AQUATIC EFFECTS TECHNOLOGY EVALUATION (AETE) PROGRAM

Field Evaluation of Aquatic Effects Monitoring

Recommendations for 1997 Sites

AETE Project 4.1.2

1996 Field Evaluation

AQUATIC EFFECTS MONITORING

RECOMMENDATIONS FOR 1997 SITES

Prepared for :

CANMET Natural Resources Canada 555 Booth Street Ottawa, Ontario K1A 0G1

Prepared by :

EVS Environment Consultants 195 Pemberton Avenue North Vancouver, B.C. V7P 2R4

Ecological Services for Planning Ltd. 361 Southgate Drive Guelph, ON N1G 3M5

Jacques Whitford Environment Ltd. 711 Woodstock Road P.O. Box 1116 Fredericton, N.B. E3B 5C2

EVS Project No. 3/729-01

December 1996

AQUATIC EFFECTS TECHNOLOGY EVALUATION PROGRAM

Notice to Readers

Aquatic Effects Monitoring 1996 Preliminary Field Surveys

The Aquatic Effects Technology Evaluation (AETE) program was established to review appropriate technologies for assessing the impacts of mine effluents on the aquatic environment. AETE is a cooperative program between the Canadian mining industry, several federal government departments and a number of provincial governments; it is coordinated by the Canada Centre for Mineral and Energy Technology (CANMET). The program is designed to be of direct benefit to the industry, and to government. Through technical evaluations and field evaluations, it will identify cost-effective technologies to meet environmental monitoring requirements. The program includes three main areas: acute and sublethal toxicity testing, biological monitoring in receiving waters, and water and sediment monitoring. The program includes literature-based technical evaluations and a comprehensive three year field program.

The program has the mandate to do a field evaluation of water, sediment and biological monitoring technologies to be used by the mining industry and regulatory agencies in assessing the impacts of mine effluents on the aquatic environment; and to provide guidance and to recommend specific methods or groups of methods that will permit accurate characterization of environmental impacts in the receiving waters in as cost-effective a manner as possible. A pilot field study was conducted in 1995 to fine-tune the study design.

A phased approach has been adopted to complete the field evaluation of selected monitoring methods as follows:

- Phase I: 1996- Preliminary surveys at seven candidate mine sites, selection of sites for further work and preparation of study designs for detailed field evaluations.
- Phase II: 1997-Detailed field and laboratory studies at selected sites.
- Phase III: 1998- Data interpretation and comparative assessment of the monitoring methods: report preparation.

Phase I is the focus of this report. The overall objective of this project is to conduct a preliminary field/laboratory sampling to identify a short-list of mines suitable for further detailed monitoring, and recommend study designs. The objective is NOT to determine the detailed environmental effects of a particular contaminant or extent and magnitude of effects of mining at the sites.

In Phase I, the AETE Technical Committee has selected seven candidates mine sites for the 1996 field surveys:

1) Myra Falls, Westmin Resources (British Columbia)

- 2) Sullivan, Cominco (British Columbia)
- 3) Lupin, Contwoyto Lake, Echo Bay (Northwest Territories)
- 4) Levack/Onaping, Inco and Falconbridge (Ontario)
- 5) Dome, Placer Dome Canada (Ontario)
- 6) Gaspé Division, Noranda Mining and Exploration Inc. (Québec)
- 7) Heath Steele Division, Noranda Mining and Exploration Inc. (New-Brunswick)

Study designs were developed for four sites that were deemed to be most suitable for Phase II of the field evaluation of monitoring methods (Myra Falls, Dome, Heath Steele, Lupin). Lupin was subsequently dropped based on additional reconnaissance data collected in 1997. Mattabi Mine, (Ontario) was selected as a substitute site to complete the 1997 field surveys.

For more information on the monitoring techniques, the results from their field application and the final recommendations from the program, please consult the *AETE Synthesis Report* to be published in September 1998.

Any comments regarding the content of this report should be directed to:

Diane E. Campbell Manager, Metals and the Environment Program Mining and Mineral Sciences Laboratories - CANMET Room 330, 555 Booth Street, Ottawa, Ontario, K1A 0G1 Tel.: (613) 947-4807 Fax: (613) 992-5172 E-mail: dicampbe@nrcan.gc.ca

PROGRAMME D'ÉVALUATION DES TECHNIQUES DE MESURE D'IMPACTS EN MILIEU AQUATIQUE

Avis aux lecteurs

Surveillance des effets sur le milieu aquatique Études préliminaires de terrain - 1996

Le Programme d'évaluation des techniques de mesure d'impacts en milieu aquatique (ÉTIMA) vise à évaluer les différentes méthodes de surveillance des effets des effluents miniers sur les écosystèmes aquatiques. Il est le fruit d'une collaboration entre l'industrie minière du Canada, plusieurs ministères fédéraux et un certain nombre de ministères provinciaux. Sa coordination relève du Centre canadien de la technologie des minéraux et de l'énergie (CANMET). Le programme est conçu pour bénéficier directement aux entreprises minières ainsi qu'aux gouvernements. Par des évaluations techniques et des études de terrain, il permettra d'évaluer et de déterminer, dans une perspective coût-efficacité, les techniques qui permettent de respecter les exigences en matière de surveillance de l'environnement. Le programme comporte les trois grands volets suivants : évaluation de la toxicité aiguë et sublétale, surveillance des effets biologiques des effluents miniers en eaux réceptrices, et surveillance de la qualité de l'eau et des sédiments. Le programme prévoit également la réalisation d'une série d'évaluations techniques fondées sur la littérature et d'évaluation globale sur le terrain.

Le Programme ÉTIMA a pour mandat d'évaluer sur le terrain les techniques de surveillance de la qualité de l'eau et des sédiments et des effets biologiques qui sont susceptibles d'être utilisées par l'industrie minière et les organismes de réglementation aux fins de l'évaluation des impacts des effluents miniers sur les écosystèmes aquatiques; de fournir des conseils et de recommander des méthodes ou des ensembles de méthodes permettant, dans une perspective coût-efficacité, de caractériser de façon précise les effets environnementaux des activités minières en eaux réceptrices. Une étude-pilote réalisée sur le terrain en 1995 a permis d'affiner le plan de l'étude.

L'évaluation sur le terrain des méthodes de surveillance choisies s'est déroulée en trois étapes:

- Étape I 1996 Évaluation préliminaire sur le terrain des sept sites miniers candidats, sélection des sites où se poursuivront les évaluations et préparation des plans d'étude pour les évaluations sur le terrain.
- Étape II 1997- Réalisation des travaux en laboratoire et sur le terrain aux sites choisis
- Étape III 1998 Interprétation des données, évaluation comparative des méthodes de surveillance; rédaction du rapport.

Ce rapport vise seulement les résultats de l'étape I. L'objectif du projet consiste à réaliser des échantillonnages préliminaires sur le terrain et en laboratoire afin d'identifier les sites présentant les caractéristiques nécessaires pour mener les évaluations globales des méthodes de surveillance en 1997 et de développer des plans d'études. Son objectif N'EST PAS de déterminer de façon détaillée les effets d'un contaminant particulier, ni l'étendue ou l'ampleur des effets des effluents miniers dans les sites.

À l'étape I, le comité technique ÉTIMA a sélectionné sept sites miniers candidats aux fins des évaluations sur le terrain:

- 1) Myra Falls, Westmin Resources (Colombie-Britannique)
- 2) Sullivan, Cominco (Colombie-Britannique)
- 3) Lupin, lac Contwoyto, Echo Bay (Territoires du Nord-Ouest)
- 4) Levack/Onaping, Inco et Falconbridge (Ontario)
- 5) Dome, Placer Dome Mine (Ontario)
- 6) Division Gaspé, Noranda Mining and Exploration Inc. (Québec)
- 7) Division Heath Steele Mine, Noranda Mining and Exploration Inc. (Nouveau-Brunswick)

Des plans d'études ont été élaborés pour les quatres sites présentant les caractéristiques les plus appropriées pour les travaux prévus d'évaluation des méthodes de surveillance dans le cadre de l'étape II (Myra Falls, Dome, Heath Steele, Lupin). Toutefois, une étude de reconnaissance supplémentaire au site minier de Lupin a révélé que ce site ne présentait pas les meilleures possibilités. Le site minier de Mattabi (Ontario) a été choisi comme site substitut pour compléter les évaluations de terrain en 1997.

Pour des renseignements sur l'ensemble des outils de surveillance, les résultats de leur application sur le terrain et les recommandations finales du programme, veuillez consulter le *Rapport de synthèse ÉTIMA* qui sera publié en septembre 1998.

Les personnes intéressées à faire des commentaires sur le contenu de ce rapport sont invitées à communiquer avec M^{me} Diane E. Campbell à l'adresse suivante :

Diane E. Campbell Gestionnaire, Programme des métaux dans l'environnement Laboratoires des mines et des sciences minérales - CANMET Pièce 330, 555, rue Booth, Ottawa (Ontario), K1A 0G1 Tél.: (613) 947-4807 / Fax : (613) 992-5172 Courriel : dicampbe@nrcan.gc.ca

TABLE OF CONTENTS

LIST OF FIGURES	. .
1.0 INTRODUCTION	070000
2.0 PURPOSE AND OBJECTIVE	. 2
3.0 RELEVANT SITE-SPECIFIC INFORMATION	. 3
 4.0 POSSIBLE APPROPRIATE SITES FOR 1997 4.1 SPECIFIC RECOMMENDATIONS FOR 1997 SITES 4.2 FUTURE STUDIES AND POWER ANALYSIS 4.2.1 Generic Power Curves 4.2.2 Calculation of Sampling Effort for Fixed Effect Sizes 4.2.3 Calculation of Detectable Effect Size for Fixed Sampling Effort 	4 6 7 8
5.0 CONCLUSIONS	11
6.0 REFERENCES APPENDIX A Detailed Individual Site Evaluations Appendix A-1 Site Evaluation Criteria for Myra Falls Mine Site Appendix A-2 Site Evaluation Criteria for Sullivan Mine Site Appendix A-3 Site Evaluation Criteria for Lupin Mine Site	12
Appendix A-3Site Evaluation Criteria for Dome Mine SiteAppendix A-4Site Evaluation Criteria for Dome Mine SiteAppendix A-5Site Evaluation Criteria for Onaping/Levack Mine SiteAppendix A-6Site Evaluation Criteria for Gaspé Mine SiteAppendix A-7Site Evaluation Criteria for Heath Steele Mine Site	

Figure 1.	Generic Power	Curves for B=0.05 and B=0.2	F-1

Figure 2. Benthos abundance - Lupin Mine: Power Curve (a = b = 0.05) F-2

Table 1.	Summary information for specific study elements for the Myra Falls mine site (stream/lake discharge)	T-1
Table 2.	Summary information for specific study elements for the Sullivan mine site (stream/river discharge).	T-3
Table 3.	Summary information for specific study elements for the Lupin mine site (stream/lake discharge)	T-5
Table 4.	Summary information for specific study elements for the Dome mine site (stream/river discharge).	T-7
Table 5.	Summary information for specific study elements for the Onaping mine site (stream/river discharge).	T-9
Table 6.	Summary information for specific study elements for the Gaspé Mine site (stream/river discharge).	T-11
Table 7.	Summary information for specific study elements for the Heath Steele Mine site (stream/river discharge).	T-13
Table 8.	Variable evaluations for 1996 AETE monitoring program.	T-15
Table 9.	Hypotheses to be tested in 1997. Note changes in wording to H1, and deletion of H9 recommended in EVS, ESP and JWEL (1996h) are not included as these recommendations have not been reviewed or approved by the AETE Committee.	T-18
Table 10.	Summary site evaluation criteria scores for each mine site.	T-20
Table 11.	Suitability of each site for testing the different hypotheses.	T-25
Table 12.	Sites at which hypotheses can be tested in 1997.	T-29
Table 13.	Benthic invertebrate total abundance - Lupin Mine 1996.	T-31

Table 14.Estimates of minimum detectable effect sizes for key
variables for three fixed samples sizes for Lupin, Dome and
Heath Steele Mines.T-32

1.0 INTRODUCTION

The Aquatic Effects Technology Evaluation (AETE) Program was established to conduct field and laboratory evaluation and comparison of selected environmental effects monitoring technologies for assessing impacts of mine effluents on the aquatic environment. The focus of the Program is on robustness, costs, and the suitability of monitoring sites.

Building upon previous work, which includes literature reviews, technical evaluations, and pilot field studies (e.g., BAR 1996a,b; Beak, 1996; Couillard and St-Cyr, 1996; Taylor, 1996), the AETE Program sponsored, in 1996, preliminary evaluations of aquatic effects monitoring at seven candidate mine sites. Based on the results of these preliminary evaluations, some of these sites will be selected for further work in 1997.

This report provides recommendations regarding selection of sites for 1997 work. Separate reports provide detailed information on work conducted at each of the seven sites (EVS, ESP and JWEL, 1996a-g). A recommended study design for 1997 is provided in EVS, ESP and JWEL (1996h).

2.0 PURPOSE AND OBJECTIVE

The purpose of this draft report is to evaluate the seven sites surveyed in 1996 relative to a short-list of sites for detailed study in 1997. The objective of this report is, to the extent possible (given data and information availability), to compare the seven sites to specific criteria (cf. Section 4.0) and provide conclusions and recommendations.

.

3.0 RELEVANT SITE-SPECIFIC INFORMATION

Summary information for each of the seven sites is provided in Tables 1-7, beginning with Vancouver Island (Myra Falls) and proceeding eastward.

To provide additional information for future studies, the suite of parameters (field- and laboratory-measured) were evaluated for each mine. The evaluation was essentially a screening to weed out variables that are not worth including in subsequent studies. The only reason to include a relatively useless variable would be if the cost of measuring the variable is negligible (e.g., if the variable is part of a routine analysis package). A master list of variables was compiled from the individual mine reports. Variables were categorized into one of four types:

- 1. *Exposure* those parameters indicative of exposure to mine effluent (e.g., metals or metallothionein).
- 2. Other those parameters which may be exposure-related (e.g., pH), good modifying factors, or indicate differences between areas not related to mine activity. Differences between reference and exposure areas in these variables may be exposure-related (i.e., related to mine discharge) or indicate potential differences between areas that are not mine related. With one reference area it was difficult to distinguish between these two cases.
- 3. *Effects* those parameters used to measure potential effects of exposure to mine effluent (e.g., effluent toxicity and benthic community structure). Ideally, these endpoints are sensitive to exposure to mine effluent and relatively easy to measure.
- 4. *Habitat* those parameters which may be exposure-related, good modifying factors, or indicate differences between areas (e.g., sediment grain size or total organic carbon).

Evaluation criteria and evaluation results are presented in Table 8.

The AETE Program anticipates selection of some of the seven mine sites surveyed in 1996 for further work in 1997. Work in 1997 will be based on hypotheses to be tested (Table 9).

Selection of sites for 1997 requires consideration of the following five criteria:

- 1. The presence of well defined water chemistry, sediment chemistry (where sediment is available) and biotic gradients of contamination and effects in the receiving environments.
- 2. Availability of adequate multiple reference and exposure stations for biota (fish and benthos).
- 3. Presence of suitable habitat for tests of methodology (e.g., unconsolidated sediments).
- 4. Accessability by road and boat.
- 5. Overall site suitability for testing AETE's hypotheses in the 1997 detailed field evaluations.

Comparisons relative to the above criteria are contained in Tables 1 - 7. The seven 1996 sites are further assessed using numbered scores based on these criteria in Table 10 (Summary data - detailed information for each site is provided in Appendix A). The overall suitability of each site to evaluate each of the 1997 hypotheses (Table 9) is assessed in Table 11. Based on Tables 1 - 7 and 10 and 11, our assessment of site suitability for detailed work in 1997 is provided below (Section 4.1).

4.1 SPECIFIC RECOMMENDATIONS FOR 1997 SITES

In determining which sites should be addressed in 1997 we considered both the site scores (from Table 10) and the hypotheses which can, either completely or partially, be addressed at each site. This information is summarized below:

MINE SITE	Percentage Score (from Table 10)	HYPOTHESES FULLY ADDRESSED (A "Y" IN TABLE 11)	Hypotheses Partially Addressed (a "P" in Table 11)	HYPOTHESES NOT ADDRESSED (A "N" IN TABLE 11)
Dome	78%	10	2	1
Gaspe	69%	3	6	4
Heath Steele	67%	3	6	4
Lupin	63%	10	3	0
Myra Falls	61%	6	4	3
Onaping/Levack	61%	3	6	4
Sullivan	57%	2	8	3

Based simply on site scores, selection of 1997 sites is relatively easy. However, when hypotheses are also considered, the process becomes more difficult:

- The Dome site is clearly the primary candidate for 1997 studies based on both percentage scores (highest of all sites) and hypotheses which can be addressed (only exceeded by Lupin). Accordingly, we recommend this site for 1997 studies.
- The Gaspe and Heath Steele sites have very similar percentage scores (69% and 67%), and address a similar number of hypotheses. The main differences between these two sites are the sublethal toxicity and fish tissue results. Sublethal toxicity was more evident for the Heath Steele site, but the results of metal and metallothionein analyses were clearer for the Gaspe site. Because the two sites are so similar, we recommend that only one be used in 1997. Since a draft study design is already being reviewed by the AETE Committee for the Heath Steele site, we recommend this site for 1997 studies.
- The Lupin site has the next highest percentage score (63%) and addresses the most hypotheses of any site. Accordingly, we recommend this site for 1997 studies.
- If 1997 studies were only conducted at the above three sites, some hypotheses might not be adequately tested (i.e., at three sites). The next highest percentage score (61%) is shared by Myra Falls and Onaping\Levack. However, far more hypotheses can be tested at the former than the latter, as noted above. The final mine site, Sullivan, has the lowest percentage score (57%) and the lowest number of hypotheses which can be fully tested, as noted above. Accordingly, we recommend the Myra Falls site for 1997 studies.

The results of the above recommendations are examined below where hypotheses are matched against recommended mine sites. Sites names in parentheses indicate that the hypotheses are only partially testable (a "P" in Table 12). Comments are only provided where there are less than three sites where hypotheses can be fully tested. Note that hypothesis 9 (H9), which can be tested at all of the seven sites, is not included as it is not recommended for the 1997 field studies (EVS, ESP and JWEL, 1996h).

1	Hypothesis	RECOMMENDED MINE SITES	COMMENTS (CF. TABLE 12)
H1		Dome, Lupin	No other sites possible
H2		Dome, Lupin, Myra Falls, (Heath Steele)	
H3		Lupin, Myra Falls, (Dome), (Heath Steele)	Only other "yes" is Onaping/Levack
H4		Dome, Lupin, Myra Falls, (Heath Steele)	
H5		Dome, Lupin, Heath Steele, (Myra Falls)	
H6		Dome, Lupin, (Myra Falls)	No other sites a "yes"
5 H7		Dome, Lupin, Heath Steele, (Myra Falls)	
H8		Dome, Lupin, (Heath Steele), (Myra Falls)	No other sites a "yes"
H10		Heath Steele, Myra Falls, (Dome), (Lupin)	Only other "yes" is Sullivan
H11		Dome, Lupin	No other sites possible
H12		Dome, Lupin	No other sites possible
H13		Myra Falls, (Lupin), (Heath Steele)	No other "yes" sites
H14		Dome, Heath Steele, Myra Falls, (Lupin)	

4.2 FUTURE STUDIES AND POWER ANALYSIS

This section outlines the use of power analysis for making study design decisions for future AETE monitoring programs. There is a difference in focus between the 1996 and 1997 AETE Monitoring Programs (i.e., there is a 1996 program focused on evaluating mines; the 1997 program will focus on comparative evaluation of monitoring tools). While not necessarily applicable for the 1997 Monitoring Program, the results of these power analyses will be useful

for future programs evaluating impact assessment hypotheses (i.e., Is there a difference in parameter x between the exposure and reference areas?).

The general equation for power analysis is as follows (Sokal and Rohlf, 1981):

Equation 1

$$n = 2 (t_{\alpha} + t_{\beta}) (\frac{s}{d})^2$$

where: n = N umber of stations in each area (i.e., exposure and reference area)

- t_{α} = Inverse of t distribution for α (one or two-tailed) and 2n-2 degrees of freedom (df)
- t_{β} = Inverse of t distribution for β (one-tailed) and 2n-2 df
- s = Pooled within group standard deviation

d = Effect size

As the equation is set up, calculating *n* is an iterative process because t_{α} and t_{β} are dependent on n (to determine df). One difficulty with this equation is that a relevant effect size, *d*, must be determined; selecting ecologically relevant effect sizes can be a source of great controversy. The equation can be rearranged to: (1) generate power curves (to examine relationships among parameters), (2) calculate *d* for a fixed *n*, or (3) retrospectively calculate statistical power (i.e., 1- β) to detect predetermined effect sizes.

The general relationships among equation parameters are informative in determining what factors should be considered to optimize study designs. To this end, Section 4.2.1 explores several general issues relating to power analysis. The remaining sections deal with using power analysis to determine minimum sample size requirements (Section 4.2.2) for fixed effect sizes and to determine minimum detectable effect sizes for fixed sample sizes (Section 4.2.3). Because of the difficulties associated with recommending ecologically relevant effect sizes for <u>each</u> variable at this stage, use of power analysis to determine minimum detectable effect sizes for determine minimum detectable effect sizes for variable at this stage, use of power analysis to determine minimum detectable effect sizes for variable at the stage of power analysis to determine minimum detectable effect sizes for variable at the stage, use of power analysis to determine minimum detectable effect sizes for variable at the stage, use of power analysis to determine minimum detectable effect sizes for variable at the stage, use of power analysis to determine minimum detectable effect sizes for variable fixed samples. Emphasis was placed on documenting minimum detectable effect sizes for various fixed sample sizes for each variable selected. While the generic power curves can be used for any mine, examples for calculating sampling effort for fixed effect sizes (i.e., Section 4.2.2) and effect sizes for fixed sampling efforts (i.e., Section 4.2.3) were limited to key variables from the Dome, Lupin and Heath Steele mines.

4.2.1 Generic Power Curves

The relationship among equation parameters was examined by generating generic power curves. An important consideration in power analysis is selecting appropriate α and β values. The value for α is usually set at 0.05 (i.e., the investigator has a 1 in 20 chance of detecting

an effect when none exists [Type 1 error]). While β values set the probability of not detecting an effect when one in fact exists (i.e., Type II error), they are often ignored by investigators (Buhl-Mortensen, 1996). Since the consequences of committing a Type II error can be serious (i.e., missing a real effect), we recommend that β values be set equivalent to α (i.e., 0.05). To examine the influence of β on the relationship between effect size and sample size, power curves were generated for two β values: 0.05 and 0.2. The power curves were generated by rearranging Equation 1 as follows:

Equation 2

$$d = \frac{(t_{\alpha} + t_{\beta})}{\sqrt{n}}$$

where: d = Effect size (in SD units)

- t_{α} = Inverse of t distribution for α of 0.05, 2n-2 degrees of freedom (df), and 2 tails
- t_{B} = Inverse of t distribution for β of 0.05 or 0.2, 2n-2 df, and 1 tail

n = Number of stations in each area (i.e., exposure and reference area)

Note that since s is omitted from the equation, the units for effect size become standard deviations. The equation was solved for n ranging from 2 to 50. The resulting two power curves (i.e., for $\beta = 0.05$ and 0.2) are provided in Figure 1. The results show that the greatest benefits (i.e., in terms of reducing the minimum detectable effect size) of increasing sampling effort occur between 2 and 10 samples per area and that after about 20 samples there is almost no benefit from further increases in sampling effort.

4.2.2 Calculation of Sampling Effort for Fixed Effect Sizes

Calculating sampling effort for fixed effect sizes depends on the investigators' ability to determine what constitutes an ecologically-relevant effect size. The following example using benthic invertebrate total abundance from the Lupin Mine demonstrates some of the difficulties with this process. The results from the 1996 AETE program at Lupin are shown in Table 12.

How many samples would it take to detect a difference between Reference and Exposure Areas? That can only be answered if we establish the minimum effect size we wish to detect. As previously discussed, determining relevant effect sizes is a challenging and often controversial task. One could arbitrarily state that a 33% or 66% reduction in the abundance of benthic invertebrates is ecologically significant in this case, but either approach is debatable. An alternative approach would be to generate a power curve for total abundance to examine the relationship between effect size and sampling effort. The latter is more informative and allows reviewers to make their own conclusions as to trade offs between detectable effect size and sampling effort. This exercise is often informative to those who believe that relevant effect sizes are on the order of 5 to 10 percent. The relationship between effect size and sampling effort for benthic invertebrate abundance at the Lupin Mine is shown in Figure 2. The power curve shows two lines because effect size is asymmetrical for log-transformed data (i.e., you can have a 500% increase in benthos, but a 500% decrease is impossible) (n.b., the scale of the bottom line has been changed 10-fold to facilitate use of the graph). In this case, a two-fold (i.e., 100% increase or 50% decrease) effect size is the smallest one could hope to measure regardless of sampling effort. After about 10 samples per area, the cost of increasing sampling effort is likely to outweigh any benefits of reducing effect size. This shows that increasing sample size is not necessarily the answer to achieve increased power; reducing variability (e.g., by compositing replicate benthos samples at each station) might provide a much higher pay off in terms of reducing minimum detectable effect size.

4.2.3 Calculation of Detectable Effect Size for Fixed Sampling Effort

The preceding example demonstrates some of the difficulties associated with specifying effect sizes. Most monitoring studies are limited by available financial resources, and consideration of this constraint is an important factor in the design of most studies. With this in mind, it is often useful to calculate the minimum detectable effect size for a fixed sampling effort (i.e., what can be managed within available budget). If the resulting effect size is not considered sufficiently small to detect "real" effects, then the study should not proceed as planned. Table 13 shows the minimum detectable effect sizes for fixed sampling efforts of 5, 10 and 30 stations per area for key variables for the Dome, Lupin, and Heath Steele mines. The effect sizes were calculated using the following formula (rearranged from Equation 1):

Equation 3

$$d = \frac{(t_{\alpha} + t_{\beta}) s}{\sqrt{n}} \qquad d = \frac{(t_{\alpha} + t_{\beta}) CV}{\sqrt{n}}$$

where:

d = Effect Size

 t_{α} = Inverse of t distribution for α of 0.05, 2n-2 degrees of freedom (df), and 2 tails

- t_{β} = Inverse of t distribution for β of 0.05 or 0.2, 2n-2 df, and 1 tail
- n = Number of stations in each area (i.e., exposure and reference area)
- s = Pooled within group standard deviation (for log-transformed variables)
- CV= Pooled within group standard deviation/reference mean (for non-transformed variables)

Selection of key parameters for each mine was based on the following:

- Contaminants suspected of being associated with mine operations (water, sediment, fish tissue).
- Other exposure indicators (e.g., metallothionein) if appropriate data were available.
- Effects indicators if appropriate data were available.

÷

5.0 CONCLUSIONS

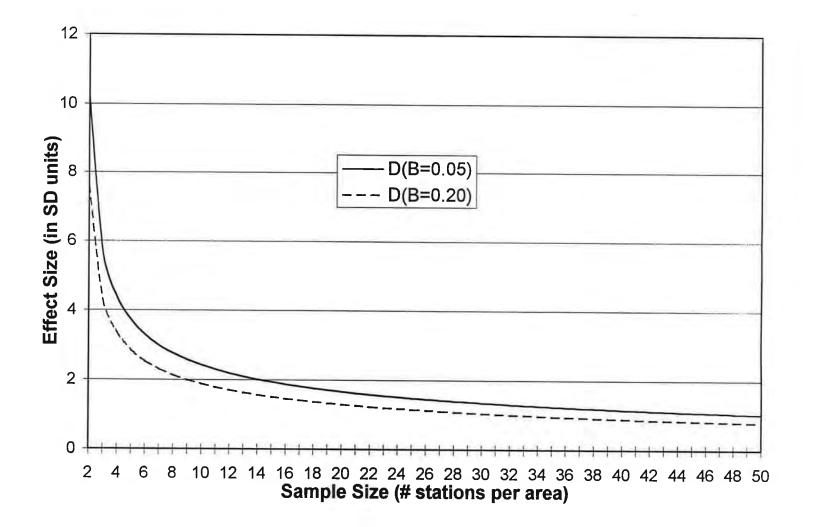
We recommend the following four sites for the 1997 field studies:

- Dome
- Heath Steele
- Lupin
- Myra Falls

These recommendations are based on our review and analysis of all available technical information, as documented in this report, and comprise our best professional judgement. However, the final decision on the 1997 study sites rests with the AETE Committee, who also have to consider non-technical issues.

6.0 REFERENCES

- BAR (B.A.R. Environmental Inc.). 1996a. An evaluation of chronic toxicity tests for selected mine effluents. Final report prepared for Aquatic Effects Technology Program, Ottawa, ON. August 1996.
- BAR (B.A.R. Environmental Inc.). 1996b. Laboratory screening of sublethal toxicity tests for selected mine effluents. Draft report prepared for Aquatic Effects Technology Program, Ottawa, ON. October 1996.
- Beak (Beak Consultants Ltd.). 1996. 1995 Field Evaluation of Aquatic Effects Monitoring Methods. Final report prepared for Aquatic Effects Technology Program, Ottawa, ON. July 1996.
- Buhl-Mortensen, L. 1996. Type-II statistical errors in environmental science and the precautionary principle. Mar. Poll. Bull. 32:528-531.
- Couillard, Y. and L. St.-Cyr. 1996. Technical evaluation of metallothionein as a biomarker for the mining industry. Final draft report prepared for Aquatic Effects Technology Program, Ottawa, ON. December 1996.
- EVS (EVS Environment Consultants), ESP (Ecological Services for Planning Ltd.) and JWEL (Jacques Whitford Environmental Ltd.). 1996a. 1996 Field Evaluation, Aquatic Effects Monitoring: Field survey report, Myra Falls Mine Site. Final report prepared for Aquatic Effects Technology Program, Ottawa, ON. December 19, 1996
- EVS (EVS Environment Consultants), ESP (Ecological Services for Planning Ltd.) and JWEL (Jacques Whitford Environmental Ltd.). 1996b. 1996 Field Evaluation, Aquatic Effects Monitoring: Field survey report, Sullivan Falls Mine Site. Final report prepared for Aquatic Effects Technology Program, Ottawa, ON. December 19, 1996
- EVS (EVS Environment Consultants), ESP (Ecological Services for Planning Ltd.) and JWEL (Jacques Whitford Environmental Ltd.). 1996c. 1996 Field Evaluation, Aquatic Effects Monitoring: Field survey report, Lupin Mine Site. Final report prepared for Aquatic Effects Technology Program, Ottawa, ON. December 19, 1996


- EVS (EVS Environment Consultants), ESP (Ecological Services for Planning Ltd.) and JWEL (Jacques Whitford Environmental Ltd.). 1996d: 1996 Field Evaluation, Aquatic Effects Monitoring: Field survey report, Dome Mine Site. Final report prepared for Aquatic Effects Technology Program, Ottawa, ON. December 19, 1996
- EVS (EVS Environment Consultants), ESP (Ecological Services for Planning Ltd.) and JWEL (Jacques Whitford Environmental Ltd.). 1996e. 1996 Field Evaluation, Aquatic Effects Monitoring: Field survey report, Levack/Onaping Mine Sites. Final report prepared for Aquatic Effects Technology Program, Ottawa, ON. December 19, 1996
- EVS (EVS Environment Consultants), ESP (Ecological Services for Planning Ltd.) and JWEL (Jacques Whitford Environmental Ltd.).1996f. 1996 Field Evaluation, Aquatic Effects Monitoring: Field survey report, Gaspe Mine Site. Final report prepared for Aquatic Effects Technology Program, Ottawa, ON. December 19, 1996
- EVS (EVS Environment Consultants), ESP (Ecological Services for Planning Ltd.) and JWEL (Jacques Whitford Environmental Ltd.). 1996g. 1996 Field Evaluation, Aquatic Effects Monitoring: Field survey report, Heath Steele Mine Site. Final report prepared for Aquatic Effects Technology Program, Ottawa, ON. December 19, 1996
- EVS (EVS Environment Consultants), ESP (Ecological Services for Planning Ltd.) and JWEL (Jacques Whitford Environmental Ltd.). 1996h. 1996 Field Evaluation, Aquatic Effects Monitoring: 1997 Study Design. Interim draft report prepared for Aquatic Effects Technology Program, Ottawa, ON. December 13, 1996.
- Sokal, R.R. and F.J. Rohlf. 1981. Biometry: The principles and practice of statistics in biological research. Freeman and Co., New York. 859 pp.
- Taylor, B. 1996. Optimization of field and laboratory methods for benthic invertebrate monitoring. Second draft report prepared for Aquatic Effects Technology Program, Ottawa, ON. December 4, 1996.

FIGURES

()6

÷.

F-1

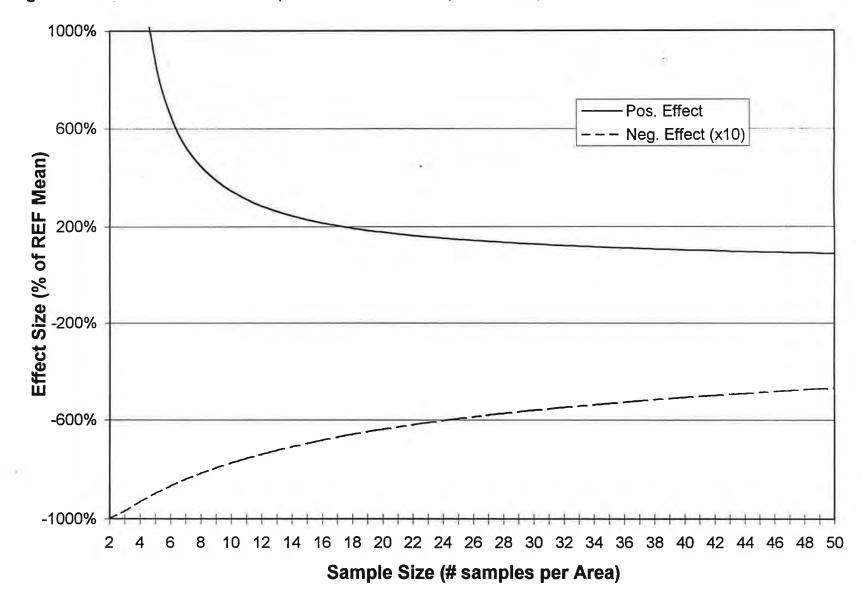


Figure 2. Benthos abundance - Lupin Mine: Power Curve (a = b = 0.05)

TABLES

Table 1.Summary information for specific study elements for the Myra Falls mine site (stream/lake discharge)

Element	Sampled 1996	Summary/Comments
1.0 Historical Data Review 1.1 Effluent Characterization	na	Some rainbow trout and <i>Daphnia</i> toxicity in Buttle Lake, but results not consistent
1.2 Water Chemistry	na	 Monitoring data exist Although inputs are well defined, delineation of mixing zone confounded by changing water level controlled by B.C. Hydro
1.3 Sediment Chemistry	na	There are no historic data
1.4 Benthos	na	Emphasis has been on planktonBenthos changes observed below the mine
1.5 Fisheries 1.5.1 Population	na	No trends apparent in historic data
1.5.2 Tissue	na	Fish tissue and metallothionein studies indicate differences between reference and exposure areas but differences have decreased over time
2.0 Study Area 2.1 Site Access	na	Boat launch within 20min boat ride of reference site; another boat launch within 60min boat ride of exposure site
2.2 Availability of Multiple Reference and Exposure Areas	na	Multiple reference and exposure stations of relatively uniform habitat type available
2.3 Confounding Discharges	na	• None
3.0 Effluent/Sublethal Toxicity 3.1 Frequency of Effluent Discharge	na	Effluent continuously discharged (easy access)
3.2 Sublethal Toxicity 3.2.1 Ceriodaphnia dubia	Yes	Survival and reproduction affected
3.2.2 Fathead Minnow	Yes	Survival and growth affected
3.2.3 Selenastrum capricornutum	Yes	Growth affected (most sensitive end-point of all tested)
3.2.4 Lemna minor	Yes	Growth affected
3.2.5 Trout embryo	Yes	No data; controls failed

T-1

Table 1 (continued)

Element	Sampled 1996	Summary/Comments
4.0 Habitats	Yes	 Main habitat difference between exposure and reference areas is finer sediments in former Multiple reference and exposure stations of relataively uniform habitat type available
5.0 Water Chemistry	Yes	Significant elevations in conventional parameters (e.g., pH, conductivity) and several metals at exposure compared to reference area
6.0 Sediments	Yes	 Difficult to find appropriate sediment at both exposure and reference areas Increased level of effort would be required to find other depositional areas and these may not be representative (i.e., may only represent a small portion of the system) Fluctuating water level exposes littoral sediment depositional areas
7.0 Benthic Invertebrates	Yes	 Buttle Lake steep-sided; shore drops off quickly Littoral zone varies as water levels are altered Zooplankton may be more useful in this system for determining effects; artificial substrates are another possibility
8.0 Fisheries 8.1 Communities	Yes	 Potential sentinel species are rainbow trout, cutthroat trout, Dolly Varden Sentinel species available with reasonable effort Size difference noted but may be an artifact of sampling methods
8.2 Tish Tissue	No	Good historical data available

Table 2. Summary information for specific study elements for the Sullivan mine site (stream/river discharge).

Element	Sampled 1996	Summary/Comments
1.0 Historical Data Review 1.1 Effluent Characterization	na	Trout died in historic in situ toxicity tests
1.2 Water Chemistry	na	Elevated contaminant concentrations compared to reference sites
1.3 Sediment Chemistry	na	 Elevated contaminant concentrations compared to reference sites but large variations between years Some historic stations outside study area
1.4 Benthos	na	Differences between reference and exposure sites
1.5 Fisheries 1.5.1 Population	na	Only limited information available
1.5.2 Tissue	na	Higher zinc and iron in fish tissues downstream in 1981
2.0 Study Area 2.1 Site Access	na	Access by wading possible but water fast and deep; boat recommended
2.2 Availability of Multiple Reference and Exposure Areas	na	Multiple reference and exposure stations of relatively uniform habitat type available
2.3 Confounding Discharges	na	Other point sources within exposure area
3.0 Effluent/Sublethal Toxicity 3.1 Frequency of Effluent Discharge	na	Discharge is continuous; easy access
3.2 Sublethal Toxicity 3.2.1 Ceriodaphnia dubia	Yes	 Survival and reproduction affected; latter was most sensitive sublethal toxicity endpoint (of all tests)
3.2.2 Fathead Minnow	Yes	No effects
3.2.3 Selenastrum capricornutum	Yes	Growth affected
3.2.4 Lemna minor	Yes	Growth affected
3.2.5 Trout embryo	Yes	No data; controls failed
4.0 Habitats	Yes	 Similar habitat in both reference and exposure areas Primarily erosional habitat; little depositional habitat

Table 2 (continued)

Element	Sampled 1996	Summary/Comments
5.0 Water Chemistry	Yes	 Well defined stream channel Significant differences between reference and exposure areas for several conventionals and metals
6.0 Sediments	Yes	 Primarily erosional habitat Significant differences between reference and exposure areas for fines, TOC and loss on ignition Metals elevated at exposure compared to reference, but findings confounded by substrate differences (exposure station primarily silt/clay; reference station primarily sand/gravel) Metals analyses of periphyton could be useful
7.0 Benthic Invertebrates	Yes	 Good substrate for sampling with Hess Water fast and deep in places making sampling difficult Artificial substrates could be useful No clear benthos gradient in the St. Mary River, though one may exist in Mark Creek
8.0 Fisheries 8.1 Communities	Yes	 Sentinel species available (e.g., large-scale sucker and mountain whitefish) No physical barriers to migration in the St. Mary River; a natural barrier to fish movement in Mark Creek Water fast and deep in places making efficient surveys difficult
8.2 Tish Tissue	Yes	 No differences in sculpin metallothionein or tissue metal levels between reference and exposure areas

Table 3. Summary information for specific study elements for the Lupin mine site (stream/lake discharge)

Element	Sampled 1996	Summary/Comments
1.0 Historical Data Review 1.1 Effluent Characterization	na	 Rainbow trout, Daphnia magna and Microtox indicate little or no acute toxicity Historic process changes have improved effluent quality
1.2 Water Chemistry	na	Baseline and pre-discharge monitoring data exist
1.3 Sediment Chemistry	na	Baseline and pre-discharge monitoring data exist
1.4 Benthos	na	Baseline and pre-discharge monitoring data exist
1.5 Fisheries 1.5.1 Population	na	 Some baseline data exist; pre-discharge monitoring not focused on fish populations
1.5.2 Tissue	na	Historically arsenic has accumulated in fish tissuesNo historic metallothionein data
2.0 Study Area 2.1 Site Access	na	 Access by boat from the Lupin mine to either the exposure (Sun Bay) or reference (South Bay) areas is about 1h, with about 2h travel time between areas Winds can be high enough to preclude access by boat; program timing is limited to fair weather Other access would be by foot (6-10km) or helicopter (expensive)
2.2 Availability of Multiple Reference and Exposure Areas	na	 Multiple reference and exposure stations of uniform habitat type available within bays surveyed; suitability of other reference areas unknown
2.3 Confounding Discharges	na	• None
3.0 Effluent/Sublethal Toxicity 3.1 Frequency of Effluent Discharge	na	Effluent discharged annually in later summer over 2 weeks
3.2 Sublethal Toxicity 3.2.1 Ceriodaphnia dubia	No	Mine not discharging
3.2.2 Fathead Minnow	No	Mine not discharging
3.2.3 Selenastrum capricornutum	No	Mine not discharging
3.2.4 Lemna minor	No	Mine not discharging

T-5

Table 3 (continued)

Element	Sampled 1996	Summary/Comments
3.2.5 Trout embryo	No	Mine not discharging
4.0 Habitats	Yes	 Multiple reference and exposure stations of uniform habitat type available within bays surveyed; suitability of other reference areas unknown Significant differences between reference and exposure areas (depth, fines, TOC, loss on ignition) Distance between reference and exposure areas substantial (approx. 2 h by boat)
5.0 Water Chemistry	Yes	 Reference area has elevated concentrations of some contaminants compared with the exposure area; it is presumed this would reverse during discharge Effluent not being discharged so these data of limited utility but are comparable to historic data
6.0 Sediments	yes	 Good substrate for sampling sediments with Petite Ponar Most contaminants in sediments elevated at the exposure stations compared with the reference stations; arsenic particularly elevated; results comparable to historic data Well defined sediment chemistry gradient Sediment suitable for toxicity testing; collection of sediments not difficult
7.0 Benthic Invertebrates	Yes	 No difference between reference and exposure areas for total abundance or species richness. Habitat differences may confound differences in benthos Some species specific to exposure or reference sites
8.0 Fisheries 8.1 Communities	Yes	 Sentinel species and large fish available in required numbers with what should be an acceptable level of effort (e.g., burbot, lake trout, round whitefish, lake cisco) Not enough data to determine whether fish population gradients exist between reference and exposure areas No physical barriers to migration
8.2 Tish Tissue	No	Large fish are available but increased effort needed to attain sufficient numbers of sentinel species

Element	Sampled 1996	Summary/Comments
1.0 Historical Data Review 1.1 Effluent Characterization	N/A	Placer Dome has detailed effluent chemistry and toxicity data available
1.2 Water Chemistry	N/A	1989 data available from exposure area and just upstream of effluent discharge
1.3 Sediment Chemistry	N/A	 1989 data available from exposure area and just upstream of effluent discharge
1.4 Benthos	N/A	1989 data available from exposure area and just upstream of effluent discharge
1.5 Fisheries 1.5.1 Population	N/A	 Quantitative numbers available on catch data but no population estimates
1.5.2 Tissue	N/A	Some tissue data available for exposure area only; only muscle tissue sampled
2.0 Study Area 2.1 Site Access	N/A	Site is accessible in both reference and exposure areas
2.2 Availability of Multiple Reference and Exposure Areas	N/A	Multiple exposure areas are available but limited reference areas are available on this river system
2.3 Confounding Discharges	N/A	Old inactive tailings areas influence water quality in this system
3.0 Effluent/Sublethal Toxicity 3.1 Frequency of Effluent Discharge	N/A	Effluent is available June to October
3.2 Sublethal Toxicity 3.2.1 Ceriodaphnia dubia	Y	Not toxic in 1996 but effluent has displayed acute toxicity in the past
3.2.2 Fathead minnow	Y	Not toxic in 1996 but effluent has displayed acute toxicity in the past
3.2.3 Selenastrum capricornutum	Y	Toxic in 1996
3.2.4 Lemna minor	Y	Toxic in 1996

Table 4. Summary information for specific study elements for the Dome mine site (stream/river discharge).

T-7

Table 4 (continued)

Element	Sampled 1996	Summary/Comments
3.2.5 Trout embryo	Y	Test invalid
4.0 Habitats	Y	Reference and exposure areas very similar in habitat
5.0 Water Chemistry	Y	 Water chemical concentration is statistically greater in exposure area relative to reference area for several metals and for general chemistry parameters A gradient likely exists in the exposure area as indicated by conductivity measurements recorded in the field and other unpublished data
6.0 Sediments	Y	 Sediments are available Concentrations of metals (arsenic, copper, cobalt, nickel) are statistically greater in exposure area relative to reference area A gradient is expected based on unpublished data
7.0 Benthic Invertebrates	Y	 Significant differences exist between the reference and exposure area with respect to density, pooled number of taxa and indicator species A gradient is expected based on unpublished data and review of sediment chemistry
8.0 Fisheries 8 1 Communities	Y	 Pearl Dace, Northern Redbelly Dace were used in 1996 and were abundant Potential to use yellow perch in 1997 if lakes used for reference and exposure areas Insufficient data collected in 1996 to determine differences in fish communities and relative abundance between reference and exposure areas Pearl dace from exposure area were significantly longer than those from reference area Barriers to fish migration occur throughout the system
8.2 Fish Tissue	Y	 No-significant difference in metallothionein levels between reference and exposure areas Significant difference in metals concentrations between reference and exposure areas

Element	Sampled 1996	Summary/Comments
1.0 Historical Data Review 1.1 Effluent Characterization	N/A	Inco and Falconbrige both have detailed effluent chemistry data in background reports
1.2 Water Chemistry	N/A	Good background water chemistry data available
1.3 Sediment Chemistry	N/A	Limited sediment chemistry data due to erosional nature of the Onaping River
1.4 Benthos	N/A	Good benthic data available back to the 1970s
1.5 Fisheries 1.5.1 Population	N/A	Qualitative catch data available in several reports but no population estimates
1.5.2 Tissue	N/A	No known tissue data available
2.0 Study Area 2.1 Site Access	N/A	Site is readily accessible in exposure area, difficult access in reference area
2.2 Availability of Multiple Reference and Exposure Areas	N/A	Multiple reference and exposure areas are available on this river system
2.3 Confounding Discharges	N/A	Sewage treatment plant discharges immediately above mine effluents. Interpretation is confused by discharge from two mines to one receiving location
3.0 Effluent/Sublethal Toxicity 3.1 Frequency of Effluent Discharge	N/A	Falconbridge effluent available year round. INCO discharge is not continuous
3.2 Sublethal Toxicity 3.2.1 <i>Ceriodaphnia dubia</i>	Y	Falconbridge and INCO effluent toxic in 1996
3.2.2 Fathead minnow	Y	 Falconbridge effluent not toxic in 1996 INCO effluent toxic in 1996
3.2.3 Selenastrum capricornutum	Y	Falconbridge and INCO effluent inhibited growth in 1996
3.2.4 Lemna minor	Y	Falconbridge and INCO effluent inhibited growth in 1996
3.2.5 Trout embryo	Y	Falconbridge and INCO effluent were not toxic

Table 5.	Summary information for specific study elements for the Onaping mine site (stream/river discharge).
----------	---

Element	Sampled 1996	6 Summary/Comments					
4.0 Habitats	Y	Reference and exposure areas very similar					
5.0 Water Chemistry	Y	Water concentrations statistically greater in exposure area relative to reference area for several metals and general chemistry					
6.0 Sediments	Y	 Depositional sediments are present but not common in either exposure or reference area Differences in sediment chemistry not pronounced 					
7.0 Benthic Invertebrates	Y	 Exposure area displayed more abundant and diverse benthic community compared with reference area 					
8.0 Fisheries 8.1 Communities	Y	 Insufficient data to compare fish communities in exposure and reference areas Some sensitive species (e.g., rainbow trout) captured in exposure area 					
8.2 Tissues	Y	 Metal and metallothionein higher in white sucker in exposure area but small sample sizes precluded statistical analysis 					

1	Element	Sampled 1996	Summary/Comments
1.0 His 1.1	torical Data Review Effluent Characterization	N/A	Extensive historical data exist
1.2	Water Chemistry	N/A	Extensive historical data (25 years) exist for both reference and exposure areas
1.3	Sediment Chemistry	N/A	Sediments collected historically show lack of depositional areas
1.4	Benthos	N/A	• Extensive historical data exist (500 µm mesh)
1.5	Fisheries 1.5.1 Population	N/A	Much of the historical data focus on juvenile Atlantic salmon populations
	1.5.2 Tissue	N/A	 Some studies on Cu concentrations in livers of juvenile Atlantic salmon. Metallothionein data from one, and only study, inconclusive
2.0 Stu 2.1	idy Area Site Access	N/A	Site is easily accessible by road
2.2	Availability of Multiple Reference and Exposure Areas	N/A	 Reference areas available but should be located above Little York Lake. Exposure area consists entirely of effluent from the reclaim basin
2.3	Confounding Discharges	N/A	 Reach B in the reference area differs from Reach A in some general chemistry parameters Discharge of municipal sewage into the reclaim basin. Volume of discharge low in comparison to mine effluent discharge
3.0 Eff 3.1	uent/Sublethal Toxicity Frequency of Effluent Discharge	N/A	Effluent is discharged continuously
3.2	Sublethal Toxicity 3.2.1 <i>Ceriodaphnia dubia</i>	Yes	Some toxicity with IC25 @ 79.4 % v/v of effluent
	3.2.2 Fathead minnow	Yes	No toxicity
	3.2.3 Selenastrum capricornutum	Yes	No toxicity
	3.2.4 Lemna minor	Yes	• Toxicity (IC25 @ 31.8 % v/v; IC50 @ 66.9 % v/v)

Table 6. Summary information for specific study elements for the Gaspé Mine site (stream/river discharge).

Element	Sampled 1996	Summary/Comments
3.2.5 Trout embryo	Yes	Test invalid due to toxicity of receiving water
4.0 Habitats	Yes	 Habitats of uniform substrate composition No significant differences in depth and velocity between reference and exposure areas
5.0 Water Chemistry	Yes	 Significant differences in nutrients, chloride, sulphate, conductivity, hardness, TDS and DIC between reference and exposure areas Highly significant differences in total and dissolved Ca, Cu, Mg, Mn, Mo, K, Si, Na and Sr between reference and exposure areas Gradient in alkalinity, sulphate, conductivity, hardness, K and Na in the exposure area
6.0 Sediments	No	Suitable (>1.0 m ²), representative depositional areas not available
7.0 Benthic Invertebrates	Yes	 Significant differences in total species richness and richness of sensitive species between reference and exposure areas Differences in total abundance between the reference and exposure area were not significant
8,0 Fisheries 8.1 Communities	Yes	 Juvenile Atlantic salmon and brook trout were present in both reference and exposure areas Both sentinel species were available in both areas although salmon appeared to be more abundant Differences in lengths, weights and condition of juvenile Atlantic salmon were apparent between reference and exposure areas. CPUE was slightly higher for salmon in the reference area
8 2 Fish Tissue	Yes	 Metallothionein was significantly higher in juvenile Atlantic salmon and brook trout from the exposure area Metal concentrations were higher in fish tissues from the exposure area Metal concentrations and metallothionein were related No barrier exists and there is the potential for migration of species between reference and exposure areas

Table 7. Summary information for specific study elements for the Heath Steele Mine site (stream/river discharge).

	Element	Sampled 1996	Summary/Comments
1.0	Historical Data Review 1.1 Effluent Characterization	N/A	Extensive historical data exist
	1.2 Water Chemistry	N/A	Extensive historical data (25 years) exist for both reference and exposure areas
	1.3 Sediment Chemistry	N/A	Sediments collected historically show lack of depositional areas
	1.4 Benthos	N/A	• Extensive historical data exist (500 µm mesh)
	1.5 Fisheries 1.5.1 Population	N/A	Several studies have been conducted to determine the presence and absence of species . Much of the historical data focus on juvenile Atlantic salmon populations
	1.5.2 Tissue	N/A	One study conducted in 1995 showed no difference between reference and exposure areas
2.0	Study Area 2.1 Site Access	N/A	 Site is accessible by road although a four wheel drive is recommended for access to the exposure area
	2.2 Availability of Multiple Reference and Exposure Areas	N/A	 Reference areas available on Northwest Miramichi River and on Tomogonops River (BCL-4) Exposure areas available on all branches of the Tomogonops River. The site is complex with point and non-point source discharges from the mine affecting different branches of the Tomogonops River
	2.3 Confounding Discharges	N/A	There are no confounding discharges
3.0	Effluent/Sublethal Toxicity 3.1 Frequency of Effluent Discharge	N/A	Effluent is discharged continuously
	3.2 Sublethal Toxicity 3.2.1 <i>Ceriodaphnia dubia</i>	Yes	Toxicity with IC25 @ 19.0 % v/v of effluent
	3.2.2 Fathead minnow	Yes	Toxicity with IC25 @ 23.0 % v/v of effluent
	3.2.3 Selenastrum capricornutum	Yes	Toxicity with IC25 @ 23.3 % v/v of effluent
	3.2.4 Lemna minor	Yes	Toxicity with IC 25 @ 47.3 % v/v of effluent

T-13

Element	Sampled 1996	Summary/Comments
3.2.5 Trout embryo	Yes	Toxicity with EC50 @ 77.6 % v/v of effluent
4.0 Habitats	Yes	 Habitats of uniform substrate composition Velocity slightly higher in the reference area compared to the exposure area
5.0 Water Chemistry	Yes	 Significant differences in chloride, sulphate, conductivity, hardness, TDS and DOC between reference and exposure areas Significant differences in Ba, Ca, Cu, Mg, Mn, Na, Pb, Sr and Zn between reference and exposure areas Strong gradient in metals and general chemistry is apparent in the South Branch Tomogonops based upon historical studies (1995 and 1996)
6.0 Sediments	No	Suitable (>1.0 m ²), representative depositional areas not available
7.0 Benthic Invertebrates	Yes	 Significant differences in total species abundance and species richness and richness between reference and exposure areas Differences in richness of sensitive species between the reference and exposure area were not significant
8.0 Fisheries 8.1 Communities	Yes	 Juvenile Atlantic salmon and lake chub were present in both reference and exposure areas Both sentinel species were available in both areas. Qualitative sampling was conducted in 1996 Some differences in CPUE, lengths and weights of juvenile Atlantic salmon were apparent between reference and exposure areas
8.2 Fish Tissue	Yes	 Metallothionein was significantly higher in juvenile Atlantic salmon from the exposure area metallothionein was also higher for lake chub in the exposure area compared to the reference area on the Northwest Miramichi River. However, metallothionein levels measured from the alternate reference area were the highest for all sites Metal concentrations were inconclusive Sample sizes were very small which complicates data interpretation No barrier exists and there is the potential for migration of species between reference and exposure areas

Table 8.

Variable evaluations for 1996 AETE monitoring program

PARAMETER TYPE	MEDIUM	PARAMETER	LUPIN	SULLIVAN	MYRA	DOME	LEVACK	GASPE	HEATH STEELE
EXPOSURE	WATER	Boron, Dissolved		1	0.000				
EXPOSURE	WATER	Boron, Total	1. 10						
EXPOSURE	WATER	Calcium, Dissolved							
EXPOSURE	WATER	Calcium, Total							
EXPOSURE	WATER	Iron, Dissolved		1.000	1				•
EXPOSURE	WATER	Iron, Total							
EXPOSURE	WATER	Magnesium, Dissolved							
EXPOSURE	WATER	Magnesium, Total	1.12.000						
EXPOSURE	WATER	Phosphorus, Dissolved		1	-			1	
EXPOSURE	WATER	Phosphorus, Total		-	-	-	1	1	-
EXPOSURE	WATER	Potassium, Dissolved		.				_	
EXPOSURE	WATER	Potassium, Total	- 23	<u> </u>	-				-
EXPOSURE	WATER	Sodium, Dissolved	-						
EXPOSURE	WATER	Sodium, Total		1.100	-	-	-	-	-
EXPOSURE	WATER	Zinc, Dissolved				2.2			
EXPOSURE	WATER	Zinc, Total	1.000	2.1		0.0502			-
EXPOSURE	WATER	Aluminum, Dissolved	-	100		-	t		
EXPOSURE	WATER	Aluminum, Total			-				-
EXPOSURE	WATER	Antimony, Dissolved	-	-	-	-	-	-	-
EXPOSURE	WATER	Antimony, Total		-	-	-		Sec. 1	-
EXPOSURE	WATER	Arsenic, Dissolved		-	-	1.5			-
EXPOSURE	WATER	Arsenic, Total	-	-		- 14			1
EXPOSURE	WATER	Barium, Dissolved	-						
EXPOSURE	WATER	Barium, Total						100	1000
EXPOSURE	WATER	Beryllium, Dissolved		-	-				-
EXPOSURE	WATER	Beryllium, Total	-	-	-	-	-	-	-
EXPOSURE	WATER WATER	Bismuth, Dissolved Bismuth, Total	_	-	-	-	-	-	-
EXPOSURE	WATER	Cadmium, Dissolved		-	-	-	-	-	-
EXPOSURE	WATER	Cadmium, Total		-		-		-	-
EXPOSURE	WATER	Chromium, Dissolved	- 25%	-	-	-	-		-
EXPOSURE	WATER	Chromium, Total		-	-		-		-
EXPOSURE	WATER	Cobalt, Dissolved			-		-		
EXPOSURE	WATER	Cobalt, Total		-	-			-	-
EXPOSURE	WATER	Copper, Dissolved	-					1	THE R.
EXPOSURE	WATER	Copper, Total	1.5	-					1
EXPOSURE	WATER	Lead, Dissolved							
EXPOSURE	WATER	Lead, Total							
EXPOSURE	WATER	Manganese, Dissolved					2000000000		
EXPOSURE	WATER	Manganese, Total							5.45
XPOSURE	WATER	Molybdenum, Dissolved			1.0	1 6	1.00		
EXPOSURE	WATER	Molybdenum, Total	141.00				1		
EXPOSURE	WATER	Nickel, Dissolved			-				70.70
EXPOSURE	WATER	Nickel, Total	•						
EXPOSURE	WATER	Selenium, Dissolved							18.18
EXPOSURE	WATER	Selenium, Total			177	1 - 1	-		
EXPOSURE	WATER	Silver, Dissolved						1	
EXPOSURE	WATER	Silver, Total							
EXPOSURE	WATER	Strontium, Dissolved		1000			1	hr-2	
EXPOSURE	WATER	Strontium, Total		10.15					
EXPOSURE	WATER	Thallium, Dissolved							
EXPOSURE	WATER	Thallium, Total			1.1		1		
EXPOSURE	WATER	Tin, Dissolved			1				
EXPOSURE	WATER	Tin, Total					1.5		-
XPOSURE	WATER	Titanium, Dissolved	-					7.00	
XPOSURE	WATER	Titanium, Total	15						

a continued)

PARAMETER TYPE	TYPE MEDIUM PARAMETER POSURE WATER Uranium, Dissolved POSURE WATER Uranium, Total POSURE WATER Vanadium, Dissolved POSURE WATER Vanadium, Total POSURE WATER Vanadium, Total POSURE WATER Cyanide, Free POSURE WATER Cyanide, Total POSURE SEDIMENT Antimony POSURE SEDIMENT Antimony POSURE SEDIMENT Barium POSURE SEDIMENT Barium POSURE SEDIMENT Cadmium POSURE SEDIMENT Codatt POSURE SEDIMENT Codatt POSURE SEDIMENT Lead POSURE SEDIMENT Molybdenum POSURE SEDIMENT Molybdenum POSURE SEDIMENT Nickel POSURE SEDIMENT Nickel POSURE SEDIMENT Nickel POSURE	rupin	SULLIVAN	MYRA	DOME	LEVACK	GASPE	HEATH STEELE	
EXPOSURE	WATER	Uranium, Dissolved	1	1		1	-	-	Tighter.
EXPOSURE	WATER	Uranium, Total			-			1	110
EXPOSURE	WATER			1000		-	-	1	-
EXPOSURE	WATER	Vanadium, Total	1			-	1.1	1	-
EXPOSURE	WATER	Mercury, Total		NM				NM	NM
EXPOSURE	WATER	Cyanide, Free	NM	NM	NM			NM	NM
EXPOSURE	WATER	Cyanide, Total			1	1		NM	NM
EXPOSURE	SEDIMENT	Antimony		11		1		11	11
EXPOSURE	SEDIMENT	Arsenic		11		-		11	11
EXPOSURE	SEDIMENT	Barium		11			*	11	11
EXPOSURE	SEDIMENT	Beryllium		11		-	1	11	11
EXPOSURE	SEDIMENT			11	1900	-	-	11	11
EXPOSURE			-	11	3.42 	-		11	11
EXPOSURE			1	11		1	-	11	1
EXPOSURE				1		6	1	11	11
EXPOSURE				11				_	
EXPOSURE			-	11	A 18.4		-	11	12
			-	_	NM	NM	NM	1	1'
			-	11			-	11	1'
				11	-			1'	11
			-	11		1	-	1'	11
				11				11	11
				1'				11	11
			1	11					1
EXPOSURE			1/2	NA	12	NA	NA	NA	NA
EXPOSURE			12	NA	12	NA	NA	NA	NA
EXPOSURE			12	NA	12	NA	NA	NA	NA
EXPOSURE	FISH	Metallothionien *	12		12				
OTHER	WATER	Alkalinity(as CaCO3)					-	_	
								1	
								. a	
					-			-	10/01/2
							-	-	
DTHER					20000000000	-	-		
	WATER	Sulphate							
			•						
DTHER	WATER	Reactive Silica(SiO2)							-
OTHER OTHER	WATER WATER	Reactive Silica(SiO2) Anion Sum							
DTHER DTHER DTHER	WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated)					_		
DTHER DTHER DTHER DTHER	WATER WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated) Carbonate(as CaCO3, calculated)							
DTHER DTHER DTHER DTHER DTHER	WATER WATER WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated) Carbonate(as CaCO3, calculated) Cation Sum	•						
DTHER DTHER DTHER DTHER DTHER DTHER	WATER WATER WATER WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated) Carbonate(as CaCO3, calculated) Cation Sum Colour	•					•	
DTHER DTHER DTHER DTHER DTHER DTHER DTHER	WATER WATER WATER WATER WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated) Carbonate(as CaCO3, calculated) Cation Sum Colour Colour Conductivity - @25°C	•		14			•	
DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER	WATER WATER WATER WATER WATER WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated) Carbonate(as CaCO3, calculated) Cation Sum Colour Colour Conductivity - @25°C Dissolved Oxygen	•		14		-	•	
DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER	WATER WATER WATER WATER WATER WATER WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated) Carbonate(as CaCO3, calculated) Cation Sum Colour Colour Conductivity - @25°C Dissolved Oxygen Hardness(as CaCO3)	•						
OTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER	WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated) Carbonate(as CaCO3, calculated) Cation Sum Colour Conductivity - @25°C Dissolved Oxygen Hardness(as CaCO3) on Balance _angelier Index at 20°C	•					• •	NM
DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER	WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated) Carbonate(as CaCO3, calculated) Cation Sum Colour Conductivity - @25°C Dissolved Oxygen Hardness(as CaCO3) on Balance _angelier Index at 20°C	•					NM	NM
DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER	WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated) Carbonate(as CaCO3, calculated) Cation Sum Colour Conductivity - @25°C Dissolved Oxygen Hardness(as CaCO3) on Balance	•					NM	NM
OTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER	WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated) Carbonate(as CaCO3, calculated) Cation Sum Colour Conductivity - @25°C Dissolved Oxygen Hardness(as CaCO3) on Balance _angelier Index at 20°C _angelier Index at 4°C	•					NM NM	NM
OTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER	WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated) Carbonate(as CaCO3, calculated) Cation Sum Colour Conductivity - @25°C Dissolved Oxygen Hardness(as CaCO3) on Balance _angelier Index at 20°C _angelier Index at 4°C	•					NM NM	NM
OTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER	WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated) Carbonate(as CaCO3, calculated) Cation Sum Colour Conductivity - @25°C Dissolved Oxygen Hardness(as CaCO3) on Balance _angelier Index at 20°C _angelier Index at 4°C SH Saturation pH at 20°C	•					NM NM	NM
OTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER	WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated) Carbonate(as CaCO3, calculated) Cation Sum Colour Conductivity - @25°C Dissolved Oxygen Hardness(as CaCO3) on Balance angelier Index at 20°C angelier Index at 4°C DH Saturation pH at 20°C Saturation pH at 20°C						NM NM NM	NM
OTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER DTHER	WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated) Carbonate(as CaCO3, calculated) Cation Sum Colour Conductivity - @25°C Dissolved Oxygen Hardness(as CaCO3) on Balance .angelier Index at 20°C .angelier Index at 4°C DH Saturation pH at 20°C Saturation pH at 4°C		NM			NM	NM NM NM	NM NM
OTHER DTHER	WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER	Reactive Silica(SiO2) Anion Sum Bicarbonate(as CaCO3, calculated) Carbonate(as CaCO3, calculated) Cation Sum Colour Conductivity - @25°C Dissolved Oxygen Hardness(as CaCO3) on Balance _angelier Index at 20°C _angelier Index at 4°C oH Saturation pH at 20°C Saturation pH at 4°C femperature Thiosalts	* *	NM 1	NM			NM NM NM	NM

PARAMETER TYPE	MEDIUM	PARAMETER	LUPIN	SULLIVAN	MYRA	DOME	LEVACK	GASPE	HEATH STEELE
OTHER	WATER	Total Kjeldahl Nitrogen(as N)							
OTHER	WATER	Dissolved Inorganic Carbon(as C)	NM						+
OTHER	WATER	Dissolved Organic Carbon(DOC)							
OTHER	WATER	Total Inorganic Carbon (TIC)		NM	NM	NM	NM	NM	NM
OTHER	WATER	Total Dissolved Solids	NM	1251		NA	NA	NM	NM
OTHER	WATER	Total Suspended Solids							

EFFECTS	BENTHOS	Total Richness				*		
EFFECTS	BENTHOS	Richness of Ephemenoptera 5,6	NM	NM		*		
EFFECTS	BENTHOS	Abundance of Ephemenoptera 6	NM	NM	NM	NM	NM	NM
EFFECTS	BENTHOS	Total Abundance				*		

HABITAT	LAKE	Depth						
HABITAT	River/Strm	Flow	17		17			*
HABITAT	River/Strm	% Riffle	17		17	NA		
HABITAT	River/Strm	% Run ⁸	17		17			
HABITAT	River/Strm	% Pools	17		17	NA		
HABITAT	SEDIMENT	% Fines		1	1			
HABITAT	SEDIMENT	Total Organic Carbon		1			1	1
HABITAT	SEDIMENT	Grain Size		1			1	1
HABITAT	SEDIMENT	Loss on Ignition	-	1			1	1
HABITAT	SEDIMENT	Moisture Content		1			11	1

	Legend
	Not detected in reference or exposure area
1	Logistical difficulties associated with variable
	No significant difference between areas
	Sign. difference between areas; difference as expected (i.e., mine-related)
*	Sign. diff. between areas, but in wrong direction (mine discharging at time of study)
•	Sign. diff. between areas, but in wrong direction (mine NOT discharging at time of study)
NM	Not measured
NA	Not available

Notes:

- 1 Sediments not collected
- 2 For Lupin only: fish tissue for analysis not collected
- 3 For Heath Steele only: significant difference between reference (NW Miramichi River) and exposure (Tomogonops River) for salmon and lake chub. However, samples collected at a second reference site (B-CL-4) showed highest levels measured.
- 4 Not possible to collect due to equipment difficulties
- 5 For Heath Steele only: determined EPT index: significant difference for 500 μm size only.
- 6 For Lupin and Myra; no Ephemenopterans present in lake systems
- 7 Not relevant, as study conducted in lake system
- 8 For Sullivan only: Riffle and run were assessed together and reported as % riffle only.

Table 9.Hypotheses to be tested in 1997. Note changes in wording to H1, and
deletion of H9 recommended in EVS, ESP and JWEL (1996h) are not
included as these recommendations have not been reviewed or
approved by the AETE Committee.

Sediment Monitoring 1. Sediment Toxicity: H: The use of different sediment toxicity tests (or combinations of toxicity tests) does not influence the ability to detect environmental effect in sediment toxicity. **Biological Monitoring - Fish** 2. Metals in fish tissues: bioavailability of metals in tissue levels H: There is no environmental difference in metal concentrations observed in fish liver, kidney, gills or muscle. 3. Metallothionein in fish tissues: H: There is no environmental difference in metallothionein concentrations observed in fish liver, kidney or gills. 4. Metals vs. metallothionein in fish tissues: H: The choice of metallothionein concentration vs. metal concentrations in tissues does not influence the ability to detect environmental exposure in fish. 5. Fish - CPUE: H: There is no environmental effect in observed CPUE (catch per unit effort) of fish. 6. Fish - Community: H: There is no environmental effect in observed fish community structure. 7. Fish - Growth: H: There is no environmental effect in observed fish growth. 8. Fish - Organ/Fish Size: H: There is no environmental effect in observed organ size (or fish size, etc.). **Biological Monitoring - Benthos** 9. Benthos - Sampler size influence on level of detection of differences: H: The choice of sampler size does not influence the ability to detect environmental effects in benthic community characteristics. Integration of Tools 10. Relationship between water guality and biological components: H: The strength of the relationship between biological parameters and metal chemistry in water is not influenced by the choice of total vs. dissolved analysis of metals concentrations. 11. Relationship between sediment chemistry and biological responses: H: The strength of the relationship between biological variable and sediment characteristics is not influenced by the analysis of total metals in sediments vs. either metals associated with iron and manganese oxyhydroxides or with acid volatile sulphides. 12. Relationship between sediment toxicity and benthic invertebrates:

H: The strength of the relationship between sediment toxicity responses and in situ benthic macroinvertebrate community characteristics is not influenced by the use of different sediment toxicity tests or combinations of toxicity tests.

13. Metals or metallothionein vs. chemistry (receiving water and sediment):

H: The strength of the relationship between the concentration of metals in the environment (water and sediment chemistry) and metal concentration in fish tissues is not different from the relationship between metal concentration in the environment and metallothionein concentration in fish tissues.

14. Chronic Toxicity - Linkage with Fish and Benthos monitoring results:

H: The suite of sublethal toxicity tests cannot predict environmental effects to resident fish performance indicators or benthic macroinvertebrate community structure.

	SITE EVALUATION CRITERIA	Maximum Criterion Score	Myra Falls	Sullivan	Lupin	Dome	Onaping/Levack	Gaspé	Heath Steele	
1.0	Availability of Useful Historical Data (if yes, score 2 per subcriteria)									
	1.1 Effluent Characterization	2	0	2	2	2	2	2	2	
	1.2 Water Chemistry	2	2	2	2	2	2	2	2	
	1.3 Sediment Chemistry	2	0	2	2	2	0	1	1	
	1.4 Benthos	2	2	2	2	2	2	2	2	
_	1.5 Fisheries				_				_	
	1.5.1 Population	1	1	1	1	1	1	1	1	
	1.5.2 Tissue	1	1	0.5	0.5	1	0	0.5	1	
	Total Criterion 1.0	10	6	9	9.5	10	8	8.5	10	
2.0	Study Area									
	2.1 Site Access									
	2.1.1 Is this site accessible by road? (Score 1, 5 or 10 with 1 being most difficult)	10	5	10	1	10	10	10	10	
	2.1.2 Is the reference area accessible by road or boat? (Score 1-5 with 1 being most difficult)	5	4	5	2	5	2	5	5	
	2.1.3 Is the exposure area accessible by road or boat? (Score 1-5 with 1 being most difficult)	5	3	5	2	4	5	5	4	
	2.2 Are multiple reference and exposure areas available?	Score maximum of 5	2	5	5	4	5	5	5	
	2.3 Are there "No" confounding point and non-point source discharges?	Score maximum of 10	10	0	10	0	0	5	5	
		35	24	25	20		22			

Table 10. Summary site evaluation criteria scores for each mine site.

	Site	EVALUATION CRITERIA	Maximum Criterion Score	Myra Falls	Sullivan	Lupin	Dome	Onaping/Levack	Gaspé	Heath Steele
3.0	Efflu	uent/Sublethal Toxicity								
	3.1	ls effluent available year round?	Score maximum of 10	5	5	1	3	4	5	5
	3.2	Does effluent clearly exhibit chronic toxicity? (If yes, score 2 per subcriteria)								
_	3	3.2.1 Ceriodaphnia dubia	4	2	2	0	0	2	2	2
_	3	3.2.2 Fathead minnow	4	2	0	0	0	1	0	2
	3	3.2.3 Selenastrum capricornutum	4	2	2	0	2	2	0	2
	3	3.2.4 Lemna minor	4	2	2	0	2	2	2	2
	3	3.2.5 Trout embryo test	4	0	0	0		0	0	2
		Total Criterion 3.0	30	13	11	1	7	11	9	15
4.0	Hab A	itats Are habitats similar betwe	en the Referer	nce and	Exposur	re areas	?			
	4.1	Substrate (score 1-5, with 1 being most different, and 5 being as similar as you could expect from two field locations)	5	3	5	3	5	5	5	5
	4.2	Water depth	2.5	2	2.5	3	2	2.5	2.5	2.5
	4.3	Water velocity	2.5	2.5	2.5	0	2	2.5	2.5	1.5
		Total Criterion 4.0	10	7.5	10	6	9	10	10	9

	SITE EVALUATION CRITERIA	Maximum Criterion Score	Myra Falls	Sullivan	Lupin	Dome	Onaping/Levack	Gaspé	Heath Steele
5.0	Water Chemistry Are water chemical concer area?	ntrations statistic	ally grea	ater in e	xposure	area re	lative to	referen	ce
6	5.1 For a minimum of two general water chemistry parameters (e.g. alkalinity, sulphate, conductivity, hardness, chloride)	5	5	5	0	5	5	5	5
	5.2 For a minimum of two metals (dissolved or total)	10	5	10	0	10	10	10	10
	Total Criterion 5.0	15	10	15	0	15	15	15	15
6.0	Sediments								
	6.1 Are representative dispositional areas (>1 m ²) available? (no=0, somewhat=5 yes=10)	10 5,	5	5	10	10	5	0	0
	6.2 Are concentrations of a least two metals in sediments greater in exposure area relative t reference area?		0	0	10	10	5	0	0
	Total Criterion 6.0	20	5	5	20	20	10	0	0
7.0	Benthos Is there a significant differe 0; significant difference sc			ce and	exposu	e areas	? (no d	ifference	scor
	7.1 Total density	5	1	1	0	5	0	0	5
	7.2 Total species richness	5	1	1	0	0	0	5	5
	7.3 Richness of sensitive species (e.g. mayflies)	5	1	1	2	5	0	5	0
	Total Criterion 7.0	15	3	3	2	10	0	10	10

Sin	TE EVALUATION CRITERIA	MAXIMUM CRITERION SCORE	Myra Falis	Sullivan	Lupin	Dome	Onaping/Levack	Gaspé	Heath Steele
.0 Fis	sheries								
8.1	1 Community								
	8.1.1 Are suitable sentinel species available in reference and exposure areas?	5	5	5	5	5	3	5	5
	8.1.2 Are suitable sentinel species abundant in reference and exposure areas? (reasonable CPUE)	5	2	1	5	3	0	5	5
	8.1.3 Are fish community differences apparent between the reference and exposure area which can be linked to the effluent? (if yes, score 5)	5	2	0	1	0	5	2.5	2.5
8.2	2 Fish Tissue and Histopathology								
	8.2.1 Is there a difference in MT levels between reference and exposure fish?	5	0	0	0	0	5	5	2
	8.2.2 Is there a difference in metals levels between reference and exposure fish?	5	0	0	0	5	3	5	2
	8.2.3 Are there obvious differences in fish health between reference and exposure area fish?	5	0	0	0	0	0	0	0

	MAXIMUM CRITERION SCORE	5				Levack		ele
SITE EVALUATION CRITERIA	3	Myra Falls	Sullivan	Lupin	Dome	Onaping\Levack	Gaspé	Heath Steele
8.2.4 Do barriers to fish migration exist between the reference and exposure area? (if yes, score 5)	5	0	0	0	5	0	0	0
Total Criterion 8.0	35	9	6	11	18	16	22.5	12.5
Mine Score		77.5	84.5	69.5	112	92	105	104.5
Total Maximum Actual Score	155	128	148	110	143	150	153	155
Percent Actual		61	57	63	78	61	69	67

Hypotheses (Listed in Table 9)	Myra Falls	Sullivan	Lupin	Dome	Onaping	Gaspé	Heath Steele
1. Sediment Toxicity	N	N	Y	Y	N	N	N
2. Metals in fish tissues	Y	Р	Y	Y	Y	Р	Р
3. Metallothionein in fish tissues	Y	Р	Y	Р	Y	Р	Р
4. Metals vs. metallothionein in fish tissues	Y	Р	Y	Y	Y	Р	Р
5. Fish - CPUE	Р	Р	Y	Y	Р	Y	Y
6. Fish - Community	Р	Р	Y	Y	Р	N	N
7. Fish - Growth	Р	Р	Y	Y	Р	Y	Y
8. Fish - Organ/Fish Size	Р	Р	Y	Y	Р	Р	Р
(9. Benthos - Sampler Size)	(Y)	(Y)	m	(Y)	(Y)	(Y)	m
10. Water Quality and Biology	Y	Y	Р	Р	N	Р	Р
11. Sediment Chemistry and Biology	N	N	Y	Y	N	N	N
12. Sediment Toxicity and Benthos	N	N	Y	Y	N	N	N
13. Metals or Metallothionein vs. Chemistry	Y	Р	Р	N	Р	Р	Р
14. Chronic Toxicity	Y	Y	Р	Y	Р	Y	Y

 Table 11.
 Suitability of each site for testing the different hypotheses.

Y - yes; N - no; P - partial (either not certain based on 1996 and historical data or only part of the hypothesis testable - see footnotes); parentheses indicate hypothesis not recommended for testing (EVS, ESP and JWEL, 1996h).

1. Myra Falls H

H1 - Difficult to find sediments; recent studies have shown that sediment metals are not available.

- H2 Historic data indicate differences between areas.
- H3 As for H2.
- H4 As for H3.
- H5 Level of effort for collection may be acceptable but may not be able to clearly delineate CPUE due to limits in permitting.
- H6 Excessive level of effort may be required to adequately delineate communities, and there are no barriers to movement between area; see H5.
- H7 See H5 and H6.
- H8 See H5 and H6.
- H9 Possible but not recommended.
- H10 Plankton in Buttle Lake are most appropriate to test this hypothesis; benthos gradient may be possible in Myra Creek; fish historically used for testing.
- H11 See H1.
- H12 See H1.
- H13 Done historically.
- H14 Qualitative comparisons possible.

- 2. Sullivan H1 Difficult to
- H1 Difficult to find sediments.
 - H2 Sentinel species available, but no barrier between exposure and reference areas; caged fish may be appropriate.
 - H3 See H2.
 - H4 See H2.
 - H5 Lack of barrier between exposure and reference area; alternative fish capture techniques (e.g., boat-mounted electro-shocker) should capture more fish.
 - H6 See H5.
 - H7 See H2.
 - H8 See H2.
 - H9 Not recommended; see H1.
 - H10 Link receiving water quality to benthos, algae, or toxicity.
 - H11 See H1.
 - H12 See H1.
 - H13 See H1; could test qualitatively; see H2.
 - H14 Could use caged fish and field benthos.
- 3. Lupin
- H1 Sediment contamination gradient not measured, but predicted based on available information.
 - H2 Fishing success in 1996 limited; demersal fish (burbot) recommended as sentinel species; few burbot caught, although alternative collection methods should improve catch.
 - H3 See H2.
 - H4 See H2.
 - H5 Increased fishing effort should allow testing this hypothesis.
 - H6 See H5.
 - H7 See H2.
 - H8 See H2.
 - H9 Not recommended.
 - H10 Short effluent discharge period limits our ability to link receiving water to biological responses. Recommend qualitatively addressing this issue by testing effluent toxicity and extrapolating results to the field.
 - H11 Tested as part of sediment quality triad.
 - H12 Tested as part of sediment quality triad.
 - H13 Can be tested qualitatively using demersal fish and sediment chemistry.
 - H14 Can be tested qualitatively with benthos, but not with fish since not sampled synoptically.
- 4. Dome
- H1 Sediments readily available. Clear metal concentration differences between reference and exposure areas.
- H2 1996 results show differences in two species of forage fish. Recommend using yellow perch in 1997.
- H3 1996 results do not show significant differences in metallothionein levels. Recommend using yellow perch in 1997.
- H4 Use data from H2 and H3 to compare with water and/or sediment data from reference and exposure areas.
- H5 Intensive fishing required at two exposure and two reference sites.
- H6 As for H5.
- H7 As for H5.
- H8 As for H5 and yellow perch recommended for comparison of organ size.
- H9 Possible but not recommended.
- H10 Only benthic community suitable to test this hypothesis; cannot be assured of discrete fish samples along a well-defined gradient.

- H11 Site is suitable.
- H12 As for H11.
- H13 Cannot be assured of discrete fish samples along well-defined gradient.
- H14- Results of sublethal toxicity can be qualitatively compared to fish and benthic indicators.
- 5. Onaping
- H1 Sediments not readily available.
- H2 1996 results suggest some higher metals in exposure but numbers of fish are limited.
- H3 1996 results show higher metallothionein, but small samples sizes. Greater fishing effort required.
- H4 Use data from H2 and H3.
- H5 Low fish numbers may preclude adequate testing of this hypothesis.
- H6 As for H5.
- H7 As for H5.
- H8 As for H5.
- H9 Possible but not recommended
- H10 1996 results show benthos did not respond as expected to elevated metals in exposure area.
- H11 As for H10; also, sediment metal levels not largely different between exposure and reference when corrected for percent fines.
- H12 As for H11.
- H12 Relationship between tissues and water chemistry possible, but tenuous for sediments as described in H11.
- H14 Two effluents show different toxicity.
- 6. Gaspé
- H1 Site not suitable; no suitable representative depositional areas exist.
 - H2 Site partially suitable as sentinel species (juvenile Atlantic salmon) are too small for effective dissection of various tissues. Therefore, only measurements on whole fish are possible. Due to the absence of a barrier restricting migration of species between reference and exposure areas, caged fish would be a suitable alternative to evaluate exposure areas. Results of 1996 study showed significant differences in metals and metallothionein in sentinel species between reference and exposure areas.
 - H3 Site partially suitable as per H2.
 - H4 Site partially suitable as per H2.
 - H5 Site suitable to test the hypothesis for juvenile Atlantic salmon based upon the results of the 1996 survey.
 - H6 Site not suitable as species diversity was low in both the reference and exposure areas.
 - H7 Site suitable but the population of the sentinel species are juveniles with a restricted range of age classes.
 - H8 Partially suitable although fish are too small for organ dissection.
 - H9 Possible but not recommended.
 - H10 Site partially suitable for benthos and water chemistry. However, only a small gradient in general water chemistry exists in exposure area. Testing of this hypothesis requires a strong gradient in metals in the exposure area.
 - H11 Site not suitable as per H1.
 - H12 Site not suitable as per H1.
 - H13 This hypothesis may only be testable in a qualitative sense and only for water chemistry.
 - H14 Site partially suitable although results of 1996 survey showed limited sublethal toxicity. Could be tested with benthos qualitatively, but not with fish since not sampled synoptically.
- 7. Heath Steele H1 Site not suitable; no suitable representative depositional areas exist.
 - H2 Site is partially suitable as sentinel species too small for effective dissection of various tissues. Whole fish measurements or measurements on viscera only are possible. Caged fish would be a suitable alternative to evaluate exposure area to avoid possibility of fish

movement between exposure and reference areas. Results of 1996 study inconclusive due to small sample sizes.

- H3 Site partially suitable as per H2.
- H4 Site partially suitable as per H2.
- H5 Site suitable to test the hypothesis for juvenile Atlantic salmon based upon the results of the 1996 survey.
- H6 Site not suitable as species diversity was low in both the reference and exposure areas.
- H7 Site suitable but the population of the sentinel species is composed only of juveniles (0 3y) (i.e., the range of the data are very narrow).
- H8 Partially suitable although fish are too small for organ dissection.
- H9 Possible but not recommended.
- H10 Site partially suitable for benthos and water chemistry. Testing requires a strong gradient in exposure which can be found in the South Branch Tomogonops River.
- H11 Site not suitable as per H1.
- H12 Site not suitable as per H1.
- H13 This hypothesis may only be testable in a qualitative sense and only for water chemistry.
- H14 Site suitable, but can only be tested on benthic parameters because fish are not present in sufficient numbers where the gradient is located (South Branch Tomogonops).

Table 12.Sites at which hypotheses can be tested in 1997.

Sites ¹	Hypotheses
Dome, Lupin	Sediment Monitoring 1. Sediment Toxicity: H: The use of different sediment toxicity tests (or combinations of toxicity tests) does not influence the ability to detect envisronmental effect in sediment toxicity.
Dome, Lupin, Myra Falls, Onaping/Levack, (Sullivan), (Gaspé), (Heath Steele)	 Metals in fish tissues: bioavailability of metals in tissue levesl H: There is no environmental difference in metal concentrations observed in fish liver, kidney, gills or muscle.
Lupin, Myra Falls, Onaping/Levack, (Sullivan), (Dome), (Gaspé), (Heath Steele)	 Metallothionein in fish tissues: H: There is no envisronmental difference in metallothionein concentrations observed in fish liver, kidney or gills.
Dome, Lupin, Myra Falls, Onaping/Levack, (Sullivan), (Gaspé), (Heath Steele)	 4. Metals vs. metallothionein in fish tissues: H: The choice of metallothionein concentration vs. metal concentrations in tissues does not influence the ability to detect environmental exposure in fish.
Dome, Lupin, Gaspé, Heath Steele, (Myra Falls), (Sullivan), (Onaping/Levack)	5. Fish - CPUE: H: There is no environmental effect in observed CPUE (catch per unit effort) of fish
Dome, Lupin, (Myra Falls), (Sullivan), (Onaping/Levack)	6. Fish - Community: H: There is no environmental effect in observed fish community structure.
Dome, Lupin, Heath Steele, Gaspé, (Myra Falls), (Sullivan), (Onaping/Levack)	7. Fish - Growth: H: There is no environmental effect in observed fish growth.

Sites ¹	Hypotheses
Dome, Lupin, (Myra Falls), (Sullivan), (Onaping/Levack), (Gaspé), (Heath Steele)	8. Fish - Organ/Fish Size: H: There is no environmental effect in observed organ size (or fish size, etc.).
All, but testing not recommended - EVS, ESP and JWEL, 1996h	 Biological Monitoring - Benthos 9. Benthos - Sampler size influence on level of detection of differences: H: The choice of sampler size does not influence the ability to detect environmental effects in benthic community characteristics.
Myra Falls, Sullivan, Heath Steele, (Lupin), (Dome), (Gaspé)	Integration of Tools 10. Relationship between water quality and biological components: H: The strength of the relationship between biological parameters and metal chemistry in water is not influenced by the choice of total vs. dissolved analysis of metals concentrations.
Dome, Lupin	 11. Relationship between sediment chemistry and biological responses: H: The strength of the relationship between biological variable and sediment characteristics is not influenced by the analysis of total metals in sediments vs. either metals associated with iron and manganese oxyhydroxides or with acid volatile sulphides.
Dome, Lupin	 12. Relationship between sediment toxicity and benthic invertebrates: H: The strength of the relationship between sediment toxicity responses and in situ benthic macroinvertebrate community characteristics is not influenced by the use of different sediment toxicity tests or combinations of toxicity tests.
Myra Falls, (Sullivan), (Lupin), (Onaping/Levack), (Gaspé), (Heath Steele)	 13. Metals or metallothionein vs. chemistry (receiving water and sediment): H: The strength of the relationship between the concentration of metals in the environment (water and sediment chemistry) and metal concentration in fish tissues is not different from the relationship between metal concentration in the environment and metallothionein concentration in fish tissues.
Dome, Heath Steele, Myra Falls, Sullivan, Gaspé, (Lupin), (Onaping/Levack)	 14. Chronic Toxicity - Linkage with Fish and Benthos monitoring results: H: The suite of sublethal toxicity tests cannot predict environmental effects to resident fish performance indicators or benthic macroinvertebrate community structure.

Parentheses indicate uncertainty (i.e., a "partial" in Table 11).

VARIABLE	REFERENCE AREA		Exposur	E AREA	EFFECT	SIGNIFICANT
	MEAN ¹	SD ²	MEAN ¹	SD ²	SIZE ³	DIFFERENCE?
Total Abundance	626	±306	414	±290	-34%	No

Table 13. Benthic invertebrate total abundance - Lupin Mine 1996.

1. Arithmetic means (i.e., not based on log-transformed data)

2. Standard deviation of untransformed data

3. Relative to Reference Area mean

4. Based on t-test of log-transformed data

Table 14.Estimates of minimum detectable effect sizes for key variables for three fixed samples sizes for Lupin,
Dome and Heath Steele Mines.

	Key		REF	EXP	Effect				Mi	n. Effect	t Sizes	for Sam	ple Siz	es
Component	Variable	Units	Mean	Mean	Size	Sign.?	Var.	Туре		5	1	0	3	80
						LUPIN								
Sediment	As (log)	mg/kg	5.83	28.25	384%	Yes	0.199	SD	451%	-82%	204%	-67%	85%	-46%
Sediment	Hg (log)	mg/kg	0.016	0.021	35%	No	0.121	SD	1 82%	-65%	97%	-49%	45%	-319
Sediment	Ni (log)	mg/kg	13.34	26.61	100%	Yes	0.062	SD	70%	-41%	41%	-29%	21%	-179
Sediment	CN (log)	mg/kg	0.16	0.98	505%	Yes	0.211	SD	511%	-84%	225%	-69%	92%	-48%
Benthos	S	# taxa	22.8	25.3	11%	No	17%	CV	65%	-65%	42%	-42%	23%	-23%
Benthos	N (log)	# org.s	556	343	-38%	No	0.266	SD	880%	-90%	342%	-77%	127%	-56%
						DOME								
Water	COND	us/cm	271	776	186%	Yes	13%	cv	48%	-48%	31%	-31%	17%	-179
Water	S(log)	mg/L	7.6	239.0	3045%	Yes	0.014	SD	13%	-11%	8%	-8%	4%	-4%
Water	Cu(total)	mg/L	0.004	0.013	225%	Yes	50%	CV	186%	-186%	121%	-121%	67%	-679
Water	Ni(total)	mg/L	0.002	0.029	1350%	Yes	100%	cv	373%	-373%	243%	-243%	134%	-134
Sediment	As (log)	mg/kg	294	549	87%	Yes	0.102	SD	139%	-58%	76%	-43%	37%	-279
Sediment	Co(log)	mg/kg	27.5	92.4	236%	Yes	0.109	SD	155%	-61%	84%	-46%	40%	-299
Sediment	Cu(log)	mg/kg	380	1339	252%	Yes	0.078	SD	95%	-49%	55%	-35%	27%	-219
Benthos	Density	#/sq.m	18130	6319	-65%	Yes	0.318	SD	1430%	-93%	491%	-83%	167%	-639
Fish-P. Dace	F-Length	cm	7.1	8.5	20%	Yes	0.070	SD	82%	-45%	47%	-32%	24%	-199
Fish-P. Dace	Weight	g	4.1	6.2	51%	No	0.220	SD	560%	-85%	242%	-71%	97%	-499
Fish-N.R. Dace	F-Length	cm	5.3	5.6	6%	No	0.063	SD	71%	-42%	42%	-29%	21%	-189
Fish-N.R. Dace	Weight	g	1.9	2.0	5%	No	0.201	SD	458%	-82%	206%	-67%	86%	-469
Fish-P. Dace	MT(log)	ugMT/g	99	113	14%	No	0.231	SD	626%	-86%	263%	-72%	104%	-519
Fish-P. Dace	Metal(log)	uM/g	0.840	1.870	123%	Yes	0.138	SD	225%	-69%	116%	-54%	53%	-359
Fish-N.R. Dace	MT	ugMT/g	207	218	5%	No	50%	cv	187%	-187%	122%	-122%	67%	-679
Fish-N.R. Dace	Metals	uM/g	0.78	1.45	86%	Yes	45%	CV	168%	-168%	110%	-110%	61%	-619

	Key		REF	EXP	Effect				Mi	n. Effec	t Sizes	for Sam	ple Siz	es
Component	Variable	Units	Mean	Mean	Size	Sign.?	Var.	Туре	5	5	1	0		30
					HEA	TH STEEL	.E							
Chemistry	potassium	mg/L	1.76	2.63	49%	No	0.121	SD	182%	-65%	96%	-49%	45%	-31%
Chemistry	pН	pН	7.27	7.37	1%	No	0.084	SD	0.31	-0.31	0.20	-0.20	0.11	-0.11
Chemistry	Nitrate	mg/L	1.07	1.08	1%	No	0.027	SD	26%	-21%	16%	-14%	9%	-8%
Chemsitry	TKN	mg/L	1.44	1.50	4%	No	0.012	SD	11%	-10%	7%	-6%	4%	-4%
Fish	fishwt(log)	g	9.35	9.35	0%	No	0.100	SD	136%	-58%	75%	-43%	36%	-27%
Fish	fishlg(log)	mm	93.54	63.24	-32%	No	0.063	SD	72%	-42%	42%	-30%	21%	-18%
Benthos	abun500(log)	Ν	650	242	-63%	Yes	0.124	SD	189%	-65%	100%	-50%	47%	-32%
Benthos	rich500(log)	# taxa	41.70	25.38	-39%	Yes	0.092	SD	120%	-55%	67%	-40%	33%	-25%
Benthos	abun250(log)	# org.s	1386	636	-54%	Yes	0.121	SD	183%	-65%	97%	-49%	45%	-31%
Benthos	rich250(log)	# taxa	54.58	43.23	-21%	Yes	0.064	SD	73%	-42%	43%	-30%	22%	-18%
Benthos	EPT 500	# taxa	25.2	17.7	-30%	Yes	17%	CV	62%	-62%	40%	-40%	22%	-22%
Benthos	EPT 250	# taxa	27	22.2	-18%	Yes	17%	CV	64%	-64%	42%	-42%	23%	-23%

Notes: For log-transformed variables, area means are geometric (i.e., back-transformed from transformed means)

Effect size is the observed increase/decrease in the Exposure area relative to the Reference area;

two-tailed power analysis calculated, some predicted minimum effects sizes are obviously one way (e.g., increase in metals) Significance (Sign.) - Was the observed difference between Reference and Exposure areas significant (i.e., in t-test)? Measure of variability (Var.) is coefficient of variation (in percent; CV) for standard variables and standard deviation (in log unit

for log-transformed variables)

Power analyses for fish variables from Heath Steele calculated using square root of mean square error from ANCOVA of length or weight on age

Effect size for pH reported in pH units (not percent relative to reference mean)

APPENDIX A

Detailed Individual Site Evaluations

APPENDIX A-1

Site Evaluation Criteria for Myra Falls Mine Site

	Site I	Evaluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Myra Falls	Comments
1.0	Ava	ilability of Useful Historica	l Data (if yes, so	core 2 per subc	criteria)	
	1.1	Effluent Characterization	2	2	0	 some rainbow trout and Daphnia toxicity in Buttle Lake, but results not consistent
1.2	Water	Chemistry	2	2	2	
1.3	1.3 Sediment Chemistry 1.4 Benthos		2	2	0	 1980 data may be influenced by release of tailings which is no longe done
1.4	Benth	os	2	2	2	
1.5	Fisher	ies				
	1.5.1 F	Population	1	1	1	
	1.5.2 Tissue		1	1	1	- metals and metallothionein
	Тс	tal Criterion 1.0	10	10	6	
2.0	Study	Area				
2.1	Site Ad	cess				
	2.1.1	Is this site accessible by road? (Score 1, 5 or 10 with 1 being most difficult)	10	10	5	 not directly accessible by road as need to take fern to Vancouver Island can also fly
	2.1.2	Is the reference area accessible by road or boat? (Score 1-5 with 1 being most difficult)	5	5	4	 takes about 15 min by road and 15-30 min by boat
	2.1.3	Is the exposure area accessible by road or boat? (Score 1-5 with 1 being most difficult)	5	5	3	 takes 40 min by road plus 45 min by boat
2.2		Itiple reference and Ire areas available?	Score maximum of 5	5	2	 lots of reference area available; exposure area fair size, but not all suitable for sediment studies

Appendix A-1 Site evaluation criteria for Myra Falls mine site (stream/lake discharge).

	Site E	Evaluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Myra Falls	Comments
2.3		ere "No" confounding point on-point source rges?	Score maximum of 10	10	10	 however, BC Hydro changing water levels
_	То	tal Criterion 2.0	35	35	24	
3.0	Efflue	nt/Sublethal Toxicity				
3.1	is efflue	ent available year round?	Score maximum of 5	5	5	
3.2	chronic	effluent clearly exhibit c toxicity? (If yes, score 2 ocriteria)				 some rainbow trout and Daphnia toxicity in Buttle Lake, but results not consistent
_	3.2.1	Ceriodaphnia dubia	2	2	2	
	3.2.2	Fathead minnow	2	2	2	
	3.2.3	Selenastrum capricornutum	2	2	2	
	3.2.4	Lemna minor	2	2	2	
	3.2.5	Trout embryo test	2	0	0	
	Tot	tal Criterion 3.0	15	13	13	
4.0	Habita Are ha	ts bitats similar between the	Reference and I	Exposure area	IS?	
	Substra being n as simil	ate (score 1-5, with 1 nost different, and 5 being ar as you could expect to field locations)	5	5	3	 however, could have spent more time to find better habitat??? habitat on creek similar smaller riffle areas and more pools upstream than downstream; stations sampled were similar
4.2	Water o	depth	2.5	2.5	2	 same depth contour could probably be sampled; however we sampled reference first, and at exposure had to go deeper for sediment depth on creek similar

Site Evaluation Criteria		Maximum Possible Criterion Score	Maximum Actual Criterion Score	Myra Falls	Comments
	Total Criterion 4.0	10	10	7.5	
5.0 Are	Water Chemistry water chemical concentrations s	tatistically grea	ater in exposure	e area rel	ative to reference area?
	For a minimum of two general water chemistry parameters (e.g. alkalinity, sulphate, conductivity, hardness, chloride)	5	5	5	 conductivity and pH significantly different
5.2	For a minimum of two metals (dissolved or total)	10	10	5	 data difficult to interpret, gradient may exist
	Total Criterion 5.0	15	15	10	
6.0	Sediments		4		
6.1	Are representative depositional areas (>1 m ²) available? (no=0, somewhat=5, yes=10)	10	10	5	
6.2	Are concentrations of at least two metals in sediments greater in exposure area relative to reference area?	10	0	0	
	Total Criterion 6.0	20	10	5	
sigi	Benthos here a significant difference betwe nificant difference score 5 per sub Total density	en the referenc criteria) 5	ce and exposu	_	
	Total species richness	5	5	-	 differences at single stations in Myra Creek;
	Richness of sensitive species (e.g. mayflies)	5	5	1	} not in Buttle Lake
	Total Criterion 7.0	15	15	3	
9.0	Fisheries				 permit limitations (e.g., no gillnet sets overnight) affected CPUE
8.1	Community				
	8.1.1 Are suitable sentinel species available in	5	5	5	

Site E	Site Evaluation Criteria		Maximum Actual Criterion Score	Myra Falls	Comments		
8.1.2	Are suitable sentinel species abundant in reference and exposure areas? (reasonable CPUE)	5	5	2	 need to test assumption that more effort would yield enough of two target sentinel species 		
8.1.3	Are fish community differences apparent between the reference and exposure area which can be linked to the effluent? (if yes, score 5)	5	5	2	 some differences in size (i.e., smaller at exposure) but may not be real (due to catch effort) 		
8.2 Fish Ti	ssue and Histopathology						
8.2.1	Is there a difference in MT levels between reference and exposure fish?	5	0	0	 not sampled historically trends between exposure and "reference" 		
8.2.2	Is there a difference in metals levels between reference and exposure fish?	5	0	0	 not sampled historically trends between exposure and "reference" 		
8.2.3	Are there obvious differences in fish health between reference and exposure area fish?	5	0	0	 not sampled historically no data? 		
8.2.4	Do barriers to fish migration exist between the reference and exposure area? (if yes, score 5)	5	5	0	 although different lakes they are connected 		
То	tal Criterion 8.0	35	20	9			
Total Maximu	m Score	155	128	77.5	61%		

APPENDIX A-2

Site Evaluation Criteria for Sullivan Mine Site

	Site Ev	aluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Sullivan		Comments
1.0	Availa	bility of Useful Historica	al Data (if yes, so	ore 2 per subc	riteria)		
	1.1 E	fluent Characterization	2	2	2	•	B. Duncan, Cominco, pers. comm.
1.2	Water	Chemistry	2	2	2		
1.3	Sedim	ent Chemistry	2	2	2		
1.4	Benthe	DS	2	2	2		
1.5	Fisheri	es					
	1.5.1 F	Population	1	.1	1		B. Duncan, Cominco, pers. comm.
1.5.2 Tissue Total Criterion 1.0		1	1	0.5	+	metals only; no metallothionein	
		10	10	9.5			
.0 Stu	dy Area						
2.1	Site Ac	cess					
	2.1.1	Is this site accessible by road? (Score 1, 5 or 10 with 1 being most difficult)	10	10	10	• •	about 8 h drive from Vancouver can also fly
	2.1.2	Is the reference area accessible by road or boat? (Score 1-5 with 1 being most difficult)	5	5	5		< 0.5 h; no boat needed river may be a bit fast for some sampling; boat may be useful
	2.1.3	Is the exposure area accessible by road or boat? (Score 1-5 with 1 being most difficult)	5	5	5	10 m	< 0.5 h; no boat needed river may be a bit fast for some sampling; boat may be useful
2.2		ltiple reference and re areas available?	Score maximum of 5	5	5	•	about 1 km of river for exposure lots of comparable reference/upstream

Appendix A-2 Site evaluation criteria for Sullivan mine site (stream/river discharge).

Site Evaluation Criteria		Maximum Possible Criterion Score	Maximum Actual Criterion Score	Sullivan	Comments		
2.3	Are there "No" confounding point and non-point source discharges?	Score maximum of 10	10	0		STP discharges just downstream of effluent discharge Cow and Mark creek both contribute metals due to non-point source mine drainage	
	Total Criterion 2.0	35	35	25			
3.0 Effi	uent/Sublethal Toxicity						
3.1	ls effluent available year round?	Score maximum of 5	5	5			
3.2	Does effluent clearly exhibit chronic toxicity? (If yes, score 2 per subcriteria)				÷	no historic chronic toxicity data available	
_	3.2.1 Ceriodaphnia dubia	2	2	2			
	3.2.2 Fathead minnow	2	2	0			
	3.2.3 Selenastrum capricornutum	2	2	2			
	3.2.4 Lemna minor	2	2	2			
	3.2.5 Trout embryo test	2	0	0	÷		
	Total Criterion 3.0	15	13	11			
4.0 Hab	itats Are habitats similar between t	he Reference and	d Exposure are	eas?			
4.1	Substrate (score 1-5, with 1 being most different, and 5 being as similar as you could expect from two field locations)	5	5	5			
4.2	Water depth	2.5	2.5	2.5			
4.3	Water velocity	2.5	2.5	2.5			
	Total Criterion 4.0	10	10	10			

12

	Site Evaluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Sullivan	Comments				
5.0 Water Chemistry Are water chemical concentrations statistically greater in exposure area relative to reference area?									
5.1	For a minimum of two general water chemistry parameters (e.g. alkalinity, sulphate, conductivity, hardness, chloride)	5	5	5					
5.2	For a minimum of two metals (dissolved or total)	10	10	10					
	Total Criterion 5.0	15	15	15					
6.0 Sec	liments								
6.1	Are representative depositional areas (>1 m²) available? (no=0, somewhat=5, yes=10)	10	10	5	- very little				
6.2	Are concentrations of at least two metals in sediments greater in exposure area relative to reference area?	10	10	0					
	Total Criterion 6.0	20	20	5					
sigı 7.1 7.2	nthos nere a significant difference betw nificant difference score 5 per su Total density Total species richness Richness of sensitive species	veen the referer Jbcriteria) 5 5 5	nce and exposu 5 5 5	1	no difference score 0; <pre> possibly in Mark Creek; not in St. Mary River }</pre>				
7.5	(e.g. mayflies)	5	5	1					
	Total Criterion 7.0	15	15	3	jê.				
.0 Fist	neries								
8.1	Community								
	8.1.1 Are suitable sentinel	5	5	5	 some found in this survey 				

	Site Eva	aluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Sullivan	Comments
	8.1.2	Are suitable sentinel species abundant in reference and exposure areas? (reasonable CPUE)	5	5	1	 difficulties capturing fish because relatively large river (e.g., electroshocking difficult); didn't get enough fish to say sentinel spp. available in sufficient #s historic data also poor
	8.1.3	Are fish community differences apparent between the reference and exposure area which can be linked to the effluent? (if yes, score 5)	5	5	0	 nothing apparent; not enough data not enough historic data
8.2	Fish Ti	ssue and Histopathology				
	8.2.1	Is there a difference in MT levels between reference and exposure fish?	5	5	0	- no difference
	8.2.2	Is there a difference in metals levels between reference and exposure fish?	5	5	0	 no difference historically downstream fish showed higher Fe and Zn
0	8.2.3	Are there obvious differences in fish health between reference and exposure area fish?	5	0	0	 not sampled no historic data
	8.2.4	Do barriers to fish migration exist between the reference and exposure area? (if yes, score 5)	5	5	0	
	Total	Criterion 8.0	35	30	6	
Total Maximum Score		155	148	84.5	57%	

APPENDIX A-3

Site Evaluation Criteria for Lupin Mine Site

	Site Evaluat	tion Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Lupin		Comments
1.0	Availability	of Useful Historical	Data (if yes, so	ore 2 per subci	riteria)		
	1.1 Effluen	t Characterization	2	2	2		1996 metals data one report with summary of acute toxicity data no sublethal toxicity
1.2	Water	Chemistry	2	2	2		
1.3	Sedim	ent Chemistry	2	2	2	_	
1.4	Bentho	S	2	2	2		
1.5	Fisheri	es				_	
	1.5.1 F	opulation	1	1	1		
1 ·····	1.5.2 T	ïssue	1	1	0.5	-	no metallothionein
	Total Crite	erion 1.0	10	10	9.5		
2.0	Study	Area					
2.1	Site Ac	cess			_	-	
	2.1.1	Is this site accessible by road? (Score 1, 5 or 10 with 1 being most difficult)	10	10	1	-	not accessible by road as need to fly up by company plane
	2.1.2	Is the reference area accessible by road or boat? (Score 1-5 with 1 being most difficult)	5	5	2	•	takes 1 hour by boat; i weather bad may need helicopter
	2.1.3	Is the exposure area accessible by road or boat? (Score 1-5 with 1	5	5	2		takes 1 hour by boat; if weather bad may need helicopter
		being most difficult)					

Appendix A-3 Site evaluation criteria for Lupin minesite (stream/lake discharge).

	Site Evaluat	ion Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Lupin	Comments
2.2		Itiple reference and re areas available?	Score maximum of 5	5	5	 lots of stations at exposure and reference area sampled; however, don't know about suitability of other reference areas
2.3 Are there "No" confounding point and non-point source discharges?		Score maximum of 10	10	10		
	Total Crite	erion 2.0	35	35	20	
3.0	Effluer Toxicit	nt/Sublethal				
3.1	is efflue round?	ent available year	Score maximum of 5	5	1	- just two weeks
3.2	exhibit	ffluent clearly chronic toxicity? (If ore 2 per eria)				 no chronic toxicity data available; not tested in 1996 historical acute toxicity data indicate no toxicity to rainbow trout, <i>Daphnia magna</i> or Microtox
	3.2.1	Ceriodaphnia dubia	2	0	0	
_	3.2.2	Fathead minnow	2	0	0	
	3.2.3	Selenastrum capricornutum	2	0	0	
	3.2.4	Lemna minor	2	0	0	
	3.2.5	Trout embryo test	2	0	0	
	Total Crite		15	5	1	

Site Evaluation Criteria		Maximum Possible Criterion Score	Maximum Actual Criterion Score	Lupin	Comments
4.0	Habitats Are habitats similar betwee	en the Reference	ce and Exposur	e areas?	
4.1	Substrate (score 1-5, with 1 being most different, and 5 being as similar as you could expect from two field locations)	5	5	3	
4.2	Water depth	2.5	5	3	 average depth shallower at reference site, but some overlap all depths < 10 m
4.3	Water velocity	2.5	n/a	0	- not applicable
	Total Criterion 4.0	10	10	6	
	Water Chemistry				
5.1	ater chemical concentrations s For a minimum of two general water chemistry parameters (e.g. alkalinity, sulphate, conductivity, hardness, chloride)	5	0	0	 no discharge historical difference in water chemistry at exposure area pre- versus post- discharge
	ater chemical concentrations s For a minimum of two general water chemistry parameters (e.g. alkalinity, sulphate, conductivity,				 no discharge historical difference in water chemistry at exposure area pre-
5.1	ater chemical concentrations s For a minimum of two general water chemistry parameters (e.g. alkalinity, sulphate, conductivity, hardness, chloride) For a minimum of two	5	0	0	 no discharge historical difference in water chemistry at exposure area pre- versus post- discharge
5.1	ater chemical concentrations s For a minimum of two general water chemistry parameters (e.g. alkalinity, sulphate, conductivity, hardness, chloride) For a minimum of two metals (dissolved or total)	5 10	0	0	 no discharge historical difference in water chemistry at exposure area pre- versus post- discharge
5.1	ater chemical concentrations s For a minimum of two general water chemistry parameters (e.g. alkalinity, sulphate, conductivity, hardness, chloride) For a minimum of two metals (dissolved or total) Total Criterion 5.0	5 10	0	0	 no discharge historical difference in water chemistry at exposure area pre- versus post- discharge
5.1 5.2 6.0	ater chemical concentrations s For a minimum of two general water chemistry parameters (e.g. alkalinity, sulphate, conductivity, hardness, chloride) For a minimum of two metals (dissolved or total) Total Criterion 5.0 Sediments Are representative depositional areas (>1 m ²) available? (no=0, somewhat=5,	5 10 15	0 0 0	0 0 0	 no discharge historical difference in water chemistry at exposure area pre- versus post- discharge

Site Evaluation Criteria		Maximum Possible Criterion Score	Maximum Actual Criterion Score	Lupin	Comments
	Benthos re a significant difference I ficant difference score 5 pe		nce and exposi	ıre areas?	(no difference score 0;
7.1	Total density	5	5	0	
7.2	Total species richness	5	5	0	
7.3	Richness of sensitive species (e.g. mayflies)	5	5	2	 some species presen at ref and not at exp and visa versa need to assess their significance (i.e., metal tolerant or intolerant?)
0	Total Criterion 7.0	15	15	2	 could be higher depending on indicator species
.0 Fishe	ries				
8.1	Community				
	8.1.1 Are suitable sentinel species available in reference and exposure areas?	5	5	5	
	8.1.2 Are suitable sentinel species abundant in reference and	5	5	5	
	exposure areas? (reasonable CPUE)	+-			
	8.1.3 Are fish community differences apparent between the reference and exposure area which can be linked to the effluent? (if yes, scor	I	5	1	 some differences but not consistent with historic; not enough fish caught/info available

1.1

S	Site Evaluation Criteria		Maximum Possible Criterion Score	Maximum Actual Criterion Score	Lupin		Comments
8.2	Fish 1	lissue and Histopathology	,				
	8.2.1	Is there a difference in MT levels between reference and exposure fish?	5	0	0		ot sampled o historic data
	8.2.2	Is there a difference in metals levels between reference and exposure fish?	5	0	0	- h	ot sampled istorically arsenic hows difference.
	8.2.3	Are there obvious differences in fish health between reference and exposure area fish?	5	0	0	- h p #	ot sampled istorically opulations larger (in not size) at ref, but o health information
	8.2.4	Do barriers to fish migration exist between the reference and exposure area? (if yes, score 5)	5	5	0		
	Total C	Criterion 8.0	35	15	11		
Total Ma	ximum \$	Score	155	110	69.5	6	3%

Site Evaluation Criteria for Dome Mine Site

S	ite Evaluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Dome	Comments
1.0	Availability of Useful				
	1.1 Effluent Characterization	2	2	2	
	1.2 Water Chemistry	2	- 2	2	
	1.3 Sediment Chemistry	2	2	2	
	1.4 Benthos	2	2	2	
	1.5 Fisheries				
	1.5.1 Population	1	1	1	
	1.5.2 Tissue	1	1	1	
	Total Criterion 1.0	10	10	10	
2.0 \$	Study Area		10	10	
	2.1 Site Access				
	2.1.1 Is this site accessible by road? (Score 1, 5 or 10 with 1 being most difficult)	10	10	10	
	2.1.2 Is the reference area accessible by road or boat? (Score 1-5 with 1 being most difficult)	5	5	5	
	2.1.3 Is the exposure area accessible by road or boat? (Score 1-5 with 1 being most difficult)	5	5	4	 road is very close although there is a steep embankment as the only access - canoe only
2.2	Are multiple reference and exposure areas available?	Score maximum of 5	5	4	- there are limited reference areas
2.3	Are there "No" confounding point and non-point source discharges?	Score maximum of 10	10	0	- many non-poin discharges are contributing contamination to the system
	Total Criterion 2.0	35	35	23	

Appendix A-4 Site evaluation criteria for Dome mine site (stream/river discharge).

Site Evaluation Criteria		Maximum Possible Criterion Score	Maximum Actual Criterion Score	Dome		Comments	
3.0 Effluent/Sublethal Toxicity							
		nt available year	Score maximum of 5	5	3	Ŧ	effluent available June - October
3.2							
		Ceriodaphnia dubia	2	2	0		
	222	Fathead minnow	2	2	0		
		Selenastrum capricornutum	2 2	2 2	0 2		
	3.2.4	Lemna minor	2	2	2		
		Trout embryo test	2	0			test invalid - not included in total score
	Total Cri	terion 3.0	15	13	7		
	habitats s erence an	imilar between the d Exposure					
4.1	1 being and 5 be	te (score 1-5, with most different, sing as similar as Id expect from two ations)	5	5	5		
4.2	Water d		2.5	2.5	2.0	-	reference area slightly more shallow
	Water v	elocity	2.5	2.5	2.0	•	low flow in exposure area; very low flow in
4.3				×-			reference area
4.3	Total Cri	terion 4.0	10	10	9	_	
5.0 Wa Are con grea	ater Chem water che centration ater in exp	istry emical s statistically osure area relative	10	10	9		
5.0 Wa Are con grea	ater Chem water che centration ater in exp eference a For a mi general paramet sulphate	istry emical s statistically osure area relative	<u>10</u> 5	<u>10</u> 5	9		

S	ite Evaluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Dome	Comments
	Total Criterion 5.0	15	15	15	
6.0 Se	ediments				
	Are representative depositional areas (>1 m ²) available? (no=0, somewhat=5, yes=10)	10	10	10	
6.2	Are concentrations of at least two metals in sediments greater in exposure area relative to reference area?	10	10	10	 significant difference when metals corrected for % fines
	Total Criterion 6.0	20	20	20	
be exp diff diff	there a significant difference tween the reference and posure areas? (no ference score 0; significant ference score 5 per boriteria)				
7.1	Total density	5	5	5	
7.2	Total species richness	5	5	0	
7.3	Richness of sensitive species (e.g. mayflies)	5	5	5	 richness of indicator species is significantly different
	Total Criterion 7.0	15	15	10	
3.0 Fis	heries				
8.1	Community				
	8.1.1 Are suitable sentinel species available in reference and exposure areas?	5	5	5	
	8.1.2 Are suitable sentinel species abundant in reference and exposure areas? (reasonable CPUE)	5	5	3	
	8.1.3 Are fish community differences apparent between the reference and exposure area (if yes, score 5)	5	0	0	 insufficient data to assess community differences

Si	te Evaluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Dome	Comments
8.2	Histopathology				
	8.2.1 Is there a difference in MT levels between reference and exposure fish?	5	5	0	
	8.2.2 Is there a difference in metals levels between reference and exposure fish?	5	5	5	
	8.2.3 Are there obvious differences in fish health between reference and exposure area fish?	5	0	0	 fish health measurements not recorded
	8.2.4 Do barriers to fish migration exist between the reference and exposure area? (if yes, score 5)	5	5	5	
	Total Criterion 8.0	35	25	18	
otal Ma	ximum Score	155	143	112	78%

Site Evaluation for Onaping/Levack Mine Site

Appendix A-5 Site evaluation criteria for Onaping/Levack mine site (stream/river discharge).

s	ite Evaluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Onaping/ Levack	Comments
	Availability of Useful Historical Data (if yes, score 2 per subcriteria)				
	1.1 Effluent Characterization	2	2	2	
	1.2 Water Chemistry	2	2	2	
	1.3 Sediment Chemistry	2	2	1	
	1.4 Benthos	2	2	2	
	1.5 Fisheries				
	1.5.1	1	1	1	
	1.5.2 Tissue	1	1	0	
	Total Criterion 1.0	10	10	8	
2.0 St	udy Area	-			
2.1	Site Access				
	2.1.1 Is this site	10	10	10	
	2.1.2 is the reference area accessible by road or boat? (Score 1-5 with 1 being most difficult)	5	5	2	 gravel road most of the way - to access river require ATV
	2.1.3 Is the exposure area accessible by road or boat? (Score 1-5 with 1 being most difficult)	5	5	5	
2.2	Are multiple reference and exposure areas available?	Score maximum of 5	5	5	
2.3	Are there "No" confounding point and non-point source discharges?	Score maximum of 10	10	0	 point and possibly non-point discharges are contributing contamination to the system
	Total Criterion 2.0	35	35	22	
	luent/Sublethal Toxicity dge/Inco				N.B. There are two effluents at this site
3.1 Is e	offluent available year round?	Score maximum of 5	5	5/3	 Falconbridge effluent available year round; Inco not

	Site Evaluation Criteria 3.2 Does effluent clearly exhibit chronic toxicity? (If yes, score 2 per subcriteria)		Maximum Possible Criterion Score	Maximum Actual Criterion Score	Onaping/ Levack	Comments
3.2						(results available for Falconbridge effluent only to date)
	3.2.1	Ceriodaphnia dubia	2	2	2/2	
	3.2.2	Fathead minnow	2	2	0/2	
	3.2.3	Selenastrum capricornutum	2	2	2/2	
	3.2.4	Lemna minor	2	2	2/2	
	3.2.5	Trout embryo test	2	2	0/0	
Total Criterion 3.0		15	15	11	 Average of Falconbridge and Inco 	
4.0	0 Habitats Are habitats similar between the Reference and Exposure areas?			- Internet		
4.1	being mo	e (score 1-5, with 1 ost different, and 5 similar as you could om two field locations)	5	5	5	
4.2	Water de	epth	2.5	2.5	2.5	
4.3	Water ve	locity	2.5	2.5	2.5	
	Tota	Criterion 4.0	10	10	10	
5.0	concentr greater ir	hemistry r chemical ations statistically n exposure area relative nce area?				
5.1	water ch alkalinity,	nimum of two general emistry parameters (e.g. sulphate, conductivity, s, chloride)	5	5	5	
5.2		nimum of two metals d or total)	10	10	10	
	Tota	Criterion 5.0	15	15	15	
6.0	Sedimen	ts				
6.1	areas (>'	esentative depositional 1 m²) available? omewhat=5, yes=10)	10	10	5	 depositional areas are present but not abundant

	Site Ev	valuation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Onaping/ Levack	Comments
6.2 Are concentrations of at least two metals in sediments greater in exposure area relative to reference area?		10	10	5	- significant difference for one metal only	
	Tota	al Criterion 6.0	20	20	10	
7.0	betweer exposur score 0;	a significant difference a the reference and e areas? (no difference significant difference per subcriteria)				 significant difference exists between exposure and reference areas, however exposure area displays a more diverse and abundant benthos community than reference area
7.1	Total de	nsity	5	5	0	
7.2	Total spe	ecies richness	5	5	0	
7.3	Richnes (e.g. ma	s of sensitive species yflies)	5	5	0	
	Tota	I Criterion 7.0	15	15	0	
3.0	Fisheries	8				
8.1	Commu	nity				
	8.1.1	Are suitable sentinel species available in reference and exposure areas?	5	5	3	 low numbers of fish available
	8.1.2	Are suitable sentinel species abundant in reference and exposure areas?	5	5	0	- low numbers of fish available
	8.1.3	Are fish community differences apparent between the reference and exposure area (if yes, score 5)	5	5	5	 based on limited data, fish community differences are apparent

Site Ev	aluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Onaping/ Levack	Comments
8.2 Fish Tiss	sue and Histopathology				
8.2.1	Is there a difference in MT levels between reference and exposure fish?	5	5	5	 differences observed but low sample number
8.2.2	Is there a difference in metals levels between reference and exposure fish?	5	5	3	 some differences indicated but low sample numbers
8.2.3	Are there obvious differences in fish heatth between reference and exposure area fish?	5	0	0	 fish health measurements not recorded
8.2.4	Do barriers to fish migration exist between the reference and exposure area? (if yes, score 5)	5	5	0	- no barriers to fish migration
Tota	Criterion 8.0	35	30	16	
otal Maximum	Score	170	150	92	61%

Site Evaluation Criteria for Gaspé Mine Site

	Site Ev	valuation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Gaspé		Comments
1.0		pility of Useful Historical f yes, score 2 per eria)					
	1.1 Ef	fluent Characterization	2	2	2		
	1.2 W	ater Chemistry	2	2	2	ł	extensive historical data base
	1.3	Sediment Chemistry	2	2	1	-	historical results show limitation of suitable, representative depositional areas
	1.4	Benthos	2	2	2	•	extensive historica database
	1.5	Fisheries					
	1.5.1	Population	1	1	1	•	mostly for juvenile Atlantic salmon
	1.5.2	Tissue	1	1	0.5	-	some data exist for metal levels (Cu) in liver of salmon inconclusive data for one metallothionein study
	Tota	al Criterion 1.0	10	10	8.5		
2.0 Stud	dy Area						
2.1	Site A	ccess			_		
	2.1.1	Is this site accessible by road? (Score 1, 5 or 10 with 1 being most difficult)	10	10	10		
	2.1.2	Is the reference area accessible by road or boat? (Score 1-5 with 1 being most difficult)	5	5	5		

Appendix A-6 Site evaluation criteria for Gaspé mine site (stream/river discharge).

	Site Eva	aluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Gaspé	Comments
	2.1.3	Is the exposure area accessible by road or boat? (Score 1-5 with 1 being most difficult)	5	5	5	
2.2		ultiple reference and Ire areas available?	Score maximum of 5	5	5	 reference areas should be locat upstream of Litt York Lake exposure area consists almost entirely of efflue
2.3		ere "No" confounding nd non-point source rges?	Score maximum of 10	10	5	 small discharge municipal sewa effluent into reclaim basin upstream of exposure area general chemist in reach B differ from reach A
_						
	Total	Criterion 2.0	35	35	30	
3.0 Efflu	10 No. No.	Criterion 2.0	35	35	30	
<u>3.0 Efflu</u> 3.1	ent/Suble		35 Score maximum of 5	5	5	
	ent/Suble Is efflue Does e chronic	ethal Toxicity	Score			
3.1	ent/Suble Is efflue Does e chronic per sub	ethal Toxicity ent available year round? ffluent clearly exhibit : toxicity? (If yes, score 2	Score			- IC25 @ 79.4% of effluent
3.1	ent/Suble Is efflue Does e chronic per sub	ethal Toxicity ent available year round? ffluent clearly exhibit e toxicity? (If yes, score 2 poriteria)	Score maximum of 5	5	5	- IC25 @ 79.4% of effluent
3.1	ent/Suble Is efflue Does e chronic per sub 3.2.1	ethal Toxicity ent available year round? ffluent clearly exhibit e toxicity? (If yes, score 2 pcriteria) Ceriodaphnia dubia	Score maximum of 5	5	5	- IC25 @ 79.4% of effluent
3.1	ent/Suble Is efflue Does e chronic per sub 3.2.1 3.2.2	ethal Toxicity ent available year round? ffluent clearly exhibit e toxicity? (If yes, score 2 poriteria) Ceriodaphnia dubia Fathead minnow Selenastrum	Score maximum of 5 2 2	5 2 2	5 2 0	- IC25 @ 79.4% of effluent
3.1	ent/Suble Is efflue Does e chronic per sub 3.2.1 3.2.2 3.2.3	ethal Toxicity ent available year round? ffluent clearly exhibit e toxicity? (If yes, score 2 poriteria) Ceriodaphnia dubia Fathead minnow Selenastrum capricornutum	Score maximum of 5 2 2 2 2	5 2 2 2 2	5 2 0 0	 IC25 @ 79.4% v of effluent test invalid

	Site Evaluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Gaspé		Comments
4.0 Habi	tats Are habitats similar between the Reference and Exposure areas?					
4.1	Substrate (score 1-5, with 1 being most different, and 5 being as similar as you could expect from two field locations)	5	5	5		
4.2	Water depth	2.5	2.5	2.5		
4.3	Water velocity	2.5	2.5	2.5		
	Total Criterion 4.0	10	10	10		
Are v statis	er Chemistry water chemical concentrations stically greater in exposure area ve to reference area?					
5.1	For a minimum of two general water chemistry parameters (e.g. alkalinity, sulphate, conductivity, hardness, chloride)	5	5	5		significant differences in TDS, DIC, hardness, conductivity, sulphate and chloride between reference and exposure areas
5.2	For a minimum of two metals (dissolved and total)	10	10	10		significant differences in Ca, Cu, Mg, Mn, Ni, K, Si, Na, St and Mo between reference and exposure areas
_	Total Criterion 5.0	15	15	15		
5.0 Sedii	ments					
6.1	Are representative dispositional areas (>1 m²) available? (no=0, somewhat=5, yes=10)	10	10	0	÷	suitable, representative depositional areas not available
6.2	Are concentrations of at least two metals in sediments greater in exposure area relative to reference area?	10	10	0	+	as per 6.1
	Total Criterion 6.0	20	20	0		

	Site Ev	aluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Gaspé		Comments
betw area signi	ere a sig veen the s? (no o	nificant difference reference and exposure difference score 0; fference score 5 per					
7.1	Total a	abundance	5	5	0	-	no significant difference in total abundance between reference and exposure areas
7.2	Total s	pecies richness	5	5	5	4	significant differences in total species richness
7.3		ess of sensitive species nayflies)	5	5	5	•	significant differences in abundance of pollution sensitive taxa between reference and exposure areas
	Tota	Criterion 7.0	15	15	10	_	
8.0 Fish	eries						
8.1	Comm	unity				_	
	8.1.1	Are suitable sentinel species available in reference and exposure areas?	5	5	5	-	Juvenile Atlantic salmon and brook trout available in reference and exposure areas
	8.1.2	Are suitable sentinel species abundant in reference and exposure areas? (reasonable CPUE)	5	5	5	•	both sentinel species abundant in reference and exposure areas
	8.1.3	Are fish community differences apparent between the reference and exposure area? (if yes, score 5)	5	5	2.5	Y	some differences in length, weight and condition of juvenile Atlantic salmon between reference and exposure areas

	Site Eva	aluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Gaspé		Comments
8.2	Fish T	issue and Histopathology					
	8.2.1	Is there a difference in MT levels between reference and exposure fish?	5	5	5	-	metallothionein higher in juvenile Atlantic salmon and brook trout from exposure area
	8.2.2	Is there a difference in metals levels between reference and exposure fish?	5	5	5		metals higher in tissues from fish sampled in exposure area.
	8.2.3	Are there obvious differences in fish health between reference and exposure area fish?	5	5	0		small fish size, thus whole fish sampled for tissue.
	8.2.4	Do barriers to fish migration exist between the reference and exposure area? (if yes, score 5)	5	5	0	-	no barriers exist although reference and exposure areas distant spatially
	Total	Criterion 8.0	35	35	22.5		
otal Max	kimum S	core	155	153	105		69%

1.01

Site Evaluation Criteria for Heath Steele Mine Site

Appendix A-7 Site evaluation criteria for Heath Steele mine site (stream/river discharge).

S	ite Evaluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Heath Steele	Comments
Da	ailability of Useful Historical ta (if yes, score 2 per bcriteria)				
1.1	Effluent Characterization	2	2	2	
1.2	Water Chemistry	2	2	2	 extensive historical data (25 years)
1.3	Sediment Chemistry	2	2	1	 historical results show limitation of suitable, representative depositional areas
1.4	Benthos	2	2	2	 extensive historical database
1.5	Fisheries				
	1.5.1 Population	1	1	1	 several studies have been conducted
	1.5.2 Tissue	1	1	1	 limited useful historical data available
					 liver analyses conducted in 1995 show no difference in metals or metallothionein between reference and exposure fish
	Total Criterion 1.0	10	10	10	
2.0 Stud	ly Area				4
2.1	Site Access				
	2.1.1 Is this site accessible by road? (Score 1, 5 or 10 with 1 being most difficult)	10	10	10	
	2.1.2 Is the reference area accessible by road or boat? (Score 1-5 with 1 being most difficult)	5	5	5	

S	ite Evaluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Heath Steele		Comments
	2.1.3 Is the exposure area accessible by road or boat? (Score 1-5 with 1 being most difficult)	5	5	4	•	four-wheel drive required
2.2	Are multiple reference and exposure areas available?	Score maximum of 5	5	5	٠	reference areas available on Northwest Miramich River. Station also available on Tomogonops (BCL-4)
2.3	Are there "No" confounding point or non-point source discharges?	Score maximum of 10	10	5		although the system is complex, with point and non-point source mine discharges affecting different branches, there are no other discharges which are not mine related.
	Total Criterion 2.0	35	35	29		
3.0 Efflu	ent/Sublethal Toxicity					
3.1	Is effluent available year round?	Score maximum of 5	5	5		
3.2	Does effluent clearly exhibit chronic toxicity? (If yes, score 2 per subcriteria)		-			
	3.2.1 Ceriodaphnia dubia	2	2	2	•	IC25 @ 19.0% v/v effluent
	3.2.2 Fathead minnow	2	2	2	•	IC25 @ 23.0 % v/v effluent
	3.2.3 Selenastrum capricornutum	2	2	2	•	IC25 @ 23.3% v/v effluent
	3.2.4 Lemna minor	2	2	2		IC25 @ 47.3% v/v effluent
	3.2.5 Trout embryo test	2	2	2	•	EC50 @ 77.6% v/v effluent
	Total Criterion 3.0	15	15	15		
4.0 Habi	tats Are habitats similar between the Reference and Exposure areas?					

S	ite Evaluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Heath Steele		Comments
4.1	Substrate (score 1-5, with 1 being most different, and 5 being as similar as you could expect from two field locations)	5	5	5		
4.2	Water depth	2.5	2.5	2.5		
4.3	Water velocity	2.5	2.5	1.5	•	mean water velocity greater in reference area (3.79 m ³ /s) compared to exposure area (1.35 m ³ /s)
	Total Criterion 4.0	10	10	9		
Are v statis	er Chemistry vater chemical concentrations stically greater in exposure relative to reference area?					
5.1	For a minimum of two general water chemistry parameters (e.g. alkalinity, sulphate, conductivity, hardness, chloride)	5	5	5	•	significant differences in TDS, DOC, hardness, conductivity, sulphate and chloride between reference and exposure areas
5.2	For a minimum of two metals (dissolved and total)	10	10	10	•	significant differences in several metals including Cu, Pb, Mg, Mn, Sr and Zn between reference and exposure areas
_	Total Criterion 5.0	15	15	15		
5.0 Sedir	nents					
6.1	Are representative dispositional areas (>1 m²) available? (no=0, somewhat=5, yes=10)	10	10	0	5	suitable, representative depositional areas not available
6.2	Are concentrations of at least two metals in sediments greater in exposure area relative to reference area?	10	10	0	•	as per 6.1
	Total Criterion 6.0	20	20	0		

S	ite Evaluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Heath Steele		Comments
betw expo score	thos ere a significant difference veen the reference and osure areas? (no difference e 0; significant difference e 5 per subcriteria)					
7.1	Total abundance	5	5	5	•	significantly greater abundance in reference area
7.2	Total species richness	5	5	5	•	significantly greater species richness in reference area
7.3	Richness of sensitive species (e.g. mayflies)	5	5	0	•	no significant difference ir abundance of pollution sensitive taxa between reference and exposure area
	Total Criterion 7.0	15	15	10		
.0 Fishe	eries					
8.1	Community					
	8.1.1 Are suitable sentinel species available in reference and exposure areas?	5	5	5	•	Juvenile Atlantic salmon and lake chub available in reference and exposure areas
	8.1.2 Are suitable sentinel species abundant in reference and exposure areas? (reasonable CPUE)	5	5	5	•	both sentinel species abundant in reference an exposure areas
	8.1.3 Are fish community differences apparent between the reference and exposure area? (if yes, score 5)	5	5	2.5	•	some differences in CPUE, length and weight of juvenile Atlantic salmor between reference and exposure areas
8.2	Fish Tissue and Histopathology					
	8.2.1 Is there a difference in MT levels between reference and exposure fish?	5	5	2	•	Conflicting results but sample sizes small

Site Evaluation Criteria	Maximum Possible Criterion Score	Maximum Actual Criterion Score	Heath Steele	Comments
8.2.2 Is there a difference in metals levels between reference and exposure fish?	5	5	2	 conflicting results but sample sizes small
8.2.3 Are there obvious differences in fish health between reference and exposure area fish?	5	5	0	 small fish size thus whole fish sampled for tissue.
8.2.4 Do barriers to fish migration exist between the reference and exposure area? (if yes, score 5)	5	5	0	 no barriers exist although reference and exposure areas distant spatially
Total Criterion 8.0	35	35	12.5	
otal Maximum Score	155	155	104.5	67%