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A New Deconvolution Method for Analysis of Probability 
Density Distribution Spectra Observed in Gamma-Ray 

Interrogation Measurements of Multi-Phase Flows 

D.D.S. Liu* 

Abstract 
A numerical method for the deconvolution of probability density distribution spectra (PDDS) has been developed. It is 
based on principles of the least square and the Newton-Raphson iteration algorithm. The PDDS were obtained from 
measurements of multi-phase flows using a gamma-ray interrogation technique developed recently in the Synthetic 
Fuels Research Laboratory of the Energy Research Laboratories, CANMET in collaboration with the Chalk River 
Nuclear Laboratories, Atomic Energy of Canada Limited. The deconvoluted PDDS contain information on the 
hydrodynamic parameters of multi-phase flow phenomena. 

Fundamental equations for the numerical method were translated into a Fortran program for practical applications. 
Examples of PDDS deconvolutions for both simulated and observed spectra are given. 

*Research Scientist, Synthetic Fuels Research Laboratory, Energy Research Laboratories, CANMET, Energy, Mines and 
Resources Canada, Ottawa, MA 0G1. 

i 





Nouvelle méthode de déconvolution pour l'analyse des 
spectres de distribution de la densité de probabilité 
obtenus lors de mesures d'interrogation aux rayons 

gamma d'écoulements multiphases 

D.D.S. Liu* 

Résumé 
Une méthode numérique de déconvolution des spectres de distribution de la densité de probabilité (SDDP) a été 
élaborée. Elle est basée sur les principes des moindres carrés et sur l'algorithme d'itération de Newton-Raphson. Les 
SDDP ont été obtenus lors de mesures d'écoulements nnultiphases basées sur une technique d'interrogation aux 
rayons gamma récemment mise au point au Laboratoire de recherche sur les combustibles synthétiques des 
Laboratoires de recherche sur l'énergie (CANMET), en collaboration avec les laboratoires nucléaires de Chalk River 
d'Energie atomique du Canada, Limitée. La déconvolution des SDDP fournit des renseignements sur les paramètres 
hydrodynamiques des phénomènes d'écoulement multiphase. 

Un programme Fortran contenant les équations fondamentales utilisées dans la méthode numérique a été écrit en 
vue d'applications pratiques. Des exemples de déconvolution de SDDP simulés et observés sont donnés. 
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INTRODUCTION 

Bubble columns are widely used as absorbers, catalytic 
slurry reactors, and bioreactors (1-5). Although easy to 
use, bubble columns are difficult to design because their 
multi-phase flow characteristics are complex. Hydro-
dynamic studies of multi-phase flows at low tem-
peratures and pressures can be easily carried out using 
instruments described in the literature (6-9). At high 
temperatures and pressures, however, difficulties occur 
because the instruments cannot be immersed suitably 
in the flow, creating a need for signals which can pene-
trate the thick reactor walls. 

The gamma-ray interrogation method, developed by 
CANMET in collaboration with the Atomic Energy of 
Canada Limited's Chalk River Nuclear Laboratories 
(AECL-CRNL), offers an excellent option (10). No inser-
tion of probes is required. 

The principle of gamma-ray interrogation technique for 
multi-phase flow measurements and statistical methods 
for data analyses was described previously (10). It 
shows that the probability density distribution spectra 
(PDDS) can be used to derive information on factors 
such as time-averaged holdups, homogeneity of flow 
fields, bubble size distributions, and flow regimes. 

Because of the random emission of photons from a 
radioisotope, the detected signal fluctuates randomly 
about a mean value. In a homogeneous flow field, the 
observed PDDS would be a Poisson distribution with a 
natural standard deviation (Fig. 1). In this case, the 
mean counting rate is directly related to the mean path 
length of gamma-rays passing through the material 
being measured. 

However, in most measurements of multi-phase flow 
carried out in the present work, the PDDS appear highly 
asymmetrical (Figs. 2 to 4). Accordingly, not only is the 
mean counting rate important, but also the shape of the 
PDD spectrum including major peaks and shoulders 
must be considered in order to obtain information on 
hydrodynamic behaviour (11). 

To obtain detailed information, a statistical model was 
developed (11). It involves the deconvolution of PDDS. A 
numerical method for deconvolution of PDDS for use in 
analyzing the hydrodynamic behaviour with the model is 
described. 
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where: 

C 	= counting rate at the peak centre 

H 	= peak height 

N 	= counting rate [or alternatively, the 
channel number] 

cr 	= standard deviation 

Y(N) = height at counting rate N. 

M(u) = f R(x — u) * T(x) * dx + N(u) 	Eq 2 
o  

Y(N) =
! 

{h1 1 * exp[— (N — C I ) 2  / (2 * 
11 

Eq 4 

THEORY 

Convolution and Deconvolution 
Consider the measurement of a quantity T(x) using a 
linear system characterized by a response function 
R(x,u). The relation between the measured signal, M(u), 
and the true signal, T(x), may be represented as: 

CO 

M(u) = f R(x,u) " T(x) " dx + N(u) 
o  

where: 

Eq 1 

N(u) = random noise inherent in the sys-
tem being measured 

u 	= variable transformed from x by 
the convolution 

= variable of the true signal. 

When systems exhibit translational invariance, the 
response function takes the form R(x — u) and Equa-
tion 1 becomes: 

00  

For a multi-phase flow, the measured PDD spectrum is, 
in principle, the convolution of many Poisson spectra in 
which the peak heights and centre positions may be 
different from one another. This is caused by the fact that 
under a given set of conditions, the bubble sizes and the 
shapes of individual bubbles are different. Each Gaus-
sian sub-peak represents the fraction of time (over the 
sum of all the peaks) in which a particular hydrodynamic 
phenomenon, (e.g., local holdup) is observed. This is 
typical for bubble columns in which the hydrodynamic 
fluctuates with time. The whole PDD spectrum can be 
written as: 

Equations 1 and 2 are commonly referred to as the 
convolution integral (12). 

For discrete spectra, such as the gamma-ray interroga-
tion spectrum considered here, the random noise N(u) 
can be suppressed to a much smaller value than the 
integral. Therefore, the neglect of N(u) in Equation 1 or 2 
may not introduce significant error. 

Obviously, the task of data analysis is to obtain the true 
signal, T(x), from the measured numbers of M(u). Pro-
cedures to solve Equation 2 are referred to as decon-
volutions (13). 

Problem 
A PDD spectrum is a plot of the number of occurrences 
versus counting rates (counts/sampling time). Exam-
ples are given in Figures 1 to 5. The PDD spectrum for 
an unperturbed system, such as the spectrum mea-
sured in a homogeneous flow field, has a Poisson dis-
tribution which is equivalent to a Gaussian distribution 
when the counting rate is high: 

Y(N) = H * exp[— (N — C) 2  / (2 * 0-2)] 	Eq 3  

where: 

C. 	= counting rate for the centre of the 
ith peak 

m 	= number of Gaussian sub-peaks 
convoluting the spectrum and 
subscript i represents the i sub-
peak. 

Equation 4 is similar to an equation describing a digital 
recording of an ordinary nuclear spectrum (14), except 
that in the latter, energy or frequency characterized by 
the material is used for the abscissa and photon density 
is the ordinate. 

The problem is to find an optimal number of peaks, m, 
which is equal to the actual number of peaks (M) and 
value of H i  and C I  with i = 1 to m such that values of Y(N) 
for N = 0 to 00 calculated from Equation 2 are the best 
representation of Y(N) observed in measurements. All of 
these parameters are independent variables. 
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— 	{aYc(N) / aACi} * AC ir = minimum 
i = 

where: Eq 9 

Eq 6 

+ rT  (aYo(N) / aAC I) * AC ;  
=1 

+ 0 (AH I2, ACl2) 

aYo(N) / aAC i  = — aYo(N) / aC io 	 Eq 16 

A comparison of Equation 4 with the generalized Equa-
tion 2 shows the following equivalences in operators 
and parameters between the two cases: 

x <= = = => N 

u <= = = => Ci  

M(x) < = = = = > Y(N) 

T(u) <= = = => H(C i ) 

R(x,u) <= = = => exp[ — (N — C i ) 21(2 * o l 2)] 

d u <====> 1 

00 < = = = => /(8 (Ci ))  *  

where: 

AC I  = C i F CiC 	 Eq 7 

pH i  = H I F _ Hio 	 Eq 8 

0(X) = sum of all terms with order higher than, or equal to, 2. 

Inserting Equation 6 into Equation 5, neglecting higher-
order terms, yields: 

Co  

S =  I [Y° (N) Yo(N) —  I  {aYo(N) / 8AH 1 } * AH ;  
N=0 	 1=1 

< = = = => = corresponds to 

8(C ;) = a unit-sampling function. 

These equivalences show that Equation 4 can be cast in 
the generalized form of Equation 2. Therefore, we have 
a typical deconvolution problem. 

Theoretical Description 

The least-square fitting technique is one of the best 
methods for determining parameters when the experi-
mental results contain deviations and this technique is 
used here (15). 

Let us define a set of values [1-1 1 F,C I F(N)] where i =1 to M 
that represent the final least-squared parameters, 
where F indicates final fitted values. Similarly, 0 and C 
indicate observed and calculated values in the iteration 
procedures. 

According to the least-square principle (15), the problem 
is to find [1-1 i F,C i F(N i )] so that: 

(X) 

S = I [Y°(N) — YF(N)] 2  = minimum 
N=0 

The Newton-Raphson iteration method was used to 
solve Equation  5(15-17). This method involves the line-
arization of non-linear equations, e.g., Equation 2 or 3, 
by the Taylor series. This particular method requires 
initial values of parameters for iteration. Once reason-
able initial values have been estimated, in any step of 
iteration, the "calculated" parameters are always 
regenerated. The parameters during iterations are 
assumed to be [H ic,C i c] where i = 1 to m and m > M. 

The Taylor series gives: 

yF(N) = yc(N) 	(8yc(N) apH i) AH ,  
=  

This equation holds only when  AH 1  and AC;  are small. 
Otherwise, higher-order corrections must be made. 

Conditions for Equation 9 are: 

aS / aHi  = 0 where j = 1 to m 	 Eq 10 

and 

aS /aC = 0 where j = 1 to m i 

From Equation 9 to 11: 

aS / aHj  — 2 * I {[OMC(N) — I (aYc(N)/aAH,) "AN ;  
N=0 	 i=1 

—(8Yo(N)/8AC ;) * AC I] * {aYo(N) / aAHi}} = 0 
i =1 

Eq 12 

aS / aACi  — 2 * 	{[OMC(N) —
! 

(0Yo(N) / aAH,c)  *AH 1  
N=0 	 11 

- (aYe(N) / aAC i) * AC il * [aYc(N) / aAC i]} = o 
1=1 

Eq 13 

where: 

OMC(N) = Y°(N) — Yo(N) 	 Eq 14 

Note that 1-1 i F and Ci F are constants for i = 1 to M and H i F 
vanishes for i = M + 1 to m. 

Since Ci F and I-1 1 F are constants, according to Equa-
tion 7 and 8, the following relations hold: 

aYc(N) / aAH ;  = ec(N) / aHC 	 Eq 15 

Eq 5 

Eq 11 
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Inserting Equations 15 and 16 into Equations 12 and 13 
results in: 

CG  

{A(N) " [ec(N) / aAH ip = 0 for j = 1 to m 
N = 0 

CG  

{A(N) * [alic(N) / aACip = 0 for j = 1 to m 	Eq 18 
N = 0 

where: 

A(N) = [OMC(N) + rr  {al(c(N) / aAH ic+ * AH i  
i= 1  

+ 	{aYC(N)  I  aACIC} * A01}] 
1=1 

and from Equations 3, 15, and 16: 

aYc(N) / aAH ic = exp[— (N — C ic) 2  / (2 " cr i2)] 	Eq 20 

alic(N) /  9 AC ic = [(N —  CC)  " H i  / cr i 21 

* exp[— (N — C 1c) 2  / (2 * ,- 12)] 	 Eq 21 

Equations 17 and 18 provide 2 m linear equations for 
2 m unknowns, (AH i ,ACi) with j = 1 to m. Although 
m > M, the iteration (see below) will eliminate the extra 
m – M peaks, originally assumed at the beginning of 
iteration. 

Iteration Procedure 

To solve the problem, the following procedure, based on 
the theory developed in the previous section, can be 
used: 

1. Estimate a set of (HF,C ic) values 
for i = 1 to m with m > M, where M 
is still unknown. (However, the 
choice of m can be easily made by 
the procedure described later.) 

2. Calculate the (T 1  for i = 1 to m, 
according to the calibration from 
experiments, or from the theory 
described earlier (18). 

3. Calculate values of Y9N), accord-
ing to Equation 4 for the range of N 
obsented. These allow the calcula-
tion of OMC(N) defined in Equa-
tion 14. 

4. Formulate 2 m linear equations 
according to Equations 17 and 18 
with the assistance of Equa-
tions 19 to 21. 

5. Solve the 2 m linear equations to 
obtain the variables (A1-1 1 ,AC 1 ) for 
i=i  to m. 

6. Calculate the new parameters 
(H i C,C iC) for i = 1 to m, according 
to the following equations analo-
gous to Equations 7 and 8: 

H i  = H ic + AH ic 	 Eq 22 

C i  = C ic + AC ic 

where i =1  tom.  

These values will become closer to 
the final fitted values if the higher-
order effects are much smaller 
than the first-order effects 
described in Equation 6. 

7. Assign the new parameters for 
next iteration by: 

= H i 	 Eq 24 

c ic =c i  

for i =1  tom.  

8. When some of the H ic values 
become very small (indicating they 
are extra parameters originally 
assumed in the input) they are 
neglected. 

9. Calculate the root mean squared 
deviation of fit, using the new 
parameters. If the deviation con-
verges when compared with the 
results from the previous iteration, 
the calculation can be terminated. 

10. Repeat Procedure 2 for the next 
iteration. 

Other Applications 

The deconvolution method can be used for almost any 
type of spectroscopy where quantized discrete spectra 
exist. In the deconvolution of ordinary spectra (e.g., 
Mossbauer spectrum) the frequencies of peak centres 
are fixed. Therefore, known numbers of C 1 — where i  =1  
to m (m > M) — can be initially assigned. The problem 
is then simplified to only one set of m linear equations 
resulting from Equation 17. This is much simpler than 
the case considered here. 

Note that in particular applications, the appropriate 
response function (e.g., slit function in the optical spec-
troscopy, or 'kernel' in the nuclear spectroscopy equiv-
alent to that of Equation 1) must be used. 

Eq 17 

Eq 19 

Eq 23 

Eq 25 
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NUMERICAL EXAMPLES 

A computer program based on the procedures 
described above was written in Fortran-77 for a Cro-
memco System One computer. It has been tested to 
deconvolute spectra simulated by given parameters 
and spectra observed in two-phase flow measurements 
using the gamma-ray interrogation technique (10,11). 
Some examples are given below. 

In the gamma-ray interrogation equipment, a multi-
channel analyzer coupled with a rate meter capable of 
signal suppression was used. The counting rate N is 
linearly proportional to the channel number. Therefore, 
examples of probability density distribution spectra will 
be expressed as number of occurrences versus channel 
number. Since a high counting rate system is used, the 
PDD spectrum for an unperturbed system is nearly a 
perfect Gaussian which is assumed for the response 
function. The instrument was calibrated using a pulse 
generator. It showed that the true signal was a unit-
sampling function, i.e., each frequency is represented 
by a single channel. The standard deviation of the Gaus-
sian peaks is given by (11): 

o- 1  = 19.3 + 0.00743 * (C, - 172) 	 Eq 26 

This relation was used for both simulated and observed 
spectra. 

Initial Estimation of Convoluting Peaks 

A convoluted PDD spectrum has a full width at half 
maximum [FWHM] always larger than, or equal to, the 
theoretical FWHM of the unperturbed PDD spectrum at 
the same peak position. Also, the channel number of the 
peak maximum is always close to a peak in the con-
voluted spectrum. Based on this fact, the value of Ci c 
can then be assigned to the position of peak maximum. 

Using the peak height at maximum, the Ci c, then cr., 
from Equation 26, a theoretical Gaussian peak based 
on Equation 1 was calculated. Subtraction of the calcu-
lated Gaussian peak from the original PDDS resulted in 
the first differential PDD spectrum. This method is 
referred to as spectrum stripping. Subsequently, the 
differential PDD spectrum from this step was considered 
independently for further spectrum stripping to obtain 
the centre position of the next peak by the same tech-
nique. This procedure was repeated until the differential 
spectrum became very small. Thus, m central positions 
were estimated for the initial iteration. 

Following the spectrum stripping, the peak positions, C i , 
where i = 1 to m, were fixed and a least-square pro-
cedure was used to obtain the initial estimated input 
peak heights, H ic, where i =1 to m. Very small or nega-
tive peaks were ignored. A new number of (H ic,Cic) 
where i =1 to a new number m' was then obtained. We 
observed that the m' was always larger than the final 
fitted number of peaks, M, thus fulfilling the requirement 
of the Newton-Raphson iteration method. 

In the example given in Table 1, five peaks located at 
channels 194, 227, 269, 313 and 355, with heights of 
2043.9, 261.2, 172.8, 143.3 and 11.03, respectively, were 
assumed. These values and Equation 26 were used in 
Equation 4 to construct the simulated spectrum. The 
simulated spectrum was then considered as observed 
data, Yo(N), for deconvolution. The first section of 
Table 1 lists the assumed parameters. In this case, the 
value of M is 5. Results of the spectrum stripping are 
given in the second section of Table 2. This gives a 
value of m' = 7, larger than M = 5. 

Deconvolution of Simulated PDD Spectra 

In this section, deconvolution of some simulated spectra 
is shown. The input peak positions and heights, as 
shown in Tables 2 to 6, were used to calculate the 
simulated PDDS based on Equation 4 and 26. The 
simulated PDDS were then deconvoluted by the pro-
cedures described above. 

Table 1 lists the results of individual iteration steps fol-
lowed by a comparison of observed and calculated 
values with their differences obtained in the sixth 
iteration. 

In each iteration, following the list of root-mean-squared 
deviations of fit, values of H ic and CF were listed in "List 
of Corrections". The new parameters C ic and H i c, 
obtained from Equations 23 and 22, respectively, were 
then listed. Although six iterations were shown here, 
only five iterations were needed to give a good fit. 

Tables 2 to 6 summarize the results of some examples. 
For the PDDS convoluted from two peaks at channels 
200 and 210 with heights of 1500 and 500 occurrences, 
respectively, only three iterations are required to obtain a 
satisfactory result (Table 2). Table 3 shows that a PDD 
spectrum consisting of a symmetrical pair of Gaussians 
with a centroid space of ten channels requires only 
about six iterations. Three observed spectra shown in 
Figures 1 to 3 by dots were reconstructed and then 
deconvoluted. Results are given in Tables 1, 4, 5 and 6. 
All converged quickly. 
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Deconvolution of Observed PDD Spectra 
More than 200 PDDS measurements were recorded 
from hydrogen-pitch two-phase flows in a 3.81 cm ID 
bubble column with and without continuous liquid flow 
(11) and have been successfully deconvoluted by the 
program developed. 

Figures 1 to 5 show various shapes of PDDS (dots). 
They were deconvoluted to obtain the peak heights and 
positions using the numerical method described above. 

The deconvoluted spectra are shown by vertical bars. 
The peak centre positions and heights resulting from 
deconvolution were used to calculate the PDD spectra 
shown by solid curves for comparison with the observed 
spectra. All of them show excellent fit between observed 
and calculated data. 

6 



DISCUSSION 

i 
I 
I 

The problem considered is very similar to the analysis of 
seismic data or data in sonar or radar detections, in 
which deconvolution techniques are used for the inter-
pretation of echoes due to a signal pulse of possibly 
unknown shape from objects of unknown position (19). 
Methods for dealing with this problem are commonly 
based on the Taylor minimizing technique (19) or the 
Baysian algorithm (20-23). Other methods were also 
used (24). 

Both methods are similar to the theory described involv-
ing the formulation of recursion equations. The Baysian 
technique was originally formulated by the Fourier trans-
form. Recently, Kennett et al. (20-23) formulated it by 
the Laplace transform method. The result of transforma-
tion forms a set of linear equations similar to Equa-
tions 17 and 18. They can be written in a recursion form 
to be solved by digital computer. It requires a large 
computer memory and a procedure to solve a large 
eigenvalue matrix. Therefore, for the problems consid-
ered, the present method is much more efficient. 

The spectrum deconvolutions are very often used in 
optical spectroscopy to obtain electron, vibration, and 
rotational parameters as described by the so-called 
spectrum contour analysis (25). The analysis of ESCA 
and Mossbauer and other nuclear spectra is also identi-
cal to the optical spectral contour analysis. In these 
fields, the spectrum is convoluted by peaks with centres 
characterized by well-known formulae consisting of 
quantum numbers and parameters (14,26). The decon-
volution method described here can be easily applied to 
these fields. 

Finally, the neglect of the random noise term N(u) in 
Equation 1 can often be justified from the experimental 
set up. For example, as discussed in a previous report, 
the noise in the gamma-ray interrogation method can be 
suppressed sufficiently by using the narrow beam tech-
nique (10). 
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TABLES 





Table 1 - Results from iteration calculations during deconvolution of PDDS - Example 1 

LIST OF INPUT DATA 

I= 1 CENTRE = 194 
I= 2 CENTRE = 227 
I= 3 CENTRE = 269 
I= 4 CENTRE = 313 
I= 5 CENTRE = 355 

HEIGHT = 2043.9 
HEIGHT = 	261.2 
HEIGHT = 	172.8 
HEIGHT = 	143.3 
HEIGHT = 	110.3 

INPUT DATA FOR LEAST SQUARES: RESULTS FROM STRIPPING 

I= 1 CENTRE(I) = 195.0 
I= 2 CENTRE(I) = 241.0 
I= 3 CENTRE(I) = 309.0 
I= 4 CENTRE(I) = 353.0 
I= 5 CENTRE(I) = 275.0 
I= 6 CENTRE(I) = 223.0 
I= 7 CENTRE(I) = 381.0 

PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 

2110.796 
213.207 
143.606 
124.110 
113.309 
28.442 
3.869 

ITERATION No. = 0 

ROOT-MEAN-SQUARED DEVIATION = 12.71 

I= 1 CENTRE(I) = 195.0 
I= 2 CENTRE(I) = 241.0 
I= 3 CENTRE(I) = 309.0 
I= 4 CENTRE(I) = 353.0 
I= 5 CENTRE(I) = 275.0 
I= 6 CENTRE(I) = 223.0 
I= 7 CENTRE(I) = 381.0 

PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 

2110.796 
213.207 
143.606 
124.110 
113.309 
28.442 
3.869 

LIST OF CORRECTIONS 

1 delta-Height = 
2 delta-Height = 
3 delta-Height = 
4 delta-Height = 
5 delta-Height = 
6 delta-Height = 
7 delta-Height = 

-.7479E+02 
-.1776E+03 
-.3078E+01 
-.1443E+02 
.4543E+02 
.2194E+03 

-.1312E+01 

delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 

-.1022E+01 
.8925E+00 
.3956E+01 
.1164E+01 

-.6555E+01 
.2128E+02 

-.6837E+01 
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.1034E+02 
-.1573E+03 
.1329E+01 
.5731E+01 

-.3166E+02 
.1920E+03 

-.1030E+02 

delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 

.9690E+00 

.7694E+02 

.1905E+01 

.2278E+01 

.4990E+01 
-.8214E+01 
.2526E+02 

.9845E+01 

.3688E+01 
-.4294E+01 
.4027E+02 

-.1859E+03 

delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 

.7913E-01 
-.1516E+01 
-.1023E+01 
-.5793E+01 
.2454E+01 

Table 1 (continued) 

ITERATION No. = 1 

ROOT-MEAN-SQUARED DEVIATION = 35.26 

I= 1 CENTRE(I) = 194.0 
I= 2 CENTRE(I) = 241.9 
I= 3 CENTRE(I) = 313.0 
I= 4 CENTRE(I) = 354.2 
I= 5 CENTRE(I) = 268.4 
I= 6 CENTRE(I) = 233.0 
I= 7 CENTRE(I) = 374.2 

PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 

2036.002 
35.613 

140.528 
109.676 
158.740 
247.839 

2.557 

LIST OF CORRECTIONS 

1 delta-Height = 
2 delta-Height = 
3 delta-Height = 
4 delta-Height = 
5 delta-Height = 
6 delta-Height = 
7 delta-Height = 

ITERATION No. = 2 

ROOT MEAN SuUARED DEVIATION = 57.55 

I= 1 CENTRE(I) = 194.9 
I= 2 CENTRE(I) = 314.9 
I= 3 CENTRE(I) = 356.4 
I= 4 CENTRE(I) = 273.4 
I= 5 CENTRE(I) = 224.8 

PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 

2046.347 
141.857 
115.408 
127.085 
439.851 

LIST Or CORRECTIONS 

1 delta-Height = 
2 delta-Height = 
3 delta-Height = 
4 delta-Height = 
5 delta-Height = 
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-.2172E+02 
-.2019E+01 
-.6107E+00 
.6264E+01 
.1754E+02 

delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 

-.1056E+01 
-.7133E-01 
-.2761E-01 
.1846E+01 

-.6968E+00 

.1132E+02 

.1712E-01 

.5857E-01 
-.4311E+00 
-.1075E+02 

delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 

.9720E+00 
-.1111E+00 
-.4421E-01 
-.1702E+00 
.8260E+00 

Table 1 (continued) 

ITERATION No. = 3 

ROOT-MEAN-SQUARED DEVIATION = 23.84 

I= 1 CENTRE(I) = 195.0 
I= 2 CENTRE(I) = 313.3 
I= 3 CENTRE(I) = 355.4 
I= 4 CENTRE(I) = 267.6 
I= 5 CENTRE(I) = 227.2 

PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 

2056.192 
145.545 
111.114 
167.350 
253.958 

LIST OF CORRECTIONS 

1 delta-Height = 
2 delta-Height = 
3 delta-Height = 
4 delta-Height = 
5 delta-Height = 

ITERATION No. = 4 

ROOT-MEAN-SQUARED DEVIATION = 21.46 

I= 1 CENTRE(I) = 194.0 
I= 2 CENTRE(I) = 313.3 
I= 3 CENTRE(I) = 355.4 
I= 4 CENTRE(I) = 269.5 
I= 5 CENTRE(I) = 226.5 

PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 

2034.476 
143.526 
110.503 
173.615 
271.502 

LIST OF CORRECTIONS 

1 delta-Height = 
2 delta-Height = 
3 delta-Height = 
4 delta-Height = 
5 delta-Height = 
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-.8596E+00 
-.3724E+00 
-.2921E+00 
-.6223E+00 
-.7615E+00 

delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 

.1453E-01 

.3662E-01 

.1242E-01 

.7155E-01 

.1290E+00 

-.3423E-02 
-.1329E-01 
-.9865E-02 
-.1732E-01 
-.2517E-01 

delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 
delta-Centre = 

.1459E-01 

.3754E-01 

.1191E-01 

.7250E-01 

.1299E+00 

Table 1 (continued) 

ITERATION No. = 5 

ROOT-MEAN-SQUARED DEVIATION = .72 

I= 1 CENTRE(I) = 194.9 
I= 2 CENTRE(I) = 313.2 
I= 3 CENTRE(I) = 355.3 
I= 4 CENTRE(I) = 269.3 
I= 5 CENTRE(I) = 227.4 

PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 

2045.792 
143.544 
110.562 
173.183 
260.751 

LIST OF CORRECTIONS 

1 delta-Height = 
2 delta-Height = 
3 deita-Height = 
4 delta-Height = 
5  delta-Height = 

THIS IS ITERATION = 6 

ROOT-MEAN-SQUARED DEVIATION = .43 

I= 1 CENTRE(I) = 195.0 
I= 2 CENTRE(I) = 313.2 
I= 3 CENTRE(I) = 355.4 
I= 4 CENTRE(I) = 269.4 
I= 5 CENTRE(I) = 227.5 

PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 
PEAK(I) = 

2044.932 
143.171 
110.270 
172.561 
259.989 

LIST OF CORRECTIONS 

1 delta-Height = 
2 delta-Height = 
3 delta-Height = 
4 delta-Height = 
5 delta-Height = 
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Table 1 (continued) 

ITERATION No. = 7 (Results of the sixth iteration) 

CH# 	 OBS 	 CALC 	O-C 

109 	 .15 	 .15 	 .00 
110 	 .18 	 .19 	 .00 
111 	 .23 	 .23 	 .00 
112 	 .29 	 .29 	 .00 
113 	 .35 	 .36 	 .00 
114 	 .44 	 .44 	 .00 
115 	 .54 	 .54 	 .00 
116 	 .67 	 .67 	 .00 
117 	 .82 	 .82 	-.01 
118 	1.00 	1.01 	-.01 
119 	1.22 	1.23 	-.01 
120 	1.48 	1.49 	-.01 
121 	1.80 	1.81 	-.01 
122 	2.18 	2.19 	-.01 
123 	2.64 	2.65 	-.01 
124 	3.18 	3.19 	-.02 
125 	3.81 	3.83 	-.02 
126 	4.57 	4.59 	-.02 
127 	5.46 	5.49 	-.03 
128 	6.51 	6.54 	-.03 
129 	7.74 	7.78 	-.04 
130 	9.18 	9.22 	-.04 
131 	10.85 	10.90 	-.05 
132 	12.80 	12.85 	-.05 
133 	15.05 	15.12 	-.06 
134 	17.66 	17.73 	-.07 
135 	20.66 	20.74 	-.08 
136 	24.11 	24.21 	-.09 
137 	28.07 	28.17 	-.10 
138 	32.58 	32.70 	-.12 
139 	37.73 	37.86 	-.13 
140 	43.56 	43.71 	-.15 
141 	50.17 	50.34 	-.16 
142 	57.63 	57.82 	-.18 
143 	66.03 	66.23 	-.20 
144 	75.45 	75.67 	-.22 
145 	85.98 	86.23 	-.25 
146 	97.73 	98.00 	-.27 
147 	110.79 	111.09 	-.30 
148 	125.27 	125.59 	-.32 
149 	141.26 	141.61 	-.35 
150 	158.88 	159.26 	-.38 
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Table 1 (continued) 

C H # 	 OBS CALC 	 -C 

151 	178.22 	178.64 	-.42 
152 	199.40 	199.84 	-.45 
153 	222.50 	222.98 	-.48 
154 	247.63 	248.14 	-.52 
155 	274.87 	275.42 	-.55 
156 	304.30 	304.89 	-.59 
157 	336.00 	336.63 	-.62 
158 	370.03 	370.69 	-.66 
159 	406.44 	407.14 	-.70 
160 	445.25 	445.99 	-.73 
161 	486.50 	487.27 	-.77 
162 	530.17 	530.97 	-.80 
163 	576.25 	577.08 	-.84 
164 	624.68 	625.55 	-.87 
165 	675.42 	676.32 	-.90 
166 	728.37 	729.30 	-.93 
167 	783.41 	784.37 	-.96 
168 	840.41 	841.40 	-.98 
169 	899.21 	900.21 	-1.01 
170 	959.60 	960.63 	-1.03 
171 	1021.38 	1022.43 	-1.04 
172 	1084.31 	1085.37 	-1.06 
173 	1148.12 	1149.19 	-1.07 
174 	1212.53 	1213.61 	-1.08 
175 	1277.22 	1278.31 	-1.09 
176 	1341.88 	1342.97 	-1.09 
177 	1406.17 	1407.26 	-1.09 
178 	1469.72 	1470.81 	-1.09 
179 	1532.19 	1533.27 	-1.08 
180 	1593.20 	1594.27 	-1.07 
181 	1652.38 	1653.45 	-1.06 
182 	1709.38 	1710.43 	-1.05 
183 	1763.81 	1764-85 	-1.04 
184 	1815.34 	1816.36 	-1. 0 2 
185 	1863.63 	1864.63 	-1.00 
186 	1908.35 	1909.33 	-.98 
187 	1949.21 	1950.17 	-.96 
188 	1985.94 	1986.88 	-.94 
189 	2018.30 	2019.22 	-.92 
190 	2046. 07 	2046.96 	-.89 
191 	2069.08 	2069.95 	-.87 
192 	2087.18 	2088.03 	-.85 
193 	2100.29 	2101.11 	-.82 
194 	2108.32 	2109.12 	-.79 
195 	2111.27 	2112.04 	-.77 
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Table 1 (continued) 

CH# 	OBS 	 CALC 	 O-C 

196 	2109.15 	2109.89 	-.74 
19/ 	2102.01 	2102.73 	-.72 
198 	2089.96 	2090.65 	-.69 
199 	2073.13 	2073.79 	-.66 
200 	2051.69 	2052.32 	-.63 
201 	2025.83 	2026.43 	-.60 
202 	1995.80 	1996.37 	-.57 
203 	1961.85 	1962.39 	-.54 
204 	1924.26 	1924.76 	-.50 
205 	1883.34 	1883.81 	-.47 
206 	1839.40 	1839.83 	-.43 
207 	1792.77 	1793.17 	-.39 
208 	1743.80 	1744.15 	-.36 
209 	1692.82 	1693.14 	-.31 
210 	1640.18 	1640.45 	-.27 
211 	1586.21 	1586.44 	-.23 
212 	1531.26 	1531.44 	-.18 
213 	1475.63 	1475.77 	-.14 
214 	1419.64 	1419.73 	-.09 
215 	1363.60 	1363.63 	-.04 
216 	1307.76 	1307.75 	 .01 
217 	1252.39 	1252.33 	 .06 
218 	1197.74 	1197.62 	 .11 
219 	1144.00 	1143.84 	 .16 
220 	1091.39 	1091.17 	 .21 
221 	1040.06 	1039.79 	 .26 
222 	990.17 	989.85 	 .31 
223 	941.84 	941.48 	 .36 
224 	895.18 	894.77 	 .41 
225 	850.27 	849.82 	 .45 
226 	807.18 	806.69 	 .49 
227 	765.95 	765.42 	 .53 
228 	726.61 	726.04 	 .57 
229 	689.18 	688.58 	 .60 
230 	653.66 	653.02 	 .64 
231 	620.03 	619.36 	 .66 
232 	588.26 	587.58 	 .69 
233 	558.34 	557.63 	 .71 
234 	530.21 	529.48 	 .73 
235 	503.82 	503.08 	 .74 
236 	479.13 	478.38 	 .75 
237 	456.08 	455.32 	 .76 
238 	434.60 	433.84 	 .77 
239 	414.64 	413.87 	 .77 
240 	396.12 	395.35 	 .77 
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Table 1 (continued) 

CH# 	OBS 	CALC 	 O-C 

241 	378.99 	378.22 	.77 
242 	363.17 	362.41 	 .76 
243 	348.60 	347.85 	.75 
244 	335.22 	334.47 	 .75 
245 	322.95 	322.22 	.73 
246 	311.74 	311.01 	.72 
247 	301.51 	300.80 	.71 
248 	292.22 	291.52 	.69 
249 	283.79 	283.11 	.68 
250 	276.16 	275.50 	.66 
251 	269.28 	268.64 	 .65 
252 	263.09 	262.46 	 .63 
253 	257.54 	256.92 	.61 
254 	252.56 	251.96 	 .60 
255 	248.10 	247.52 	.58 
256 	244.11 	243.54 	.57 
257 	240.54 	239.99 	.55 
258 	237.34 	236.81 	.54 
259 	234.47 	233.94 	.52 
260 	231.87 	231.36 	.51 
261 	229.51 	229.01 	.49 
262 	227.34 	226.86 	.48 
263 	225.33 	224.87 	.47 
264 	223.45 	222.99 	.46 
265 	221.66 	221.21 	.44 
266 	219.93 	219.49 	.43 
267 	218.23 	217.81 	.42 
268 	216.56 	216.15 	 .41 
269 	214.88 	214.48 	.40 
270 	213.19 	212.80 	 .39 
271 	211.46 	211.08 	.38 
272 	209.70 	209.33 	.37 
273 	207.90 	207.54 	.36 
274 	206.06 	205.71 	.35 
275 	204.18 	203.84 	.34 
276 	202.26 	201.93 	 .33 
277 	200.31 	199.99 	 .32 
278 	198.34 	198.03 	.31 
279 	196.36 	196.06 	 .30 
280 	194.39 	194.09 	 .30 
281 	192.42 	192.14 	.29 
282 	190.49 	190.21 	.28 
283 	188.60 	188.33 	.27 
284 	186.77 	186.51 	 .26 
285 	185.01 	184.76 	.25 
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Table 1 (continued) 

CH# 	OBS 	CALC 	 O-C 

286 	183.34 	183.10 	 .25 
287 	181.77 	181.53 	 .24 
288 	180.30 	180.07 	 .23 
289 	178.95 	178.73 	 .22 
290 	177.72 	177.51 	 .22 
291 	176.63 	176.42 	 .21 
292 	175.66 	175.46 	 .20 
293 	174.84 	174.64 	 .20 
294 	174.14 	173.95 	 .19 
295 	173.57 	173.38 	 .19 
296 	173.13 	172.95 	 .19 
297 	172.81 	172.63 	 .18 
298 	172.59 	172.41 	 .18 
299 	172.46 	172.29 	 .17 
300 	172.42 	172.25 	 .17 
301 	172.45 	172.28 	 .17 
302 	172.54 	172.37 	 .17 
303 	172.66 	172.49 	 .16 
304 	172.80 	172.64 	 .16 
305 	172.96 	172.80 	 .16 
306 	173.10 	172.94 	 .16 
307 	173.22 	173.06 	 .16 
308 	173.30 	173.15 	 .16 
309 	173.33 	173.18 	 .15 
310 	173.30 	173.15 	 .15 
311 	173.20 	173.04 	 .15 
312 	173.01 	172.86 	 .15 
313 	172.73 	172.58 	 .15 
314 	172.36 	172.21 	 .15 
315 	171.88 	171.74 	 .15 
316 	171.31 	171.17 	 .14 
317 	170.64 	170.50 	 .14 
318 	169.88 	169.74 	 .14 
319 	169.02 	168.88 	 .14 
320 	168.07 	167.94 	 .14 
321 	167.05 	166.91 	 .13 
322 	165.95 	165.82 	 .13 
323 	164.79 	164.66 	 .13 
324 	163.58 	163.45 	 .13 
325 	162.32 	162.20 	 .13 
326 	161.04 	160.91 	 .12 
327 	159.73 	159.61 	 .12 
328 	158.42 	158.30 	 .12 
329 	157.10 	156.99 	 .12 
330 	155.80 	155.69 	 .12 

19 



Table 1 (continued) 

CH# 	OisS 	CALC 	0-C 

331 	154.52 	154.40 	.11 
332 	153.26 	153.14 	 .11 
333 	152.03 	151.92 	.11 
334 	150.84 	150.73 	.11 
335 	149.68 	149.58 	.11 
336 	148.57 	148.47 	 .11 
337 	147.50 	147.40 	.10 
338 	146.4/ 	146.37 	 .10 
339 	145.47 	145.37 	 .10 
340 	144.51 	144.41 	 .10 
341 	143.57 	143.47 	.10 
342 	142.64 	142.54 	.10 
343 	141.73 	141.63 	.10 
344 	140.81 	140.71 	.10 
345 	139.88 	139.78 	.10 
346 	138.92 	138.83 	 .10 
347 	137.93 	137.84 	.10 
348 	136.90 	136.80 	 .10 
349 	135.80 	135.70 	.10 
350 	134.63 	134.54 	.09 
351 	133.38 	133.29 	 .09 
352 	132.04 	131.95 	.09 
353 	130.60 	130.51 	.09 
354 	129.05 	128.96 	 .09 
355 	127.38 	127.29 	 .09 
356 	125.59 	125.50 	.09 
357 	123.67 	123.58 	.09 
358 	121.61 	121.53 	 .09 
359 	119.43 	119.34 	.08 
360 	117.11 	117.03 	 .08 
361 	114.66 	114.58 	 .08 
362 	112.08 	112.00 	.08 
363 	109.37 	109.30 	 .08 
364 	106.55 	106.48 	.07 
365 	103.61 	103.54 	.07 
366 	100.58 	100.51 	 .07 
367 	97.45 	97.38 	.06 
368 	94.24 	94.17 	 . 0 6 
369 	90.95 	90.89 	 .06 
370 	8/.61 	87.55 	.06 
371 	84.22 	84.16 	.05 
372 	80.79 	80.74 	.05 
373 	77.35 	77.30 	 .05 
374 	73.89 	73.85 	.04 
375 	70.44 	70.40 	.04 
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Table 1 (continued) 

CH# 	OBS 	 CALC 	O-C 

376 	67.01 	66.97 	 .04 
377 	63.61 	63.57 	 .04 
378 	60.25 	60.21 	 .03 
379 	56.94 	56.91 	 .03 
380 	53.69 	53.66 	 .03 
381 	50.52 	50.49 	 .03 
382 	47.43 	47.41 	 .02 
383 	44.43 	44.41 	 .02 
384 	41.52 	41.50 	 .02 
385 	38.72 	38.70 	 .02 
386 	36.02 	36.01 	 .02 
38/ 	33.44 	33.43 	 .01 
388 	30.97 	30.96 	 .01 
389 	28.62 	28.61 	 .01 
390 	26.38 	26.38 	 .01 
391 	24.27 	24.26 	 .01 
392 	22.27 	22.26 	 .01 
393 	20.39 	20.39 	 .ul 
394 	18.63 	18.62 	 .00 
395 	16.98 	16.97 	 .00 
396 	15.43 	15.43 	 .00 
397 	14.00 	14.00 	 .00 
398 	12.67 	12.67 	 .00 
399 	11.44 	11.44 	 .00 
400 	10.31 	10.31 	 .00 
401 	9.26 	9.26 	 .00 
402 	8.31 	8.31 	 .00 
403 	7.43 	7.43 	 .00 
404 	6.63 	6.63 	 .00 
405 	5.91 	5.91 	 .00 
406 	5.25 	5.25 	 .00 
407 	4.65 	4.65 	 .u0 
408 	4.11 	4.11 	 .00 
409 	3.63 	3.63 	 .00 
410 	3.19 	3.19 	 .00 
411 	2.80 	2.80 	 .00 
412 	2.45 	2.46 	 .00 
413 	2.15 	2.15 	 .00 
414 	1.87 	1.87 	 .00 
415 	1.63 	1.63 	 .00 
416 	1.41 	1.41 	 .00 
417 	1.22 	1.22 	 .00 
418 	1.06 	1.06 	 .00 
419 	 .91 	 .91 	 .00 
420 	 .78 	 .78 	 .00 
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421 
422 
423 
424 
425 
42.6 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 

.67 

.57 

.49 

.42 

.35 

.30 

.25 

.21 

.18 

.15 

.13 

.11 

.09 

.07 

.06 

.05 

.04 

.03 

.67 

.57 

.49 

.42 

.35 

.30 

.25 

.21 

.18 

.15 

.13 

.11 

.09 

.u7 

.06 

.05 

.04 

.03 

.00 

.00 

.00 

.00 

. 00 

.uo 

.00 

. 00 

. 00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 

.00 • 
 .00 

Table 1 (continued) 

.44 

OBS 	CALC CH# 0 -C 

ROOT MEAN SQUARED DEVIATION = 

THE FINAL RESULTS 

I= 1 CENTRE(I) = 195.0 PEAK(I) = 
I= 2 CENTRE(I) = 313.2 PEAK(I) = 
I= 3 CENTRE(I) = 355.4 PEAK(I) = 
I= 4 CENTRE(I) = 269.5 PEAK(I) = 
I= 5 CENTRE(I) = 227.6 PEAK(I) = 

2044.929 
143.158 
110.260 
172.544 
259.964 
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Table 2 - Results of iterations during PDDS deconvolution - Example 1 

I 	 2 	 3 	 4 	 5 	RMS 
CN# 	Peak 	CH# 	Peak 	CH# 	Peak 	CH# 	Peak 	CH# 	Peak 	Deviation 

Input 	 194.0 2043.9 	227.0 	261.2 269.0 	172.8 313.0 	143.3 355.0 	110.3 

After Spectrum 	195.0 2110.8 	241.0 	213.2 275.0 	113.3 309.0 	143.6 353.0 	124.1 	12.71 
stripping 	 223.0 	28.4 	 381.0 	3.9 

	

After 1 st 	194.0 2036.0 	241.9 	35.6 268.4 	158.7 313.0 	140.5 354.2 	109.7 	35.26 

	

Iteration 	 233.0 	247.8 	 374.2 	2.6 

After 2nd 

	

Iteration 	194.9 2046.3 	224.8 	439.9 273.4 	127.1 314.9 	141.9 356.4 	115.4 	57.55 

After 3rd 
Iteration 	195.0 2056.2 	227.2 	254.0 267.6 	167.4 313.3 	145.5 355.4 	111.1 	23.84 

After 4th 
Iteration 	194.0 2034.5 	226.5 	271.5 269.5 	173.6 313.3 	143.5 355.4 	110.5 	21.46 

After 5th 
Iteration 	194.9 2045.8 	227.4 	260.8 269.3 	173.2 313.2 	143.5 355.4 	110.6 	0.72 

After 6th 
Iteration 	195.0 2044.9 	227.5 	260.0 269.3 	172.6 313.2 	143.17 355.4 	110.3 	0.43 

Peak 
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1 	 2 
RMS 

CHO 	Peak 	CHO 	Peak 	Deviation Peak 

Input data 200.0 	1500.0 	210.0 	500.0 

Table 3 - Results of iterations during PDDS deconvolution - Example 2 

After spectrum 	 202.0 	1943.5 	230.0 	53.9 	6.85 
stripping 

After 1st iteration 	201.4 	1882.0 	220.0 	113.8 	17.11 

After 2nd iteration 	201.2 	1742.4 	210.0 	258.6 	13.54 

After 3rd iteration 	200.3 	1508.6 	211.3 	497.0 	6.91 

After 4th iteration 	200.4 	1538.2 	210.8 	461.7 	5.91 

After 5th iteration 	200.4 	1486.5 	210.6 	513.0 	2.05 

After 6th iteration 	200.4 	1508.8 	210.6 	490.9 	1.38 

After 7th iteration 	200.4 	1500.1 	210.6 	499.5 	0.13 
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Table 4 - Results of iterations during PDDS deconvolution - Example 3 

1 	 2 
RMS 

Peak CHO 	Peak 	CHO 	Peak 	Deviation 

Input data 200.0 	1500.0 	210.0 	1500.0 

2855.3 	231.0 151.7 	16.56 After Spectrum 	 204.0 
Stripping 

After 1st iteration 	203.5 

After 2nd iteration 	202.7 

After 3rd iteration 	201.0 

After 4th iteration 	200.5 

After 5th iteration 	200.7 

After 6th iteration 	200.6 

After 7th iteration 	200.7 

After 8th iteration 	200.7 

2725.9 

2318.1 

1854.5 

1622.2 

1553.9 

1478.8 

1510.0 

1497.7 

221.0 

211.0 

209.8 

211.6 

210.8 

210.7 

210.7 

210.7 

264.2 

685.0 

1055.8 

1378.8 

1444.7 

1520.2 

1489.3 

1501.6 

30.12 

47.25 

58.54 

7.16 

8.34 

3.17 

1.60 

0.40 
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Table 5 - Results of iterations during PDDS deconvolution - Example 4 

2 	 3 	 4 	RMS 
Peak 	 CN# 	Peak 	CH# 	Peak CH# 	Peak 	CH# Peak Deviation 

Input 	 189.0 1523.9 219.0 	781.6 255.0 335.6 289.0 	73.4 

After Spectrum 
stripping 	195.0 1858.3 236.0 	598.3 274.0 189.5 311.0 	11.3 	55.69 

After 1st 
Iteration 	190.7 1643.1 226.0 	605.6 264.0 316.2 301.0 119.7 	70.18 

After 2nd 
Iteration 	190.1 1568.1 218.6 	742.8 255.2 323.2 294.6 	75.2 	27.21 

After 3rd 
Iteration 	189.1 1516.0 219.5 	793.7 255.6 337.4 291.3 	68.0 	4.32 

After 4th 
Iteration 	189.1 1524.8 219.6 	781.4 255.7 355.9 289.4 	72.2 	0.50 

After 5th 
Iteration 	189.1 1523.8 219.6 	781.6 255.7 335.5 289.4 	73.3 	0.03 

After 6th 
Iteration 	189.1 1523.8 219.6 	781.6 255.7 355.5 289.4 	73.4 	0.04 

1 

Table 6 - Results of iterations during PDDS deconvolution - Example 5 

1 	 2 
RMS 

Peak CH# 	Peak 	CH# 	Peak 	Deviation 

Input 	 171.0 	2753.0 	203.0 	27.6 

After spectrum 
stripping 

After 1st iteration 

After 2nd iteration 

After 3rd iteration 

171.0 	2754.7 	205.0 	26.9 	0.63 

171.0 

171.0 

171.0 

2753.2 

2753.0 

2753.0 

203.1 

203.1 

203.1 

27.4 

27.6 

27.6 

0.09 

0.00 

0.00 
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Fig. 1 — Observed and calculated PDD spectrum for Run 84-FD-946 at temperature of 200°C, pressure of 2.76 MPa and 
superficial gas velocity of 0.00 cm/s 

Fig.  2—  Observed and calculated PDD spectrum for Run 84-FD-615 at temperature of 200°C, pressure of 13.79 MPa and 
superficial gas velocity of 1 .77 cm/s 
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Fig. 3—  Observed and calculated PDD spectrum for Run 84-FD-657 at temperature of 200°C, pressure of 13.79 MPa and 
superficial gas velocity of 1.31 cm/s 
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Fig.  4—  Observed and calculated PDD spectrum for Run 84-FD-990 at temperature of 200°C, pressure of 2.76 MPa and 
superficial gas velocity of 2.38 cm/s 
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Fig. 5—  Observed and calculated PDD spectrum for Run 84-FD-681 at temperature of 200°C, pressure of 13.79 MPa and 
superficial gas velocity of 0.53 cm/s 
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