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FOREWORD 

The Pit Slope Project was initiated in 1972 
to ensure optimum use of Canadas  mineral re-
sources. Its objective is to reduce the cost of 
open pit mining and thereby to increase reserves 
of ore that can be mined at a profit. The cost 
reduction is to be realized by the advancement of 
slope design methods and by the judicious use of 
new support methods. 

Output from the project in 1977 will be an 
engineering manual for use by staff engineers on 
the mining properties. Developement studies were 
conducted under contract in the field utilizing 
previous research findings. Other work was con-
cerned with evolving a comprehensive design pro-
cedure. One approach of continuing interest since 
the earlier studies at Steep Rock and Knob Lake, 
is the utilization of field data on both stable 
and unstable slopes to obtain, in effect, a 
measure of the actual strength properties of the 
pertinent rock formations. One of the papers 
herein, by R.O. Stark, gives a final account of 
the pay-off of the studies at Steep Rock. 

With this orientation, a somewhat novel 
analytical procedure was developed by T. Shuk of 
Bogota, Colombia. In communication with Mr. Shuk, 
a basic report on the development of this approach 
was obtained from him. This presentation was 
translated by CANMET and is issued herein together 
with a reprint of another article by Shuk and a 
report by Dr. B. McMahon, who was commissioned to 
make a detailed examination of this approach. 

These papers are being made available to 
encourage mining companies to conduct similar 
studies on their properties. Such practical re-
search would within a few years have a distinct 
effect on the confidence that planning engineers 
would have in designing pit walls. 

AVANT-PROPOS 

Le projet Recherche sur les pentes des ex-
ploitations à ciel ouvert a été créé en 1972 dans 
le but d'assurer une utilisation maximale des 
ressources minérales canadiennes. Son objectif 
est de réduire le coût de l'exploitation à ciel 
ouvert par l'amélioration des plans des pentes et 
par l'usage judicieux de nouvelles méthodes de 
soutènement, et par conséquent augmenter les 
réserves d'or pouvant être extraites à profit. 

Le projet, devant être terminé en 1977, 
donnera suite à un manuel technique destiné à 
l'usage des ingénieurs miniers. Des études sur le 
terrain, exécutées à forfait et pour lesquelles on 
s'est servi de découvertes précédentes, sont 
présentement en cours. De plus, une étude 
exhaustive de l'élaboration des plans est en 
marche. Par l'utilisation des données obtenues à 
partir d'enquêtes sur le terrain sur les pentes 
stables et instables, étude qui a toujours été 
d'un certain intérêt depuis les études antérieures 
de Steep Rock et Knob Lake, on obtient les 
propriétés réelles de résistance des formations 
rocheuses concernées. L'un des présents 
documents, écrit par R.O. Stark, donne un compte 
rendu final du succès des études effectuées à 
Steep Rock. 

Dans la même direction, M.T. Shuk de Bogota 
en Colombie, a développé une nouvelle procédure 
analytique. CANMET en a obtenu un rapport de 
base, l'a ensuite traduit et publié avec un autre 
article de M. Shuk. L'analyse de cette nouvelle 
découverte, effectuée par le Dr. B. McMahon, a été 
publiée par la même occasion. 

Ces documents sont mis à la disposition des 
compagnies minières afin de les encourager à 
entreprendre de semblables études chez-eux. De 
telles recherches pourraient avoir, d'ici quelques 
années, un effet certain sur la confiance des 
ingénieurs de la plannification dans leur 
conception des plans des murs de mine. 
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ESTIMATION OF UPPER BOUNDS TO ROCK SLOPES BY ANALYSIS 

OF EXISTING SLOPE DATA 

by 

B.K. McMahon* 

ABSTRACT 

This report applies a method developed by 

Shuk to the investigation of existing rock slope 

data. The study is incomplete. It is presented 

in this form in the hope of drawing additional 

data and explanations from other workers. 

The rock slopes studied tend to confirm 

Shuk's observation that data from existing rock 

slopes form straight lines on log-log graphs when 

the slope height is plotted against the slope 

"length". The term "length" is defined by Shuk to 

be the horizontal component of the slope on a 

log-log plot, and this definition has been re-

tained throughout this compilation of papers. How-

ever, it is also shown that Shuk's procedure for 

estimation of probability of failure by regression 

analysis of existing slopes is likely to yield 

trivial results unless all slopes analysed are 

known to be close to limiting equilibrium. This 

emphasises Shuk's requirements that the sample 

must be carefully defined and bounded if this 

procedure is to be used. It does raise concern 

that the requirements may be too restrictive for 

the procedure to be widely applied in practice. 

Of the data studied, only the slopes in 

shale are known to be close to limiting equili-

brium. The remainder are conservative to an un-

known degree. However, it was assumed that the 

steepest existing slopes in any category would 

approach the upper limit for stable slopes in that 

category. A first attempt at drawing upper bounds 

for various broadly defined rock mass categories 

* Partner, Australian Rock Engineering Consultants 

has been made on this basis. 

The proposed "upper bounds" are straight lines 

which, when extrapolated, converge at a point 

equivalent to a slope angle of 8° at a slope 

height of 10,000 ft. If they are confirmed and 

more precisely defined by further study, such 

upper bounds may provide a criterion for design of 

rock slopes in stable orientations with respect to 

the geologic structure. Design of slopes with 

orientations that are critical with respect to 

structure should be based on analysis of the 

fractures. 

Theoretical 	curves derived from the Mohr 

failure criteria are a poor fit to most of the 

empirical data. Shale slopes fit a straight line 

or a Mohr-Coulomb curve equally well. 

Besides the poor fit, the deduced values of 

the Mohr strength parameters are unexpectedly low 

and appear inconsistent with published values 

based on laboratory tests. Possible explanations 

are either that: (a) steepness is limited by sur-

face failures due to processes such as ravelling, 

over-toppling and exfoliation of small surface 

blocks and not by the strength of the underlying 

rock mass; (h) strength of the underlying rock 

mass is subject to a "power failure law" from 

which it is tentatively deduced that slope height 

would bear an exponential relationship to a slope 

length; or (c) information for slopes in rocks 

other than shale merely represents accidental 

variation of slopes which could all be much 

steeper. 

It would follow from the first explanation 

that open pit slopes with stable orientations 
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could be excavated to very steep angles using sur-

face reinforcement such as rock bolts. The second 

explanation would imply that very high rock slopes 

may need to be designed at slope angles less than 

residual angles of friction determined in the 

laboratory. The third explanation assumes that 

the rather impressive fit of the data is due to 

coincidence. 

INTRODUCTION 

This is a preliminary report compiled from 

data available to the writer. It is presented in 

this form to suggest possible directions for fur-

ther study. 

The study was inspired by papers by Shuk 
(Ref 1, 2 and 3) who showed that a wide variety of 

rock slopes tended to form straight line patterns 

when the slope height was plotted against the 

slope "length" (as defined in Plate 1) on a 
log-log plot. Shuk has suggested that regression 
analysis of these plots provides a means of 

obtaining a design estimate of probability of 

failure of any rock slope given sufficient data 

from existing slopes when: 

a. the populations of height and length of the 

slopes follow log-normal (or other transforms 

of the normal distribution); 

b. the sample is random; and 

c. the population studied is properly defined and 

bounded. 

d. the slopes must all belong to the same time 

scale. 

(The (c) requirement is interpreted by the 

present writer to mean that the sampled slopes 

must form a unimodal, statistically homogeneous 
population from which it would normally follow 

that they must all be formed by the same 

processes. 

The (a) requirement derives from the theory 

of the commonly used methods of regression 

analysis (Ref 4). It could  be  overcome by using 
more general methods of analysis. 

The 	above 	requirements result in some 

obvious limitations to the application of Shuk's 
procedures to actual design of excavated slopes. 

Estimates of probabilities of failure computed 

from analysis of natural slope data would be ex-

pected to be conservatively high when applied to 

excavated slopes, due to the effects of erosion 

and long-term progressive failure. Estimates of 

probability of failure based on existing excavated 

slopes will also be conservatively high, unless 

all slopes used in the analysis were at the point 

of critical equilibrium. 

However, although it is clear that most 

existing stable rock slopes are probably less 

steep than they could be, it is likely that at 

least a few approach the maximum stable slope. 

The upper bound to the steepest existing slopes in 

any rock mass category is, therefore, likely to be 

a reasonably valid estimate of the true upper 

bound for that category. 

This upper bound would possibly have value 

in design. It could be a first estimate of the 

slope design for slopes excavated in rock masses 

where the fractures are either discontinuous or in 

stable orientations, so that the slope is con-

trolled by the average strength of the rock mass. 

Slopes where the fractures are relatively continu-

ous and unfavourably oriented, should be designed 

by analysis of the fractures, as described in 

References 7 to 10. In addition, it could be a 

method of back-calculating the maximum strength 

exhibited by various rock mass categories. This 

would provide insight into the "reduction factors" 

which should be applied to rock substance 

strengths to estimate rock mass strengths. It 

might be an approach to identification of the 

"failure law" applicable to rock masses on a large 

scale. 

In this report, actual slope data is presented 

on plates together with theoretical curves useful 

for interpretation and back-calculation. 

ANALYSIS OF OPEN PIT SLOPES 

A scatter diagram 	obtained by plotting 

measurements of 233 rock slopes compiled by Kley 

and Lutton is shown in Plate 2 (Ref 8). These 

data were obtained from a total of 153 open pit 

mines and quarries in a wide range of rock types. 
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The degree of conservatism in the design of these 

slopes is not known. 

The data tend to form an elongated two-

dimensional log-normal distribution, as observed 

elsewhere by Shuk. The regression line-of-best-fit 

and 90% confidence limits are as shown. The 

correlation coefficient of height upon "length is 

0.78 and regression equation is 

Log H - 1.187 + 0.521 log L 	 eq 1 

where H and L are the slope height and slope 

"length" respectively. 

Although impressive at first sight, this 

result is in fact trivial. The apparently high 

correlation coefficient is due to the fact that L 

and H are not independent variables, but are re-

stricted to a narrow belt in the middle of the 

plot. Slopes 300 ft high, for example, cover a 

range from 15° to 76°. 

Additional studies in which the data were 

segregated into smaller rock type categories, did 

not result in significant reduction in the 

scatter. It is clear this scatter is probably due 

to factors which are not related to the average 

strength of the rock mass, such as the presence of 

individual weak fractures in unstable orientations 

and varying degrees of design conservatism. 

ESTIMATION OF UPPER BOUNDS 

The steepest existing rock slopes known to 

the writer for several categories of rock slopes 

are shown in Plates 3 to 6. The following cate-

gories have been considered: 

a. Strong granitic rocks  

The steepest slopes considered were those of 

El Capitan and Half Dome in Yosemite National 

Park, California. These are monolithic gran-

ites with few joints other than exfoliation 

fractures. The slopes shown in Plate 3 were 

measured from cross-sections drawn by Hansen 

through the steepest part of the Yosemite 

Valley (Ref 9). 

b. Horizontally layered sandstones and shales  

The slopes considered were in the thickly 

bedded sandstones and stable shales of the 

Grand Canyon of the Colorado River, Lodore 

Canyon of the Green River and the steepest 

slopes in Zion National Park. These slopes 

have also been measured from cross-sections 

provided by Hansen (Ref 9) and are shown on 

Plate 4. ,  Slopes from the Day-Loma and 

Frazier-Lemac mines in Wyoming are also shown 

on Plate 4. 

c. Strong but jointed granite and gneiss  

The 	steepest 	slopes 	measured 	in 	the 

Precambrian gneiss of the Big Thomson and 

Clear Creek Canyons in Colorado are shown in 

Plate 3 (Ref 5). The major defect in the 

gneiss was the foliation which had a strike 

approximately at right angles to the direction 

of the canyon in all examples shown. Slopes 

in similar but more broadly jointed gneiss in 

the Black Canyon of the Gunnison are also 

shown. 

d. Jointed and altered crystalline rocks  

This category includes the typical porphyries 

of the open pit mines in Utah, Arizona and 

Nevada, 	and similar intensively 	jointed, 

partially altered crystalline rocks. The 

slopes shown in Plate 5 are the steepest of 

this category listed by Kley and Lutton (Ref 

11). 

e. Stable clay shales  

Published information on slopes in paint rock 

by Coates (Ref 10) is shown in Plate 6. Paint 

rock is described as a Keewatin sedimentary 

rock, mainly composed of kaolin, quartz and 

pyrolusite with a void ratio of 0.4. The 

slopes shown are all unstable, but are indica-

ted by Coates to be close to critical equilib-

rium. The higher slopes of this group lie re-

markably close to a straight line on the 

log-log plot. 

f. Swelling clay shales  

Examples of stable and unstable slopes in 

weathered and "firm" Bearpaw shale have been 

published by Lane (Ref 11). This is a well 

known swelling bentonitic clay shale. This 

information was originally plotted by Lane on 

slope charts of height vs slope cotangent on 
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arithmetic scales. When the data is replotted 

on log-log scales, as shown in Plate 6, the 

curves separating stable from unstable slopes 

are seen to approximate straight lines. 

Straight lines shown on these plates repre-

sent first estimates of the upper bounds for the 

slopes at each locality or formation. These upper 

bounds are most reliable for the clay shales, 

where information on both stable and unstable 

slopes controlled by the average properties of the 

rock mass was available. 

Some data on unstable rock slopes in the 

porphyry copper mines was also available (Plate 

5), but in all cases these failures were 

associated with underlying weak fractures and 

occurred on slopes much flatter than the steepest 

slopes in the mine (Ref 8). However, it is 

possibly significant that two of the larger slides 

recorded at Chuquicamata and Bingham Canyon lie 

close to the upper bound for the stable slopes 

studied, as shown in Plate 5. 

THEORETICAL CURVES 

Mohr Strength Relationships  

To compare the empirical upper bound esti-

mates with predictions based on theoretical fail-

ure laws, sets of curves have been developed for a 

dry material with failure law: 

T = C -I- 	tan 4) 	 eq 2 

where T = shear stress at failure, c = cohesion, 

a = normal stress at failure, and a = angle of 

friction. 

The sets.of curves shown as Plates 9 and 10 

are derived from the simplified concept of limit-

ing equilibrium in which the slopes are assumed to 

be rectilinear and infinitely extended and failure 

occurs along a critical circular arc. These 

curves have been developed from dimensionless 

relationships derived by Hoek (Ref 12). The second 

set of curves, on Plate 11 are derived from the 

general concept of limiting equilibrium in which 

the whole of the rock mass in the lower part of 

the slope is considered to be in a state of  

limiting equilibrium and failure occurs along a 

slip-line network. These curves have been derived 

from tables given by Sokolovskii (Ref 13). 

Both sets of curves cover the range (I) = 10° 

to 40°, c/y = 1 to 1000 ft (where y is the density 

of the rock mass). 

As shown, 	both 	sets of curves become 

asymptotic to the angle of friction with in-

creasing height of slope and, for any slope 

height, the predicted slope angles are slightly 

lower for the exact theory than for the simplified 

theory. For purposes of this preliminary 'report, 

the curves have not been completed beyond the 

ranges of values given by Hoek and Sokolovskii. 

Exponential Relationships  

A straight line on a log-log plot of slope 

height vs slope length, indicates that the two 

variables have an exponential relationship of the 

form: 

H = aL
b 

where H is the slope height, L is the slope length 

(i.e. the horizontal component of the slope, as 

shown in Plate 1), a is a constant (equal to the 

value of H when L = 1), and b is a constant equal 

to the slope of the line. 

As shown in Plate 9, slopes which maintain 

the same angle regardless of height, plot as 

straight lines with the constant b equal to one 

and constant a equal to the tangent of the slope 

angle. Slopes whose average inclinations become 

flatter with increasing slope height, are charac-

terized by a value of the constant b less than 

one. 

A possible explanation for the observed 

straight-line relationships, derives from the 

similarity in form between eq 3 and the empirical 

power failure law: 

T Kan  

This is suggested by Jaeger (Ref 14) on the basis 

of results of triaxial testing of rock cores and 

crushed rock. 	Similar relationships have been 

eq 3 

eq 4 
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suggested by Hobbs (Ref 15) on the basis of tri-

axial testing of crushed rock and Maurer (Ref 16) 

on the basis of direct shear testing of sawn rock 

surfaces. As pointed out by Jaeger "there is some 

justification for this since Archard (Ref 17) 

points out that a power law ... should apply to 

irregular surfaces in place of Amonton's laws.' 

This requires that points of contact are subject 

to elastic deformation instead of the plastic 

deformation that is implicit in the classical 

theory (Ref 18). 

It follows from eq 4, when n is less than 2 

that, the average coefficient of friction de-

creases exponentially with increasing normal 

stress: 

T 	Kan v  -1 = tan y 	= - = Nan  
a 	a 

Since the average normal stress across a 

potential failure surface is also likely to in-

crease as a power function of the height of the 

slope, it would follow that the average co-

efficient of friction decreases exponentially with 

increasing height of the slope. 

An alternative to the elastic deformation 

mechanism to explain this phenomena is the theory 

proposed by Byerlee (Ref 19). As explained by 

Brace and Byerlee (Ref 23): 

" 	One of the puzzling results of previous 

work was the consistent difference between the 

coefficient of friction, 11, of rocks and p of 

rock-forming minerals. For rocks, p is 

usually around 0.8 (Jaeger, Ref 20), whereas 

for minerals it is often about 0.1 (Horn and 

Deere, Ref 21). Byerlee showed that this 

could be explained by differences in roughness 

of the surfaces of the specimens used. Since 

roughness should not be an important factor 

according to Tabor, Ref 22) this led to a 

reexamination of this theory, particularly 

with regard to brittle materials. Byerlee 

proposed a theory which differed from the 

classical in that failure of asperities on a 

sliding surface occurred through brittle 

rather than ductile processes. The theory 

predicted P of about 0.1 for finely polished 

surfaces; this seemed to correspond with the 

values commonly obtained for minerals (mineral 

specimens used in friction experiments are 

usually polished). 

Experiments showed ... that, as roughness 

of either a rock or a mineral specimen was in-

creased, p also increased, approaching an 

upper limit of 0.6 to 0.8. Most samples of 

rock in friction experiments are sawcuts which 

are ground rather than polished. Thus, in 

previous studies probably corresponded to the 

rough end of the scale in Byerlee's 

experiments." 

The apparent difference between p of rocks 

and minerals could be explained therefore by 

differences in roughness rather than by an in-

herent difference in these two classes of 

materials." 

Byerlee's concept, which was applied to 

laboratory sized rocks and minerals, suggests to 

the writer that the roughness factor contributing 

to the total angle of internal friction in a 

fractured rock mass is dependent on scale and 

shows an exponential relationship to the height of 

the slope. 

It is intriguing at this stage that all the 

attempted upper bounds for various rock categories 

shown in Plates 7 and 8 converge at a value: 

H/ : 0.1 

which, if the jointed rock masses are regarded as 

purely frictional materials, is the limiting value 

predicted by Byerlee. 

COMPARISON BETWEEN THE EMPIRICAL SLOPE DATA 

AND THE THEORETICAL CURVES 

As shown in Plates 3 to 7, the fit of 

straight line segments to the empirical data is 

impressively good. With the exception of the data 

pertaining to clay shale slopes, which can be 

fitted equally well by straight lines or the 

curves derived from the Mohr strength relation-

ship, the overall fit of the Mohr curves is re-

markably poor. However, it is possible to fit 

eq 5 
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Mohr curves to short segments of the data. The 

procedure for fitting these curves is described in 

Appendix 1. 

Values 	of "first attempt" estimates of 

upper-bound values of the constants a and b in eq 

3 for the various categories of rock slopes shown 

in Plate 8 are given in Table 1. 

2c cosch  
Cu - 

1 - sing, 

Cu (rock mass)  
R.F. - 

Cu (rock substance) 

where Cu = the unconfined compressive strength and 

R.F. = Reduction Factor. 

eq 6 

DISCUSSION 

TABLE 1 "FIRST-ATTEMPT" ESTIMATES 

of the UPPER-BOUND VALUES 

of EXPONENTIAL EQUATION CONSTANTS 

for INDICATED ROCK CATEGORIES 

Rock mass category  

Massive granite with 

few joints 	 139 	0.28 

Horizontally layered 

sandstone 	 85 	0.42 

Strong but jointed 

granite and gneiss 	 45 	0.47 

Jointed partially altered 

crystalline rocks 	 16 	0.58 

Stable shales 	 8.5 	0.62 

Swelling shales 	 2.4 	0.75 

Note: a and b are the constants in eq 3 corre-

sponding to the lines shown in Plate 8 

for each rock category. 

For the purposes of investigation, values of 

the Mohr strength parameters were fitted to 

selected groups of rock slopes as shown in Table 

2. The curve fitting followed the procedure out-

lined in Appendix 1, but for rock types other than 

shale required some license as the slope data 

tends to lie on lines tangential to the theoreti-

cal curves rather than along the curves. Assump-

tions were then made regarding the specific 

gravity of the materials, the groundwater levels 

and the unconfined compressive strength of the 

rock substance, so that the order of mangnitude of 

the rock mass unconfined compressive strength and 

reduction factors could be computed from the 

following relations: 

The results shown in Table 2 appear rather 

strange. The low values of (I) obtained for the 

granites, gneisses and sandstones compared with 

the relatively high value of (1) obtained for the 

paint rock do not agree with results of laboratory 

tests. Even if the magnitudes of friction 

obtained from laboratory tests were wrong, the 

relative order of values for different rock types 

would be expected to remain much the same. 

With the exception of the value for the 

Grand Canyon the reduction factors calculated are 

mostly two orders of magnitude lower than values 

given by Deere et al (Ref 24). These values 

however were based on plate bearing tests which 

could conceivably be far too small in scale to be 

correct for the large scale of a rock slope. 

Nevertheless, the values calculated here seem 

surprisingly low. 

These observations suggest that factors, 

other than the average strength of the underlying 

rock mass, control the steepness of rock slopes, 

even in those cases where unfavourably oriented 

weak fractures are not present. 

In 	the 	writer's 	opinion, 	a 	likely 

explanation is 	that 	steep 	rock slopes are 

controlled by small surface 	failures due to 

loosening, ravelling, overtoppling and 

exfoliation. These phenomena limit the steepness 

of both excavated and natural slopes and, in the 

case of natural slopes, are compounded over long 

periods of time by weathering and erosion. 

It is perhaps significant that all rock 

slides known to the writer, except those in shale, 

have been associated with faults or other weak 

defects behind the slope. It appears that slopes 

in which these weak defects are absent or in 

stable orientations, have been prevented by 

Constant Constant 

a 



TABLE 2 - Fitted Mohr Strength Parameters and Derived Rock Mass  

Compressive Strengths and Reduction Factors  

for Selected Rock Categories  

Assumed 

	

Calculated 	rock 

Fitted 	 Corrected 	rock mass 	substance 

Rock 	 Data 	Mohr Strength 	 Assumed 	Mohr-Strength 	unconfined 	unconfined 	Calcu- 

group 	 shown 	Parameters 	Assumed 	specific 	parameters 	compressive 	compressive 	lated 

or 	 on 	$ 	c/y 	groundwater 	gravity 	cp 	c 	strength 	strength 	reduction 

locality 	 Plate No. 	degrees feet 	level 	p.c.f. 	degrees 	p.s.f. 	p.s.i. 	p.s.i. 	 factor 

Yosemite 	 3 	 8 	1000 	Low 	 165 	9 	165000 	2700 	 35000 	 .077 

Grand Canyon 	4 	 20 	750 	Low 	 124 	22 	93000 	1900 	 7000 	 .27 

Lodore Canyon 	4 	 8 	220 	Low 	 124 	9 	27000 	430 	 7000 	 .062 

Bingham Canyon 	5 	 17 	100 	High 	 165 	22 	16500 	340 	 18000 	 .018 

Mine 

Clear Creek 	 3 	 10 	100 	High 	 165 	13 	16500 	290 	 35000 	 .008 

Canyon 

Big Thomson 	 3 	 10 	75 	High 	 165 	13 	12375 	216 	 35000 	 .006 

Canyon 

Esperanza Mine 	5 	 20 	35 	Low 	 165 	22 	5800 	118 	 18000 	 .006 

Bagdad Mine 	 5 	 23 	20 	Low 	 165 	25 	3800 	82 	 18000 	 .004 

Paint rock 	 6 	 30 	7 	Medium 	 110 	34 	770 	20 	 2500 	 .008 

Bearpaw shale 	6 	 20 	1.8 	Low 	 120 	20 	216 	4 	 1600 	 .002 
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surface failures, (or possibly human intuition in 

the case of excavated slopes) from approaching a 

combination of steepness and height which would 

result in failure through the underlying rock 

mass. 

It also appears that the cumulative effect 

of these surface failures, or human intuition, 

results in an exponential flattening of the slope 

with increasing height. 

If the above rationalization is correct, it 

would follow that slopes which are stable in the 

orientation with respect to the underlying rock 

structure could be excavated very steeply with the 

addition of such surface treatment as smooth wall 

blasting and rock bolting. 

An alternative to this theory, however, is 

that rock mass strength is subject to a power 

failure law, so that it decreases exponentially 

with the size of the slope. As previously noted, 

there is some experimental evidence that such 

power failure laws do exist. Also, some field 

observations, such as the obvious stress relief 

exfoliation at Yosemite and other high rock 

slopes, could be interpreted as support for this 

concept, especially where the slopes have the 

curved "bathtub shaped" profile predicted by 

Sokolovskii. This explanation would have serious 

consequences for the design of very high rock 

slopes, as it suggests that they may have to be 

excavated at angles shallower than the residual 

angle of friction obtained by laboratory tests. 

TENTATIVE CONCLUSIONS 

The following tentative conclusions have 

been drawn from this study. 

a. The observation of Shuk that natural and exca-

vated slopes tend to form straight lines when 

slope height is plotted against slope "length" 

on log-log plots, has 	been independently 

confirmed. 

b. When extrapolated, most of these straight 

lines converge at a point equivalent to a 

slope of 8° with a height of 10,000 ft. The 

slope angles 	do 	not 	appear 	to become 

asymptotic to the friction angle, as predicted 

by theories based on the Mohr strength failure 

criterion. 

c. With the exception of slopes in shale, the 

fitted values of the Mohr strength parameters 

and estimates of rock mass strength deduced 

therefrom, are surprisingly low even for the 

steepest slopes known to the writer. 

d. A possible explanation is that steepness of 

high rock slopes appears to be limited by 

either 	small surface 	failures 	such 	as 

ravelling, overtoppling or exfoliation of 

small blocks. This suggests that rock slopes 

with stable orientations with respect to the 

underlying fractures can be excavated to very 

steep angles if such surface treatment as 

smooth wall blasting and rock bolting are 

applied. 

e. An alternative explanation is that the average 

strength of a fractured rock mass is subject 

to a power failure law, so that it decreases 

exponentially with the height of the slope. 

This suggests that very high rock slopes may 

have to be excavated at angles less than the 

residual angle of friction obtained by labora-

tory direct shear tests. 

f. A third possible explanation is that only the 

information for shale slopes is sufficiently 

well bounded to be meaningful and the other 

data represents accidental variation of rock 

slopes which could all be much steeper. This 

explanation 	presumes 	that 	the 	rather 

impressive fit of the data to converging 

straight lines is mere coincidence. 

SUGGESTIONS FOR FURTHER STUDIES 

The rock mass categories used in this report 

are rather vague and generalized. They should be 

more quantitatively defined. 

Additional data should be collected and 

plotted, particularly any data which would change 

the "first-attempt" upper bounds presented here. 

Any information regarding slope failures of 

the slip-circle type, and not bounded by major 

defects in slopes other than shales, should be 

plotted on the appropriate graphs. 
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Additional work is required to refine the 

possible explanations given here or to suggest 

other explanations. Suggestions for independent 

methods of evaluating conflicting explanations are 

required. 
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APPENDIX A 

USE OF OVERLAY CHARTS FOR BACK-CALCULATION OF MOHR STRENGTH PARAMETERS 

FROM SLOPE DATA 

The use of these charts for fitting strength 

parameters to natural rock slopes can be demon-

strated by the example of the data for paint rock 

on Plate 6. Superposition of Plates 9 and 10 

shows that the slope of the line of best fit 

coincides most closely to the interpolated 

theoretical curve (for dry slopes) for a material 

(1) = 30°, c/y = 7. As the majority of the slopes 

were subject to groundwater levels equal to half 

the height of the slope (Ref 10), it is necessary 

to apply a correction factor (after Hoek, Ref 12) 

as follows: 

w=  (1 + d el) 4, 	 eq Al 

where gm = the average angle of fricton necessary 

to maintain equilibrium in a wet slope, 4) = the 

average angle of friction necessary to maintain 

equilibrium in a dry slope, d = a coefficient 

suggested by Hoek to be 0.3 if normal drawdown is 

present and 0.5 if no drawd6wn is present, Hw = 

height of groundwater table above the toe of the 

slope, and H = height of the slope. 

The value of cp for paint rock would become 34° 

for normal 	drawdown, or 37° if no drawdown 

occurred. 	These values may be compared with 

average values of 4) = 37° and c = 1000 psf esti-

mated by Coates (Ref 13) on the basis of labora-

tory tests to determine the angle of friction and 

back-calculation of individual slopes, assuming cP 

= 37° to obtain the cohesion. 

The procedure described here has a possible 

advantage over the procedure used by Coates, as 

both the values c and (I) can be estimated from the 

field data, thereby eliminating the need to 

extrapolate the value of (I) from the laboratory to 

the field. 
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APPENDIX B 

A SIMPLE DESIGN METHOD 

TO MINIMIZE COST OF ROCK SLOPES 

THOMAS E. SHUK* 

SUMMARY 

A method of designing slopes in cuts is pro-

posed, based on research analysis of a set of 22 

natural slopes in this country. This method 

utilizes inference and statistical analysis in 

conjunction 	with postulates given by present 

theory on economie decision. 	Such a method is 

simple to apply as it does not require full 

knowledge of the mechanical characteristics of the 

rock mass, or of the forces which may act on the 

slope itself. As a result of this analysis, 

several questions have arisen concerning various 

practices now commonly used in rock slope design. 

INTRODUCTION 

Until recent years, the Civil Engineering 

department utilized tables giving a great variety 

of procedures for the design of soil and rock 

slopes, especially in designing road 

cross-sections. 

Technology developed in soil mechanics has 

slowly introduced 	a more rational method of 

*Associate Civil Engineer and Head of the Geo-

technical Department - GEOCOLOMBIA Ltda., Bogota. 

Translated by J. Gonzales, University of Arizona; 

with later technical additions by Ann Hardy, 

formerly of C.E.R. Laboratories, and F.L. Casey. 

Presented at the Symposium on Geological Engineer-

ing Bogota, Colombia, Nov. 25-30, 1968, and pre-

pared originally as a CANMET (Mines Branch) in-

telnal 5.cries  report MR 71/38-T. 

designing slopes based on a knowledge of more 

realistic mechanical and physico-chemical char-

acteristics of soils as well as a knowledge of 

deformation and forces to which slopes may be 

subjected. A stable slope is designed in combina-

tion with stability analysis and by means of a 

safety factor. 

While this method is more rational than the 

earlier, the safety factor which varies in terms 

of other factors is difficult to apply as it does 

not possess any logical basis and, in most cases, 

varies considerably. 

For the following reasons the day is yet to 

come when one can apply the same method of design-

ing slopes in rock as in soils: 

a. While the mechanical characteristics correctly 

interpreted from laboratory results with soil 

samples are in most cases representative of 

the mechanical characteristics of the contin-

uous mass, the rock mass is not considered 

continuous, thus 	giving 	nonrepresentative 

laboratory results. For example, mass 

resistance is generally significantly lower 

than that of a common laboratory sample. Even 

though emphasis has been on the use of rock 

masses for in situ experiments on a large 

scale, the results of such experiments only 

constitute an initial approximation. In some 

cases of road rock cuts, the cost of carrying 

out such an in situ experiment, with results 

representative of the mechanical char-

acteristics of the rock mass itself, would far 

exceed potential benefits. 

b. While in the case of soils it is not difficult 
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to determine within a certain degree of con-

fidence the stresses which may act on a slope, 

this is practically impossible when dealing 

with rock masses. This is because the in-

strumentation employed often destroys the 

system of forces that may already exist where 

measurements are being taken. 

Due to the above reasons, the highway engi-

neer finds himself obliged to continue using 

tables to design "stable" rock slopes. 

Purpose  

The purpose of this paper is to devise a 

rational method of designing a rock slope based on 

investigation results. The problem is to provide 

a slope at an overall minimum cost. The proposed 

method is simple to apply and does not require a 

knowledge of the mechanical characteristics of the 

rock mass or of the forces to which the slope may 

be subjected. To apply this method, however, one 

requires adequate topographical and geological 

information of the area and a firm knowledge of 

the theory and application of statistical 

analysis. The method is based primarily on the 

hypothesis that Nature itself provides the best 

possible in situ tests for design purposes. 

PRELIMINARY INVESTIGATIONS 

Using the above hypothesis, several engi-

neers in the past have utilized natural slope 

analysis to design rock slopes. The first 

analysis of this type was published in 1949 by 

Binger and Thompson. The authors described the 

first systematic attempt at organizing a great 

quantity of data consisting of precise topographi-

cal information on natural slopes, on measurements 

and other pertinent data on rock slides, and on 

geological information - all of these obtained 

during and after construction of the Panama Canal. 

This data was compiled and then correlated in a 

system of "curves for excavating rock slopes". 

These curves were subsequently utilized with 

complete success in the Cucaracha and Culetra for-

mations for the Third Locks Project of Canal de 

Panama in 1939 to 1942. 

In 1961 Lane used basically the same method 

in the Bearpaw (Fort Peck Dam), Fort Union 

(Garrison Dam), and in Lutita-calize (Tuttle Creek 

Dam). Based on curves of slope height vs angle 

cotangents of slope, complemented by stability 

analyses and the results of laboratory tests, 

slope designs were achieved with great success. 

It should be pointed out in the cases des-

cribed above, that the formations behaved as soils 

and not as rock masses, and that Binger and 

Thompson, like Lane, applied safety factors to the 

curves derived from the geometrical relationship 

of the natural slopes to obtain design parameters. 

In 1962, some criteria were postulated for 

the design of slopes in rock masses based only on 

the geometrical characteristics of the principal 

systems of discontinuities such as stratification 

planes, cracks, etc. (Terzaghi, 1962). Unfortun-

ately, such criteria apply only to hard, sound 

rock masses with few cracks where both the appar-

ent cohesion effects of discontinuous rather than 

continuous systems and the water pressure effects 

are insignificant. Such conditions are rarely 

found in Colombia. 

In 1963, curves of natural slope geometrical 

relations in conjunction with a detailed knowledge 

of the characteristics of the principal system of 

discontinuities were utilized for the first time 

to obtain design involute curves for rock masses 

without in situ trials (Geocolombia, 1963). 

In 1965, also for the first time, a prob-

abilistic-statistical method was utilized, based 

on curves of natural slope geometric relationships 

to determine the probability of failure of a rock 

slope whose height and tangent were previously 

fixed (Geocolombia). 

Later in the same year, the results of an 

investigation were presented which claimed that by 

applying a probabilistic approach - the only one 

which permits a direct relation to the theory of 

economic decision - there is always a point for a 

given probability of failure where the cost of a 

slope is a minimum (Langejan, 1965). Langejan's 

investigation was limited exclusively to soils and 

his method was based on laboratory tests in 

conjunction with stability analysis. 
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At the same time in 1965, the present author 

planned to apply Langejan's method to rock slopes, 

basing his method, however, on the hypothesis that 

design results (Shuk, 1965). In other words the 

geometric relationship of natural slopes are 

utilized. 

The results, analysis and conclusions de-

rived from the above method are presented here. 

PHASES OF NATURAL SLOPE ANALYSIS 

This present 	paper shows results of a 

4-phase investigation into the necessary require-

ments for slope design as follows: 

1. Correlation analysis between height "H" (See 

nomenclature, Fig. 1) and length "L" based on 

samples obtained from a population set of "L" 

and "H". 

2. Regression analysis of the equation which re-

lates "H" to "L". 

3. Conditional probability of failure analysis of 

a given length "L" for a given height "H". 

4. Results of the above analysis as applied to 

the theory of economic decision. 

Correlation Analysis Between L and H  
The object of the analysis of the variables 

L and H is to determine their relationship. For 

such an analysis to be valid as far as results and 

inferences are concerned, one must meet the 

following requirements: 

a. the 	population boundaries from where the 

samples are obtained must be clearly defined 

b. sampling of variables must be strictly random 

c. the number of samples must be statistically 

significant 

d. the variances must be statistically homogenous 

with a high degree of• certainty 

e. if there is a relationship between the vari-

ables, the correlation coefficients must be 

statistically significant with a high degree 

of certainty. 

The population of natural slopes comprise 

all those characterized by the following: 

1. rectilinear faces (see Fig. 1) not determined 

by erosional movements or accumulation of 

erosional products, and 

2. must be within a geological unit characterized 

by the same lithology, identical origin and of 

the same age. 

The population of the variables L and H was 

defined as the measurements of L carried out - 

either consistently perpendicular to a plane 

formed by a system of discontinuities (faults or 

bedding planes) from which these could be deter-

mined, or consistently perpendicular to the slopes 

themselves, or consistently perpendicular to a 

predetermined direction in sets of natural slopes 

uninterrupted by a significant fault producing 

geomorphological divisions such as a river 

crossing a geological layer having different 

slopes on the two parts. 

It is clear that in a population of natural 

slopes, various populations of L and H may occur 

depending on the direction in which L is measured. 

For example, for designing road cuts the number of 

populations of L and H is given by the number of 

different orientations of the longitudinal axes of 

the slopes resulting from the map work. 

Random sampling was carried out based on a 

system of three coordinates (X, Y, H) and by using 

random numbers, measuring L with a scale on an 

adequate topographical map. The remaining con-

ditions for the analysis will be verified by the 

usual statistical methods. (See Dixon and Massey, 

1957, Spiegel, 1961). 

Until now, correlation analysis from a popu-

lation of 22 natural slopes in various regions of 

the country have been carried out, and the above 

requirements have been met in all. 

For the sake of brevity, correlation curves 

are presented for a reduced number of variables L 

and H. Figure 2 contains curves for just six of 

these populations containing variables L and H. 

These are characterized by sedimentary rocks, 

metamorphic rocks, igneous rocks, and rocks from 

different geological ages and three different 

regions. 

The following deductions are made from such 

correlation analyses performed on 22 natural 

slopes: 

a. regression equations for the sample population 
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of L and H are of the exponential type (H=B.L c  

where B and C are constants). This type of 

equation has been examined in geomorphological 

analysis (Leopold, Wolman, and Miller, 1964, P 

335) 

b. the variances are statistically homogeneous 

c. variance does not change with magnitude of the 

variable 

d. the 	correlation 	coefficient is high and 

statistically significant. 

It must be emphasized that a high and 

statistically significant correlation coefficient 

does not necessarily imply a cause and effect re-

lationship between variables; it only implies a 

close relationship between the "explainable" 

variation of the variable and the total variation. 

When determining resistance parameters of 

mass rocks based on natural slopes, it must be 

noted that within a population of L and H there 

exists maximum values and, that within the same 

population of natural slopes the regression 

equations of the sample populations of L and H 

have the sanie C coefficient and a different value 

of B coefficient. (Curves 3, 4, 5 in Fig 2) 

Regression Analysis  

The objective of regression analysis is to 

infer correlations about certain statistical 

parameters of a given population. By using such 

an analysis, the outside limits of that population 

may be found. For example, in the equation H = 

B.L
c
, the constants have limited values (high or 

low) that are also the boundaries within which the 

correlation between L and H may lie. 

For the sake of brevity, the results of this 

correlation analysis are not given here. It is 

thus assudied that the parameter values of the 

sample conelations are the same as those of the 

population pwaneters. 

Some Prob  h lity Considerations  

Pecrooizing that some probabilistic concepts 

are indped confusing, some general considerations 

are noted before presenting the probability 

analysis results. 

Natural slopes are among many of the geo- 

logical  forais  subject to analysis from a prob- 

abilistic point of view. 	(Miller and Kahn, 1962; 

Krumbein and Graybill, 1965). 	From the analysis 

of marginal distributions of certain values of L 

and H, it follows that: 

a. each L and H has minimum and maximum values 

(e.g. H max. Fig. 2), and therefore, the 

distribution curve (probability distribution) 

must have its boundaries 

b. even though the above is true, the marginal 

distributions of L and H do have statistical 

parameters in agreement with normal distri-

butions at a confidence level of 95%, if the 

variables are transformed by means of log-

arithms. 

In practice these conclusions imply that the 

marginal distribution of the variables L and H may 

be represented by a distribution of the log normal 

type even though this cannot be strictly true. 

Such a procedure facilitates the analysis of 

probabilities enormously. 

Given the validity of the previous conclus-

ions for the 22 populations of natural slopes and 

given that the same analysis is performed on any 

of the 22 populations of L and H studied, only the 

results corresponding to the population of L and H 

from the APTIANO de EL COLEGIO formation (Curves 1 

and 2) are shown. 

Figure 3 shows the points corresponding to 

values of L and H from the APTIANO de EL COLEGIO. 

If the correlation analysis is statistically 

valid, the curve corresponding to the regression 

equation represents the 50% probability of failure 

line for values of L and H represented on the 

curve. 

In the same manner, knowing the type of 

probability distribution of the variables, one can 

establish curves corresponding to different 

failure probabilities on the correlation curve. 

Figure 3 indicates the curves corresponding to a 

0.1% and 99.9% probability of failure for given L 

and H values of the APTIAN del EL COLEGIO. These 

curves are parallel to that of the regression 

equation only in the case where the variance does 

not change with the magnitude of the variables. 

Once the probabilities of variables L and H 



22 

are established it is possible to determine the 

conditional distribution of a variable for a known 

value of the other variable. For instance, Fig 4 

shows the conditional distribution of failure 

probabilities of L given that H = 100 meters. The 

conditional distribution is also log-normal. 

Based on curves of this type, it is possible 

for a given height of slope to determine the fail-

ure probability for any angle of slope, or for any 

length of slope; vice versa, the failure prob-

abilities of H can likewise be determined for a 

given fixed L. 

Economic Analysis  

Once the probability of failure for L for a 
given H is determined, the next step is to de-

termine the criteria of choosing a certain failure 

probability for design purposes. 

The method used to establish such criteria 

is based on this economic decision theory. This 

assumes that total cost of any work project be a 

minimum. Total cost is equal to the initial cost 

plus capitalized value of failure cost times the 

probability of failure. For purposes of simpli-

fication in this paper it is assumed that the 

initial cost and the failure cost apply solely to 

the volume per metre of slope (HL/2) and are pro-

portional to it. The simple equation, which for 

comparative and illustrative purposes adequately 

describes the cost of a slope a a function of the 

probability failure, is as follows: 

HL (100 	P)  
COST - 	 where 

100 

P = failure probability (in %) 
L = function of P for a constant H. 

Obviously, the complete equation should in-

clude the appropriate unit prices in conjuction 
with the adequate factors of initial cost and 

capitalized failure cost that are a function of 

the volume per longitudinal metre of slope and 

some factors that are not, such as works of art, 

size of land parcels needed for roads affected by 

the slope, etc. 

Figure 5 gives results obtained by means of 

the above equation. Figure 5A represents the re-

lation between cost of a slope and the length of 

slope (or angle of slope) for a given H of 100 

metres; Fig. 5B shows it for H of 50 metres. Fig-

ures 5C and 5D show the same relation for H of 100 

metres but varying the standard estimation error, 

which in turn is a measure of the variance. In 

Fig. 5C the standard estimation error is half that 

of the original correlation curve. In Fig. 5D, it 

is 25% greater than the original. 

In these curves it can be observed that: 

a. a probability of failure exists where the cost 

of slope is a minimum 

b. the probability of failure for a minimum cost 

is the same for a different slope height with-

in a population of L and H 

c. the probability of failure for a minimum cost 

increases 	proportionally 	with 	increasing 

variance. In other words, the optimum failure 

probability is a function of the population 

variance. 

The observations mentioned above are valid, 

thus meeting the requirements previously mentioned 

under the heading "Correlation Analysis". For 

example, if the correlation variance is high, and 

thus the correlation coefficient is not statisti-

cally significant, no minimum exists in the curve 

of costs. If the variance changes with the size 

of the variables L and H, the failure prob-

abilities for minimum costs shall be different for 

each slope height. 

Again, it must be warned that the equation 

used to determine such cost curves is adequate 

only for comparative purposes within the general 

and illustrative nature of this work. If one 

utilized the complete equation, one finds it would 

vary for each case of slope design due to 

variations in original topography before commenc-

ing the cut, and that, for example, the failure 

probability for minimum cost cannot be the same 

for different heights of slopes. 
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RELATION BETWEEN PROBABILITY 

OF FAILURE AND FACTOR OF SAFETY 

Once a minumum cost is determined for a 

given slope, and consequently for a slope design, 

it is not necessary to determine a safety factor. 

Nevertheless, it is interesting to explore the re-

lation between these two factors - the failure 

probability and the safety factor (since the 

safety factor is used so indiscriminately in the 

field of engineering). In broad  ternis, one can 

define the safety factor as the relation that 

exists between resistive forces and acting forces. 

Resistive forces  
Safety factor = Acting forces 

One can deduce, in some cases rigorously, 

the probability distribution of such a relation 

(Wadsworth and Bryan, 1960). If resistance is in-

dependent of the acting forces one needs only to 

know the marginal probability distribution of such 

a resistance and acting forces. For resistance, 

it is necessary to obtain a representative mean 

from a number of statistically significant tests; 

for acting forces, it is necessary to determine 

various possibilities that might occur in the 

ground. In the case of rock masses, and with 

presently available technology, both are 

practically impossible to obtain as explained 

under "Introduction". 

The equation in Fig. 1, giving the relation 

between safety factor and probability of failure 

was derived. This equation is, at the same time, 

a function of a failure probability for a given H. 

This equation was derived for comparative purposes 

and based on a simple hypothesis of slope failure. 

The results of the equation for the APTIANO de EL 

COLEGIO formation are shown in Fig. 6. 

Before discussing such results, it is nece-

ssary to clarify an important point. A structure 

whose safety factor is 1 has an equal probability 

of success or failure. In other words, a safety 

factor of 1 corresponds to a 50% probability of 

failure. 

Figure 6A shows curves relating the factor 

of safety and failure probability for a slope  

height of 100 meters for the original population 

and for the same population but with different 

hypothetical variances. Figure 6B shows the same 

variables for heights of 100 metres and 50 metres. 

Figure 6A shows that: 

a. for a given factor of safety, the greater the 

variance, the greater the 	probability of 

failure; 

b. for a 	given probability of failure, the 

greater the variance, the greater the factor 

of safety. 

These observations are in accord with other 

observations (for example, Lumb, 1966). 

The above results suggest that a safety 

factor not be used in the geotechnical field. For 

example Fig. 6A, comparing the minimum variance 

curve with that of the maximum variance, shows 

that with a safety factor of 2, (which is very 

common in the design of "stable" slopes), the 

probability of failure for the population of 

slopes characterized by the minimum variance is 

1.7%, while the probability of failure of those 

with high variance is a dangerous 30%. It is also 

important to observe in Fig. 6B, that for a 14% 

probability of failure (corresponding to a minimum 

cost) for any slope height from a population of L 

and H, the safety factor corresponding to a height 

of 50 metres is 1.65 while that applicable to a 

slope height of 100 metres is 2.00. Therefore, 

using the same safety factor for any slope height 

from the same population of L and H produces a 

design whose inefficiency from an economic point 

of view increases as the height of slope 

decreases. 

A good illustration of the above is found in 

Fig. 7 where the cost of three different solutions 

has been calculated for the same slope height cut. 

The figure reveals that solution by means of 

"terracing" is in general more economic. If the 

regression equation of the population of L and H 

is of the exponential type, this will always be 

the case. 

DESIGN OF MINIMUM COST SLOPES IN ROCK MASSES 

Applying the 	results 	of the foregoing 
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analysis, the steps of such a method for designing 

minimum cost slopes for road planning are as 

follows: 

1. The boundaries and nature of each population 

of natural slopes are defined, based on an 

adequate geological 	map (see "Correlation 

Analysis"). 

2. In each population of natural slopes, the 

rectilinear faces are outlined, eliminating 

those that are accumulations of erosion talus. 

In this step it is indispensible to utilize 

geological photo interpretation. 

3. Within each population of natural slopes, the 

populations of L and H are found. For the 

purpose of road construction, the number of 

different orientations of the longitudinal 

axis of the slope (given by the design plan) 

within a population of natural slopes is made 

equal to the number of populations of L and H. 

4. A system for the random sampling of L and H is 

designed. 

5. Applying the 	selected 	system of random 

sampling, the values of L and H are measured 

to scale on a suitable topographic plan. If H 

is determined by the coordinates of the system 

then only L is measured. L is measured per-
pendicular to the orientation of the longitud-

inal axis of the slopes with a given popula-

tion of L and H. Do not sample in the areas 

eliminated in Step 2. 

6. Once the values of L and H are obtained, the 

correlation analysis is carried out. (See 

section 	"Correlation Analysis"). 	If 	the 

correlation requirements are not met, one 

cannot continue with the following steps. 

7. Regression analysis is carried 	out 	(see 

section "Regression Analysis"). The param-

eters of the population are defined by using 

adequate criteria. 

8. The distribution of the marginal probabilities 

of the variables L and H are determined, and 

the degree of fit to the normal distribution 

(or to any of its direct transformations, for 

example, log-normal transformations) is next 

determined to confirm a high confidence level. 

If such a fit is not satisiattory,  the  follow- 

ing steps cannot be continued. 

9. Based on the results of steps 6, 7, and 8, the 

conditional distribution or probabilities of L 

are calculated for the different heights of 

slope H of the populations of L and H. 

10. The complete cost equation is found as a 

function of the failure probability. 

11. Based on the results of steps 9 and 10, the 

relation curve between cost and the prob-

ability of failure, is calculated and the 

probability of failure is determined for a 

minimum cost for each height of slope H. 

12. Knowing the failure probability of minimum 

cost for each height H of slope, the length L 

or angle of slope is determined. 

Figure 8 could be the manner in which such 

results are represented. 

, 	The design graph is shown in Fig. 3 (prob- 

ability of failure = 14%). 	Please note for the 

case of minimum cost probability of failure, that 

regardless of the slope height, the design curve 

is parallel to the regression surve. If the min-

imum cost probability is based on the complete  

cost equation, such parallelism cannot exist. . 

It is also interesting to note in Fig 8 that 

the design angle decreases as the height in-

creases. This will be true as long as the 

equation is of an exponential nature. This pre-

sents doubts about the actual practice of slope 

design - of utilizing slope angle for any given 

height within the same type of rock - because the 

regression equation of an exponential nature 

occurs frequently in Colombia. 

CONCLUSIONS 

If in a population of natural slopes there 

is a correlation between height and length, and 

such correlation meets the requirements -Unposed by 

a statistical analysis, then: 

a. one can predict the probability of failure of 

a given slope; however, the exact time of 

failure cannot be foretold. 

b. one can use a method based on the hypothesis - 

that nature provides the hest possible in situ 

practice. This relatus statistical and prob- 
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ability analysis with the theory on economic 

decision to achieve a minimum cost slope 

design. Such a method has the following 

advantages: 

- it is simple to apply as it does not 

require 	knowledge 	of 	the 	mechanical 

characteristics of a rock mass nor of the 

applied forces. 	This knowledge is almost 

practically impossible to obtain with the 

present available technology. 

- eliminates the safety factor concept which 

in many cases provides unfavourable results. 

Among other reasons, where the variance is 

high, a safety factor which may indeed be 

considered 	satisfactory 	may 	well 	be 

equivalent to a dangerous probability of 

failure. 

c. If such correlation is represented by an 

exponential type of equation which is 

frequently the case in Colombia, then there 

are doubts as to the common practices of using 

the same safety factor for any height H, and 

utilizing the same angle of slope for any 

height H in a given rock type. 
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(a ) 

HL 
W - weight of block = 	y 

2 s 
y - uni t weight of mass 

- friction angle 

C - cohesion 
Yw F1

2 
- water pressure = 

2 
Yw- unit weight of water 

CL+ —
HL

Y tub 0 
2 s 

Note : For the curves in Fig. 6 , 
the following values were 
utilized : 

= 2.3 Tim 3  

.30. 

C  3.0 T/m
2 

1.0 T/ m 3  

H = 100 meters 

f (p) obtained from Fig.4  

Safety factor Fs  = 	 
Y H

2 

2 

H 2 (C +-2 tanyb Ys  
= A 

H 2 rw  

AF = A•AL 

F I 0 ÷AF =10 +A • AL , where AL is a function s 	s 
of probability of failure for H, constant. 

Fs 	1.0  + A •  f(  p) 

Fig. 1 - Nomenclature and derivation of the relation between safety factor and 
failure probability. 
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Solution  1: 	H = 100m — Design using moximum probability of failure ( Fig. 5a 

Solution 2: 	Terractng using optimum probability of faiture ( Fig. 5 b 

Solution 3: 	Terracing using probability of failure corresponding to safety 

factor obtained in solution I ( Figs. 5b and 6b not shown . 

/2 L a  = 63.5m 

I  

Stope 1 

HI.' 50m! 

_ 	100 m 

H
2.50m 

Slope 2 

a = 21.5 0  
2 

P = 91 

h«. 	 L 2 . 127m — 

L 1 = 392m 

Probability 	Safety 
Solution 	H 	L 	R 	of 	failure 	factor 	

Cost 

I 	100 	392 	14.3 ° 	14% 	2.00 	44,600 

2 	50 	127 	21.5 ° 	14% 	1.65 	35,200 

3 	50 	141 	19.5 ° 	6% 	2.00 	37,250 

Fig. 7 - Comparative economic analysis of three different solutions for a slope with 
100 metres. 
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APPENDIX C 

OPTIMIZATION OF SLOPES DESIGNED IN ROCK 

THOMAS SHUK* 

SUMMARY 

The probability of failure as a function of 

the geometry of a slope designed in rock can be 

obtained through the use of statistical analysis 

and inference, and of probability analysis. Three 

different methods to obtain the probability of 

failure are described: the safety factor method, 

the risk method and the natural slope method. The 

total expected cost of the design slope is a 

function of its probability of failure, and it has 

a minimum cost point which corresponds to the 

optimum design point. The present day conceptual 

and mathematical limitations implied in an 

optimization analysis for slopes do not reduce its 

value as a rational design tool. The approach 

presented in this paper allows the use of the full 

range of values of design parameters, and it has 

the advantage or reducing subjective factors in 

the choice of values to be used out of a number of 

possible values of parameters, as well as that of 

obtaining the most economical cost for the slope. 

INTRODUCTION 

Slopes are usually designed on the basis of 

determining beforehand, and usually arbitrarily, a 

so-called adequate factor of safety, by deciding 

on a unique available shear strength either 

through laboratory 	or 	field 	tests, and by 

computing the acting stresses. 	The computations 

are made along several possible failure planes or 

* Civil Engineer, Partner and General Manager, 

Geocolombia, Bogota, Colombia, S. America. 

lines in two-dimensional analysis. 	The factor of 

safety of the critical failure plane or line so 

obtained is compared with the previously decided 

value. The geometrical configuration which 

conforms to the adequate safety factor is then the 

design slope. 

It has been shown that a probability of 

failure can be determined for a given slope 

(Beirnatowski, 1969; Langejan, 1965; Shuk, 1968). 

This probability of failure, if so desired, can be 

related to the factor of safety (Lumb, 1966; Shuk, 

1968), and can be used within the framework of 

economic decision theory to obtain the minimum 

cost slope. 

Such an approach gives the designer the 

opportunity of obtaining a more rational design 

resulting in the minimum cost slope, and of 

placing his analysis within the proper framework 

of the variability and random nature of the 

properties of the rock mass. In addition, it has 

the advantage of reducing subjective factors in 

the choice of unique design parameter values which 

have been traditionally based on so-called 

"judgement" and "experience", and allows him to 

use the full range of values of these parameters. 

PROBABILITY OF FAILURE 

In practice, the relative frequency def-

inition of probability has to be used. In math-

ematical notation (symbols are defined in Appendix 

- Notation): 

P(E) = Limit (:7̂1) 
n 	00 
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With "r" occurrence of the event "E" in "n" trials 

of a specified experiment, the probability of 

event "E" is defined as the limit of the relative 

frequency 1,7i as the number of trials is increased 

indefinitely. 

In most design situations the operational 

concept of probability of failure is clear for the 

problem at hand if the relative frequency 

definition is used; the operational definition in 

the case of slopes is not clearly understood. 

This situation arises in part due to the fact that 

a 100% probability of failure determined on the 

basis of a relative frequency defintion does not 

necessarily imply failure. Three main categories 

of operational definitions are proposed for 

slopes: 

a. The percentage probability of failure repre-

sents the percentage of slope which fails 

(Coates, 1965). 

b. The probability of failure represents the per-

centage of slopes which would fail out of a 

number of slopes with equal geometries (Shuk, 

1968). 

c. Since all slopes fail on a geological time 

scale, the probability of failure is  •a rela-

tive measure of the time to failure with 

respect to the other slopes within the popu-

lation, and for a large slope life-period. In 

this respect, the probability of failure could 

possibly represent a stochastic  variable of a 

Bernouilli (yes 	or no) process (Barrera, 

1969). 

The choice of operational definition of 

probability of failure does not affect the math-

ematical analysis to obtain this probability but 

does influence the optimization analysis. 

It has to be remembered that in the case of 

continuous variables such as slope design 

parameters, the probability of a given value of 

the variable is undefined, and either alternative 

of the probability being "less than..." or "more 

than...." has to be used for a given value of the 

variable. In this paper the first alternative 

will be implied whenever the word probability is 

used. 

For the design of slopes, there are three 

general approaches to obtain the probability of 

failure. These methods will be explained below. 

Safety  Factor Method  

Using the usual general definition of the 

safety factor, 

F= — or F 	_n 
s 	s 	s 	m „a 

If the variables which enter in the division 

for the safety factor equation are random and 

their probability densities can be determined, the 

marginal probability density or distribution of 

the safety factor can be obtained. The details of 

the process are now within the scope of this 

paper, and are explained in standard reference 

texts (for example: Haugen, 1968; Wadsworth & 

Bryan, 1960). In this case: 

p
f 	

P(F
s 

< 1.0) 

That is, 	the probability of failure is the 

probability of the safety factor being less than 

one. Thit concept is made clearer in Fig. 1. 

Figure lA shows probability densities (with 

the assumption that the distributions are normal) 

for two different standard deviations (or vari-

ances) of an average safety factor of 1.5, which 

under normal circumstances is considered adequate. 

It is clear that if the variability of the data is 

large, the probability of failure for this 

adequate safety factor is not tolerable. This is 

stressed in Fig. 1B, where the probability distri-

bution of the high variance population gives a 

probability of failure of 27% for a factor of 

safety of 1.5. 

This is why it is always important to 

determine, if possible, the probability distri-

bution of the safety factor for design slopes 

(Shuk, 1969). Figure 1 8 shows also a real design 

case, where due to the large variability of the 

strength data an unusually large safety factor of 

approximately 3.5 would have had to be used so as 

to have a probability of failure below 5%. For 

this particular case a benching solution was 

adopted. 
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Risk Method  

This method is widely used in structural and 

aeronautical design. In this type of approach, 

the probability of failure becomes: 

p = P(S - s 	0) 

That is, the probability of failure is the prob-

ability that the difference between the available 

strength and the acting stress is less than zero. 

This concept is illustrated by the Warner diagram 

(Haugen, 1968) shown on Fig. 2A, and by the 

strength minus stress density shown on Fig. 28. 

In general, if strength and stress are 

statistically independent (which is not nece-

ssarily the case for slopes), then: 

p
f 	

ff f(S)f(s) dSds 

With this method, a relationship between the 

safety factor and probability of failure can be 

determined. Figure 2C shows, for the case of nor-

mal probability distributions, the results of the 

relationship between safety factor and probability 

of failure as determined by the safety factor 

method and by the risk method. 

Natural Slope Method  

This approach 	has developed since 1949 

(Ringer & Thompson, 1949; Lane, 1961; Terzaghi, 

1962; Shuk, 	1965; 	1968, 1970), and is specially 

well adapted to rock masses. In this case the 

probability of failure results directly from a 

function obtained through a regression analysis 

relating geometrical variables of a slope. 

Figure 3A shows such a function for a popu-

lation of geometrical variables of slopes in a 

rock mass composed of diabase; the regression 

equation is exponential. Equations of this type 

have been found to exist with significant corre-

lation coefficients, and with a high degree of 

statistical confidence for the correlation co-

efficient, for all of a large number of rock mass 

populations studied in Colombia. These rocl mass 

populations include all types of lithologies, and 

all types of origins (igneous, metamorphic, •,edi- 

mentary), and are mostly moderately to highly 

jointed. Such types of functions have also been 

found by geomorphologists (Leopold F. Wolman & 

Miller, 19E4). They can also be derived from 

theoretical slope stability analyses (Shuk, 1970). 

If the variables are normally distributed, 

or can be normalized by appropriate transforma-

tions, the regression analysis provides the means 

to obtain the probabilities of failure. The 

methods used for regression analysis are described 

in standard reference texts (for example: Dixon & 

Massey, 1957; Krumbein & Graybill, 1965; Miller & 

Kahn, 1962; Spiegel, 1961), and are not within the 

scope of this paper. A detailed explanation of 

the sampling and measurement of the variables is 

given elsewhere (Shuk, 1968). 

In the case of the natural slopes studied in 

Colombia, the random variables L and H (see Fig. 

3) have been found to fit a normal distribution 

with a high level of statistical significance as 

indicated by the chi-square test, if the variates 

are transformed by logarithms; that is, they have 

log-normal distributions. This occurs provided 

the population is carefully defined and bounded, 

and that sampling is random. The log-normal 

distribution did not fit the data in the case of 

natural or excavated rock slopes in jointed gneiss 

studied in the central region of the state of 

Colorado, U.S.A. (McMahon, 1968), but there is 

some doubt as to the validity of the author's 

population bounds. 

Figure 3A also shows several probability of 

failure curves obtained by regression analysis on 

the basis of log-normal distribution of the 

variables. These curves are parallel to the re-

gression curve if the variance is statistically 

homogeneous for the range of values of the 

variables. 

From the above it is possible to obtain a 

relationship between the probability of failure 

and the value of one of the variables for a given 

constant value of the other variable. Figure 38 

shows this relationship for the variable L of the 

diabase slopes given a value of 100 metres for  lo  

variable H. 

Once this pcbabilit\ of failure is r- 
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blished for the range of values of L, a relation-

ship between the safety factor and probability of 

failure can be computed, from the starting point 

of a factor of safety of one being equivalent to a 

probability of failure of 50°.:. One method of 

obtaining such a relationship is described else-

where (Shuk, 1968), and the results for an H of 

100 metres are shown on Fig. 3C. 

OPTIMIZATION ANALYSIS 

By any of the three methods described pre-

viously it is possible to establish a function re-

lating L (for a given H) to the probability of 

failure such as the one shown on Fig. 3 8 , obtained 

by the use of the natural slope method. 

The second operational definition of prob-

ability of failure, as described in the previous 

discussion, is used to derive the expected total 

cost function. Furthermore, the total cost 

function is assumed independent of time, because 

at present no method is available to predict the 

probability of failure within a given amount of 

time. The inadequacy of this hypothesis is re-

flected in the fact that present day capitalized 

costs cannot be calculated for special maintenance 

costs (failure of the slope at any time) within 

the economic life-span of the slope. -  Accordingly, 

a zero rate of interest is implied in' the 

derivation which follows. The expected total cost 

is given by the sum of three costs: 

U
T 

= Co +C m 
+ Co . Pf 

Co : initial construction cost; this cost is made 

up of a part which is proportional to the area of 

the slope (the slope construction cost), and a 

part which is not proportional to the area of the 

slope but which is affected by its stability, such 

as the cost of culverts, roadways, rail-guards, 

minor or major structures, etc. 

Cm
: normal maintenance costs during the economic 

life of the slope. 

c
o
P
f

: 	special 	maintenance 	costs during the 

economic life of the project due to failure of the 

slope, affecting not only the slope but also the 

works within its influence area. 

From equation 1: 

E = cm + co (1 + P
f

) 

P
f = F(L) for H = constant 

and: 
o o 	o  

b 
i 2 	• L + C 

HL 	H +H 	I 

(see Fig. 4A) 

The value of L for minimum cost can be obtained 

from the positive roots of: 

Dr- T 0 
DL 

In most cases equation 3 cannot be solved explic-

itly to obtain the optimum L. In this case 

equation 1 or 2 have to be solved numerically or 

graphically, or equation 3 solved by the use of 

iterative computer programs. Figure 4C shows the 

results for two real cases. 

In equation 1, Co  + Cm  is a monotonically 

increasing function with increasing L, while Co .P f  

is a monotonically decreasing function with in-

creasing L, as shown on Fig. 4B, for most re-

lationships between L and the probability of 

failure. The existence of a minimum point depends 

on the rate of decrease of the function Co .P f 
with respect to the rate of increase of Co  +  C.  

If the variance of L for a given value of H is 

high, and the rate of decrease of Co  . P f  is low, 

the minimum point might not exist in the total 

expected cost function. 

The previous analysis does not impose any 

restrictions on the value of the optimum prob-

ability of failure, and it is possible to obtain a 

high probability of failure for minimum expected 

cost, such as shown by curve 2 on Fig. 4C. If it 

is desired to introduce a restriction on P
f 

so 

that it is always less than a certain value, it is 

simple to introduce analytically a similar re-

striction on L. 

eq 1 

eq 2 

Where: Where: 

eq 3 
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E: 

f( ): 

F( ): 
F s : 

H: 

Ho : 
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L: 

L o 

By means of methods based on statistical and 

probabilistic techniques it is possible to deter-

mine the probability of failure for a design slope 

in rock as a function of the parameters of 

geometry of the slope. 

The present lack of an adequate operational 

definition of the probability of failure for 

slopes, implies that the expected total cost 

function has to be set up independent of time, and 

consequently the optimization analysis presented 

should be considered as first approximation of a 

cost function which in the future should include 

the present day capitalized cost of failure. The 

previous statement points out the urgent need for 

research in determining an operational definition 

of probability of failure for slopes, and for 

establishing a time-dependent model of slope 

failure. 

The present conceptual and 	mathematical 

limitations of optimization analyses for slopes do 

not reduce their value as tools for a more 

rational design of slopes in rock masses. 

Furthermore, they permit the designer to use the 

full range of his results towards an economically 

efficient objective. 
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C b : 	initial cost of the works in the area of 

influence of the stability of the design 

slope. 

Cm 	normal maintenance cost during the economic 

life of the design slope. 

Co : 	initial construction cost of design slope 

and of the works in the area of influence 

of its stability. 

CT : 	total expected cost during the economic 

life of the design slope and of the works 

affected by its stability. 

a given event. 

probability density of the variable in 

parenthesis. 

function of the variable in parenthesis. 

safety factor. 

height of slope (see Fig. 3A). 
height of slope corresponding to Lo  (see 

Fig. 4A). 

k: 	unit price per unit volume of initial con- 

struction cost of the slope. 

length of slope (see Fig. 3A). 
length of slope needed as space for engi-

neering work (see Fig. 4A). 
Ma : 	acting moment. 

Mr : 	resisting moment. 

p: 	average value. 

n: 	number of trials of a specified experiment. 

P( ): probability of 	the event specified in 

parenthesis. 

probability of failure. 

number of occurrences of an outcome of a 

given type. 

p: 	correlation coefficient. 

R: appropriate region of integration. 

s: 	applied stress. 

average applied stress. 

S: available strength. 

average available strength. 

cr( ): standard deviation of 	the variable in 

parenthesis. 

P
f

: 

r: 
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WALL STABILITY IN THE SOUTH ROBERTS PIT - PM EXAMPLE 

OF THE USE OF PREVIOUS SLOPES 

by R.O. Stark* 

The South Roberts pit was started in 1961 

and completed in 1972 by Steep Rock Iron Mines 

Limited. Mine design was based substantially on 

the experience obtained in the previous Errington, 

Hogarth and Barrier pits in the same formations. 

Whereas the walls in the prior pits were de-

signed largely by trial and error, in the case of 

the South Roberts pit a request was made to Mines 

Branch, Department of Mines and Technical Surveys, 

to assist in establishing a rock mechanics program 

for both underground and open pit operations. 

Previous slides as well as stable walls were 

analyzed. The major rock types in the walls were 

tested in the laboratory. Slope angles were then 

recommended that could result in no more than 10% 

of the total walls being subject to instability, 

thereby providing an optimum between waste exca-

vation and cost of slide clean-up. 

On completion of mining, a review of the 

accumulated experience indicated that the wall de-

sign had actually been close to the economic opti-

mum. The carbonate slope, excavated at 58° for a 

height of more than 1000 ft, remained stable 

except at the contacts with the altered paint rock 

where some ravelling occurred. The paint rock 

slopes within the designed height limitations were 

substantially stable at 42.5'; however, when 

excessive digging at the toe created a steeper 

slope, instability almost invariably occurred. In 

the ash rock excavated to a depth of 760 ft, 

slides occurred in some 13% of the wall although 

61/2% of the instability took place after mining 

had ceased. 

*Senior mining engineer, Steep Rock Iron Mines 

Limited, Atikokan, Ont. 

History was made on July 29, 1972, when 

Steep Rock Iron Mines Limited completed one of the 

deepest open pits in North America. The South 

Roberts Pit, in operation since 1961, was finally 

abandoned after it had been stripped and mined to-

designed limits. A total of 75,000,000 tons of 

stripping was moved in that period to mine 

15,900,000 tons of ore. In addition, many 

millions of tons of clay were dredged from the 

original lake bottom before stripping could begin. 

The successful completion of the program was 

dependent on stability of the walls. This paper 

is a description of the problems encountered and 

the steps taken to solve them in a safe and 

economical manner. 

Steep Rock Iron Mines Limited is currently 

mining a high grade hematite-goethite deposit at 

Atikokan, Ontario (Fig. 1). The orebody was lo-

cated on the bottom of Steep Rock Lake and its 

existence was suspected as far back as 1897; how-

ever, it was not until 1938 that it was confirmed 

by drilling. Development of the property was 

accelerated because of the shortage of iron ore 

during the Second World War, and in late 1944 the 

first ore was mined. The development of the mine 

was a major engineering feat which included the 

diversion of the Seine River system around Steep 

Rock Lake, the pumping of 118 billion gallons of 

water, and the dredging of 120 million cubic yards 

of clay. 

The first orebody mined was the "B" or the 

Errington Pit, located at the south end of the 

middle arm. This pit was mined to an elevation of 

725 ft or 535 ft below the original lake level. 

The next area to be mined was the Hogarth 

Pit at the extreme north end of the middle arm. 
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This was mined to the 600 ft elevation, 660 ft 

below the original lake level. 

When the Hogarth was finished, development 

of the Barrier Pit began, eventually becoming part 

of the South Roberts Pit. This was mined in a 

series of operating phases and was completed to a 

depth of over 1,000 ft below the initial stripping 

limit, 940 ft below the original lake level. 

In the beginning, pit slopes were designed 

on a trial-and-error basis. Very little work had 

been done up to that time to optimize slopes, and 

there were also very few pits mined to any depth 

in similar types of rock. 	Generally, the walls 

were steeper 	that now considered safe, thus 

slumping, ravelling, and minor sliding of the 

walls were common. 

As the pits deepened and wall failure became 

more frequent and severe, Steep Rock Iron Mines 

approached the Department of Mines and Technical 

Surveys in Ottawa for assistance. This was the 

beginning of a new era when overall pit slopes 

were no longer based on the ore contacts being 

intercepted by benches or by the quantity of ore 

required in a year. 

RESEARCH PROGRAM 

In 1960, a program of compiling information 

on ground pressures had been undertaken by the 

Mines Branch, Department of Mines and Technical 

Surveys, through an external contract under the 

direction of Dr. D.F. Coates, research engineer. 

The prime purpose of this program was to establish 

strength parameters of the ore and waste materials 

for underground mining. Many of the tests 

completed for this purpose, however, iere equally 

useful for establishing parameters for slope 

stability in the open pit. It was judged that 

since some of the ore and the paint rock materials 

were soft and earthy in their natural state, the 

strength of these materials, when compacted to 

their original density and moisture content, 

should be similar to their strength in place. 

Laboratory tests of the various rock types 

included the use of drill cores and re-compacted 

samples. 

In 1961, within this research program, a 

compilation of all the experience in the open pits 

mined to that time was undertaken. This was the 

first effort to establish safe pit slope 

parameters for the open pit operations. This 

project included the gathering of information on 

all wall failures including the material type, 

height and breadth of failure, slope angle before 

failure occurred, contour of the wall in the slide 

area, and the presence of water. The slide data 

were then grouped by material type. 

In addition to the compilation of infor- , 
mation on failures, a program was undertaken to 

study the same parameters on slopes which had not 

failed. This information was for comparison with 

data collected from the slide areas. Where the 

basic information appeared similar for a stable 

and an unstable wall, more consideration was given 

to side resistance, groundwater conditions, and 

any other factors which might affect stability. 

The two major recommendations resulting from 

this study were that (1) the water table is a 

major factor and must not be ignored, and (2) the 

optimum slope angle is a function of slope height. 

Recommendations were submitted considering 

the above parameters for optimum slopes in the 

footwall carbonate, paint rock, and the hanging-

wall ashrock. It was estimated that by optimizing 

the recommended slopes, only 10% of the total wall 

would show signs of instability. 

Geology  

The three most important rock types en-

countered in the mine area are the carbonate rock, 

paint rock and ashrock, all of which are from the 

Archean Pre-Cambrian era. Figure 2 is a typical 

cross-section through the orebody, showing the 

relative location of these rocks. 

The carbonate  is described as a brecciated 

dolomite cemented together with calcite and 

quartz. Traces of hematite are associated with 

the calcite and quartz, and small crystal-lined 

voids occur. 

The paint rock  is a transition zone between 

the carbonate and the main orebody and is a soft, 

fine-grained mass of quartz, pyrolucite, and 
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kaolin with subangular fragments of chert, hema-

tite, and goethite. Dykes associated with the 

orebody are treated as paint rock because of their 

similar physical characteristics. 

The ashrock  is a pyroclastic of an unusual 

basic type. It occurs both as an unaltered hard, 

blackish material, and as a soft, altered, 

schistose material. Alteration is generally 

characterized by a decrease in the silica content 

and an increase in the iron content, mainly in the 

form of pyrite. 

Test Results  

On the , basis of laboratory tests performed 

on core removed from structural drilling and the 

analysis of the steep cliffs which existed after 

the water and clay were removed from the lake, it 

was apparent that the carbonate  was very competent 

and was not affected by groundwater, natural 

erosion or weak joints. A 58° angle provided 

sufficient room to leave a 20-ft bench every 50 ft 

of height to control erosion (1). 

The paint rock  is generally an incompetent, 

earthy ,  material. Its stability is adversely 

affected by groundwater, erosion, and by the 

height of the slope. On the basis of the labor-

atory tests and the data which had been accumu-

lated from previous pits, a graph was plotted 

using the two main variables of slope height and 

groundwater (Fig. 3). As mentioned previously, 

the laboratory tests were based on re-compacted 

samples assumed to have the same strength char-

acteristics as material in place. 

Similarly, a graph (Fig. 4) was plotted for 

the ashrock  using the same parameters. The 

laboratory tests on drill hole cores, however, 

were not as significant since the weakness in the 

ashrock was generally in the joints and 

highly-altered areas (2, 3). 

Design  

The South Roberts Pit was to be mined to a 

, rdepth of 900 ft below:the old lake bottom. Based 

on recommendations resulting from the research 

program,.a set of criteria was established for the 

various  ,rock types. 

The carbonate  was designed at an overall 

slope of 58°, the maximum angle to leave a 20-ft 

berm every 50 ft. 

The paint rock  slopes were designed using 

Curye III of Fig. 3 because seepage was not a 

problem and the excavation would take place in two 

embayments where side resistance was maximized. 

As only a small portion of the total wall in paint 

rock would exceed 400 ft in height, the slope 

angle chosen was 42.5° the maximum permissible 

angle for that height. 

Although stability of the ashrock  varies 

considerably with seepage and alteration, it was 

decided to choose an overall slope for the total 

area as the degree of alteration in any particular 

area was not known until excavation took place. 

Using Curve II of Fig. 4, an overall slope of 

42.5° was chosen, based on the worst condition of 

seepage and side resistance. 

One other problem was having to mine into an 

end of the pit that had previously been back-

filled. It was decided to use 37.5°, the approxi-

mate natural slope of dumped material. 

A section of clay was encountered in the 

southwest corner of the pit. Here the slopes were 

designed with the assistance of Dr. R.M. Hardy, 

consulting engineer, based on a program of shear 

tests. This included pit design for the South 

Roberts orebody (Fig. 5). 

A relatively shallow pit was designed for 

the North Roberts orebody between the South 

Roberts and the Hogarth Pits. It was designed to 

a maximum  depth of 400 ft, with the same slopes as 

the South Roberts Pit. 

Monitoring  

It was recognized that some form of instru-

mentation was required to record the acceleration 

of movement in unstable ground and to record the 

total movement in the same area. Because of the 

physical characteristics of the rock, surface 

monitoring was considered the best method of con-

trol. This was accomplished by one or more of 

three basic types of monitors (Fig. 6). 

Monitor type 'A" was used when movement was 

localized and when it was desirable that anyone 
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should be able to check the movement at any time. 

The construction of this type of monitor is rel-

atively simple. One-inch square steel pins were 

made and bars welded to one side of each. These 

pins were then driven into the ground such that 

the bars were lined up vertically and horizontally 

and were end on, tight to each other. Any move-

ment could thus be measured in three planes. 

Monitor type "B" was used when movement 

occurred over a large area. A control station was 

installed on stable ground on one side of the 

area, a back-site on the opposite side, and scales 

were installed between. Readings were taken along 

the line of sight. In some cases, elevations were 

also established on the top of each monitor pin. 

The triangulation type monitor was used when 

movement encompassed a very large area and other 

forms of control were inadequate. 

Actual Experience  

The carbonate slope established at 58° was 

definitely stable. The carbonate in the South 

Roberts was relatively free of joints and weak 

areas and no problems were encountered except near 

contacts with paint rock. On these contacts, some 

ravelling did occur. The main reasons were that 

the carbonate material at the contact is highly 

altered and paint rock-filled cracks were common. 

It was not possible to maintain consistent berm 

width in the carbonate because of the backbreak, 

especially in the South Roberts. When the design 

was changed to a 30-ft berm every 75 ft, better 

conditions were experienced but this did not solve 

the problem completely. However, in the new 

Hogarth Pit presently being mined, a greater 

degree of blasting control at the wall is being 

used, and considerable improvement is being 

experienced. 

One problem which did not occur in the South 

Roberts but which has affected stability in the 

new Hogarth Pit, is the presence of large 

mud-filled voids. These appear to be the result 

of former sub-level water courses or solution 

cavities which have since filled with earthy 

materials. The location, direction, and extent 

of these voids in unpredictable. To date, they  

have not been of sufficient size to affect overall 

stability of the pit wall but have caused some 

problems on individual benches. 

The paint rock slope  of 42.5° established in 

the South Roberts Pit proved to be very close to 

optimum. Even though the ultimate pit was de-

signed at 42.5°, some interim walls were mined 

steeper in an effort to recover ore or to 

establish more working room. In virtually every 

case in the South Roberts where the slope angle in 

paint rock exceeded 45°, cracking and/or slumping 

occurred, and in many cases, actual wall failure 

took place. A typical example of this occurred 

when a pocket of ore was encountered in the paint 

rock and the ore was taken behind limits. When an 

overall angle exceeding 45° was established for a 

vertical height of 100 ft, failure occurred. The 

preceding benches were then established to the 

design limits and the slide and wall again became 

stable. It is significant that the tests based on 

recompacted samples of paint rock rather than in 

situ samples were accurate and dependable. 

Groundwater was not a problem in the paint 

rock as topography behind the footwall was more 

favourable for gathering and disposing of runoff 

water. The rock, however, did have a fairly high 

natural moisture content, and it was discovered 

that the overall slope could be increased if the 

material had been exposed to weathering for some 

time. 

Experience showed that slope design was the 

most critical in ashrock. More than half of the 

wall in the South Roberts pit was in ashrock or 

altered ashrock materials. The hard unaltered 

ashrock generally was quite stable and probably 

could have 	been designed at a significantly 

steeper slope. 	Altered zones, which inevitably 

appeared as the ore zone was approached, would not 

stand or support a slope angle greater than that 

designed. The three major wall failures were all 

experienced in ashrock slopes. 

The failure in 2 Zone, South Roberts, is 

shown in Fig. 7. A secondary ore lens was located 

to the west of the primary ore body. It widened 

out over a distance of 500 ft, and, because of the 

closeness to the scarp wall on the old shoreline, 
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presented unique problems. The scarp condition 

was found to be the result of a fault through the 

area and the ashrock between the fault and the 

orebody is highly altered, described locally as 

"tuffs and grits". In late 1968, as the zone was 

nearing completion, a slide occurred which 

resulted in a fatality. The wall in this area was 

designed and completed to an overall slope of 

42.5°. However, the presence of the relatively 

unstable "tuffs and grits" and the high water 

table in the fault area caused sudden failure, 

similar to one in clays or other wet soils. The 

slide was cleaned up later and the overall slope 

of 42.5° was re-established after the zone had 

been dewatered. With the exception of minor 

settling along the scarp, no signs of instability 

occurred up to the time the area was backfilled 

for further development. 

In the North Roberts Pit, a failure  on the 

hangingwall affected the extent to which the pit 

could be developed. 	Failure started as large 

blocks and slabs began tipping and settling 	to 

the pit bottom. The wall was developed on a 42.5° 

slope as designed. However, the presence of 

incompetent iron pyrites at the base of the wall 

(Fig. 8) created a foundation failure which caused 

block flow in the relatively competent ashrock 

above. Groundwater in this area was not measured 

and was not considered a major factor. 

The last, and by far the most spectacular 

wall failure occurred in the 4 Zone of the hang-

ingwall of the South Roberts Pit one month after 

the pit was completed (Fig. 9). The possibility 

of a failure in this area became evident in the 

spring of 1971, when tension cracks appeared at 

the crest of the pit on an old access road. These 

cracks were first monitored on Type "A" monitors 

(Fig. 6), which were later replaced with the more 

common Type "B" when more massive movement was 

suspected. When the movement had accelerated to a 

point where it registered in inches per day and 

involvement of control points was anticipated, a 

triangulation type monitor using control points on 

the other side of the pit was initiated. 

In the meantime, pit development progressed 

and the original pit design was completed, re- 

sulting in a 42.5° slope from elevation 1150 to 

the pit road at elevation 470. A final mining 

operation was then carried out by ramping down 

with waste and removing another 80 ft of the road 

established in ore (Fig. 10). During both of 

these operations, a constant visual inspection of 

the wall was maintained along with the various 

monitor readings. When movement accelerated, the 

operation was governed accordingly, and for the 

last six months equipment usage in the area was 

intermittent. 

It is interesting to examine the experience 

in the hangingwall ashrock for the three pits as 

shown in the new type of correlation graph of Fig. 

11. Three of the factors which had a direct 

effect on movement in the unstable zones were 

time, surface water, and height of face. 

Time was a substantial factor because of the 

peculiar characteristics of the hangingwall rock 

types. The wall was composed of "tuffs and grits" 

on the upper half, and unaltered ashrock on the 

lower half. The forms decomposed quite rapidly 

upon exposure to the air and moisture. As a re-

sult, this material was continually losing its 

strength and the weight of the material exerted 

increasing stress on the ashrock below. Eventu-

ally, the stress exerted by the "tuffs and grits" 

exceeded the shear strength of the ashrock and 

total failure occurred. 

Surface water was a contributing factor as 

the amount of rainfall could be related to 

accelerated movement with a 24- to 48-hour lapse 

of time. After a heavy rainfall and accelerated 

movement, slight negative movement had been re-

corded from time to time, indicating that the 

pressure exerted by the water running into the 

cracks was released (Fig. 12). 

The 	height 	of 	face was certainly 	a 

contributing factor as the movement recorded 

between completion of the design pit and removal 

of the ore under the ramp was minimal. When the 

mining operations resumed, movement accelerated. 

Figure 13 is an evaluation of these factors. 

All of these factors were not only con-

sidered in the research program, but were empha-

sized in the recommendations submitted. Where 
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Possible, surface water wis diverted and tension 

cracks were filled in attempts to minimize seep-

age. It is the opinion of the author that the 

slide was delayed to some extent because of these 

actions. 

The factors can be studied further as they 

are compared with the graph for this material type 

in Fig. 4. Following Curve II, used for pit de-

sign, the maximum slope of 42.5° is reached at 

approximately 550 ft of height. This slope checks 

with the 580 ft mined. When ore under the ramp 

was mined a further 80 ft, the optimum was ex-

ceeded and a failure was inevitable as tension 

cracks were present  and  groundwater could not be 

completely controlled. 

Another interesting observation is that the 

slope of 37.5° in the  old pit fill was relatively 

stable but adversely affected by ground and sur-

face water. Slope angle of 37.5° is certainly the 

maximum in a case such as this, as one bench was 

dug 30 ft behind the toe and ravelling continued 

in that area until the pit was completed. It is 

significant that the slope was over 300 ft high 

and did not fail. All wastes which have since 

been deposited in the South Roberts maintain a 

slope of approximately 37 ° . At a point about 250 

ft from the crest, however, extreme changes occur 

and the waste creeps out at an angle of between 

15° and 20°. 

The reasons could be due to the breakdown of 

ashrock blocks and the extrusion of the resulting 

mass under the pressure of the embankment. Figure 

14 shows a photograph of the dump advancement. 

CONCLUSIONS 

It is evident that the work completed in the 

early 1960's was of inestimable value to Steep 

Rock Iron Mines. Without doubt, the designed 

slopes were very close to optimum and, as a 

result, the stripping ratio was minimized. 

Considering all factors, the failures which did 

occur, did so because the nature of the particular 

factors was not completely known. 

The results of experiences in the South 

Roberts Pit have been applied to the new Hogarth 

Pit. 	The only modifications were to reduce the 

slope in the 	paint rock where the vertical 

distance exceeds 200 ft, and to reduce the slope 

on the hanging wall if significant quantities of 

"tuffs and grits" are encountered. 

The estimate made by Dr. Coates of 10% in-

stability in the pit slopes compares favourably 

with 13% actually experienced in slides, consid-

ering that approximately one-half of the 13% 

occurred one month 'after the pit excavation was 

completed. 
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Fig. 4 - Slope angle versus height for altered ash rock 
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76-5 	Tungsten Ores Ct-1, BU-1, and TLG-1: Their Characterization and Preparation 
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and B. I. Parsons; 
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