1 9.5 18.7 70.7	9.6 18.9 71.5
Ultimate Analysis— Carbonper cent Hydrogen" Ash" Sulphur" Nitrogen" Oxygen"	$\begin{array}{cccc} 4 \cdot 1 & 4 \\ 4 \cdot 0 & 4 \\ 0 \cdot 7 & 0 \\ 1 \cdot 5 & 1 \end{array}$	7·5 4·0 4·1 0·7 1·5 2·2	84.6 4.1 5.8 0.8 1.7 3.0	85.7 4.0 5.9 0.8 1.7 1.9	86.6 4.2 4.3 0.7 1.5 2.7	87·3 4·2 4·4 0·7 1·5 1·9	$\begin{array}{r} 87.0 \\ 4.1 \\ 4.1 \\ 0.7 \\ 1.3 \\ 2.8 \end{array}$	$87.9 \\ 4.0 \\ 4.2 \\ 0.7 \\ 1.3 \\ 1.9$	0.6	0.6	···· 0·7	0.7	···· 0·9 ····	 0.9
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	8,265 8,3 14,870 15,0		8,035 14,460	8,145 14,660	8,310 14,960	8,385 15,090	8,300 14,940	8,390 15,100	8,075 14,540	8,165 14,700	7,710 13,870	7, 815 14, 070	7,800 14,040	7,885 14,190
Fuel ratio	, 5.25		5	•90	5	-25	6	·05	5	·80	5	·10	.	
Carbon-hydrogen ratio	21.0 21	L۰6	20.8	21.6	20.5	21.0	21.3	$22 \cdot 0$		••••	• • • •			
Coking properties Softening temperature of	Agglomera	ate	Ågglo	merate	Ågglo	merate	Agglo	merate	P	oor	Р	oor	F	oor
ash°F	••••			•••				•••	.				2	620
Designation of coal								••••••	Domes	tic lump.	Steam	slack	Brique	ttes
Kind of sample									. <i>.</i>				Comm	ercial
Location in mine	Stewart sea	m	Carey	seam	No. 2	Morris	No. 1	Morris						
Faken by	Mine operat	ors	l 	• • • • • • • • • • • •	seam	• • • • • • • • • •	l seam	• • • • • • • • • •	1		1 		Ottawa	dealer
Date of sampling	January, 193	34	•••••	•••••			•••••	•••••	April,	1934		•••••	Decem	ber, 1933

Analyses of Solid Fuels Occurring in Canada-Continued

ALBERTA-Concluded

		tain Parl Park, Mo				ountain	Cado	min Coal M	Compa Iountain	ny, Limi Park ar	ted, Ca	lomin,
-	Depart Nat Defe	ied to ment of ional nce at nipeg	Suppl	ied to ind Vanc	lustrial j ouver	plant at	indust	lied to rial plant ncouver	Jountain Park area Supplied to Fuel Researce Laboratories I2830 12834 R D R 1.6 1.7 . 8.4 8.5 8.2 27.9 28.4 28.1 2 62.1 63.1 62.0 6 79.8 81.1 79.9 8 5.0 4.9 4.8 8.4 8.5 8.2 0.3 0.3 0.3 1.1 5.7 7 7,755 7,880 7,760 7,7 13,960 14,180 13,960 14,			
Sample No	11	217	11	.230	11	899	11	889	12	830	12	834
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis Moistureper cent Ash	$1 \cdot 3 \\ 13 \cdot 9 \\ 27 \cdot 0 \\ 57 \cdot 8$	$14 \cdot 1$ $27 \cdot 4$ $58 \cdot 5$	$1 \cdot 1 \\ 5 \cdot 9 \\ 28 \cdot 6 \\ 64 \cdot 4$	$6 \cdot 0$ 28 \cdot 9 65 \cdot 1	$4 \cdot 8$ 11 \cdot 4 27 \cdot 6 56 \cdot 2	12.0 29.0 59.0	$4 \cdot 5$ 10 \cdot 1 25 \cdot 2 60 \cdot 2	10.5 26.4 63.1	$\frac{8 \cdot 4}{27 \cdot 9}$	$8.5 \\ 28.4$	8·2 28·1	$8 \cdot 3$ 28 \cdot 6 63 \cdot 1
Ultimate Analysis Carbonper cent Hydrogen	···· 0·5 ····	0.5	 0-2 	 0-2	$73 \cdot 4 \\ 5 \cdot 0 \\ 11 \cdot 4 \\ 0 \cdot 4 \\ 1 \cdot 1 \\ 8 \cdot 7$	$77.2 \\ 4.7 \\ 12.0 \\ 0.4 \\ 1.1 \\ 4.6$	$74.5 \\ 5.0 \\ 10.1 \\ 0.4 \\ 1.1 \\ 8.9$	$78 \cdot 1 \\ 4 \cdot 7 \\ 10 \cdot 5 \\ 0 \cdot 5 \\ 1 \cdot 1 \\ 5 \cdot 1$	5.0 8.4 0.3 1.1	4.9 8.5 0.3 1.2	4.8 8.2 0.3 1.1	$81 \cdot 3$ $4 \cdot 7$ $8 \cdot 3$ $0 \cdot 3$ $1 \cdot 2$ $4 \cdot 2$
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,175 12,920	7,270 13,080	8,060 14,500	8,145 14,660	7,205 12,970	7,565 13,620	7,325 13,180	7,670 13,810	7,755 13,960			7,890 14,210
Fuel ratio Carbon-hydrogen ratio Coking properties Softening temperature of ash°F.	· · · · ·	-15 'air 670	 G	·25 265	14·6 G	$05 \\ 16.3 \\ 000 \\ 520 $	14·9 G	·40 16·6 ood 00+	16·1 G	16.7 ood	16·5 G	17·3 ood
Designation of coal	Run-of-	mine							Air-cle	aned at n	earby pl	ant.
Kind of sample Location in mine Taken by	 Depar	ercial tmental oyees.	 		Staff o atori	of Fuel	Researc	h Labor-	5 tons i Shaft r Mine oj	n each ca nine perators.	ise. .[Tunnel	mine.
Date of sampling	Sept.,	1932	Aug., 1	1932	Mar., 1	.933			April, 1	934		

Analyses of Solid Fuels Occurring in Canada—Continued

NORTHWEST TERRITORIES

			Lignite	samples	from G	reat Bea	r lake					
<u> </u>	From Boulder point, 15 miles west of Etacho point			Fro	m Doug	las bay, r	iear Eta	cho poi	nt			
Sample No	10589	11253			11254		1	11256			11257	
Moisture condition	R D	R AD	D	R	AD	D	R	AD	D	R	AD	D
Proximate Analysis— Moistureper cent Ash	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 45{\cdot}5 & 20{\cdot}7 \\ 5{\cdot}6 & 8{\cdot}2 \\ 24{\cdot}1 & 35{\cdot}1 \\ 24{\cdot}8 & 36{\cdot}0 \end{array}$	10·4 44·2 45·4	$48 \cdot 0$ $4 \cdot 6$ $22 \cdot 8$ $24 \cdot 6$	$20 \cdot 4 \\ 7 \cdot 1 \\ 34 \cdot 9 \\ 37 \cdot 6$	$8 \cdot 9$ $43 \cdot 9$ $47 \cdot 2$	$50 \cdot 4$ $4 \cdot 7$ $21 \cdot 6$ $23 \cdot 3$	19·4 7·7 35·1 37·8	9-5 43-6 46-9	$49 \cdot 1 \\ 8 \cdot 2 \\ 21 \cdot 2 \\ 21 \cdot 5$	18·0 13·3 34·1 34·6	$16 \cdot 2 \\ 41 \cdot 6 \\ 42 \cdot 2$
Ultimate Analysis Carbonper cent Hydrogen" Ash" Sulphur" Nitrogen" Oxygen"	0·3 0·4	0·2 0·3	0.3	$32 \cdot 9$ 7 \cdot 3 4 \cdot 6 0 \cdot 2 0 \cdot 5 54 \cdot 5	50·4 5·2 7·1 0·3 0·8 36-2	$63 \cdot 3$ $3 \cdot 6$ $8 \cdot 9$ $0 \cdot 3$ $1 \cdot 1$ $22 \cdot 8$	$32 \cdot 2$ 7 \cdot 6 4 - 7 0 \cdot 2 0 \cdot 5 54 \cdot 8	52·3 5·4 7·7 0·3 0·7 33·6	$ \begin{array}{r} 64 \cdot 9 \\ 4 \cdot 0 \\ 9 \cdot 5 \\ 0 \cdot 3 \\ 0 \cdot 9 \\ 20 \cdot 4 \end{array} $	 0-4 	0.6	 0.8
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	3,980 6,205 7,170 11,170	3,005 4,375 5,410 7,870	5, <u>5</u> 15 9, 930	2,890 5,200	4,425 7,970	5,560 10,010	2,965 5,330	4, 810 8, 660	5,970 10,750	2,890 5,200	4,650 8,370	5,675 10,220
Fuel ratio Carbon-hydrogen ratio Coking properties Softening temperature of ash		1 · 25 Non-cok 2205	 ing	4.5	1.10 9.8 Non-co 2285	17.5 oking	4·2	1 · 10 9 · 7 Non-co 2205	16·2 oking		1.00 Non-co	 oking
Kind of sample												
Location in deposit		5-foot 6-inch t foot 3-inch se	ор of 16-	18 feet	6 inche	es: next	113 feet	of brov 20-foo		4 feet	of ligr clay.	nite with
Taken by Date of sampling	Private indi- vidual.											

. •

Analyses of Solid Fuels Occurring in Canada-Continued

BRITISH COLUMBIA

	Corbin Col	llieries, Limited,	Corbin, Crowsne	st Pass area	Crow's Nest Pas	s Coal Company	, Limited, Fernie,
<u> </u>	No. 4 mine	No. 6 mine	No. 8	mine	Michel mine, I	Michel, Crowsne	st Pass area
Sample No Moisture condition	R 10914 R D	$egin{array}{ccc} 10915 \ { m R} & { m D} \end{array}$	R D	R 12503 D	$egin{array}{ccc} 10865 \ { m R} & { m D} \end{array}$	R 10866 D	R 10867 D
Proximate Analysis— Moistureper cent Ash	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Ultimate Analysis— Carbonper cent Hydrogen" Ash" Sulphur" Nitrðgen" Oxygen"	$\begin{array}{cccc} 71\cdot 6 & 73\cdot 1 \\ 4\cdot 1 & 4\cdot 0 \\ 16\cdot 0 & 16\cdot 3 \\ 0\cdot 2 & 0\cdot 2 \\ 1\cdot 1 & 1\cdot 1 \\ 7\cdot 0 & 5\cdot 3 \end{array}$	$\begin{array}{cccccc} 71 \cdot 2 & 73 \cdot 0 \\ 4 \cdot 2 & 4 \cdot 0 \\ 16 \cdot 4 & 16 \cdot 8 \\ 0 \cdot 2 & 0 \cdot 2 \\ 1 \cdot 1 & 1 \cdot 1 \\ 6 \cdot 9 & 4 \cdot 9 \end{array}$	0·4 0·4	$\begin{array}{cccc} 76\cdot9 & 78\cdot3 \\ 0\cdot6 & 0\cdot4 \\ 17\cdot8 & 18\cdot1 \\ 0\cdot3 & 0\cdot3 \\ 1\cdot0 & 1\cdot1 \\ 3\cdot4 & 1\cdot8 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 74\cdot 0 & 75\cdot 2 \\ 4\cdot 5 & 4\cdot 4 \\ 14\cdot 3 & 14\cdot 6 \\ 0\cdot 6 & 0\cdot 6 \\ 1\cdot 2 & 1\cdot 2 \\ 5\cdot 4 & 4\cdot 0 \end{array}$	$\begin{array}{cccc} 79\cdot7 & 81\cdot1 \\ 5\cdot0 & 4\cdot9 \\ 7\cdot1 & 7\cdot2 \\ 0\cdot5 & 0\cdot5 \\ 1\cdot4 & 1\cdot5 \\ 6\cdot3 & 4\cdot8 \end{array}$
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	6,845 6,985 12,330 12,570	6,865 7,030 12,350 12,650	6,735 7,175 12,130 12,910	6,145 6,260 11,060 11,270	7,900 8,065 14,220 14,520	$\begin{array}{cccc} 7,235 & 7,360 \\ 13,020 & 13,250 \end{array}$	7,930 8,070 14,270 14,520
Fuel ratio Carbon-bydrogen ratio Coking properties Softening temperature of ash	17.3 18.3 Agglomerate	2-85 17-1 18-2 Agglomerate 2490	2.50 Fair 2680	····· ·····	$\begin{array}{c} 2 \cdot 95 \\ 16 \cdot 6 \qquad 17 \cdot 4 \\ \text{Good} \\ 2700 + \end{array}$	$\begin{array}{r}3\cdot05\\16\cdot5&17\cdot2\\Good\\2700+\end{array}$	2.80 15.8 16.5 Good and swollen 2700+
Designation of coal				"Natural coke" from zone 25 \times 15 \times 10 feet	· · · · · · · · · · · · · · · · · · ·		
Kind of sample	Mine						••••••
Location in mine	135-foot seam 10 west cross- cut, A level			Mammoth seam, upper showing	Upper No. 3 seam; east level, main tunnel	seam; from	1
Taken by	1017	Geological Sur-	Company's eng-	-	1	1	
Date of sampling	June 29, 1932	•••••	May, 1933	August, 1933	June 15, 1932	June 16	June 17

Analyses of Solid Fuels Occurring in Canada—Continued

BRITISH COLUMBIA—Continued

_			Crow	's Nest I	Pass Coa	al Compa	ıny, Lim	ited, Fer	nie—Mi	chel mine	e, Michel	l, Crows	nest Pass	area.		
Sample No	10	0868	10	0869	10	0870	1	0871	1	0872	10	0873	10	874	1	913
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis— Moistureper cent Ash. " Volatile matter" Fixed carbon"	$2 \cdot 1$ 10 · 8 21 · 6 65 · 5	11.0 22.1 66.9	1.7 13.4 23.1 61.8	13-6 23-5 62-9	1-4 6-6 24-7 67-3	6.7 25.0 68.3	1.6 5.8 24.4 68.2	5-9 24-8 69-3	3·1 5·2 24·1 67·6	5-3 24-9 69-8	$2 \cdot 5$ 13 \cdot 7 21 \cdot 6 62 \cdot 2	14.0 22.2 63.8	$2 \cdot 6 \\ 5 \cdot 1 \\ 23 \cdot 9 \\ 68 \cdot 4$	5-2 24-5 70-3	2·4 7·1 21·4 69·1	7·3 21-9 70·8
Ultimate Analysis— Carbonper cent Hydrogen	76.7 4.8 10.8 0.5 1.3 5.9	$78 \cdot 4 \\ 4 \cdot 6 \\ 11 \cdot 0 \\ 0 \cdot 6 \\ 1 \cdot 3 \\ 4 \cdot 1$	74-3 4-7 13-4 0-4 1-4 5-8	75-6 4-6 13-6 0-4 1-4 4-4	81.2 4.8 6.6 0.7 1.3 5.4	$82 \cdot 3$ $4 \cdot 7$ $6 \cdot 7$ $0 \cdot 7$ $1 \cdot 3$ $4 \cdot 3$	81.9 5.1 5.8 0.4 1.6 5.2	83-3 5-0 5-9 0-4 1-6 3-8	81-2 5-1 5-2 0-4 1-4 6-7	83.7 4.9 5.3 0.5 1.5 4.1	74-0 4-6 13-7 0-6 1-3 5-8	$75 \cdot 9$ $4 \cdot 5$ $14 \cdot 0$ $0 \cdot 6$ $1 \cdot 3$ $3 \cdot 7$	81.5 4.9 5.1 0.6 1.6 6.3	83.7 4.7 5.2 0.7 1.6 4.1	79.8 4.7 7.1 0.6 1.4 6.4	81-8 4-6 7-3 0-6 1-4 4-3
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,435 13,380	7,600 13,680	7,250 13,050	7,370 13,270	7,980 14,360	8,090 14,570	8,075 14,540	8,210 14,780	7,970 14,350		7,170 12,910	7,355 13,240	7,905 14,230	8,120 14,610	7,780 14,000	7,975 14,350
Fuel ratio	3	·05	2	•70	2	· 75	2	·80	2	•80	2	•90	. 2	•85	3	-25
Carbon-hydrogen ratio	16-0	16-9	16-0	16-6	17.0	17.6	16-2	16.8	16.0	17-1	16-0	17.1	16.7	17-8	16-8	17.8
Coking properties	G	ood	G	ood	Good, s	swollen	Good,	swollen	Good	, swollen	G	ood	G	ood	G	ood
Softening temperature of ash F.	2	700+	2	700+-	2	700- -	2	700-+-	2	700+	2	700+	2	700- -	2	700+
Kind of sample	No. 5 east		No. A from betw east count and 6 count		No. I face west		:1No.	l seam s face of ter.	lump taker 9 of	9 seam; sample n in No. f No. 8 haulage.	about in ne tunne	t 800 ft w No. '	; No. 8 50 ft. 7 room cline.	in No. 2 , B in	main	4 seam tunnel.
Taken by	B. R. I	MacKay,	Geologi	cal Surve	ey	•••••	· · · · · · · · · · · · · · · · · · ·		· ·····				•••••••••••••••••••••••••••••••••••••••	· • • • • • • • • •	•	•••••
Date of sampling	June 18,	, 1932	June 20	· · · · · · · · · · ·	•••••	• • • • • • • • • •	June 21	l	June 23	}. <i></i>	••••••		. June 24	•••••	July 6.	. .

Analyses of Solid Fuels Occurring in Canada-Continued

BRITISH COLUMBIA—Continued

-		Crow's Nest Pa	ss Coal Company	, Limited, Fernie	-Michel colliery	7, Michel, Crows	nest Pass area	
Sample No	10925	10924	10923	10922	10921	10926	11226	11870
Moisture condition	R. D	R D	R D	R D	R D	R D	R D	R D
Proximate Analysis— Moistureper cent Ash Volatile matter" Fixed carbon"	$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
Ultimate Analysis- Carbonper cent Hydrogen Ash	0.7 0.8	···· ··· ··· ··· ··· ···	0.4 0.4 	0.4 0.4 	0.8 0.8 	0-7 0-7 	0.6 0.7 	$\begin{array}{ccccccc} 78\cdot 5 & 81\cdot 4 \\ 5\cdot 1 & 4\cdot 8 \\ 6\cdot 5 & 6\cdot 7 \\ 0\cdot 6 & 0\cdot 6 \\ 1\cdot 4 & 1\cdot 5 \\ 7\cdot 9 & 5\cdot 0 \end{array}$
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,925 8,025 14,270 14,450	7,435 7,550 13,390 13,590	8,060 8,130 14,510 14,630	7,780 8,060 14,010 14,510				
Fuel ratio	2.55	2.70	2.70	2.70	3 • 10	2.75	2.50	2.40
Carbon-hydrogen ratio								15.5 16.8
Coking properties	Good							
Softening temperature of ash°F.	2290	2700+	2525	2700+	2700+	2700+	2325	2350
Designation of coal								upplied to indust-
Location in mine Taken by	1	of A seam.	of A seam.				1	Staff of Fuel Research Laboratories.
Date of sampling	July, 1932		• • • • • • • • • • • • • • • • • • • •			••••••	June, 1932	Mar., 1933

-

.

Analyses of Solid Fuels Occurring in Canada—Continued

BRITISH COLUMBIA--Continued

				Crow's Mich	Nest Pas el collier	ss Coal C y, Miche	Company el, Crows	, Limite nest Pas	d, Fernie s area	·,			
	Sup	plied to in at Brand			indu plar	lied to strial nt at eg, Man.	Samp		out 100 Lesearch			Fuel	
Sample No	1	2055	15	2056	12	903	12)92	120	093	12	94	
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D	
Proximate Analysis	$1 \cdot 1 \\ 8 \cdot 7 \\ 27 \cdot 1 \\ 63 \cdot 1$	8-8 27-4 63-8	$ \begin{array}{r} 1 \cdot 0 \\ 6 \cdot 6 \\ 26 \cdot 3 \\ 66 \cdot 1 \end{array} $	6.6 26.6 66.8	$2 \cdot 2$ 9 \cdot 3 $24 \cdot 2$ $64 \cdot 3$	9.5 24.8 65.7	1.0 7.1 26.1 65.8	7·2 26·3 66·5	$0.9 \\ 6.1 \\ 25.7 \\ 67.3$	$6 \cdot 2$ 25 · 9 67 · 9	0.8 7.8 22.4 69.0	$7 \cdot 9$ 22 · 6 69 · 5	
Ultimate Analysis— Sulphurper cent	0.6	0.6	0.6	0.6	0.4	0-4	0.6	0.6	0.4	0.4	0.7	0-8	
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,715 13,890	7,800 14,040	8,025 14,450	8,110 14,600		 							
Fuel ratio	2	•30	2	·50	2.	65	2.	55	2.	60	3.	10	
Coking properties	6	bood	G	bood	Go	bod	Go	bod	Good,	swollen	Good,	swollen	
Softening temperature of ash°F	2	185	2	500	29	80	24	50	24	25	270	0+	
Designation of coal Kind of sample			1		ł		smith	ing					
Location in mine													
Taken by									seam		seam		
Date of sampling	toria	e					-						

Analyses of Solid Fuels Occurring in Canada-Continued

BRITISH COLUMBIA—Continued

		Crow's 1 Coal Cree				, Limited Frowsnest			Short	eposit at 's creek,
	_	No. 1 ea	ast mine		No.	2 mine	No.	3 mine		aganlake
Sample No	1	1224	11	225	11	222	11	.223	10	758
Moisture condition	R	D	R	D	R	D	R	D	R	D
Proximate Analysis— Moisture	$1.5 \\ 10.4 \\ 22.2 \\ 65.9$	10.5 22.6 66.9	$1 \cdot 6 \\ 6 \cdot 8 \\ 23 \cdot 9 \\ 67 \cdot 7$	6-9 24-3 68-8	1.7 4.7 25.1 68.5	4-8 25-5 69-7	$1 \cdot 4 \\ 8 \cdot 2 \\ 22 \cdot 3 \\ 68 \cdot 1$	8·3 22·6 69·1	$2 \cdot 3 \\ 7 \cdot 1 \\ 33 \cdot 0 \\ 57 \cdot 6$	7.3 33.8 58.9
Ultimate Analysis Carbon	$78 \cdot 9 \\ 4 \cdot 7 \\ 10 \cdot 4 \\ 0 \cdot 3 \\ 1 \cdot 3 \\ 4 \cdot 4$	80.1 4.6 10.5 0.4 1.3 3.1	$\begin{array}{c} 82 \cdot 1 \\ 5 \cdot 0 \\ 6 \cdot 8 \\ 0 \cdot 3 \\ 1 \cdot 3 \\ 4 \cdot 5 \end{array}$	$83 \cdot 4$ $4 \cdot 9$ $6 \cdot 9$ $0 \cdot 4$ $1 \cdot 3$ $3 \cdot 1$	$ \begin{array}{r} 83.7 \\ 5.1 \\ 4.7 \\ 0.4 \\ 1.3 \\ 4.8 \end{array} $	$85 \cdot 1$ $5 \cdot 0$ $4 \cdot 8$ $0 \cdot 4$ $1 \cdot 3$ $3 \cdot 4$	$\begin{array}{c} 81 \cdot 2 \\ 4 \cdot 7 \\ 8 \cdot 2 \\ 0 \cdot 5 \\ 1 \cdot 2 \\ 4 \cdot 2 \end{array}$	$\begin{array}{r} 82 \cdot 3 \\ 4 \cdot 6 \\ 8 \cdot 3 \\ 0 \cdot 5 \\ 1 \cdot 3 \\ 3 \cdot 0 \end{array}$	$76 \cdot 4 \\ 5 \cdot 5 \\ 7 \cdot 1 \\ 0 \cdot 5 \\ 1 \cdot 4 \\ 9 \cdot 1$	78-2 5-3 7-3 0-5 1-4 7-3
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,640 13,750	7,760 13,970	8,035 14,460	8,165 14,700	8,110 14,590	8,250 14,850	7,790 14,030	7,900 14,220	7,720 13,890	7,905 14,230
Fuel ratio		2.95	2	• 85	2	•75	3	- 05	1	•75
Carbon-hydrogen ratio	16.7	17.3	16-5	17.1	16-4	17.0	17.5	18.0	13.9	14.6
Coking properties		Good	G	lood	G	food	G	lood	G	ood .
Softening temperature of ashP		2300	2	280	2	2155	1	.885	2	090
Kind of sample	Mine.							•••••	Prospe	ct
Location in mine		of main dips	oftu	eam, fac nnel, fac ain haul	No.	room off 2 incline	[No.4r 8 sloj			from sur- outcrop-
Taken by			Geologi						uals	at vernon
Date of sampling	July 8	, 1932		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · ·	•••••••	• • • • • • • • • •	May, 1	.932

Analyses of Solid Fuels Occurring in Canada-Continued

BRITISH COLUMBIA—Continued

	Depa	eton, su rtment	al from upplied to of Na- ce at Vic-	coal to in	supplied dustrial at Van-	No.	sboro Co Ierritt, N 2 south nine	llieries, Vicola an	Limited, rea	coal to i	supplied ndustrial at Van-
Sample No		12824		11	.990	1	2727	1	2728	12	2095
Moisture condition	R	AD	D	R	D	R	D	R	D	R	D
Proximate Analysis— Moistureper cent Ash	$20.5 \\ 8.9 \\ 28.8 \\ 41.8$	$19 \cdot 2 \\ 9 \cdot 1 \\ 29 \cdot 3 \\ 42 \cdot 4$	$ \begin{array}{c} 11 \cdot 3 \\ 36 \cdot 2 \\ 52 \cdot 5 \end{array} $	$11 \cdot 2 \\ 12 \cdot 7 \\ 31 \cdot 5 \\ 44 \cdot 6$	14-4 35-4 50-2	$7 \cdot 1$ $8 \cdot 6$ $37 \cdot 7$ $46 \cdot 6$	9•3 40•5 50•2	$ \begin{array}{r} 8.3 \\ 11.5 \\ 35.5 \\ 44.7 \\ 44.7 \end{array} $	12-6 38-7 48-7	$3 \cdot 5$ 15 · 0 29 · 5 52 · 0	$ \begin{array}{c} 15 \cdot 6 \\ 30 \cdot 5 \\ 53 \cdot 9 \end{array} $
Ultimate Analysis— Carbonper cent Hydrogen	 0-4 	 0.5 	0.6	$ \begin{array}{c} 60.9 \\ 5.3 \\ 12.7 \\ 0.4 \\ 1.1 \\ 19.6 \end{array} $	$68 \cdot 6$ $4 \cdot 5$ $14 \cdot 4$ $0 \cdot 5$ $1 \cdot 2$ $10 \cdot 8$	 0.5 	 0.5 	 0-5 	 0.5 	$68 \cdot 9 \\ 5 \cdot 1 \\ 15 \cdot 0 \\ 1 \cdot 9 \\ 1 \cdot 7 \\ 7 \cdot 4$	71.44.815.62.01.74.5
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	5,230 9,410	5,315 9,570	6,575 11,840	5,910 10,630	6,655 11,980	6,760 12,170		6,420 11,550	6,995 12,590	6,755 12,160	7,000 12,600
Fuel ratio		$1 \cdot 45$		1	·40	1	$\cdot 25$	1	·25	1	•75
Carbon-hydrogen ratio				11.5	$15 \cdot 1$				••••	13.5	14.7
Coking properties	l I	Non-cok	ing	Agglo	merate	Aggle	merate	Aggle	omerate	G	ood
Softening temperature of ash°F				2	625	.				2	095
Designation of coal Kind of sample						lump		tipple	e		
Taken by				Staff of	f F. R. L.	Mine o	perators.	••••••			
Date of sampling				March,	1933	Decem	ber, 1933	<u></u>	<u></u>	May, 1	933

*Presumably from the Nicola area.

Analyses of Solid Fuels Occurring in Canada—Continued

BRITISH COLUMBIA—Concluded

B. T. U. per pound, gross 12, 160 12, 920 11, 550 12, 720 12, 120 13, 060 12, 920 12, 10 12, 920 12, 440 13, 330 13, 440 1 Fuel ratio Carbon-hydrogen ratio 1.25 1.25 1.20 14.0 1.85 1.75 15.5 15.5 1600 12, 460 13, 330 13, 440 1 1.85 1.85 1.75 12, 460 13, 330 13, 440 1 1.85 1.85 1.75 12, 460 13, 330 13, 440 1 1.85		Canadian lieries (I muir), Lir Nanain Nanaimo	Duns- mited, no,		ern Fuel Ida, Limi			Ca	madian C		; (Dunsm Comox ar		nited, Cı	ımberla	nd,
Main performance R D R						Su	oplied to	industri	al plant a	t Vanco	uver				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample No	11228		11	227	11	966	11	229	11	820	11	949	11	959
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Moisture condition	R	D	\mathbf{R}	D	R	D	R	D	R	D	R	D	R	D
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Moistureper cent Ash	$11.5 \\ 36.4$	$ \begin{array}{c} 12 \cdot 2 \\ 38 \cdot 7 \end{array} $	$12 \cdot 5 \\ 34 \cdot 5$	13·7 38·0	$11 \cdot 2 \\ 36 \cdot 2$	$12 \cdot 1 \\ 39 \cdot 0$	13·7 29·3	$14.0 \\ 29.9$	13·4 29·4	$14.3 \\ 31.2$	$10.2 \\ 31.2$	$10.9 \\ 33.4$	$6 \cdot 2 \\ 31 \cdot 1$	6.6 33.4 60.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Carbonper cent Hydrogen" Ash Sulphur" Nitrogen"	0 08	 0.8	 0.8	 0.9	5.7 11.2 0.7 1.3	$5 \cdot 2 \\ 12 \cdot 1 \\ 0 \cdot 8 \\ 1 \cdot 4$	···· 1·1	 1.1	5.0 13.4 1.4 1.0	4.7 14.3 1.5 1.0	 1.6	1.7	$5.5 \\ 6.2 \\ 1.1 \\ 1.1$	79.55.16.61.21.16.5
Washed slack Douglas, and Ladysmith washed slack Western coal Comox Kind of sample	Calories per gramme, gross B.T. U. per pound, gross Fuel ratio Carbon-hydrogen ratio Coking properties Softening temperature of	12,160 12 1·25 Fair	2,920 5 	11,550 1 F	12,720 -25 air	12,120 1 12·0 F	13,060 •25 14•0 °air	12,670 1 G	12,960 •85 	12,110 $13\cdot 5$ G	12,870 •75 15•5 ood	12,460 1 G	13,330 •65 	13,440 1 13.5 G	·80 15·6 ood
Taken by	-	washed	slack	Doug Lady wash	Douglas, and Western Ladysmith washed slack				mine, pea	Comox		Washed	l Comox.	Double Come	washed
Date of sampling	Taken by			•••••		Staff Resea	arch La-								

TABLE I—Concluded

Analyses of Solid Fuels Occurring in Canada—Concluded

YUKON TERRITORY

		us Butte ine*	"Flo			from the to the C		Johnston er
Sample No	12	2504	15	2729	15	2730	15	2731
Moisture condition	R	D	R	D	R	D	R	D
Proximate Analysis— Moisture	$6.0 \\ 9.0 \\ 31.2 \\ 53.8$	9·5 33·2 57·3	$ \begin{array}{r} 1 \cdot 5 \\ 2 \cdot 5 \\ 9 \cdot 0 \\ 87 \cdot 0 \end{array} $	2.6 9.1 88.3	1.3 2.1 9.7 86.9	2·1 9·8 88·1	1.1 2.2 15.3 81.4	$2 \cdot 2$ 15 · 5 82 · 3
Ultimate Analysis— Carbon	69.6 5.2 9.0 0.3 1.0 14.9	$74 \cdot 1 \\ 4 \cdot 8 \\ 9 \cdot 5 \\ 0 \cdot 4 \\ 1 \cdot 0 \\ 10 \cdot 2$	···· ··· ···	 1.1 	 0.7	 0.7 	 0.6 	0.6
Calorific Value- Calories per gramme, gross B.T.U. per pound, gross	6,555 11,800	6,980 12,560	7,7 <u>40</u> 13,930	7,860 14,150	8,095 14,570	8,210 14,780	7,985 14,380	8,070 14,530
Fuel ratio Carbon-hydrogen ratio Coking properties Softening temperature of ash°F	13·4 Agglo	·70 15·5 omerate 330	Non-	•65 -coking	· · · · -	-95 -coking	Non-	·30 coking
Kind of sample Location in mine	8-foot 3 tion c foot s H. S.	-inch sec- of 7- to 14- seam Bostock,			•••••	• • • • • • • • • • • •	••••	
Date of sampling	Geolo Surve Season	ev			•••••			

*Probably mine operated by Five Fingers Coal Company at or near Carmacks

TABLE II

90945-43

Analyses of Coal Samples Submitted by the Department of Pensions and National Health

						_		Sla	ek	-							}-inch slacl	nut c
							Deliv	ered to	Camp I	Iill hosp	oital, Ha	alifax, N	.s.					
Sample No	10685	10762	10850	11174	11370	11439	11524	11605	11660	11773	12031	12107	12137	12292	12445	12505	12600	12623
Moisture (as received) per cent	5-4	5.5	2.7	4.7	5.7	3-6	4.1	3.6	5-0	5-6	5-8	3.3	4.5	4.5	5-8	5.5	5.6	6.0
Dry Basis- Ashper cent Volatile matter" Fixed carbon" Sulphur" Calories per gramme, gross. B.T.U. per pound, gross Softening temperature of ash"F		8.0 33.3 58.7 2.4 7,750 13,950	7.4 34.0 58.6 2.8 7,760 13,970	$2 \cdot 3$ 7,590	10-7 33-3 56-0 3-0 7,370 13,270	6-0 36-0 58-0 2-1 7,980 14,360	$ \begin{array}{r} 10.8 \\ 32.8 \\ 56.4 \\ 3.9 \\ 7,430 \\ 13,370 \\ 2050 \\ \end{array} $	$8 \cdot 2 \\ 34 \cdot 0 \\ 57 \cdot 8 \\ 2 \cdot 3 \\ 7,725 \\ 13,910 \\ 2090$	6-7 34-5 58-8 2-1 7,860 14,150 2090	9.433.057.62.57,64513,7602140	$58 \cdot 1$ 2 \cdot 4 7,735	$\begin{array}{r} 6 \cdot 1 \\ 35 \cdot 2 \\ 58 \cdot 7 \\ 1 \cdot 8 \\ 7,930 \\ 14,280 \\ 2130 \end{array}$	$7 \cdot 3 \\ 35 \cdot 0 \\ 57 \cdot 7 \\ 1 \cdot 9 \\ 7,850 \\ 14,130 \\ 2090$		$9 \cdot 2 \\ 33 \cdot 4 \\ 57 \cdot 4 \\ 2 \cdot 6 \\ 7,685 \\ 13,840 \\ 2070$	8·1 33·6 58·3 2·4 7,755 13,960 2040	10-6 32-6 56-8 2-5 7,600 13,690 2050	8-2 33-5 58-3 2-7 7,775 14,000 2040
Number of tons represented by sample	197	86	65	60	61	180	208	108	216	210	155	75	50	50	66	31	246	168
Date of delivery	April 2–28, 1932	May 6–27	June 8-28	Aug. 10–12	Oct. 19	Nov. 4–28	Dec. 8–28	Jan. 5–26, 1933	Feb. 1–28,	Mar. 7–30	April 8-21	May 13	June 2223	Aug. 21–22	Sept. 16–18	Oct. 26	Nov. 1–29	Dec. 14–28
	<u></u> ≩-inc	h nut s Camp	lack; d Hill hos	lelivered spital	to			Slack;	deliver	red to h	ospital a	t Ste. A	nne de l	Bellevue	, Que.			
Sample No	12717	12758	12792	13054	13228	10761	10787	10903	10904	10905	11181	11200	11236	11262	11371	11377	11438	11526
Moisture (as received) per cent	4.6	5-0	5.1	4.5	4.7	4-4	4·8	4.2	4.0	4.3	4.4	4.6	3.7	6.1	3.5	3.1	2.2	7.7
Dry Basis— Ashper cent Volatile matter " Sulphur" Calories per gramme, gross B.T.U. per pound, gross Softening temperature of ash	7.5 33.9 58.6 2.5 7,745 13,940 2170	8-8 33-3 57-9 2-6 7,755 13,960 2140	58-0 2-4 7,740	57.7 2.4 7,740 13,930	$34 \cdot 5$ $58 \cdot 1$ $2 \cdot 2$ 7,820 14,080	8·2 33·5 58·3 3·4 7,830 14,100		10.1 32.0 57.9 3.2 7,540 13,570	8.7. 33.2 58.1 2.6 7,715 13,890	$58.6 \\ 2.7 \\ 7,710$	$32 \cdot 4 \\ 58 \cdot 7 \\ 3 \cdot 1 \\ 7,735$	10.5 32.0 57.5 3.0 7,480 13,470	9.6 32.0 58.4 3.1 7,640 13,750	32.7 58.1 2.9 7,660	6+9 34+5 58+6 2+6 7,895 14,210	10-1 32-0 57-9 3-7 7,670 13,810	7-3 33-6 59-1 3-0 7,925 14,270	58-4 2-8 7,645
Number of tons represented by sample	206	64	199	166	110	390	413	404	419	417	396	385	389	403	395	394	410	371
Date of delivery	Jan. 4–20, 1934	Feb. 8—9	Mar. 1–21	April 4–27	May 14–29, 1934	May 14–28, 1932	May 23- June 4	June 7–14	June 15–24	June 27- July 4	Aug. 18- Sept. 6	Aug. 30- Sept.10	Sept. 15-30	Oct. 1–15	Oct. 23–29	Nov. 1–12	Nov. 15–29	Dec. 20–31

Described as "Dominion", Sydney area, Nova Scotia coal

Analyses of Coal Samples Submitted by the Department of Pensions and National Health-Continued

	Described as "Dominion", Sydney area, Nova Scotia coal																	
		_		sı	ack; de	livered	to hospi	tal at S	te. Anne	de Bell	levue, Q	ue.				St.	nut sla d to Cl hospital , Ontario	hristie , To-
Sample No	11537	12122	12123	12434	12435	12465	12466	12548	12549	12646	12647	12648	12649	13267	13269	11383	11489	11520
Moisture (as received) per cent	4-0	4.5	4.3	4·2	4.5	2-3	3-9	7.1	6.6	3.8	4·0	4.1	4·2	4 ·2	4.1	6-8	3.5	5.8
Dry Basis- Ashper cent Volatile matter" Fixed carbon" Sulphur" Calories per gramme, gross. B.T.U. per pound, gross Soltening temperature of ash	$ \begin{array}{r} 8.5\\32.7\\58.8\\2.8\\7,815\\14,070\\2100\end{array} $	9.6 32.4 58.0 3.3 7,645 13,760 2060	32.2 58.4 3.3 7,675 13,810	8.6 36.1 55.3 1.9 7,605 13,690 2120	9.0 35.8 55.2 2.0 7,550 13,590 2100	57·9 3·3 7,670 13,800	9-0 33-2 57-8 2-8 7,615 13,710 2150	9·4 33·7 56·9 3·7 7,660 13,790 1965	9 · 9 33 · 5 56 · 6 3 · 9 7, 600 13, 680 1950	33.5 57.7 3.0 7,660 13,790	8-6 33-6 57-8 3-0 7,700 13,860 2150	58·1 2·9 7,730 13,910	$\begin{array}{r} 8.7\\ 33.4\\ 57.9\\ 3.1\\ 7,635\\ 13,740\\ 2230\\ \end{array}$	2·8 7,840 14,110	2.8 7,800 14,040	9·5 32·0 58·5 3·3 7,600 13,680	3·2 7,910 14,230	10-0 31-4 58-6 3-3 7,565 13,620 2040
Number of tons represented by sample	378	400	360	377	389	391	389	396	388	385	379	387	305	386	425	500	273	520
Date of delivery	Dec. 20, 1932– Jan. 3, 1933	May 19- June 1	June 1–14	Aug. 15- Sept.1	Sept. 1-15	Sept. 1-26	Sept. 26- Oct. 1	Oct. 9–26	Oct. 26- Nov.4	Nov. 26–30	Dec. 2–12	Dec. 12–22	Dec. 22–31	May 17 June 4	May 30- June 13, 1934	Nov. 14–17, 1932	Dec. 6→7	Dec. 16-22.
		2-inch	nut sla	ek; deliv	ered to	Christi	e St. ho:	spital		s	lack; de	livered ·	to West	minster	hospital	, Londo	a, Ontar	rio.
Sample No	11538	11607	11610*	11659	11736	12070	12284	12444	12489	11121	11182	11204	11232	11237	11259	11317	11390	
Moisture (as received) per cent	4.1	6.1	5.0	6.7	5.3	4.7	3-6	3.2	4 •0	4.4	4•4	5-0	5.1	5-8	5.1	4.6	7.7	
Dry Basis- Ashper cent Volatile matter " Fixed carbon " Sulphur Calories per gramme, gross. B.T.U. per pound, gross Softening temperature of ash	10-3 31-3 58-4 3-4 7,555 13,600 2035	9-9 32-3 57-8 3-4 7,650 13,770 2055	32.9 57.6 3.7 7,685 13,830	31-6 57-4 3-4 7,560 13,610	9•3 32•3 58•4 3•1 7,580 13,650 2040	32-2 57-2 3-3 7,500 13,500	9-4 32-2 58-4 3-3 7,680 13,820 2040	8-8 32-7 58-5 3-6 7,725 13,910 2025	32-9 59-0 3-5 7,795	13,450	31.3 57.9 2.7 7,430 13,380	2-8 7.375	31·2 57·9 2·9 7,440	31-4 58-6 3-0 7,520	3·3 7,535	30·8 58·2 3·1 7,465	31-8 56-5 3-1 7,340	
Number of tons represented by sample	400	470	Stock	396	480		210	195	345	309	463	399	317	320	322	410	393	
Date of delivery		Feb. 1–3	Sam- pled Feb. 7	Feb. 21–23	Mar. 22	May 16-23	Aug. 14	Sept. 15	Oct. 10	Aug. 18-20, 1932	Aug. 30- Sept.3	Sept. 8-15	Sept. 16-24	Sept. 28- Oct. 5	Oct. 7-14	Oct. 15–25	Nov. 8–15	

Described as "Dominion", Sydney area, Nova Scotia coal

*Ash analysis, per cent: silics, 31.0; ferric oxide, 35.2; slumina, 16.3; calcium oxide, 7.0; magnesium oxide, 1.1; sulphur trioxide, 7.6; phosphorus pentoxide, 0.2

 $\mathbf{24}$

-

	Described as run-of-mine coal from W. Benton Evans, Described as run-of-mine coal from Welton Minto, N.B. Delivered to Lancaster hospital, St. John, N.B.										
Sample No	11126	11518	11523	11566	11804	12447	12545	12613	12726	12953	13053
Moisture (as received)per cent	1.5	3.1	4.4	5-3	2.8	4.1	5-9	7.7		4.2	7-1
Dry Basis- Ashper cent Volatile matter" Fixed carbon" Sulphur" Calories per gramme, gross B.T.U. per pound, gross Softening temperature of ash"F.	52·4 7·2	$17 \cdot 8 \\ 31 \cdot 7 \\ 50 \cdot 5 \\ 7 \cdot 4 \\ 6,830 \\ 12,300 \\ 1970$	17-6 31-5 50-9 8-7 6,775 12,190 1980	$17.7 \\ 31.8 \\ 50.5 \\ 7.5 \\ 6,840 \\ 12,310 \\ 1950$	$18 \cdot 2 \\ 31 \cdot 2 \\ 50 \cdot 6 \\ 8 \cdot 3 \\ 6,955 \\ 12,520 \\ 2150$	17.732.250.15.96,83512,3101980	20.6 31.1 48.3 6.3 6,630 11,940 2010	$15 \cdot 2 \\ 31 \cdot 8 \\ 53 \cdot 0 \\ 5 \cdot 5 \\ 7,005 \\ 12,610 \\ 2240$	$19.3 \\ 31.1 \\ 49.6 \\ 6.3 \\ 6,580 \\ 11,850 \\ 1985$	20-5 30-7 48-8 5-4 6,525 11,740 1990	$\begin{array}{c} 22 \cdot 9 \\ 29 \cdot 7 \\ 47 \cdot 4 \\ 5 \cdot 8 \\ 6, 420 \\ 11, 560 \\ 1990 \end{array}$
Number of tons represented by sample	44	45	45	47	44	42	46	47	46	275	35
Date of delivery	Aug. 24, 1932	Mar. 22, 26, 1934	March and April 1934; stock-pile sample								

Analyses of Coal Samples Submitted by the Department of Pensions and National Health-Continued

	Described Crows	as "Greenl lest Pass al	hill" or "H rea, Albert	Bellevue'' § a	-inch slack,	, from the	Described Albert	. as "Cado a	min'' slach	r from the	Mountain]	Park area		
		Delivered to Deer Lodge hospital, Winnipeg, Man.												
Sample No	11125													
Moisture (as received)per cent	3-0	5-3	5.2	2.0	2.4	1.7	2.4	3.1	2-8	3.4	2.2	2.3		
Dry Basis— Ashper cent Volatile matter" Fixed carbon" Sulphur" Calories per gramme, gross B.T.U. per pound, gross Softening temperature of ash"F.	$ \begin{array}{r} 26.0 \\ 59.2 \\ 0.6 \\ 7,215 \\ 12,990 \end{array} $	$15.7 \\ 25.7 \\ 58.6 \\ 0.5 \\ 7,115 \\ 12,810 $	10.7 28.4 60.9 0.8 7,600 13,680	13-0 24-9 62-1 0-5 7,470 13,440 2700+	$13 \cdot 6 \\ 23 \cdot 3 \\ 63 \cdot 1 \\ 0 \cdot 4 \\ 7,300 \\ 13,140 \\ \cdots \cdots \cdots$	$14.0 \\ 24.6 \\ 61.4 \\ 0.6 \\ 7,355 \\ 13,240 \\ 2650$	13.6 26.3 60.1 0.2 7,410 13,340 2700+	11.5 27.0 61.5 0.3 7,590 13,670 2700+	$ \begin{array}{r} 11 \cdot 2 \\ 26 \cdot 1 \\ 62 \cdot 7 \\ 0 \cdot 4 \\ 7,730 \\ 13,910 \\ 2700 + \end{array} $	10.5 26.8 62.7 0.3 7,685 13,840 2700+	10 · 0 26 · 7 63 · 3 0 · 3 7,740 13,930 2700+	10.626.70.37,79014,0302760		
Number of tons represented by sample	49	98	208	96	131	113	67	107	127	101	141	133		
Date of delivery	Aug. 17- 18, 1932	Sept. 1- 22	Nov. 130	Jan. 131, 1933	Feb. 1–28	Mar. 2330	Sept. 1- 30, 1933	Nov. 6–14	Dec. 13–14	Jan. 18, 1934	Feb. 20–22	Mar. 26–28		

TABLE II—Concluded

Analyses of Coal Samples Submitted by the Department of Pensions and National Health-Concluded

 	Slack* from the Sewickley seam, Purs- glove mine, Pursglove, West Vir- ginia, U.S.A.; delivered to hospital at Ste. Anne de Bellevue, Quebec	Describe	ed as ¾-inch n	ut slack from Westm	n the Maiden inster hospit:	mine, Maids al, London, C	wille, West V Intario	'irginia; deli	vered to
Sample No	12780	12279	12280	12283	12289	12309	12436	12443	12450
Moisture (as received) per cent	2•1	6.7	7-8	7.7	$5 \cdot 2$	$5 \cdot 2$	4.4	3.3	6.8
Dry Basis— Ash" Volatile matter" Fixed carbon" Sulphur" Calories per gramme, gross B.T. U. per pound, gross Softening temperature of ash°F.	13.932.953.24.17,22012,9902100	9.5 35.3 55.2 2.1 7,575 13,640 1985	9.834.755.52.77,62513,7301960	10-1 33-8 56-1 3-4 7,575 13,630 1990	$10.3 \\ 33.9 \\ 55.8 \\ 3.5 \\ 7,550 \\ 13,590 \\ 1980 $	$10.1 \\ 33.8 \\ 56.1 \\ 3.5 \\ 7,595 \\ 13,670 \\ 2000$	10.533.955.6 $3.67,48513,4701995$	$11 \cdot 3 \\ 33 \cdot 7 \\ 55 \cdot 0 \\ 3 \cdot 1 \\ 7,380 \\ 13,290 \\ 2060$	$ \begin{array}{r} 10.9\\ 36.2\\ 52.9\\ 3.2\\ 7,505\\ 13,510\\ 1975 \end{array} $
Number of tons represented by sample Date of delivery	291 Mar. 16, 1934	311 Aug. 5-9, 1933	322 Aug. 10-12	457 Aug. 14-19	530 Aug. 21-28	611 Aug. 29- Sept. 5	686 Sept. 7-14	410 Sept. 15-21	425 Sept. 25-28

* Dealer's description of coal.

· _ ·	Des	cribed a	as ''Yat	esboro"	slack, f		tesboro pital, To			U.S.A.	; delive	red to C	Christie	St.
Sample No	10626	10669	10753	10764	11112	11258	12559	12602	12617	12673	12750	12775	12954	13193
Moisture (as received)per cent	6.7	$5 \cdot 6$	4.2	8.0	4-2	5-6	4-2	4.3	5-2	6.3	6.5	8.5	7.7	$5 \cdot 4$
Dry Basis— Ashper cent Volatile matter" Fixed carbon" Sulphur" Calories per gramme, gross B.T.U. per pound, gross Softening temperature of ash°F.	8·3 31·5 60·2 2·3 7,660 13,790 	8·4 29·9 61·7 1·9 7,750 13,950	7.331.661.11.77,83014,100	$31 \cdot 4 \\ 61 \cdot 1 \\ 2 \cdot 3 \\ 7,780$	7.6 32.3 60.1 2.0 7,875 14,180 	$31 \cdot 3 \\ 61 \cdot 6 \\ 2 \cdot 3 \\ 7,795$	$59 \cdot 4 \\ 2 \cdot 1 \\ 7,740$	7.9 32.8 59.3 2.1 7,700 13,860 2140	$32 \cdot 2 \\ 59 \cdot 5 \\ 2 \cdot 1 \\ 7,635 \\ 13,750$	$32 \cdot 2$ $60 \cdot 0$ $2 \cdot 2$ 7,690 13,840	$1.8 \\ 7,720$		7.032.360.71.67,78014,0002200	$\begin{array}{r} 32 \cdot 4 \\ 60 \cdot 1 \\ 1 \cdot 8 \\ 7 745 \\ 13,940 \end{array}$
Number of tons represented by sample	387	480	238	180	384	420	469	440	440	540	463	746	586	413
Date of delivery	Mar. 31, 1932	April 21	May 23	May 30	Aug. 3–5	Oct. 13, 1932	Nov. 9, 1933	Dec.1	Dec. 21	Jan. 15, 1934	Feb. 5-16	Feb. 23	April 3-9	May 7

27

~

TABLE III

Analyses of Miscellaneous Solid Fuels

BRITISH ANTHRACITIC COALS

_				V	Velsh ant	hracite s	shipped t	to Ottaw	a			
Sample No	12	152	12	543	112	369	12	501	12	562	12	563
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D
Prozimate Analysis— Moistureper cent Ash	3.0 5.6 7.9 83.5	5·6 5·8 7·9 8·1		4.7 7.9 87.4	$2 \cdot 3 \\ 5 \cdot 3 \\ \cdots \\ \cdots $	5·4	$1.6 \\ 4.0 \\ 7.8 \\ 86.6$	4·1 7·9 88·0	$1.5 \\ 5.4 \\ 7.7 \\ 85.4$	5.5 7.8 86.7	$3.9 \\ 4.3 \\ 7.9 \\ 83.9$	4.5 8.3 87.2
Fuel ratio	10	55	11.	10		••	11.	15	11.	15	10 ·	55
Softening temperature of ash°F.	••					••	22	80	23	50		
Screen analysis (square screen open- ings)per cent					0.525'' to 32.2, 0 0.263'' = 0.263'' t =19.1, 0	o 0.131" 0.131" to 5.0, per					=33.7.4	$5.5, \frac{3}{4} \tan \frac{1}{2}''$ $5.5 \tan \frac{1}{4} \tan \frac{1}{2}''$ $5.5 \tan \frac{1}{4} \tan \frac{1}{4} = \frac{1}{4} \tan \frac$
Designation of coal Kind of sample Taken by	Comme Ottawa	rcial dealer	Private	individu	 als	• • • • • • • • • •	•••••	• • • • • • • • • • •			• • • • • • • • • • • •	
Date of sampling	July, 19	33	Nov., 1	933	Nov., 19	932	Oct., 19	33	Nov., 1	933		•••••

28

TABLE III—Continued Analyses of Miscellaneous Solid Fuels—Continued BRITISH ANTHRACITIC COALS—Continued

				Wel	sh anthra	acite						otch racite
—	Shippe Otta		Shipp Mont		.		8	hipped t	o Ottaw	78,		
Sample No	12	564	125	538	115	539	118	567	1	1603	12	151
Moisture condition	\mathbf{R}	D	${f R}$	D	R	D	R	D	$\mathbf R$	D	R	D
Prozimate Analysis— Moisture	3·2 4·2 6·8 85·8	4.4 7.0 88.6	$6 \cdot 3 \\ 4 \cdot 3 \\ 7 \cdot 7 \\ 81 \cdot 7$	$4.5 \\ 8.3 \\ 87.2$	$1 \cdot 0$ $3 \cdot 9$ $8 \cdot 2$ $86 \cdot 9$	3-9 8-3 87-8	$2.9 \\ 3.6 \\ 8.1 \\ 85.4$	3.7 8.4 87.9	$3 \cdot 1 \\ 3 \cdot 7 \\ 8 \cdot 0 \\ 85 \cdot 2$, 3.8 8.3 87.9	3.7 5.9 6.5 83.9	6·1 6·8 87·1
Ultimate Analysis— Carbonper cent Hydrogen" Ash" Sulphur" Nitrogen" Oxygen"	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		 0-9	····	· · · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · · · · · ·	 0.9 	 1.0	$ \begin{array}{r} 84 \cdot 3 \\ 3 \cdot 3 \\ 5 \cdot 9 \\ 0 \cdot 6 \\ 1 \cdot 6 \\ 4 \cdot 3 \end{array} $	$87 \cdot 6 \\ 3 \cdot 0 \\ 6 \cdot 1 \\ 0 \cdot 6 \\ 1 \cdot 7 \\ 1 \cdot 0$
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross		····· ···· ·		••••				••••	8,040 14,470	8,300 14,940-	7,625 13,720	7,915 14,250
Fuel ratio Carbon-hydrogen ratio Softening temperature of ash		·65 	10 · ₂₃	55 	10· 	55	10- 	· 50 		··60 	25.4	·85 29·0
ings)per cent	$\frac{1}{2}'' = 33 \cdot \frac{1}{2}'' = 61 \cdot \frac{1}{2}$	=0.8 ³ " to		••	0.185'' t =48.4, 0.033'' = 0.033'' t =11.9, to 0.00	0.065'' 0.065'' to 20.6, 0.0164'' 0.0164'' 058'' = 8.4,	On 0.185° t =41.8, 0.033° = 0.033° t =12.7, to 0.005 per 0.00	to $0.065''$ 0.065'' to 23.3, 0.0164'' 0.0164'' 8'' = 12.1,				• • •
Designation of coal	wheat.											s
Kind of sample Taken by	Comm	ercial e individu	als	••••••	. Staff o	f Fuel I	Research	Labora	tories, I	rom con-	Ottawa	dealer
Date of sampling	Noven	1ber, 1933			Jan. 18,	1933	Jan. 25		Feb. 4		July, 19	933

.

TABLE III—Continued

Analyses of Miscellaneous Solid Fuels-Continued

BRITISH ANTHRACITIC COALS-Concluded

			Wels	h anthracitic c	oal			Scotch anth	racitic coal
-	Supplied to Department of Public Works		Shipped t	io Ottawa		Supplied to Department of National Defence at St. John, N.B.	Shij	pped to Ottawa	
Sample No	12626	12781*	11578	12554	12566	12603	12525	12065	12066
Moisture condition	R D	R D	R D	R D	R D	R D	R D	R D	R D
Prozimate Analysis- Moistureper cent Ash	0-8 5-5 5-6 8-8 8-8 84-9 85-6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.8 5.7 5.8 9.2 9.4 83.3 84.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.5 10.4 10.3 10.8 74.8 78.4	0-6 8-4 8-4 12-5 12-6 78-5 79-0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2-8 5-7 5-9 10-6 10-9 80-9 83-2
Ultimate Analysis- Sulphurper cent	1.0 1.0					0-8 0-9	1.2 1.2	0.7 0.7	0.6 0.7
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	8,000 8,070 14,400 14,520			····		7,170 · 7,510 12,910 13,510	7,870 7,915 14,170 14,250		
Fuel ratio	9-65	9.45	9.05	8-30	7-80	7.30	6.30	6.95	7.60
Coking properties	Non-coking	Non-coking	••••	Non-coking	Agglomerate	Non-coking	Agglomerate		
Softening temperature of ash°F	2360		2255			2345	2400		
Designation of coal	<i></i>	Nos. 1 and 2 buckwheat.	No. 1 buck- wheat.	Cobbles	No. 1 buck- wheat.	Slack	No. 1 buck- wheat.		
Kind of sample	Commercial				•••••	Commercial; 100 tons	Commercial	•••••	••••••
Taken by	Departmental employees	Private individ	luals	Members of M technical stat		Departmental employees	Private individ- ual	Ottawa dealer	
Date of sampling	Dec., 1933	Mar., 1934	Jan., 1933	Nov., 1933	Dec., 1933		Nov., 1933	May, 1933	

*Screen analysis of sample No. 12781 (square screen openings), per cent: On 0.185" (4-mesh)=39.0, 0.185" to 0.093" (8-mesh) =37.0, per 0.093" =24.0.

Analyses of Miscellaneous Solid Fuels-Continued

ANTHRACITE COALS FROM PENNSYLVANIA, U.S.A.

	"Mahanoy"	"Locust Mountain"	"Shamokin"	"Lykens Valley"	"Blue" a	nthracite
Sample No Moisture condition	R ¹²⁰⁰⁶ D	R D	R D	R 12004 R D	R D	13007* R D
Proximate Analysis— Moistureper cent Ash	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrr} 4\cdot 4 & \dots \\ 9\cdot 0 & 9\cdot 4 \\ 5\cdot 2 & 5\cdot 4 \\ 81\cdot 4 & 85\cdot 2 \end{array}$
Ultimate Analysis— Carbon	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	···· ···· ···· ···	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.8 0.8 	···· ···
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,255 7,505 13,060 13,510	7,405 7,645 13,330 13,760	7,275 7,435 13,100 13,380	7,325 7,460 13,190 13,430	7,245 $7,53013,040$ $13,550$	····
Fuel ratio Carbon-hydrogen ratio	36·9 44·0 2700+ 	15·25 2700+ 	$\begin{array}{c} 12 \cdot 20 \\ 26 \cdot 9 29 \cdot 4 \\ 2700 + \\ \dots \\ \dots \\ \dots \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 14.65 \\ \\ 2700+ \\ 51.25 \\ On 13''=1.5, 13'' \\ \end{array}$	$ \begin{array}{c} 15.55\\ \dots\\ \\ 15.55\\ \dots\\ $
					to $1^{*}=5\cdot 2$, 1^{*} to $\frac{3}{4}^{*}=15\cdot 5$, $\frac{3}{4}^{*}$ to $\frac{1}{4}^{*}=37\cdot 6$, $\frac{3}{4}^{*}$ to $\frac{1}{4}^{*}=33\cdot 5$, $\frac{1}{4}^{*}$ to $\frac{3}{4}^{*}=4\cdot 1$, per $\frac{1}{4}^{*}=2\cdot 6$	$13''$ to $2\frac{1}{2}''=10.6$, $2\frac{1}{2}''$ to $2''=62.0$, $2'''$ to $1\frac{1}{2}''=20.4$, $1\frac{1}{2}'''$ to $1''=4.4$, $1''$ to $\frac{1}{2}''=1.2$, per $\frac{1}{2}''=1.4$
Designation of coal	Hard, white-as	Medium free- burning	Free-burning, white-ash	Free-burning, red-ash	Pea	Egg
_	1		•••••			Commercial; 1/2
Taken by Date of sampling	Ottawa dealers April, 1933	· · · · · · · · · · · · · · · · · · ·	•••••••		July, 1932	April, 1934

the analysis shown is actually calculated from the partial analysis of composite sample No. 13007, in conjunction with the analyses of 4 sized component samples. †Screen analysis of sample No. 13007 (round screen openings), per cent: $3\frac{1}{4}$ " to $2\frac{7}{16}$ " = 68.7, $2\frac{7}{16}$ " to $1\frac{5}{4}$ " = 26.0, $1\frac{5}{4}$ " to $\frac{15}{16}$ " = 3.7, $\frac{15}{16}$ " to $\frac{15}{16}$ " = 0.3 *The analysis shown is actually calculated from the partial analysis of composite sample No. 13007, in conjunction with the analyses of 4 sized

31

-

TABLE III—Continued

Analyses of Miscellaneous Solid Fuels-Continued

ANTHRACITE COALS FROM PENNSYLVANIA, U.S.A.-Concluded

	"Pitts	ton" or ".	Erie'' co	al from t	he Scraz	iton area	SI	pecial pe	a and bu	ckwheat	anthraci	te .
Sample No	18	3103	1:	3104	13	105	12	551	12	552	12	553
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis Moistureper cent Ash Volatile matter	2.6 9.7 5.2 82.5	10·0 5·3 84·7	2.8 9.1 5.0 83.1	9•4 5•1 85•5	2·2 9·6 5·4 82·8	9.8 5.5 84.7	$2 \cdot 2$ 7 \cdot 3 6 \cdot 4 84 \cdot 1	7·4 6·6 86·0	2·6 7·7 5·4 84·3	- 7·9 5·6 86·5	$2 \cdot 2$ 12 · 7 5 · 8 79 · 3	13·0 5·9 81·1
Ultimate Analysis— Sulphurper cent	0.6	0.6 0.7		0.7	0.7	0.7						••••
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,265 13,080			7,535 13,560		7,530 13,550		 	····	· · · · ·		••••
Fuel ratio	15	•90	16	•60	15	•40	13.	10	15.	55	13.	70
Softening temperature of ash°F.	2	900	2	810	2	350	26	00	22	00	23	10
Weight per cubic footpounds	5	i1·0	5	2.0	5	2-8		••		••		••
Screen analysis (square screen openings)per cent	+~ 12"-	51.0 On $2^{\nu}=73.5$, 2^{ν} to $1\frac{3}{2}^{\nu}=14.7$, $1\frac{3}{2}^{\nu}$ to $1^{\ell}=8.0$, 1^{ν} to $\frac{3}{2}^{\nu}=1.5$, $\frac{3}{2}^{\nu}$ to $\frac{3}{2}^{\nu}=1.3$		61.0 110	12" +0	1 - 60.1						
	Egg								Red-ash		Red-ash	
Kind of sample	Comm	ercial	1 • • • • • • • • •		! •••••		clinke	ւա <u>բ</u>	l clinke	rmg 	clinke	rmg •••••
Taken by	. Ottawa dealer						Superint	endent,	Fuel Res	search L	aborator	ies
Date of sampling	April, 1	1934	•••••		•••••		January	, 1932	March,	1932	Novem	oer, 1933

.

Analyses of Miscellaneous Solid Fuels-Continued

LOW-VOLATILE BITUMINOUS COALS FROM THE UNITED STATES

	Beckler We	Virginia		t mine, Freeport am, sville, Virginia	ning or	ind'' coa C Prime ria, or Sc Pennsy	seam,	Windber,	county ably	, Pennsy from low	from Cambria vlvania; presum- ver Kittanning eam at Portage	
		upplied to in-S dustrial plant in Montreal		l for in- ution ttawa	Supplied to Fue	l throug I Resear	h Ottaw ch Labo	va dealer ratories	Supplied	d to sch Otta	ool buil wa	dings at
Sample No	11	11109		10851		12763		955	11	$122 \\ 123 \\ 124 \end{pmatrix}$	11	212
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis— Moistureper cent Ash	$1 \cdot 4$ 5 \cdot 4 17 \cdot 6 75 \cdot 6	5·4 17·9 76·7	2.7 9.3 16.9 71.1	9.6 17.3 73.1	1·1 8·6 17·0 73·3	8.7 17.2 74.1	$4 \cdot 2 \\ 8 \cdot 1 \\ 16 \cdot 5 \\ 71 \cdot 2$	8-4 17-3 74-3	$1.5 \\ 6.3 \\ 20.8 \\ 71.4$	$6 \cdot 4$ 21 · 1 72 · 5	$1 \cdot 3 \\ 6 \cdot 1 \\ 20 \cdot 3 \\ 72 \cdot 3$	6-2 20-5 73-3
Ultimate Analysis— Carbonper cent Hydrogen	···· 0.7 ····	 0.7	····· 0·7 ····	0·8	···· ···· 1-8	1·9	78.5 4.6 8.1 2.0 1.4 5.4	$81 \cdot 9$ $4 \cdot 4$ $2 \cdot 1$ $1 \cdot 4$ $1 \cdot 8$	 1.6 	 1.6 	····· ···· 1·6 ····	1.6
Calorific Value— Calories per gramme, gross B.T.U. per pound gross		.	7,645 13,760	7,860 14,150	7,900 14,220	7,985 14,370	7,635 13,740	7,970 14,340	8,045 14,480	8,165 14,700	7,950 14,310	8,055 14,500
Fuel ratio	4.30		4	·20	4.30		4.30		3.45		3.55	
Carbon-hydrogen ratio		 aluses a	f these o	 amples c	mtinue		l 17.0	18.9	۱	••••	l	••••

(Analyses of these samples continued overleaf)

ట్ట

Analyses of Miscellaneous Solid Fuels-Continued

LOW-VOLATILE BITUMINOUS COALS FROM THE UNITED STATES-Continued

	"Pocahontas", Beckley seam, West Virginia	Vincent mine, Upper Freeport seam, Reedsville, West Virginia	ning or C Prime Cambria, or S	l, upper Kittan- seam, Windber, omerset county, ylvania	"Penker" coal county, Pennsy ably from low (Miller or B) se	vania; presum- er Kittanning	
	Supplied to in- dustrial plant in Montreal	Supplied for in- stitution at Ottawa	Supplied throug	h Ottawa dealer ch Laboratories	Supplied to scho Otta	ool buildings at wa	
Coking properties	Good	Good	Good	Good	Good	Good	
Softening temperature of ash°F.	2700+	2700+	2595	2305			
Screen analysis (square screen open- ings)per cent				On $2''=5\cdot7$, $2''$ to $1\frac{1}{2}''=4\cdot1$, $1\frac{1}{2}''$ to $1''=3\cdot1$, $1''$ to $\frac{1}{2}''=1\cdot9$, $\frac{3}{4}''$ to $\frac{1}{2}''=3\cdot1$, $\frac{3}{4}''$ to $\frac{1}{2}''=3\cdot1$, $\frac{1}{2}''$ to $\frac{1}{3}''=11\cdot6$, $\frac{1}{4}''$ to $\frac{1}{3}''=18\cdot9$, per $\frac{1}{4}''=51\cdot6$			
Designation of coal			Sized lumps	Slack			
Kind of sample				Commercial;	Commercial		
Taken by Date of sampling	Plant operator Aug., 1932	widnet		1	f F.R.L. Superintendent or staffs of bu ^{ings} 934 Sept., 1932 Sept., 1932		

.

Analyses of Miscellaneous Solid Fuels-Continued

LOW-VOLATILE BITUMINOUS COALS FROM THE UNITED STATES-Concluded

	Crown	mine, Ca		county,	"Hug Pennsy	hes", Ivania	"Lilly I	Xeystone	", Penns	sylvania	"Old Ke	
-		Pennsy	Ivania		Pres	sumably		wer Kit ia county			or B) se	am.
	Supp	lied to sc at Ot	hool bu tawa	ildings		s	hipped t	o Ottawa	3. 		Shipped provinc Que	
Sample No	12	267	12	2437	12:	101	12100		12102		124	163
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis— Moistureper cent Ash	1.7 6.3 20.9 71.1	$6 \cdot 4$ 21 \cdot 3 72 \cdot 3	$1 \cdot 9 \\ 6 \cdot 1 \\ 21 \cdot 1 \\ 70 \cdot 9$	$6 \cdot 2 \\ 21 \cdot 5 \\ 72 \cdot 3$	$1 \cdot 3 \\ 6 \cdot 5 \\ 18 \cdot 8 \\ 73 \cdot 4$	6·7 19·0 74·3	$1 \cdot 2 \\ 6 \cdot 1 \\ 18 \cdot 9 \\ 73 \cdot 8$	$6 \cdot 2 \\ 19 \cdot 1 \\ 74 \cdot 7$	$1 \cdot 3 \\ 7 \cdot 6 \\ 18 \cdot 3 \\ 72 \cdot 8$	7 · 7 18 · 5 73 · 8	$1 \cdot 0 \\ 6 \cdot 0 \\ 18 \cdot 6 \\ 74 \cdot 4$	6-1 18-8 75-1
Ultimate Analysis— Sulphurper cent	1.8	1.8	1.5	1.5	1.1	1.1	0.7	0.7	0.8	0.8	0.9	0.9
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,940 14,300	8,080 14,550	8,025 14,450	8,180 14,720		••••		••••	 	••••	 	••••
Fuel ratio	3	• 40	3	•35	3.	90	3.	90	4.	00	4 ∙00	
Coking properties	G	lood	G	ood	Good,	swollen	Good,	swollen	Good,	swollen	Go	ood
Softening temperature of ash°F.		•••	.		27	700+	27	700+	27	/00+	27	00+
Designation of coal				•••••		nith coal						
Kind of sample	(ercial										
Taken by	inge				l-Ottawa dealers						1	
Date of sampling	July, 1	933	Sept.,	1933	June 6, 1	1933		•••••••		••••••	Oct., 19	33

Analyses of Miscellaneous Solid Fuels-Continued

BRITISH BITUMINOUS COALS

	Collieri Leice	Lount es, Ltd., stershire, gland						ington co seam, S Yorkshir		Maltby Main colliery, near Rotherham, Yorkshire		
Sample No	. 10	10810		10786		11136		1183	1	1398 .	11	.184
Moisture condition	R	R D		D	R	D	R	D	R	D	R	D
Proximate Analysis— Moistureper cent Ash	9.8 5.2 35.1 49.9	5-8 38-9 55-3	$2 \cdot 4$ $2 \cdot 5$ $35 \cdot 5$ $59 \cdot 6$	2·6 36·4 61·0	3.5 3.3 35.3 57.9	3.4 36.6 60.0	3.9 3.6 34.2 58.3	3-7 35-6 60-7	$4 \cdot 2 \\ 5 \cdot 6 \\ 33 \cdot 1 \\ 57 \cdot 1$	5-8 34-6 59-6	$3 \cdot 2 \\ 4 \cdot 4 \\ 33 \cdot 4 \\ 59 \cdot 0$	4.6 34.5 60.9
Ultimate Analysis— Carbonper cent Hydrogen" Ash" Sulphur" Nitrogen" Oxygen"	$ \begin{array}{c} 69 \cdot 2 \\ 5 \cdot 6 \\ 5 \cdot 2 \\ 1 \cdot 3 \\ 1 \cdot 4 \\ 17 \cdot 3 \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{r} 82 \cdot 1 \\ 5 \cdot 4 \\ 2 \cdot 6 \\ 2 \cdot 0 \\ 1 \cdot 9 \\ 6 \cdot 0 \end{array}$	$ \begin{array}{c c} 78 \cdot 4 \\ 5 \cdot 5 \\ 3 \cdot 3 \\ 2 \cdot 0 \\ 1 \cdot 6 \\ 9 \cdot 2 \end{array} $	$81 \cdot 2$ $5 \cdot 3$ $3 \cdot 4$ $2 \cdot 0$ $1 \cdot 7$ $6 \cdot 4$	$78 \cdot 2 \\ 5 \cdot 5 \\ 3 \cdot 6 \\ 1 \cdot 1 \\ 1 \cdot 8 \\ 9 \cdot 8$	$\begin{array}{c} 81 \cdot 4 \\ 5 \cdot 3 \\ 3 \cdot 7 \\ 1 \cdot 2 \\ 1 \cdot 8 \\ 6 \cdot 6 \end{array}$	$76.5 \\ 5.4 \\ 5.6 \\ 1.2 \\ 1.7 \\ 9.6$	79.95.15.81.31.86.1	$78.1 \\ 5.4 \\ 4.4 \\ 1.5 \\ 1.7 \\ 8.9$	80.7 5.2 4.6 1.5 1.7 6.3
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	6,705 12,070	7,435 13,380	8,010 14,420	8,210 14,780	7,750 13,950	8,030 14,450	7,680 13,830	7,995 14,390	7,595 13,670	7,925 14,270	7,740 13,930	8,000 14,400
Fuel ratio	1	-45	1	-70	1	·65	1	-70	1	•70	1	•75
Carbon-hydrogen ratio	12-4	12.4 15.5		$15 \cdot 2$	14.2	$15 \cdot 2$	14.3	$15 \cdot 6$	14.3	15.7	14.6	$15 \cdot 6$
Coking properties	P	Poor		ood	G	ood	G	ood	G	lood	G	ood
Softening temperature of ash°F.	2	2030		205	2100		2700+		2490		2345	
Weight per cubic footpounds	.									45.5		•••

Screen analysis (square screen openings)per cent					On $\frac{3}{4}''=3\cdot5$, $\frac{3}{4}''$ to $\frac{4}{2}''=18\cdot9$, $\frac{3}{2}''$ to $\frac{1}{4}''$ =56.0, $\frac{1}{4}''$ to $\frac{1}{3}''$ =10.8, per $\frac{3}{4}''=$ 10.8	· · · · · ·
Designation of coal	Non-coking singles*	Washed gas doubles and washed gas singles	Washed doubles	Washed doubles	Washed singles.	Washed doubles
Kind of sample	Commercial	ι 	Commercial; supplied to Ottawa in- dustrial plant	Commercial	Commercial; supplied to Ottawa in- dustrial plant	Commercial.
Taken by		Blended at Fuel Research Laboratories	Staff of F.R.L.		Staff of Fuel Research Laboratories	
Date of sampling	June, 1932	1	Aug. 20 to 23, 1932	Sept., 1932	Nov. 24, 1932	Sept., 1932

*Size roughly $\frac{3}{4}$ " to $\frac{1}{2}$ "

• · · ·

.

Analyses of Miscellaneous Solid Fuels—Continued

BRITISH BITUMINOUS COALS-Continued

.

	Aldwarke Main and Rotherham Main collieries, Parkgate, Silkstone, and Swallowwood seams, Rotherham, Yorkshire, England		Denaby and		Haugh Cast coll Cast	lass nton and tleford ieries, ileford, kshire		man colli Rowland Eng		/hinfield Durham,	Engli as us tug drec	derson", sh coal, sed for s and lges at l, Que.
Sample No	1	11186		1185	1	0783	11616		11617		11	1372
Moisture condition	R	R D		R D		R D		R D		D	R	D
Proximate Analysis— Moisture	2.5 2.6 34.5 60.4	2.6 35.4 62.0	4.5 3.0 33.7 58.8	$3 \cdot 2$ $35 \cdot 3$ $61 \cdot 5$	3.3 2.8 34.4 59.5	$2 \cdot 9$ $35 \cdot 6$ $61 \cdot 5$	$2 \cdot 1 \\ 6 \cdot 3 \\ 28 \cdot 1 \\ 63 \cdot 5$	6•4 28•7 64•9	$2 \cdot 4 \\ 6 \cdot 8 \\ 27 \cdot 5 \\ 63 \cdot 3$	7·0 28·2 64·8	$1 \cdot 9$ $2 \cdot 4$ $30 \cdot 4$ $65 \cdot 3$	2-4 31-0 66-6
Ultimate Analysis— Carbonper cent Hydrogen" Ash" Sulphur" Nitrogen" Oxygen"	····· ··· 1·3 ····	····· 1·3	 1.1 	 1.1 	79.4 5.5 2.8 1.7 1.8 8.8	$82 \cdot 1$ $5 \cdot 3$ $2 \cdot 9$ $1 \cdot 8$ $1 \cdot 8$ $6 \cdot 1$	80·3 5·0 6·3 0·9 1·4 6·1	82·0 4·8 6·4 0·9 1·5 4·4	 0-8 	0.8	 0.8 	0-8
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	8,040 14,480	8,250 14,850	7,710 13,880	8,075 14,530	7,945 14,300	8,215 14,790	7,950 14,320	8,125 14,620	7,820 14,080	8,020 14,430	8,290 14,920	8,450 15,210
Fuel ratio	1	1		1.75		1.75		2.25		2.30		·15

.

Carbon-hydrogen ratio			14-4 15-5	$16 \cdot 2 16 \cdot 9$	••••	
Coking properties	Good	Fair	Fair	Good	Good	Fair
Softening temperature of ash°F.	2230	2250	2245	2700	2700+	
Designation of coalW	Vashed doubles	Washed doubles	Washed gas singles. 1" x ¹ / ₂ "	Unscreened gas	Unscreened coking coal	
Kind of sampleC	Commercial					
Date of samplingJu	uly 22, 1932	Sept. ,1932	June, 1932	February, 1933		Oct. 31, 1932.

TABLE III—Continued Analyses of Miscellaneous Solid Fuels—Continued BRITISH BITUMINOUS COALS—Concluded

		Kinneil c Bo'ness	olliery, s, West I	Easter M Lothian,	lain sear Scotlanc	n, I		Emmet" ch coal	coll Pl Stirli	lean ieries, ean, ngshire, tland	"Navi bitu coal,	otch gation'' ninous shipped ttawa
Sample No	11	397	12	678	12	679	12	677	11618		12	506
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D
Prozimate Analysis— Moistureper cent Ash	$6 \cdot 2 \\ 6 \cdot 9 \\ 31 \cdot 2 \\ 55 \cdot 7$	7-4 33-3 59-3	$1 \cdot 6$ $4 \cdot 8$ $33 \cdot 5$ $60 \cdot 1$	$4 \cdot 8$ $34 \cdot 1$ $61 \cdot 1$	1.6 5.7 33.6 59.1	$5 \cdot 8$ $34 \cdot 1$ $60 \cdot 1$	$1.8 \\ 4.2 \\ 35.8 \\ 58.2$	$4 \cdot 3$ $36 \cdot 5$ $59 \cdot 2$	1.8 3.8 29.3 65.1	3.8 29.9 66.3	$8.8 \\ 8.1 \\ 32.7 \\ 50.4$	8-9 35-8 55-3
Ultimate Analysis— Carbon	$73 \cdot 9$ 5 \cdot 5 6 \cdot 9 0 \cdot 6 1 \cdot 6 11 \cdot 5	$78.8 \\ 5.1 \\ 7.4 \\ 0.6 \\ 1.7 \\ 6.4$	0.5 	 0.5 	 0·4 	 0.5	$ \begin{array}{r} 80 \cdot 1 \\ 5 \cdot 4 \\ 4 \cdot 2 \\ 0 \cdot 8 \\ 1 \cdot 6 \\ 7 \cdot 9 \end{array} $	$81 \cdot 5$ $5 \cdot 3$ $4 \cdot 3$ $0 \cdot 8$ $1 \cdot 7$ $6 \cdot 4$	81.9 5.2 3.8 0.7 1.7 6.7	$83 \cdot 3$ $5 \cdot 1$ $3 \cdot 8$ $0 \cdot 8$ $1 \cdot 8$ $5 \cdot 2$	 0.7 	0.8
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,270 13,090	7,750 13,950	7,83 14,100	0 7,960 14,320	7,800 14,040	7,930 14,270	7,935 14,290	8,080 14,550	8,120 14,620	8,270 14,890	6,930 12,480	7,605 13,690
Fuel ratio	1	•80	1	·80	1	•75	1	·60	2.	20	1	•55
Carbon-hydrogen ratio	13.5	13-5 15-5					14-9	$15 \cdot 5$	15.8	16.4		••••
Coking properties	I	Fair		boo	G	food	G	boo	G	ood	Fair	
Softening temperature of ash°F.	27	2700+		2700+		2700+		2700+		2700+		00+
Weight per cubic footpounds	4	6-8			1 1		1				1	

٠

Screen analysis (square screen openings)per cent	On $1\frac{1}{2}^{"} = 3 \cdot 5$, $1\frac{1}{2}^{"}$ to $1^{"} = 16 \cdot 1$, $1^{"}$ to $\frac{3}{4}^{"} = 20 \cdot 2$, $\frac{3}{4}^{"}$ to $\frac{3}{4}^{"} = 21 \cdot 2$, $\frac{3}{4}^{"}$ to $\frac{3}{4}^{"} = 21 \cdot 2$, $\frac{3}{4}^{"}$ to $\frac{3}{4}^{"} = 6 \cdot 6$, per $\frac{3}{4}^{"} = 2 \cdot 1$					
Designation of coal	Washed doubles	Coals recommen	ided for gas produ	1cers	Coking coal	
		bands	Washed singles; mainly bright coal with dull bands	with bright	L	
Kind of sample	supplied to Ottawa indus- trial plant		•			
Taken by	Research La-				1	
Date of sampling	Nov. 23, 1932	June, 1933		••••••	Feb., 1933	Oct., 1933

41

.

•

Analyses of Miscellaneous Solid Fuels-Continued

BITUMINOUS COALS FROM THE UNITED STATES

	"Morgan" Coal from "Morgan No. 1" "National" coal from West Virginia "Norgan No. 1" "National" coal from West to the form the for												Ster coal Greene	aple ling" from county, ylvania
		Su	pplied to	Fuel I Labora	blied to Research tories for ig tests	sch buil	ied to lool dings ttawa							
Sample No	11	12644 11318 11211 12439 12645											12	438
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis— Moistureper cent Ash	$5 \cdot 1 \\ 9 \cdot 4 \\ 32 \cdot 6 \\ 52 \cdot 9$	9-9 34-4 55-7	3.5 8.0 33.8 54.7	8·3 35·0 56·7	$1.5 \\ 7.2 \\ 35.3 \\ 56.0$	7·4 35·8 56·8	$1.8 \\ 7.7 \\ 35.3 \\ 55.2$	7-8 36-0 56-2	6.0 9.0 34.7 50.3	9.6 36-9 53.5	2·3 8·6 33·2 55·9	8·8 33·9 57·3	$2 \cdot 0$ 9 \cdot 1 $36 \cdot 5$ $52 \cdot 4$	9·3 37·2 53·5
Ultimate Analysis— Carbonper cent Hydrogen" Ash" Sulphur" Nitrogen" Oxygen"	 2·3 	 2·5 	2.9 	 3.0 	2·3	 2·3 	···· 2·6 ····	2-7 	···· 3·0 ····	 3·2	$75.0 \\ 4.9 \\ 8.6 \\ 1.4 \\ 1.7 \\ 8.4$	76-8 4-7 8-8 1-4 1-8 6-5	 3.0	3·1
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,205 12,970	7,595 13,670	7,400 13,320	7,670 13,810	7,830 14,090	7,950 14,310	7,660 13,790	7,800 14,040	7, 195 12, 950	7,655 13,780	7,530 13,550	7,710 13,870	7,500 13,500	7,655 13,780
Fuel ratio	1	•60	1	·60	1	•60	1	·55	1	•45	1	•70	1	•45
Carbon-hydrogen ratio			l		l					••••	15.5	16-3		

₽5

.

:

Coking properties	Good	Good	Good	Good	Good	G_{ood}	Good
Softening temperature of ash°F.	2320	2030		••••	2250	2580	
Screen analysis (square screen openings)per cent	1			••••		On $2''=8\cdot 2$, $2''$ to $1''=22\cdot 6$, $1''$ to $\frac{3''}{4}$	
						$=13.7, \frac{3}{7}$ to $\frac{1}{7}$ = 15.5, $\frac{1}{7}$ to $\frac{1}{7}$ = 15.1, $\frac{1}{7}$ to $\frac{1}{7}$ = 7.5, per $\frac{1}{7}$ = 17.4	
Designation of coal						Run-of-mine	
	Commercial					3 tons	Commercial
Taken by	lyst, with as- sistance of re-		Superintendent of ings.	or staffs of build-	Consulting ana- lyst, with as- sistance of re- presentative	Staff of F.R.L.	Superintendent or staffs of buildings
Date of sampling	presentative Jan. 8, 1934	Nov., 1932	Sept., 1932	Sept., 1933	Jan. 9, 1934	May 17, 1934	Sept., 1933

Analyses of Miscellaneous Solid Fuels-Continued

BITUMINOUS COALS FROM THE UNITED STATES-Continued

		incoln Ga Washingt Penn		ty,	Fay	; mine, 1 ette or W ounty, Pe	Vestmoi	gh seam, eland mia	mine burgh Westn	chinson , Pitts- n seam, noreland unty		oreland'') coal
	Suppli Nati	ied to the onal Defe	e Depar ence at T	tment of Foronto	industr	ied to ial plant ontreal	Fuel I Labo	lied to Research ratories ting tests	Supj	plied to in at O	idustria) ttawa	l plant
Sample No	12	2537	1	2715	11	107	1	2884	13272		11	165
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D
Prozimate Analysis— Moistureper cent Ash	2·9 9·3 35·7 52·1	9-6 36-8 53-6	$\begin{array}{c} 2.7 \\ 6.7 \\ 37.4 \\ 53.2 \end{array}$	$6 \cdot 9$ $38 \cdot 4$ $54 \cdot 7$	$1.5 \\ 6.7 \\ 33.3 \\ 58.5$	6·8 33·8 59·4	$2 \cdot 0 \\ 6 \cdot 7 \\ 32 \cdot 9 \\ 58 \cdot 4$	6·9 33·5 59·6	$2 \cdot 1 \\ 7 \cdot 6 \\ 32 \cdot 3 \\ 58 \cdot 0$	7-7 33-0 59-3	1.9 7.0 33.8 57.3	$7 \cdot 1$ 34 · 5 58 · 4
Ultimate Analysis— Carbonper cent Hydrogen" Ash" Sulphur." Nitrogen" Oxygen"	 1.6 	 1.6 	···· 1-7 ····	 1·8	 0-8 	 0·8	···· 1·0	····· 1·0	$77 \cdot 2 \\ 5 \cdot 2 \\ 7 \cdot 6 \\ 1 \cdot 0 \\ 1 \cdot 6 \\ 7 \cdot 4$	$78.9 \\ 5.1 \\ 7.7 \\ 1.0 \\ 1.7 \\ 5.6$	78.7 5.4 7.0 1.1 1.7 6.1	80.3 5.2 7.1 1.2 1.8 4.4
Calorific Value Calories per gramme, gross B.T.U. per pound, gross	7,405 13,330	7,620 13,720	7,530 13,560	7,745 13,940		••••	7,835 14,100	7,995 14,390	7,755 13,960	7,925 14,260	7,780 14,010	7, 935 14, 280
Fuel ratio	1-45			1.40		1-75		1.80		1.80		•70
Carbon-hydrogen ratio			l		.		I	••••	14.8	$15 \cdot 5$	$ _{14.7}$	15.4

Coking properties	Good	Good	Good	Good	Good	Good
Softening temperature of ash°F.	2220	2140	2700+	2740	2610	2700+
Screen analysis (square screen openings)per cent					On $3''=5\cdot0$, $3''$ to $12''=7\cdot4$, $2''$ to $12''=17\cdot4$, $2''$ to $12''=9\cdot2$, $1''$ to $2''=5\cdot0$, $\frac{3''}{2}$ to $\frac{3''=3\cdot2}{2}$, $\frac{3''}{2}$ to $\frac{3''=3\cdot2}{2}$, $\frac{3''}{2}$ to $\frac{3''=13\cdot1}{2}$, $\frac{3''}{2}$ to $\frac{3''=13\cdot1}{2}$, $\frac{3''}{2}$ to $\frac{3''=13\cdot1}{2}$, $\frac{3''}{2}$ to $\frac{3''=3\cdot2}{2}$, $\frac{3''}{2}$	
Designation of coal	1 1 -inch bitumino	us lump		•••••	Minus 4-inch slack	
Kind of sample	Commercial					
Taken by	Departmental en	aployees	Plant operator	Staff of Fuel Re	search Laborator	ies
Date of sampling	November, 1933	January, 1934	August, 1932	April, 1934	June, 1934	August, 1932

.

Analyses of Miscellaneous Solid Fuels-Continued

BITUMINOUS COALS FROM THE UNITED STATES-Concluded

	upper a Freepor Indian	re mine, and lower rt seams, a county, ylvania	upp lower l seams,	t mine, er and Freeport Indiana unty	Reyn	ic mine, oldsville rea, sylvania	"Tenr Gas	nsylvania s'' coal	Ch	tsburgh, ampion ip'' coal	coal Pierce	keson'' from county, ington
	industr	lied to ial plant ontreal	Fuel 1 Labo	olied to Research ratories ring tests	Depa of N Def	plied to artment ational ence at pronto	indust	olied to rial plant Ottawa	indus at B	plied to trial plant randon, Ian.	Br	ped to itish umbia
Sample No	11	108	1	2935	1	1128	1	0655	1	2052	11	794
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis— Moistureper cent Ash	$1 \cdot 4 \\ 7 \cdot 2 \\ 30 \cdot 3 \\ 61 \cdot 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8 · 3 30 · 4 61 · 3	1.6 9.4 26.0 63.0	9.6 26-4 64.0	2.5 7.1 33.6 56.8	7·3 34·4 58·3	$1 \cdot 9 \\ 6 \cdot 2 \\ 34 \cdot 5 \\ 57 \cdot 4$	6·3 35·2 58·5	$1 \cdot 6 \\ 11 \cdot 6 \\ 26 \cdot 2 \\ 60 \cdot 6$	11-8 26-7 61-5
Ultimate Analysis			$78 \cdot 1$ $5 \cdot 2$ $8 \cdot 1$ $0 \cdot 9$ $1 \cdot 5$ $6 \cdot 2$	$79 \cdot 4 \\ 5 \cdot 1 \\ 8 \cdot 3 \\ 0 \cdot 9 \\ 1 \cdot 5 \\ 4 \cdot 8$	2-1 	···· 2·1	$76.8 \\ 5.3 \\ 7.1 \\ 1.1 \\ 1.5 \\ 8.2$	$78.8 \\ 5.1 \\ 7.3 \\ 1.1 \\ 1.5 \\ 6.2$	$78 \cdot 7$ $5 \cdot 3$ $6 \cdot 2$ $0 \cdot 8$ $1 \cdot 7$ $7 \cdot 3$	$80 \cdot 2$ 5 \cdot 2 6 \cdot 3 0 \cdot 9 1 \cdot 7 5 \cdot 7	 0-5 	0-5
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross		••••	7,790 14,020	7,920 14,260	7,710 13,880	7,835 14,100	7,695 13,850	7,890 14,200	7,805 14,050	7,950 14,310	7,575 13,630	$7,695 \\ 13,850$
Fuel ratio	2	•00	2	•00	2	•45	1	-70	1	·65	2	30
Carbon-hydrogen ratio	l		15.0	15.6			14.6	15.3	14.7	15.3		

.

<u>``</u>

Coking properties	Good	Good	Good	Good	Good	Good
Softening temperature of ash°F.	2700+	2810		2575	2700+	2700+
Weight per cubic footpounds	••••			47.8		••••
Screen analysis (square screen openings)per cent		$\begin{array}{c} 1\frac{1}{2}'' \mbox{to} 1''=36\cdot8, 1'' \mbox{to} \frac{3}{2}''=24\cdot2, \frac{3}{2}'' \mbox{to} \frac{3}{2}''=19\cdot2, \frac{3}{2}'' \mbox{to} \frac{3}{2}''' \mbox{to} \frac{3}{2}'' \mbox{to} \frac{3}{2}''' \mbox{to} \frac{3}{2}'''' \mbox{to} \frac{3}{2}'''' \mbox{to} \frac{3}{2}'''' \mbox{to} \frac{3}{2}''''' \mbox{to} \frac{3}{2}'''' \mbox{to} \frac{3}{2}'''''' \mbox{to} \frac{3}{2}''''''''''''''''''''''''''''''''''$		On $2''=30\cdot 1$, $2''$ to $1''=40\cdot 0$, $1''$ to $\frac{3}{4''}=8\cdot 1$, $\frac{3}{4''}$ to $\frac{1}{4''}=6\cdot 3$, $\frac{1}{4''}$ to $\frac{3}{4''}=3\cdot 7$, per $\frac{1}{4''}=7\cdot 0$		
Designation of coal		Stoker size	Bituminous smokeless	On ¾-inch screen		Washed slack
Kind of sample	Commercial				• • • • • • • • • • • • • • • • • • • •	
Taken by	Plant operator	Staff of F.R.L	Departmental employees	Staff of Fuel atories	Research Labor-	
Date of sampling	Aug., 1932	April 30, 1934	Aug. 27, 1932	April 14, 1932	April, 1933	Mar., 1933

· · · · · · · · · · · · · · · · · · ·												
	"Prie	sh coke, stman's uts''		Britis	h coke		Ko coke Mor	Salle'', ppers from itreal, iebec	coke De	-Solvay e from troit, higan	elec carbo proc	made by strical nization sess at stroit
		ped to ntreal	A	s shipped	l to Can	ada	Sup	plied to i at O	ndustria ttawa	l plant		
Sample No	11	1127	11	1564	1	1589	12	752	11	2777	11	2459
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis- Moistureper cent Ash	0.9 6.8 1.6 90.7	6.9 1.6 91.5	0·2 6·3 0·8 92·7	6·3 0·8 92·9	0·3 7·2 0·8 91·7	7·2 0·8 92·0	0·3 9·2 2·0 88·5	9·2 2·0 88·8	0.6 7.7 1.7 90.0	7.8 1.7 90.5	0.7 7.5 2.3 89.5	7·5 2·3 90·2
Ultimate Analysis— Sulphurper cent	0.7	0-7	0.8	0.8	0-8	0.8	0.7	0.7	0.6	0.6	0.6	0.6
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,305 13,150	7,370 13,270	7,230 7,240 13,010 13,030		7,045 7,065 12,680 12,720		7,230 7,250 13,010 13,050		7,340 13,210	7,380 13,290	7,165 12,890	7,215 12,990
Softening temperature of ash°F.	27	00+	2	665	2	620	2	590	2	500		•••
Designation of fuel	80% 1출-	to 1-inch					Foundr	y coke				
Kind of sample Taken by	Commercial; C 5000 tons		Commercial									
Date of sampling			1				Feb., 1	934			Oct., 19	933

TABLE III—Continued Analyses of Miscellaneous Solid Fuels—Continued

٠

•

.

48

.

TABLE III—Continued Analyses of Miscellaneous Solid Fuels—Continued

	By-pr			ufactured pers oven				umbia,	scree supp Fuel H Labo for bri	um coke enings, lied to Research ratories quetting ests	mad Welsh cite scr with pe asph Fuel H Labor and s to T contr	uettes e from anthra- reenings*, troleum alt, at Research atories, supplied foronto ractors tests	charcos manuf in j at F	lwood lbreeze actured plant assett, ebec
Sample No.	127	770	1 19	2771) 12	772	1 19	2773	1(0857	19	2547	10	670
Moisture condition	R T	ΰD	R	D	R ¹¹	‴D	R R	"D	R	D	R R	D	R	D
Proximate Analysis—														
Moistureper cent Ash Volatile matter " Fixed carbon	$ \begin{array}{c c} 0.7 \\ 9.3 \\ 1.6 \\ 88.4 \end{array} $	9.4 1.6 89.0	0.6 8.3 1.8 89.3	8-4 1-8 89-8	$ \begin{array}{r} 1 \cdot 0 \\ 8 \cdot 8 \\ 2 \cdot 0 \\ 88 \cdot 2 \end{array} $	8.9 2.0 89.1	$ \begin{array}{c c} 0.5 \\ 8.6 \\ 1.1 \\ 89.8 \end{array} $	8-6 1-1 90-3	$ \begin{array}{c c} 1 \cdot 8 \\ 0 \cdot 7 \\ 12 \cdot 4 \\ 85 \cdot 1 \end{array} $	0-7 12-6 86-7	$ \begin{array}{c c} 2 \cdot 2 \\ 3 \cdot 7 \\ 13 \cdot 3 \\ 80 \cdot 8 \end{array} $	$3 \cdot 8$ 13 \cdot 6 82 \cdot 6	$ \begin{array}{c c} 4 \cdot 4 \\ 7 \cdot 0 \\ 20 \cdot 2 \\ 68 \cdot 4 \end{array} $	$7.3 \\ 21.2 \\ 71.5$
Ultimate Analysis— Carbonper cent Hydrogen"		••••		••••		••••		••••		••••			73.8 3.6	77.2 3.3
Sulphur"	0.6	0.6	0.6	0.6	0.7	0.7	0.6	0.6	1.6	1.6	0.9	1.0	7.0 Trace	7.3 Trace
Nitrogen		•••• ••••		••••		••••		••••		••••		••••	0.7 14.9	0.7 11.5
Calories per gramme, gross B.T.U. per pound, gross Softening temperature of		••••	7,060 12,710	$7,105 \\ 12,790$		 	7,170 12,910	$7,210 \\ 12,980$		8,610 15,500	$8,110 \\ 14,600$	8,295 14,930	6,780 12,200	7,100 12,770
ash°F.	22	80	2	150	21	50	2	380	1	900		•••		
Weight per cubic foot, pounds Screen analysis (square		••		•••		••		•••	.	•••	1	•••	1	5.5
screen openings)per cent													$\frac{1}{4}^{"} = 20 \cdot 4$ $24 \cdot 1, \frac{1}{3}^{"}$ $= 12 \cdot 7,$ $0 \cdot 046^{"} = 0 \cdot 046^{"}$	$6 \cdot 9, \frac{1}{2}$ " to $\frac{1}{2}$ " to $\frac{1}{3}$ " = to 0.078" to 0.078" to $10 \cdot 9,$ to $0 \cdot 016$ " per $0 \cdot 016$ "
Kind of sample	Comme	rcial		•••••									Commo	ercial; 15
Taken by	Oven op	erator		• • • • • • • • • •	1 1				Staff of Fuel		l Research Labors			perator
Date of sampling	Feb. 27,	1934	Feb. 28	3	Mar. 1 Mar. 2						Nov., 1933		April, 1	932

*See samples Nos. 11539, 11567, and 11603, Table III, p. 29.

49

-

- . ·

Analyses of Miscellaneous Solid Fuels-Continued

	Blos	le Petro-	Toronto from Welsh and Scotch anthracite			Burn-Rit uettes ma			brique in Ha		brique	lettes", ttes made terloo,
<u> </u>	Toron petrole with	, made in to from cum coke cement nder			honta with p	n Poca- as slack petroleum itch	Poca screeni petr	coke and hontas ngs with oleum itch	princip Poca coa ce	probably ally from hontas l with ment nder	Ont. Poca sla with	, from hontas ack cement nder
Sample No	11	11220		2453	12454 _		12	2455	1	2458	1	2456
Moisture condition	R	R D		D	R	D	R	D	R	D	R	D
Prozimate Analysis— Moistureper cent Ash	2.8 4.6 12.4 80.2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8.6 17.1 74.3	$ \begin{array}{r} 1 \cdot 9 \\ 6 \cdot 0 \\ 15 \cdot 8 \\ 76 \cdot 3 \end{array} $	6·1 16·1 77·8	$1.8 \\ 8.5 \\ 17.0 \\ 72.7$	8·7 17·3 74·0	$1 \cdot 4 \\ 14 \cdot 6 \\ 17 \cdot 2 \\ 66 \cdot 8$	14-8 $17\cdot5$ $67\cdot7$	$2 \cdot 5$ 14-2 18 \cdot 6 64 \cdot 7	14·6 19·1 66·3
Ultimate Analysis— Sulphurper cent	0.9	0.9	0.9	0.9	0.9	0-9	0.9	0-9	0.7	0.7	0.5	0.5
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	8,280 14,900	8,520 15,330	7,590 13,670	7,720 13,900	8,020 14,430	8, 180 14, 720	7,565 13,620	7,705 13,870	7,215 12,990	7,315 13,170	7,150 12,870	7,330 13,200
Softening temperature of ash°F.	2	650		•••].	•••	Ι.		Ι.	•••	Ι.	••••
Date	Sept., 1	1932	Autum	n of 1933.		•••••		•••••	•••••		• • • • • • • • •	

- -----

Analyses of Miscellaneous Solid Fuels-Continued

· · · · · · · · · · · · · · · · · · ·	briquet in Wate: from pe coke	ettes", tes made rloo, Ont. troleum , with t binder	brique ma Windso fr Pocaho and pe coke	Windsor, Ont.,		"Thermets" (ovoid) briquettes made in Vancouver, B.C., from coke breeze and Coalmont coal, with pitch binder		pricoal" uettes, le at s, Penn- ia, from l. Lykens anthra- , with aceous throleum t binder	quett at Mounta igan cha	d'' bri- es made Iron in, Mich- in, from ircoal starch	briq ma Super consi low- bitumi with	rwind" uettes, de at ior, Wis- n, from volatile nous coal, n pitch nder
Sample No	12	457	11	221	12	2037	12	2616	15	2618	15	2619
Moisture condition	R	R D		D	R	D	R	D	R	D	R	D
Proximate Analysis— Moistureper cent Ash	$1 \cdot 2$ 14 \cdot 8 17 \cdot 3 66 \cdot 7	15.0 17.5 67.5	1.3 9.6 15.3 73.8	9.7 15.5 74.8	$4 \cdot 1$ 15 · 8 25 · 4 54 · 7	$16 \cdot 4$ $26 \cdot 5$ $57 \cdot 1$	$1 \cdot 3 \\ 10 \cdot 5 \\ 13 \cdot 2 \\ 75 \cdot 0$	10·6 13·3 76·1	$2 \cdot 8$ 5 \cdot 2 19 \cdot 2 72 \cdot 8	5·3 19·7 75·0	$1 \cdot 2 \\ 6 \cdot 8 \\ 21 \cdot 9 \\ 70 \cdot 1$	6.9 22.2 70.9
Ultimate Analysis— Sulphurper cent	0.9	0.9	0.8	0.9	0.7	0.7	0.8	0.8	0.1	0.1	0.8	0.8
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	7,315 13,170	7,405 13,330	7,805 14,050	7,910 14,230	6, 490 11, 680	6,765 12,180	$7,525 \\ 13,540$	7,625 13,730	$7,250 \\ 13,050$	$7,450 \\ 13,410$	8,120 14,610	
Softening temperature of ash°F.	.	•••	2	030	2	325	2	180	2	640	פ ו	330
Date	Autum	n of 1933.	Sept., 1	.932	April, 1	.933	Dec., 1	933		•••••		·····

51

_

Analyses of Miscellaneous Solid Fuels-Continued

	briqu made United from I lignit coa	n-Blox'' lettes, in the l States fontana e with l-tar binder	ets'', briq made a Wash from burni with	lo Koal- , small uettes t Seattle, ington, free- ng coal asphalt nder	Briq large b made a from and fre- coal	amond Juets'', riquettes t Seattle coking e-burning e-burning t with t binder	pared and l carbo proce slack ½-incl New Collier Leices	ttes, pre- by Lang Neilson nization ss from (through a) from Lount ies, Ltd., tershire, ng.*	"Ov bric mad "S Ja anthrac West	oids'', juettes e from ophia coba'' cite from phalia. many	briqu manuf in Sc	eco" lettes, actured otland isb peat
Sample No	12	311	12	2654	12	2655	10811		1	1268	11	808
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis Moistureper cent Ash	$12 \cdot 9 \\ 6 \cdot 4 \\ 34 \cdot 4 \\ 46 \cdot 3$	7·4 39·5 53·1	$8 \cdot 1 \\ 10 \cdot 9 \\ 37 \cdot 5 \\ 43 \cdot 5$	11-9 40-8 47-3	$\begin{array}{c} 4 \cdot 6 \\ 11 \cdot 9 \\ 35 \cdot 4 \\ 48 \cdot 1 \end{array}$	12-5 37-1 50-4	4.0 6.8 12.2 77.0	7·1 12·7 80·2	1.6 10.1 11.4 76.9	10·3 11·6 78·1	$11 \cdot 3$ 5 \cdot 7 56 \cdot 5 26 \cdot 5	6·4 63·7 29·9
Ultimate Analysis- Sulphurper cent	0.7	0.9	0.6	0.7	0.6	0.7	1.0	1.1	1.1	1.1	0.4	0.5
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	6,120 11,010	7,025 12,640		7,050 12,690	6, 920 12, 460		7, 255 13, 060	7,555 13,600		7,730 13,910	4,535 8,170	5,110 9,200
Softening temperature of ash°F.			2	550	2	700+	2	010	2	270		••
Date	Sept., 1	.933	. Jan, 1934				June, 1	932	Oct., 19	932	April, 1	933

*See sample No. 10810, Table III, p. 36

52

.

TABLE III—Continued Analyses of Miscellaneous Solid Fuels—Continued

	Fire	ewood sa	mples su	bmitted	by the :	Forest P	roducts]	Laborato	ries, De	partment	of the I	nterior,	Ottawa,	Ont.
	Hard	maple,	.	1 1 -		1	f	- 9]	Hard, su	gar mapl	е	
		een	Mainly	hard ma	pie, arie	ed or sea	soned 10	r 3 years	W	ood	Youn	g bark	Old	bark
Sample No	12	108	12	2071	12	091	12	212	12	294	12	295	12:	296
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis— Moistureper cent Ash	$25 \cdot 6 \\ 1 \cdot 2 \\ 60 \cdot 1 \\ 13 \cdot 1$	1.6 80.8 17.6	13.5 0.9 70.8 14.8	1-0 81-8 17-2	$15 \cdot 2$ 1 \cdot 1 68 \cdot 0 15 \cdot 7	1.3 80.2 18.5	14.5 1.3 -68.1 16.1	1.5 79.7 18.8	8·4 0·8 75·1 15·7	0.9 82.0 17.1	9.5 6.6 67.9 16.0	7·3 75·1 17·6	9.1 5.8 67.1 18.0	6·4 73·8 19·8
Ultimate Analysis— Carbonper cent Hydrogen" Ash" Sulphur" Nitrogen" Oxygen"	37.3 7.3 1.2 Trace 0.2 54.0	50.1 6.0 1.6 Trace 0.2 42.1	43.2 6.8 0.9 Trace 0.1 49.0	50.0 6.1 1.0 Trace 0.2 42.7	42.9 6.9 1.1 Trace 0.2 48.9	50.7 6.1 1.3 Trace 0.2 41.7	42.9 6.9 1.3 Trace 0.2 48.7	50.2 6.2 1.5 Trace 0.2 41.9	45.6 6.4 0.8 Trace 0.1 47.1	49 · 7 6 · 0 0 · 9 Trace 0 · 1 43 · 3	···· 0·1	0·1	 0.1 	 0.1
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	3, 635 6, 540	4,880 8,780	4,075 7,330	4,705 8,470	4,040 7,270	4,770 8,580	4,005 7,210	4,685 8,430	4,310 7,760	4,705 8,470	3,795 6,830	4,195 7,550	4,175 7,520	4,595 8,270
Fuel ratio	0	•22	0	•21	0	-23	0	·24	0	·21	0	-24	0	27
Carbon-hydrogen ratio	5.1	8.4	6.3	8.1	6.3	8.3	6.3	8.2	7.1	8.3		••••		••••
Softening temperature of ash°F.	Abov	7e 2700*			<u> </u>		<u> </u>	···-		••••		···	<u> </u>	···
Date	June 9,	1933	May 27	7, 1933	June 2,	1933	July 15	, 1933	Sept., 1	.933			•••••	•••••

*Composite sample No. 12261 from tests of green and dry hardwood—ash analysis, per cent: silica, 1.9, ferric oxide, 0.5; alumina, 1.6; calcium oxide, 45.4; magnesium oxide, 3.5; sulphur trioxide, 1.9; carbon dioxide, 30.9; potassium oxide, 12.2; sodium oxide, 0.5; phosphorus pentoxide, 1.3.

53

~

Analyses of Miscellaneous Solid Fuels--Continued

			Vellor	w birch					Poplar	aspen		
	W	bod		g bark	Old	bark	W	bođ		g bark	Old	bark
Sample No	122	297	12:	298	125	299	123	803	125	304	125	805
Moisture condition	R	D	R	D	R	D	R	D	R	D	R	D
Prozimate Analysis— Moistureper cent Ash	$8.3 \\ 2.4 \\ 75.3 \\ 14.0$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10.0 71.1 18.9	$ \begin{array}{c} 11 \cdot 2 \\ 2 \cdot 4 \\ 67 \cdot 7 \\ 18 \cdot 7 \end{array} $	$2 \cdot 7$ 76 · 2 21 · 1	$8 \cdot 8 \\ 2 \cdot 3 \\ 75 \cdot 8 \\ 13 \cdot 1$	$2 \cdot 5 \\ 83 \cdot 2 \\ 14 \cdot 3$	8.8 6.9 69.7 14.6	7.5 76.5 16.0	8.0 3.1 70.1 18.8	3·4 76·1 20·5
Ultimate Analysis— Carbonper cent Hydrogen	44 · 1 6 · 3 2 · 4 Trace 0 · 1 47 · 1	48 · 1 5 · 8 2 · 7 Trace 0 · 1 43 · 3	 0.1 	 0·1	 Trace	 Trace	45.1 6.3 2.3 Trace 0.1 46.2	49.5 5.8 2.5 Trace 0.1 42.1	 Trace	 Trace 	 Trace	Trace
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	4, 175 7, 510	4,550 8,190	3,805 6,850	4,190 7,540	4,385 7,890	4, 935 8, 890	4,215 7,590	4,625 8,320	4,085 7,350	4,480 8,070	4,100 7,380	4,455 8,020
Fuel ratio	0	•19	0	$\cdot 27$	0	·28	0	17	0	·21	0	27
Carbon-hydrogen ratio	7.0	8.3					7.2	8.5				····

•. •

54

: -

--

TABLE III—Concluded

Analyses of Miscellaneous Solid Fuels-Concluded

·····		-	Firewoo	od samp	les sub	mitted	by the I	Forest F	roducts	s Labor	atories,	Depart	ment of	the Int	erior, O	ttawa		
		-				1			White	e pine		1			White	spruce		
—	Pine and ed	gings,	Pine	slabs a d	nd edgi ry	ngs,	Wo	od	Young	; bark	Old I	oark	Wa	ood	Young ("Ba: wh spruc	rk of ite	Old 1 ("Thic of Engl spruc	k bark emann
Sample No	121	19	121	33	12	138	123	00	12	2301	12	302	12	306	123	07	123	108
Moisture condition	R	D	$\mathbf R$	D	R D		$\mathbf R$	D	R	D	R	D	R	D	R	D	R	D
Proximate Analysis— Moistureper cent Ash	39-4 1-0 46-9 12-7	1.7 77.4 20.9	11-5 0-7 73-1 14-7	0-8 82-5 16-7	9-1 0-8 74-3 15-8	0-9 81-7 17-4	8-2 1-4 76-5 13-9	1.5 83.4 15.1	8-9 2-5 70-2 18-4	2-7 77-1 20-2	10.7 1.0 62.0 26.3	1.1 69.4 29.5	9.3 0.9 74.3 15.5	1-0 81-9 17-1	10-0 6-4 61-8 21-8	7-1 68-7 24-2	10-4 4-0 64-4 21-2	4.5 71.9 23.6
Ultimate Analysis Carbonper cent Hydrogen Ash	32.6 8.1 1.0 Trace 0.2 58.1	53.8 6.0 1.7 Trace 0.3 38.2	47-1 6-9 0-7 Trace 0-1 45-2	53.2 6.3 0.8 Trace 0.1 39.6	47-6 6-9 0-8 Trace 0-1 44-6	52-4 6-4 0-9 Trace 0-1 40-2	Trace	Trace	 0-1 	 0.1	 Trace	Trace	46.0 6-5 0-9 Trace 0-1 46.5	50.8 6.0 1.0 Trace 0.1 42.1	 Trace	Trace	 Trace	Trace
Calorific Value— Calories per gramme, gross B.T.U. per pound, gross	3,040 5,470	5,020 9,040	4,450 8,010	5,025 9,050	4,525 8,150		4,585 8,250	4,995 8,990		4,960 8,920	4,585 8,260	5,140 9,250	4,300 7,740	4,740 8,540	4,085 7,350	4,540 8,170	4,220 7,590	4,710 8,480
Fuel ratio	0.	27	0.	20	0.	0-21		18	0-	26	0.	42	0.	-21	0.	35	0.	33
Carbon-hydrogen ratio	4.0	8-9	6-9	8-5	7.0	8-2				••••		••••	7-2	8-5		••••		
Softening temperature of ash°F.	Above	2700*		••	<u> </u>					••		••		•••				
Date	June 17	, 1933	June 23		June 30)	Septem	aber, 19	33	•••••			•••••		•••••	•••••	•••••	

• Composite sample No. 12262 from tests of green and dry pine wood: ash analysis, per cent: silica, 12·3; ferric oxide, 3·6; alumina, 7·1; calcium oxide, 33·3; magnesium oxide, 6·4; sulphur trioxide, 2·8; carbon dioxide, 18·5; potassium oxide, 11·1; sodium oxide, 1-2; phosphorus pentoxide, 2·6.

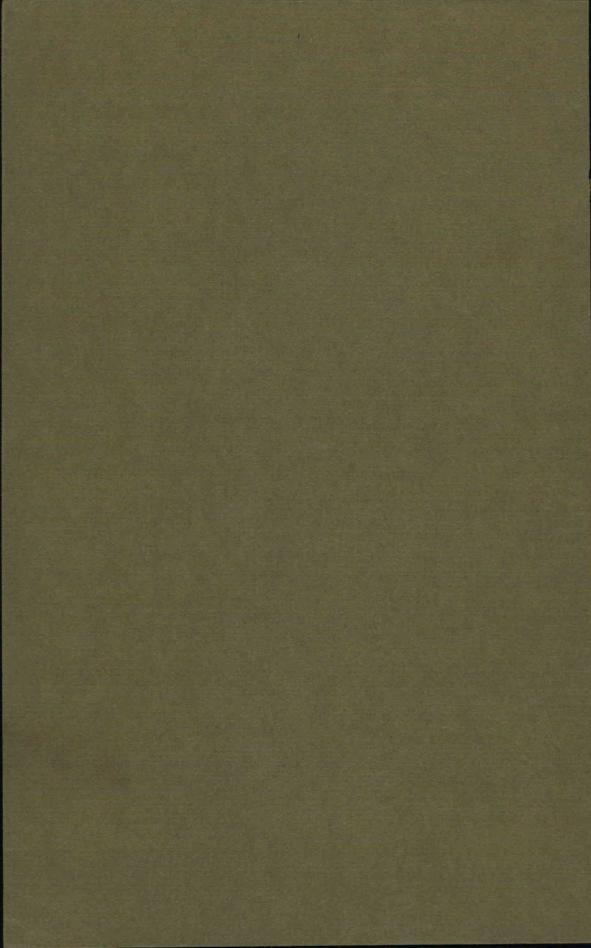
.

.

.

INDEX

~


	PAGE	C
Abitibi r., fusain	10	h
1, 1, 1, 1000 m		
A.cadia coal	- 7	
Acadia coal	13, 2	5
Aldwarka Main colliant	38	
and warke main connery		
Ambricoal briquettes	5	L
Anthracite.—		
Pennsylvania	31 - 32	2
	01-04	2
Scotland	29, 30	J
Scotland	29.30)
Banning mine goal	, A/	ě.
	00 T	5
Darnsley seam	30, 30	5
Becklev seam	33, 34	1
Beersville mine, coal		
Bellevue coal Berwind briquettes	21	
Berwind briquettes	51	L
Berwind coal	33, 34	1
Besco coal	5	
Beverly bog, peat	10)
Birch vellow	54	£
Dituminana anala	0:	~
Birch, yellowBituminous coals,—		
Alberta11- British Columbia	13, 26	Ĵ,
British Columbia	15-2	1
Tralend	26 1	ĩ
rugiand	00-4.	F.
New Brunswick	-9,28	ō
Nova Scotia 3-7	23-24	1
D	10 1	÷.
Pennsylvania	42,41	
Scotland	- 40)
West Virginia 26 33	34 49	2
Prinsit Columbia. New Brunswick	1.	ĩ
Diackioot Indian mine, coal		Ļ
Blue anthracite		1
Boulder nt NWT lignite	14	1
Bras d Or coal,		0
Briquettes	51. 52	2
Blue anthracite Boulder pt., N.W.T., lignite Briquettes	5	n
	10 00	2
Cadomin	10, 20	
Cadomin Coal Co	- 18	3
Cambria county Canadian Collieries, Ltd Canmore, coal Cammore Coal Co., coal Carbordela mine, coal	33-3	Ř.
α 1' α 0 11 α T 1		
Canadian Collieries, Ltd	2	
Canmore. coal	12	2
Canmora Coal Co. coal	12	2
	1:	
Cascade area	12	2
Charcoal. Charcoal. Chipman, N.B., coal. Coal Creek colliery, coal.	49	
Ω_1		
Unipman, N.D., coai		8
Coal Creek colliery, coal	- 19	
Cogletteg	50, 53	1
Coalettes Coalmont coal	20	ñ
Coarmont coar		
Coke	48, 49	y.
Comox area	2	1
Corbin Collieries Itd. goal	1	
Coke. Comox area		
Crown mine	30	D
Crown mine Crowsnest Pass area, coals,— Alberta		
Alborto	11, 2	5
	12 10	
British Columbia	15-19	9
Crow's Nest Pass Coal Co., coal	15-19	9
British Columbia Crow's Nest Pass Coal Co., coal Denaby and Cadeby Main colliery		
Denaby and Oudeby Main contery		
Derbyshire. Diamond Briquets. Dibble Petro-Blox.	30	
Diamond Briquets	52	2
Dibble Petro-Blox	50	n
Dinnington collients		
Dummington contery	30	
Dominion No. 12 colliery	(
Dominion Steel and Coal Corp	3-6	6
Douglas Barr NWT	14	
D_{1}		
Douglas slack	2	1
Dinnington colliery Dominion No. 12 colliery Douglas Bay, N.W.T. Douglas slack Drumheller area.	11	L
Dundas county, peat	î	
L'undas county, peat	ц	,

,	PAGE
The star Media and set	
Easter Main seam	40
Electric coke	48
England, coke Erie coal Evans, W. Benton	48
Erie coal	32
Evans, W. Benton	25
Fayette county, Pa	42, 44
Ford briquettes	51
Freeport seams	46
Upper seam	33, 34
Fusain.	10
Glapwell colliery Glass Haughton and Castleford collieries	36
Glass Haughton and Castleford collieries	38
Great Bear lake, lignite	14
Green county, Pa	42
Greenhill coal	25
Greenhill coal Greenwood Coal Co	7
Henderson coal	38
Henderson coal Hinton Collieries, Ltd., coal	11
Hugher coal	35
Hughes coal. Hutchinson mine	44
Indiana county, Pa	46
Indian Cove, coal	6
Johnston ck., coal	22
Johnston ck., coal	
0.0.0.1	8
Kent county, Ont	
	10
Kent mine	$\hat{46}$
Zing mine and	
Kent mine King mine, coal	
Kinnen comery	40
Kittanning seam,-	
Lower	
Upper Kleen-Blox briquettes	33, 34
Kleen-Blox briquettes	52
Ladvamith coal	21
Lang and Neilson briquettes La Salle coke	52
La Salla coko	48
Leicestershire	36
	00
Lignite,	14
Northwest Territories	14
Ontario	10
Lilly Keystone coal	35
Lincoln Gas coal	44
Locust Mountain coal	31
McIntvre mine	46
McIntyre mine McGillivray Creek Coal and Coke Co.,	
coal	11
Mabanoy coal	31
Maidan mina	26
Maiden mine Maple Sterling coal	42
Maple Sterling coal	
Maple wood	52
Maltby Main colliery	37
Melford Pictou coal	7
Melford Pictou coal Michel mine and colliery, coal Middlesboro Collieries, Ltd	15–18
Middleshoro Collieries, Ltd.	20
Milford colliery	-7
Minto Coal Co	
Minto Coal Co	. 9. 25
Mone mine	, 8, 20
Monagen lie and W Ve	42
Monongana county, w. va	
Morgan coal	42
Mona mine. Monongalia county, W. Va. Morgan coal. Morgan No. 1 mine.	40
Mountain Park area Mountain Park Collieries, Ltd	13, 25
Mountain Park Collieries, Ltd	13
Mountjoy tp., peat	10
Muirkirk peat	10

n		
PAGE	PAG	
Nanaimo area 21	Princeton, B.C 2	20
National coal	Pursglove mine 2	26
New Brunswick coals	Reynoldsville area 4	16
New Lount Collieries, Ltd		8
New Waterford, N.S., coal		0
Nick's Blox briquettes 51	Scotland, coal 30, 4	0
Nicola area, coal	Scranton area, coal 3	2
Nordic mine	Semet-Solvay coke 4	
Normandale coal 20	Sewickley seam 2	6
Nova Scotia coals	Shamokin coal 3	
Okanagan lake, coal 19	Short's ck., coal 1	
Old Keystone Lily 35	Silkstone seam 3	
Old Sydney coal		7
Onakawana. See Abitibi r.	Spruce, white	
Ontario,—	Steam lump coal	4
Lignite 10	Stirlingshiro 4	
Peat 10	Sumner No. 3 mine 4	
Ovoids briquettes	Sunglo Koalets briquettes	
Oxford tp., peat 10	Sunrise coal	
Package Full briquettes 50	Swallowwood seam	
Parkgate seam	Sydney, N.S., coals 3-	
Peat, Ontario 10	Sydney area 23, 2	
Peco briquettes		3
Penker coal	Tantalus Butte, coal 22	
Pensions and National Health, coals	Thermets briquettes 5	-
analysed for 23–27		6
Pennsylvania,-	Vincent mine 33, 3	
Coal	Wales, coal	
Gas coal	Washington county, Pa 4	
Petroleum coke	Washington state	
	Welscot briquettes	
	Welton and Henderson, Ltd 24	
Pine	Wentworth county, peat	
Pittsburgh seam	Western Fuel Corporation of Canada 21 West Lothian	
Pittston coal		•
Plean collieries	Westworeland county, Pa 44 West Virginia, coal 26	
Pocahontas coal 33,34		
Polk Emmet		
Poplar		
Prairie Creek area		
Priestman collieries	Yatesboro	
Priestman's Nuts coke	Yukon territory	
	1 Luxon collicity	

:

ť,

